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Abstract— We establish sufficient and necessary conditions
for the (weak) structural observability as well as the strong
structural observability of lane-based highway traffic. Based on
these results, we characterize the fixed detector configurations
that guarantee the proper operation of a proposed traffic state
estimation scheme. The structural observability analyses are
based on a data-driven model, which is introduced for the per-
lane traffic density dynamics. The proposed model is derived
from the well-known conservation law equation via utilization of
position and speed information from connected vehicle reports.

I. INTRODUCTION

Despite the fact that numerous highway traffic state es-
timation methodologies exist, which are based on informa-
tion stemming from connected vehicles, e.g., [4], [6], [8],
[15], [18], [19], [24], [25], [26], [27], [28], those dealing
with the per-lane traffic state estimation are scarce [30].
The development of per-lane traffic estimation techniques
is of significant importance since the availability of traffic
information at a lane level is necessary for implementation
of lane-based traffic management strategies, e.g., [3], [20],
[21], [22] [23], [29], which have great potential for traffic
flow optimization, see, e.g., [7], [16]. We denote connected
vehicles as vehicles that are capable of reporting information
(i.e., position and speed) to an infrastructure-based system,
which may be achieved via different technologies and com-
munication paradigms. A basic scenario may simply consist
of vehicles equipped with a GPS (Global Positioning System)
and a system for mobile communication. However, more
complex scenarios, for example, scenarios that incorporate
communication among vehicles or between vehicles and
roadside units, are also possible.

A prerequisite for the proper operation of a given model-
based traffic state estimation scheme is the observability of
the underlying model. In particular, studying the observabil-
ity of traffic on a given highway stretch, one can derive the
locations at which mainstream fixed-flow detectors should be
placed, in order to guarantee that densities along the highway
stretch may be reconstructed by measuring the flow only at
those particular locations. The density estimation may be
achieved in real time via the employment of a suitable esti-
mation scheme, e.g., a Kalman filter. Yet, in existing model-
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based traffic estimation methods, observability is analytically
studied, i) considering models that don’t incorporate mea-
surements from connected vehicles, ii) assuming availability
of a fundamental diagram, and iii) only for specific examples
of traffic networks, see, e.g., [1], [5], [12].

Generally speaking, observability of a system is usually
studied employing certain algebraic conditions, see, e.g., [2].
However, for systems with a very large number of states or
very large output matrices, or for time-varying systems (as
in our case) it is difficult to formally check these conditions.
For this reason, as an alternative, graph-theoretic approaches
are may be adopted, which study the observability properties
of a system by merely looking into its structure, see, e.g.,
[10], [11], [17]. In addition, the study of the structural
observability properties of a system is useful in that one can
determine under which measurement configurations a system
is observable, by only investigating the structure of the zero
and non-zero elements of the system’s matrices.

In this paper, we study the observability properties of
a lane-based highway traffic flow model. Specifically, we
provide sufficient and necessary conditions for the (weak)
structural observability as well as the strong structural ob-
servability of a dynamical model, which is introduced, for
the per-lane traffic density dynamics. Based on the obtained
results, we can characterize the fixed detector configurations
that guarantee that densities along a highway stretch may be
reconstructed in real time, employing a suitable estimation
scheme, which utilizes the proposed model. The developed
model may be viewed as a data-driven version of the
conservation-of-vehicles equation (in its time- and space-
discretized form) and it is largely based on position and speed
information stemming from connected vehicle reports.

A. Notation and Definitions

a) Notation: We adopt the notation from [11], [17]:
• A structured matrix A, i.e., a matrix with certain ele-

ments being either fixed zeros or free nonzero param-
eters, is called a pattern. We say that a matrix A is
of pattern A if the structure of its zero and nonzero
elements is the same with A for all times.

• The graph G (A, C), where A and C are of dimension
n×n and r×n, respectively, has vertices {1, . . . , n+ r}
and there is a (directed) edge from the vertex x to the
vertex w if the element (w, x) of (A, C) is a nonzero
parameter. In this case, x is a predecessor of w, and w
is a successor of x. For any set V of vertices, Pre (V )
denotes the set of predecessors of V , namely, the set
of all vertices with a directed edge to some vertex in
V . The set Post (V ) denotes the set of successors of V ,



namely, the set of all vertices with a directed edge from
some vertex of V .

• Vertices {1, . . . , n} represent the states of the under-
lined dynamical system and are called “state” vertices,
whereas vertices {n, . . . , n+ r} represent those specific
states for which noisy measurements are available, and
are called “output” vertices.

