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Abstract

Polar codes is a new scheme of channel coding, which is the first provably

capacity-achieving coding scheme for a wide class of channels, the binary discrete

memoryless channels. At the same time, they use low complexity encoding and

decoding algorithms, which makes them attractive for a wide range of use-cases.

These algorithms scale as O(NlogN), where N is the blocklength of the code. Polar

codes exploit channel polarization, a very common phenomenon which arises when

one takes N independent copies of a channel and transforms them into another

set of N channels. Under channel polarization, the channels are converted to a set

of extremal (either perfect or completely noisy) channels, called bit-channels. In

the presence of channel polarization, the information vector is sent through the

perfect bit-channels, while a fixed vector of arbitrary bits is sent through the useless

bit-channels. A problem which arises is the determination of which bit-channels are

perfect and which are useless. This problem, called the “construction of polar codes”

among researchers, has been addressed successfully and efficiently only for the binary

erasure channel (BEC). The non-universality property of polar codes complicates

their construction, because the behaviour of a bit-channel may be perfect for one

physical channel but noisy for another. The adoption of polar codes in 5G NR

strengthens the demand for a fast and adaptive construction scheme. This thesis

attempts to design an efficient algorithm for the construction of polar codes for

the binary symmetric channel (BSC), taking advantage of proved universal partial

orders among the bit-channels and state-of-the-art algorithms which approximate

efficiently upper and lower bounds of the probability of error of the bit-channels.

The simulation results show a marginal time-running difference over the explicit use

of the approximation algorithms, which can be used computationally for a more

accurate construction.
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Περίληψη

Οι πολικοί κώδικες (polar codes) είναι μια σύγχρονη μέθοδος κωδικοποίησης

καναλιού, η πρώτη μέθοδος που αποδεδειγμένα επιτυγχάνει την χωρητικότητα του

καναλιού για μια μεγάλη κατηγορία καναλιών, τα δυαδικά διακριτά κανάλια χωρίς μνήμη.

Την ίδια στιγμή, χρησιμοποιούν αλγορίθμους κωδικοποίησης και αποκωδικοποίησης

χαμηλής πολυπλοκότητας, κάτι που τους κάνει ελκυστικούς για πολλές χρήσεις. Οι

αλγόριθμοι αυτοί έχουν πολυπλοκότητα της τάξης O(NlogN), όπου N είναι το μήκος

μπλοκ του κώδικα. Οι πολικοί κώδικες αξιοποιούν ένα φαινόμενο που ονομάζεται

πόλωση καναλιού (channel polarization), ένα σύνηθες φαινόμενο που προκύπτει όταν

μετασχηματίζουμε Ν ανεξάρτητα αντίγραφα ενός καναλιού σε ένα άλλο σύνολο από Ν

κανάλια. Τα κανάλια πολώνονται, με την έννοια ότι μετατρέπονται σε ένα σύνολο από

ακραία κανάλια (είτε τέλεια είτε εντελώς θορυβώδη), τα οποία ονομάζουμε bit-channels.

Υπό την παρουσία της πόλωσης καναλιού, η πληροφορία αποστέλλεται μέσα από τα

τέλεια bit-channels, ενώ μέσα από τα άχρηστα bit-channels αποστέλλεται μια αυθαίρετη

στατική ακολουθία από bits. ΄Ενα πρόβλημα που προκύπτει είναι η εξακρίβωση των

bit-channels που είναι τέλεια και αυτών που είναι άχρηστα. Αυτό το πρόβλημα, που

από τους ερευνητές ονομάζεται “κατασκευή των πολικών κωδίκων”, έχει επιλυθεί με

γρήγορο τρόπο μόνο για το δυαδικό κανάλι διαγραφής (BEC). Το γεγονός ότι τα

bit-channels των πολικών κωδίκων δεν έχουν ενιαία συμπεριφορά για όλα τα φυσικά

κανάλια στα οποία κατασκευάζεται ο πολικός κώδικας, περιπλέκει το πρόβλημα διότι

ένα bit-channel μπορεί να είναι τέλειο για ένα πολικό κώδικα αλλά θορυβώδες για έναν

άλλον. Η αξιοποίηση των πολικών κωδίκων στο 5G NR ενισχύει την ανάγκη για έναν

γρήγορο και ευπροσάρμοστο αλγόριθμο κατασκευής. Αυτή η διπλωματική εργασία

προσπαθεί να σχεδιάσει έναν αποδοτικό αλγόριθμο για την κατασκευή των πολικών

κωδίκων για το δυαδικό συμμετρικό κανάλι (BSC), αξιοποιώντας κάποιες μερικές

διατάξεις (partial orders) μεταξύ των bit-channels που έχουν αποδειχθεί ότι ισχύουν

για όλους τους πολικούς κώδικες, και κάποιους σύγχρονους αλγορίθμους που εκτιμούν

αποδοτικά άνω και κάτω φράγματα της πιθανότητας σφάλματος των bit-channels. Τα

αποτελέσματα των προσομοιώσεων δείχνουν μια σημαντική διαφορά στην ταχύτητα

του προτεινόμενου αλγορίθμου από την αποκλειστική χρήση των προσεγγιστικών

αλγορίθμων, τέτοια ώστε ο χρόνος που εξοικονομείται να μπορεί να αξιοποιηθεί

υπολογιστικά για μια πιο ακριβή κατασκευή του κώδικα.
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1 Channel Polarization

Channel polarization, proposed by Arikan in [1], is a method where one takes N

independent copies of a given binary discrete memoryless channel (B-DMC) W and

transforms them into another set of N binary-input channels {W (i)
N : 1 ≤ i ≤ N} with the

property that, as N becomes large, the symmetric capacities {I(i)N } become either 0 or 1

with probability 1 and also
∑

i I
(i)
N = NI(W ).

1.1 Preliminaries

Given a B-DMC W : X → Y , two parameters are of great significance in the following

analysis, the symmetric capacity

I(W ) ,
∑
y∈Y

∑
x∈X

1

2
W (y|x) log

W (y|x)
1
2
W (y|0) + 1

2
W (y|1)

(1)

and the Bhattacharyya parameter

Z(W ) ,
∑
y∈Y

√
W (y|0)W (y|1). (2)

The parameter I(W ) is a measure of rate and it is easy to notice that it is the channel

capacity when W is symmetric. On the other hand, Z(W ) is a measure of reliability, since

it is an upper bound on the probability of error of maximum-likelihood decoding when W

is used only once to transmit a bit. Indeed, consider a B-DMC W and the error event

under ML decoding ε .
= {(x, y) ∈ X × Y : W (y|x⊕1)

W (y|x) ≥ 1}. Then, the probability of error is

P (ε) =
∑
y∈Y

∑
x∈X

PX,Y (x, y)1ε(x, y) =
∑
y∈Y

∑
x∈X

PX(x)PY |X=x(y|x)1ε(x, y)

=
∑
y∈Y

∑
x∈X

PX(x)W (y|x)1ε(x, y) ≤
∑
y∈Y

∑
x∈X

PX(x)W (y|x)

√
W (y|x⊕ 1)

W (y|x)

=
∑
y∈Y

∑
x∈X

PX(x)
√
W (y|x)W (y|x⊕ 1) =

∑
y∈Y

∑
x∈X

PX(x)
√
W (y|0)W (y|1)

=
∑
y∈Y

√
W (y|0)W (y|1) = Z(W ). (3)

Both I(W ) and Z(W ) take values in [0, 1]. The two parameters are related with the

following two bounds.
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Figure 1: The binary erasure channel (BEC)

with erasure probability ε.

0 0

1 1

1− p

p

1− p

Figure 2: The binary symmetric channel

(BSC) with crossover probability p.

Proposition 1.

I(W ) ≥ log
2

1 + Z(W )
, (4)

I(W ) ≤
√

1− Z(W )2. (5)

�

The proof of Proposition 1 is provided in the Appendix.

From (4) and (5), we infer the following corollary.

Corollary 1. Z(W ) −→ 1 iff I(W ) −→ 0. Similarly, Z(W ) −→ 0 iff I(W ) −→ 1. �

Lastly, we define the two binary-input channels that will be mentioned throughout this

presentation of polar codes, the binary erasure channel (BEC) and the binary symmetric

channel (BSC). In BEC (Fig. 1), the receiver either receives the bit transmitted correctly,

with probability 1− ε, or receives a message (an erasure symbol) that the bit was erased

during the transmission, with erasure probability ε. In BSC (Fig. 2), the receiver either

receives the bit transmitted correctly, with probability 1− p, or receives the bit flipped,

with crossover probability p. For BEC, (1) and (2) give the following equations

I(W ) = 1− ε,
Z(W ) = ε,

(6)

while, for BSC, they become

I(W ) = 1 + p log p+ (1− p) log(1− p),
Z(W ) = 2

√
p(1− p).

(7)

Henceforth, we will use the notation αN1 to denote the row vector α = (α1, α2, . . . , αN ).

Given such a vector αN1 , we write αji as a shorthand to denote the subvector (αi, . . . , αj)
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Figure 3: Construction of W2 from two
independent copies of W1 = W .

Figure 4: Construction of W4 from two
independent copies of W2.

Figure 5: Construction of WN from two independent
copies of WN/2.

when 1 ≤ i ≤ j ≤ N , whereas αji is regarded as void when j < i. Given the vector αN1
and A ⊂ {1, . . . , N}, we write αA to denote the subvector (αk : k ∈ A). We write αji,e to

denote the subvector of αji with even indices (αk : i ≤ k ≤ j; k even), and αji,o to denote

the subvector of αji with odd indices (αk : i ≤ k ≤ j; k odd).

1.2 Channel Polarization

In this section we will address the phenomenon of channel polarization, as described

above. Shortly afterwards, Polar Codes will be defined and proved to be capacity-achieving,

by exploiting this feature.

1.2.1 Channel Combining

The Channel Combining phase of channel polarization concerns the recursive

transformation of a set of N independent copies of a given B-DMC, namely WN , into

another vector channel WN : XN → Y N , N = 2n, n ≥ 0. The general recursion

step is illustrated in Fig. 5. The initial step of the recursion is W1 , W . Then,

two independent copies of WN/2 are combined to produce WN . The input vector uN1
of WN is first transformed into sN1 such that s2i−1 = u2i−1 ⊕ u2i and s2i = u2i for

9



1 ≤ i ≤ N/2. The vector sN1 is then reshuffled by the permutation RN to provide

the vector υN1 = (s1, s3, . . . , sN−1, s2, s4, . . . , sN). The first half (s1, s3, . . . , sN−1) of υN1
becomes the input to the first copy of WN/2 and the second half (s2, s4, . . . , sN) becomes

the input to the second copy of WN/2. This is repeated until we finally reach the N copies

of W and transmit our transformed input vector.

From this definition, we can see that the blockwise transition probability is recursively

transformed with the relation

W2N(y2N1 |u2N1 ) = WN(yN1 |u2N1,o ⊕ u2N1,e )WN(y2NN+1|u2N1,e ). (8)

We note that the transformation uN1 7→ xN1 is linear. More specifically, notice that

WN(yN1 |uN1 ) = WN(yN1 |uN1 GN), where GN is called the generator matrix. In channel

polarization, we seek for a GN which achieves polarization and at the same time gives

low complexity encoding and decoding algorithms. Here we presented only one of those

possible GN matrices (transformations).

