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Abstract 
 

 

The goal of this thesis was to implement an ARM processor with Single Instruc-

tion Multiple Data (SIMD) extensions using the Bluespec System Verilog (BSV) as a 

Hardware Description Language (HDL). BSV has a fundamentally different approach 

to hardware design, comparing to other HDLs. It is based on circuit generation - rather 

than merely circuit description - and on atomic transactional rules instead of a globally 

synchronous view of the world. BSV language is considered a high-level functional 

HDL, which was essentially Haskell - extended to handle chip design and electronic 

design automation in general. BSV is partially evaluated (to convert the Haskell parts) 

and compiled to the Term Rewriting System (TRS). Our scalar processor supports a 3-

stage pipeline (Fetch – Decode – Execute), belongs to the ARM7 family and uses a 32-

bit architecture, which is based on ARMv4 instruction set. The SIMD unit works as an 

extension to the scalar part and is based on a modification of ARM NEON technology. 

The scalar part of the processor supports Data processing, Multiply, Long Multiply, 

Load/Store – Byte/Word and Branch instructions of the ARM Instruction Set Format, 

while the vector part supports Vector Data Processing, Vector Multiply and Vector 

Load/Store instructions. 
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 Chapter 1  
 

Introduction 
 

 

Today’s streaming applications (e.g. multimedia, networking) benefit from in-

creased data and instruction parallelism in hardware architectures. Vector processing 

units (SIMD) are often employed to boost performance in standard processors. The 

need to speed up a hardware design has caused industry to look at more powerful tools 

for hardware synthesis rather than high-level descriptions. One of these tools is 

Bluespec System Verilog. BSV is a strongly-typed hardware synthesis language, which 

makes use of the TRS to describe computation as a series of atomic state changes. BSV 

is architecturally transparent, which means that you are in full control of architecture 

and there are no architectural surprises. With BSV, you think hardware; you think about 

architectures; you think in parallel. 

 BSV is “universal” in applicability (like traditional HDLs). It is offered for 

CPUs, caches, coherence engines, DMAs, interconnects, memory controllers, DMA 

engines, I/O devices, security devices, RF and multimedia signal processing, and all 

kinds of accelerators. It has been used in major companies and universities worldwide 

for academic and research purposes. There is an open-source commercial RISC-V pro-

cessor core made in BSV language named Piccolo. Projects and courses in other Uni-

versities, such as MIT, shown that a simple processor model like MIPS can be imple-

mented quite efficiently. In addition, BSV compiler generates RTL Verilog, which is 

often better or equivalent to hand-coded RTL Verilog. 

 In this work, we explore the benefits of Bluespec System Verilog in hardware 

design by implementing a 3-stage pipelined ARM IP Core using ARMv4 ISA with an 

SIMD extension based on ARM NEON technology. For the verification of our design, 

we used programs written in C++, which were translated to assembly via the ARM 

GCC. In order to transform the files with the assembly code to files with binary instruc-

tions (.bin), we took advantage of the GNU Embedded Toolchain for ARM. After trans-

forming the assembly code, we loaded the binary files to the Instruction Memory of our 

design in order to check the functionality of our architecture.
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 Chapter 2  
 

Bluespec System Verilog 
 

 

 Bluespec System Verilog (BSV) language is considered a high-level functional 

HDL, which was essentially Haskell - extended to handle chip design and electronic 

design automation in general. BSV is partially evaluated (to convert the Haskell parts) 

and compiled to the Term Rewriting System (TRS). This intermediate TRS description 

can then be translated through a compiler into either Verilog RTL or a cycle-accurate 

C-Simulation. 

 BSV is aimed at hardware designers who are using or expect to use Verilog, 

VHDL, System Verilog, or SystemC to design ASICs or FPGAs. It runs on FPGA emu-

lation platforms. Substantially, it extends the design subset of SystemVerilog, including 

SystemVerilog types, module instantiation, interfaces, interface instantiation, para-

metrization, static elaboration, and “generate” elaboration. BSV can significantly im-

prove the hardware designer’s productivity with some key innovations: 

 It expresses synthesizable behavior with Rules, instead of synchronous constant 

blocks. Rules are powerful concepts for achieving correct concurrency and 

eliminating race conditions. Each rule can be viewed as a declarative assertion 

expressing a potential atomic state transition. Although rules are expressed in a 

modular fashion, a rule may span multiple modules, i.e., it can test and affect 

the state in multiple modules. Rules need not be disjoint, i.e., two rules cannot 

read and write common state elements. The BSV compiler produces efficient 

RTL code that manages all the potential interactions between rules by inserting 

appropriate arbitration and scheduling logic, logic that would otherwise have to 

be designed and coded manually. The atomicity of rules gives a scalable way to 

avoid unwanted concurrency (races) in large designs. 

 It enables more powerful generate – like elaboration. This is made possible be-

cause in BSV, actions, rules, modules, interfaces and functions are all first – 

class objects. BSV also has more general type parametrization (polymorphism). 

These enable the designer to “compute with design fragments,” i.e., to reuse 

designs and to glue them together in much more flexible ways. This leads to 

much greater succinctness and correctness.
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 In BSV, a module is a representation of a circuit. Each module is composed by 

three elements: State, Rules, and Interfaces. State can be described from registers, flip-

flops and memories. Rules are actions that modify states. Interfaces provide a mecha-

nism for interaction of the external environment with the internal structure of the mod-

ule. 

2.1   Bluespec Syntax 
 

 Initially, just like in Verilog, SystemVerilog and SystemC, BSV design consists 

of module hierarchy. The leaves of the hierarchy are “primitive” state elements, includ-

ing registers, FIFOs, etc. Even registers are (semantically) modules (unlike in Verilog, 

SystemVerilog). The behavior of a module is represented by its rules each of which 

consists of a state change on the hardware state of the module (an action) and the con-

ditions required for the rule to be valid (a predicate). A rule is valid to execute (fire) 

whenever its predicate is true. The syntax of a rule is: 

  rule ruleName [(condition)]; 

   … 

   Actions 

   … 

  endrule [: ruleName] 

 As we described before, every module consists of an interface too, rather than 

rules and states. The interface of a module is a set of methods through which the module 

interacts with the outside world. Each interface method has a predicate (guard) which 

restricts when the method may be called. A method may either be a Value method (read 

method, a combinational lookup returning a value), an Action method (state change 

method), or a combination of the two, an actionValue method. An actionValue method 

is used when we do not want a combinational lookup result to be made unless an ap-

propriate action in the module also occurs. The syntax of an interface is: 

  interface interfaceName [#(interface type parameters)]; 

   method type methodName (type arg, …, type arg); 

   … 

   method type methodName (type arg, …, type arg); 

  endinterface [:interfaceName]
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Figure 2. 1: A Bluespec's Standard Module 

 There are three main characteristics to take into consideration for a rule to fire. 

Firstly, the rule’s condition. If the condition is true, the rule fires every clock cycle and 

as long as the condition remains true. If there is no condition, the rule can fire in every 

clock cycle. Secondly, the methods have “ready” signals. Ready signals are specified 

for each method in defining module. Rule does not fire unless all ready conditions are 

true. Finally, a rule may not fire because it conflicts with other rules. Rule conflict 

means that the compiler needs to decide which rule have to fire first. A conflict of rules 

is created in the case where two or more different rules affect the same state in the same 

clock cycle. 

 

2.2   Types in Bluespec 
 

 BSV has basic scalar types just like Verilog. It also has SystemVerilog type 

mechanism like typedefs, enums, structs, tagged unions, arrays and vectors, interface 

types, type parametrization and polymorphic types. In addition, it has types for static 

entities like functions, modules, interfaces, rules and actions, so a designer can write 

static – elaboration functions that compute with such entities. 

 Bluespec provides a very strong, static type-checking environment, in which 

every variable and every expression has a type. Variables must be assigned values, 

which have compatible types. Type checking, which occurs before program elaboration 

or execution, ensures that object types are compatible. 

Common Types: One way to classify types in Bluespec are whether they are in the 

Bits class. Bits defines the class of types that can be converted to bit vectors and back. 
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Only types in the Bits class are synthesizable and can be stored in a state element, such 

as a Register or a FIFO. 

 Bit Types 

 

 Bit#(n): n bits. 

 Int#(n): Signed fixed width (n) representation of an integer value. 

 UInt#(n): Unsigned fixed width (n) representation of an integer value. 

 Bool: True or False value. 

 

 Non Bit Types 

 

 Integer: Integers are unbounded in size and are commonly used as loop 

indices for compile-time evaluation. 

 String: Strings are mostly used in system functions (such as $display). 

They can be tested for equality and inequality. 

 Interface: Since interfaces are considered a type, they can be passed to 

and returned from functions 

 More types: Action, ActionValue, Rules, Modules, Functions. 

 

 User Defined Types 
 

 Enum: Similar to most languages, a user can define names to be used in 

his code. Enum labels must all start with an uppercase letter. 

 Tagged Union: Tagged unions contain members. A member name must 

start with lowercase letter. 

 Struct: Structures are just like Tagged Unions. 

 

 The Bluespec environment strictly checks both bit – width compatibility and 

type. Below we present Bluespec’s data type functions that help the designer to convert 

across types
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Figure 2. 2: Bluespec's Data Type conversion functions 

Pack: converts (packs) from various types, including Bool, Int, and UInt to Bit. 

unpack: converts from Bit to various types, including Bool, Int and UInt. 

fromInteger: converts from an Integer to any type where this functions is provided in 

the Literal type-class. Integers are most often used during static elaboration since they 

cannot be turned into bit; hence, there is no corresponding toInteger function 

valueOf: converts from a numeric type to an Integer. Numeric types are the n’s as used 

in Bit#(n). 

2.3   The Bluespec Compiler 
 

 The Bluespec compiler can translate Bluespec descriptions into either Verilog 

RTL or a cycle-accurate SystemC simulation (Figure 2.3). It does this by initially eval-

uating the high – level description of the design into a TRS description of rules and 

state. From this TRS description, the compiler schedules the actions and transforms the 

design into a timing – aware hardware description. This task involves determining when 

rules can fire safely and concurrently, adding muxing logic to handle the sharing of 

state elements by rules, and finally applying boolean optimizations to simplify the de-

sign. From this timing – aware model, the compiler can then produce a synthesizable 

Verilog RTL or SystemC executable output. 
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2.3.1   Scheduling 
 Scheduling is called the task of determining what subset of rules should fire on 

a cycle given its state and in what order should rules be fired in a single cycle. Under-

standing how the Bluespec compiler schedules multiple rules for cycle-by-cycle exe-

cution is important for using Bluespec proficiently. Optimal selection of which subset 

of firable rules to fire in a single cycle is an NP-hard task, so the Bluespec compiler 

resorts to a quadratic time approximation. 

