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ABSTRACT

In this work, we show how the advantages of a Low Power
Wide Area Network (LPWAN) protocol can be exploited to
support greater availability and usability of Internet of Things
(loT) applications. The main idea is to show how LPWAN
networks can be interconnected with the Cloud where loT
data can be fransferred securely for persistent storage and
further processing. To show proof of concept, we
experimented with LoRa technology and LoRaWAN, the
latest successful representative of LPWAN protocols. The
LoRaWAN protocol is characterized by long range, low
power and low data rate transmission. We applied a typical
experimental setup with LoRa environmental sensors
transmitting measurements over long distances using LoRa
protocol to gateways and from there to the cloud. Our
scenario is application agnostic (as it is independent of
sensor types and need not be aware of the actual IoT
measurements). The advantage of this scenario is that whole
cities can be covered with a small number of gateways
where, each gateway is capable of dealing with even
thousands of sensors.

The LoRa Nodes transmit RF packets with LoRa modulation
which are captured by one or more Gateways. The
Gateway receives LoRa packets from sensors in range and
re-fransmits them to the cloud over internet using an IP
protocol (e.g. a basic one such as UDP). In this work we opt
for MQTT a more elaborate lightweight publish-subscribe P
protocol offering advance security, better routing control
and visibility of the communication (i.e. easier handling and
conftrol of data packets).

The focus of this work is on interconnecting the gateways
with the cloud. We develop the Network Server, a solution
that runs as a service on the cloud and whose purpose is to
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(a) receive LoRa packets from gateways (b) decode their
payload from ASCIl characters to bits (base 64 encoding) (c)
dedublicate packets received from more than one
gateways (d) decrypt the payload (AES 128 bit encryptions is
applied by LoRA) and (e) make data available to the cloud
services in NGSI - JSON format. For outgoing packets the
same solution is applied in reverse order. packets are
encrypted, encoded and fransmitted to target gateways (is
supported by the LoRaWare with some additional
configurations-haven't been tested). The service s
developed for FIWARE cloud, a pan-European cloud
infrastructure which is supported by the EU. NGSI is the
protocol which is used by every Generic Enabler of Fiware
ecosystem as a data exchange model. One of them is the
Publish/Subscribe Context Broker which mediates between
devices and applications. Our architecture referred to as
LoRaWare, allows loT developers to enhance fthe
capabilities of LoRa enabled applications using advanced
FIWARE services supporting persistent storage and data
analytics, service synthesis using Mashups etc. In our example
implementation, humidity and temperature measurements
are monitored in real - time on the cloud while historical
values are stored in MySQL database.

We run an exhaustive set of experiments using real and
simulated (but realistic) data in order to study the system
response time and system scalability.

We report average end-to-end processing times (i.e. from
the moment |oT data are received by the network server to
the time they are stored in the database) and also average
time spent on each service in the processing sequence.

To study system scalability we stressed the system with a
large synthetic (but realistic) payload simulating up to 2.000
requests (i.e. data packets) received by the Network server



and processed on the cloud. Our experimental results
demonstrate that our system is still capable of performing
real - time or close to real time for many thousands of
concurrent requests.

In a different experiment, we study the practical range of
LoRa transmission in a real urban environment (in the city of
Chania) with two gateways placed apart from each other.
The experimental results reveal that the rate of packages
captured by any of the two gateways decreases drastically
with the distance from the sensors in all cases.



[MEPIAHWH

Ye AuTN TNV €pyacia, TapoLOIAlOLUE TG TA TTAEOVEKTAUATA
EVOC  XAUNANG  KATAVOAWONG KAl €LEEIAC  TTEQIOXNG
SIKTOOL(LPWAN) TTOWTOKOAANOL UTTOPOLY VA EKUETAANELOOLY
yla va orootnpifouy  peEYaALTEPN  SIABecIUOTNTA KAl
XPNOIUOTNTA  €PAPPOYWY TOL SIASIKTOOL TWV TTPAYUATWV
(loT). H Baoikn 16¢a civar va &eiovue TTwwg ta LPWAN Siktua
UTTOPOLY va SlacLveeBoLY e TO NEPpOG oTTou Ta loT dedoueva
UTTOPOLY VA  HETAPEPOOLY  pe  ACPAAE YO  POVIUN
ammoBnkevon Kal emTAcov eme€epyaaia. Na va amodeiovue TN
YEVIKN 16€Q, TTEIPAPATIOTAKAWE PJE TNV TeExvoAoyia LoRa kal 1o
LOROWAN, TO TEAELTAIO QAVTITTOOOWTIELTIKO ATTO Ta LPWAN
TTOWTOKOAA. To LORGWAN TToTOKOANO XapakTnpiletal ammo
HMEYOAN €UPREAEIT, XAUNAN 1I0XL KAl XAUNAO PLOUO peTadoong
TV  Sebopevwy. E@apuocaue  dia  TOTIKN  TTEIOAUATIKA
eykataotaon e LoRa mepIPAANOVTIKOOC aIoONTNPES TTOL
puetadibovv  PETPNCEIC O Hid  PEYAAN  QTTOOTAON
XPNOIUOTIOIVTAG TO LORa TTPwTOKOANO péxpl Ta gateways
Kal atro ekei 0TO Nepog. To oevdplo pag eival ave€aptnTo atmo
TOLG TOTTOLG TWV AICONTNPWV Kal &ev xpealeTal va yvwpilel
TO €60C TWV TIPAYUATIKWV loT peTonoewy. To TTAEOVEKTNUA
ALTOL TOL CEVAPIOL €ival OTI OAOKANPEC TTOAEIC UTTOPOLY VA
KAALPOOLVY pE Eva UIKPO apiBuo TTLAWY SikTOoL(gateways)
OTTOL KABE pia eival IKavh va eELTTNEETNOEN JEXP! KAl XINASEC
QIoBNTNPEG.

O1 LoRa «kopPor peradibouvv TTaKETA EASIOCLXVOTNTWY  UE
Slapuoppwon LoRa 1a omoia cuLAAapPavovTal amo pia N
TTEQICOCOTEPEG TTOAEG. KaBe TTOAN AapPavel ta LoRa tTakeTa
Ao €€ AMOOTACEWS AIOONTAPES KAl avaueTadidel auTa OTO
NEPOG pEC® TOL  SIASIKTLOL XPNOIYOTIoILVTAG  &va  IP
TTOWTOKOANO (6NA. kaTTOI0 CcLVNBICPEVO OTTWS TOo UDP). e
auTn TNV €pyacia xpnolyotroinocaue 1o MQTT éva o
AETITOUEPEG EAAPPL publish-subscribe [P TTPWTOKOAANO TTOL



TTOOOPEQEl  TTOOXWPENUEVN  ACPOAEIQ, KAAOTEQO  EAEYXO
SpopoAOYNONG KAl TTapakoAoLBNONG TNG  ETTIKOIVGVIAG
(5NACS KAAUTEQO XEIPIOHO KAl EAEYXO TWYV TTAKETWV).

To €TmKevTPO ALTAG TNG €pyaciag cival n dlacvvdeon Twv
TTOAWYV SIKTOOL Pe TO Nepocg. AvamTouéape evav eELTTNEETNTN
SIKTOOUL , pia AVON N OTToIA TPEXEI WG LTTNPECIA OTO NEPOG Kal
TTOL OKOTIOC TNG ¢ival (a) va AauPavel LoRa mmakera amo TIg
TTOAEG SIKTOOL (b) va ATTOKWSEIKOTIOIEI TO TTEQIEXOUEVO TOLG
amo xapaktnpes ASCII oe bits (baseé4 kwdikotmoinon) (c) va
KOOTAEl &va  POVASIKO TIakETO  av  AauPaverar  ammo
TTEQICOOTEPEG Ao pia  TOAeg SikTLOL  (d)  va
ATTOKPLTITOYPAREl  TO  TTeplexopevo  (AES 128  Dbit
KoLTTITOYpAPNon epapuoletal ammo 1o LoRa) kail (e) va kavel
Ta debopéva diabioiua oTic vTTNEEeoieg ToL NEpoug oe NGSI-
JSON popon. Na 1a 1akera oL Ryaivouy €€ ammo 10 Nepog
n idla Avon epapuoleTal o QVTIOTPOPN CelPd: TA TTAKETA
KOLTITOYPA@OLVTAI, KWAOIKOTTOIOLVTAl KAl peTadibovtal o€
OTOXELOUEVEG TTLOAEG (vTTOOTNEIleTal ATTO TO LoRaWare pe
KATTOIEG TTPOOBOETEC TPOTIOTTOINCEIG-6ev  €xel SokipaoTei). H
LTTNEECIa  &xel avatTuxBel yia 10 Fiware Cloud , pia
TTAVELPWTTAIKI LTTOSOUN VEPOLS TTOL LTTOCTNPEIZETAI ATTO TNV
Evpwtaikn ‘Evawon. To NGSI TTpTOKOANO XoNCIUOTIOIEITAl ATTO
kaBe Generic Enabler Tou Fiware olKOCLOTAUATOS WG £va
HOVTEAO avTaAAaYNG Sebouevawy. ‘Evag amod avToug eival kal o
Publish/Subscribe Context Broker o omoiog pecoAaei petalv
OLOKELWV KAl EPAPUOYWV. H QPXITEKTOVIKN HAG, AVAPEQETAI
@G LoRaWare, emtpémel oToug loT developers va RBeATICOLY
TIG LvATOTNTEG TWV EPAPUOYWY LORaA XpNOIUOTTOIVTAG
TTOOXWPNMEVES LTTNPECIEG TOL Fiware mouv vTooTnEiovy
poviun  amoBnkevon, avoilvon  dedopevwy, oLVOeoN
5eS0UEVIV KAl LTTNPECIWY e Mashups KTATT. LTo TTAPASEIYUA
TNG LAOTTOINCNG PAG, TTAPAKOAOLOOLVTAI UETPNOEIC LYPATIAG
Kal BepUOKOACIAg O& TTIPAYUATIKO XPOVO OTO NEPOG &vo



TALTOXPOVA ATTOONKELOVTAI Ol TIUEGC OTO IOTOPIKO O€ pid
MySQL Baon &ebopuévady.

ExTeAOLUE Eva e€avVTANTIKO oLVOAO TTEIOAUATRV
XPNOIUOTIOIWVTAG  TTEAYUATIKA  §e60uEVA TTPOCOMOIONG
WOTE VA JEAETNOOLE TOV XPOVO ATTOKPIONG TOL CLOTHUATOC
KAl TNV ETTEKTACIUOTNTA TOVL.

AVAPEODOLIE TO PECO XPOVO €TTECEPYATIAC ATTO AKPO T€ AKPO
(6NAadn atmo TN oTiyun 1mou Ta 10T debopéva AappavovTal amo
TOV €E0TTNEETNTN SIKTOOUL PEXPI TN CTIYUNA TTOL ATTOBNKELOVTAI
otTn Paon 6edSopévadv) Kal €MoONS TOV UECO XPOVO TTOL
Samavartal oe  kABeg LTNEECIa  OTNV  AaKoAovBia TNg
eme€epyaciag.

A va PEAETACOLUE TNV ETTEKTACIUOTNTA TOL CULOTAPATOG
OTPECAPAUE TO OLOTNHA ME Eva TEPAOTIO (TTPAYUATIKO)
POPTIO  TIPOCOUOIUEVO  pe 2000 armnuata  (TTakéTa
SeSopEvav) TToL AauPavovTal ammo Tov €ELTTNEETNT SIKTOOL
kal eme€epyalovial  oto  Népog. Ta  TEPAUATKA  PAg
ammoTeAeopaTa &eixvouvy OTI TO COOTNUA PAG €ival IKAVO va
atrobibel o€ TTPAYHATIKO XPOVO N KOVTA O€ TTPAYUATIKO XPOVO
yIa TTOAAQ XINGSEC TALTOXPOVA AITNUATA.

Ye Eva SIAMOPETIKO TTEIDAPA, MEAETNOAUE TO TTPAKTIKO £0POC
TNG LoRa petadoong o€ &va TTEAYUATIKO AOTIKO TTEQIRAANOV
(oTnV  TTOAN Twv Xaviwv) pe V0 TIOLAEG SIKTOOL  TTOL
TOTTOBETAONKAY PaKEIA N dia armo TNV AAAn. Ta TTeipapaTika
ATTOTEAECUATA TTOL TTPOEKLYWAV ATTOKAALTITOLYV OTI O PLOPOG
TWV AQUPAVOUEVRV TTOKETWV YIA KABE pia ammo TIG TTOAEG
SIKTOOUL pEIVETAl SPACTIKA O OXEON HWE TNV ATTOCTACN TWV
QAICONTNPWYV O& OAEC TIG TTEQITITAOOEIC.
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1.Introduction

The idea of the Internet of Things (IoT) combined with cloud computing,
opens new horizons in the field of real time data collection and analysis.
Due its scalability, modularity and affordability (no up-front investment,
low maintenance cost) Cloud is the ideal deployment environment of loT
applications.

Cloud Computing makes computing resources accessible over the
network, allows high degree of resource sharing (as many user can be
accessing the same infrastructure or service at the same time). In the
cloud, resources are provisioned and released on-demand allowing users
to use the cloud resources based on their actual needs and be charged
for this. Finally, a scalable infrastructure is scalable to accommodate
demands of the ever increasing number of users and applications. These
operations are enabled by monitoring the actual resource usage at all
times using appropriate monitoring solutions.

Internet of Things is coming into the scene to allow interconnection of
user devices and enable the processing of the huge amounts of
information that are routinely acquired by the millions of devices
connected to the internet. The use of wearable sensors and mobile
devices and their capability for Internet connectivity provides significant
benefits in applications areas that require fast and continuous
monitoring of user data from anywhere (e.g. activity, health monitoring,
smart cities etc.).In real-life applications, huge amounts of data are
collected and analyzed (e.g. for scientific or business purposes).

Furthermore, A Low-Power Wide-Area Network (LPWAN)' or LPWA
network or Low-Power Network(LPN) is a type of wireless
telecommunication wide area network designed to allow long range
communications at a low bit rate among things (connected objects) ,
such as sensors operated on a battery. The low power, low bit rate and
intended use distinguish this type of network from a wireless WAN that
is designed to connect users or businesses, and carry more data, using
more power. The LPWAN data rate ranges from 0,3 kbit/s to 50 kbit/s

! https://en.wikipedia.org/wiki/LPWAN
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per channel. A LPWAN may be used to create a private wireless sensor
network, but may also be a service or infrastructure offered by a third
party, allowing the owners of sensors to deploy them in the field without
investing in gateway technology.

Due to its long range, high mobility, security and low power
consumption, LoRa is considered to be a promising technology and is
projected to support billions of loT devices which can be connected to
internet. Public and private networks using this technology can provide
coverage that is greater in range compared to that of existing cellular
networks.