• A vertex is called non-accessible if there exists no path
(i.e., a sequence of directed edges connecting certain
distinct vertices) from any output vertex to that vertex.
A graph is said to contain a dilation if there exists a set
V of state vertices such that the cardinality of the set
Pre (V ) is strictly smaller than the cardinality of set V .
b) Definitions: Consider a system of the form

x(k + 1) = A(k)x(k) +B(k)u(k) (1)
y(k) = C(k)x(k) +D(k)u(k), (2)

where x ∈ Rn is state, u ∈ RM is input, y ∈ Rr is output,
and k = 0, 1, . . . is the discrete time. We adopt the following
definitions, see, e.g., [2], [11], [17]:
• The pair of matrices (A,C) is called observable on

[k0, k0 +M∗] if and only if for all initial conditions
x(k0) ∈ Rn and for all inputs u : [k0, k0 +M∗]→ Rr,
one can uniquely determine x(k0) from the information
{(u(k), y(k)) |k ∈ [k0, k0 +M∗]}.

Let the matrices A and C be of pattern A and C, respectively.
• The system is strongly structurally observable if for any

numerical realization of the structured matrices A and
C, the corresponding systems are observable in the sense
of the formal definition above.

• The system is (weakly) structurally observable if there
exist numerical realizations of the structured matrices
A and C, such that the corresponding systems are
observable in the sense of the formal definition above.

The conditions that must be satisfied for strong or (weak)
structural observability are provided in the Appendix for the
convenience of the reader.

II. MODEL FOR PER LANE TRAFFIC DENSITY DYNAMICS

A. General Set-Up

We consider highway stretches consisting of M lanes,
indexed by j = 1, . . . ,M , subdivided into N segments,
indexed by i = 1, . . . , N . We define a cell (i, j) to be the
highway part that corresponds to lane j of segment i. The
length of each segment is denoted by ∆i, i = 1, . . . , N .

The following variables are repeatedly used in the paper:
• Average speed

[
km
h

]
of vehicles in cell (i, j), denoted

by vi,j , for i = 1, . . . , N and j = 1, . . . ,M .
• Total traffic density

[
veh
km

]
at cell (i, j), denoted by ρi,j ,

for i = 1, . . . , N and j = 1, . . . ,M .
• Total longitudinal inflow

[
veh
h

]
of cell (i+1, j), denoted

by qi,j , for i = 0, . . . , N − 1 and j = 1, . . . ,M .
• Total on-ramp flow

[
veh
h

]
entering at cell (i, j), denoted

by ri,j , for i = 1, . . . , N and j = 1, . . . ,M .
• Total off-ramp flow

[
veh
h

]
exiting from cell (i, j), de-

noted by si,j , for i = 1, . . . , N and j = 1, . . . ,M .

Fig. 1. Model of the exiting longitudinal flow from cell (i, j) as described
in (4). It consists of a well-established term of the form ρi,jvi,j , to the
contribution of the cell density, and of additional terms, which are multiplied
by a certain percentage p, due to the contribution of “diagonal” lateral flows.

• Total lateral flow
[

veh
h

]
at segment i that enters lane j2

from lane j1, denoted by Li,j1→j2 , for i = 1, . . . , N ,
j1 = 1, . . . ,M , and j2 = j1 ± 1.

B. Available Information from Connected Vehicles’ Reports

The data-driven model presented in the next subsection,
requires the availability of the following measurements:
• Average speed of connected vehicles at cell (i, j),

denoted by vc
i,j , for i = 1, . . . , N and j = 1, . . . ,M .

• Density of connected vehicles at cell (i, j), denoted by
ρc
i,j , for i = 1, . . . , N and j = 1, . . . ,M .

• Lateral flow of connected vehicles at segment i that
enters lane j2 from lane j1, denoted by Lc

i,j1→j2
, for

i = 1, . . . , N , j1 = 1, . . . ,M , and j2 = j1 ± 1.
Average speeds, densities, and lateral flows of connected
vehicles may be obtained via position and speed reports.

C. Model Description for the Density Dynamics

The conservation equation yields the following model for
the density dynamics in each cell (i, j)

ρi,j(k + 1)=ρi,j(k) +
T

∆i
(qi−1,j(k)− qi,j(k)

+Li,j−1→j(k) + Li,j+1→j(k)− Li,j→j−1(k)

−Li,j→j+1(k) + ri,j(k)− si,j(k)) , (3)

where T is time discretization step. For convenience, we
assume ri,j ≡ si,j ≡ 0, ∀i and 1 ≤ j ≤ M − 1, where M
denotes the right-most lane (assuming right-hand traffic); we
have Li,j1→j2 ≡ 0 if either j1 or j2 equals zero or M + 1.
We note that the inflows at the highway entry, namely, q0,j ,
j = 1, . . . ,M , are treated as measured inputs to system (3).

The following relation is employed for total flows (Fig. 1)

qi,j(k) = vi,j(k)ρi,j(k) + pi,jLi,j−1→j(k)

+pi,jLi,j+1→j(k) + p̄i,jri,j(k), (4)

for i = 1, . . . , N , j = 1, . . . ,M , where pi,j , p̄i,j ∈ [0, 1],
∀(i, j), indicate the percentages of “diagonal” lateral move-
ments, including lateral flows from an on-ramp “lane”, for
each specific cell. While the first term in (4) is well-known
(see, e.g., [13]), the motivation for the rest of the terms is
less obvious. Their choice is guided from the fact that at
locations of strong lateral flows, e.g., at cells where an on-
ramp is located or at segments that feature lane-drops, a



significant amount of the lateral flow may appear close to
the cell end (e.g., in the former case, at the acceleration lane
end). As a result, the flow modeling may be more accurately
described considering that a percentage of lateral or on-ramp
flows actually acts as additional exiting longitudinal flow.
This formulation is also employed in other works, e.g., [9].