 

 

Figure 2. 3: Bluespec's Compiler Design Flow 

 

Determining Rule Contents 

 Due to the complexity of determining when a rule will use an interface of a 

module, the Bluespec compiler assumes conservatively that an action will use any 

method that it could ever use. That is to say, if an action uses a method only when some 

condition is met, the scheduler will treat it as if were always using it. This leads the 

compiler to make to conservative estimations of method usage, which in turn causes 

conservative firing conditions to be scheduled. 
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Determining Pair-wise Scheduling Conflicts 

 Once the components (methods and other actions) of all the actions have been 

determined, we find all possible conflicts between each atomic action pair. In the case 

that two rule predicates are provably disjoint, we can say that there are no conflicts as 

they can never happen in the same clock cycle. Otherwise, the scheduling conflicts 

between them is exactly the set of scheduling conflicts between any pair of action com-

ponents of each atomic action. 

 For example, consider rules “rule1” and “rule2” where rule1 reads some register 

r1 and rule2 writes it. Registers have the scheduling constraint “_read < _write”, which 

means that calls to the _read method calls must happen before the _write method call 

in a single cycle. Thus this constraint is reflected in the constraints between rule1 and 

rule2 (“rule1 < rule2”). If rule1 were to also write some register r2 and rule2 where to 

read it we would have the additional constraint (“rule2 < rule1”). In this there is no 

consistent way of ordering the two rules, so we consider the rules conflicting with se-

quential ordering restrictions (as they will never happen together, it doesn’t matter how 

they are ordered to happen concurrently). 

Generating a Final Global Schedule 

 Once all the pair-wise conflicts between actions have been determined, a tem-

poral ordering of the actions takes place. For this to happen, the compiler orders the 

atomic transactions by some metric of importance, which is called urgency. Scheduler 

sorts each action in descending urgency order. The goal is to place the action in a posi-

tion that prevents the most conflicts with already ordered rules in this process. Only 

when its ordering has been determined, the rule is allowed to be fired in a cycle, when 

respectively its predicate is met and there are no more urgent rules which conflict with 

it in that total ordering. Once the compiler has considered all atomic transactions in 

sequence, we have a complete schedule. 

 

2.3.2   The Bluesim Simulator 
 Bluesim delivers high-speed simulation of BSV designs at a source – level or 

with SystemC executables. Bluesim can be at least 10x faster than the standard Verilog 

Simulator. The main features of the simulator is that it has high-speed and the output 

of a BSV high-level-design is a source-level or SystemC executable simulation. In ad-

dition, Bluesim is 100% cycle accurate with Verilog RTL and it generates standard 

VCD files. Therefore, the benefits of these are that the simulation can be accelerated as 

well as the verification of the design.
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 Chapter 3 
 

ARM Scalar Unit 
 

 

 A Reduced Instruction Set Computer (RISC) is a microprocessor that has been 

designed to perform a small set of instructions, with the aim of reducing the overall 

speed of the processor. The RISC concept first originated in the early 1970’s when an 

IBM research team provided that 20% of instruction did 80% of the work. The RISC 

architecture follows the philosophy that one instruction should be performed every 

clock cycle.  

 ARM, previously Advanced RISC Machine, originally Acorn RISC Machine, 

is a family of reduced instruction set computing (RISC) architectures for computer pro-

cessors, configured for various environments. British company ARM Holdings devel-

ops the architecture and licenses it to other companies, who design their own products 

that implement one of those architectures—including systems-on-chips (SoC) and sys-

tems-on-modules(SoM) that incorporate memory, interfaces, radios, etc. It also de-

signs cores that implement this instruction set and licenses these designs to a number 

of companies that incorporate those core designs into their own products. 

 Processors that have a RISC architecture typically require fewer transistors than 

those with a complex instruction set computing (CISC) architecture (such as 

the x86 processors found in most personal computers), which improves cost, power 

consumption, and heat dissipation. These characteristics are desirable for light, porta-

ble, battery-powered devices—including smartphones, laptops and tablet computers, 

and other embedded systems. For supercomputers, which consume large amounts of 

electricity, ARM could also be a power-efficient solution. 

 The ARM architecture has been designed to allow very small, yet high-perfor-

mance implementations. The architectural simplicity of ARM processors leads to very 

small implementations, and small implementations allow devices with very low power 

consumption. 

 Our implementation of ARM is based on the ARM7 family of processors. Our 

processor supports 32-bit architecture, 3-stage pipeline and is based on ARMv4 instruc-

tion set. In the sections below the ARMv4 instructions that were implemented in our 

design will be analyzed.

https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/ARM_Holdings
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/System_on_module
https://en.wikipedia.org/wiki/System_on_module
https://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Complex_instruction_set_computing
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Laptop
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Supercomputer
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3.1   ARM Architecture 
 

 As we introduced before, ARM is a Reduced Instruction Set Computer (RISC), 

as it incorporates these typical RISC architecture features: 

 A large uniform register file. 

 

 A load/store architecture, where data-processing operations only operate on reg-

ister contents, not directly on memory contents. 

 

 Simple addressing modes, with all load/store addresses being determined from 

register contents and instruction fields only. 

 

 Uniform and fixed-length instruction fields, to simplify instruction decode. 

 

In addition, the ARM architecture provides: 

 Control over both the Arithmetic Logic Unit (ALU) and shifter in most data-

processing instructions to maximize the use of an ALU and a shifter. 

 

 Load and Store multiple instructions to maximize data throughput. 

 

 Auto-increment and auto-decrement addressing modes to optimize program 

loops. 

 

 Conditional execution of almost all instructions to maximize execution through-

put. 

These enhancements to a basic RISC architecture allow ARM processors to achieve a 

good balance of high performance, low code size and low power consumption. 

3.1.1   ARM Processor Modes 
ARM supports seven operating modes: 

 User mode (unprivileged mode under which most tasks run). 

 FIQ mode (entered when a high priority (fast) interrupt is raised). 

 IRQ mode (entered when a low priority (normal) interrupt is raised). 

 Supervisor mode (entered on reset and when a Software Interrupt instruction is 

executed). 

 Abort mode (used to handle memory access violations). 

 Undef mode (used to handle undefined instructions). 

 System mode (privileged mode using the same registers as user mode). 

 Most application programs execute in User mode. When the processor is in User 

mode, the program being executed is unable to access some protected system resources 

or to change mode. 

 

 Our design supports only the User mode of ARM processor modes. 
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3.1.2   ARM Registers 
Arm has 37 registers in total, all of which are 32-bits long. 

 

 1 dedicated Program Counter (PC). 

 1 dedicated Current Program Status Register (CPSR). 

 5 dedicated Saved Program Status Registers (SPSR). 

 30 general purpose registers. 

 

 Given the fact that our processor only supports user mode, 16 + 1 of these reg-

isters are implemented by the designer. The roles of these 16 registers are specified 

below: 

 

 R0 – R12 are general purpose registers. Their uses are purely defined by the 

software. 

 R13 is the Stack Pointer (SP) that software normally uses. 

 R14 is the Link Register (LR). This register holds the address of the next in-

struction after a Branch & Link (BL) instruction, which is the instruction used 

to make a subroutine call. In every other case, R14 can be considered a general-

purpose register. 

 R15 is the Program Counter (PC). In the most instructions, it is used as a pointer 

to the instruction that is two steps ahead of the one being executed. In ARM 

state, all ARM instructions are four bytes long (32-bit word) and are always 

aligned on a word boundary. This means that the two least significant bits of 

this register are always zero; therefore, the PC contains 30 non-constant bits 

and 2 constant bits. 

 

Figure 3. 1: Arm Register Set 
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The Current Program Status Register (CPSR) 

 CPSR is accessible in all processor modes. It contains condition code flags, in-

terrupt disable bits, the current processor mode, and other status and control infor-

mation. The format of this register is shown below: 

 

Figure 3. 2: Current Program Status Register Format 

 The N (Negative), Z (Zero), C (Carry), V (oVerflow) bits are collectively known 

as the condition code flags. These flags can be tested by most instructions in order to 

determine whether the instruction is to be executed. The condition code flags are usu-

ally modified by: 

 Execution of comparison instructions (CMN, CMP, TEQ, TST). 

 Execution of some other data processing instructions, where the desti-

nation register is not R15. Most of these instructions have both a flag-

preserving and a flag-setting variant, with the latter being selected by 

adding an S qualifier to the instruction mnemonic. Some of these in-

structions only have a flag-preserving version. This is noted in the indi-

vidual instruction descriptions. 

 In either case, the new condition code flags (after the instruction has been exe-

cuted) usually mean: 

N is set to 1: 

 When the result of the instruction is regarded as a two’s complement signed 

integer and the least significant bit of this result is ‘1’ then it means that the 

result is a negative value and the N bit is set. Otherwise, N is set to 0. 

Z is set to 1: 

 When the result of the instruction being executed is zero. This often indicates 

an equal result from a comparison. In any other case, Z is set to 0. 

C is set to 1: 

 When an addition instruction (including the comparison instruction CMN) pro-

duces a carry. 

 When a subtraction instruction (including the comparison instruction CMP) 

produces a borrow. 

 When a non-addition/subtraction instruction (e.g. MOV), that incorporates a 

shift operation, makes the last bit of the result shifted out of the value. 

 In any other case C is set to 0.
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V is set to 1: 

 When an addition or subtraction instruction occurs a signed overflow, regard-

ing the operands and result as two’s complement signed integers. Otherwise, 

V is set to 0. 

The bottom eight bits that we can observe in the CPSR format represent the following: 

 Interrupt Disable bits: 

 I = 1   Disables the IRQ interrupts. 

 F = 1  Disables the FIQ interrupts. 

 T – Bit (Architecture v4T only): 

 T = 0  Processor is executing in ARM state. 

 T = 1  Processor is executing in Thumb state. 

 Mode Bits: 

 Mode  Defines the processor mode. Not all combinations of the mode 

bits define a valid processor mode so take care to use the right combi-

nations. 

Since our design does not support other processor modes or interrupts, we only care 

about the N, Z, C, V flags of the CPSR. 

 

3.2   ARM v4 Instruction Set Architecture 

 

 Figure below shows the ARM Instruction Set Format. In the next sections of 

this thesis, we will only describe the instructions that our processor supports. 

 

Figure 3. 3: ARM Instruction Set Format 
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3.2.1   Conditional Execution 
 In ARM state, all instructions are conditionally executed according to the state 

of the CPSR condition code and the instruction’s condition field. This field (bits 31:28) 

determines the circumstances under which an instruction is to be executed. If the state 

of the C, N, Z and V flags fulfils the conditions encoded by the field, the instruction is 

executed, otherwise it is ignored. The conditional execution can be translated as the 

figure below shows: 

 

Figure 3. 4: Condition Codes & Conditional Execution 

3.2.2   Shifts & Rotates 
 ARM architecture does not support actual shift or rotate instructions. Instead, it 

uses a barrel shifter, which provides a mechanism to carry out shifts as a part of other 

instructions. Barrel shifter is responsible for the following operations: 

 LSL: Logical Shift Left. 

 LSR: Logical Shift Right. 

 ASR: Arithmetic Shift Right  Shifts right and preserves the sign bit for 2’s 

          complement operations. 

 ROR: Rotate Right. 
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3.2.3   Branch and Branch with Link (B, BL) 
The encoding of such instructions is shown in the figure below: 

 

Figure 3. 5: ARM Branch Instructions Encoding 

 Branch instructions contain a signed 2’s complement 24 bit offset. This is 

shifted left two bits, sign extended to 32 bits, and added to the Program Counter (PC). 