1.2.2 Channel Splitting

The Channel Splitting phase splits WN back into a set of N binary-input coordinate

channels W
(i)
N : X → Y N ×X i−1 such that, if uN1 is a priori uniform, W

(i)
N is the effective

channel seen by the ith input ui, given both the actual channel output yN1 and all the

previous actual inputs ui−11 . Thus, the transition probabilities of the coordinate channels

are defined by

W
(i)
N (yN1 , u

i−1
1 |ui) =

WN(yN1 , u
i
1)

P {ui}
=

∑
uNi+1∈XN−i

WN(yN1 , u
i
1, u

N
i+1)

P {ui}

=
∑

uNi+1∈XN−i

WN(yN1 |uN1 )P
{
uN1
}

P {ui}
=

∑
uNi+1∈XN−i

WN(yN1 |uN1 )2−N

2−1

=
∑

uNi+1∈XN−i

WN(yN1 |uN1 )

2N−1
=

∑
uNi+1∈XN−i

1

2N−1
WN(yN1 |uN1 ). (9)

The effective channel W
(i)
N will be used to estimate the input ui. We will address the effect

of this choice for decoding polar codes in Chapter 1.6. Henceforth, the coordinate channels

{W (i)
N } will be called bit-channels, as they are used to transmit a single bit.
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1.3 Transformation of Channel, Rate, and Reliability

We will now see how this blockwise transformation is broken into single-step channel

transformations and then how rate and reliability transform alongside. Consider a

binary-input channel W : X → Y . A pair of binary-input channels W ′ : X → Ỹ

and W ′′ : X → Ỹ ×X are obtained by a single-step transformation of two independent

copies of W , denoted by (W,W ) → (W ′,W ′′), iff there exists a one-to-one mapping

f : Y 2 → Ỹ such that

W ′(f(y1, y2)|u1) =
∑
u′2∈X

1

2
W (y1|u1 ⊕ u′2)W (y2|u′2), (10)

W ′′(f(y1, y2), u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2). (11)

In what follows, we will take f as the identity mapping. Hence, (10) and (11) simplify to

W ′(y21|u1) =
∑
u2∈X

1

2
W (y1|u1 ⊕ u2)W (y2|u2), (12)

W ′′(y21, u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2). (13)

Then, the general single-step channel transformations are of the form(
W

(i)
N ,W

(i)
N

)
7→
(
W

(2i−1)
2N ,W

(2i)
2N

)
(14)

and, more specifically,

W
(2i−1)
2N (y2N1 , u2i−21 |u2i−1) =

∑
u2i∈X

1

2
W

(i)
N (yN1 , u

2i−2
1,o ⊕ u2i−21,e |u2i−1 ⊕ u2i)

·W (i)
N (y2NN+1, u

2i−2
1,e |u2i), (15)

W
(2i)
2N (y2N1 , u2i−11 |u2i) =

1

2
W

(i)
N (yN1 , u

2i−2
1,o ⊕ u2i−21,e |u2i−1 ⊕ u2i) ·W

(i)
N (y2NN+1, u

2i−2
1,e |u2i). (16)

The proof of (15) and (16) is provided in the Appendix.

This result will allow us able to study the properties of the overall rate and reliability

transformation. We will first study the transformation of rate of the local, single-step,

channel transformation (14).

Proposition 2. Consider (W,W ) → (W ′,W ′′) for some set of binary-input channels.

Then,

I(W ′) + I(W ′′) = 2I(W ), (17)

I(W ′) ≤ I(W ′′), (18)

with equality in (18) iff I(W ) equals 0 or 1.
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The proof of Proposition 2 is provided in the Appendix.

Equation (17) indicates that, under a single-step channel transformation, symmetric

capacity is preserved. Equation (17) together with inequality (18) imply that I(W ′) =

I(W ′′) = I(W ) iff I(W ) is either 1 or 0. In any other case, the single-step transformation

extremize the symmetric capacity in the sense that

I(W ′) ≤ I(W ) ≤ I(W ′′). (19)

Next, we have the following results regarding the local-level transformation of reliability.

Proposition 3. Consider (W,W )→ (W ′,W ′′) for some binary-input channels. Then,

Z(W ′′) = Z(W )2, (20)

Z(W ′) ≤ 2Z(W )− Z(W )2, (21)

Z(W ′) ≥ Z(W ) ≥ Z(W ′′), (22)

with equality in (21) iff W is a BEC.

The proof of Proposition 3 is provided in the Appendix.

From (20), (21), and (22), we infer that Z(W ′) = Z(W ′′) = Z(W ) iff Z(W ) equals 0

or 1. This is equivalent to the implication we have from the transformation of rate. Also,

we infer that reliability can only improve under a single-step transformation in the sense

that

Z(W ′) + Z(W ′′) ≤ 2Z(W ). (23)

At last, we have a result for the special case of the transformation of a BEC. Before

proceeding to the statement, we will first define the multi-output BEC. Consider a

symmetric binary-input channel W ′(y1, . . . , yn|x) : X → Y , where Y ∈ Y n. We denote

with Y i, 1 ≤ i ≤ 2n, the possible output vectors of W ′. We say that W ′ is BEC if its

transition probabilities are of the form as in Figure 6, for arbitrary k, l. As it can be seen,

the BEC defined in Chapter 1.1 is a special case of this definition for k = 0, l = n = 1.

Now, we can state the anticipated result.

Proposition 4. Consider the channel transformation (W,W ) → (W ′,W ′′). If W is a

BEC with some erasure probability ε, then the channels W ′ and W ′′ are BECs with erasure

probabilities 2ε− ε2 and ε2, respectively. Conversely, if either W ′ or W ′′ is a BEC, then

W is BEC.

The proof of Proposition 4 is provided in the Appendix.

Using recursively the results of Propositions 2 and 3, we derive the following proposition

for the general case.

12
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Figure 6: The multi-output binary erasure channel with erasure probability ε.

Proposition 5. For any B-DMC W , N = 2n, n ≥ 0, 1 ≤ i ≤ N , the transformation

(W
(i)
N ,W

(i)
N ) → (W

(2i−1)
2N ,W

(2i)
2N ) is rate-preserving and reliability-improving in the sense

that

I
(
W

(2i−1)
2N

)
+ I

(
W

(2i)
2N

)
= 2I

(
W

(i)
N

)
, (24)

Z
(
W

(2i−1)
2N

)
+ Z

(
W

(2i)
2N

)
≤ 2Z

(
W

(i)
N

)
, (25)

with equality in (25) iff W is a BEC. Channel splitting extremizes the rate and reliability

in the sense that

I
(
W

(2i−1)
2N

)
≤ I

(
W

(i)
N

)
≤ I

(
W

(2i)
2N

)
, (26)

Z
(
W

(2i−1)
2N

)
≥ Z

(
W

(i)
N

)
≥ Z

(
W

(2i)
2N

)
, (27)

with equality in (26) and (27) iff I(W ) equals 0 or 1. The reliability terms further satisfy

Z
(
W

(2i−1)
2N

)
≤ 2Z

(
W

(i)
N

)
− Z

(
W

(i)
N

)2
, (28)

Z
(
W

(2i)
2N

)
= Z

(
W

(i)
N

)2
, (29)

with equality in (28) iff W is BEC. The cumulative rate and reliability satisfy

N∑
i=1

I(W
(i)
N ) = NI(W ), (30)

N∑
i=1

Z(W
(i)
N ) ≤ NZ(W ), (31)

13
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Figure 7: N = 1024 polarized copies of BEC(ε = 0.5).

with equality in (31) iff W is a BEC.

For the special case that W is a BEC with an erasure probability ε, the parameters

{Z(W
(i)
N )} and {I(W

(i)
N )} can be computed through the recursions

Z
(
W

(2i−1)
N

)
= 2Z

(
W

(i)
N/2

)
− Z

(
W

(i)
N/2

)2
,

Z
(
W

(2i)
N

)
= Z

(
W

(i)
N/2

)2
,

(32)

I
(
W

(2i−1)
N

)
= I

(
W

(i)
N/2

)2
,

I
(
W

(2i)
N

)
= 2I

(
W

(i)
N/2

)
− I

(
W

(i)
N/2

)2
,

(33)

with Z(W
(1)
1 ) = ε. The parameter Z(W

(i)
N ) equals the erasure probability of the channel

W
(i)
N . The recursion (33) follows from (32) by the fact that I(W

(i)
N ) = 1−Z(W

(i)
N ) for W

(i)
N

a BEC (6). We use the above recursions to illustrate the polarization effect per channel in

Fig. 7.
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1.4 Relation between the Construction and the Index of a

bit-channel

We showed that channel polarization is broken down to single-step channel

transformations using the relations (15) and (16), which we repeat below.

W
(2i−1)
2N (y2N1 , u2i−21 |u2i−1) =

∑
u2i

1

2
W

(i)
N (yN1 , u

2i−2
1,o ⊕ u2i−21,e |u2i−1 ⊕ u2i)

·W (i)
N (y2NN+1, u

2i−2
1,e |u2i), (15)

W
(2i)
2N (y2N1 , u2i−11 |u2i) =

1

2
W

(i)
N (yN1 , u

2i−2
1,o ⊕ u2i−21,e |u2i−1 ⊕ u2i) ·W

(i)
N (y2NN+1, u

2i−2
1,e |u2i). (16)

We see that the path of a transformed channel inside the above recursions is directly

related with its index. By making the convention that bit-channel indexing ranges from

1 through N, but their correspondent binary representation ranges from all zeros to all

ones (i.e. 1 is represented by ‘000...0’, 2 is represented by ‘000...1’ etc.), when two copies

of a channel with index (b1, b2, . . . , bn)2 are transformed, we get two new channels, one

even-indexed and one odd-indexed with indices (b1, b2, . . . , bn, 0)2 and (b1, b2, . . . , bn, 1)2,

respectively. It follows that we can construct a bit-channel recursively simply by following

the binary representation of its index (from the MSB to the LSB), using either (15) or

(16) when the next bit is 0 or 1.

1.5 Channel Polarization: Main results

We are now ready to prove the main results of channel polarization.

Theorem 1. For any B-DMC W , the channels
{
W

(i)
N

}
polarize in the sense that, for

any fixed δ ∈ (0, 1), as N goes to infinity through powers of two, the fraction of indices

i ∈ {1, . . . , N} for which I(W
(i)
N ) ∈ (1 − δ, 1] goes to I(W ) and the fraction for which

I(W
(i)
n ) ∈ [0, δ) goes to 1− I(W ).

Before we proceed to the proof, we will first construct the framework upon which we

will work. We define a binary tree, which represents the channel transformation procedure

(14). The tree is illustrated in Fig. 8. Notice that channel W
(i)
2n is located at the nth

level of the tree at node number i counting from top. We index each channel-node with

bit sequences. The root node is indexed with the null sequence. The upper node at

level 1 is indexed with 0 and the lower node with 1. Given a node at level n with index

b1b2 . . . bn, the upper node emanating from it is indexed with b1b2 . . . bn0 and the lower

with b1b2 . . . bn1. We denote the channel W
(i)
2n located at node b1b2 . . . bn, as Wb1...bn .
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Figure 8: The tree process for the recursive channel construction.

