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Abstract—This study aims to provide insights and demonstrate
the properties and the performance of a nonlinear adaptive
control scheme which has been recently developed to address
the ramp metering problem arising in freeways. The proposed
scheme consists of a nominal feedback law in conjunction with a
nonlinear observer which aims to estimate some unknown system
variables. A distinguishing novelty of the proposed approach is
that it can inherently be applied both at local and coordinated
levels. The control scheme is tested for realistic traffic scenarios
using a macroscopic traffic flow simulator as a surrogate for
potential field application. Comparison tests have been performed
with other control strategies proposed in the literature and
employed already in the field.

I. INTRODUCTION

Ramp metering is an effective control measure for free-
way networks, which aims at ameliorating traffic conditions
by appropriately regulating the inflow from the on-ramps.
However, the goal of such control measures can only be
achieved if driven by an opportune control strategy [1]. Real-
time (traffic-responsive) ramp metering strategies, fed with
real-time measurements from sensors installed in the freeway
network and the on-ramps, are considered to be the most robust
and efficient approach in this context.

Real-time ramp metering strategies can be classified as local
(demand-capacity strategy and its variations [2], ALINEA
strategy and its variations [3],[4], neural network [5] and fuzzy
logic based [6] approaches) or coordinated (optimal control
strategies [7], [8], [9], linear multivariable control strategies
[10], rule-based algorithms [11]). There exist also mixed ramp
metering strategies such as [12]. The ultimate goal of any
of the above ramp metering control strategies is to real-time
determine, in the most efficient way, the inflows from the on-
ramps, when congestion phenomena are present or imminent
at the corresponding mainstream region, so as to maximize
freeway throughput.

Recently, an Adaptive Control Scheme (ACS) has been
proposed in [13] as a real-time ramp metering strategy, which
can be applied either at local or coordinated levels. The
proposed ACS has been developed on the basis of general
freeway models, developed in [14], which are generalizations
of the well-known first-order discrete Godunov approximation
of the LWR model ([15], [16]). In particular, the ACS consists
of two main components: i) a Nominal Feedback Law (NFL)
in conjunction with ii) a nonlinear observer that estimates

the unknown system parameters utilized by the NFL. In
[14], it has been rigorously shown that the nominal feedback
law guarantees the robust, global exponential stabilization
of any selected uncongested model equilibrium point when
the model parameters are known and constant. In [13], a
nonlinear dead-beat observer was designed, which performs
the exact identification of the constant model parameters after
a transient period. The combined implementation of these two
components constitutes the proposed ACS which guarantees
the robust global exponential attractivity of the desired (partly
unknown) uncongested (moving) equilibrium point [13].

Motivated by the aforementioned strong theoretical prop-
erties of the ACS, this work aims to provide insights in
its practical properties and performance under realistic and
customary freeway traffic scenarios. Testing this strategy with
sufficiently accurate traffic flow models, different than the ones
used for ACS design, is deemed as an indispensable step
towards potential application of the scheme in the field. In
this study, the simulation model METANET [17], which is
able to reproduce with high accuracy the traffic dynamics [18],
is utilized as a surrogate of ground truth for the application of
the ACS. First, the performance of the control scheme is in-
vestigated with respect to the stabilization of freeway traffic in
case bottlenecks exist far downstream from a metered on-ramp.
Second, by appropriately exploiting the application flexibility
provided by ACS, the scheme is applied for coordinated ramp
metering control, so as to balance the relative queue lengths
created on the controllable on-ramps.

The rest of the paper is organized as follows. Section II
is devoted to the detailed description of the ACS. Section III
briefly describes the simulation setting, while the application
results of the ACS at local and coordinated ramp metering
levels are presented in Sections IV and V, respectively. The
main conclusions are given in Section VI.