The instruction can therefore specify a branch of +/- 32Mbytes. The branch offset must 

take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) 

ahead of the current instruction.  

 Branches beyond +/- 32Mbytes must use an offset or absolute destination, 

which has been previously loaded into a register. In this case, the PC should be manu-

ally saved in Link Register (LR) if a Branch with Link type operation is required. 

The Link Bit 

 Branch with Link (BL) writes the old PC into the Link Register (LR) of the 

current register bank. The PC value written into LR is adjusted to allow for the prefetch, 

and contains the address of the instruction following the branch and link instruction. To 

return from a routine called by BL, use MOV PC, LR if the link register is still valid. 

3.2.4   Data Processing 
ARM supports 16 data-processing instructions shown in figure below: 

 

Figure 3. 6: ARM Data Processing Instructions 
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 The encoding of these instructions is shown in figure below: 

 

Figure 3. 7: ARM Data Processing Instructions Encoding 

 A data processing instruction produces a result by performing a specified arith-

metic or logical operation on one or two operands. The first operand is always a register 

(Rn). The second operand may be a shifted register (Rm) or a rotated 8-bit immediate 

value (Imm) according to the value of the I bit in the instruction encoding. The condi-

tion codes in the CPSR may be preserved or updated as a result of this instruction, 

according to the value of the S bit in the instruction encoding. 

 Certain operations (TST, TEQ, CMP, CMN) do not write the result to the des-

tination register (Rd). They are used only to perform tests and to set the condition codes 

on the result and always have the S bit set. 

 The data processing operations may be classified as logical or arithmetic. The 

logical operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the log-

ical action on all corresponding bits of the operand or operands to produce the result. If 

the S bit is set, the V-flag in the CPSR will be unaffected, the C-flag will be set to the 

carry out from the barrel shifter, the Z-flag will be set if and only if the result is all 

zeros, and the N-flag will be set to the logical value of bit 31 of the result. 

 The arithmetic operations (SUB, RSB, ADD, ADC, SBS, RSC, CMP, CMN) 

treat each operand as a 32 bit integer. If the S bit is set the V-flag in the CPSR will be 
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set if an overflow occurs into bit 31 of the result, the C-flag will be set to the carry out 

of bit 31 of the ALU, the Z-flag will be set if and only if the result was zero, and the N-

flag will be set to the value of bit 31 of the result. 

Shifts 

 When the second operand is specified to be a shifted register, the operation of 

the barrel shifter is controlled by the Shift field in the instruction. This field indicates 

the type of shift to be performed (logical left or right, arithmetic right or rotate right). 

The amount by which the register should be shifted may be contained in an immediate 

field in the instruction, or in the bottom byte of another register. The encoding for the 

different shift types is shown in the figure below: 

 

Figure 3. 8: ARM Shift Operations Encoding 

 When the shift amount is specified in the instruction, it is contained in a 5-bit 

field, which may take any value from 0 to 31. A logical shift left (LSL) takes the con-

tents of Rm and moves each bit by the specified amount to a more significant position. 

The least significant bits of the result are filled with zeros, and the high bits of Rm, 

which do not map into the result, are discarded, except that the least significant dis-

carded bit becomes the shifter carry output, which may be latched into the C bit of the 

CPSR when the ALU operation is in the logical class. 

 A logical shift right (LSR) is similar, but the contents of Rm are moved to less 

significant positions in the result. 

 An arithmetic shift right (ASR) is similar to logical shift right, except that the 

high bits are filled with bit 31 of Rm instead of zeros. This preserves the sign in 2’s 

complement notation. 

Rotates 

 Rotate operations are shown in Figure 3.7. Rotate right (ROR) operations reuse 

the bits, which “overshoot” in a logical shift right operation by reintroducing them at 

the high end of the result, in place of the zeros used to fill the high end in logical right 

operations 

 The immediate operand rotate field is a 4 bit unsigned integer, which specifies 

a shift operation on the 8 bit immediate value. This value is zero extended to 32 bits, 

and then subject to a rotate right by twice the value in the rotate field. 
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3.2.5   Multiply and Multiply-Accumulate (MUL, MLA) 
The encoding of such instructions is shown in the figure below: 

 

Figure 3. 9: ARM Multiply Instructions Encoding 

 The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored and 

should be set to zero for compatibility. 

 The multiply-accumulate form of the instruction gives Rd:=Rm*Rs + Rn, which 

can save an explicit ADD instruction in some circumstances. 

 Both forms of the instruction work on operands which may be considered as 

signed (2’s complement) or unsigned integers. 

 The results of a signed multiply and of an unsigned multiply of 32 bit operands 

differ only in the upper 32 bits – the low 32 bits of the signed and unsigned results are 

identical. As these instructions only produce the low 32 bits of a multiply, they can be 

used for both signed and unsigned multiplies. 

 The destination register Rd must not be the same as the operand register Rm. 

All other register combinations will give correct results, and Rd, Rn, and Rs may use 

the same register when required. 

 Setting the CPSR flags is optional, and is controlled by the S bit in the instruc-

tion. The N (Negative) and Z (Zero) flags are set correctly on the result (N is made 

equal to bit 31 of the result, and Z is set if and only if the result is zero). The C (Carry) 

flag is set to a meaningless value and the V (oVerflow) flag is unaffected. 

3.2.6   Multiply Long and Multiply-Accumulate Long (MULL, 

MLAL) 
The encoding of such instructions is shown in the figure below: 

 

Figure 3. 10: ARM Multiply Long Instructions Encoding 
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 The multiply long instructions perform integer multiplication on two 32 bit op-

erands and produce 64 bit results. Signed and unsigned multiplication each with op-

tional accumulate give rise to four variations. 

 The multiply forms (UMULL and SMULL) take two 32 bit numbers and mul-

tiply them to produce a 64 bit result of the form RdHi,RdLo := Rm*Rs. The lower 32 

bits of the 64-bit result are written to RdLo, the upper 32 bits of the result are written 

to RdHi. 

 The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit num-

bers, multiply them and add a 64 bit number to produce a 64 bit result of the form 

RdHi,RdLo := Rm*Rs + RdHi,RdLo. The lower 32 bits of the 64 bit number to add is 

read from RdLo. The upper 32 bits of the 64 bit number to add is read from RdHi. The 

lower 32 bits of the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit 

result are written to RdHi. 

 The UMULL and UMLAL instructions treat all of their operands as unsigned 

binary numbers and write an unsigned 64 bit result. The SMULL and SMLAL instruc-

tions treat all of their operands as two’s-complement signed numbers and write a two’s-

complement signed 64 bit result. 

 Setting the CPSR flags is optional, and is controlled by the S bit in the instruc-

tion. The N and Z flags are set correctly on the result (N is equal to bit 63 of the result, 

Z is set if and only if all 64 bits of the result are zero). Both the C and V flags are set to 

meaningless values. 

3.2.7   Single Data Transfer (LDR, STR) 
The encoding of such instructions is shown in figure below: 

 

Figure 3. 11: ARM Single Data Transfer Instructions Encoding 
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 The single data transfer instructions are used to load or store single bytes or 

words of data. The memory address used in the transfer is calculated by adding an offset 

to or subtracting an offset from a base register. The result of this calculation may be 

written back into the base register if auto-indexing is required. 

Offsets and auto-indexing 

 Either the offset from the base may be a 12 bit unsigned binary immediate value 

in the instruction, or a second register (possibly shifted in some way). The offset may 

be added to (U = 1) or subtracted from (U = 0) the base register Rn. The offset modifi-

cation may be performed either before (pre-indexed, P = 1) or after (post-indexed, P = 

0) the base is used as the transfer address. 

 The W bit gives optional auto increment and decrement addressing modes. The 

modified base value may be written back into the base (W=1), or the old base value 

may be kept (W=0). In the case of post-indexed addressing, the write back bit is redun-

dant and is always set to zero, since the old base value can be retained by setting the 

offset to zero. Therefore, post-indexed data transfers always write back the modified 

base. The only use of the W bit in a post-indexed data transfer is in privileged mode 

code, where setting the W bit forces non-privileged mode for the transfer, allowing the 

operating system to generate a user address in a system where the memory management 

hardware makes suitable use of this hardware. 

 The 8 shift control bits are described in the data processing instructions section. 

However, the register specified shift amounts are not available in this instruction class. 

Addressing Modes 

In these instructions, the addressing mode is formed from two parts, the base register 

and the offset. The base register can be any of the general-purpose registers. The offset 

can take one out of three formats: 

1. Immediate: The offset is an unsigned number that can be added to or subtracted 

from the base register. Immediate offset addressing is useful for accessing data 

elements that are a fixed distance from the start of the data object, such as struc-

ture fields, stack offsets and input/output register. For the word and unsigned 

byte instructions, the immediate offset is a 12 bit number. For the halfword and 

signed byte instructions, it is a 8 bit number. 

 

2. Register: The offset is a general-purpose register that can be added to or sub-

tracted from the base register. Register offset are useful for accessing arrays or 

blocks of data. 

 

3. Scaled Register: The offset is a general purpose register, shifted by an imme-

diate value, then added to or subtracted from the base register. The same shift 

operations used for data processing instructions can be used. Therefore, Logical 

Shift Left (LSL) is the most useful as it allows an array indexed to be scaled by 

the size of each array element. Scaled register offsets are only available for the 

word and unsigned byte instructions. 
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As well as the three types of offset, the offset and the base register are used in three 

different ways to form the memory address: 

1. Offset: The base register and offset are added or subtracted to form the memory 

address. 

 

2. Pre-Indexed: The base register and offset are added or subtracted to form the 

memory address. The base register is then updated with this new address to al-

low automatic indexing through an array or memory block. 

 

3. Post-Indexed: The value of the base register alone is used as the memory ad-

dress. The base register and offset are then added or subtracted, and this value 

is stored back in the base register, to allow automatic indexing through an array 

or memory block. 

 

Figure below shows a theoretical datapath of an ARMv4 processor 

 

Figure 3. 12: ARM Theoretical Datapath 
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 Chapter 4 
 

ARM Vector Unit 
 

 

 In computing, a vector processor or array processor is a central processing unit 

(CPU) that implements an instruction set containing instructions that operate on one-

dimensional arrays of data called vectors, compared to scalar processors, whose instruc-

tions operate on single data items. Vector processors can greatly improve performance 

on certain workloads, notably numerical simulation and similar tasks. 

 As of 2015, most commodity CPUs implement architectures that feature in-

structions for a form of vector processing on multiple (vectorized) data sets, typically 

known as SIMD (Single Instruction, Multiple Data). Common examples include Intel 

x86’s MMX, SSE, AVX instructions and ARM NEON. 

 Vector processing techniques have since been added to almost all modern CPU 

designs, although they are typically referred to as SIMD (differing in that a single in-

struction always drives a single operation across a vector register, as opposed to the 

more flexible latency hiding approach in true vector processors). In these implementa-

tions, the vector unit runs beside the main scalar CPU, providing a separate set of vector 

registers, and is fed data from vector instruction aware programs. 