Upon this tree, we define a uniform random tree process {Kn : n ≥ 0}, where P (Kn =

Wb1...bn) = 1/2n, for every sequence b1 · · · bn. For the initial step, we define K0 = W . To

keep track of the rate and reliability parameters of the random sequence of channels Kn,

we define the random processes In = I(Kn) and Zn = Z(Kn). Clearly, I0 = I(W ) and

Z0 = Z(W ).

More precisely, consider the probability space (Ω,=, P ). The sample space Ω is the

space of all binary sequences (b1, b2, . . .) ∈ {0, 1}∞, i.e. all the probable paths on the

infinite random tree process. To reach the end of these paths we need an infinite amount

of single-step channel transformations. The set = is generated by the binary sequences

S(b1, . . . , bn) , {ω ∈ Ω : ω1 = b1, . . . , ωn = bn}, n ≥ 1, where b1, . . . , bn ∈ {0, 1}. That is,

the cylinder set S(b1, . . . , bn) includes all the paths on the infinite random tree process

which start with the sequence b1, . . . , bn, and = includes all of those cylinder sets. The

function P (·) is the probability measure defined on =, such that P (S(b1, . . . , bn)) = 1/2n.

Notice that S(b1, . . . , bn) = S(b1, . . . , bn, 0)∪S(b1, . . . , bn, 1). For each n ≥ 0, we define =n
as the set generated by the cylinder sets S(b1, . . . , bi), 1 ≤ i ≤ n, b1, . . . , bi ∈ {0, 1}. We

define =0 as the set consisting of the empty set and Ω only. Clearly, =0 ⊂ =1 ⊂ . . . ⊂ =.

Now we are ready to prove Theorem 1.

Proof of Theorem 1: We will employ the following two propositions:

Proposition 6. The sequence {In,=n;n ≥ 0} is a martingale:

=n ⊂ =n+1 and In is =n-measurable (34)
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E[|In|] <∞ (35)

In = E[In+1|=n]. (36)

Furthermore, the sequence {In;n ≥ 0} converges almost everywhere to a random variable

I∞ such that E[I∞] = I0.

Proof: Condition (34) is true by construction and (35) by the fact that 0 ≤ In ≤ 1. To

prove (36) we use (24) to write

E[In+1|S(b1, . . . , bn)] =
1

2
I(Wb1...bn0) +

1

2
I(Wb1...bn1) = I(Wb1...bn) = In. (37)

Since In is bounded, I(Wb1...bn) is a uniformly integrable martingale. We use [3, Theorems

9.4.5, 9.4.6] to state that In converges almost everywhere to a random variable I∞ and

E[In] −→ E[I∞]. We use (30) to derive that E[In] = I0 for any n ≥ 0. Therefore,

E[I∞] = I0. �

Proposition 7. The sequence {Zn,=n;n ≥ 0} is a supermartingale:

=n ⊂ =n+1 and Zn is =n-measurable (38)

E[|Zn|] <∞ (39)

Zn ≥ E[Zn+1|=n]. (40)

Furthermore, the sequence {Zn;n ≥ 0} converges almost everywhere to a random variable

Z∞ which takes values almost everywhere in {0, 1}.

Proof: Condition (38) is satisfied by construction. Condition (39) is satisfied by the

fact that 0 ≤ Zn ≤ 1. To prove, (40) we use (25) to write

E[Zn+1|S(b1, . . . , bn)] =
1

2
Z(Wb1...bn0) +

1

2
Z(Wb1...bn1) ≤ Z(Wb1...bn) = Zn. (41)

Since Zn is bounded, Z(Wb1...bn) is a uniformly integrable martingale. We use [3, Theorem

9.4.5] to state that Zn converges almost everywhere to a random variable Z∞, such that

E[|Zn−Z∞|] −→ 0. It follows that E[|Zn+1−Zn|] −→ 0. But, by (28) and (29) we derive

that Zn+1 = Zn
2 with probability 1/2 Zn+1 > Zn

2 with probability 1/2 (these are the

cases where we choose the lower or upper subtree when we make a random step from

a node). Hence, E[|Zn+1 − Zn]| ≥ (1/2)E[Zn
2 − Zn] ≥ 0. Thus, E[Zn(1 − Zn)] −→ 0,

which implies E[Z∞(1 − Z∞)] −→ 0. But Z∞ ∈ [0, 1] and so (1 − Z∞) ∈ [0, 1] as well.

Hence, (Z∞(1−Z∞)) ∈ [0, 1]. This implies that (Z∞(1−Z∞)) equals 0 almost everywhere
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Figure 9: Polarization of BEC (ε = 0.5) at the 1024th level.

or, equivalently, that Z∞ equals 0 or 1 almost everywhere. This completes the proof of

Proposition 7. �

The fact that Z∞ equals 0 or 1 almost everywhere, combined with Corollary 1, implies

that I∞ = 1− Z∞ almost everywhere, and hence I∞ equals 1 or 0 almost everywhere.

To complete the proof of Theorem 1, we notice that the sequence {I(i)∞ } is an infinite

Bernoulli process. Hence P (I
(i)
∞ = 1) = E[I∞] = I0. By Borel’s Law of Large Numbers, we

have that the fraction of indices i for which I
(i)
∞ = 1 is equal to P (I

(i)
∞ = 1), namely I0, and

the fraction for which I
(i)
∞ = 0 is equal to 1− I0. This concludes the proof of Theorem 1. �

Fig. 9 illustrates the validity of Theorem 1. We see that, for a BEC with ε = 0.5, at

the 1024th level of the tree process, almost 70% of In take values in {0 + δ, 1− δ} for a

small δ.

Theorem 2. For any B-DMC W with I(W ) > 0 and any fixed R < I(W ), there exists

a sequence of sets AN ⊂ {1, . . . , N}, N ∈ {1, 2, . . . , 2n, . . .}, such that AN ≥ NR and

Z(W
(i)
N ) ≤ O(N−5/4) for all i ∈ AN .

The proof of Theorem 2 is provided in the Appendix.
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We stated the polarization result in Theorem 2 in terms of {Z(W
(i)
N )}. A rate of

polarization result in terms of {I(W
(i)
N )} can be obtained from Theorem 2 with the help

of Proposition 1.

1.6 Polar Coding

In the presence of channel polarization, coding becomes trivial: We send data only

through the bit-channels for which Z(W
(i)
N ) is near 0. We call this coding method polar

coding.

Individual codes will be identified by a parameter vector (N,K,A, uAc), where N = 2n

is the number of the available bit-channels, K is the code dimension and specifies the size

of A, where A is a fixed subset of the bit-channels which will be used to send information

and uAc∈XN−K is a fixed vector that is sent over the subset Ac, which is the complement

of A over all N bit-channels. The number N is the block length and the ratio K/N = R

is the code rate. We will refer to A as the information set, whereas Ac will be referred to

as the frozen set. Accordingly, uA ∈ XK will be referred to as the information vector and

uAc as the frozen vector.

1.6.1 Successive Cancellation Decoding

Consider a code with parameter (N,K,A, uAc). Let uN1 be encoded into a codeword

xN1 , let xN1 be sent over the channel WN , and let a channel output yN1 be received. The

decoder’s task is to generate an estimate ûN1 of uN1 , given knowledge of A, uAc and yN1 .

The successive cancellation (SC) decoder generates its decision vector by computing

ûN1 ,

ui, if i ∈ Ac,

hi(y
N
1 , û

i−1
1 ), if i ∈ A,

(42)

in the order i from 1 to N , where hi : Y N × X i−1 → X, i ∈ A, are decision functions

defined as

hi(y
N
1 , û

i−1
1 ) ,

0, if
W

(i)
N (yN1 ,û

i−1
1 |0)

W
(i)
N (yN1 ,û

i−1
1 |1)

≥ 0,

1, otherwise.
(43)

We say that a decoding block error occured if ûN1 6= uN1 or equivalently, if ûA 6= uA.
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1.6.2 Probability of error

The notation Pe(N,K,A, uAc) will denote the probability of block error for a

(N,K,A, uAc) code, assuming that each information vector uA ∈ XK is sent with

probability 2−K and decoding is done by the above SC decoder. More precisely,

Pe(N,K,A, uAc) ,
∑

uA∈XK

1

2K

∑
yN1 ∈Y N :ûN1 (yN1 )6=uN1

WN(yN1 |uN1 ). (44)

The average of Pe(N,K,A, uAc) over all choices for uAc ∈ XN−K will be denoted as

Pe(N,K,A).

Proposition 8. For any B-DMC W and any choice of the parameters (N,K,A)

Pe(N,K,A) ≤
∑
i∈A

Z
(
W

(i)
N

)
. (45)

Proof: We may express the block error event as ε = ∪i∈ABi, where Bi is the event

that the first decision error in SC decoding occurs at stage i. We notice that

Bi , {(uN1 , yN1 ) ∈ XN × Y N : ui−11 = Û i−1
1 (uN1 , y

N
1 ), ui 6= hi

(
yN1 , Û

i−1
1 (uN1 , y

N
1 )
)
}

= {(uN1 , yN1 ) ∈ XN × Y N : ui−11 = Û i−1
1 (uN1 , y

N
1 ), ui 6= hi(y

N
1 , u

i−1
1 )}

⊂ {(uN1 , yN1 ) ∈ XN × Y N : ui 6= hi(y
N
1 , u

i−1
1 } ⊂ εi, (46)

where εi is the error event when the i-th coordinate channel is used only once to transmit

a bit. Thus, we have

P (ε) ≤
∑
i∈A

P (εi) . (47)

Now, using (3) we conclude that

P (ε) ≤
∑
i∈A

Z
(
W

(i)
N

)
. (48)

�

Proposition 8 leads to the idea behind the definition of polar codes.

1.6.3 Polar Codes

Given a B-DMC W , a code with parameter (N,K,A, uAc) will be called a polar code

for W if the information set A is chosen as a K-element subset of {1, ..., N} such that
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Z(W
(i)
N ) ≤ Z(W

(j)
N ) for all i ∈ A, j ∈ Ac. That is, the information set A is chosen as to

minimize the RHS of (48).

Polar codes are channel-specific codes: a polar code for one channel may not be a polar

code for another.

The choice of uAc is negligible for the performance of polar codes. In fact, below we

state that for symmetric channels, any choice for uAc is as good as any other.

We complement Theorem 2 with the following results, proved in [1, Theorems 3-4].

Theorem 3. For any given B-DMC W and fixed R < I(W ), block error probability for

polar coding under successive cancellation decoding satisfies

Pe(N,R) = O(N−
1
4 ). (49)

Theorem 4. For any symmetric B-DMC W and any fixed R < I(W ), consider any

sequence of (N,K,A, uAc) codes with N increasing to infinity, K = bNRc, A chosen in

accordance with the polar coding rule for W , and uAc fixed arbitrarily. The block error

probability under successive cancellation decoding satisfies

Pe(N,K,A, uAc) = O(N−
1
4 ). (50)

Note: In more recent works the bounds in Theorems 2,3 & 4 have been strengthened.

More precisely, in [4] it is shown that for any binary-input discrete memoryless channel W

with symmetric capacity I(W ) and any rate R < I(W ), the probability of block decoding

error for polar coding under successive cancellation decoding satisfies

Pe = O(2−N
β

) (51)

for any β < 1
2

when the block-length N is large enough.

In [5] a rate-dependent bound is derived: For any B-MC W with I(W ) > 0 and fixed

R < I(W ), the best achievable block error probability satisfies

Pe(N,R) = o(2−2
(n+t

√
n)/2

), (52)

for any t satisfying t < Q−1(R/I(W )), where Q(x) =
∫∞
χ
e−u

2/2du/
√

2π.