For the lateral flows, we employ the following relation

Li,j1→j2(k) =
Lc
i,j1→j2

(k)

ρc
i,j1

(k)
ρi,j1(k), (5)

for i = 1, . . . , N , j1 = 1, . . . ,M , and j2 = j1± 1. Equation
(5) is based on the reasonable assumption that the behavior
of the population of connected vehicles in a given cell, with
respect to lateral movements, is representative for the total
vehicle population in that cell. This allows one to quantify
the total lateral movements from a cell using (5), namely, by
scaling the lateral movements of connected vehicles with the
inverse of the percentage of connected vehicles in that cell.
Note that, for analysis, the densities of connected vehicles
are assumed to be strictly positive.

Plugging (4), (5) into (3), we get for all (i, j)

ρi,j(k + 1)=

(
1− T

∆i
vi,j(k)− T

∆i

Lc
i,j→j−1(k)

ρc
i,j(k)

− T

∆i

×
Lc
i,j→j+1(k)

ρc
i,j(k)

)
ρi,j(k) +

T

∆i
vi−1,j(k)

×ρi−1,j(k) + (1− pi,j)
T

∆i

(
Lc
i,j−1→j(k)

ρc
i,j−1(k)

×ρi,j−1(k) +
Lc
i,j+1→j(k)

ρc
i,j+1(k)

ρi,j+1(k)

)

+pi−1,j
T

∆i

(
Lc
i−1,j−1→j(k)

ρc
i−1,j−1(k)

ρi−1,j−1(k)

+
Lc
i−1,j+1→j(k)

ρc
i−1,j+1(k)

ρi−1,j+1(k)

)
+ (1− p̄i,j)

× T

∆i
ri,j(k)+

T

∆i
(p̄i−1,jri−1,j(k)−si,j(k)).(6)

We adopt, as usual in absence of a descriptive dynamic
model, a random walk to describe the dynamics of on/off-
ramp flows. The deterministic parts of such models read

ri,M (k + 1) = ri,M (k) (7)
si,M (k + 1) = si,M (k). (8)

We write next compactly the overall system (6)–(8). For
this, we define first the vector x as follows

x = (ρ1,1, · · · , ρN,1, · · · , ρ1,M · · · , ρN,M , r1,M , · · · ,
rN,M , s1,M , · · · , sN,M )

T
. (9)

The average speed of connected vehicles is representative
of the average cell speed, as motivated in [4] and justified
with real data and in microscopic simulation in [19] and [6],
respectively, even for connected-vehicle penetrations as low
as 2%. Thus the unmeasured cell speeds vi,j may be replaced

by the corresponding measured speeds vc
i,j ; and, using (9),

we re-write (6)–(8) in a compact form as

x(k + 1) = A (vc(k), Lc(k), ρc(k))x(k) +Bu(k), (10)

where vc, Lc, and ρc denote vectors that incorporate all
average cell speeds of connected vehicles vc

i,j , lateral flows of
connected vehicles Lc

i,j1→j2
, and densities of connected vehi-

cles ρc
i,j , respectively, while u denotes the vector of inflows

at the highway entrance, namely, u = (q0,1, · · · , q0,M )
T,

A ∈ R(N×M+2N)×(N×M+2N), and B ∈ R(N×M+2N)×M .
Together with (10) we associate an output vector y,

which holds all mainstream total flows that are measured
by corresponding mainstream fixed detectors and, as follows
from (4), (5), is given by

y(k) = C (vc(k), Lc(k), ρc(k))x(k), (11)

where C ∈ R(M+lr+ls−1)×(N×M+2N), with lr and ls being
the number of on-ramps and off-ramps, respectively. The
minimum number of rows of C equals M + lr + ls − 1 in
order for system (10), (11) to be observable (see Section III).

III. OBSERVABILITY OF THE MODEL

A. Observability: Physical Implications

We provide next some physically oriented implications of
the formal definitions of Section I-A (see, e.g., [2], [11]).

In less rigorous terms, the observability property of a
system guarantees that the dynamic evolution of its internal
states (i.e., the states that are not directly measured) may be
extracted (observed) by measuring only some specific states
(or, more generally, some outputs of the system). Thus, the
study of observability of a system is useful since it provides
the necessary sensor requirements, which guarantee that all
internal sates may be reconstructed by measuring only certain
outputs.

B. The Concept of Structural Observability

The motivation for the study of the structural observability
properties of system (10), (11) has been already mentioned in
the third paragraph of Section I. Depending on which specific
notion is adopted, structural observability may be a sufficient
or necessary condition for observability (see paragraphs a)
and b) below and the definitions in Section I-A).