 Single Instruction, Multiple Data (SIMD), is a class of parallel computers in 

Flynn’s taxonomy. It describes computers with multiple processing elements that per-

form the same operation on multiple data points simultaneously. Thus, such machines 

exploit data level parallelism, but not concurrency: these are simultaneous (parallel) 

computations, but only a single process (instruction) at a given moment. SIMD is par-

ticularly applicable to common tasks such as adjusting the contrast in a digital image 

or adjusting the volume of digital audio. 

 

Figure 4. 1: A typical Vector Processing Unit
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4.1   Comparing Scalar to Vector 

 

 In a traditional scalar processor, the basic data type is an n-bit word. The archi-

tecture often exposes a register file of words, and the instruction set is composed of 

instructions that operate on individual words. 

 In a vector architecture, there is support of a vector datatype, where a vector is 

a collection of VL n-bit words (VL is the vector length). They may also be a vector 

register file, which was a key innovation of the Cray architecture. 

 Figures below illustrate the difference between vector and scalar data types, and 

the operations that can be performed on them. 

 

Figure 4. 2: (A): A 64-bit scalar register, and (B): A vector register of 8 64-bit elements 

 We can say that a vector register “holds the values of n scalar registers”. As we 

can see in the figure above a vector register can hold eight discrete and different values 

as long as a scalar register can hold one. The concept is that with a single instruction a 

designer can perform the same operation on multiple data elements as it is shown in 

figure below. 

 

Figure 4. 3: Difference between scalar and vector add instructions
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4.2   Vector Architecture 
 

 The main characteristic of a vector architecture is that they provide high-level 

operations that work on vectors. Vector is a linear array of elements. The length of the 

array varies, depending on hardware. A vector processor means that an instruction op-

erates on multiple data elements in consecutive time steps. 

 In order to exploit the extra features of the vector processors, the calculations 

made should not depend on previous results in each clock cycle. The great power of 

vector processors is that they can replace simple loops with commands. This in itself 

helps to avoid control hazards, ensuring the conditions for developing a compact code 

with less chance of errors. To do this, the data in the main memory must be in a speci-

fied pattern. The ideal would be to be located in neighboring memory locations. 

4.2.1   Components of a Vector Processor 
 

 Vector Registers: Each register is an array of elements. They actually com-

pose a fixed length bank holding a single vector. They need at least two read 

and one write port. Typically, they are 8-32 vector registers, each holding 64-

128 64-bit elements.  

 

 Vector Functional Units (Vector ALUs): These modules are fully pipelined 

and start a new operation every clock. 

 

 Scalar Design: The SIMD unit operates among with the Scalar unit. 

 

4.2.2   Advantages of Vector Instruction Set Architecture 
 No dependencies within a vector 

o Pipelining, parallelization works well. 

o Can have very deep pipelines, no dependencies. 

 

 Each instruction generates a lot of work. 

o Strengthens instruction level parallelism. 

o Reduces instruction fetch bandwidth. 

 

 Highly regular memory access pattern. 

o Interleaving multiple banks for higher memory band-

width. 

 

 No need to explicitly code loops. 

o Fewer branches in the instruction sequence. 
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4.3   Our Vector Instruction Set Architecture 
 

 Figure below illustrates our vector processor’s Instruction Set Format. In the 

sections below, we will describe every vector instruction that our processor supports. 

 

Figure 4. 4: Our Vector Instruction Set Format 

 With regard to our own design and the figure above, we have implemented a 

vector processing unit that executes the basic SIMD instructions (Vector Data Pro-

cessing, Vector Multiply/Vector Multiply-Accumulate and Vector Load/Store). Our 

vector processing unit can perform two vector instructions in parallel. The main com-

ponents of our vector processing unit are listed below:  

 

 A Vector Register File, which is composed by 15 vector registers each of them 

holds 8 128-bit elements. 

 

 Two Vector Barrel Shifters, which are responsible for shift operations that an 

instruction may demand. 

 

 Two Vector Functional Units (ALUs), which are responsible for executing the 

operation on two elements of two vector registers. 

 

 

** We created two ALU’s (and so two barrel shifters) in order to be able to execute two 

vector processing instructions in parallel. ** 

 

 A vector instruction takes eight clock cycles in order to be fully executed. Every 

cycle we perform this instruction on each element of our vector registers. We introduce 

an example for a vector add (VADD) instruction. In a VADD instruction we need to 

read the two operands (vector registers), perform the operation and write the result to 

the destination register. Therefore, in the first cycle we read the first element of the 

vector_register_operand_1, the first element of the vector_register_operand_2, we add 
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them and finally we write the result to the first element of the destination_vector_reg-

ister. In the second and in the other six cycles we do the same thing by chancing the 

elements that we operate on (2nd cycle  2nd elements of the vector registers and so 

on). 

 In the figure below, we can see the example of a vector add (VADD) instruction 

in our vector processor: 

 

Figure 4. 5: Vector Add (VADD) Instruction Example 

4.3.1   Vector Data Processing 
 Our vector processing unit supports 9 general data processing instructions that 

are shown in the figure below: 

 

Figure 4. 6: Our Vector General Data Processing Instructions 
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The encoding of these instructions is shown in the figure below: 

 

Figure 4. 7: Our Vector General Data Processing Instructions Encoding 

 A vector data processing instruction produces eight discrete results by perform-

ing a specified arithmetic or logical operation on one or two elements of one or two 

operands. The first operand is always a vector register (Vn). The second operand may 

be a shifted vector register (Vm) or a rotated 8-bit immediate value (Imm) according to 

the value of the I bit in the instruction encoding.  

 The vector data processing operations may be classified as vector logical or 

vector arithmetic. The vector logical operations (VAND, VEOR, VORR, VMOV, 

VBIC, and VMVN) perform the logical action on all corresponding bits of the operand 

or operands to produce the result. 

 The vector arithmetic operations (VSUB, VRSB, and VADD) treat each oper-

and as a 128 bit integer. 
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Shifts 

 When the second operand is specified to be a shifted vector register, the opera-

tion of the vector barrel shifter is controlled by the Shift field in the instruction. This 

field indicates the type of shift to be performed (logical left or right, arithmetic right or 

rotate right). The amount by which the vector register should be shifted may be con-

tained in an immediate field in the instruction, or in the bottom bits of another register. 

The encoding for the different shift types is shown in the figure below: 

 

Figure 4. 8: Our Vector Shift Operations Encoding 

When the shift amount is specified in the instruction, it is contained in a 6-bit field, 

which may take any value from 0 to 63. A logical shift left (LSL) takes the contents of 

every Vm element and moves each bit by the specified amount to a more significant 

position. The least significant bits of the result are filled with zeros, and the high bits 

of every element of Vm, which do not map into the result, are discarded. 

 A logical shift right (LSR) is similar, but the contents of every element of Vm 

are moved to less significant positions in the result. 

 An arithmetic shift right (ASR) is similar to logical shift right, except that the 

high bits are filled with bit 127 of every element of Vm instead of zeros. This preserves 

the sign in 2’s complement notation. 

Rotates 

 Rotate operations are shown in Figure 4.7. Rotate right (ROR) operations reuse 

the bits that “overshoot” in a logical shift right operation by reintroducing them at the 

high end of the result, in place of the zeros used to fill the high end in logical right 

operations 

 The immediate operand rotate field is a 4 bit unsigned integer that specifies a 

shift operation on the 8 bit immediate value. This value is sign extended to 128 bits, 

and then subject to a rotate right by twice the value in the rotate field. 
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4.3.2   Vector Multiply and Vector Multiply-Accumulate 

(VMUL, VMLA) 
 The encoding of such instructions is shown in the figure below: 

 

Figure 4. 9: Our Vector Multiply Instructions Encoding 

  

 The multiply form of the instruction gives Vd:=Vm*Vs. Vn is ignored and 

should be set to zero for compatibility. 

 The multiply-accumulate form of the instruction gives Vd:=Vm*Vs + Vn, 

which can save an explicit VADD instruction in some circumstances. 

 Both instructions operate on the same element of the operand vector register. 

For example the multiply instruction will multiply the first element of Vm vector reg-

ister with the first element of the Vs vector register and store the result on the first 

element of Vd vector register and so on. 

 Both forms of the instruction work on operands which may be considered as 

signed (2’s complement) or unsigned integers. 

 The results of a signed multiply and of an unsigned multiply of 128 bit operands 

differ only in the upper 128 bits – the low 128 bits of the signed and unsigned results 

are identical. As these instructions only produce the low 128 bits of a multiply, they 

can be used for both signed and unsigned multiplies. 

 The destination vector register Vd must not be the same as the operand vector 

register Vm. All other vector register combinations will give correct results, and Vd, 

Vn, and Vs may use the same vector register when required. 
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4.3.3   Vector Load and Vector Store (VLD, VST) 
 Our vector processing unit also supports Vector Load (VLD) and Vector Store 

(VST) instructions. The encoding of such instructions is shown in the figure below: 

 

Figure 4. 10: Our Vector Load/Store Instructions Encoding 

 Our vector load and store instructions are implemented according to ARM 

NEON architecture and are modified to work to our own design. 

 NEON structure loads read data from memory into registers, with optional de-

interleaving. Stores work similarly, reinterleaving data from registers before writing it 

to memory. 

 The structure load and store instructions have a syntax consisting of five parts: 

 The instruction mnemonic, which is either VLD for loads or VST for 

stores. 

 

 A numeric interleave pattern, the gap between corresponding elements 

in each structure. 

 

 An element type, specifying the number of bits in the accessed elements. 

 

 A set of vector registers to be read or written. Up to four registers can 

be listed, depending on the interleave pattern. 

 

 An ARM address register, containing the location to be accessed in 

memory. 
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 Instructions are available to load, store and deinterleave structures containing 

from one to four equally sized elements, where the elements are the supported widths 

of 8, 16 or 32 bits. 

 Interleave = 1: It loads one to four registers of data from memory, with 

no deinterleaving. 

 

 Interleave = 2: It loads two or four registers of data, deinterleaving even 

and odd elements into those registers. 

 

 Interleave = 3: It loads three registers and deinterleaves. 

 

 Interleave = 4: It loads four registers and deinterleaves. 

 Stores support the same options, but interleave the data from registers before 

writing them to memory. 

 

 Loads and stores interleave elements based on the size specified to the instruc-

tion. 

 Element type = 1: We load the 8 bottom bits of the address specified in 

the ARM register and sign extend it to 128 bits. 

 

 Element type = 2: We load the 16 bottom bits of the address specified 

in the ARM register and sign extend it to 128 bits. 

 

 Element type = 3: We load the entire 32 bits of the address specified in 

the ARM register and sign extend it to 128 bits. 

 

 Element type = 4: We load the entire 32 bits of the address specified in 

the ARM register and sign extend it to 128 bits. 

 

 Our design supports vector load and store instructions but not of all kinds. It 

supports Load/Store in only one vector register with interleaving = 1 and every element 

type. 