II. THE ADAPTIVE CONTROL SCHEME (ACS)

The proposed ACS aims to delay, prevent or dissolve
congestion phenomena caused by the presence of recurrent
active bottlenecks (on-ramp merging areas, lane drops, tunnels,
bridges) within a freeway stretch. By its nature, any real-
time control strategy requires measurements of flow, speed or
density, obtained from appropriately located detectors within
the freeway. On the other hand, if the required measurements



are deficient or absent, then appropriate estimation schemes
can be used so as to retrieve the necessary traffic flow
information from available measurements [19].

As mentioned above, the ACS consists of two main compo-
nents, a NFL and a nonlinear observer. The first aims to steer
the system towards a desired traffic state while the second aims
to estimate the external traffic variables required for producing
the desired traffic state. The following subsection presents the
NFL component under the assumption that all the required
measurements or estimates are available.

A. The Nominal Feedback Law (NFL)

To enable the real-time operation of the NFL, real-time
information of traffic density should be available. If there are
no density measurements, density estimates can be readily ob-
tained from corresponding (usually available) occupancy mea-
surements or can be provided by various estimation schemes
[20], [19]. In what follows, the measurements or estimates
of density are in [veh/km]. Although other configurations are
possible, we will consider a freeway traffic control setting that
is compatible with the cases addressed in [4] for isolated ramp
metering and in [12] for coordinated ramp metering. Thus, we
are in a position to have a reference point for comparison.

1) Main features of the Nominal Feedback Law: A free-
way stretch under control extends from the most upstream
controllable on-ramp until a recurrently activated bottleneck at
its downstream boundary (Fig. 1), in the aim of maximizing
bottleneck throughput. The freeway stretch may contain other
controllable or uncontrollable on-ramps, as well as off-ramps.
A space discretization of the considered freeway stretch is
introduced with cells which are typically about 500 m in
length. Let n be the total number of cells emerging after
discretizing the freeway; the nth (last) cell corresponds to
the bottleneck cell. The on-ramps and the off-ramps are
located at the upstream and downstream boundary of a cell,
respectively, and are denoted by the index i ∈ {1, ..., n} of the
corresponding cell. Let O ⊆ {1, ..., n} be the index set of the
on-ramps and let R ⊆ O be the index set of the controllable
on-ramps. Then, ui denotes the controllable inflow of on-ramp
i ∈ R and ri denotes the actual inflow of on-ramp i ∈ O; in
case i ∈ R, the actual inflow ri depends on the control decision
and therefore becomes ri(ui) (Fig. 1). All flows are measured
in [veh/h]. The upstream-most boundary cell is denoted by
the index i = 0. Let Tc be the control holding period and let
T be the measurement (or estimate) sampling period, where
Tc = zcT with zc ∈ N. With these definitions, the control
action (at times t = kcTc, with kc = 1, 2, ...) ordered by the
NFL reads:

ui(kc) = max

(
umin
i , u∗i (kc)-

u∗i (kc)-umin
i

τ
Ξ
(
ρ(kc)

))
, (1)

for i ∈ R, where

Ξ
(
ρ(kc)

)
=

n∑
j=1

σj max
(
0, ρj(kc)− ρ∗j (kc)

)
, (2)

where umin
i > 0 is the minimum admissible on-ramp flow,

σ ∈ (0, 1] (dimensionless) and τ > 0 (in [veh/km]) are
parameters of the regulator, ρj(kc) (j = 1, ..., n) correspond
to (the average of the last zc) density measurements or
estimates and (u∗i (kc), ρ

∗
j (kc)) (i ∈ R, j = 1, ..., n) denotes

the Desired Operating Point (DOP), reflecting optimal non-
congested conditions in the examined freeway stretch.

The efficient operation of the NFL (1), (2) requires the
proper determination of the regulator parameters σ and τ . In
fact, the NFL assigns a different control gain to each cell j
of the considered freeway stretch, which is equal to σj/τ (σj

denotes σ to the power of j). However, simulation experiments
indicate that the selection σ = 1 (yielding the same control
gain, i.e., 1/τ for each freeway cell) and appropriate deter-
mination of the parameter τ guarantees satisfactory control
performance. Typical values for τ may be selected within the
range [1,30]; whereby smaller values of τ lead to more ag-
gressive (even oscillating) control behavior, while larger values
of τ lead to less aggressive (but possibly sluggish) control
behavior. In any case, tuning of only one design parameter is
sufficient to establish the desired dynamic characteristics of
the control loop, and this is certainly a convenient feature for
practical application of the method.