Here we focus on two different notions of structural ob-
servability, namely the strong structural observability and the
(weak)1 structural observability whose (informal) definitions
can be found in Section I-A. We provide next some of the
implications of the two structural observability properties on
observability, and consequently, on traffic state estimation.

a) Strong Structural Observability: The strong struc-
tural observability property guarantees that “no matter what”
values the non-zero system matrix elements may take, the
system remains observable. Thus, clearly, strong structural
observability is sufficient for observability.

1Note that, in the literature, the weak structural observability property
comes usually under the name “structural observability”. However, here,
we use the name “(weak) structural observability” so no confusion arises.



b) (Weak) Structural Observability: Is a necessary con-
dition for observability. The (weak) structural observability
concept, in fact, provides a physically intuitive way to the
study of observability which, in practice, typically implies
indeed system observability. The reason is that the loss of
observability of a (weakly) structurally observable system
may happen only in some “pathological” cases when the
elements of the A and C matrices accidentally happen to
satisfy some specific conditions, see, e.g., [11], [17]. Thus,
in practice, (weak) structural observability implies in the rule
the proper operation of a given estimation scheme. It should
be also noted that, since (weak) structural observability
is a weaker property than strong structural observability,
one may expect that a smaller number of sensors may be
required to guarantee (weak) structural observability than
strong structural observability.

C. Structural Assumptions for the Considered Traffic Models

We consider systems of the form (10), (11) with the
patterns A and C under the assumptions that for all (i, j)

0 6= vc
i,j(k) (12)

1 6= T

∆i

(
vc
i,j(k) +

Lc
i,j→j−1(k)

ρc
i,j(k)

+
Lc
i,j→j+1(k)

ρc
i,j(k)

)
,(13)

for all k ≥ 0. Both (12), (13) are satisfied when for all (i, j)

0 < vc
i,j(k) <

∆i

T
−
Lc
i,j→j−1(k)

ρc
i,j(k)

−
Lc
i,j→j+1(k)

ρc
i,j(k)

, (14)

for all k ≥ 0. The right-hand side of (14), in the case of zero
lateral flows of connected vehicles (e.g., in the case of one-
lane highway), is satisfied when the traffic model respects the
so-called Courant-Friedrichs-Lewy condition (which must
anyhow hold for stable discrete traffic flow models). The
left-hand side of (14) is satisfied when at least one connected
vehicle is not completely stopped within a cell.

D. Traffic Models Under Study

In the following structural observability study we consider
subsequently the following four basic models derived from
the general model (10), (11); each sub-model turns out to
have different structural observability properties:

I. One-lane highway stretch with N segments (≡ cells),
where all percentage values p̄i,j for diagonal on-ramp2

flows are set to zero (which is equivalent to the non-
lane-based estimation scheme for a highway stretch
considered in [4]).

II. General three-lane highway stretch3 where all percent-
age values pi,j and p̄i,j are set equal to zero, for both
diagonal lateral and on-ramp flows, whereas the lateral
flows of connected vehicles may or may not be zero.

III. General three-lane highway stretch.
IV. One-lane highway stretch where the percentage values

p̄i,j for diagonal on-ramp flows may be non-zero.

2Since off-ramp and on-ramp flow dynamics are identical, for simplicity
of presentation we consider the case in which all ramps are on-ramps.

3For simplicity of presentation we consider a three-lane highway stretch.

In the study of (weak) structural observability we consider
in addition the following two models:

V. Model I where matrix A is replaced by 1
T (A− I),

which can be viewed as an approximation of the
continuous-time version of Model I (the time derivative
is approximated by a forward finite difference formula).

VI. Model III where A is replaced by 1
T (A− I), which

can be viewed as an approximation of the continuous-
time version of Model III (where the time derivative is
approximated by a forward finite difference formula).

The motivation for studying these additional models will
be explained later (see Section III-F).

Note that, as it is already mentioned in Section II, the
inflows at the main entry of each lane of the considered high-
way stretch are modeled as arbitrary, but measured, inputs.
Yet, all the specific models and the following observability
analysis could be adapted to the case where some inflows
are not directly measured. For simplicity of presentation we
consider the case in which none of the on-ramp flows is
directly measured.

E. Strong Structural Observability of Lane-Based Traffic

We establish the following claims for each of the models
I, II, III, and IV:

1. Model I is strongly structurally observable if and only
if: i) total flow fixed detectors are placed at the main
exit of the considered highway stretch; and ii) total flow
fixed detectors are placed at every segment immediately
upstream of a segment with an on-ramp4.

2. Model II is strongly structurally observable if and only
if: i) total flow fixed detectors are placed at the main
exit in each lane of the considered highway stretch; and
ii) total flow fixed detectors are placed at every segment
immediately upstream of a segment with an on-ramp.