 Below we will explain with examples how our design work on Vector Load and 

Vector Store instructions: 

Example of a load: 

We read the contents of the Rm register in order to obtain the address we need to load 

on our Vd1 vector register. With interleaving = 1 (i.e. serial reads in memory) we load 

the contents that we read from memory into every element of our vector register. So if 

the value of Rm = 0 then we load into Vd1 [0] the contents of MEM [0], into Vd1 [1] 

the contents of MEM [1], into Vd1 [2] the contents of MEM [2] and so on.  
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Example of a store: 

We read the contents of the Rm register in order to obtain the address we need to store 

on our Vd1 vector register. With interleaving = 1 (i.e. serial writes in memory) we store 

the contents that we read from every element of our vector register into memory. So if 

the value of Rm = 0 then we store into MEM [0] the contents of Vd1 [0], into MEM [1] 

the contents of Vd1 [1], into MEM [2] the contents of Vd1 [2] and so on. 

 

 Figure below shows a theoretical datapath of a Vector Processor: 

 

Figure 4. 11: Theoretical Datapath of a Vector Processing Unit 
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 Chapter 5 
 

Implementation 
 

 

 In this section, we will analyze and explain the structural components of our 

processor. Our design supports a 3-stage pipeline (Fetch – Decode – Execute) in order 

to increase the speed of the flow of instructions to the processor. This allows several 

operations to take place simultaneously, and the processing, and memory systems to 

operate continuously. Figure bellow illustrates our processor’s pipeline: 

 

 

Figure 5. 1: ARM 3-Stage Pipeline 

   

 As we described in previous sections, our design supports a scalar and a vector 

processing unit. The scalar processing unit supports all Data Processing instructions, 

Branch and Branch and Link instructions, Load and Store instructions with offset in-

dexed addressing (post and pre indexed) and six instructions of multiplication (Multi-

ply/Multiply Accumulate, Signed and Unsigned Multiply Long/Multiply Long Accu-

mulate). The vector processing unit supports some of the Vector Data Processing in-

structions (as we are not concerned about conditional execution on a vector processor 

we did not implement the instructions that just set the CPSR), Vector Multiply and 

Vector Multiply Accumulate instructions and the Vector Load and Store ones. 

 Since all of these instructions are integer type with single-cycle execution la-

tency, we conclude that there is no need to deal with data forwarding (scalar part) or 

chaining (vector part).
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 Below we present a general block diagram (datapath) of our architecture. 

 

Figure 5. 2: Datapath of the Design 

5.1   Scalar Implementation 
 

 In this sub-section, we will fully describe the functionality of every module of 

the scalar design. The modules that compose this design are Instruction Memory, De-

code, Barrel Shifter, ALU, Multiplier, Register File and the Data Memory module. 

5.1.1   Instruction Memory Module 
 Instruction memory is implemented as Bluespec’s internal storage and data 

structure library “RegFile”. This package defines one interface that provides two meth-

ods, “upd” and “sub”. The “upd” method is an Action method used to modify (or up-

date) the value of an element in the storage. The “sub” method is a Value method that 

reads and returns the value of an element in the storage. From the “RegFile” package 

we make use of “mkRegFileFullLoad” module, which creates a memory from min to 

max index (0 – 1023 in our case) using a file to provide its initial contents. 

 In our design, we load in the memory a .bin or a .hex (whatever we prefer) file 

of instructions. This file is then read, row by row, with the use of the provided method 

“sub” and the execution starts. 
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5.1.2   Decode Module 
 This module is responsible for decoding an instruction. It gets as input a 32-bit 

quantity and produces multiple outputs (signals). The main job of this module is to 

make the processor “understand” how to execute a given instruction. 

 The decoding of the instruction is achieved through a function. The function, 

based on ARMv4 ISA, takes as input the 32-bit instruction and returns a structure. The 

format of the structure is: 

 

Figure 5. 3: Instruction Decode Signals 

The alu_operation, multiply, branch, multiply_long and load_store fields are flags that 

helps the processor understand what type of instruction is going to be executed. The 

operand_2 represents that the second operand of an instruction (mostly data processing) 

will be a register or an immediate value (immed field). The set_flags field implies if the 

instruction is going to change the CPSR flags. The, condition_code field represent the 

condition flags that exist in every instruction; if the condition is true, then the instruc-

tion will be executed, otherwise it will not. The alu_func field holds the opcode for the 

ALU, with which it will understand what operation should perform. The shift_by, 
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shift_action, shift_by_reg are flags for understanding if a shift operation must happen 

and where it should happen (on immediate or on the value of another register). Link_Bit 

and branch_offset fields are used for branch instructions. Accumulate_bit, signed_bit 

and mul_dst_2 are extra fields that multiply or multiply long (with or without accumu-

lation) instructions have. Offset_register, immed_offset, indexing_bit, up-down_bit, 

byte_word_bit, write_back_bit and load_store_bit are fields that help the processor un-

derstand how to execute correctly a load or a store instruction. The other fields of this 

module are used for the execution of a vector processing instruction because vector unit 

decodes a vector instruction with the same module and way that scalar unit does. 

 

5.1.3   Barrel Shifter Module 
 This module is responsible for performing a shift or a rotate operation on an 

operand. The operation is executed by a function, whose syntax is: 

 function BrlResult scalar_barrel (Bit_32 data, Bit_2 control, Bit_5 by); 

 For each value of the control argument, the function performs a different action 

on the data argument, given the by argument, as follows: 

 Control == 2’b00  Logical Shift Left (LSL)  The function performs a logi-

cal shift left operation on the data argument by the by argument’s bits. 

 

 Control == 2’b01  Logical Shift Right (LSR)  The function performs a log-

ical shift right operation on the data argument by the by argument’s bits. 

 

 Control == 2’b10  Arithmetic Shift Right (ASR)  The function performs an 

arithmetic shift right operation on the data argument by the by argument’s bits. 

 

 Control == 2’b11  Rotate Bits Right (ROR)  The function performs a right 

rotation on the data argument by the by argument’s bits 

 

 The output of the barrel shifter’s function is a struct of a result and carry bit. 

 

 5.1.4   ALU Module 
 This module is responsible for executing all Data Processing instructions on the 

scalar unit of the processor and for deciding what the CPSR flags should be. More 

specifically, the functions (and their syntax) that constitute this module are the follow-

ing: 

function ResultT scalar_operation (Bit_32 input_a, Bit_32 input_b, Bit_1 carry_bit, 

Bit_4 opcode); 

 This function is actually performing the execution of the instruction. It takes as 

arguments the two operands (input_a, input_b), which are 32 bit, a carry_bit (for in-

structions that need carry) and the opcode, which is responsible to inform the function 
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what operation should execute. In the body of this function there are other functions 

that are called, and decide the result of the operation and the condition flags that the 

instruction produces. Such functions are: 

 function Bit_33 add_op (Bit_33 a, Bit_33 b); 

  return (a + b); 

 endfunction 

 As we can observe, these functions are the “result calculating” functions that 

take as arguments only the two operands (a and b), which are the same with the previous 

function’s operands (input_a and input_b). They are 33 bit in order to check for the 

carry flag. Other functions like this are sub_op, addc_op, subc_op, and_op, or_op, 

xor_op, not_op, bitc_op etc. These functions actually calculate the result of a logical or 

an arithmetic operation. 

 Other functions that are called on the body of the main function (scalar_opera-

tion) are the “flags’ calculating” functions. The job of these is to decide what value the 

CPSR flags should have, according to the result produced by the functions above. Such 

functions are: 

 Check_carry  As its name betrays, this function checks if the result of an 

operation produces a carry. 

 

 Check_negative  This function checks if the result of an operation is negative. 

 

 Check_zero  This function checks if the result of an operation is zero. 

 

 Check_ovf  This function checks if an overflow occurs after the operation is 

performed. 

 

 To summarize, this module is composed by a main function that calculates the 

result of an operation and decides what the CPSR flags should be by calling other sub-

functions. The output of the function, like we present below is a struct, which holds the 

value of the result and the Zero, Negative, Overflow and Carry flags. 

  typedef struct {Bit_32 result;  

   Bit_1 zero; 

   Bit_1 negative; 

   Bit_1 overflow; 

   Bit_1 carry;  

  } ResultT deriving (Bits, Eq); 
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5.1.5   Multiplier Module 
 This module is responsible for the multiplication instructions. Such instructions 

are Multiply, Multiply and Accumulate, Signed Multiply Long, Signed Multiply Long 

and Accumulate, Unsigned Multiply Long and Unsigned Multiply Long and Accumu-

late. These operations are implemented through two different functions on this module. 

These functions are: 

function ResultT_mul multiply (Bit_1 control, Bit_32 data_1, Bit_32 data_2, Bit_32 

data_accumulate); 

 The function above performs Multiply and Multiply and Accumulate opera-

tions. It takes as arguments a 1-bit control, with which the function determines what 

operation from the previous ones should perform, the two operands (data_1 and data_2) 

that the multiplication will be performed and data_accumulate argument, which is the 

extra operand that the accumulate instructions need in order to be executed. With regard 

to control argument, the operations are executed as follows: 

 Control == 0  Multiply 

 

 Control == 1  Multiply and Accumulate 

 This function also, optionally, decide what the CPSR flags should be, given the 

result that was produced. 

 The output of the function, as we can observe below, is a struct that provides 

the result and the Negative, Zero, Carry and Overflow flags. 

  typedef struct {Bit_32 result_mul;  

   Bit_1 zero_mul; 

   Bit_1 negative_mul; 

   Bit_1 overflow_mul; 

   Bit_1 carry_mul;  

  } ResultT_mul deriving (Bits, Eq); 

function ResultT_mul_long multiply_long (Bit_2 control, Bit_32 data_1, Bit_32 

data_2, Bit_32 data_1_accumulate, Bit_32 data_2_accumulate); 

 The function above performs Signed Multiply Long, Signed Multiply Long and 

Accumulate, Unsigned Multiply Long and Unsigned Multiply Long and Accumulate. 

It takes as arguments a 2-bit control, with which the function determines what operation 

from the previous ones should perform, the two operands (data_1 and data_2) that the 

multiplication will be performed and data_1_accumulate and data_2_accumulate ar-

guments, which are the extra operands that the accumulate instructions need in order to 

be executed. Since the result of a multiply long instruction is 64 bit, we need to concat-

enate the values of these two accumulation arguments. 