The determination of the DOP (u∗i , ρ
∗
j ) (i ∈ R, j = 1, ..., n)

is crucial and is based on two aspects: i) the maximization
of throughput at the bottleneck location (cell n) and ii) the
uncongested equilibrium flow along the considered freeway.

2) Maximization of throughput at the bottleneck location:
In order to determine the DOP, the knowledge of the bot-
tleneck’s critical density ρcrn (density at which flow reaches
capacity) will be assumed. The proper critical density value
should be extracted from historical data or be specified after
the control installation via fine-tuning. Then, in order to
achieve maximization of throughput, we define the target
outflow q∗n of the freeway stretch (which turns out to be the
estimate of the capacity flow of the bottleneck location) as

q∗n(kc) = ρcrn vn(kc), (3)

where vn(kc) (in [km/h]) is the measured or real-time esti-
mated mean speed at the bottleneck. The target outflow given
by (3) may lead to unrealistically high estimated capacity
values whenever the measured or estimated speed is near free
speed. However, in such cases no control actions will be con-
sidered since the freeway operates under free flow conditions.
On the other hand, when the real density approaches its critical
value, the mean speed reduces approaching the “critical speed”
and the estimate (3) is close to the real capacity value.

Fig. 1. Space discretization of a freeway stretch.



3) Equilibrium flow: The DOP (u∗i , ρ
∗
j ) (i ∈ R, j =

1, ..., n) implies the balance between the total inflows and the
total outflows (along with the target outflow (3)) in the consid-
ered freeway stretch. Specifically, the total inflows comprise:
i) the optimal inflows u∗i of the controllable on-ramps (i ∈ R);
ii) the measured or estimated uncontrollable on-ramp flows ri
(i ∈ O\R); and iii) the very upstream, measured or estimated,
mainstream inflow qint0 , i.e., the outflow from cell i = 0 that
becomes inflow for cell i = 1. The total outflows comprise:
i) the measured or estimated external (off-ramp) flows qextj

(j = 1, ...n), expressed as the product of the corresponding
estimated exit rates pj , j ∈ {1, ..., n}, with the corresponding
mainstream flows (in case cell j does not contain an off-ramp,
we set pj = 0); and ii) the target outflow of the bottleneck
q∗n. Then, the equilibrium flow for the uncongested freeway
stretch (updated at every control time step kc) yields:

q∗n = qint0

n∏
j=1

(1−pj)+
∑
i∈R

u∗i

n∏
j=i

(1−pj)+
∑

i∈O\R

ri

n∏
j=i

(1−pj)

(4)
with pn = 0. Notice that the only unknown variables within
(4) are the optimal inflows for the controllable on-ramps
(u∗i ; i ∈ R). Thus, (4) allows to specify these optimal inflows,
at each control time step kc, with m− 1 degrees of freedom,
where m is the number of controllable on-ramps i.e., the
cardinality of the index set R. In case there is just one
controllable inflow (local ramp metering case), relation (4)
can be solved to retrieve the optimal inflow value u∗1(kc). For
more than one controllable on-ramps, the user has the freedom
to specify the way that the optimal inflow values should be
distributed among the controllable on-ramps (see, e.g., Section
V). Thus, this control scheme allows dealing with a variety of
possible coordinated ramp-metering policies when more than
one on-ramps are controllable. Note that the specified values
of (u∗i ; i ∈ R) should not be selected higher than the on-ramps
capacity or lower than umin

i .
4) Final determination of the desired operating point:

Finally, the corresponding equilibrium densities ρ∗j (kc) are
given by:

ρ∗n(kc)=ρcrn , ρ∗j (kc)= min
(q∗j (kc)

vj(kc)
, ρcrj

)
, j=1, ..., n-1, (5)

where vj(kc) and ρcrj correspond again to the measured or
real-time estimated mean speed and the critical density of the
jth cell, respectively, and q∗j (kc) are given by:

q∗1 = qint0 + u∗1, (6)

q∗j = qint0

j−1∏
k=1

(1-pk) +
∑
i∈R
i≤j

u∗i

j−1∏
k=i

(1-pk) +
∑

i∈O\R
i≤j

ri

j−1∏
k=i

(1-pk)

(7)
for j = 2, ..., n− 1, where we set

∏j−1
k=j · = 1.

To summarize, in order to apply the NFL, we need mea-
surements or estimates of: a) all cell densities (ρi; i = 1, ..., n)
and b) external variables for deriving the DOP, namely, i)

uncontrollable on-ramp flows (ri; i ∈ O\R), ii) cell speeds
(vj ; j = 1, ..., n), iii) the exit rates (pj ; j = 1, ..., n−1) and iv)
uncontrollable mainstream inflow (qint0 ). All these quantities
may be delivered by appropriate estimation schemes (e.g.,
[20], [19]), however, in [13], a specific estimation scheme
that is dedicated to the present traffic control problem and
specifically concerns the real-time estimation of the external
variables i), ii) and iii) above, has been proposed and is
presented in the next subsection.

B. The Nonlinear Observer

In [13], a parameter vector to be estimated is defined which
includes, as mentioned above, the external variables i), ii)
and iii); while the mainline inflow qint0 is assumed to be
known (measured). This estimation scheme utilizes density
measurements or estimates, ρj , as well as internal cell flow
measurements or estimates, qintj (flow that exits from cell j and
becomes inflow for the next cell j+1), and external (off-ramp)
flow measurements, qextj (for every j = 1, ..., n). In what
follows, the estimated quantities are denoted by (r̂i; i ∈ O\R),
(v̂j ; j = 1, ..., n) and (p̂j ; j = 1, ..., n), respectively. Then, the
nonlinear observer reads:

r̂i(kc)=

{
Ui(kc) ρi-1(kc) < ρcri-1 and ρi(kc) < ρcri
r̂i(kc-1) otherwise

, (8)

v̂i(kc)=

{
Vi(kc) 0<ρi(kc)<ρ

cr
i and ρi+1(kc)<ρ

cr
i+1

v̂i(kc-1) otherwise
, (9)

p̂i(kc)=

{
Pi(kc) qinti (kc) + qexti (kc) > 0

p̂i(kc-1) otherwise
, (10)

where

Ui(kc) =

Li

Tc
(ρi(kc)-ρi(kc-1))+qinti (kc-1)+qexti (kc-1)-qinti-1 (kc-1)),

(11)

Vi(kc) =
qinti (kc) + qexti (kc)

ρi(kc)
, (12)

Pi(kc) =
qexti (kc)

qinti (kc) + qexti (kc)
. (13)

Relations (8), (9), (11) and (12) indicate that the estimated
values of each uncontrollable inflow and mean speed are
updated only if the densities of the corresponding cells and the
upstream or downstream cells, respectively, are undercritical.
The estimation of the uncontrollable inflows is performed by
means of a conservation equation, and the resulting values are
truncated if they exceed a maximum admissible value rmax

i

(on-ramp's capacity) or zero. The estimates of mean speed
correspond to the ration of flow over density which are also
truncated between vmin

i and vmax
i which are pre-specified

constants denoting the minimum and maximum expected
speed, respectively. Relations (10) and (13) indicate that the
estimated values for the exit rates are updated only for positive
total exit flows.



III. SIMULATION SETTING

The well-known macroscopic traffic flow simulator
METANET [17] is utilized for the simulation tests of the
following sections. METANET employs a second-order traffic
flow model consisting of two interconnected dynamic equa-
tions which describe the evolution of traffic density and mean
speed, respectively. Modeling details can be found in [17].