3. Model III is not strongly structurally observable under
the measurement configuration i) and ii) of Claim 2.

4. Model IV is not strongly structurally observable under
the measurement configuration i) and ii) of Claim 1.

In order to establish Claims 1–4 we employ the results
from [17] under the structural assumptions of Section III-C.

a) Claim 1: We start by constructing the graph
G
(
AT, CT

)
, shown in Fig. 2, for Model I. Employing

Corollary IV.2 from [17], it follows that the highway

4This may also be proved as in [4] employing an algebraic approach and
utilizing the classical definition of observability.

Fig. 2. The graph G
(
AT, CT

)
for patterns A and C that include matrices

A and C, respectively, of system (10), (11), for the case of a simple one-lane
highway stretch with N segments (Model I).



stretch with one lane is strongly structurally observable on
[k0, k0 +N +m], for any k0 ≥ 0, where m denotes the total
number of on-ramps (hence, that every system of pattern
(A, C) is observable on [k0, k0 +N +m]) if and only if
condition G0 ∩G1 is satisfied. For the reader’s convenience,
conditions G0 and G1 can be found in the Appendix.

A sufficient requirement for condition G0 to be satisfied
is that the total flow at the exit of the considered highway
stretch is measured, or, more generally, that there is an output
vertex y1 as shown in Fig. 2. To see this, first observe from
Fig. 2 that for every subset S ⊆ {ρ1, . . . , ρN} it holds
that S ∩ Post ({ρj+1}) = {ρj}, where ρj corresponds to
the vertex with the maximum index that belongs to S with
ρj ≡ y1 when j = N + 1. Moreover, for every such subset
S that also includes vertices of the form ri, it holds that
S ∩ Post ({ri}) = {ri}.

We next show that a sufficient requirement for condition
G1 to hold is that, simultaneously, mainstream, total flow
fixed detectors are placed at every segment immediately
upstream of a segment with an on-ramp as well as at the exit
of the stretch. We first note that the requirement of condition
G1, that V ⊆ Pre (V ), is indeed satisfied for any subset
V ⊆ {ρ1, . . . , ρN , r1, . . . , rm}, since, as it is observed from
Fig. 2, for every vertex there is a directed edge from that
vertex to itself. We employ next the same argument to the
proof of satisfaction of condition G0, namely that for every
subset S ⊆ {ρ1, . . . , ρN} it holds that S ∩ Post ({ρj+1}) =
{ρj}, where ρj corresponds to the vertex with the maximum
index that belongs to S with ρj ≡ y1 when j = N + 1.
Since ρj+1 doesn’t belong to S, it follows that condition
G1 is satisfied for every subset V that contains only density
vertices. Thus, in order to guarantee that condition G1 is
satisfied it is sufficient to show that for every subset V ⊆
{ρ1, . . . , ρN , r1, . . . , rm} (i.e., which contains vertices of the
form ri) there exists a vertex x that doesn’t belong to V and,
moreover, it is such that V ∩Post ({x}) is a singleton. From
Fig. 2 it is evident that the only cases the latter requirement
may not hold are the following. The subset V contains
pairs of vertices of the form {ri, ρi−1} (namely an on-ramp
vertex and a vertex that corresponds to the density of the
segment immediately upstream of the segment with the on-
ramp, respectively) and, potentially, every other vertex on the
left of ρi−1 (irrespectively of being a density or an on-ramp
vertex), but it doesn’t contain vertex ρi (or any other vertex,
density or on-ramp, on the right of ρi). To see this, note that,
otherwise, V ∩ Post ({ρi+1}) = {ρi} or, in the case where
V contains only on-ramp vertices, V ∩ Post ({ρi}) = {ri}.
Thus, one can conclude that condition G1 is satisfied when
a mainstream total flow fixed detector is placed at segment
i − 1, namely at the segment immediately upstream of the
segment with the on-ramp, since then V ∩ Post ({yi}) =
{ρi−1}. In other words, condition G1 holds when an output
vertex yi exists as shown in Fig. 2.

The fact that the existence of the output vertex yi is also
necessary for the satisfaction of condition G1 (and thus,
necessary for strong structural observability [17]) follows
from the previous discussion by taking V = {ri, ρi−1}

and noting that the only vertex that has a successor in V
(but, it doesn’t belong to V ) is ρi which, however, has two
successors in V . Finally, the fact that the existence of the
output vertex y1 is a necessary condition for G1 to hold, can
be shown by taking V = {ρN} and noting that there exists
no vertex which doesn’t belong to V with a successor in V .

b) Claim 2: The corresponding graph G
(
AT, CT

)
for

Model II is shown in Fig. 3. It is evident from Fig. 3 that
strong structural observability is preserved under the same
mainstream, fixed total flow measurement requirements as
in the single-lane case (i.e., as in Claim 1). Note that a
red edge may not exist, if the corresponding lateral flow
of connected vehicles is zero, without affecting the strong
structural observability of the system.

Fig. 3. The graph G
(
AT, CT

)
for patterns A and C that include matrices

A and C, respectively, of system (10), (11), for the case of a three-lane
highway stretch with p̄i,j = pi,j = 0, for all i and j, when the lateral
flows of connected vehicles may be nonzero (Model II).