We now return to the observation we first made in Chapter 1.2.2. While the synthesized

channel W
(i)
N has in its output vector the actual inputs ui−11 , when estimating the input ui,

the SC decoder knows only their estimations ûi−11 . But, following the results of channel

polarization and the definition of polar codes, we know that the estimations are correct

with probability which tends to 1, because they are either in the frozen vector, and thus

already known to the decoder, or they are sent over a bit-channel with Bhattacharyya

parameter close to 0.
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1.6.4 Complexity of Encoding and Decoding Polar Codes

It is proved and well known that both encoding and successive cancellation decoding of

polar codes have complexity O(N logN), where N is the block length. For the part of the

encoding, the main idea is to notice the recursive nature of channel combining, which is

given schematically in Figure 5. As for the decoding part, applying (15) and (16) in (43),

we take a binary recursive relation as well. The above are stated and proved analytically

in [1, VII, VIII].

2 Construction of Polar Codes

Having in our hands a low complexity encoding and decoding channel code, it is of

great interest the efficient construction of such a code. That is, the determination of the

information set A according to the rule described in the definition of polar codes. The

construction of polar codes poses many challenges, like having the ability to adapt rapidly

in channel, rate and block length variations. As we already mentioned, polar codes are

channel-specific codes, which means that when the physical channel changes dynamically,

as it happens with mobile communications, we have to re-construct a new information set.

Polar codes are chosen to be used in 5G NR, which strengthens the demand for a fast and

adaptive construction algorithm.

In what follows, we will restrict our results in BSCs, but we can generalize the procedure

for any other BMS channel. We note that only for the BEC there is a fast, memory-efficient

and optimal construction algorithm, in terms of calculating efficiently the Bhattacharyya

parameters of the bit-channels, using (32). For any other channel, a robust calculation

of the Bhattacharyya parameters is still either cumputationally highly demanding or

impractical due to memory requirements. Here we will combine the approximation method

proposed in [7], which scales linearly with the block length, with the partial orders of the

bit-channels proposed in [8].

2.1 The Construction Problem

Given an arbitrary BMS channel W and a block length N , while trying to construct

the information set A, one has to answer to either of the following two questions:

1. Fixed-Rate Construction: What rate R am I trying to achieve?

2. Fixed-Performance Construction: What block error rate Pe am I trying to achieve?
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Those two questions are of course equivalent in the following sense: a certain rate R

achieves a certain block error rate Pe for a given BMS channel W and block length N , and

vice versa. Usually, one wants to transmit information with a certain upper bound on the

bit error rate. However, we will concentrate on the fixed-rate construction problem. This

is because, as we’ll see, it can be solved faster, and on the other hand a fixed-performance

problem can easily be converted to a fixed-rate using a bijection vector.

2.1.1 Solving strategy of the Fixed-Rate Construction Problem

More precisely, the problem we are trying to solve is the following: Given an arbitrary

BMS channel W , a block length N and a code rate R = K/N , which K bit-channels

minimize the RHS of (48)? In other words, which K out of the N bit-channels have the

lowest Bhattacharyya parameter - or - are more reliable than the rest N −K?

Now we will state our solving strategy, which is inspired by [6]. Given an arbitrary

BMS channel W , a block length N and a rate R = K/N , suppose that someone gives

us the following information: Some bit-channels Wi, i ∈ {0, . . . , N − 1} are more reliable

than at least N − K bit-channels and some other bit-channels Wj, j ∈ {0, . . . , N − 1}
are less reliable than at least K bit-channels. We denote the former of those subsets I

and the latter F . Obviously, I
⋂
F = {∅}. Then, I ∈ A and F ∈ Ac. We denote the rest

(undetermined) bit-channels as U = {Wk, k ∈ {0, . . . , N − 1} : Wk 6∈ I
⋃
F}. Then, in

order to solve the fixed-rate construction problem, it suffices to totally order the reliability

of the bit-channels that are in U : The most reliable of them will complete A and the least

reliable will complete Ac.

The above strategy proposes two complementary ways to construct the information

set A. The first is to use the pair-wise reliability relation between the bit-channels, as

much as is known to us such a relation, and conclude if some of them are in I or F

and the second is to decide -in any way possible- which of the rest are explicitly the

most reliable. The performance gains by solving the fixed-rate problem instead of the

fixed-performance comes from noticing that we don’t need to precisely calculate the

Bhattacharyya parameters of the subset U . On the contrary, this would be mandatory if

we tried to solve the fixed-performance problem.

In the following sections, we lay out the theoretical tools which we use for accomplishing

this strategy efficiently.
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Figure 10: Q is degraded with respect to W. Figure 11: Q’ is upgraded with respect to W.

2.2 Stochastically Degraded and Upgraded Channels

Obviously, a key to the proposed construction method is to define a reliability relation

between the bit-channels. As in [7], we define the (stochastically) degraded with respect to

and upgraded with respect to relations between two channels.

Let Q and W be two BMS channels Q : X → Z, W : X → Y . We say that Q is

stochastically degraded with respect to W , denoted as Q 4 W , if there exists a channel

P : Y → Z such that

Q(z|x) =
∑
y∈Y

W (y|x)P (z|y) (53)

for all z ∈ Z and x ∈ X.

Let Q′ and W be two BMS channels Q′ : X → Z ′, W : X → Y . We say that Q′ is

stochastically upgraded with respect to W , denoted as Q′ < W , if there exists a channel

P : Z ′ → Y such that,

W (y|x) =
∑
z′∈Z′

Q′(z′|x)P (y|z′) (54)

for all z′ ∈ Z ′ and x ∈ X.

In other words, Q is said to be degraded with respect to W if there exists another

channel P which if it intervenes after W ’s output, it produces Q’s output, and Q′ is said

to be upgraded with respect to W if it can be degraded to W . Figures 11 and 10 illustrate

the defined relations. Obviously,

Q′ < W iff W 4 Q′. (55)

It can be shown that 4 and < are reflexive and transitive relations and thus,

W 4 W and W < W and also, (56)

if W 4 W ′ and W ′ 4 W ′′, then W 4 W ′′. (57)

If two channels W and W ′ are both degraded with respect to each other, then we say that

W and W ′ are equivalent, and denote this by W ≡ W ′. By (55), (56) and (57) we get
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that ≡ is an equivalence relation and so,

W ≡ W, (58)

W ≡ W ′ iff W ′ ≡ W. (59)

Now we will see the effect of 4 and < on three channel parameters of interest, namely,

the probability of error under ML-decoding and uniform input, Pe(·), the Bhattacharyya

parameter Z(·) and the symmetric capacity I(·). The next lemma is proved in [7].

Lemma 1. Let W : X → Y be a BMS channel and suppose that Q : X → Z is degraded

with respect to W . Then,

Pe(Q) ≥ Pe(W ), (60)

Z(Q) ≥ Z(W ), (61)

I(Q) ≤ I(W ). (62)

Because of (55), if we replace “degraded” with “upgraded”, the inequalities are reversed.

Therefore, if W ≡ Q, then the inequalities become equalities.

2.3 Universal partial orders of the bit-channels

In [8] it is proved that partial orders (PO) [9, Ch. 1.1] of reliability exist for the

bit-channels of polarized symmetric channels with binary inputs. Below we restate the

definitions of those POs and the main theorems from [8] without providing their proofs.

Let i, j ∈ {0, · · · , N − 1} be the indices of the bit-channels W
(i)
N and W

(j)
N according to

the transformation relations in (15) and (16). Let those indices have binary representations

(in−1, in−2, · · · , i0)2 and (jn−1, jn−2, · · · , j0)2 respectively.

Theorem 5. If for all k ∈ {0, · · · , n− 1} we have jk = 1⇒ ik = 1, then W
(j)
N 4 W

(i)
N .

Examples: W
(010)
N 4 W

(011)
N , W

(1001)
N 4 W

(1011)
N .

Definition 1. We write j ↗ i if there exist l, l′ ∈ {0, · · · , n− 1} with l < l′ such that

1. jl = 1 and jl′ = 0.

2. il = 0 and il′ = 1.

3. For all k ∈ {0, · · · , n− 1} \ {l, l′} : jk = ik.
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Figure 12: Pre-determined pairwise reliability orderings of bit-channels.

Essentially, j ↗ i if and only if we can obtain j by switching a more significant 1 with

a less significant 0 in i.

Examples: (01101)↗ (10101), (0111)↗ (1110).

Theorem 6. If j ↗ i then W
(j)
N 4 W

(i)
N .

The next proposition shows that we can combine the above POs, by using them

explicitly on partitions of the binary representations of the indices. It is stated in [8], but

we re-state and re-prove it here more clearly.

Proposition 9. Let two bit-channels W
(i)
N and W

(j)
N with indices with binary

representations i = (in, in−1, . . . , i1)2 and j = (jn, jn−1, . . . , j1)2 respectively.

If the available partial orders can be applied explicitly on the indices’

partitions (inn−k1 , j
n
n−k1), (i

n−k1−1
n−k1−1−k2 , j

n−k1−1
n−k1−1−k2), (in−k1−k2−2n−k1−k2−2−k3 , j

n−k1−k2−2
n−k1−k2−2−k3), . . . ,

(i
n−(

∑r−1
i=1 ki)−(r−1)

1 , j
n−(

∑r−1
i=1 ki)−(r−1)

1 ), where (
∑r−1

i=1 ki)− (r − 1) < n, and all give the same

order direction, then the overall binary representations of those bit-channels follow the

same reliability order as their partitioned counterparts.

Proof: For shorthand we will notate the channels with indices the partitions
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Figure 13: Percentage of the undetermined among the N bit-channels.

inn−k1 as ik1 , i
n−k1−1
n−k1−1−k2 as ik2 and so on. Consider that from the above POs we have

(jk1 < ik1), (jk2 < ik2), (jk3 < ik3), . . . , (j1 < i1). Then, using the given partial orders

we have j = (jk1jk2 · · · jkr−1jkr) < (jk1jk2 · · · jkr−1ikr) < (jk1jk2 · · · ikr−1ikr) < · · · <
(ik1ik2 · · · ikr−1ir) = i. The same holds even when we switch “<” with “4”. �

Example: The pair W
(0101001)2
N ,W

(0111100)2
N cannot be ordered from Theorems 5 and 6.

But from Theorem 5 we know that W
(0101)2
N 4 W

(0111)2
N , and from Theorem 6 that

W
(001)2
N 4 W

(100)2
N Because the order direction is the same for both partitions, we derive

that W
(0101001)2
N 4 W

(0111100)2
N .

Theorems 5-6 and Proposition 9 give us a powerful means for constructing polar codes.

Although polar codes are channel-specific, they claim a universal relation between the

reliability of some of their bit-channels, which can be determined only by their indices.

Note that this is a natural consequence derived from the transformations (15) and (16).

Figure 12 shows the fraction of the pair-wise reliability orderings from the overall(
L
2

)
bit-channel pairs, which can be obtained by combining the above POs according to

Proposition 9. Figure 13 shows the efficiency we gain by utilizing the given partial orders.
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Figure 14: Fraction of I and F in the Information and Frozen sets.

Figure 14 shows the percentage of the information and the frozen vectors we can fill by

employing the above POs in the proposed strategy. We notice that for low code rates, we

can fill a significant portion of the frozen vector and for high rates a significant portion of

the information vector.