For simulation purposes the time and space arguments
are discretized. Specifically, the simulated freeway stretch is
divided into N cells, where for each cell i, the model describes
the dynamic behavior of traffic flow during the time period
[kT, (k + 1)T ], with k = 0, 1, 2.... Notice here that the last
freeway cell n, considered as the bottleneck cell in the previous
section, is not necessarily identical with the last cell of the
simulation model, i.e., n ≤ N .

For the on-ramps as well as for the mainstream entrance
flow, a simple queue model is used in METANET. The evo-
lution of the on-ramp queue wi is described by an additional
state (conservation) equation which reads:

wi(k + 1) = wi(k) + T
(
di(k)− ri(k)

)
, (14)

where di denotes the external traffic demand of the on-ramp
i ∈ O. The above equation will be used in Section V for
deriving a queue balancing control strategy.

For the local ramp metering results of Section IV, the control
scenario as well as the network topology, the model parameters
and the (deterministic or stochastic) demand scenarios are pre-
cisely the same with those adopted in [4]. For the coordinated
ramp metering results of Section V, the control scenario is
the same with the one adopted in [12]. For both cases, the
simulation time step, the control time step and the simulation
horizon are equal to T = 5 s, Tc = 30 s and Thor = 5 h,
respectively. Moreover, the regulator parameters are identical
in all experiments conducted and equal to σ = 1 and τ = 10
[veh/km/lane], indicating the low sensitivity of the ACS with
respect to its control gains.

The control algorithm is the same for both scenarios.
Summarizing, measurements of flow and density (specifically,
ρi(k), qint0 (k), qinti (k), qexti (k), for each cell i of the consid-
ered freeway stretch), stemming from METANET simulator,
are extracted every T = 5 s. Then, the average of these
measurements are fed to the observer (8)-(13) and the NFL
(1), (2) every Tc = 30 s. The observer estimates the unknown
external variables (exit rates, mean speeds and uncontrollable
on-ramp inflows) which are then fed to (3) and (4) in order to
obtain the optimal inflows for the controllable on-ramps, u∗i ,
for i ∈ R. In case there are more than one controllable on-
ramps, an additional decision policy (see Section V) is required
to exploit the additional degrees of freedom. The obtained
optimal inflow values are subsequently utilized by (5)-(6) for
the calculation of the equilibrium densities ρ∗j , for each j of
the freeway stretch. Finally, the produced DOP (u∗i , ρ

∗
j ) is fed

to the NFL (1), (2) which in turn feeds back the simulation
model with the control decisions. This control loop is activated
every Tc = 30 s.

Lastly, we note that no maximum on-ramp queues have been
considered in the investigated scenarios so as to focus on the
impact of the ACS application to the mainstream conditions.

IV. LOCAL RAMP METERING

In many practical cases, bottlenecks with smaller capacity
than the merging area may exist further downstream for
various reasons. In [4] the performance of the control strategy
ALINEA and its extension PI-ALINEA were investigated with
respect to the existence of such bottlenecks created by lane-
drops, curvatures or uncontrolled on-ramps. In this section, the
performance of the proposed ACS in such cases is investigated.

A. Network description

For the simulation tests, two freeway stretches with N = 22
cells have been considered (Fig. 2). Each stretch has an on-
ramp located at the upstream boundary of cell 9, which is
2 km downstream from the network entrance. Each cell is
Li = 0.25 km and has li = 3 lanes. The first network (Fig.
2(a)) does not involve any downstream bottleneck; however,
the on-ramp’s merge area itself is a bottleneck. In order
to distinguish this network from the other, it is referred
hereafter as the non-bottleneck case. The other network has
a 1 km bottleneck at 1.5 km downstream of the on-ramp
(Fig. 2(b)). A bottleneck cell differs from a non-bottleneck
cell in traffic flow characteristics. In particular, a flow-density
relation (Fundamental Diagram - FD), with lower capacity
compared to non-bottleneck cells, has been considered for
bottleneck cells. For each of these networks, no control and
control results are presented. Moreover, realistic conditions,
whereby the traffic demand is corrupted with noise and the
model equations include noise terms, are also presented.