1.1 PROBLEM DEFINITION AND CONTRIBUTIONS

The present work attempts to become the technological bridge of the
three important technologies referred to above namely, 10T, Cloud
computing and LPWAN. We are motivated by the need to support
interconnection of large numbers of devices to the cloud, where
monitoring of the loT network, persistent storage and analysis of the big
amounts of loT data can take place taking advantage of the scalability,
modularity and low cost maintenance of cloud services. In particular,
taking advantage of the modularity and extendibility of cloud services,
new applications can be designed and deployed on the cloud capable of
serving the needs of diverse application domains and of large numbers
of users.

The need to interconnect networks of LoRa devices and the cloud has
been acknowledged many times in the past by many investigators and
practitioners. The appropriate technological bridge (referred to as
Network server) would run on the cloud and its purpose would be to
receive LoRa encoded data packets from gateways, decode the packets
and forward the transmitted payloads in a format that is commonly
understandable by services running on the cloud. An obvious
disadvantage of such a solution is the lack of standardization in this area
mainly due to the heterogeneity of the cloud providers. However, most
providers adopt the REST standardization for their services and a JSON
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format for data transmission rather than the more general XML format
(which would incur an additional overhead for encoding and decoding).
Besides, the scalability of such a solution has not been studied
elsewhere.

In this work we design and develop LoRaWare a Network server as a
service on FIWARE cloud infrastructure. An important advantage of the
proposed solution is adoption of the NGSI framework and protocol for
subscribing LoRa networks to the cloud and the use of the Publish-
Subscribe context broker service of Fiware for making their data
available to the users. The service allows LoRa Devices to subscribe their
information to the cloud and at the same time, user to subscribe to this
information and get notified every time new information becomes
available.

To show proof of concept we propose an event based architecture on
FIWARE which is capable of using information generated by LoRa
networks of devices. This is a generic architecture that shows how data
can be stored, analyzed and used by other services in a form that is
network agnostic (ie. an application or user need not to be aware of the
peculiarities of LoRa in order to use information from LoRa networks or
in order to communicate with the LoRa devices).

In order to study scalability of the solution we stress the LoRaWare (the
network service and all services subscribing to LoRa devices) with large
synthetic (but realistic) payloads produced by many concurrent users
and we report total response times of the Network Services as well
response times consumed by each individual LoRa Service. The
experimental results demonstrate the LoRaWare (and the Network
Server) scales-up very well responding in real or in close to real-time in
all cases.

In a different experiment, we study the practical range of LoRa
transmission in a real urban environment (in the city of Chania) with two
gateways placed apart from each other. The experimental results reveal
that the rate of packages captured by any of the two gateways
decreases drastically with the distance from the sensors in all cases.

13



2.Background-Related Work

2.1 Cloud Computing

2.1.1 Definition

According of National Institute of Standards and Technology (NIST)
definition®, Cloud Computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management
effort or service provider interaction. This cloud model promotes
availability and is composed of three service models and four
deployment models.

2.1.2 Advantages of Cloud3
Cloud computing has 3 main benefits:

e Flexibility which means that users can scale services to fit their
needs customize applications and access cloud services from
anywhere with an internet connection.

e Efficiency as enterprise users can get applications to market
quickly, without worrying about underlying infrastructure costs or
maintenance.

e Strategic value because cloud services give enterprises a
competitive advantage by providing the most innovative
technology available.

Every advantage of the above hides more specific benefits.

To begin with, flexibility means scalability, as cloud infrastructure can be
scaled on demand to support fluctuating workloads. In addition, users
can have storage options as they can choose public, private or hybrid
storage offerings, depending on security needs and other
considerations. Furthermore, it provides control choices, which means

? https://www.nist.gov/sites/default/files/documents/itl/cloud/cloud-def-v15.pdf
*https://www.ibm.com/cloud/learn/benefits-of-cloud-computing
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that organizations can determine their level of control as-a-service
options. These include software as a service (SaaS), platform as a service
(PaaS) and infrastructure as a service (laaS). Also, tool selection gives
the opportunity to users to select from a menu of prebuilt tools and
features a solution that fits their specific need. Finally, security features
such as virtual private cloud, encryption and API keys help keep data
secure.

On the other hand, efficiency means accessibility because cloud-based
applications and data are virtually accessible from any internet-
connected device. Furthermore, developing in the cloud enables users to
get their applications to market quickly (speed to market). Also, it
provides security to data, as hardware failures do not result in data loss
because of networked backups. In addition, efficiency brings savings on
equipment. Cloud computing uses remote sources, saving organizations
the cost of servers and other equipment. Finally, a “utility” pay structure
means that users only pay for the resources they use.

Finally, strategic value means streamlined work as cloud service
providers (CSPs) manage underlying infrastructure, enabling
organizations to focus on application development and other priorities.
In addition, service providers regularly update offerings to give users the
most up-to-date technology (Regular updates). Also, worldwide access
means teams can collaborate from widespread locations (collaboration).
Finally, organizations can move more nimbly than competitors who must
devote IT resources to managing infrastructure (Competitive edge).
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2.1.3 Cloud service models*
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Figure 1: Cloud Service Models - Differences between laa$, PaaS and SaaS

There are 3 cloud service models (Figure 1): Infrastructure as a service
(laaS), Platform as a service (PaaS) and Software as a service (SaaS). At
laaS, a vendor provides clients pay-as-you-go access to storage,
networking, servers and other computing resources in the cloud. At
Paa$, a service provider offers access to a cloud-based environment in
which users can build and deliver applications. The provider supplies
underlying infrastructure. Finally, at SaaS, a service provider delivers
software and applications through the internet. Users subscribe to the
software and access it via the web or vendor APIs.

To become more specific, 1aaS is a cloud computing offering in which a
vendor provides users access to computing resources such as servers,
storage, and networking. Organizations use their own platforms and
applications within a service provider’s infrastructure. Instead of
purchasing hardware outright, users pay for laaS on demand.
Infrastructure is scalable depending on processing and storage needs. In
addition, laaS saves enterprises the costs of buying and maintaining their
own hardware. Because data is on the cloud, there can be no single

* https://www.ibm.com/cloud/learn/iaas-paas-saas
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point of failure. Finally, this model enables the virtualization of
administrative tasks, freeing up time for other work.

PaaS is a cloud computing offering that provides users with a cloud
environment in which they can develop, manage and deliver
applications. In addition to storage and other computing resources,
users are able to use a suite of prebuilt tools to develop, customize and
test their own applications. PaaS provides a platform with tools to test,
develop and host applications in the same environment. Furthermore, it
enables organizations to focus on development without having to worry
about underlying infrastructure. This model gives the opportunity to
providers to manage security, operating systems, server software and
backups and it also facilitates collaborative work even if teams work
remotely.

Finally, SaaS is a cloud computing offering that provides users with
access to a vendor’s cloud-based software. Users do not install
applications on their local devices. Instead, the applications reside on a
remote cloud network accessed through the web or an API. Through the
application, users can store and analyze data and collaborate on
projects. SaaS vendors provide users with software and applications via
subscription model. Users do not have to manage, install or upgrade
software because providers manage this. Data is secure in the cloud, as
equipment failure does not result in loss of data. Also, use of resources
can be scaled depending on service needs and applications are
accessible from almost any internet-connected device, from virtually
anywhere in the world.
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2.1.4 Cloud deployment models>
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Figure 2: Cloud deployment models

There are 4 cloud deployment models (Figure 2):

e The most common and well-known deployment model is Public
Cloud. A Public Cloud is a huge data center that offers the same
services to all its users. The services are accessible for everyone
and much used for the consumer segment. Examples of public
services are Facebook, Google and LinkedIn. For consumers, Public
Cloud offerings are usually free of charge, for professionals there
is usually a per-per-use (or user) pricing model. The Public Cloud is
always hosted by a professional Cloud supplier.

e The other commonly used deployment model is Private Clouds.
There are lots of discussions for how strict the definition of Private
Clouds should be. In general a customer’s internally hosted data
center is regarded as a Private Cloud. If we add virtualization and
automation, such a setup may very well be regarded as a Private
Cloud. A professional Cloud vendor may also offer a Private Cloud
to their customers by supporting a separate hardware
environment in the data center. A Private Cloud is therefore

> https://www.visma.com/blog/cloud-basics-deployment-models/
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mostly suited for sensitive data, where the customer is dependent
on a certain degree of security. Private Clouds, to a certain degree,
loose the economy of scale compared to a Public Cloud.

e A way to preserve the benefits of economy of scales with the
Private Cloud is a Community Cloud. This is cooperation between
users who share some concerns like security, application types,
legislative issues and efficiency demands. In other words, a
Community Cloud is a closed Private Cloud for a group of users.
For governments this is called Government Cloud and is a type of
Cloud that is more and more adapted. Due to legislative issues, a
Government Cloud may be the answer to country specific judicial
concerns.

e The Hybrid Cloud is a combination of both Private and Public. This
is a setup that is much used for large companies. Vital data is
usually preferred in a Private Cloud and supporting services in
Public, for instance search, email, blogs, CRM etc. In other words
strategic applications are run separately.

2.1.5 Virtualization
Virtualization® refers to the creation of a virtual resource such as a
server, desktop, operating system, file, storage or network.

It is the key to cloud computing’, since it is the enabling technology
allowing the creation of an intelligent abstraction layer which hides the
complexity of underlying hardware or software.

The main goal of virtualization is to manage workloads by radically
transforming traditional computing to make it more scalable.
Virtualization has been a part of the IT landscape for decades now, and
today it can be applied to a wide range of system layers, including
operating system-level virtualization, hardware-level virtualization and

6 https://www.techopedia.com/definition/719/virtualization
7 https://www.computerworld.com/article/2468246/cloud-computing/why-virtualization-is-the-
foundation-of-cloud-computing.html

19



server virtualization.

TRADITIONAL AND VIRTUAL ARCHITECTURE
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Figure 3: Difference between traditional and virtual architecture

It is commonly hypervisor-based®. The hypervisor isolates operating
systems and applications from the underlying computer hardware so the
host machine can run multiple virtual machines (VM) as guests that
share the system's physical compute resources, such as processor cycles,
memory space, network bandwidth and so on. (Figure 3)
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Figure 4: Hypervisor type 1 & type 2

There are two hypervisor types (Figure 4):

Type 1 hypervisors, sometimes called bare-metal hypervisors, run
directly on top of the host system hardware. Bare-metal hypervisors

8 https://whatis.techtarget.com/definition/virtualization-architecture
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offer high availability and resource management. Their direct access to
system hardware enables better performance, scalability and stability.
Examples of type 1 hypervisors include Microsoft Hyper-V, Citrix
XenServer and VMware ESXi.

A type 2 hypervisor, also known as a hosted hypervisor, is installed on
top of the host operating system, rather than sitting directly on top of
the hardware as the type 1 hypervisor does. Each guest OS or VM runs
above the hypervisor. The convenience of a known host OS can ease
system configuration and management tasks. However, the addition of a
host OS layer can potentially limit performance and expose possible OS
security flaws. Examples of type 2 hypervisors include VMware
Workstation, Virtual PC and Oracle VM VirtualBox.

Virtual Machines Containers
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Bins/ Bins/ Bins/ S S S p p p
Libs Ubs Libs 8 ‘3 ? [ P [
Guest Guest Guest
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Figure 5: Virtual Machines stuck vs Containers stuck

The main alternative to hypervisor-based virtualization is
containerization (Figure 5). A container’ image is a lightweight, stand-
alone, executable package of a piece of software that includes
everything needed to run it: code, runtime, system tools, system

9 https://www.docker.com/what-container
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libraries, settings. Available for both Linux and Windows based apps,
containerized software will always run the same, regardless of the
environment. Containers isolate software from its surroundings, for
example differences between development and staging environments
and help reduce conflicts between teams running different software on
the same infrastructure.

docker

Figure 6: Docker logo

Docker is a computer program that performs operating-system-level
virtualization also known as containerization.

Docker is a tool that can package an application and its dependencies in
a virtual container that can run on any Linux server. This helps enable
flexibility and portability on where the application can run.
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2.1.6 Openstack

openstack.

Figure 7: Openstack logo

OpenStack™ is a cloud operating system that controls large pools of
compute, storage, and networking resources throughout a datacenter,
all managed through a dashboard that gives administrators control while
empowering their users to provision resources through a web interface.
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Figure 8: OpenStack embraces a modular architecture to provide a set of core services that facilitates
scalability and elasticity as core design tenets.

OpenStack'* embraces a modular architecture to provide a set of core
services that facilitates scalability and elasticity as core design tenets
(Figure 8).

OpenStack Compute service (nova) provides services to support the
management of virtual machine instances at scale, instances that host
multi-tiered applications, dev or test environments, “Big Data” crunching
Hadoop clusters, or high-performance computing.

1% https://www.openstack.org/software/
" https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html!
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The OpenStack Object Storage service (swift) provides support for
storing and retrieving arbitrary data in the cloud. The Object Storage
service provides both a native APl and an Amazon Web Services S3-
compatible API. The service provides a high degree of resiliency through
data replication and can handle petabytes of data.

The OpenStack Block Storage service (cinder) provides persistent block
storage for compute instances. The Block Storage service is responsible
for managing the life-cycle of block devices, from the creation and
attachment of volumes to instances, to their release.

The OpenStack Networking service (neutron, previously called
guantum) provides various networking services to cloud users (tenants)
such as IP address management, DNS, DHCP, load balancing, and
security groups (network access rules, like firewall policies). This service
provides a framework for software defined networking (SDN) that allows
for pluggable integration with various networking solutions.

The OpenStack Dashboard (horizon) provides a web-based interface for
both cloud administrators and cloud tenants. Using this interface,
administrators and tenants can provision, manage, and monitor cloud
resources. The dashboard is commonly deployed in a public-facing
manner with all the usual security concerns of public web portals.

The OpenStack Identity service (keystone) is a shared service that
provides authentication and authorization services throughout the
entire cloud infrastructure. The Identity service has pluggable support
for multiple forms of authentication.

The OpenStack Image service (glance) provides disk-image management
services, including image discovery, registration, and delivery services to
the Compute service, as needed.
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2.1.7 Fiware12

&F

The FIWARE middleware platform provides a rather simple yet powerful

Figure 9: Fiware logo

set of APIs (Application Programming Interfaces) that ease the
development of Smart Applications in multiple vertical sectors. The
specifications of these APIs are public and royalty-free. Besides, an open
source reference implementation of each of the FIWARE components is
publicly available so that multiple FIWARE providers can emerge faster
in the market with a low-cost proposition.

FIWARE provides an enhanced OpenStack-based cloud environment plus
a rich set of open standard APIs that make it easier to connect to the
Internet of Things, process and analyse Big data and real-time media or
incorporate advanced features for user interaction.

The FIWARE Community is an independent Open Community whose
members are committed to materialize the FIWARE mission, that is: “to
build an open sustainable ecosystem around public, royalty-free and
implementation-driven software platform standards that will ease the
development of new Smart Applications in multiple sectors”. The
FIWARE Community is not only formed by contributors to the
technology (the FIWARE platform) but also those who contribute in
building the FIWARE ecosystem and making it sustainable over time. As
such, individuals and organizations committing relevant resources in
FIWARE Lab activities or activities of the FIWARE Accelerator, FIWARE
Mundus or FIWARE iHubs programmes are also considered members of
the FIWARE community.