Theorems 5 and 6 hold true regardless of the physical channel, so they are extremely

useful for a method adaptive to channel variations. Lastly, we show how those POs are

able to render the construction algorithm adaptive to block length variations.

Theorem 7. If the above POs infer that Wi 4 Wj in a code with block-length N , then

Wi 4 Wj in a code with block-length 2N .

Proof: A binary representation (in, in−1, · · · , i1) of an index i in a code with block

length N = 2n, represents the same index as (0, in, in−1, · · · , i1) in a code with block

length 2N = 2n+1. But this lengthened representation doesn’t affect the ordering given by

the above POs. �
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2.4 Upgraded and Degraded approximations of the bit-channels

In [7], a method was proposed, for approximating one stochastically degraded and one

stochastically upgraded version of the original bit-channel. Then, the original bit-channel

must lie between the degraded and the upgraded versions. In practice, the derived channels

are very close and therefore the method gives very close approximations of the bit-channels.

The method runs in O(Nµ2 log µ), where the “fidelity” parameter µ is an even integer,

and it is the quantization limit of the approximations. Basically, a greater µ gives a

denser quantization, and thus closer approximations. Below we restate the theoretical

background of the two algorithms. Lastly, we end this subsection by presenting the

algorithms themselves.

We recall from Sections 1.3 and 1.4 that the bit-channels in polar codes can be

constructed according to the binary representation of their indices, by using recursively the

relations (12) and (13), whether the next bit in the representation is 1 or 0 respectively.

We will notate the equations (12) and (13) as the operations W � W and W ~W ,

respectively. Thus, those operations are defined as:

(W �W )(y1, y2|u1) ,
1

2

∑
u2∈X

W (y1|u1 ⊕ u2)W (y2|u2) (63)

(W ~W )(y1, y2, u1|u2) ,
1

2
W (y1|u1 ⊕ u2)W (y2|u2). (64)

We assume W is symmetric, and thus for every symbol y ∈ Y in the output alphabet of

W , there exists its conjugate symbol in the output alphabet, notated by ȳ ∈ Y , for which

W (y|1) = W (ȳ|0). In [7, Lemma 4], it is proved that we lose no information by assuming

that W has no self-conjugate symbols (that is, y = ȳ). Henceforth, for simplicity we will

assume that W has no self-conjugate symbols.

We also associate for each output symbol y ∈ Y a likelihood ratio, defined as follows:

LR(y) ,
W (y|0)

W (y|1)
=
W (y|0)

W (ȳ|0)
. (65)

Lemma 2. Fix a binary input channel W : X → Y . Denote W� = W � W and

W~ = W ~W . Suppose that a channel Q is degraded with respect to W , and denote

Q� = Q�Q and Q~ = Q~Q. Then

Q� 4 W� and Q~ 4 W~. (66)

Moreover, all of the above continues to hold if we replace “degraded” by “upgraded” and

“4” by “<”.
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2.4.1 Degrading merge

Lemma 3. Let W : X → Y be a BMS channel, and let y1 and y2 be symbols in the output

alphabet Y . Define the channel Q : X → Z as follows. The output alphabet Z is given by

Z = Y \ {y1, ȳ1, y2, ȳ2} ∪ {z1,2, z̄1,2} . (67)

For all x ∈ X, z ∈ Z, define

Q(z|x) =


W (z|x), if z 6∈ {z̄1,2, z1,2} ,

W (y1|x) +W (y2|x), if z = z1,2,

W (ȳ1|x) +W (ȳ2|x), if z = z̄1,2.

(68)

Then, Q 4 W .

Lemma 3 is used repetetively inbetween the recursive applications of “�” and “~”.

Hence, the computed bit-channel is a degraded version of the actual bit-channel, while its

output alphabet size is reduced by 2 for each time Lemma 3 is used. The reduction of

the output alphabet size reduces the time complexity and the memory requirements for

the next recursion step. We pair Lemma 3 with the equations (20), (21) which we restate

below in terms of the defined operations.

Z(W �W ) ≤2Z(W )− Z(W )2 (69)

Z(W ~W ) =Z(W )2 (70)

Algorithm 1 constructs a degraded version Q of a bit-channel W
(i)
N and outputs its

probability of error. This can easily be seen by noticing that Algorithm A just uses

Lemma 3 and the equations (20) and (21) recursively. Because Q is degraded with respect

to W , Pe(Q) is an upper bound for the probability of error of W
(i)
N .

We want the degraded version of W
(i)
N to be as close to the original. That is, its

probability of error must be as low as possible, or equivalently, its capacity must be as

high as possible. Thus, we must find for which pair {yi, yj} the application of Lemma 3

produces a channel with the largest possible capacity.

Theorem 8. Let W : x→ Y be a BMS channel, with Y = {y1, y2, . . . , yL, ȳ1, ȳ2, . . . , ȳL}.
Assume that

1 ≤ LR(y1) ≤ LR(y2) ≤ · · · ≤ LR(yL). (71)
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Algorithm 1 Bit-channel degrading procedure

1: procedure Bitchannel degrading(W,µ,N, i)
2: . inputs: An underlying BMS channel W , a bound µ = 2ν on the output

alphabet size, a code length N = 2n, and an index i with binary representation
i = (b1, b2, . . . , bn)2.

3: . output: An upper bound on the probability of error of Wi.

4: Z = Z(W )
5: Q = degrading merge(W,µ)
6: for j = 1, 2, . . . , n do
7: if bj = 0 then
8: W ← Q�Q
9: Z ← min(Z(W ), 2Z2 − Z)

10: else
11: W ← Q~Q
12: Z← Z2

13: end if
14: Q = degrading merge(W,µ)
15: end for
16: Pe(Q) = 1

2

∑
y∈Y min(W (y|0),W (y|1))

17: return min(Pe(Q),Z)

18: end procedure

For symbols w1, w2 ∈ Y , denote by I(w1, w2) the capacity of the channel one gets by the

application of Lemma 3 to w1 and w2. Then, for all distinct 1 ≤ i ≤ L and 1 ≤ j ≤ L,

I(ȳi, ȳj) = I(yi, yj) ≥ I(yi, ȳj) = I(ȳi, yj). (72)

Moreover, for all 1 ≤ i < j < k ≤ L, we have that either

I(yi, yj) ≥ I(yi, yk), (73)

or

I(yj, yk) ≥ I(yi, yk). (74)

Essentially, Theorem 8 says that assuming we have ordered the likelihood ratios of

the conjugate output symbols as in (71), it suffices to choose the pair of the consecutive

symbols, for which Lemma 3 produces a channel with the largest capacity. By doing this,

we can maximize the capacity of the produced channel. This way we consider only L− 1

merges instead of
(
L
2

)
.
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The contribution of a conjugate pair of output symbols {a, b} in the overall capacity

of a channel, is given by

C(a, b) = −(a+ b) log2((a+ b)/2) + a log2(a) + b log2(b). (75)

We use the notation a = W (yi|0), b = W (ȳi|0), a′ = W (yi+1|0), b′ = W (ȳi+1|0) and

a+ = a+ a′, b+ = b+ b′. The resulting difference in capacity when applying Lemma 3 to

yi and yi+1, is given by

calcDeltaI(a, b, a′, b′) = C(a, b) + C(a′, b′)− C(a+, b+). (76)

Algorithm 2 contains an implementation of degrading merge, which uses Lemma 3

and Theorem 8. The function degrading merge applies Lemma 3 as many times as is

needed in order to reduce the output alphabet size to at most µ. This restricts the running

time and the space requirements until the algorithm has finished running.

More precisely, this implementation uses a data structure which integrates a doubly

linked list, for storing the order of the LR values, and a min-heap, for storing the order of

the deltaI values. The fields dLeft and dRight lie in the doubly linked list, and make up

the pointers to the elements corresponding to the linked pairs {yi−1, yi} and {yi+1, yi+2},
respectively.

The function insertRightmost inserts a data element as the rightmost element of

the doubly linked list. The function getMin lies in the min-heap and returns the data

with the smallest deltaI. Namely, the data element which consists the symbols we are

about to merge. The function removeMin removes the element returned by getMin. The

function valueUpdated updates the heap due to a change in deltaI resulting from a merge.

Whenever we remove (insert) an element, it must be removed from (inserted in) both the

list and the heap, but when a merge occurs only the heap needs to be updated. This is

a result of the following lemma which says that after a merge, the resulting LR order

remains the same as before, and thus we don’t need to update the list after a merge.

Lemma 4. If yi and yi+1, in light of (71), are merged to z according to Lemma 3, then

LR(yi) ≤ LR(z) ≤ LR(yi+1). (77)

Having said the above, and after considering the running time of the respective heap’s

and list’s functions, we infer that the running time of degrading merge is in O(L logL).

In addition, we observe that after applying the transformations in either (63) or (64),

the output alphabet size L scales to either µ2 or 2µ2, respectively. We conclude that the

running time of degrading merge is in O(µ2 log µ2).
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Algorithm 2 The degrading merge function

1: procedure degrading merge(W,µ)
2: . inputs: A BMS channel W : X → Y , where |Y | = 2L, a bound µ = 2ν on

the output alphabet size.
3: . output: A degraded channel Q : X → Y ′, where |Y ′| ≤ µ.
4: . Assume 1 ≤ LR(y1) ≤ LR(y2) ≤ · · · ≤ LR(yL)

5: if 2L ≤ µ then
6: return W
7: end if
8: for i = 1, 2, . . . , L− 1 do
9: d = new data element

10: d.a← W (yi|0), d.b← W (ȳi|0)
11: d.a′ ← W (yi+1|0), d.b′ ← W (ȳi+1|0)
12: d.deltaI ← calcDeltaI(d.a, d.b, d.a′, d.b′)
13: insertRightmost(d)
14: end for
15: l = L
16: while l > ν do
17: d← getMin()
18: a+ = d.a+ d.a′, b+ = d.b+ d.b′

19: dLeft = d.left
20: dRight = d.right
21: removeMin()
22: l← l − 1
23: if dLeft 6= null then
24: dLeft.a′ ← a+

25: dLeft.b′ ← b+

26: dLeft.deltaI ← calcDeltaI(dLeft.a, dLeft.b, a+, b+)
27: valueUpdated(dLeft)
28: end if
29: if dRight 6= null then
30: dRight.a← a+

31: dRight.b← b+

32: dRight.deltaI ← calcDeltaI(a+, b+, dRight.a′, dRight.b′)
33: valueUpdated(dRight)
34: end if
35: end while
36: Construct Q according to the probabilities in the data structure and return.

37: end procedure
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Algorithm 3 Bit-channel upgrading procedure

1: procedure Bitchannel degrading(W,µ,N, i)
2: . inputs: An underlying BMS channel W , a bound µ = 2ν on the output

alphabet size, a code length N = 2n, and an index i with binary representation
i = (b1, b2, . . . , bn)2.

3: . output: A lower bound on the probability of error of Wi.

4: Q = upgrading merge(W,µ)
5: for j = 1, 2, . . . , n do
6: if bj = 0 then
7: W ← Q�Q
8: else
9: W ← Q~Q

10: end if
11: Q = upgrading merge(W,µ)
12: end for
13: Pe(Q) = 1

2

∑
y∈Y min(W (y|0),W (y|1))

14: return Pe(Q)

15: end procedure

2.4.2 Upgrading merge

Algorithm 3 contains the procedure for the construction of an upgraded version Q of a

bit-channel W
(i)
N , which is similar to the degrading procedure. Next, we will show how its

“core” works. Namely, how we can merge output symbols and get an upgraded channel

instead. For the upgrading merge function we employ the following two lemmas.