The fact that the measurement configuration i) and ii) of
Claim 2 is also necessary for strong structural observability
can be shown as follows. Consider the case where, e.g., the
output vertex y1 doesn’t exist. Then, in the case in which
the red edge from χN to φN doesn’t exist, condition G1

obviously cannot hold for V = {φN}. The necessity of
the measurement configuration ii) follows analogously with
Claim 1, by choosing the set V = {φi−1, ri} and considering
a case in which there is no red edge from χi−1 to φi−1. The
only vertex that has a successor in V (but, doesn’t belong to
V ) is φi which, however, has two successors in V .

c) Claim 3: We next turn our attention to Model III,
i.e., to the most general case of highway stretches modeled
by system (10), (11), where the percentage values of diagonal
on-ramp or lateral flows may be nonzero. The corresponding
graph G

(
AT, CT

)
is shown in Fig. 4. Unfortunately, condi-

tion G0 cannot be satisfied for this general highway stretch
with the measurement configuration shown in Fig. 4. This
can be seen, for example, by choosing the set {φ1, χ1, ψ1}
since there exists no vertex x such that the set {φ1, χ1, ψ1}∩
Post ({x}) contains only one element5.

d) Claim 4: For Model IV, condition G1 cannot be
satisfied for subsets V of the form {φi, ri}. This can be seen
from Fig. 4, for the special case of one lane, as follows. The

5Note that for not making the corresponding graph shown in Fig. 4 more
complex than needed, we consider the case where the total flows measured
at the segments with mainstream fixed detectors are modeled by (4), with the
percentage values of diagonal flows equal to zero. The conclusion drawn is
not changed when some of the corresponding percentage values are nonzero.



Fig. 4. The graph G
(
AT, CT

)
for patterns A and C that include matrices

A and C, respectively, of system (10), (11), for the case of a three-lane
highway stretch where the percentage values of diagonal on-ramp or lateral
flows may be nonzero (Model III).

only vertex that doesn’t belong to V and has a successor in
V is φi+1, which, however, has two successors in V .

F. (Weak) Structural Observability of Lane-Based Traffic

We establish the following claims for models I–VI:
5. Model V is (weakly) structurally observable if and only

if: i) total flow fixed detectors are placed at the main exit
of the considered highway stretch; and ii) for each pair
of on-ramps, an additional fixed flow sensor is placed
anywhere between two consecutive on-ramps.

6. Model I is (weakly) structurally observable under the
measurement configuration i) and ii) of Claim 5.

7. Model I is (weakly) structurally observable if and only
if total flow fixed detectors are placed at the main exit
of the considered highway stretch.

8. Model VI is (weakly) structurally observable if and only
if: i) for each pair of on-ramps, an additional fixed flow
sensor is placed anywhere between two consecutive on-
ramps; and either iia) total flow fixed detectors are
placed at the main exit of every lane of the considered
highway stretch, when some lateral flows of connected
vehicles may be zero; or iib) total flow fixed detectors
are placed at the main exit of at least one of the lanes of
the considered highway stretch, when all lateral flows
of connected vehicles are always nonzero.

9. Model III is (weakly) structurally observable under the
measurement configurations i) and iia) or i) and iib) of
Claim 8.

10. Model III is (weakly) structurally observable if and only
if: either ia) total flow fixed detectors are placed at
the main exit of every lane of the considered highway
stretch, when some lateral flows of connected vehicles
may be zero; or ib) total flow fixed detectors are placed
at the main exit of at least one of the lanes of the
considered highway stretch, when all lateral flows of
connected vehicles are always nonzero.

Note that Claims 9, 10 and Claims 6, 7 trivially extend to
Model II and Model IV, respectively, and thus, they are not
presented here. One can see this by observing that the proofs
of Claims 6, 7, 9, and 10 are not affected by the existence or
not of blue edges, i.e., of edges due to non-zero percentages.

a) Claim 5: We start by constructing the graph
G
(
ĀT, CT

)
, shown in Fig. 5, where Ā = 1

T (A− I). Utiliz-

Fig. 5. The graph G
(
ĀT, CT

)
for patterns Ā = 1

T
(A− I) and C that

include matrices A and C, respectively, of system (10), (11), for the case
of a simple one-lane highway stretch with N segments (Model V).

ing the results, e.g., from [11], the one-lane highway stretch
is (weakly) structurally observable if the graph G

(
ĀT, CT

)
,

shown in Fig. 5, contains no non-accessible vertex and no
dilation. A necessary and sufficient condition for the graph
to contain no non-accessible node is that a fixed flow sensor
is placed at the exit of the considered highway stretch, or,
in other words, that an output vertex y1 is placed as shown
in Fig. 5. Moreover, from Fig. 5 one can observe that every
density vertex contains a self-edge, and hence, every density
vertex has at least two predecessors. Therefore, the only
possibility for a dilation to exist is when one considers
subsets of vertices like the ones indicated in blue circle
in Fig. 5 (i.e., when one considers subsets of vertices that
include two consecutive on-ramp vertices together with the
density vertices at and between the cells with the on-ramps).
Thus, no dilation exists if and only if an additional fixed
flow sensor is placed anywhere between two consecutive on-
ramps, as it is indicated in Fig. 5 with the output vertex yi∗ .
With the same reasoning, it is easy to conclude that, in case
there is only one on-ramp, one sensor only, namely a sensor
at the exit of the considered highway stretch, is sufficient
and necessary for (weak) structural observability.