B. Non bottleneck case

The non-bottleneck case is first considered for the applica-
tion of the ACS. Due to the complex nonlinear dynamics of the
macroscopic simulation model, the factual critical density of
a simulated freeway stretch is not the same with the critical
density considered in the FD of the simulation model. For
this case, the factual critical density is found to be around 38
[veh/km/lane]. The density and flow trajectories, for the no
control case, are shown in Figs. 3(a) and (b), respectively.
The total demand entering the merging cell (mainstream
and on-ramp), during the peak period, exceeds considerably
the capacity of cell 9, which is around 6000 [veh/h]. Fig.
3(a) shows that as the density continues to increase beyond
38 [veh/km/lane], congestion builds in cell 9 spilling back

Fig. 2. Freeway stretches: (a) non-bottleneck case and (b) bottleneck case.



Fig. 3. Non-bottleneck case: (a) density and (b) flow in the no control case,
(c) density and (d) flow with application of the ACS.

upstream. Thus, the outflow of cell 9 and the downstream
cells drops to around 5800 [veh/h] (capacity drop).

Here, the considered freeway stretch for the application of
the ACS contains only cell 9. Then, the observer of the ACS
is employed only for the estimation of mean speed at cell 9.
The optimal inflow, according to (3) and (4), is set equal to
u∗9(kc) = ρcr9 v̂9(kc)l9 − qint8 (kc). Figs. 3(c) and (d) display
the density and flow trajectories, respectively, for ρcr9 = 36
[veh/km/lane]. Hereafter, the critical density of the bottleneck
cell which is fed to the ACS value is called the set-point. A
small offset between the set-point and the resulting stationary
density is produced by the application of ACS. Therefore,
the selected set-point is the most efficient resulting to the
desired capacity flow. This offset is a natural consequence of
the modeling mismatch (recall that the development of ACS
has been based on first-order models). This implies that some
fine-tuning may be also required for the set-point value in case
of ACS field implementation for maximum efficiency.

Generally, ACS is seen to respond very satisfactorily, and no
congestion is created in cell 9 or elsewhere. More specifically,
Fig. 4(c) indicates that density trajectories are identical to
those in the no-control case until the density of cell 9 reaches
the factual critical density value, after which all density
trajectories are stabilized during the whole peak period. In
particular, the density of cell 9 is kept at 37.4 [veh/km/lane],
leading to: i) a stable capacity flow downstream of the on-
ramp that accommodates all the entrance demand; and ii)
a controlled peak-period on-ramp flow, which establishes
the desired freeway throughput (capacity flow). Clearly, the
ramp metering actions lead to the formation and, eventually,
dissipation of ramp queue, since the allowed on-ramp inflow
is less than the on-ramp demand during the peak period. It is
also noted that, due to the almost 2.9% higher outflow from
the merging cell (compare Fig. 3(b) and Fig. 3(d)), the density
under the action of ACS, becomes undercritical much earlier
than in the no-control case, i.e., the demand is served earlier.
Thus, the ramp metering action leads to the corresponding
reduction of the total time spent by all vehicles, including the

queuing at the ramp. Furthermore, it is also interesting to see
that no oscillations in the density trajectories at the cells close
to the on-ramp are observed.

C. Bottleneck case

For the bottleneck case, shown in Fig. 2(b), the factual
critical density and the corresponding capacity of the bottle-
neck cells are found to be around 41 [veh/km/lane] and 5270
[veh/h], respectively. The sum of the mainstream and the on-
ramp demand during peak period is higher than the bottleneck
capacity, but is definitely lower than the merging area capacity.
The congestion is expected to appear first in cell 15, and the
ramp metering target is to keep the bottleneck flow (rather
than the merging cell flow) around its capacity level. Figs.
4(a) and (b) show the density and flow trajectories for the no-
control case, where, indeed, the congestion occurs first in the
corresponding bottleneck cell and spills back upstream. During
the whole peak period, the flow downstream of the on-ramp is
lower (5188 [veh/h], in Fig. 4(b)) than the bottleneck capacity,
due to capacity drop caused by the congestion.