Lemma 5. Let W : X → Y be a BMS channel, and let y2 and y1 be symbols in the output

alphabet Y . Denote λ2 = LR(y2) and λ1 = LR(y2). Assume that

1 ≤ λ1 ≤ λ2. (78)

Next, let a1 = W (y1|0) and b1 = W (ȳ1|0). Define α2 and β2 as follows. If λ2 <∞

α2 = λ2
a1 + b1
λ2 + 1

, β2 =
a1 + b1
λ2 + 1

. (79)

Otherwise, we have λ2 =∞, and so define

α2 = a1 + b1, β2 = 0. (80)
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For real numbers α, β, and x ∈ X, define

t(α, β) =

α, if x = 0,

β, if x = 1.
(81)

Define the channel Q′ : X → Z ′ as follows. The output alphabet Z ′ is given by

Z ′ = Y \{y2, ȳ2, y1, ȳ1} ∪ {z2, z̄2}. (82)

For all x ∈ X and z ∈ Z ′,

Q′(z|x) =


W (z|x), if z /∈ {z2, z̄2},

W (y2|x) + t(α2, β2|x), if z = z2,

W (ȳ2|x) + t(β2, α2|x), if z = z̄2.

(83)

Then, Q′ < W .

Lemma 6. Let W : X → Y be a BMS channel, and let y1, y2, y3 be symbols in the output

alphabet Y . Denote λ1 = LR(y1), λ2 = LR(y2), λ3 = LR(y3). Assume that

1 ≤ λ1 < λ2 < λ3. (84)

Next, let a2 = W (y2|0) and b2 = W (ȳ2|0). Define α1, β1, α3, β3 as follows. If λ3 <∞

α1 = λ1
λ3b2 − a2
λ3 − λ1

, β1 =
λ3b2 − α2

λ3 − λ1
, (85)

α3 = λ3
a2 − λ1b2
λ3 − λ1

, β3 =
a2 − λ1b2
λ3 − λ1

. (86)

Otherwise, we have λ3 =∞, and so define

α1 = λ1b2, β1 = b2, (87)

α3 = a2 − λ1b2, β3 = 0. (88)

Leta t(α, β|x) be defined as in Lemma 5, and define the BMS channel Q′ : X → Z ′ as

follows. The output alphabet Z ′ is given by

Z ′ = Y \{y1, ȳ1, y2, ȳ2, y3, ȳ3} ∪ {z1, z̄1, z3, z̄3}. (89)
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Figure 15: Upper and lower bounds of the probability of error for the BSC (N = 512, I(W) = 0.5).
Chosen value of µ is 32.

For all x ∈ X and z ∈ Z ′, define

Q′(z|x) =



W (z|x), if z /∈ {z1, z̄1, z3, z̄3},

W (y1|x) + t(α1, β1|x), if z = z1,

W (ȳ1|x) + t(β1, α1|x), if z = z̄1,

W (y3|x) + t(α3, β3|x), if z = z3,

W (ȳ3|x) + t(β3, α3|x), if z = z̄3.

(90)

Then, Q′ < W .

Regarding how Lemmas 5 and 6 perform compared to each other, in [7, Lemma 12] it

is proved that Lemma 6 produces a channel that is closer to the original bit-channel than

Lemma 5 does. The reason Lemma 5 is used at all, is because when λ1 and λ3 are too close

to each other, the subtraction operations in Lemma 6 will cause numerical instabilities

when performed from a logical floating-point machine. For this reason, Lemma 5 is used

instead of Lemma 6 when this case occurs.

The merge-upgrading procedure follows the same structure as the degrading-merge.

The only twist here is that we must first search for which indices 1 ≤ i ≤ L− 1 the ratio
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Figure 16: Polarization effect of the BSC (N = 512, I(W) = 0.5).

LR(yi+1)/LR(yi) is less than 1 + ε for small ε. Namely, the symbols for which their LR is

too close. For these symbols, we must use Lemma 5, until no such index exists, or until

the output alphabet size is at most µ. Then we continue by applying Lemma 6 for the

rest merging procedure.

The order we choose the output symbols for applying the merging operations is, again,

that which minimizes the capacity deviation from the initial channel. For Lemma 5, this

is the same as that which is used in the degrading-merge procedure (76). For Lemma 6 we

similarly define the resulting difference in capacity as follows: Let a2, b2, α1, β1, α3, β3 be

defined according to Lemma 6. Also, let a1 = W (y1), b1 = W (ȳ1), a3 = W (y3), b3 = W (ȳ3)

and for shorthand we notate a+1 = a1 +α1, b
+
1 = b1 +β1, a

+
3 = a3 +α3, b

+
3 = b3 +β3. Then,

the resulting difference in capacity is given by

calcDeltaI6(a1, b1, a2, b2, a3, b3, a
+
1 , b

+
1 , a

+
3 , b

+
3 ) =(a1, b1) + C(a2, b2) + C(a3, b3)

− C(a+1 , b
+
1 )− C(a+3 , b

+
3 ), (91)

where the subscript of the function indicates that it refers to Lemma 6.

Figure 15 illustrates the approximated upper and lower bounds for the BSC, using

a fidelity parameter µ = 32. Figure 16 illustrates the polarization effect of the same
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Figure 17: Bit-channels of the BSC (N = 512, I(W) = 0.5), sorted according to the differences

{P uppere (W
(i)
N ) − P lowere (W

(i)
N )} (right is higher), for µ = 32. The measurements ranged in

[0, 2.86e−03), with mean value 8.5e−05 and variance 5.35e−08. By evaluating only on the best
half channels, the mean value is 7.45e−05 and the variance is 6.19e−08.

channel by sorting the upper bound of probability of error. We can easily notice that as

the block length N increases, the fraction of the bit-channels that have extremal (bounds

of) probability of error increases, too.

2.4.3 Performance of the Approximations

In our proposed algorithm, we will assume that the inequality P upper
e (Wi) ≤ P upper

e (Wj)

infers the inequality Pe(Wi) ≤ Pe(Wj). Below, we study the safety of this assumption.

Firstly, we study the following observation: if the distance between the upper and

lower bounds of the probability of error of a bit-channel is very small, then the bounds are

very close to the true probability. If the same happens for two different bit-channels we

can assume that the bounds are able to order their actual probability of error correctly. In

other words, if the differences
(
P upper
e (Wi)− P lower

e (Wi)
)

and
(
P upper
e (Wj)− P lower

e (Wj)
)

are very small, then P upper
e (Wi) ≤ P upper

e (Wj) infers that Pe(Wi) ≤ Pe(Wj). The same

holds if we switch “≤” with “≥”. In Figure 17 we sort the bit-channels according to

this measure. We observe that the distance is higher for the channels that are not yet
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Figure 18: Bit-channels of the BSC (N = 512, I(W) = 0.5), sorted according to the differences

{P upper,average µe (W
(i)
N ) − P upper,high µe (W

(i)
N )} (right is higher). The measurements ranged in

[0, 2.59e−04), with mean value 1.48e−05 and variance 1.64e−09. By evaluating only on the best
half channels, the mean value is 9.61e−06 and the variance is 1.16e−09.

polarized. Because polar codes are not likely to use these channels, we infer that the above

assumption is safe.

We insist in our assumption by studying an additional measure of the approximation

performance: if for two different bit-channels their upper bound of probability of error for

some average value of µ, is close to that for a relatively high value of µ, then we infer that

the bounds for the average value of µ are already close to the true values. Hence, we can

assume that they are able to order them correctly. In Figure 18 we sort the bit-channels

according to this measure. We make the same observation as before: the difference is

higher for the intermediate channels.

A general implication of Figures 17 and 18 is that Algorithms 1 and 3 work better

mostly for those bit-channels that are nearly polarized. We are now ready to present the

proposed construction algorithm.
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2.5 Fast construction of Polar Codes

We begin by determining all the possible
(
N
2

)
pair-wise orderings of the bit-channels

using the available Partial Orders. We keep these orderings in a matrix, called

InformationTable (IT ) as follows: If Wi 4 Wj, then IT (i, j) = −1. If Wj 4 Wi,

then IT (i, j) = 1. For any other case, IT (i, j) = 0. We make the following observations

regarding the structure of IT .

With a first look we see that IT is an N × N matrix. By observing that IT (i, i) =

0 for any i, IT can be reduced to a (N − 1) × N matrix. Also, by observing that

IT (i, j) = r ⇔ IT (j, i) = −r, r ∈ {−1, 0, 1}, IT can be further reduced to a vector of

length (N − 1)N/2. Lastly, keeping this structure, IT ’s elements take only binary values

{0, 1}. Thus, in order to represent IT ’s values, it is only needed 1 bit per element. We

infer that saving IT requires only (N2 −N)/2 bits. However, while referring to IT we

will keep the original N ×N structure because it is easier to depict.

Also, in use cases where the block length may vary dynamically, we still only need one

static IT , with size equal to the largest block-length that our module uses. This holds true

because of Theorem 7. For example, if our maximum block-length is Nmax and we wish to

construct a polar code of length Nk ≤ Nmax, we will just use the upper-left Nk ×Nk part

of ITNmax×Nmax .

Because of the above, and because the values of IT are independent of the physical

channel, IT is needed to be calculated only once, and use it repetitively whenever we

need to construct a polar code. Thus, we will assume that the construction of IT doesn’t

contribute to the running time of the algorithm.

Having said the above, we assume IT is already calculated. The construction procedure

begins by using IT for calculating the subsets I, F and U . We then use Algorithm 1 in

Section 2.4 to calculate upper bounds of probability of error for the bit-channels in U .

Then, we sort the bit-channels in U according to their upper probability of error and

choose the best of them to complete A and the worst to complete Ac. Algorithm 4 is

indicative of this procedure. Also, it is easy to integrate the adaptive properties of the

partial orders that we mentioned in Chapter 2.3.

Example: Consider the BSC W, with I(W) = 0.5. Suppose we wish to construct a
polar code for W, with block length N = 16 and rate R = 0.44. Then, the information set
must have size equal to K = bN · Rc = 7. The given partial orders yield the following
Information Table (IT ).
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Algorithm 4 Proposed construction method of Polar Codes

1: procedure Construct(W,µ,N,R)
2: . inputs: An underlying BMS channel W , a bound µ = 2ν on the output

alphabet size for the degrading/upgrading procedures, a code length N = 2n,
and a transmission rate R.

3: . outputs: The information set A and the frozen vector Ac.

4: K ← bN ·Rc
5: I = {i : |IT (i, :) == 1| ≥ N −K}
6: F = {j : |IT (j, :) == −1| ≥ K}
7: U = {k : k /∈ I ∪ F}

8: Run Algorithm 1 on the channels in U and return the upper bounds of their
probability of error in the vector PeU .

9: Sort PeU and save in C the permutation vector.

10: . Now C contains the indices of the channels in U , sorted by their upper bounds
of probability of error.