FIWARE Lab is a non-commercial sandbox environment where
innovation and experimentation based on FIWARE technologies take
place. Entrepreneurs and individuals can test the technology as well as

2 https://www.fiware.org/
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their applications on FIWARE Lab, exploiting Open Data published by
cities and other organizations. FIWARE Lab is deployed over a
geographically distributed network of federated nodes leveraging on a
wide range of experimental infrastructures.

The FIWARE Catalogue contains a rich library of components (Generic
Enablers) with reference implementations that allow developers to put
into effect functionalities such as the connection to the Internet of
Things or Big Data analysis, making programming much easier. All of
them are public, royalty-free and open source!

Generic Enablers (GEs) offer a number of general-purpose functions,
offered through well-defined APIs, easing development of smart
applications in multiple sectors. They will set the foundations of the
architecture associated to our application.

The FIWARE Catalogue includes links to other catalogues bringing
information about domain-specific enablers (DSEs) to be combined with
those serving general purposes (Generic Enablers - GE). They may be
helpful for those who plan to develop applications in the domains of
energy, creative media, smart manufacturing, health and wellbeing and
the agrifood sector.

2.1.8 The NGSI Information Model13

OMA™ NGSI defines two interfaces for exchanging information based on
the information model. The interface OMA NGSI-10 is used for
exchanging information about entities and their attributes, i.e., attribute
values and metadata. The interface OMA NGSI-9 is used for availability
information about entities and their attributes. Here, instead of
exchanging attribute values, information about which provider can
provide certain attribute values is exchanged.

The central aspect of the NGSI-9/10 information model is the concept of
entities. Entities are the virtual representation of all kinds of physical
objects in the real world. Examples for physical entities are tables,

3 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/NGSI-9/NGSI-
10_information_model
" https://en.wikipedia.org/wiki/Open_Mobile_Alliance
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rooms, or persons. Virtual entities have an identifier and a type. For
example, a virtual entity representing a person named “John” could have
the identifier “John” and the type “person”.

Any available information about physical entities is expressed in the
form of attributes of virtual entities. Attributes have a name and a type
as well. For example, the body temperature of John would be
represented as an attribute having the name “body_temperature” and
the type “temperature”. Values of such attributes are contained by value
containers. This kind of container does not only consist of the actual
attribute value, but also contains a set of metadata. Metadata is data
about data; in in our body temperature example this metadata could
represent the time of measurement, the measurement unit, and other
information about the attribute value.

There is also a concept of attribute domains in OMA NGSI 9/10. An
attribute domain logically groups together a set of attributes. For
example, the attribute domain "health_status" could comprise of the
attributes "body temperature" and "blood_pressure".

The data structure used for exchanging information about entities is
context element. A context element contains information about
multiple attributes of one entity. The domain of these attributes can also
be specified inside the context element; in this case all provided
attribute values have to belong to that domain.

Formally, a context element contains the following information

e an entity id and type

e a list of triplets <attribute name, attribute type, attribute value>
holding information about attributes of the entity

e (optionally) the name of an attribute domain

e (optionally) a list of triplets <metadata name, metadata type,
metadata value> that apply to all attribute values of the given
domain
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2.1.9 IDAS GE15

The IDAS component is an implementation of the Backend Device
Management GE, according to the FIWARE reference architecture. We
need this component if we plan to connect loT devices/gateways to
FIWARE-based ecosystems.

loT Agents translate loT-specific protocols into the NGSI context
information protocol, that is the FIWARE standard data exchange model.
We do not need this component if our devices or gateways natively
support the NGSI API.

By using an loT Agent , our devices will be represented in a FIWARE
platform as NGSI entities in a ContextBroker. This means that we can
guery or subscribe to changes of device parameters status by querying
or subscribing to the corresponding NGSI entity attributes at the
ContextBroker.

Additionally, we may trigger commands to our actuation devices just by
updating specific command-related attributes in their NGSI entities
representation at the Context Broker. This way, all developers
interactions with devices are handled at a Context Broker, providing an
homogeneous APl and interface as for all other non-loT data in a
FIWARE ecosystem.

Currently there are four supported loT Agents by Fiware which have
been implemented with node.js:

» loTAgent-JSON 1.6.2 (HTTP/MQTT transport):

This loT Agent is designed to be a bridge between an HTTP/MQTT+JSON
based protocol and the FIWARE NGSI standard used in FIWARE, like the
Orion Context Broker.

» loTAgent-LWM2M 0.4.0 (CoaP transport)

This 10T Agent is designed to be a bridge between a Lightweight M2M
protocol and the FIWARE NGSI standard.

> https://catalogue-server.fiware.org/enablers/backend-device-management-idas
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» loTAgent-UL 1.5.2 (HTTP/MQTT transport)

This loT Agent is designed to be a bridge between an UltraLight2.0
protocol and the FIWARE NGSI standard.

» loTAgent-node-lib 2.5.1

This repository does not belong to an executable agent, but it is a library
to create new agents. This core library allows developing new agents for
specific southbound protocols/standards/messages.

2.1.10 Orion Context Broker GE1¢

Orion Context Broker is able to mediate between consumer producers
(e.g. sensors) and every context consumer application. It is an
implementation of the Publish/Subscribe Context Broker GE, providing
the NGSI9 and NGSI10 interfaces. Using these interfaces, clients can do
several operations:

e Register context producer applications, e.g. a temperature sensor
within a room

e Update context information, e.g. send updates of temperature

e Being notified when changes on context information take place
(e.g. the temperature has changed) or with a given frequency
(e.g. get the temperature each minute)

e Query context information. The Orion Context Broker stores
context information updated from applications, so queries are
resolved based on that information.

Orion is a C++ implementation of the NGSIv2 REST API binding
developed as a part of the FIWARE platform.

2.1.11 Keyrock Identity Manager GE17

Identity Management covers a number of aspects involving users' access
to networks, services and applications, including secure and private
authentication from wusers to devices, networks and services,
authorization & trust management, user profile management, privacy-

16 https://catalogue-server.fiware.org/enablers/publishsubscribe-context-broker-orion-context-
broker
" https://catalogue-server.fiware.org/enablers/identity-management-keyrock
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preserving disposition of personal data, Single Sign-On (SSO) to service
domains and Identity Federation towards applications. The Identity
Manager is the central component that provides a bridge between IdM
systems at connectivity-level and application-level. Furthermore,
Identity Management is used for authorizing foreign services to access
personal data stored in a secure environment. Hereby usually the owner
of the data must give consent to access the data.

2.2 Internet of Things (IoT)

The Internet of Things (1oT)™® is the network of physical devices,
vehicles, home appliances and other items embedded with electronics,
software, sensors, actuators, and connectivity which enables these
objects to connect and exchange data. Each thing is uniquely identifiable
through its embedded computing system but is able to inter-operate
within the existing Internet infrastructure.

2.2.1 Devices

loT devices, or any of the many things in the internet of things, are
nonstandard computing devices that connect wirelessly to a network
and have the ability to transmit data.
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Figure 10: Internet of Things (loT) connected devices installed base worldwide from 2015 to 2025 (in billions)

'8 https://en.wikipedia.org/wiki/Internet_of_things

30



This statistic® (Figure 10) shows the number of connected devices
(Internet of Things; 1oT) worldwide from 2015 to 2025. For 2020, the
installed base of Internet of Things devices is forecast to grow to almost
31 billion worldwide. The overall Internet of Things market is projected
to be worth more than one billion U.S. dollars annually from 2017
onwards.

So we could understand how crucial the role of Cloud Computing is in
order to deal with this rapid increase.

loT devices have some fundamental characteristics. First of all,
everything communicates which means that smart things have the
ability to wirelessly communicate among themselves, and form adhoc
networks of interconnected objects. In addition, everything is identified.
Each thing has a unique identifier (e.g., IP address if IPv4 — 32bit address
space, but due to limited address space loT will have to use IPv6 - 128 bit
address space). Finally, everything interacts which means that smart
things can interact with their environment through sensing and
actuation capabilities.

loT devices may be sensors, actuators, microcontrollers or shields.

Sensors are devices that detect and respond to some type of input from
the environment (temperature, motion, humidity, pressure etc.)

Actuators are systems which convert electrical signals to physical actions
(for interacting with environment).

Microcontrollers are small computers on a single board containing
processor, memory and i/o peripherals. They are embedded with low
power consumption and small size.

IoT Node shields are integrated solutions on a board for secure
connectivity (e.g., AES encryption) along with programmable board
(m2m).

¥ https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
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2.2.2 10T protocols

As we have already mentioned, loT devices communicate among
themselves, but in order to succeed this task they have to use a non-ip
communication protocol. There are several non-ip protocols which have
both advantages and disadvantages relatively with the domain of their
usage. The most popular loT non-ip protocols are presented below:

Radio-frequency identification (RFID)?® uses electromagnetic fields to
automatically identify and track tags attached to objects. The tags
contain electronically-stored information. Passive tags collect energy
from a nearby RFID reader's interrogating radio waves. Active tags have
a local power source (such as a battery) and may operate hundreds of
meters from the RFID reader. Unlike a barcode, the tag need not be
within the line of sight of the reader, so it may be embedded in the
tracked object.

Near-field communication (NFC)*! is a set of communication protocols
that enable two electronic devices, one of which is usually a portable
device such as a smartphone, to establish communication by bringing
them within 4 cm (1.6 in) of each other. NFC devices are used in
contactless payment systems, similar to those used in credit cards and
electronic ticket smartcards and allow mobile payment to
replace/supplement these systems. This is sometimes referred to as
NFC/CTLS (Contactless) or CTLS NFC. NFC is used for social networking,
for sharing contacts, photos, videos or files. NFC-enabled devices can act
as electronic identity documents and keycards. NFC offers a low-speed
connection with simple setup that can be used to bootstrap more
capable wireless connections.

Zigbee® is an IEEE 802.15.4-based specification for a suite of high-level
communication protocols used to create personal area networks with
small, low-power digital radios, such as for home automation, medical
device data collection, and other low-power low-bandwidth needs,
designed for small scale projects which need wireless connection.

2% https://en.wikipedia.org/wiki/Radio-frequency_identification
! https://en.wikipedia.org/wiki/Near-field_communication
*? https://en.wikipedia.org/wiki/Zigbee
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Hence, Zigbee is a low-power, low data rate, and close proximity (i.e.,
personal area) wireless ad hoc network. Its low power consumption
limits transmission distances to 10-100 meters line-of-sight, depending
on power output and environmental characteristics.[1] Zigbee devices
can transmit data over long distances by passing data through a mesh
network of intermediate devices to reach more distant ones. Zigbee is
typically used in low data rate applications that require long battery life
and secure networking (Zigbee networks are secured by 128 bit
symmetric encryption keys.) Zigbee has a defined rate of 250 kbit/s, best
suited for intermittent data transmissions from a sensor or input device.

Bluetooth®® is a wireless technology standard for exchanging data over
short distances (using short-wavelength UHF radio waves in the ISM
band from 2.4 to 2.485 GHz) from fixed and mobile devices, and building
personal area networks (PANSs).

Bluetooth Low Energy*® (Bluetooth LE, colloquially BLE, formerly
marketed as Bluetooth Smart) is a wireless personal area network
technology designed and marketed by the Bluetooth Special Interest
Group (Bluetooth SIG) aimed at novel applications in the healthcare,
fitness, beacons, security, and home entertainment industries.
Compared to Classic Bluetooth, Bluetooth Low Energy is intended to
provide considerably reduced power consumption and cost while
maintaining a similar communication range.

Wi-Fi or WiFi®® is a technology for wireless local area networking with
devices based on the IEEE 802.11 standards. Devices that can use Wi-Fi
technology include personal computers, video-game consoles,
smartphones and tablets, digital cameras, smart TVs, digital audio
players and modern printers. Wi-Fi compatible devices can connect to
the Internet via a WLAN and a wireless access point. Such an access
point (or hotspot) has a range of about 20 meters (66 feet) indoors and a
greater range outdoors. Hotspot coverage can be as small as a single
room with walls that block radio waves, or as large as many square

2 https://en.wikipedia.org/wiki/Bluetooth
* https://en.wikipedia.org/wiki/Bluetooth_Low_Energy
% https://en.wikipedia.org/wiki/Wi-Fi
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kilometres achieved by using multiple overlapping access points.Wi-Fi
most commonly uses the 2.4 gigahertz (12 cm) UHF and 5.8 gigahertz (5
cm) SHF ISM radio bands. Anyone within range with a wireless modem
can attempt to access the network; because of this, Wi-Fi is more
vulnerable to attack (called eavesdropping) than wired networks. Wi-Fi
Protected Access is a family of technologies created to protect
information moving across Wi-Fi networks and includes solutions for
personal and enterprise networks. Security features of Wi-Fi Protected
Access constantly evolve to include stronger protections and new
security practices as the security landscape changes.

DASH7?® Alliance Protocol (D7A) is an open source Wireless Sensor and
Actuator Network protocol, which operates in the 433 MHz, 868 MHz
and 915 MHz unlicensed ISM band/SRD band. DASH7 provides multi-
year battery life, range of up to 2 km, low latency for connecting with
moving things, a very small open source protocol stack, AES 128-bit
shared key encryption support, and data transfer of up to 167 kbit/s.

LoRa”’ is a patented wireless data communication technology developed
by Cycleo of Grenoble, France, and acquired by Semtech in 2012. LoRa
uses license-free sub-gigahertz radio frequency bands like 169 MHz, 433
MHz, 868 MHz (Europe) and 915 MHz (North America). It enables very-
long-range transmissions (more than 10 km in rural areas) with low
power consumption. The technology is presented in two parts — LoRa,
the physical layer and LoRaWAN, the upper layers. LoRa is described
analytically in section 2.3

On the other hand, ip protocols are needed in order to collect data from
the loT and interconnect it on the Cloud or other computing systems.
Some of the main ip protocols are presented below:

The Transmission Control Protocol (TCP)?® is one of the main protocols
of the Internet protocol suite. It belongs to the Transport Layer of The
Open Systems Interconnection model (OSI model). TCP originated in the
initial network implementation in which it complemented the Internet

26 https://en.wikipedia.org/wiki/DASH7
*" https://en.wikipedia.org/wiki/LoRa
*® https://el.wikipedia.org/wiki/Transmission_Control_Protocol
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Protocol (IP). Therefore, the entire suite is commonly referred to as
TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a
stream of octets (bytes) between applications running on hosts
communicating via an IP network. Major Internet applications such as
the World Wide Web, email, remote administration, and file transfer
rely on TCP.

Applications that do not require reliable data stream service may use the
User Datagram Protocol (UDP)?, which also belongs to Transport Layer
of OSI and provides a connectionless datagram service that emphasizes
reduced latency over reliability. UDP is suitable for purposes where error
checking and correction are either not necessary or are performed in the
application. It avoids the overhead of such processing in the protocol
stack. Time-sensitive applications often use UDP because dropping
packets is preferable to waiting for packets delayed due to
retransmission, which may not be an option in a real-time system.