b) Claim 6: The total flow measurement configurations
in Claim 5 above are sufficient for the (weak) structural
observability of the original system of pattern A since the
graph G

(
AT, CT

)
is similar to the graph G

(
ĀT, CT

)
, with

the only addition that there are self-edges at all on-ramp
vertices. In fact, it is not difficult to see in Fig. 5 that with
the addition of self-edges at the on-ramp vertices, there is
still no non-accessible vertex, and, in addition, there exists
no dilation since every state vertex has a self-edge.

c) Claim 7: For graph G
(
AT, CT

)
the existence of only

one output vertex, namely of y1 (that corresponds to a fixed
flow sensor at the exit of the considered highway stretch),
is sufficient for (weak) structural observability. This can be
seen by observing from Fig. 2 that all state vertices have a
self-edge, thus no dilation occurs, and, all state vertices are
accessible from the output vertex y1. Necessity is not difficult
to establish by observing that when the output vertex y1 is
not located at the position shown in Fig. 2, the vertex ρN
cannot be accessible.

We now explain the motivation for studying Models V, VI.
Remark 1: For physical systems, (weak) structural ob-

servability is usually sufficient for observability since “a pos-
sible loss of observability of a (weakly) structurally observ-
able system can occur only in pathological cases when there
are accidental constraints of the system parameters”, as it is



stated in [10]. Yet, the random walk dynamics introduced,
which correspond to diagonal elements of matrix A that are
equal to each other (in fact, they are all exactly equal to one),
impose some rather non-physical interconnections in model
(10). In principle, such fictitious dependencies/symmetries
among specific elements of matrix A may cause a (weak)
structural observability test to eventually underestimate the
number of sensors needed for observability, see, e.g., [11]6.
The following example illustrates this fact.

Example 1: Consider the case of an one-lane highway
stretch with two segments and two on-ramps, where free-
flow conditions prevail (assume zero percentages of on-
ramp diagonal flows). Matrices A and C of (10), (11)

reduce to A =


1− T

∆vf 0 T
∆ 0

T
∆vf 1− T

∆vf 0 T
∆

0 0 g1 0
0 0 0 g2

, C =

[
0 vf 0 0

]
, respectively, where the elements of A that

correspond to the random walk dynamics have been replaced
by some arbitrary values g1 and g2 (instead of one). It can
be shown that the determinant of the observability matrix
(see paragraph f) in the Appendix) is given by det(O) =
T 4v6

f

∆5 (g1 − g2) (∆g2 −∆ + Tvf ). From the last relation it
is clear that, irrespectively of the values for vf , T , and
∆, the system is not observable (i.e., the determinant of
the observability matrix is zero), when the on-ramp flow
dynamics are identical to each other (which is the case when
both on-ramp flow dynamics are modeled by random walk
equations), i.e., when g1 = g2

7, although from Claim 7
Model I is (weakly) structurally observable.

Models V and VI could be viewed as approximations of
the continuous-time version of Models I and III, respectively
(see Section III-D for details). As such, the dynamics of
the deterministic part of a random walk equation (modeling
the on-ramp flows) are zero. Replacing in the random walk
equations the corresponding ones with fixed zeros, breaks
potential fictitious symmetries in the structure of the system,
which may appear. Thus, compared to the discrete-time case,
it is more likely that the resulting conditions for (weak)
structural observability are more physically oriented as well
as sufficient. Indeed, when Models V and VI are (weakly)
structurally observable, then Models I and III are so, since
the addition of edges never weakens the (weak) structural
observability of a system (see, e.g., [11]).

d) Claim 8: The graph for Model VI is identical to
the graph of Fig. 4 with the only difference that on-ramp
vertices have no self-edges. Observe next that the graph of
Model VI is derived by the graph of Model V, shown in Fig.
5, by adding extra edges that correspond to diagonal flow

6There may be additional symmetries due to, e.g., in the case of one-lane
highway, terms of the form 1− T

∆
vi,j and T

∆
vi,j that appear in the main

diagonal and the diagonal immediately below of matrix A, respectively.
However, such dependencies don’t seem to cause an underestimation of
the measurement requirements needed for observability since such symme-
tries/dependencies are inherent to the actual physical system.