 This function also, optionally, decide what the CPSR flags should be, given the 

result that was produced. 
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 The output of the function as we can observe below is a struct that provides the 

result and the Negative, Zero, Carry and Overflow flags. 

  typedef struct {Bit_64 result_mul;  

   Bit_1 zero_mul; 

   Bit_1 negative_mul; 

   Bit_1 overflow_mul; 

   Bit_1 carry_mul;  

  } ResultT_mul_long deriving (Bits, Eq); 

5.1.6   Register File Module 
 This module forms the main “memory core” of the scalar unit of the processor. 

It is the main place (along with data memory) that every result of an executed instruc-

tion is stored and/or reused. It is composed from vector of 15 registers (general-purpose 

registers, stack pointer and link register) alongside with two extra registers (program 

counter and current program status register). Registers in Bluespec can store any type 

of data like integers, bits, strings, even whole structures of data. In our design, each 

register of the register file holds a 32-bit quantity. The interface of this module has one 

method for writing to register file (in some cases we write to two registers simultane-

ously, e.g. Load instruction that also updates the value of the base register), and six 

methods for reading (3 needed for data processing instructions, +1 for multiply long 

instructions, +2 for vector load and store instructions that get their address by a register 

on the scalar unit). Program Counter and Current Program Status Register have their 

own read and write ports. The location of reading or writing the data as long as the data 

themselves are given to methods as arguments. Below we present the interface of the 

register file. 

 interface RegFile_IFC; 

  method Bit_32 read_pc(); 

  method Bit_32 read_reg1(Bit_4 read_addr1); 

  method Bit_32 read_reg2(Bit_4 read_addr2); 

  method Bit_32 read_reg_accumulate(Bit_4 read_addr3); 

  method Bit_32 read_reg_accumulate_2(Bit_4 read_addr4); 

  method Bit_32 read_reg_for_vector_load_store (Bit_4 addr); 

  method Bit_32 read_reg_for_vector_load_store_2 (Bit_4 addr); 

 

  method Action write_reg(Bit_4 write_addr, Bit_32 data, Bool  

  write_enable, Bit_3 control, Bit_4 write_addr_2, Bit_32 data_2,  

  Bit_32 new_pc_addr);
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  method Action update_cpsr (Bit_1 negative, Bit_1 zero, Bit_1 carry, 

  Bit_1 overflow); 

  method Bit_32 read_cpsr();  

 endinterface 

 Read_pc method returns the value of the Program Counter. The other read meth-

ods actually do the same thing, which is to read the value of a specific register on the 

register bank, given its address (read_addr). Write_reg method actually writes the data, 

which are provided as arguments (data, data_2), to specific registers, whose addresses 

are also provided as arguments (write_addr, write_addr_2). Control argument helps to 

write the data to the right registers because sometimes there is a need to write to the 

program counter (e.g. branches). 

Below we present the vectors and the registers of the register file. 

 Vector#(15, Reg#(Bit_32)) arr1  replicateM(mkReg(0)); 

 Reg #(Bit_32) program_counter  mkReg(0);  

 Reg #(Bit_32) cpsr  mkReg(0); 

 

5.1.7   Data Memory Module 
 This module is similar to the Instruction Memory Module that described in an 

above sub-section. It is responsible for helping the implementation of the load and store 

instructions. It is initialized by a file and it has two methods, one for reading from the 

memory and one for writing to it. Reading method gets as argument the address of the 

element that the instruction asks and returns the element itself. Writing method is an 

action method that gets the element that the instruction need to store to memory and the 

address in which this element will be stored and stores it. 

 

5.2   Vector Implementation 
 

 In this sub-section, we will fully describe the functionality of every module of 

the scalar design. As we described in earlier sections, our vector processing unit can 

execute two vector instructions simultaneously. To achieve this, we needed to create 

two discrete Functional Units (Vector ALUs, Vector Multipliers and Vector Barrel 

Shifters). The modules that compose this design are Instruction Memory, Decode, Vec-

tor Barrel Shifters, Vector ALUs, Vector Multipliers, Vector Register File and the Vec-

tor Data Memory module. Instruction Memory and Decode modules are the same mod-

ules with the scalar unit, so there will not be any reference to them again. 
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5.2.1   Vector Barrel Shifter Module 
 This module is responsible for performing a shift or a rotate operation on an 

element of a vector register operand. The operation is executed by a function, whose 

syntax is: 

 function Bit_128 vector_barrel(Bit_128 data, Bit_2 control, Bit_7 by); 

 The functionality of this module is just like the barrel shifter module on the 

scalar unit, only that now the data argument is not 32-bit wide but 128. The control 

argument remains 2-bit and do the same operations on the same encodings. As for the 

by argument, it is now 7-bits in order to be able to perform an operation to every bit of 

the data argument. 

 

5.2.2   Vector ALU Module 
 This module is responsible for executing all the Vector Data Processing instruc-

tions on the vector unit of the processor. It has almost the same functionality as the 

ALU module on the scalar part. It is simpler than the one on the scalar unit because in 

the vector unit, we are not concerned about conditional execution and so Current Pro-

gram Status Register does not exist. In addition, just because CPSR does not exist, there 

is no need to implement the instructions that update the CPSR, thus the Vector Data 

Processing instructions are the remaining ones, as we can see in figure 4.6. The job of 

this module is done through one and only function as we can see below: 

function Bit_128 lane_operation (Bit_128 a, Bit_128 b, Bit_4 opcode); 

 As we can observe, the function gets as arguments two elements of two different 

vector registers, which the instruction will be applied, and the opcode argument in order 

to make the processor understand what operation should perform on these two elements. 

The output of the function is a 128-bit wide value, which is the result of the operation 

that performed. 

 

5.2.3   Vector Multiplier Module 
 This module is responsible for executing the Vector Multiply and Vector Mul-

tiply Accumulate instructions on the vector unit of the processor. These instructions are 

almost executed the same way like on the scalar unit, only that now the arguments of 

the two operands and the accumulate operand are elements of three different vector 

registers of the vector register file. The operation is done using a function with the 

below syntax: 

function Bit_128 v_multiply (Bit_1 control, Bit_128 data_1, Bit_128 data_2, Bit_128 

data_accumulate); 

 This function according to the control argument decides if a multiply or multi-

ply and accumulate instruction is going to be performed. The output of the function is 

a 128-bit wide value, which is the result of the multiplication that performed on the 

operands. 
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5.2.4   Vector Register File Module 
 This module forms the main “memory core” of the vector unit of the processor. 

It is the main place (along with vector data memory) that every result of an executed 

vector instruction is stored and/or reused. It is composed from vector of 15 vector reg-

isters. Every vector register can hold 8-elements and each element is a 128-bit quantity. 

Since our vector processing unit can execute 2 vector instructions simultaneously, the 

interface of this module consists of: 

 Six Reading Methods (Three for each vector instruction). 

 Two Writing Methods (One for each vector instruction). 

 Our vector processing unit can read and write one element of a vector register 

on every clock cycle and, since our vector registers can hold 8-elements, we need eight 

clock cycles to fully execute a vector instruction. To achieve that we needed to create 

8 discrete and independent counters, six for reading methods (cycle_read_1, cy-

cle_read_2, cycle_read_3, cycle_read_4, cycle_read_5 and cycle_read_6) and two for 

writing methods (cycle_write, cycle_write_2). Every one of them counts from 1 to 8 

and in every step we read/write the element from/to the vector register. 

The address of the vector register that we want to read or update with data as long as 

the data themselves are given to methods as arguments. Below we introduce the inter-

face of our vector register file module, the register bank itself, the counters’ initializa-

tion and the code for one reading and one writing method: 

interface VecRegFile_IFC; 

 

 method ActionValue#(Bit_128) read_vector_lane_1 (Bit_4 vector_addr); 

 method ActionValue#(Bit_128) read_vector_lane_2 (Bit_4 vector_addr); 

 method ActionValue#(Bit_128)read_vector_lane_3 (Bit_4 vector_addr);  

  

 method ActionValue#(Bit_128) read_vector_lane_2_1 (Bit_4 vector_addr); 

 method ActionValue#(Bit_128) read_vector_lane_2_2 (Bit_4 vector_addr); 

 method ActionValue#(Bit_128) read_vector_lane_2_3 (Bit_4 vector_addr); 

 

 method Action write_vector_lane (Bit_4 vector_addr, Bit_128 data); 

 method Action write_vector_lane_2 (Bit_4 vector_addr, Bit_128 data); 

 

 

endinterface 
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Vector#(15, Reg#(Vector#(8, Bit_128))) register_bank  replicateM(mkReg(repli-

          cate(0))); 

Reg#(Bit_4) cycle_read_1  mkReg(1);   

Reg#(Bit_4) cycle_read_2  mkReg(1);    

Reg#(Bit_4) cycle_read_3  mkReg(1); 

  

Reg#(Bit_4) cycle_read_4  mkReg(1); 

Reg#(Bit_4) cycle_read_5  mkReg(1); 

Reg#(Bit_4) cycle_read_6  mkReg(1);    

 

Reg#(Bit_4) cycle_write  mkReg(1);   

Reg#(Bit_4) cycle_write_2  mkReg(1); 

 

method ActionValue#(Bit_128) read_vector_lane_1 (Bit_4 vector_addr); 

 if (cycle_read_1 == 1) 

 begin 

  cycle_read_1 <= 2; 

  return register_bank[vector_addr][0]; 

 end 

 else if (cycle_read_1 == 2) 

 begin 

  cycle_read_1 <= 3; 

  return register_bank[vector_addr][1]; 

 end 

 else if (cycle_read_1 == 3) 

 begin  

  cycle_read_1 <= 4; 

  return register_bank[vector_addr][2]; 

 end 

 else if (cycle_read_1 == 4) 

 begin 
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  cycle_read_1 <= 5; 

  return register_bank[vector_addr][3]; 

 end 

 else if (cycle_read_1 == 5) 

 begin 

  cycle_read_1 <= 6; 

  return register_bank[vector_addr][4]; 

 end 

 else if (cycle_read_1 == 6) 

 begin 

  cycle_read_1 <= 7; 

  return register_bank[vector_addr][5]; 

 end 

 else if (cycle_read_1 == 7) 

 begin 

  cycle_read_1 <= 8; 

  return register_bank[vector_addr][6]; 

 end 

 else 

 begin 

  cycle_read_1 <= 1; 

  return register_bank[vector_addr][7]; 

 end 

endmethod 

 

method Action write_vector_lane (Bit_4 vector_addr, Bit_128 data); 

 if (cycle_write == 1) 

 begin 

  register_bank[vector_addr][0] <= data; 

  cycle_write <= 2; 
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 end 

 else if (cycle_write == 2) 

 begin 

  register_bank[vector_addr][1] <= data; 

  cycle_write <= 3; 

 end 

 else if (cycle_write == 3) 

 begin 

  register_bank[vector_addr][2] <= data; 

  cycle_write <= 4; 

 end 

 else if (cycle_write == 4) 

 begin 

  register_bank[vector_addr][3] <= data; 

  cycle_write <= 5; 

 end 

 else if (cycle_write == 5) 

 begin 

  register_bank[vector_addr][4] <= data; 

  cycle_write <= 6; 

 end 

 else if (cycle_write == 6) 

 begin 

  register_bank[vector_addr][5] <= data; 

  cycle_write <= 7; 

 end 

 else if (cycle_write == 7) 

 begin 

  register_bank[vector_addr][6] <= data; 

  cycle_write <= 8;



46 | Testbench Module – Top Module Chapter 5 

 end 

 else 

 begin 

  register_bank[vector_addr][7] <= data; 

  cycle_write <= 1; 

 end 

endmethod 

 

5.2.5   Vector Data Memory Module 
 This module is similar to the Instruction Memory Module and the Data Memory 

Module that described in the section of scalar implementation. It is responsible for help-

ing the implementation of the vector load and vector store instructions. It is initialized 

by a file; it has two methods for reading and two methods for writing because we may 

want to perform two parallel vector loads or two parallel vector stores. Reading meth-

ods get as argument the address of the element that the instruction asks and returns the 

element itself. Writing methods are action methods that get the element that the instruc-

tion need to store to memory and the address in which this element will be stored and 

stores it. 

 

5.3   Testbench Module – Top Module 
 This module is the main and most important module of the design. It is the place 

that every instruction is been executed. It is where every other module’s functions are 

called and where the pipeline is been implemented. It is composed out of 8 rules that 

fire at different situations. These rules are: 

 Fetch Rule: This rule is the Fetch Stage of our design. In this rule, we read an 

instruction from the instruction memory. The instruction is then being saved to 

a pipeline register in order to get into the pipeline. 