The Hypertext Transfer Protocol (HTTP)* is an application protocol for
distributed, collaborative, and hypermedia information systems. HTTP is
the foundation of data communication for the World Wide Web.
Hypertext is structured text that uses logical links (hyperlinks) between
nodes containing text. HTTP is the protocol to exchange or transfer
hypertext. HTTP is not ideal for many of the special loT needs. For
example, it is unsuitable for emitting information from one to many,
listening for events whenever may happen and pushing information over
unreliable networks. Also, HTTP is slow (not ideal for real-time
processing), uses more battery and is less reliable.

MQTT (Message Queuing Telemetry Transport)*! is an 1SO standard
(ISO/IEC PRF 20922) publish-subscribe-based messaging protocol. It
works on top of the TCP/IP protocol. It is designed for connections with
remote locations where a "small code footprint" is required or the
network bandwidth is limited. It is ideal for long battery-life of devices,
fast responses, one to many communication due to the

*® https://en.wikipedia.org/wiki/User_Datagram_Protocol
*% https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
*! https://en.wikipedia.org/wiki/MQTT
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publish/subscribe mechanism and reliable data transmissions. The
publish-subscribe messaging pattern requires a message broker. From
the broker we can monitor and handle the routing of the mqtt packets.
Relying on TCP, MQTT allows also using TLS (Transport Layer Security) in
order to encrypt the data and have a secure communication.

Constrained Application Protocol (CoAP)* is a specialized Internet
Application Protocol for constrained devices. It enables those
constrained devices called "nodes" to communicate with the wider
Internet using similar protocols. CoAP is designed for use between
devices on the same constrained network (e.g., low-power, lossy
networks), between devices and general nodes on the Internet, and
between devices on different constrained networks both joined by an
internet. This protocol is also being used via other mechanisms, such as
SMS on mobile communication networks. Essentially, it is a service layer
protocol that is intended for use in resource-constrained internet
devices, such as wireless sensor network nodes. It is designed to easily
translate to HTTP for simplified integration with the web, while also
meeting specialized requirements such as multicast support, very low
overhead, and simplicity. Multicast, low overhead, and simplicity are
extremely important for Internet of Things (loT) and Machine-to-
Machine (M2M) devices, which tend to be deeply embedded and have
much less memory and power supply than traditional internet devices
have. Therefore, efficiency is very important. CoAP can run on most
devices that support UDP or a UDP analogue.

2.2.3 IoT platforms

loT platforms are the support software that connects everything in an
loT system. An loT platform facilitates communication, data flow, device
management, and the functionality of applications. Essentially, an loT
platform helps to connect new hardware and handle different
communication protocols. Furthermore, it helps to provide security and
authentication for devices and users and to collect, visualize and analyze
data. Finally, it gives the ability to be integrated with other web services.

*? https://en.wikipedia.org/wiki/Constrained_Application_Protocol
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2.3 LoRa Technology33
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Figure 11: LoRa logo

As we have already mentioned, LoRa technology constitutes a Semtech
innovation which is easy to plug into the existing infrastructure and
offers a solution to serve battery-operated loT applications. Semtech
builds LoRa technology into its chipsets. These chipsets are then built
into the products offered by a vast network of loT partners and
integrated into LPWANs from mobile network operators worldwide.

LoRa is the physical layer or the wireless modulation utilized to create
the long range communication link. Many legacy wireless systems use
frequency shifting keying (FSK) modulation as the physical layer because
it is a very efficient modulation for achieving low power. LoRa is based
on chirp spread spectrum modulation, which maintains the same low
power characteristics as FSK modulation but significantly increases the
communication range. Chirp spread spectrum has been used in military
and space communication for decades due to the long communication
distances that can be achieved and robustness to interference, but LoRa
is the first low cost implementation for commercial usage.

One technology cannot serve all of the projected applications and
volumes for loT. WiFi and BLE are widely adopted standards and serve

** https://lora-alliance.org/about-lorawan
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the applications related to communicating personal devices quite well.
Cellular technology is a great fit for applications that need high data
throughput and have a power source. LPWAN offers multi-year battery
lifetime and is designed for sensors and applications that need to send
small amounts of data over long distances a few times per hour from
varying environments

2.3.1 Characteristics of LoRa Technology34

LoRa technology has some fundamental characteristics. First of all, it
enables GPS-free (geolocation), which gives the opportunity to create
low power tracking applications. In addition, infrastructure investment,
operating expenses and end-node sensors are at a low cost in contrast
with other technologies. Furthermore, LoRa technology is standardized,
which means that improved global interoperability speeds adoption and
roll out of LoRaWAN-based networks and loT applications. Speaking
about LoRa protocol, it is designed specifically for low power
consumption extending battery lifetime up to 20 years. On the other
hand, single base station provides deep penetration in dense
urban/indoor regions and it also connects rural areas up to 30 miles(48
km) away (long range). Finally, LoRa provides secure communication, as
AES128 encryption is embedded into the end-to-end nodes, and it
supports millions of messages per base station, ideal for public network
operators serving many customers (high capacity).

2.3.2 LoRaWAN protocol

Application

Figure 12: LoRa Stack

3 https://www.semtech.com/technology/lora/what-is-lora
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LoRaWAN is a protocol specification built on top of the LoRa technology
developed by the LoRa Alliance (Figure 12). It uses unlicensed radio
spectrum in the Industrial, Scientific and Medical (ISM) bands to enable
low power, wide area communication between remote sensors and
gateways connected to the network. This standards-based approach to
building a LPWAN allows for quick set up of public or private loT
networks anywhere using hardware and software that is bi-directionally
secure, interoperable and mobile, provides accurate localization, and
works the way you expect.

LoRaWAN™ defines the communication protocol and system
architecture for the network while the LoRa® physical layer enables the
long-range communication link. The protocol and network architecture
have the most influence in determining the battery lifetime of a node,
the network capacity, the quality of service, the security, and the variety
of applications served by the network.

2.3.3 Classes of LoRa devices

End-devices serve different applications and have different
requirements. In order to optimize a variety of end application profiles,
LoRaWAN™ utilizes different device classes. The device classes trade off
network downlink communication latency versus battery lifetime (Figure
13). In a control or actuator-type application, the downlink
communication latency is an important factor.
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Figure 13: LoRa Class of Device- Downlink Network Communication Latency in comparison with battery
lifetime

Bi-directional end-devices (Class A): End-devices of Class A allow for bi-
directional communications whereby each end-device’s uplink
transmission is followed by two short downlink receive windows. The
transmission slot scheduled by the end-device is based on its own
communication needs with a small variation based on a random time
basis (ALOHA-type of protocol). This Class A operation is the lowest
power end-device system for applications that only require downlink
communication from the server shortly after the end-device has sent an
uplink transmission. Downlink communications from the server at any
other time will have to wait until the next scheduled uplink.

Bi-directional end-devices with scheduled receive slots (Class B): In
addition to the Class A random receive windows, Class B devices open
extra receive windows at scheduled times. In order for the end-device to
open its receive window at the scheduled time, it receives a time-
synchronized beacon from the gateway. This allows the server to know
when the end-device is listening.

Bi-directional end-devices with maximal receive slots (Class C): End-
devices of Class C have almost continuously open receive windows, only
closed when transmitting. However, this class of devices reduce the
battery lifetime.
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In addition to the class A structure of uplink followed by two downlink
windows, class C further reduces latency on the downlink by keeping the
receiver of the end-device open at all times that the device is not
transmitting (half duplex). Based on this, the network server can initiate
a downlink transmission at any time on the assumption that the end-
device receiver is open, so no latency. The compromise is the power
drain of the receiver (up to ~50mW) and so class C is suitable for
applications where continuous power is available. For battery powered
devices, temporary mode switching between classes A & C is possible,
and is useful for intermittent tasks such as firmware over-the-air
updates.

2.3.4 LoRa Data Rates

In addition to frequency hopping, all communication packets between
end-devices and gateways also include a variable ‘Data rate’ (DR) setting.
The selection of the DR allows a dynamic trade-off between
communication range and message duration. Also, due to the spread
spectrum technology, communications with different DRs do not
interfere with each other and create a set of virtual ‘code’ channels
increasing the capacity of the gateway. To maximize both battery life of
the end-devices and overall network capacity, the LoRaWAN network
server manages the DR setting and RF output power for each end-device
individually by means of an Adaptive Data Rate (ADR) scheme. LoRaWAN
baud rates range from 0.3 kbps to 50 kbps.

2.3.5 Security
Security is a primary concern for any mass loT deployment and the
LoRaWAN specification defines two layers of cryptography:

A unique 128-bit Network Session Key (NewSKey) shared between the
end-device and network server. It is used for interaction between the
Node and the Network. This key is used to check the validity of messages
(Message Integrity Code-MIC).

A unique 128-bit Application Session Key (AppSKey) shared end-to-end
at the application level. It is used for encryption and decryption of the
payload. The payload is fully encrypted between the Node and the
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Network Server which means that nobody in the middle of the
communication is able to read the contents of the messages which are
sent or received.

AES algorithms are used to provide authentication and integrity of
packets to the network server and end-to-end encryption to the
application server. By providing these two levels, it becomes possible to
implement ‘multi-tenant’ shared networks without the network
operator having visibility of the users payload data.

To participate in a LoRaWAN network, each end-device has to be
personalized and activated. Activation of an end-device can be achieved
in two ways, either via Over-The-Air Activation (OTAA) when an end-
device is deployed or reset, or via Activation By Personalization (ABP) in
which the two steps of end-device personalization and activation are
done as one step.

After Activation By Personalisation(ABP) the following information is
stored in the end-device:

e DevAddr: Consists of 32 bits and identifies the end-device within
the current network

e AppEUI: Is a global application ID in IEEE EUI64 address space that
uniguely identifies the entity able to process the JoinReq frame

e NwkSKey

e AppSKey

Under certain circumstances, end-devices can be activated by
personalization. Activation by personalization directly ties an end-device
to a specific network. Activating an end-device by personalization
means that the DevAddr and the two session keys NwkSKey and
AppSKey are directly stored into the end-device. The end-device is
equipped with the required information for participating in a specific
LoRa network when started. Each device should have a unique set of
NwkSKey and AppSKey.

For over-the-air activation, end-devices must follow a join procedure
prior to participating in data exchanges with the network server. An end-
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device has to go through a new join procedure every time it has lost the
session context information (the information that server sends into the
join accept message after the join request by the device). The join
procedure requires the end-device to be personalized with the following
information (be stored into the device) before its starts the join
procedure:

e DevEUI: Is a global end-device ID in IEEE EUI64 address space that
uniquely identifies the end-device

e AppEUI: Is a global application ID in IEEE EUI64 address space that
uniquely identifies the entity able to process the JoinReq frame

e AppKey: is an AES-128 root key specific to the end-device.
Whenever an end-device joins a network via over-the-air
activation, the AppKey is used to derive the session keys NwkSKey
and AppSKey specific for that end-device to encrypt and verify
network communication and application data.

For over-the-air-activation, end-devices are not personalized with any
kind of network key. Instead, whenever an end-device joins a network, a
network session key specific for that end-device is derived to encrypt
and verify transmissions at the network level. This way, roaming of end-
devices between networks of different providers is facilitated. Using
both a network session key and an application session key further allows
federated network servers in which application data cannot be read or
tampered by the network provider.
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2.3.6 LoRa Network Architecture
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Figure 14: LoRa Network Architecture

LoRaWAN network architecture (Figure 14) is deployed in a star-of-stars
topology in which gateways relay messages between end-devices and a
central network server. The gateways are connected to the network
server via standard IP connections and act as a transparent bridge,
simply converting RF packets to IP packets and vice versa. The wireless
communication takes advantage of the Long Range characteristics of the
LoRa physical layer, allowing a single-hop link (network coverage area is
equal with the radio range of a single node) between the end-device and
one or many gateways. All modes are capable of bi-directional
communication, and there is support for multicast addressing groups to
make efficient use of spectrum during tasks such as Firmware Over-The-
Air (FOTA) upgrades or other mass distribution messages.

The intelligence and complexity is pushed to the network server, which
manages the network and will filter redundant received packets,
perform security checks, schedule acknowledgments through the
optimal gateway, and perform adaptive data rate, etc.

3.LoRaWare Reference Architecture
The Reference Architecture (RA) (Figure 15) is a generic high-level
conceptual model which highlights the LoRaWare Ecosystem consisting
of three interconnected parts namely (a) Sensing platform implemented
as network of Things connected to the cloud through an internet

44



Backhaul, (b) the Back-End Cloud implementing a Network Server to
support connectivity with the Sensing Platform, a Web Proxy, and a
context server providing application-specific services (context services)
and (c) the consumer (end-user) applications which connect with the
cloud to receive services and through it connect to the sensing platform
and the end-users (e.g., individuals who receive coaching instructions).
Each consumer subscribes to particular services and loT devices (through
“Publish/Subscribe” context services running on the cloud) that publish
information from the sensing environment (e.g., activity, health
information).
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Figure 15: LoRaWare Reference Architecture
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3.1 LoRa Network

Device

Network
Service

Device

Figure 16: LoRaWare Network (Front end)

The LoRa Network (Figure 16) consists of Lora devices and LoRa
Gateways in a star-of-stars topology. Devices transmit RF packets with
LoRa modulation which are captured by one or many Lora gateways
(uplink transmission).

LoRa gateways convert the LoRa packets to an IP protocol in order to be
transmitted over the Internet to the Network Server (Cloud). This
operation is done using the packet forwarder, a semtech’s open source
software, which is running on every gateway. Furthermore, LoRa
gateways receive downlink messages (from the Network server to the
gateway) in order to convert them from the IP protocol to LoRa and
transmit it wirelessly to a specific LoRa device.

The most common IP protocol which is used by the semtech’s packet
forwarder for the communication between the LoRa Gateways and the
Network Server is the UDP protocol. However, we can choose other
protocols for this purpose like MQTT over TCP for secure one-to-many
communication, easier handling and monitoring of the packets sent or
received by the Gateways and Network Server.
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3.2 LoRa Backend

The LoRa Backend (Figure 17) consists of the Fiware
Infrastructure which accommodates all the Cloud Services of
the LoRaWare Architecture. In this section we describe the
functionality of every service and how it is connected with the
other services.
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Figure 17: LoRaWare Service Oriented Architecture (Back end)

> Network Service

The intelligence and complexity of the LoRa sensing network is pushed
to the network server on the FIWARE cloud, which manages the
network, filters redundant received packets, performs security checks,
schedules acknowledgments through the optimal gateway, perform
adaptive data rate, etc. The Network Server can be viewed as an
enhanced version of IDAS - Device Management GE of FIWARE that is
used to assist connection of loT devices to a FIWARE cloud platform.
More specifically, we choose to convert into the gateway the LoRa to
MQTT, as it provides some benefits like easy monitoring and routing of
the packets, secure and one-to-many communication and easy
development of mqtt clients. In addition, there is one IoT Agent of IDAS
which supports the MQTT protocol so it is very simple to convert the
LoRa to MQTT and the MQTT to the NGSI format in order to publish data
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into the NGSI Context Broker from the Network Service. It maps the
requests coming from loT devices to NGSI entities.