11: A = I ∪ C(1 : K − |I|)
12: return A and Ac

13: end procedure



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
2 1 1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
3 1 1 1 0 0 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1
4 1 1 1 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
5 1 1 1 1 1 0 −1 −1 0 −1 −1 −1 −1 −1 −1 −1
6 1 1 1 1 1 1 0 −1 0 0 −1 −1 −1 −1 −1 −1
7 1 1 1 1 1 1 1 0 0 0 0 −1 0 −1 −1 −1
8 1 1 1 0 1 0 0 0 0 −1 −1 −1 −1 −1 −1 −1
9 1 1 1 1 1 1 0 0 1 0 −1 −1 −1 −1 −1 −1
10 1 1 1 1 1 1 1 0 1 1 0 −1 −1 −1 −1 −1
11 1 1 1 1 1 1 1 1 1 1 1 0 0 −1 −1 −1
12 1 1 1 0 1 1 1 0 1 1 1 0 0 −1 −1 −1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 0 −1 −1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 −1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
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where the indices of the rows and columns correspond to indices of bit-channels, and the

cells take values as we described above. From this matrix, we construct the subsets I, F

and U as

I ={i : |IT (i, :) == 1| ≥ 9} = {10, 11, 12, 13, 14, 15},
F ={j : |IT (j, :) == −1| ≥ 7} = {0, 1, 2, 3, 4, 5, 6, 8},
U ={k : k /∈ I ∪ F} = {7, 9}.

The cardinality of I is 6. Thus, we need 1 more bit-channel to complete A. The output of

Algorithm 1 (µ = 32), for the bit-channels with indices in U , is P upper
e (W

(7)
16 ) ' 0.03099

and P upper
e (W

(9)
16 ) ' 0.20726. Thus, the bit-channel with index 7 is more reliable than the

bit-channel with index 9, and the final information set of the polar code is

A = I ∪ {7} = {7, 10, 11, 12, 13, 14, 15}.

Lastly, we note that we could combine the pair-wise orderings from the partial orders

with the newly mined from using Algorithm 1: after running Algorithm 1 we could fill

some of the gaps (zeros) in IT using the sorted vector PeU . Then we could further use

the transitivity property (57) in order to fill more gaps: for any i, j, k, if IT (i, j) = 1

and IT (j, k) = 1, then IT (i, k) = 1. Similarly, if IT (i, j) = −1 and IT (j, k) = −1, then

IT (i, k) = −1. We then could repeat the procedure and get updated versions of I, F and

U . Our experiments showed that although we can indeed fill some part of the gaps this

way, the produced information sets using this method are the same as before regardless of

the chosen fidelity parameter µ, and thus the increased time complexity is needless.

2.6 Results

In this section we present the reliability and efficiency performance of the proposed

algorithm. Also, we will compare how the proposed algorithm performs with respect to

the conventional method that chooses the best channels by sorting the upper bounds of

probability of error without employing the partial orders of the bit-channels.

One question that arises is how the fidelity parameter µ affects the resulting information

sets. in Section 2.1.1, we observed that the fixed-rate problem should be faster to solve

because we only need to order the reliability of the channels and not to precisely calculate

them. In practice this comes true. We take for example a BSC with I(W) = 0.5 and
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Figure 19: Error rate performance for the BSC (N = 512, I(W) = 0.5).

block-length N = 512. In this case, the information sets produced by sorting the upper

bounds of probability of error are exactly the same for any value of µ when µ ≥ 32. This

means that we lose nothing by restricting µ to at most 32 for this channel and block-length

setting.

As for the difference between the produced information sets of the proposed algorithm

and the conventional method described above, it turns out that, for reasonably high values

of µ (e.g. in our example for µ ≥ 4), the resulting information sets are exactly the same

when the two methods run for the same µ.

We illustrate the proposed algorithm’s performance in Figures 19 and 20. It turns

out that the proposed method can use higher values of µ and still maintain a faster

running time than the conventional method, regardless of the increased value of µ. In our

example, the resulting information sets differ to at most 1 bit-channel. However, because

in practice channel polarization is constrained by the block length, the assumption we

made in Section 1.6 that, successive cancellation decoding can reliably assume that, when

estimating the input ui, our estimations of all the previous inputs ui−11 are errorless, is not

absolutely true. Hence, in polar codes there exist error propagation when the estimation of

an input is wrong and this estimation is used when decoding other inputs. For this reason,

43



0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

Rate

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

#O
pe

ra
tio

ns

108

conventional  = 32
conventional  = 30
proposed  = 32
proposed  = 30

Figure 20: Number of numerical operations for the BSC (N = 512, I(W) = 0.5).

when we use a more reliable bit-channel, with input ui, we also render more reliable the

bit-channels that have ui in their output vector. Having said that, it is important to note

that, albeit minimal in population, the different channels that our proposed algorithm

gives are most of the times better, as a result from using a greater fidelity parameter.

In summary, for the same error rate performance, or equivalently for the same value of

the fidelity parameter, the proposed algorithm is significantly faster. On the other hand, if

we wish to constrain the running time, we can use higher values of the fidelity parameter

and get more accurate approximations, getting slightly more reliable information sets.
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Appendix

Proof of Proposition 1.

To prove (4), we use Gallager’s E0(p,Q) [2, p.138], which can be seen as a measure of

information:

E0(p,Q)
.
= − log

∑
y∈Y

[∑
x∈X

Q(x)W (y|x)1/(1+p)

]1+p
, 0 ≤ p ≤ 1. (92)

When Q is the uniform input distribution and p = 1, we have

E0(1, Q) = − log
∑
y∈Y

[
1

2

(√
W (y|0) +

√
W (y|1)

)]2
= log

2

1 + Z(W )
. (93)

Also, in [2, Theorem 5.6.3] it is shown that I(W ) ≥ ∂E0(p,Q)
∂p

. We use this to show:

∂I(W )p

∂p
≥ ∂E0(p,Q)

∂p
. (94)

Also, notice that E0(p,Q) = 0 and I(W )p = 0 when p = 0. Then, we have

I(W )p ≥ E0(p,Q), ∀ p ≥ 0. (95)

If we set p = 1 in (95), we get inequality (4). Inequality (5) is proved in [1, Appendix]. �

Proof of the tranformation relations (15) and (16).

To prove (15), we write

W
(2i−1)
2N (y2N1 , u2i−21 |u2i−1) =

∑
u2N2i ∈X2N−2i

1

22N−1W2N(y2N1 |u2N1 )

=
∑

u2N2i,o,u
2N
2i,e

1

22N−1WN(yN1 |u2N1,o ⊕ u2N1,e )WN(y2NN+1|u2N1,e )

=
∑
u2i

1

2

∑
u2N2i+1,e

1

2N−1
WN(y2NN+1|u2N1,e )

·
∑
u2N2i+1,o

1

2N−1
WN(yN1 |u2N1,o ⊕ u2N1,e ) (96)

45



By definition (9), the sum over u2N2i+1,o for any fixed u2N1,e equals

W
(i)
N (yN1 , u

2i−2
1,o ⊕ u2i−21,e |u2i−1 ⊕ u2i), because as u2N2i+1,o ranges over XN−i, u2N2i+1,o ⊕ u2N2i+1,e

ranges also over XN−i. We now factor this term out of the middle sum in the above

equation and use (9) again to obtain (15). To prove (16), we write

W
(2i)
2N (y2N1 , u2i−11 |u2i) =

∑
u2N2i+1,e

1

22N−1W2N(y2N1 |u2N1 )

=
1

2

∑
u2N2i+1,e

1

2N−1
WN(y2NN+1|u2N1,e )

·
∑
u2N2i+1,o

1

2N−1
WN(yN1 |u2N1,o ⊕ u2N1,e ). (97)

By carrying out the inner and outer sums in the same manner as in the proof of (15), we

obtain (16). �

Proof of Proposition 2.

Consider the channels W : X → Y , W ′ : X → Ỹ and W ′′ : X → Ỹ × X, where

Ỹ = (Y1, Y2). Define the uniformly distributed pair (U1, U2) over X2 and (X1, X2) =

(U1 ⊕ U2, U2). Also, we define PY1,Y2|X1,X2(y1, y2|x1, x2) = W (y1|x1)W (y2|x2). The latter

definition fits in our framework because (i) given Xi, Yi is independent of any other input

and (ii) given both X1 and X2, Y1 and Y2 are independent, because we use two independent

copies of W to transmit X1 and X2. We now have

I(W ′) = I(U1;Y1Y2), (98)

I(W ′′) = I(U2;Y1Y2U1) = I(U2;Y1Y2|U1), (99)

where in the last equation we used the independence of U1 and U2. By the chain rule and

the fact that there is a one-to-one relation between (X1, X2) and (U1, U2) we have

I(W ′) + I(W ′′) = I(U1U2;Y1Y2) = I(X1X2;Y1Y2). (100)

Next, we prove a useful lemma.

Lemma 7. (X1, X2) = (U1 ⊕ U2, U2) is a pair of independent random variables.
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Proof: Notice that

P (u1 ⊕ u2) =
1

2
∀ (u1, u2), (101)

P (u2) =
1

2
∀ u2, (102)

P (u1 ⊕ u2, u2) =
1

4
∀ (u1, u2). (103)

Then,

P (u1 ⊕ u2, u2) = P (u1 ⊕ u2)P (u2) ∀ (u1, u2). (104)

�

We now have

I(X1X2;Y1Y2) = I(X1;Y1Y2) + I(X2;Y1Y2|X1)

= I(X1;Y1Y2) +H(X2|X1)−H(X2|Y1Y2X1)

= I(X1;Y1Y2) +H(X2)−H(X2|Y1Y2)
= I(X1;Y1Y2) + I(X2;Y1Y2) (105)

where in the first equation we used the chain rule and in the third equation we used

Lemma 7. Also,

I(X1;Y1Y2) = H(X1)−H(X1|Y1Y2)
= H(X1)−H(X1|Y1)
= I(X1;Y1) (106)

where in the second equation we used the independence of X1 and Y2. Similarly,

I(X2;Y1Y2) = I(X2;Y2). (107)

The proof of (17) is now completed, since

(105)
(106)
=⇒
(107)

I(X1X2;Y1Y2) = I(X1;Y1) + I(X2;Y2) = I(W ) + I(W ) = 2I(W ). (108)

To prove (18), we begin by noting that

I(W ′′) =I(U2;Y1Y2U1) = I(U2;Y2) + I(U2;Y1U1|Y2)
=I(W ) + I(U2;Y1U1|Y2) ≥ I(W ). (109)
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(109) and (17) give (18). The above proof shows that equality holds in (18) iff

I(U2;Y1U1|Y2) = 0, which is equivalent to having

PU1,U2,Y1|Y2(u1, u2, y1|y2) = PU1,Y1|Y2(u1, y1|y2)PU2|Y2(u2|y2) (110)

for all (u1, u2, y1, y2) such that PY2(y2) > 0, or equivalently, by multiplying both sides with

PY2(y2)
2/(PU1(u1)PU2(u2)),

PY1,Y2|U1,U2(y1, y2|u1, u2)PY2(y2) = PY1,Y2|U1(y1, y2|u1)PY2|U2(y2|u2) (111)

for all (u1, u2, y1, y2). Since PY1,Y2|U1,U2(y1, y2|u1, u2) = W (y1|u1 ⊕ u2)W (y2|u2), (111) can

be written as

W (y2|u2)[W (y1|u1 ⊕ u2)PY2(y2)− PY1,Y2(y1, y2|u1)] = 0. (112)

Substituting

PY2(y2) =
1

2
W (y2|u2) +

1

2
W (y2|u2 ⊕ 1) (113)

and

PY1,Y2|U1(y1, y2|u1) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2) +

1

2
W (y1|u1 ⊕ u2 ⊕ 1)W (y2|u2 ⊕ 1) (114)

into (112) and simplifying, we obtain

W (y2|u2)W (y2|u2 ⊕ 1)[W (y1|u1 ⊕ u2)−W (y1|u1 ⊕ u2 ⊕ 1)] = 0, (115)

which for all possible values of (u1, u2) is equivalent to

W (y2|0)W (y2|1)[W (y1|0)−W (y1|1)] = 0. (116)

Thus, either there exists no y2 such that W (y2|0)W (y2|1) > 0, in which case I(W ) = 1, or

for all y1 we have W (y1|0) = W (y1|1), which implies I(W ) = 0. This concludes the proof

of Proposition 2. �
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Proof of Proposition 3.