7One can observe from the expression for det(O) that the system is not
observable when g2 =

∆−Tvf
∆

as well. However, the latter condition is
just an accidental condition without any meaningful physical interpretation.

percentages or lateral flows of connected vehicles, as well as
extra vertices that correspond to densities of additional lanes.
One can show that these additional edges and vertices don’t
affect the (weak) structural observability of the system under
the measurement configuration of Claim 5 as follows. Since
every additional state vertex has a self-edge, still no dilation
occurs. Furthermore, all state vertices are accessible by an
output vertex when there are measurements in all lanes at the
exit of the considered highway stretch, no matter if lateral
flows of connected vehicles are zero or not. Finally, when
there is a measurement at at least one lane at the stretch’s
exit, it can be seen that all state vertices are still accessible
by an output vertex as long as the lateral flows of connected
vehicles are always nonzero (i.e., the red edges always exist).

The fact that the measurement configuration i) of Claim
8 is also a necessary condition for (weak) structural observ-
ability can be shown as follows. Consider the set of blue
vertices in Fig. 5 and assume that there is no incoming edge
to that particular set, which could potentially exist due to
nonzero percentages of diagonal flows or due to nonzero
lateral flows to the adjacent lane. Then this set contains
a dilation when the output vertex y∗i doesn’t exist, and
hence, the system is not (weakly) structurally observable.
Moreover, the measurement configuration iia) is a necessary
condition for (weak) structural observability, which can be
seen from Fig. 4 as follows. Consider, for example, the case
in which there is no output vertex y3, and, in addition, the
red edge from χN to ψN doesn’t exist. Then the vertex
ψN is non-accessible, and thus, the system is not (weakly)
structurally observable. Finally, it is trivial to show that
the measurement configuration iib) is a necessary condition
for (weak) structural observability since when condition iib)
doesn’t hold there is no output vertex at the exit of any lane.
Hence, all vertices of every segment on the right of some
segment with an output vertex yi are non-accessible.

e) Claims 9, 10: The proofs of Claims 9 and 10 follow
from Claim 8 similarly to Claims 6 and 7, respectively.

The (weak) structural observability results of this section
concern the time-invariant version of A and C with the
structure A and C, respectively. Yet, adapting the results from
[14] (see also, [11]) to the case of the observability matrix we
conclude that the original time-varying system (10), (11) is
also (weakly) structurally observable. This is shown noting
that the observability matrix that corresponds to the time-
varying version of A and C, with structure A and C for all
times, has a generic rank MN+m, on any interval [k0, k0 +
MN+m],∀k0 ≥ 0. The latter conclusion follows combining
[14] with the (weak) structural observability results of this
section, and noting that the elements of matrices A and C are
well-defined, explicit functions of speeds, lateral flows, and
densities of connected vehicles (which are all assumed to be
uniformly bounded from above and, in addition, speeds and
densities are assumed to be positive and uniformly bounded
from below, see Sections II-C and III-E).

Example 2: See Fig. 6.



Fig. 6. Stretch of highway I-80 in Emeryville, California. Assume per-lane
density dynamics modeled by (10), (11), where, for simplicity, all diagonal
flow percentages are zero. From Claim 2, the system is strongly structurally
observable when flow detectors are placed at the exit of cells (1, 6), (4, j),
j=1, . . . , 6, and at the entry of cells (1, j), j=1, . . . , 6. From Claim 10, the
system is (weakly) structurally observable when flow detectors are placed
at the exit and entry of cells (4, j) and (1, j), j=1, . . . , 6, respectively.

APPENDIX

a) Condition G0 from [17]: For every non-empty sub-
set V ⊆ {1, . . . , n} of (state) vertices of G

(
AT, CT

)
there

exists a vertex v ∈ {1, . . . , n+ r} such that V ∩ Post ({v})
is a singleton.

b) Condition G1 from [17]: For every non-empty sub-
set V ⊆ {1, . . . , n} of (state) vertices of G

(
AT, CT

)
that sat-

isfies V ⊆ Pre (V ) there exists a vertex v ∈ {1, . . . , n+ r}\
V such that V ∩ Post ({v}) is a singleton.

c) Conditions for (Weak) Structural Observability (see,
e.g., [11]): A linear system (A,C) is (weakly) structurally
observable if and only if: i) The graph G

(
AT, CT

)
contains

no non-accessible vertex; and ii) the graph G
(
AT, CT

)
contains no dilation.

d) Observability Gramian: Observability
Gramian for (1), (2) is matrix G (k0, k0 +N∗) =∑k0+N∗−1

k=k0
θT (k, k0)CT(k)C(k)θ (k, k0), where θ is

as θ (k, k0) = A (k − 1)A (k − 2) · · ·A (k0), ∀k > k0, and
it satisfies θ (k, k) = I , with I denoting the identity matrix.

e) Condition for Observability of Linear Time-Varying
Systems (see, e.g., [2]): The pair (A,C) is observable on
[k0, k0 +N∗] if and only if: det (G (k0, k0 +N∗)) 6= 0.

f) Specialization to Linear Time-Invariant Systems [2]:
The pair (A,C) is observable if and only if: rank (O) = n,
where n is the dimension of matrix A and O is the observ-
ability matrix OT =

[
CT ATCT · · · An−1T

CT
]
.
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