The Network Service transforms data to JSON format and then with the
suitable asynchronous calls, they are forwarded to an NGSI Compliant
Content Broker (i.e., the Publish Subscribe Context Broker GE of
FIWARE), Web Proxy and other cloud services.

» Web Proxy

loT of today comprises a collection of isolated Internet of Things that
can’t really interact with each other, nor can they be searched and
discovered on the Web and used by applications. Although lightweight
Web servers can be embedded in small devices and enable such
functionality, they feature limited resources and the solution is not
optimal for battery life time, sensor autonomy and cost). The Web Proxy
keeps the virtual image of each device or sensor (their descriptions and
services) so that Things become part of the Web just like Web sites: they
can be published, consumed, aggregated, filtered and searched for by
humans and applications. Supporting this functionality in LoRaWare will
lead to higher degree of interoperability with other systems as other
applications can search and discover Things on the LoRaWare platform
to connect to.

> NGSI Context Broker

The NGSI Context Broker is a Publish/Subscribe service for managing
device subscriptions and user subscriptions to data and sensors. It
mediates between devices (producers) and applications (consumers).

> Database services

Database services are used to permanently store information about user
(administrator and consumers(, sensors and sensor data (history data)
and user subscription history. It is implemented as a relational (e.g.
MySQL) or NoSQL databse (e.g., Casandra, MongoDB).

» Data Analytics

48



Data Analytics Service will demonstrate functionality related to
uncovering hidden patterns in data, unknown correlations, user
preferences and useful business information (e.g. user’s data may
provide feedback for enhancing system functionality and users
acceptance). The project will utilize the COSMOS big data analysis GE or
the Data Visualization - SpagoBI GE of FIWARE.

» Event Processing Service

The Event Processing module handles events (e.g. creates alarm
notifications based on end-user conditions and information received
from the sensors) and notifies the Publish/Subscribe service, which is
responsible for passing this information to the end-users. The Complex
Event Processing (CEP) GE of FIWARE is a reference implementation of
this service.

» User Identity & Authorization Management

The cloud platform, provides also mechanisms for user ldentity and
Authorization Management supporting access control based on user
roles and access policies on services and data using FIWARE Keyrock
Identify management GE providing Single Sign On (SSO) service of users
to services in conjunction with Authorization PDP GE or PEP Proxy GE
that manage user permissions and access policies to resources (all
services above are protected by an OAuth2.0 mechanism ).

» Mashup Service

The Mashup Service allows application developers to compose new
applications. This will not only take significantly less time to build an
application, but also minimize the effort required to maintain the system
each time a device or service is added, removed, or updated. Using
services such as IFTTT or Node-RED , devices can be integrated with
modern Web applications and services with minimal effort (physical
mashups). A Mashup Editor with similar capabilities is offered in FIWARE
(WireCloud Mashup GE ).

» Application Logic
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The Application Logic implements application or use-case specific
(business) services and orchestrate the transferring of the information to
the appropriate individual services (storage, identification and
information manager). It implements application intelligence for
handling context events (e.g., a rule based system) or decides whether
the consumers must handle these events

4.Implementation of LoRaWare
Architecture

In this section we describe the implementation of the architecture, the
operations and the components of the system.

More specifically, we present the architecture of the system as a whole
and for ease of presentation we discuss independently the functionality
of each component. Then, we describe the sensors we used, the
gateways, the services that run on the gateways and on the Cloud. To
show proof of concept, at the end of this section we present an
application running on LoRaWare.
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4.1 Architectural Diagrams of LoRaWare
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Figure 18: Architectural diagram of LoRaWare (LoRa Network and LoraWare Architecture)

At the above diagram (Figure 18) we present the whole implementation
of our system where are shown both the lora network (devices,
gateways and services on gateways) and the Cloud Infrastructure with
the services running on different virtual machines. It presents also the
floating IPs of every virtual machine (green color), the mqgtt broker’s
topics where the data are published during every mqtt communication
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(blue color) and the protocol which is used for the service
communication at every part of architecture (red color)
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Figure 19: LoRa Network — Front end of LoRaWare

Initially we describe the LoRa Network (Front End-Figure 19).Using the
LoRaWAN protocol the Nodes transmit RF packets which are captured by
one or more Gateways. After catching a LoRa packet, the Semtech’s
packet forwarder converts it to UDP. The packet forwarder is the
Semtech’s open source software which converts the LoRa packets to
UDP and vice versa. Our main purpose was to convert the packets to a
protocol which would be supported from the Fiware’s loT agents which
are responsible for the device management of loT sector. We deployed
an open-source service called lora-gateway-bridge which takes the
packets from the Gateway’s packet forwarder and converts them from
UDP to MQTT/TCP in order to be forwarded to the network server over
IP. After the conversion from UDP to MQTT, the packets are forwarded
from the lora-gateway-bridge to the Cloud via MQTT which is a
publish/subscribe protocol. This means that a MQTT broker is needed
for the communication between a server and a client as we have already
referred (section 2.2.2). The publish/subscribe mechanism give us the
ability for one to many communication. This means that every payload
which is published in the mqtt broker could be sent to many mqtt
clients. Practically, we could send the same packet simultaneously to
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different cloud infrastructures for different processing. As a result, the
network server can serve many clients in a short time through a secure
communication with an easy packet handling and monitoring. This is the
reason why the MQTT protocol is faster and more secure instead of
other IP protocols like COAP, HTTP or UDP.
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Figure 20: LoRaWare service oriented architecture — Back end of LoRaWare

Figure 20 shows the back end of the LoRaWare architecture. This
contains all the Fiware Cloud Infrastructure with the services run on it.
The services have been deployed and run on four different virtual
machines of the Fiware Lab and we use also a public instance for the
Keyrock Identity Management operations. Except of all devices and
services, it presents also the floating IPs of every virtual machine (green
color), the mqtt broker’s topics where the data are published at every
level (blue color) and the protocol which is used for the service
communication at every part of architecture (red color).
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The virtual machine with floating ip 147.27.60.211 hosts the services for
the LoRa Network Server. Generally, the network server is responsible to
know the active sessions (devices that have joined the network), serve
the new nodes when join the network, decode and decrypt the physical
payload of the packets, deduplicate the received data (which is
potentially captured by multiple gateways) , authenticates this data to
make sure that these are not replay attacks. Also, it manages the state of
the node through mac-commands (e.g, to change data rate, channels,
etc.).

More specifically, the lora-server is subscribed on a specific topic of mqtt
broker where the lora-gateway-bridge service publishes the packets
which are passed by the gateway’s packet forwarder. After the
decoding, the decryption and the deduplication of the packets we
publish them on a different mqtt broker on another virtual machine with
floating ip 147.27.60.202. Practically, we could use the same mqtt
broker instance hosted on the vistual machine with floating ip
147.27.60.211 but we deploy a second mqgtt broker on the other virtual
machine because in the future if we use also devices that support
directly the mqtt protocol they won’t have to pass from the first virtual
machine and the lora network server.

On the virtual machine with floating ip 147.27.60.202 we have develop
our own json parser in order to filter the json payloads that the lora
server publishes to the mqtt broker. JSON filtering service gives the
format of the payload that is needed for the Fiware’s JSON/MQTT loT
agent. More specifically it ignores the metadata of the payload and
keeps only the values of the sensors as an one level key value pair JSON
payload which is republished on a different topic of the mqtt broker.

Finally, we register our devices (sensors) to the JSON/MQTT loT agent
which is subscribed on a specific mqgtt broker’s topic (different for every
device) waiting for json payload to be published. Every time a payload is
published at a mqtt broker’s topic, the payload is then converted from
MQTT to NGSI protocol by the loT agent and is forwarded at the Context
Broker.
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The Orion Context Broker is an implementation of the Fiware’s
Publish/Subscribe Context Broker GE, providing the NGSI9 and NGSI10
interfaces (sections 2.1.8 & 2.1.10). Using these interfaces, clients can do
several operations such as register context producer applications,
update context information, being notified when changes on context
information take place or query context information.

Two LoRa sensors are sending measures about Humidity and
Temperature every minute. The application informs us for the current
Humidity and Temperature and also for the date and time they were
measured. The measures are changed automatically in the User
Interface every time a different payload is transmitted. All different
measures are stored in a database on a different virtual machine which
gives the opportunity to develop other applications using our sensor’s
data independently. Our application finally provides historical
measurements about the last 10 different measures of temperature and
humidity for every sensor and these are changed automatically every
time a different measure is captured.

Finally, we use the public instance of the Keyrock Identity Manager
service of Fiware for authentication during the log in and for controlling
users access to services according to their roles. (e.g., administrator,
user, etc.).

4.2 LoRa Devices3>

We used two same set of boards from Ideetron company which
constitute a LoRa Node.

Every Node has one Nexus Board which constitutes the microcontroller,
one Nexus Demoboard where a number of sensors is mounted on it and
a PCB antenna for the transmission of RF packets.

** https://webshop.ideetron.nl/
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4.2.1 Nexus Board
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Figure 21: Ideetron’s Nexus Board Microcontroller

Nexus Board (Figure 21) is the microcontroller we chose for our LoRa
Nodes. It is based on a Arduino Mini shape. It needs power supply of
3,3Vdc and its dimensions are 23x33 mm.

On the nexus board are placed the following components:

ATMEGA328P-AU MCU, 8BIT, ATMEGA, 20MHZ, TQFP-32

DS2401P+ SILICON SERIAL NUMBER

MCP7940M-1/MS RTC, 12C, 64BYTES SRAM

AZ1117CR-3.3TRG1 LDO VOLT REG, 0.5A, 3.3V (normal mode; select)
W25X40CLSNIG-ND FLASH 4MBIT

U.FL antenna connector

RFM95W or RFM98W (select)

56



4.2.2 Nexus Demoboard

Figure 22: Ideetron’s Nexus Demoboard

We used Ideetron’s Nexus Demoboard (Figure 22) where are mounted
the following components:

Header for LoRa Nexus Board
PIR, Panasonic EKMB110111
Temp. & RH% sensor Si7021-A20
LDR: NSL 19M51

Potentiometer 10kA 4-turn
Movement sensor MVS0608.02
2x LED

2x Push button

4.2.3 PCB Antenna 868 MHz UFL

Figure 23: Ideetron’s PCB Antenna 868MHz UFL
We connected the PCB antenna (Figure 23) with the nexus board
antenna UFL connector.
The Antenna has the following features:
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Cable Length: 10 cm (65 mm outside PCB)
PCB dimensions: 100x28 mm
Weight: 4 gram

4.2.4 Arduino Sketches
Combining the three above components e.g., the nexus board, the nexus
demoboard and the PCB antenna we have a complete LoRa Node.

A code or program written for Arduino called Sketch. Ideetron provides
many Arduino sketches which can be loaded on the nexus board using a
TTL cable and the Arduino IDE in order to make the Node functional. The

For our own application, we use the THO6 arduino sketch of Ideetron for
low power LoRaWan. This sketch wakes up the Node each minute,
measures the temperature, humidity from the Demoboard and
transmits the results in LPP format. This sketch makes use of the Nexus
Demoboard and defines the basic characteristics of our Node such as
data rate, class of device, frequency channel and the type of the
activation. We chose the Class A device and the Activation By
Personalization. Every time we cut the power supply of node, we have to
activate it again every time we turn it on. This can be done from the
lora-app-server Ul which we will describe below.

Relatively with the node’s payload, we use the Cayenne® LPP format.
The Cayenne Low Power Payload (LPP) provides a convenient and easy
way to send data over LPWAN networks such as LoRaWAN. The Cayenne
LPP is compliant with the payload size restriction, which can be lowered
down to 11 bytes, and allows the device to send multiple sensor data at
one time.

Additionally, the Cayenne LPP allows the device to send different sensor
data in different frames. In order to do that, each sensor data must be
prefixed with two bytes:

« Data Channel: Uniquely identifies each sensor in the device across
frames, eg. “indoor sensor”

*® https://github.com/myDevicesloT/cayenne-docs/blob/master/docs/LORA.md
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o Data Type: Identifies the data type in the frame, eg.
“temperature”

The payload structure is a sequence of bytes as we can see below:

1 Byte 1 Byte M Bytes 1Byie 1 Byte M Bytes

Datal Ch. Datal Type Datal Dataz Ch. Data2 Type Data2

Finally, Data Types conform to the IPSO Alliance Smart Objects
Guidelines, which identifies each data type with an “Object ID”.
However, as shown below, a conversion is made to fit the Object ID into
a single byte.

LPP_DATA_TYPE = IPSO_OBJECT_ID - 3288

Each data type can use 1 or more bytes to send the data according to
the following table (Figure 24).

Type IPSCy LPP Hex  Data Size Data Resolution per bit
Digital Input 3200 0O 0 1 1

Digital Output 3200 1 1 1 1

Analog Input 3202 2 2 2 0.01 Signed

Analog Cutput 3203 3 3 2 0.01 Signed

llluminance Sensar 330 101 65 2 1 Lux Unsigned MSE
Presence Sensar 3302 102 66 1 1

Temperature Sensor 3303 103 &7 2 0.1 *C Signed M5B
Humidity Sensor 3304 | 104 B3 1 0.5 % Unsigned
Accelerometer 3313 113 71 b 0.001 G Signed MSE per axis
Barometer 3315 115 73 2 0.1 hPa Unsigned M5E
Gyrometer 3334 134 B & 0.01 ®/s Signed MSE per axis

Latitude : 0,0001 © Signed MSE
GPS Location 3336 | 136 83 9 Longitude : 0.0001 * Signed M5B

Altitude : 0.01 meter Signed M5B

Figure 24: Cayenne LPP format — Table of Data representation
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The whole logic of the Cayenne LPP format has been implemented in
Ideetron’s Arduino sketches we used in order to be possible to project
our payloads clearly on a dashboard. We take the temperature
measures in Celsius degrees and the humidity measures in percentage.

4.3 Lorank 8 Gateway

Figure 25: Ideetron’s Lorank8vl Gateway

The Lorank 8 (Figure 25) is the first LoRa Gateway with professional
specifications which constitutes an Ideetron’s product. With almost 50
DSP pipes on board it processes 8 LoRa transmissions simultaneously.
This enables the connection with several tens of thousands end nodes
around the gateway. And, with a sensitivity of -138 dBm and a maximum
power of 500 mW we can easily reach the most distant nodes.
According to Ideetron, although the maximum connection distance is
~25km in open terrain, buildings and metal structures do hinder the
transmission. Experience learns that distances of 5km are realistic if the
gateway is mounted on a (high) point with free sight.

The hardware is based on the high quality radio board of IMST(tm) and
the open source Beagle Board. Also, the software is completely open
source and may be changed to our liking.

Lorank Gateway has the following characteristics:
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Hardware:

-Frequency band : 868 MHz

-Sensitivity: -138 dBm

-Maximum power: 27 dBm (500mW)
-LoRa demodulators: 49

-Simultaneous channel : 8

-Max connected nodes: ~60 thousand (*)
-Processor: 1GHz, ARM Cortex A8

-0S: Debian / Angstrom Linux

-Wifi: Optional (via USB, not implemented yet)
-Current :1A

-Max Current USB : 500mA

-Power Adapter :5Volt=, 2Amp

(*) This is a theoretical maximum, under the assumption that nodes only send once
per hour. Due to collisions, resend packets, packet loss etc., the number of nodes
that can effectively be handled is lower, typically 10..20 thousand.