The considered freeway stretch for the application of ACS
extends from cell 9 to cell 15. Due to the fact that there are
no intermediate on-ramps and off-ramps, the observer of the
ACS is called to estimate only the mean speeds of the cells
of the considered freeway stretch. Then, the optimal inflow is
u∗9(kc) = ρcr15v̂15(kc)l15 − qint8 (kc).

The testing results of the ACS are presented in Figs. 4(c),(d).
The set-point used is ρcr15 = 41 [veh/km/lane]. A very small
offset is present also here. The congestion formation and
propagation from the bottleneck cells to the upstream cells are
prevented. A small overshooting is observed at the initial phase

Fig. 4. Bottleneck case: (a) density and (b) flow in the no-control case, (c)
density and (d) flow with application of the ACS, (e) density and (f) flow
with the application of the ACS under stochastic demands and process noise.



of control activation, which, however is deemed minor and is
actually virtually masked by the noise in the stochastic version
of this scenario (Figs. 4 (e), (f)). In fact, the trajectory of the
density in cell 15 is smooth after a short transient period with
the small overshooting. In the steady state, the density of cell
15 is kept around the factual critical density, while the capacity
level of the bottleneck cells is achieved, and the mainstream
demand is well served. Furthermore, high-frequency demand
and process noise are taken into account by testing ACS with
a more realistic stochastic scenario. Also, in this scenario, the
density of cell 9 is kept near critical (its mean during the peak
period is equal to 41.8 [veh/km/lane], see Fig. 4 (e)). The
merge cell throughput remains high at the peak period (see
Fig. 4 (f)) and the entrance flow demand is fully served.

The investigations reported in this section demonstrate that
ACS is efficient for local ramp metering where the bottleneck
location may be either the on-ramp merge area or another
tighter bottleneck farther downstream. Two different cases of
bottleneck locations have been addressed with equal design
parameters for ACS. Since the same cases had also been
considered in [4] by use of PI-ALINEA, a visual comparison
with the results presented therein indicate similar performance,
in fact with slightly better damped transient control period in
the case of ACS.

V. COORDINATED RAMP METERING

In this section, ACS is tested as a control strategy for
coordinated ramp metering. A freeway stretch of N = 13
cells is considered. Each cell is Li = 0.5 km and has li = 3
lanes (Fig. 5). Each freeway cell is described by the same
FD. There are two on-ramps on this freeway as well as an
off-ramp in-between. For the simulation tests, the exit rate
at the off-ramp is set to p6 = 5%. The total flow demand
arriving at the upstream boundary of cell 9, during the peak
period, exceeds the capacity flow of cell 9, and therefore cell
9 is a bottleneck for the freeway. The factual critical density
and the corresponding capacity flow of cell 9 are about 39
[veh/km/lane] and 6130 [veh/h], respectively.

When no control is applied, the resulting density and flow
profiles for both merge areas and also other cells of the freeway
are shown in Figs. 6 (a) and (b). As expected, mainstream
congestion appears after 1 h in the merge area of on-ramp
9 due to the high flows that arrive there; this leads to a
visible mainstream flow decrease (capacity drop). The created
congestion travels upstream and reaches the merge area of on-
ramp 5 at around 2 h, also leading to a visible flow decrease.
No queues are formed at the on-ramps, but a small queue is
created at the upstream entrance of the simulated network.

Fig. 5. Freeway stretch for the coordinated ramp metering scenario.

Fig. 6. (a) Density and (b) flow in the no control case and (c) density and
(d) flow with application of the ACS.