 

 Decode Rule: This rule is the Decode Stage of our design. In this rule, we make 

use of the function on the decode module in order to decode the instruction that 

saved in the previous cycle from the fetch rule. Decode rule is actually a transi-

tional rule that decodes the instruction being fetched and passes the appropriate 

signals to the appropriate pipeline registers in order to be used in the execution 

stages. 

 

 Execute Rule: This rule is actually the Execution Stage of the scalar design. In 

this rule, first, we check if the scalar instruction can be executed by reading the 

cpsr register (conditional execution). If the instruction cannot be executed, then 
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nothing happens and we move to the following instruction that is on the pipe-

line. If the instruction is able to be executed, then we read the registers that have 

been filled from the decode stage and we perform the instruction. An instruction 

on the scalar design is being executed through a function for convenience. In 

this function, we check the type of the instruction and we perform the proper 

steps. For example, if the instruction is a data processing instruction, we read 

the operand registers by calling the appropriate methods of the register file mod-

ule; we perform any shift operations needed by calling the function of the barrel 

shifter module, given the appropriate arguments; we execute the operation by 

calling the function of the ALU module, given the appropriate arguments; we 

write the result to the register file and we update the cpsr register if the instruc-

tion demands.  

 

 Execute Vector 1 Rule: This rule is actually the Execution Stage of the vector 

design. In this rule we check for the type of the instruction (vector data pro-

cessing, vector load/store, vector multiply) and we perform the appropriate steps 

just like on the execution rule of the scalar design. The difference between this 

rule and the execution rule on the scalar design is that this rule is going to be 

called 8 times for a vector instruction, because, as we described in previous 

sections, a vector instruction needs 8 cycles in order to be fully executed. 

 

 Execute Vector 2 Rule: This rule has the same functionality like the Execute 

Vector 1 Rule. It was created in order our processor to be able to execute two 

vector instructions simultaneously. 

 

 Schedule Instructions Rule: This rule is responsible for the scheduling of the 

instructions in the pipeline. As we said before, every vector instruction must 

stay into the vector execution stage of the pipeline for 8 cycles in order to be 

fully executed, while scalar instructions can be executed in a single cycle. 

Therefore, in order to achieve that, we have created three different pipeline reg-

isters for the fetch-to-decode stage that holds three different instructions (2 vec-

tor and 1 scalar). The value of these registers remains the same for 8 cycles (2 

extra counters that counts 8 cycles in order the processor to know if a vector 

instruction is finished) if we are talking about a vector instruction and changes 

in every cycle if we are talking about scalar instructions (1 extra counter that 

keeps the processor informed for the scalar instructions). To conclude, this rule 

actually decides whether a new instruction is able to be fetched. 

 

 Exit Case Rule: This rule is actually the terminal rule of the system. It fires 

when we reach a specific amount of cycles, which are given by the designer. 

The only job of this rule is to shut down the design. 

 

 Increase Cycle Rule: This rule is doing what its name betrays. It increases a 

counter that helps to control the pipeline. 
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 Now we are going to explain in detail how our design works when an instruction 

is ready to be inserted into the pipeline. The instruction is read in the fetch stage (cycle 

0) and is saved to the appropriate pipeline register (instruction). Decode rule then fires 

(cycle 1), reads the register that the instruction has been saved before and decodes it. 

The outputs of the decode function are saved to the appropriate pipeline registers in 

order to be used from the third pipeline stage (Execute Stage). In parallel, a new in-

struction has already been fetched. If the instruction is a scalar one, scalar execution 

rule fires (cycle 2) and the execution starts by reading the registers that has been written 

in decode stage. If the instruction is a vector one, vector execution rule fires (cycle 2) 

and the execution starts by reading the registers that has been written in decode stage. 

This rule is going to fire for eight continuous cycles. In parallel a new instruction has 

been fetched and the previous new instruction has already been in the decode stage. 

This keeps going until all instructions of the program have been executed. 

 

Branch Instructions 

If a branch instruction is being fetched into the pipeline then we stall the pipeline in 

order to check if the branch will be taken or untaken. If the branch instruction is taken 

then the next instruction that is going to be fetched will be in the new value of the pc 

register. If the branch instruction is not taken, then the execution continues normally 

and we fetch the instruction that is placed after the branch one.
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 Chapter 6 
 

Debugging and Testing 
 

 

 In this chapter, we are going to describe how the debugging of the project was 

done and we will present figures and simulations that confirm the correctness of the 

functionality of our design.  

6.1   Debugging of the Design 

  

 In order to debug the scalar unit of the processor we made use of a highly visual 

ARM emulator called VisUAL. VisUAL has been developed as a cross-platform tool 

to make learning ARM assembly language easier. In addition to emulating a subset of 

the ARM UAL instruction set, it provides visualizations of key concepts unique to as-

sembly language programming and therefore helps make programming ARM assembly 

more accessible. It has been designed specifically to use as a teaching tool for the In-

troduction to Computer Architecture course taught at the Department of Electrical and 

Electronic Engineering of Imperial College in London. 

Some of the key features that this program provides are: 

 Navigation of Program History: In addition to stepping through code, users 

can navigate program history by browsing past register values. 

 

 Pointer Visualization: Pointers in ARM assembly can be quite difficult to un-

derstand, especially since ARM assembly has 9 different variations of pointer 

behavior when it comes to load/store instructions. VisUAL provides an infor-

mation panel that displays useful pointer information when needed. 

 

 Shift Operation Visualization: VisUAL can demonstrate shift operations by 

playing them as animations. The animations use actual data values from the shift 

instruction being demonstrated.  

 

 Memory Access Visualization: All memory access operations, word-aligned 

or byte-aligned, can be visualized. Base and offset addresses are shown, and any 

values that have been changed are highlighted.
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 Stack Visualization: Instructions to load/store multiple instructions in the form 

of a stack can be visualized. Stack behavior is described, and the stack as well 

as stack pointer at the start and end of the stack are displayed. 

 

 Branch Visualization: Color-coded line highlights are used to indicate when a 

branch is being taken. For conditional instructions, status bits involved in con-

dition checking are highlighted. An arrow points to the branch destination, act-

ing as a visual cue to indicate a branch to another line of code is about to take 

place. 

 

 Subroutine Visualization: Whenever the link register is set to enter a subrou-

tine, the linked subroutine return point will be highlighted and will remain high-

lighted until the subroutine exits. 

 

 Error Correction Suggestions: As opposed to providing cryptic compiler error 

messages, VisUAL provides context-specific error messages with explanations 

of exactly what is expected. In addition, whenever a runtime error occurs, the 

user is informed of the problematic instruction and what operation in the in-

struction resulted in the error. 

 

 Infinite Loop Detection: Inadvertently typed code that may result in an infinite 

loop can cause code to malfunction. VisUAL detects possible infinite loops and 

prompts the user to select the appropriate response. 

 

 View Memory Contents: By using the view memory contents window, data 

defined in memory can be monitored in real-time as it changes. This allows fast 

debugging of memory access instructions from a static viewpoint in addition to 

the dynamic viewpoint provided by the pointer and memory access visualiza-

tions. 

 

 View Symbols: The symbols window provides a list of all code and data sym-

bols that have been defined. This provides an easy method of lookup up symbols 

during execution. 

 

 Headless Emulation Mode: VisUAL allows assembly code to be executed via 

the command line and logs the program state to an XML file. This is useful for 

power users for testing large batches of code. 

 

 The main characteristic that we fully took advantage of VisUAL was the real-

time and step-by-step execution of an ARM assembly code. Executing a code step-

by-step made easy to check what values the registers and the memory should have 

at any time of the progress. Therefore, by observing our simulation we could easily 

check if our registers, memory, results on the ALU or Barrel Shifter, etc. was getting 

the right values.
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 As it concerns the vector unit of our processor, we did not make use of any 

emulator. The debugging of this unit has been done “by-hand”. This means that we 

manually inserted every combination of instructions and observed the simulations 

for the correctness of the functionality of our design. 

 

6.2   Testing the Scalar Unit 
 

 In order to test our scalar design, at first, we used some written by-hand instruc-

tions. Then, and since this method is not the most efficient, for the verification of our 

design, we used real programs written in C++. 

 Nevertheless, processors does not read and execute C++ programs. They can 

read instructions written on a binary or a hexadecimal form. So in order to achieve that 

we first should translate the C++ programs into ARM assembly. The translation to as-

sembly was done via the ARM GCC 6.3.0 and by making use of the online tool 

https://gcc.godbolt.org/. In this tool, we should select ARM gcc 6.3.0 and put the fol-

lowing flags as compiler options: 

1. fomit-frame-pointer 

2. –mcpu=arm7tdmi 

The first flag asks the tool not to use the frame pointer while creating the assembly 

instructions and the second one specifies the target device. In continue, the assembly 

code is saved on a .s file. 

 At this point, we needed to translate and transform the ARM assembly code, 

that we saved in the .s file, to files with binaries or hexadecimal instructions. To achieve 

that, we made use of the GNU ARM Embedded Toolchain by writing the following 

commands on the terminal: 

1. arm-none-eabi-as -EB -o example.o example.s 

2. arm-none-eabi-ld -EB -Ttext=0x0 -o example.elf example.o 

3. arm-none-eabi-objcopy -O binary example.elf example.bin 

 The first command assembles the .s file that we previously created. The second 

calls the linker of GNU Toolchain. The –Ttext=0x0 specifies that addresses should be 

assigned to the labels, such that the instructions were starting from address 0x0. Finally, 

the third one produces the .bin file, which is the assembly commands in a hexadecimal 

format. 

 In the upcoming subsections we will provide every test that our scalar unit 

passed as long as the codes with whom our processor was fed and the simulation that it 

created. 

 

 

 

https://gcc.godbolt.org/
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6.2.1   “By-hand” Testing Example 
 The first example that our scalar unit passed successfully was some manually 

given binary instructions. Below we provide these binary instructions as long as the 

simulation that our scalar unit produced: 

 

Figure 6. 1: Binary Instructions of the “By-Hand” Example 

After every binary instruction, we provide some comments of what actions the instruc-

tion is going to do and what results we expect. 

 

 

Figure 6. 2: VCD Output of the “By-Hand” Example 

Figure 6.2 presents the waveform results of the Figure’s 6.1 instructions. As we can 

observe, the registers take the exact values with the ones that we expected. 
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6.2.2   Factorial Testing Example 
 This is the first real program that our scalar processor passed successfully. It is 

about a factorial count calculation of a specific number. In this case, this specific num-

ber is the number 8. The factorial of eight is: 8! = 1x2x3x4x5x6x7x8 = 40,320. There-

fore, we expect this number to be stored to a register of our scalar register bank. Below 

we provide the C++ and the assembly codes, exactly like the tools that we mentioned 

above translated them for us. 

 

Figure 6. 3: C++ Code of the Factorial Example 

 

Figure 6.4: Assembly Code of the Factorial Example 
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 As we can observe from the assembly code, the solution number is expected to 

be stored in register R3. After that, R3’s value is expected to become zero and finally 

stack pointer’s value will be restored to its initial value (100).  