Software:

-Lora libraries : Semtech, with modifications from Beta Research BV
-basic packet forwarder :Semtech,

-poly packet forwarder : Beta Research BV, based on code from Semtech
-Installation scripts : Beta Research BV

-Beagle Bone : Various versions

4.3.1 The Lora-Gateway-Bridge Service3”

As we have already described, the gateway uses the UDP protocol in
order to send the data to the network server. However, we have
deployed on the gateway an open-source-service called lora-gateway-

*” https://github.com/brocaar/lora-gateway-bridge
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bridge. LoRa Gateway Bridge is a service which abstracts the packet-
forwarder UDP protocol into JSON over MQTT.

There are three basic reasons why we chose the MQTT protocol for the
communication between the Gateway and the Cloud:

e Visibility: Because LoRa Gateway Bridge publishes the content of
the UDP packets as JSON over MQTT, it becomes trivial to monitor
the data that is sent and received by each gateway just by
subscribing at all topics of the mqtt broker. This wouldn’t be easy
with UDP.

e Routing: The MQTT broker will handle the routing of which
(downlink) frame must be sent to which LoRa Gateway Bridge
instance. This could be easy just by publishing the downlink
payload into different topics (different for every gateway).

e Security: By running the LoRa Gateway Bridge on the gateway
itself, it is possible to use MQTT over Transport Layer Security
(TLS), meaning the transport between the gateway and server(s) is
secure.

e One to many Communication: The publish/subscribe mechanism
means that every payload which is published in the mqtt broker
could be sent to many mqtt clients (they subscribe to the topic
where the server publishes data). Practically, we could send the
same packet simultaneously to different cloud infrastructures for
different processing just by one transmission. As a result, the
network server can serve many clients in a short time
simultaneously.

The only configuration we had to do, was to modify the packet-
forwarder of the gateway so that it would send its data to the LoRa
Gateway Bridge. We did that only by changing the following
configuration keys in the file “global_conf.json” via ssh connection to the
gateway:

« server_address to the IP address / hostname(0.0.0.0 for localhost)
of the LoRa Gateway Bridge
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« serv_port_up to 1700 (the default port that LoRa Gateway Bridge
is using)
« serv_port_down to 1700 (same)

After that we run the packet forwarder and the lora-gateway-bridge as
services in the Ubuntu Operating System of the Gateway.We should
follow this procedure for every gateway we would like to add in our
LoRaWare Architecture. Finally, lora-gateway-bridge publishes its data
into the mqtt broker. We describe this operation in the next section.

4.4 The Cloud Services of the LoRaWare

Architecture

All Cloud Services of our architecture have been deployed in several
Virtual Machines which we created using the Dashboard of the Fiware
lab. Only for the Keyrock Identity Manager we used a public instance
that Fiware provides.

4.4.1 The Mosquitto MQTT Broker38

Eclipse Mosquitto is an open source (EPL/EDL licensed) message broker
that implements the MQTT protocol versions 3.1 and 3.1.1. Mosquitto is
lightweight and is suitable for use on all devices from low power single
board computers to full servers.

The MQTT protocol provides a lightweight method of carrying out
messaging using a publish/subscribe model. This makes it suitable for
Internet of Things messaging such as with low power sensors or mobile
devices such as phones, embedded computers or microcontrollers.

The lora-gateway-bridge we described in the previous section is
publishing LoRa frames to the MQTT broker. Every client which is
subscribed to the MQTT topic “gateway/+/rx”, could monitor and
receive those frames. The “+” on a topic represents a single-level
wildcard. Any topic matches to a topic including the single level wildcard
if it contains an arbitrary string (the Gateway ID in our case) instead of
the wildcard. For example, we can monitor all the received data from all
gateways just by subscribing to the topic “gateway/+/rx”, but we can

*® https://mosquitto.org/
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monitor only the received data from the gateway with ID:
1dee18c14948a955 just by subscribing to the topic
“gateway/1deel18c14948a955/rx”.

While the single level wildcard only covers one topic level, the multi
level wildcard “#” covers an arbitrary number of topic levels. In order to
determine the matching topics it is required that the multi level wildcard
is always the last character in the topic and it is preceded by a forward
slash. A client subscribing to a topic with a multi level wildcard is
receiving all messages, which start with the pattern before the wildcard
character, no matter how long or deep the topics will get. If we only
specify the multilevel wildcard as a topic (#), it means that we will get
every message sent over the MQTT broker. For example, if a client
subscribes to the topic “gateway/1dee18c14948a955/#” , can monitor
topics like “gateway/1dee18c14948a955/rx” (received data from the
gateway with the specific ID), “gateway/1deel8c14948a955/tx”
(transmitted data to the gateway with the specific ID” or
“gateway/1dee18c14948a955/stats” (statistics about the gateway with
specific ID).

For debugging purposes we can use in the terminal the command
mosquito_sub in order to subscribe to a specific topic and see the data.

When we are subscribed to the gateway/+/rx, we see the data received
from every gateway. If we don’t see anything, it means either that the
LoRa Gateway Bridge does not receive data from the packet forwarder
or that the MQTT credentials/authorizations are invalid (the user is not
authorized to subscribe to the MQTT topic).

In addition, there is also the mosquito_pub command, which can be
used for publishing data into the mqtt broker. However, for both
publishing and subscribing into the mqtt broker there are specific
libraries for the most common programming languages in order to
achieve a communication via the MQTT protocol. We used one of them
for our json filtering which we are going to describe in a section below.
Such libraries are also used for the Go programming language into the
lora server service as and for the Node JS into the MQTT loT Agent .
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We deployed two MQTT brokers in different Virtual Machines whose
flowting IPs are presented in the architectural diagram of
LoRaWare(Figure ?).

4.4.2 LoRa Server3?

LoRa Server is an open-source LoORaWAN network-server, part of the
open-source LoRa Server project. The responsibility of the network
server component is the de-duplacation and handling of received uplink
frames received by the gateway(s), handling of the LoRaWAN mac-layer
and scheduling of downlink data transmissions.

More specifically, the LoRa Server component is responsible for the
network. It knows about active node sessions (nodes which have join the
network) and when a new node joins the network, it will ask the
application-server if the node is allowed to join the network and if so,
which settings to use for this node.

For the active node-sessions, it de-duplicates the received data (which is
potentially received by multiple gateways), it authenticates this data (to
make sure that these are not replay-attacks), it forwards this (encrypted)
data to the application-server and it will ask the application-server if it
should send anything back.

Besides managing the data-flows, it also manages the state of the node
through so called mac-commands (e.g. to change the data-rate,
channels, ...).

LoRa Server implements a gRPC APl so that we could easily build our
own application-server.

The following table represents the features of the lora server (Figure 26):

* https://www.loraserver.io/loraserver/overview/
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Device classes Class-A, Class-B & Class-C

Message types (Un)confirmed uplink and downlink, Proprietary uplink and downlink
Device activation Over-the-air (OTAA) and activation by personalization
Adaptive data-rate Supported for all regions
AS 923
AL 975928
CMN 470-510
CM 779-787
Regions supported EU 433
EU 863-870
IN 865-867
KR 920-923
us a02-928
Frame-counter Strict (default)
validation Skip frame-counter mode (for debugging only)
Statistics Fer gateway received / transmitted (configurable aggregation levels)

Channel (re)configuration
Adaptive data-rate
Device-status
Mac-layer handling Link check (initiated by the device)
Fing-slot channel configuration
Device time
R¥ parameter (re)configuration
gRPC based API to an external application-server and external network-controller

Integration
=9 {optional)

Figure 26: LoRa Server’s specifications

We deployed the lora server on a virtual machine of fiware lab with
Ubuntu 14.04 Operating System running on it.

In addition, for the lora server operation two databases are required.
We install a PostgreSQL for the LoRa server to persist the gateway data
and a Redis datastore to store all non-persistent data.

PostgreSQL™ is a powerful, open source object-relational database
system. Its main characteristics are reliability, feature robustness, and
performance.

Redis*! is an open source (BSD licensed), in-memory data structure
store, used as a database, cache and message broker. It supports data
structures such as strings, hashes, lists, sets, sorted sets with range
queries, bitmaps, hyperlogs and geospatial indexes with radius queries.
Redis has built-in replication, Lua scripting, LRU eviction, transactions
and different levels of on-disk persistence, and provides high availability
via Redis Sentinel and automatic partitioning with Redis Cluster.

* https://www.postgresql.org/
41 ..
https://redis.io/
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4.4.3 LoRa App Server42

LoRa App Server is an open-source LoRaWAN application-server, part of
the LoRa Server project. It is responsible for the device “inventory” part
of a LoRaWAN infrastructure, handling of join-request and the handling
and encryption of application payloads.

It offers a web-interface where users, organizations, applications and
devices can be managed. For integration with external services, it offers
a RESTful and gRPC API. Device data can be sent and / or received over
MQTT, HTTP and be written directly into InfluxDB.

More specifically, it is compatible with the LoRa Server component and
offers node management per application, per organization and gateway
management per organization. It also offers user management and the
possibility to assign users to organizations and / or applications.
Communication with the application is using JSON over MQTT and using
the exposed APIs. Finally it provides a web interface and an APl which
can be used for all the above operations.

LoRa App Server uses, as LoRa Server does, a PostgreSQL database to
persist the gateway data and stores all non-persistent data into a Redis
datastore.

We have deployed the LoRa App Server on the same VM with the LoRa
Server.

Binding the url: https://147.27.60.211:8080 with any browser we enter
the User Interface of LoRa App Server (Figure 27):

* https://www.loraserver.io/lora-app-server/overview/
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https://147.27.60.211:8080/

<« ¢ @ ® & hitps//147.27.60.211:8080/#/login LU - B d n @ @

Username

kisakos

Password

LOGIN

Figure 27: LoRa App Server Ul — Login Page

For authentication and authorization, users can be created (Figure 28) in
LoRa App Server. A user itself can be a global admin or a regular user. A
global admin user is authorized to perform any action. It can for
example manage gateways, users, create organizations, applications and
nodes. A regular user has no permissions by default. However, it can be
assigned to one or multiple organizations.

<« c @ @ # https;//147.27.60.211:8080/# /users/create o e w n & |

LoRa Server Organizations ~ Users  Networkservers  kisakos «

Username

E-mail address

ktsakos

Optional note

Password

Isactive [_] Is global admin

GO BACK SUBMIT

Figure 28: LoRa App Server Ul — User Creation

LoRa App Server is able to connect to one or multiple LoRa Server
network-server instances. Global admin users are able to add new
network-servers to the LoRa App Server installation (Figure 29). Once a
network-server is assigned to a service-profile or device-profile, a
network-server can’t be removed before deleting these entities, it will
return an error. Depending the configuration of LoRa Server and LoRa
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App Server, we must enter the CA and client certificates in order to let
LoRa App Server connect to LoRa Server and in order to let LoRa Server
connect to LoRa App Server.

LoRa Server

Mabworisarver nama

Certificates for LoRa App Server to LoRa Server connection

CA cartficans

TLE cartficabe

Certificates for LoRa Server to LoRa App Server connection

CA cartficans

TLE cartficabe

Figure 29: LoRa App Server Ul — Network server assignment

From the Ul we can manage also the organizations.
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<« c o @ & https://147.27.60.211:8080 8% | e | | Q search I & ¢

LoRa Server Organizations Users Network servers ktsakos -

Organizations

Organization name

Display name

Can have gateways

D Can have gateways

GO BACK SUBMIT

Figure 30: LoRa App Server Ul — Organization creation

An organization can be used (Figure 30) to let organizations or teams
manage their own applications and optionally their own gateways. An
organization can have service-profiles, device-profiles, gateways (when
allowed), applications and users (Figure 31).

< C o @ # hitps;//147.27.60.211:8080/#/organizations/2 80% e @ 9| | Q Search

LoRa Server

tion configuration  Organization users  Service profiles  Devics profiles

‘CREATE APPLICATION

Figure 31: LoRa App Server Ul - List of Applications for specific organization

The service-profile can be seen as the “contract” between an user and
the network (Figure 32). It describes the features that are enabled for
the user(s) of the service-profile and the rate of messages that can be
sent over the network. When creating a service-profile, LoRa App Server
will create the actual profile on the selected network-server, and will
keep a reference record so it knows to which organization it belongs.
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« [CIE] @ B nttps;//147.27.60.211:8080/#/crganizations/2/service-profiles/create 67% - n Q

LoRa Server

Network-server

[ okt gty mera s

Repor: banary level

Report bartery lavel
teport battery

Report margin

[ Reportmargin

Winimun allowed date-rate:

Maximum sllowed datasate:

Figure 32: LoRa App Server Ul - Service profile creation

A device-profile defines the device capabilities and boot parameters
that are needed by the network-server for setting the LoRaWAN radio
access service. These information elements shall be provided by the end-
device manufacturer. When creating a device-profile (Figure 33), LoRa
App Server will create the actual profile on the selected network-server,
and will keep a reference record so it knows to which organization it
belongs.
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LoRa Server

LoRaWAN MAG version

Figure 33: LoRa App Server Ul — Device profile creation

An application is a collection of devices with the same purpose / of the
same type. Think of a weather station collecting data at different
locations for example. When creating an application (Figure 34), we
need to select the Service-profile which will be used for the devices
created under this application. Note that once a service-profile has been
selected, it can’t be changed. An application can be configured to
decode the received uplink payloads from bytes to a meaningful data
object, and to encode downlink objects to bytes. The Cayenne LPP
codec, which is used in the Arduino sketches we load on our Nodes, is
supported from the LoRa App Server. However, we can write our own
javascript codec functions.
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LoRa Server

Figure 34: : LoRa App Server Ul — Application creation

A device is the end-device connecting to, and communicating over the
LoRaWAN network. LoRa App Server supports both OTAA (over the air
activation) and ABP (activation by personalization) type devices
(configured by the selected device-profile). When creating or updating a
device (Figure 35), we need to select the device-profile matching the
device capabilities. E.g. the device-profile defines if the device is of type
OTAA or ABP.

<« ¢ o @ £ https;//147.27.60.211:8080/#/organizations,2 fapplications/1 /nodes/create %) e @ tr| Q search

LoRa Server

Figure 35: LoRa App Server Ul — Node (device) registration to specific application

An organization is able to manage its own set of gateways (Figure 36).
This feature might be unavailable when the organization is configured
without gateway support. That a gateway belongs to a given
organization does not mean that the usage of a gateway is limited to the
organization. Every node in the whole network will be able to
communicate using the gateway. The organization will be responsible
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however for managing the gateway details (e.g. name, location) and will
be able to see its statistics. Gateway statistics are based on the
aggregated values sent by the gateway / packet-forwarder. In case no
statistics are visible, it could mean that the gateway is incorrectly
configured.