To prove (20), we write

Z(W ′′) =
∑
y21 ,u1

√
W ′′(y21, u1|0) ·

√
W ′′(y21, u1|1)

=
∑
y21 ,u1

1

2

√
W (y1|u1)W (y2|0) ·

√
W (y1|u1 ⊕ 1)W (y2|1)

=
∑
y2

√
W (y2|0)W (y2|1) ·

∑
u1

1

2

∑
y1

√
W (y1|u1)W (y1|u1 ⊕ 1)

= Z(W )2. (117)

To prove (21), we use the notation α(y1) = W (y1|0), δ(y1) = W (y1|1), β(y2) = W (y2|0),

γ(y2) = W (y2|1).

Z(W ′) =
∑
y21

√
W ′(y21|0)W ′(y21|1)

=
∑
y21

1

2

√
α(y1)β(y2) + δ(y1)γ(y2) ·

√
α(y1)γ(y2) + δ(y1)β(y2)

(118)

Also, we use the following identity to get:

[
√

(αβ + δγ)(αγ + δβ)]2 + 2
√
αβδγ(

√
α−
√
δ)2(

√
β −√γ)2

= [(
√
αβ +

√
δγ)(
√
αγ +

√
δβ)− 2

√
αβδγ]2

⇒ [
√

(αβ + δγ)(αγ + δβ)]2 ≤ [(
√
αβ +

√
δγ)(
√
αγ +

√
δβ)− 2

√
αβδγ]2

⇒ [
√

(αβ + δγ)(αγ + δβ)] ≤ [(
√
αβ +

√
δγ)(
√
αγ +

√
δβ)− 2

√
αβδγ]. (119)

Then, from (118) we get

Z(W ′) ≤
∑
y21

1

2
[
√
α(y1)β(y2) +

√
δ(y1)γ(y2)] · [

√
α(y1)γ(y2) +

√
δ(y1)β(y2)]

−
∑
y21

√
α(y1)β(y2)δ(y1)γ(y2)]. (120)

Now, each term obtained after expanding (
√
α(y1)β(y2) +

√
δ(y1)γ(y2))(

√
α(y1)γ(y2) +√

δ(y1)β(y2)) gives Z(W ) when summed over y21. Also,
∑

y21

√
α(y1)β(y2)δ(y1)γ(y2) =

Z(W ′). Hence the inequality is proved.

To prove the equality condition in (21), we notice that the inequality was formed in (119)

when we omitted the term
(

2
√
αβδγ(

√
α−
√
δ)2(
√
β −√γ)2

)
. Hence, we have equality in
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(21) iff
(

2
√
α(y1)β(y2)δ(y1)γ(y2)(

√
α(y1)−

√
δ(y1))

2(
√
β(y2)−

√
γ(y2))

2
)

= 0, i.e. iff

for any choice of y21, α(y1)β(y2)δ(y1)γ(y2) = 0 or α(y1) = δ(y1) or β(y2) = γ(y2). Now we

will explain why this condition is satisfied iff W is a BEC.

Suppose W is a BEC. Then, when either y1 or y2 is equal to 0 or 1, at least one term

in α(y1)β(y2)δ(y1)γ(y2) is equal to zero. If y1 = ε then α(y1) = δ(y1) and if y2 = ε then

β(y2) = γ(y2). We conclude that if W is BEC, equality in (21) holds. Conversely, take the

possible case that y1 = y2. If in this case equality is satisfied only when W is a BEC, then

W must be a BEC. In this case, for the equality to hold we must have, for any choice of

y1, either α(y1)δ(y1) = 0 or α(y1) = δ(y1). Comparing with the transition probabilities

of a BEC (Figure 1), we notice that this is equivalent to saying that W is a BEC. We

conclude that equality in (21) holds iff W is a BEC.

To prove (22), we use the following result, which is proved in [1, Lemma 4]:

Given any collection of B-DMCs Wj : X → Y , j ∈ J , and a probability distribution Q on

J , define W : X → Y as the channel W (y|x) =
∑

j∈J Q(j)Wj(y|x). Then,∑
j∈J

Q(j)Z(Wj) ≤ Z(W ). (121)

We now write W ′ as the mixture,

W ′(y21|u1) =
1

2
[W0(y

2
1|u1) +W1(y

2
1|u1)], (122)

where

W0(y
2
1|u1) = W (y1|u1)W (y2|0), (123)

W1(y
2
1|u1) = W (y1|u1 ⊕ 1)W (y2|1), (124)

and use the above result to obtain the claimed inequality

Z(W ′) ≥ 1

2
[Z(W0) + Z(W1)] = Z(W ). (125)

Also, since 0 ≤ Z(W ) ≤ 1 and Z(W ′′) = Z(W )2, we have Z(W ) ≥ Z(W ′′). �

Proof of Proposition 4.

By expanding (12), we get

W (y21|0)W ′(y21|1) =
1

4
[W (y1|0)2 +W (y1|1)2]W (y2|0)W (y2|1)

+
1

4
[W (y2|0)2 +W (y2|1)2]W (y1|0)W (y1|1), (126)
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and

W ′(y21|0)−W ′(y21|1) =
1

2
[W (y1|0)−W (y1|1)][W (y2|0)−W (y2|1)]. (127)

Suppose W is a BEC, but W ′ is not. For the identities given, if there is no pair (y1, y2)

such that the left sides of the identities are both different from zero, then W ′ consists

only of output pairs (y1, y2) with either a uniquely possible input u1, or with uniformly

distributed input over all possible values of u1. But this is a BEC. So for W ′ to not be a

BEC, then there must exist (y1, y2) such that the left sides of (126) and (127) be both

different than zero. From (127), and with the previous assumption, we infer that neither

y1 nor y2 is an erasure symbol for W . But then the RHS of (126) must be zero, which is a

contradiction. Thus, W ′ must be a BEC. From (127), we conclude that y21 is an erasure

symbol for W ′ iff either y1 or y2 is an erasure symbol for W . From the union of those

two events, we get that the erasure probability of W ′ is 2ε − ε2, where ε is the erasure

probability of W .

Conversely, suppose W ′ is a BEC but W is not. Then, there exists y1 such that

W (y1|0)W (y1|1) 6= 0 and W (y1|0) −W (y1|1) 6= 0. By taking y2 = y1, we see that the

RHSs of (126) and (127) can both be made nonzero, which contradicts the assumption

that W ′ is a BEC. The proof completes after handling (13) the same way we did with

(12). �

Proof of Theorem 2.

Consider the probability space (Ω,=, P ). For ω ∈ Ω, i ≥ 0, by Proposition 5, we have

Zi+1(ω) = Z2
i (ω) if Bi+1(ω) = 1 and Zi+1(ω) ≤ 2Zi(ω)− Zi(ω)2 ≤ 2Zi(ω) if Bi+1(ω) = 0.

For ζ ≥ 0 and m ≥ 0, define

Tm(ζ) , {ω ∈ Ω : Zi(ω) ≤ ζ for all i ≥ m}. (128)

For ω ∈ Tm(ζ) and i ≥ m, we have

Zi+1(ω)

Zi(ω)
≤

2, if Bi+1(ω) = 0,

ζ, if Bi+1(ω) = 1,
(129)

which implies

Zn(ω) ≤ ζ · 2n−m ·
n∏

i=m+1

(ζ/2)Bi(ω), ω ∈ Tm(ζ), n > m. (130)
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To see why this holds notice that the above recursive relation of Zi+1(ω)
Zi(ω)

, on each backwards

recursion step it adds to the RHS product a factor of 2 if Bi(ω) = 0 and a factor of ζ if

Bi(ω) = 1.

For n > m ≥ 0 and 0 < η < 1/2, define

Um,n(η) , {ω ∈ Ω :
n∑

i=m+1

Bi(ω) > (1/2− η)(n−m)}. (131)

Then, for ω ∈ Tm(ζ) ∩ Um,n(η) we have

Zn(ω) ≤ ζ · 2n−m · (ζ/2)(1/2−η)(n−m)

=>Zn(ω) ≤ ζ ·
[
21/2+ηζ1/2−η

]n−m
, (132)

from which, by putting ζ0 , 2−4 and η0 , 1/20, we obtain

Zn(ω) ≤ 2−4−5(n−m)/4, ω ∈ Tm(ζ0) ∩ Um,n(η0). (133)

Now, we show that (133) occurs with sufficiently high probability. First, we use the

following result, which is proved in [1, Lemma 1].

For any fixed ζ > 0, δ > 0, there exists a finite integer m0(ζ, δ) such that

P [Tm0(ζ)] ≥ I0 − δ/2. (134)

Second, we use Chernoff’s bound [2, 10, p. 531] to write,

P [Um,n(η)] ≥ 1− 2−(n−m)[1−H(1/2−η)], (135)

where H is the binary entropy function.

Define n0(m, η, δ) as the smallest n such that the RHS of (135) is greater than or equal

to 1− δ/2. It is clear that n0(m, η, δ) is finite for any m ≥ 0, 0 < η < 1/2, and δ > 0.

Now, with m1 = m1(δ) , m0(ζ0, δ) and n1 = n1(δ) , n0(m1, η0, δ), we obtain, for

n ≥ n1,

P [Tm1(ζ0) ∩ Um1,n(η0)] = P [Tm1(ζ0)] + P [Um1,n(η0)]− P [Tm1(ζ0) ∪ Um1,n(η0)]

≥ P [Tm1(ζ0)] + P [Um1,n(η0)]− 1

≥ I0 − δ/2 + 1− δ/2− 1 = I0 − δ. (136)

Finally, we tie the above analysis to the claim of Theorem 2. Definec , 2−4+5m1/4 and

Vn , {ω ∈ Ω : Zn(ω) ≤ c2−5n/4}, n ≥ 0, (137)
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and note that, by (133)

Tm1(ζ0) ∩ Um1,n(η0) ⊂ Vn, n ≥ n1. (138)

So, P (Vn) ≥ I0 − δ for n ≥ n1. On the other hand,

P (Vn) =
∑

ωn1 ∈Xn

1

2n
1
{
Z(Wωn1

) ≤ c2−5n/4
}

=
1

N
|AN |, (139)

where AN , {i ∈ {1, ..., N} : Z(W
(i)
N ) ≤ cN−5/4}, with N = 2n.

We conclude that |AN | ≥ N(I0 − δ) for n ≥ n1(δ). This completes the proof of

Theorem 2. �
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