ACS is employed in order to simultaneously control both
on-ramp flows so as to maximize throughput right after on-
ramp 9. The considered freeway stretch for control extends
from cell 5 to cell 9. Due to the fact that there are no
intermediate on-ramps within this stretch, the observer of ACS
is only employed in order to estimate mean speeds of the cells
of the considered freeway stretch as well as the exit rate from
off-ramp 6. The optimal inflow values, u∗5 and u∗9, must be
appropriately determined. The remaining degree of freedom
shall be used to balance dynamically the relative lengths of the
created queues (if any) on both controllable on-ramps. To this
end, a second relationship, along with (3), that associates the
optimal inflows is needed. This relationship may be directly
derived from the target of balancing the relative ramp queues,
i.e.,

w5(kc)

wmax
5

=
w9(kc)

wmax
9

, (15)

where wmax
5 and wmax

9 are the maximum admissible on-ramp
queues (in [veh]) for the two on-ramps. Substituting (14) into
(15) and replacing r5 and r9 with u∗5 and u∗9 respectively, a
relationship between the optimal inflows is obtained. Then,
using also relation (3), the optimal inflow values can be
uniquely determined. More specifically, let us introduce, for
convenience, the following notations:

A(kc) = ρcr9 v̂9(kc)l9 − (1− p̂6(kc))q
int
4 (kc), (16)



A1(kc)=w5(kc)-Tcd5(kc), A2(kc)=w9(kc)-Tc(d9(kc)-A(kc)).
(17)

Then, the optimal inflows are given by:

u∗5(kc) =
1

Tc

wmax
9 A1(kc)− wmax

5 A2(kc)

(1− p̂6)(kc)wmax
5 + wmax

9

, (18)

u∗9(kc) = A(kc)− (1− p̂6(kc))u
∗
5(kc). (19)

For this test, the maximum ramp queue lengths considered
for relative queue balancing are wmax

5 = 200 [veh] and
wmax

9 = 167 [veh]. Figs. 6 (c) and (d) present the density and
flow profiles with the application of ACS. For this test, the
set-point value is equal to ρcr9 = 38 [veh/km/lane], resulting
again to a small off-set which leads the density of cell 9 near
to its factual critical density. It can be seen from Fig. 6(c) that
congestion is avoided and the maximization of throughput is
achieved. Regarding the balancing of on-ramp queues, Figs. 6
(e) and (f) show the evolution of both the queue lengths and
the relative queue lengths for the two on-ramps. On-ramp 5
has larger capacity, and therefore the queue formation there is
larger than at on-ramp 9. However, the relative queue lengths
are equal during the whole simulation horizon as desired.

In order to test the performance of the proposed coordina-
tion scheme with respect to stochastic scenarios, appropriate
simulations have been conducted which are presented in Figs.
6 (g) and (h). As shown by these figures, the performance of
the ACS is not affected by the presence of noise. Again, no
congestion is formed along the freeway stretch (the mean of
the density of cell 9 is undercritical, see Fig 6(g)), while the
outflow from cell 9 is kept near capacity (its mean is almost
6050 veh/h, see Fig. 6(h)).

The scenarios investigated in this section demonstrate that
ACS is also efficient for coordinated ramp metering. As
mentioned above, similar cases, with the ones utilized in this
study, had also been considered in [12] by use of a linked-
control strategy. By comparing (again visually) the results
therein with the reported results in this study, we conclude
that no important differences in the performance of the two
control strategies exist. However, ACS is simpler in application
than many existing coordination schemes, including the one
presented in [12].

VI. CONCLUSIONS

The reported investigations evidence that ACS is applicable,
at will, as a local and coordinated ramp metering strategy,
and that acts efficiently in both cases task, leading to damped
and satisfactory control results. The utilization of the same
regulator parameters for various scenarios indicates that little
fine-tuning will be necessary in potential field applications. A
little fine-tuning may be required for the selection of the set-
point density due to the offset produced with the application
of ACS.
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