&« C ® & B hitps://147.27.60.211:8080/#/organizations/2 /gateways/create 50% .

Figure 36: LoRa App Server Ul — Gateway registration

LoRa App Server makes it possible to log frames sent and received by a
gateway or device in realtime. The frame logs view on the device detail
page (Figure 37) will display only the frames that could be related to a
device.
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(&= @ @& ® & B hitps:/147.27.60.211:80 6% e | | Q Search N & m =
LoRa Server
tsakos Humnidity
Device configuration Activate device (ABF) Device activation Raw frame logs
The table below displays the raw and encrypted LoRaWAN frames. Use this data for debugging purposes. For application integration, please see the Send / receive data documentation page.
Created at RX / TX parameters Frame
+ Saturday, May 26, 2018 7:49 PM v tnfo: {} 7keys v phyPayload: {3 keys
codefate: “4/F ¥ mhdr. { 2 keys
frequency: “B58300000 miype: “UnconfirmadDataDown
immediately. false major: “LoRaWANR1
mac: “1dee1Bc14948a955 v macPayload: {§ 3 keys
power: 14 » fhdr { dkeys
timestamp: 1440152332 fPort: null
» dataRate: {} 4keys frmPayload: null
mic: "BE5c2c33
4 Saturday, May 26, 2018 7:49 PM v rdncSet [ 1item v phyPayload: {} 3 keys
v 0 [ Okeys v mhdr: { 2 keys
channet: 1 mType: ConfirmedDatalp
codeRate: “4/5 major: “LoRaWANRT
frequency: "BEB300000 v macPayload: { 3 keys
IoRaSNR: 6.5 » fhdr § 4keys
rssi: 37 fPort 1
time: “2000-01-01T06:23:47Z w frmPayload: 0 1 item
timestamp: 1439152332 w 0 Tkey
» dataRate {4 keys bytes: “siUAMPQFjA==
mac: “Idee]8c] 40483955 mic: “120F04F7
+ Saturday, May 26, 2018 7:43 FM ® txinfo {} 7 keys ® phyPayload: {} 3 keys
+ Seturday. May 26, 2018 7:43 PM » rdnfoSet [ 1item » phyPayload: { 3 keys
+ Seturday, May 26, 2018 7:47 PM » winfo: {4 7keys » phyPayload: { 3 keys
+ Seturday, May 26, 2018 7:47 PM » rdnfoSet [ 1item » phyPayload: { 3 keys
+ Saturday, May 26, 2018 7:46 PM » uinfo: { 7 keys » phyPayload: {1 3 keys
4+ Saturday, May 26, 2018 7-46 FM » rdnfoSet [ 1item » phyPayload: { 3 keys
+ Saturday, May 26, 2018 7:45PM » winfo {7 keys » phyPayload: { 3 keys
+ Seturday. May 26, 2018 7:45PM » rdnfoSet [ 1item » phyPayload: {} 3 keys
+ Saturday, May 26, 2018 7:44PM » tdnfo: {7 keys » phyPayload: { 3 keys
+ Saturday. May 26, 2018 7:44 PM » rdnfoSet [ 1item » phyPayload: {} 3 keys

Figure 37: LoRa App Server Ul — Log frames received by devices in real time

4.4.4 JSON FILTERING

As we have already referred for the lora app server, it uses the MQTT to
publish or receive data. With the MQTT integration lora app server
publishes all the data it receives from the devices as JSON over MQTT.
To receive data from our nodes, we therefore need to subscribe to its
MQTT topic.

As the MQTT loT agent of fiware requires a different payload format
than this one the lora app server publishes, we have developed our own
JSON parser(JSON Filtering component) using the python programming
language.
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More specifically, we used the paho.mqtt library to subscribe to a topic
or publish data to the mqtt broker. Our script runs always as a daemon
on our virtual machine and it is initially connected to the topic where the
lora app server publishes its data. After this it parses the json payload,
keeping only the information that the MQTT loT agent needs. Finally it
publishes the new JSON payload on a different topic where the loT agent
is subscribed to receive the data from our devices.

The topic where the LoRa App Server publishes its data and the JSON
Filtering service is subscribed to is: “application/+/node/#” and the topic
where the JSON Filtering service publishes the data and the JSON/MQTT
loT agent is subscribed to is: “/{apikey}/{devEUl}/attrs”.

4.4.5 JSON/MQTT IoT Agent43

By using an loT Agent , our devices are represented in a FIWARE
platform as NGSI entities in the ContextBroker. This means that we can
guery or subscribe to changes of device parameters status by querying
or subscribing to the corresponding NGSI entity attributes at the
ContextBroker.

Additionally, we could trigger commands if we used actuation devices
just by updating specific command-related attributes in their NGSI
entities representation at the Context Broker. This way, all developers
interactions with devices are handled at a ContextBroker, providing an
homogeneous APl and interface as for all other non-loT data in a
FIWARE ecosystem.

We deployed on a virtual machine the JSON/MQTT loT Agent in order to
translate the MQTT protocol to NGSI. After parsing the decrypted data
that LoRa-App-Server publishes into the MQTT broker, we republish
them into a new topic:“/{apikey}/{devEUl}/attrs”.

Essentially, we exploit the Agent’s MQTT binding, which is based on the
existence of a MQTT broker and the usage of different topics to separate
the different destinations and types of the messages.

* https://catalogue-server.fiware.org/enablers/backend-device-management-idas
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All the topics used in the protocol are prefixed with the APIKey of the
device group and the Device ID of the device involved in the interaction.
The APl Key is a secret identifier shared among all the devices of a
service, and the DevicelD is an ID that uniquely identifies the device in a
service. APl Keys can be configured with the IoTA Configuration API or
the public default APl Key of the IoT Agent can be used in its instead.
The Device ID must be provisioned in advance in the loT Agent before
the information is sent.

In order to send multiple measures our devices can publish a JSON
payload to an MQTT topic with the following structure: /{api-
key}/{device-id}/attrs

The message in this case must contain a valid JSON object of a single
level; for each key/value pair, the key represents the attribute name and
the value the attribute value. Attribute type will be taken from the
device provision information.

In our case, we use the mosquito mqtt broker as we have already
mentioned. If a device with id: 0000000000000000, AP| Key: 1234 and
attribute IDs temperatureSensor and humiditySensor then all measures
(temperature and humidity) are reported this way:

S mosquitto_pub -t /1234/0000000000000000/attrs -m
{"TemperatureSensor": 22.3, "HumiditySensor": 70} -h
<mosquitto_broker> -p <mosquitto_port> -u <user> -P <password>

After publishing the data at the above format and deploying the
JSON/MQTT loT Agent we make a simple HTTP POST to create an IDAS
Service:

POST http://147.27.60.202:5351/iot/services

Headers:

{
'Content-Type': 'application/json',
'X-Auth-Token' : ' [TOKEN] ',
'Fiware-Service': 'openiot',
'Fiware-ServicePath': '/'

}

Payload:
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{

"services": [

{

"apikey": n1234",

"cbroker": "http://0.0.0.0:1026",
"entity type": "thing",

"resource": "/iot/d"

]
}

The Context Broker has been deployed at the same VM, so we use the
url: 0.0.0.0:1026. Furthermore, we need also an OAuth token. In order
to obtain it, we need our Fiware account username and password after
running the token_script.sh script that FIWARE provides. Essentially, it
makes a rest call to obtain an OAuth token which expires after 1 hour.

At the last step, before our devices send observations or reveive
commands a register operation is needed. It is a HTTP Post to the loT
Agent’s endpoint:

POST http://147.27.60.202:4041/iot/devices/

Headers:

{
'Content-Type': 'application/json',
'Fiware-Service': 'tourguide',
'Fiware-ServicePath': '/'

}

Payload:

{
"devices": [

{
"device id": "0000000000000000",

"protocol": "MQTT",
"entity name": "Multisensorl",
"entity type": "sensor",
"attributes": [
{
"object id": "temperatureSensor",
"name": "temperature",
"type": "number"
3y
{
"object id": "humiditySensor",
"name" : "humidity",
"type": "number"
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After register our devices into the loT Agent, every time a new payload is
published into the MQTT broker, the IoT agent translates it to NGSI
format. Then we can make HTTP GET requests to the Context Broker to
query the values of our sensors (entities). We describe the Context
Broker in the following section.

4.4.6 Orion Context Broker+4

We follow the Common Simple Scenario that Fiware suggests for
connection with loT (Figure 38). We can access loT data as attributes of
entities representing devices and we can also send commands to devices
by updating command-related attributes, providing we have access
rights for that operation. The loT agents (as the MQTT loT agent we use)
stay at the southbound of the Orion Context Broker and they are used
by loT integrators to connect devices in this scenario. loT Agents support
several loT protocols with a modular architecture. Therefore, we had to
determine first which protocol we will use to connect our devices. In our
case we need to translate the MQTT protocol to the NGSI format, so we
chose the JSON/MQTT loT Agent which is described in the previous
section.

o https://catalogue-server.fiware.org/enablers/publishsubscribe-context-broker-orion-context-
broker
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—-I—— OMA NGSI AP1 (northbound interface)

FIWARE Context Broker

create/monitor loT Agent
= R = = — 7 — — Manager
/ /
> S
loT loT o loT FIWARE Backend loT
Agent-1 Agent-2 Agent-n Device Management
+ _I_ (southbound interfaces)
ETSIM2M MOTT ---- |ETF CoRP

Figure 38: Fiware Reference Architecture for interconnecting loT devices with Context broker

When we register a device to the loT agent, a new entity is created into
the Context Broker. Then, we can make a simple HTTP GET request to
the context broker in order to read measures captured from our loT
devices. Here is an example of a GET request and response by the
Context Broker in order to read the temperature value from the
Multisensorl:

REQUEST:

GET
'http://147.27.60.202:1026/v2/entities/Multisensorl?attrs=temperature

RESPONSE:

"id":"Multisensorl",

"type":"sensor",

"temperature": {
"type":"number",
"value":"27.4",
"metadata": {

"TimeInstant":{
"type":"IS0O8601",
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"value":"2018-05-20T720:52:25.7682"

}

}

We deployed the Context Broker on the same VM with JSON/MQTT loT
Agent using docker. We downloaded images for Orion Context Broker
and MongoDB from the public repository of images called Docker Hub.
Then we have created two containers based on both images.

4.4.7 Keyrock Identity Management#>

In order to implement OAuth2 authentication in our application we use
our account on Fiware Lab. In order to create an account we visit the url:
https://account.lab.fiware.org/ (Figure 39)

(-]

Fl Lab cloud Store Moshup  Data  Account  Help&info

FIWARE Lab is a working instance of FIWARE available for experimentation.

You will be able to setup the basic virtual infrastructure needed to run applications that

make use of the APIs provided by FIWARE Generic Enablers deploved as a Service either

globally or by you (as private instance).

Request Community Account upgrade
&

Ask a question. See our Catalogue. [ remember me
Sign up | Forgot password | Didn't
receive confirmation instructions?

Learn about FIWARE Ops. Train yourself.

Figure 39: Fiware lab welcome page

After following the instructions filling our data, we receive a
confirmation mail. Once we have an account we can start creating
organizations and applications.

The first step to start managing authorization in our application is to
register the application in FIWARE Account. In order to do that we have
to click on “Register” option of the Account Portal (Figure 40). The

* https://catalogue-server.fiware.org/enablers/identity-management-keyrock
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“Home Sensors Monitoring” application is the app we have developed
for demonstration purposes of our LoRaWare Architecture.

o
4 Fl Lab cloud Store Mashup Data Account Help&rinfo & ktsakos ¥

Identity Manager

Applications Organizations
& Orgonizations
o e = © Cloud 2 ktsakos cloud
_ Al e http://cloud.lab.fiware.org, o This organization is intended t
¥ My Applications
[~] Home Sensors Monitoring 25 Thesis org
http://147.27.60.97 o asdfghjk
—,  Thesis
© http://localhost/fiware-oauth-example
View All View All

Figure 40: Fiware lab — Account Portal

Then we follow the steps with the data of our application. Once
registered, we have to implement OAuth2 protocol in our application.
The message flow between our web application and IDM account server
is represented below (Figure 41):

redirect >

access-code @_‘, Fl
Account

Web App

reguest access-token

v

OAuth Library

M

access-token

L Request user info using access-token ]

Figure 41: Message flow for OAUTH2 authentication using Keyrock Identity Management

In order to implement this flow we used the curl library of PHP.

We redirect to the fiware portal
https://account.lab.fiware.org/oauth2/authorize in order to sign in and
after the authentication an access code is returned.

After the callback, we make a HTTP GET request with the access code in
its payload at the https://account.lab.fiware.org/oauth2/token url. This
request requires also the OAuth2 credentials (ClientID and Client Secret)
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which we can find in our Fiware Account Portal during the registration
procedure of our application (Figure 42):

o P

O.o FIWARELab Cloud  Store  Mashup  Data  Account  HelpGinfo & kisakos ¥
Identity Manager Home Sensors Monitaring
# Home Description iﬁ

An application which provides statistical and current measures of temperature and humidity.
& Organizations
URL

© My Rpplications http://147.27.60.97

Callback URL
http://147.27.60.97/callback.php

ORAuthZ Credentials v (>}
Client ID
9b849804e7b9420db52ae5d0ff7b 7620
Client Secret
16f8b24b663d4cbfbo6d2f044f440890

‘ PEP Proxy ~ 2] ‘
10T Sensors ~ 2] ‘

Figure 42: OAuth2 credentials can be found in the Fiware Account Portal after register an application

The response of our request is an access token. We make another
request at the url: http://account.lab.fiware.org/user?access token=
using the access token as an argument to request the user’s data (Figure
43).

> redirect >
5
Web App 3] < access-code
SD request access-token 5
= < access-token @) FIWARE
7|8 Account
P
2|8
©
access-token + path >
& FILARE |
) % OK + user info
Generic Enabler |~

Figure 43: Message flow for OAuth2 authentication and user info request after successful authentication
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The whole procedure we described above is part of our app logic which
we are going to describe further in the next section.

4.5 Application Logic & Smart Home Web
Application

We have developed a web application using the LoRaWare Architecture.
Our system Is distributed on four virtual machines with 2GB RAM,
1VCPU and 20GB storage (LoRa Server, Fiware GEs, App Logic and
Storage) and it uses also a public instance of the Keyrock Identity
Manager GE. With the Web app we can monitor in real time the
humidity and temperature measures from two sensors. Furthermore, we
can be informed about the last 10 different temperature and humidity
measures by each sensor which are updated without refreshing the web

page.

The application logic is the central component of our architecture. It is
the part of our own code where happens all the communication
between the services and their orchestration. We have used the PHP
server-side programming languages in order to develop the operations
of our application and the REST calls using a PHP library called “CURL".

The first operation in the app logic is the repeated REST calls to the
Context Broker in order to be informed about the values of temperature
and humidity that our sensors measure. Then every time a value
changes than the previous one (the last one we stored), it is stored on a
database. We have created a MySQL database which is distributed on a
different VM. The database contains two tables, the one for the
Temperature measures and the other for the Humidity measures. Every
time a new different measure is published in the Context Broker, we
store it in the database with device id, value and date as columns. We
have two php scripts which are running repeatedly as daemons on our
VM, because it is important for this procedure to happen either we
access the Web App or Not.