 Below we provide the VCD output that came up after running the above pro-

grams to our processor: 

 

Figure 6. 5: VCD Output of the Factorial Example 

 Indeed, observing the VCD output, we can confirm that register R3 took the 

correct result, then its value became zero and finally the stack pointer (R14) get its 

initial value.  

 

6.2.3   Largest Number Among Three (LNA3) Testing Example 
 Another program that tested the functionality of the processor was Larger Num-

ber Among 3. This program takes three numbers as inputs, compares them and decides 

what number is the biggest one. Below we provide the C++ and the assembly codes of 

this program: 

 

Figure 6. 6: C++ Code of the Largest Number Among Three Example 

 



55 | Testing the Scalar Unit  Chapter 6 

 

Figure 6. 7: Assembly Code of the Largest Number Among Three Example 

 Below we are going to provide the VCD output that came up when running the 

above programs. We expect to see that comparing 3, 21 and 99, the processor will de-

cide that 99 is the largest value. 

 

Figure 6. 8: VCD Output of the Largest Number Among Three Example 

  Indeed, we can observe that at first stack pointer is initialized at 100. Then the 

three numbers are kept in the stack and comparisons are made between them. Finally, 

the largest number (99) is stored to R3. In the end, R3’s value becomes zero and the 

stack pointer is restored back to its initial value. 
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6.2.4   Fibonacci Testing Example 
 The next program, that the processor was tested, was the Fibonacci sequence. 

In mathematics, the Fibonacci sequence is characterized by the fact that every number 

after the first two is the sum of the two preceding ones. The Fibonacci numbers are the 

numbers in the following integer sequence: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144… 

 The program tests the processor to produce the Fibonacci sequence up to n num-

ber of terms. In this case n = 15 so the expected sequence is: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377. 

 Below we provide the C++ and the assembly codes of this program: 

 

 

Figure 6. 9: C++ Code of the Fibonacci Example 
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Figure 6. 10: Assembly Code of the Fibonacci Example 

 Below we provide the VCD output that was produced by running the above 

codes to the processor. We are expecting to see the number 377 at the 15th term of the 

sequence: 

 

Figure 6. 11: VCD Output of the Fibonacci Example 
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 Just as we expected, the 15th term of the Fibonacci sequence is stored in the 

register R3. Finally, R3’s value becomes zero and stack pointer returns to its initial 

value, which is 100. 

6.2.5   Bubblesort Testing Example 
 The last, and most difficult, test, that our processor successfully passed, was the 

classic Bubblesort program. This program gets seven values as inputs, and stores them 

in an array of integers. After that, a void function is called that sorts these seven values 

by comparing and transposing each other. Finally, the values of the array are stored into 

different variables for convenience. Below we provide the C++ and the assembly codes 

of this example program: 

 

Figure 6. 12: C++ Code of the Bubblesort Example 
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Figure 6. 13: Assembly Code of the Bubblesort Example 

  

Bellow we provide the VCD output that was produced after running the above programs 

to our scalar design. According to the C++ code, values 64, 34, 25, 12, 22, 11 and 90 

are inserted into an array of integers. In the end, we expect to see these values to be 

sorted in ascending order i.e. 11, 12, 22, 25, 34, 64, 90.
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 Figure 6. 14: VCD Output of the Bubblesort Example 

 Indeed, by observing the simulations above, we can confirm that initially the 

processor stores the right values in the register R3 and in the end of the program R3 

gets these values sorted in an ascending order. After that, R3’s value becomes zero and 

the stack pointer is restored to its initial value. 

 

6.3   Testing the Vector Unit 
 

 In order to test our vector design, we created some written “by-hand” examples. 

In these examples, we tested every possible combination and situation of the vector 

instructions. We separately tested vector processing instructions, vector multiply and 

vector multiply-accumulate instructions as long as vector load and vector store instruc-

tions. In addition, in these examples we checked the parallelization of our design and 

by that we mean that two vector instructions can be executed simultaneously and along-

side with scalar ones. In the next subsections, we will provide analytical figures and 

simulations of the binary instructions that we filled the processor with, as long as the 

VDC outputs that our vector processing unit produced. 
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6.3.1   Parallelization Example 
 This is about a very simple example on our vector processing unit. It is a test 

program with just two vector instructions (VMOV) just to check that our vector unit is 

able to execute them simultaneously. Below we provide the instructions in a binary 

form as long as the VCD output that our processor produced after executing them. 

 

 
Figure 6. 15: Binary Instructions of the Parallelization Example 

 

 

Figure 6. 16: VCD Output of the Parallelization Example 

 As we can observe from the simulation above, there are two vector instructions 

running simultaneously with one cycle delay between them. That is because we fetch 

one instruction at a time so when we fetched the first vector instruction, we inserted it 

into the pipeline and one cycle later we were able to fetch the other vector instruction 

because our second vector functional unit was free. Thus, we can see that value 15 is 

written cycle-by-cycle in every element of the first vector register as long as value 10 

is written cycle-by-cycle in every element of the second vector register. 

 

6.3.2   Vector Multiply Example 
 This is about a little more complicated example than the one before. It is a test 

program with some vector instructions (vector data processing, vector multiply and 

vector multiply with accumulation) in order to check the functionality of our design. 

Below we introduce the instructions in binary form, as long as the VCD output of our 

processor. 

 

Figure 6. 17: Binary Instructions of the Vector Multiply Example 
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Figure 6. 18: VCD Output of the Vector Multiply Example 

 In the simulation above, we can confirm the functionality of our design. Indeed, 

at first, two vector move instructions are executed and fill the elements of vector register 

0 and vector register 1 with the appropriate values (15 and 10). After that the vector add 

instruction alongside with the vector multiply instruction are executed and produce the 

correct results on vector register 3 and vector register 4. Finally, a vector multiply and 

accumulate instruction is executed and produces the appropriate results on the vector 

register 1.  

 The results on the vector registers are in hexadecimal format for convenience. 
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 6.3.3   Vector Load and Vector Store Example 
 This is a similar test program like the one before, only that now it contains vec-

tor data processing instructions as long as vector load and vector store instructions. It 

is created in order to check the functionality of the vector load and vector store instruc-

tions. The instructions in binary form as long as the VCD output that the processor 

produced after running these instructions are provided below: 

 

Figure 6. 19: Binary Instructions of the Vector Load and Vector Store Example 
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Figure 6. 20: VCD Output of the Vector Load and Vector Store Example 

  

 As we can observe from the simulation above, it is confirmed that our vector 

processing unit passes with success this test program too. Indeed, at first, there are two 

scalar move instructions that are executed in order to help the execution of the upcom-

ing vector instructions. Alongside with the scalar ones, two vector instructions are ex-

ecuted simultaneously and produce the appropriate results on the vector registers 0 and 

1. After that, a vector add instruction and a vector store instruction are executed in 

parallel and produce the correct results on vector register 3 and on memory. To fully-

test the vector store instruction, we finally execute a vector load one at the exact 

memory positions the vector store instruction was executed. The results are the ex-

pected ones, thus we conclude that these instructions are also been executed correctly. 

 

6.3.4   Multiple Scalar & Vector Instructions Example 
  

 This is about one of the most complicated programs that we tested on our pro-

cessor. It is about many written “by-hand” instructions that test the vector and scalar 

part separately and alongside. For convenience, we will only provide the program as it 

concerns the instructions in binary form. The VCD outputs can be tested by executing 

this test program. It is not provided here because it is quite a waste of space. 

 The binary instructions are introduced in the figure below:
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Figure 6. 21: Binary Instructions of the Multiple Scalar and Vector Instructions Example 

6.4   Design Evaluation 
 

 In this section, we are going to introduce our design’s utilization after only syn-

thesizing it on Xilinx ISE 14.7 tool with the use of a board, which is on the Artix – 7 

family. After that, we are going to compare our scalar design only with Piccolo and 

LEON2 processors and make annotations on the results. 

Below we introduce the utilization of our design (Vector & Scalar) after synthesizing 

it on the FPGA board we mentioned before. It is crucial to point out that the results 

below are not taken after Place & Rout but only in synthesizing level: 

Slice Registers Slice LUTs DSPs 

~=15.500 ~=250.000 ~=150 

 

 The conclusion is that these numbers, of course, are not the optimal ones. The 

sure thing is that our design can have several to many improvements as far as it concerns 

the clock frequency and the use of resources in the FPGA. In this place, however, it is 

good to be mentioned that it was the first time that this type of tools and language (BSV) 

was used for such designs. It is also worth to be mentioned that our vector design is a 
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really wide unit that can hold up to 15 1024-bit quantities in each vector register bank, 

as long as it can execute two vector instructions simultaneously. 

Below we introduce the utilization of our scalar design only after synthesizing it on the 

FPGA board we mentioned before: 

Slice Registers Slice LUTs 

~=680 ~=5700 

LEON 

LEON2 is a 32-bit RISC SPARC V8 compliant architecture, which uses big endian 

byte ordering as specified in the SPARC V8 reference manual. LEON2 is a synthesiz-

able processor developed by ESA and maintained by Gaisler Research. The processor 

was originally developed as a fault-tolerant processor for space applications. This report 

covers the non-fault-tolerant version licensed under the GNU LGPL license, which is 

freely available as a VHDL model from the Gaisler Research website. LEON2 targets 

both the ASIC and FPGA markets. 

Piccolo 

Piccolo is a 32-bit processor implemented by Bluespec Inc. The architecture of this 

processor is based on the RV32IM ISA. Some features of the free version are: 

 100MHz 

 

 3-stage pipeline 

 

 <3000 LUTs 

 

Below we introduce an overview of the three processors’ designs (LEON, Piccolo and 

our scalar design): 

 Pipeline Stages LUTs 

LEON2 5-stage 3820-7178 

Piccolo 3-stage <3000 

Our Scalar Design 3-stage 5700 

 

As we can observe, our scalar design has comparable results with the other two proces-

sors. However, by studying those results, we can conclude that the optimization of our 

design is feasible. 
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 Chapter 7 
 

Conclusion 
 

 

7.1 Conclusion of Thesis 
 

 This thesis was an attempt to implement an ARM processor with SIMD exten-

sions in Bluespec System Verilog Hardware Description Language. It was a challenge 

for us to study the ARM architecture, learn about Vector processors and finally get 

experienced with a new HDL, the Bluespec language. After experimenting with the 

BSV, it is easy for us to conclude that this HDL is suitable for this kind of work. The 

implementation of any processor in BSV is easier and this is because Bluespec is more 

like High Level languages, which are used for software development (C++ , Java), ra-

ther than other HDLs (Verilog, VHDL). It also provides the ability to design circuits in 

a more detailed and targeted way.  

7.2 Future Work 
 

 Code optimization for higher clock frequency and fewer resources on the FPGA 

 

 Expand the Pipeline Stages 

 

 Forwarding and Chaining Optimizations after expanding the pipeline stages or 

inserting other type of instructions 

 

 Instruction and Data Caches 

 

 Expand the instruction set to another version. 

 

 More experience with the tool to find an optimal way to design a processor on 

it. 

 

 Power management of the design
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