Then we can make every query we want to the database in order to
come to statistical conclusions or process the data. We created a
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distributed database on a different VM, as we can give privileges to
other applications or users to have access to our sensors measures.

Furthermore, in the app logic we make the calls to the Keyrock Identity
Manager public instance in order to implement the OAuth2
authentication protocol into our application as we described in section
3.4.7.

Finally, we developed a web application (part of the app logic into the
same virtual machine) for demonstration purposes. It constitutes an
example about how the LoRaWare architecture could be useful. Our
web application’s User Interface created using HTML and CSS
technologies. Furthermore, it is running on the Apache server which
supports the development with PHP.

Binding the 147.27.60.97 endpoint from a browser we visit our
application’s welcome page (Figure 44):

<« c @ D 147.27.60.97 % o O Ty
(= LoRa
Aliance”

smarthome gk

Figure 44: Application’s welcome page for real time measures monitoring

Then we click on the “login now” image. We are redirected to the Fiware
Lab in order to give our Fiware’s account email and password (Figure
45):
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(&) c @ @ httpsy//account.lab fiware.org/oauth2/authorize/?response_type=codeiclient_id=9b849804e7b9420db5 - @

o PR
o.o FIWARELab cloud Store  Mashup  Data  Account  HelpGinfo

@ Home Sensors Monitoring LogIn

An application which provides statistical and current measures of temperature
and humidity.

ktsakus@isc‘tuc.grl |

-]

[ remember me

Sign up | Forgot password | Didn't
receive confirmation instructions?

Figure 45: Redirection to Fiware lab page for OAuth2 authentication and access to the application

After the successful authentication we log in the user.php page (Figure
46) where we can monitor our two sensors current measures. Every time
a new measure is stored in the database, the Ul is updated with AJAX
calls. In this page we see the last new different measure and the date
and time it was published into the Context Broker:

&« - C B ® 147.27.60.97/user.php 120% 0 e O W

User ID : ktsakos

Display Name : ktsakos

E-mail : ktsakos@isc.tuc.gr

Log out

Temperature Statistics

Humidity Statistics
Sensor:Multisensorl

Current Temperature:25.6 celsius
Date:2018-05-26T16:14:21.192Z
Sensor:Multisensorl

Current Humidity:85 %

Date:2018-05-26T16:16:21.190Z
Sensor:Multisensor2

Current Temperature:25.8 celsiu
Date:2018-05-26T15:13:32.318.
Sensor:Multisensor2

Current Humidity:83.5 %
Date:2018-05-26T14:52;32.4! g
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Figure 46: Web page of the application — User info, log out link, Temperature & Humidity statistics links and
last measured values with data and time of temperature and humidity by each sensor.

We have also the option to log out or be informed about the
Temperature and Humidity statistics.



Clicking on the Temperature statistics we visit a different page of our
application (Figure 47). There we can see the last 10 different
Temperature statistics of the two sensors and also relative charts about
them sorted by date:

« cC @ D 147.27.60.97 L -0 nemom =

Temperature's last 10 Measures from Multisensorl

0 Measures from Multisensor2

Last 10 from

Last 10

Figure 47: Temperature statistics — Last 10 different temperature measures of each sensor represented on a list
and on charts descending sorted by date

The Humidity Statistics link represents the same information but for the

Humidity measures of our two sensors (Figure 48):

T humbstoryhtml X

« ¢ D 147.27.6097 t em e O a neo =

o Pare

Humidity's last 10 Measures from Multisensorl

Measures from Multisensor2

Last 10 Humidity Measures irom Multisensorl

Last10

Figure 48: Humidity statistics — Last 10 different humidity measures of each sensor represented on a list and on
charts descending sorted by date
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Both the statistical measures and the charts are updated automatically
with AJAX calls every time a new different measure is stored in the
database. In this way, we can monitor the Temperature & Humidity
measures without refreshing the web pages of our application.

5.Performance Evaluation

In the following section we run an exhaustive set of experiments whose
purpose is to evaluate the scalability of the back-end system and also
the LoRa applicability in a complicated environmental terrain in the city
of Chania. In the first part we stress the system by issuing many
concurrent requests simulating the workload of a large loT network with
thousands of LoRa sensors. We measure the overall system response
time (i.e. from the time a measurement is received by the cloud to the
time it is stored in the database), the average response time of each
service in the service sequence and also, the average workload (i.e. CPU,
memory usage) of each running VM. In the second part, we attempt to
study the long range characteristics of the LoRa network and how the
error rate (percentage of transmitted but not captured by a gateway
LoRa packages ) depends with the distance of the LoRa node from a
gateway.

5.1Evaluation of the Cloud Infrastructure

For the implementation of our architecture we use four VMs which are
running on the Fiware Lab Infrastructure. The first VM (Floating
IP:147.27.60.211) contains a Mosquitto MQTT Broker, the Lora Server
and the LoRa App Server services. The second VM (Floating
IP:147.27.60.202) contains another Mosquitto MQTT Broker, the JSON
filtering component, the MQTT loT Agent and the Context Broker. The
third VM(Floating IP:147.27.60.97) contains the App Logic and the Web
Application which is served by the Apache Server. Finally we use a fourth
VM(Floating 1P:147.27.60.202), where we store all the data of our
devices into a MySQL database. Every instance has a 20GB disk, 2GB
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RAM and 1 VCPU. On the three instances is running an Ubuntu 16.04
operating system, except of the second VM(147.27.60.202) where a
Centos 7 operating system is running due to the Context Broker’s
requirements.

In the first experiment, we compute an average time in which the packet
payload is published into the mqtt broker in the first VM until it is stored
in the database. Via ssh, we ran the command “tcpdump” into the first
VM which give us the ability to check the packet flows to the port 1883,
which is the port of the MQTT Broker. Then every time a payload is
published there we can take the timestamp information.
Simultaneously, we ran the same command in the second VM to check
the packet flow to the port 1026 where the Context Broker sends its
payload. The time after the subtraction of the two timestamps was
47,3344ms. This is the average time of the payload transmission from
the MQTT broker to the Context Broker. We also calculated the time
from the Context Broker response until the values were stored into the
MySQL database. This time was 140ms(10ms for the REST calls to the
Context Broker,30 ms to read from the database and 100 ms to write in
the database). This is the response time of the App Logic and the
insertion into the database. So the average time of a packet from the
time it is sent to the Cloud until it is stored to the database is
47,3344+140=187,3344 ms.

After this calculation, we calculated also the average response time of
every component of our architecture in order to come to other
conclusions.

The services which have an endpoint were tested with the Apache Bench
tool. We made 2000 request at the endpoint of every service and we
took the average time of every response to be answered. The JSON
Filtering component was measured with the “time” library of python and
the difference between the times in the start and in the end of the
script. In a same way, we calculate the App Logic response time using
the “microtime” method of PHP.
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The following diagram represents the average time of every service to
answer a request (Figure 49).

RESPONSE TIME(ms)

B MQTT BROKER 1

W LORA SERVER
LORA APP SERVER

B MQTT BROKER 2

u JSON FILTERING

MQTT BROKER 3
Loty 40 MQTT IOT AGENT
Context Broker
APP LOGIC

STORAGE

Figure 49: Pie representing the average response time in milliseconds of each LoRaWare’'s service to serve one
request

Essentially, the lora-gateway-bridge running on the gateway publishes
the data into the MQTT Broker 1. The LoRa Server is subscribed to the
specific topic and takes the data(l ms — 1%). After the decoding and
deduplication of the packet (1 ms — 1 %) the payload is forwarded to the
LoRa App Server. After the decryption, the payload is published to the
MQTT Broker2 (22ms — 13%). Then the JSON Filtering is parsing the json
payload and republish the data to the mqtt broker but on a different
topic (0,5ms-0%). Then the loT Agent is subscribed to the MQTT Broker
and takes the data (1ms-1%). The loT Agent converts the data from
MQTT to the NGSI protocol and forwards them to the Context Broker
(2ms-1%). The Context Broker takes the NGSI payload and updates the
value of an entity (2ms-1%). Finally, in the app logic a get request is done
to the Context Broker. If the measure is different from the last received,
then this payload is stored to the database (40ms+100ms-82%).

Adding all the above times of every operation the sum is 170,5 ms.

The difference between the whole average time and the sum of every
response time independently is the network’s latency which is 187,3344-
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170,5=16,8344ms. We expected such a short time as the VMs are
running on the same Cloud Infrastructure.

As a second experiment for the back end evaluation, we used the
Apache Bench tool in order to stress the services which have an
endpoint to be accessed. Apache Bench gives us the ability to make a
massive number of requests and declare both the number of them and
the number of the requests which must be served concurrently. Then it
returns the average response time for the requests to be served. We
make 2000 request and we increase the ¢ parameter which represents
the number of concurrent requests which must be served.
Simultaneously, we check the CPU and the Memory usage of the VM on
which every service is deployed using the HTOP tool. The HTOP is a
lightweight program for resources management and is executed from
the command line. It gives us the opportunity to monitor in real time the
resources consumption per process or in total.

Below there are indicative tables about the above experiments. For
every service there is one table for the resources usage relatively with
the “c” parameter and one table for the response time (in milliseconds)
relatively with the “c” parameter and the percentage of requests which
were served. Time per request (mean) tells us the average amount of
time it took for a concurrent group of requests to process. Time per
request (mean, across all concurrent requests) tells us the average
amount of time it took for a single request to process by itself.

e 2000 requests to the MQTT Broker(147.27.60.211:1883)

c=1 C=50 C=100 C=150 C=300
CPU(%) 35,1 42,4 45,3 52 56,7
MEM(MB) | 228 232 239 241 253
c=1 C=50 C=100 C=150 C=300
50% 1 16 34 50 110
66% 1 16 35 52 117
75% 1 16 36 52 121
80% 1 16 36 53 122
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90% 1 17 37 54 122
95% 1 17 38 55 123
98% 1 18 39 55 124
99% 1 20 40 56 127
100% 5 21 40 57 129
Tr‘;i::tr 0,939 16,026 35,413 53,751 124,049
Time per request 0,939 0,321 0,354 0,358 0,413

(across all
concurrent
requests)

We consider that the results of the above table would be the same for
the MQTT broker of the second VM.

e 2000 requests to the LoRa App Server (147.27.60.211:8080)

c=1 C=50 C=100 C=150 C=300
CPU(%) 22.7 100 100 100 100
MEM(MB) | 247 252 257 263 277
c-1 C=50 C=100 C=150 C=300
50% 22 1002 2020 2942 5866
66% 22 1094 2216 3299 6797
75% 22 1146 2325 3428 6910
80% 23 1170 2349 3542 7004
90% 24 1282 2596 3958 7812
95% 25 1373 2822 4120 7949
98% 26 1460 2922 4336 8240
99% 28 1513 2990 4572 8860
100% 34 1610 3375 5263 10261
Tmeper | 21,838 | 1018,013 | 2065,020 | 3119,216 | 6522,003
rmeperreauest |7 838 | 20,360 | 20,650 | 20,795 | 21,740
ety
Tansferfate | )3 59 24 89 24 54 2437 23,31

(Kbytes/sec)

e 2000 requests to the JSON/MQTT loT Agent (147.27.60.202:4041)

C=1

C=50

C=100

C=150

C=300

CPU(%)

45,2

55,3

57,7

66,4

100

92




MEM(MB) 570 585 593 596 604
c=1 C=50 C=100 C=150 C=300
50% 4 20 7 16 120
66% 4 52 42 84 226
75% 4 74 76 176 357
80% 5 81 102 207 401
90% 5 105 1003 1004 1008
95% 7 130 1011 1047 1140
98% 11 1010 3010 3013 1236
99% 1007 2013 3013 3016 2402
100% 3013 3017 5374 9132 3017
Time per 16,024 | 122,149 | 397,436 | 699,308 | 562,916
Time per request | 16,024 2,443 3,974 4,662 1,876
quests)
Transfer Rate 26,75 175,89 108,11 92,17 229

(Kbytes/sec)

e 2000 requests to the Context Broker (147.27.60.202:1026)

C=1 C=50 C=100 C=150 C=300
CPU(%) 30,9 31,9 34,3 39,1 58,1
MEM(MB) 551 558 560 574 584
C=1 C=50 C=100 C=150 C=300
50% 2 2 4 10 60
66% 3 3 21 42 77
75% 3 4 37 62 90
80% 3 6 47 70 106
90% 4 20 67 1003 1005
95% 5 1004 1004 1015 1070
98% 7 2329 3006 3008 1089
99% 1003 3009 3008 3009 1099
100% 1008 7022 6892 4413 6643
Tri;‘]i:setr 13,024 201,628 513,774 341,110 | 1038,385
Time per reduest 13,024 4,033 5,138 2,274 3,461

(across all
concurrent
requests)
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Transfer Rate
(Kbytes/sec)

19,64

63,45

49,80

112,51

73,92

e 2000 requests to the Apache Server of the Web App(147.27.60.97)

c=1 C=50 | C=100 | C=150 | C=300
CPU%) | 221 29,8 37,1 33,3 24,8
MEM(MB) | 220 228 234 237 252
c=1 C=50 | C=100 | C=150 | C=300
50% 2 2 6 21 56
66% 2 3 15 30 70
75% 2 6 30 43 79
80% 2 9 39 51 111
90% 3 23 69 69 316
95% 3 1002 1008 1013 1003
98% 4 3004 3004 1022 5601
99% 999 3099 3012 1030 5605
100% 3032 7017 12417 | 21626 | 23822
Tmeper | 14,528 | 235,633 | 630,252 | 1622,485 | 3574,786
Tmevereest | 14508 | 4,713 6303 | 10,817 | 11,916
requests)
meseRe | g157 | 189,81 | 141,93 | 82,70 | 75,07

The following tables conclude the results for the three VMS
(147.27.60.211, 147.27.60.202, 147.27.60.97. More specifically, we
represent the usage of the computing resources and the average time
for 1 request to be served from all services of every VM in comparison
with the number of the requests which must be served concurrently. We
added the response times per request across all concurrent requests for
every service per VM and we show the ranges of the demanding
computing resources. The fourth VM contains only the MySQL database
which practically cannot be stressed with apache bench. If the time per
request (across all concurrent requests) is increased when we increase
the concurrent requests, it means that the VM scales up in order to
serve them.
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» VM 147.27.60.211 (MQTT BROKER-LORA APP SERVER)

C=1 C=50 C=100 C=150 C=300
relr;‘:tizrbe 22,777 20,681 21,004 21,153 22,153
served(across
all concurrent
requests) (ms)
MEM(MB) | 228-247 232-252 239-257 242-263 253-277
CPU(%) 22,7-35,1 | 42,4-100 | 45,3-100 52-100 56,7-100

» VM 147.27.60.202 (MQTT BROKER-JSON/MQTT loT Agent —
Context Broker)

C=1 C=50 C=100 C=150 C=300
Time per 29,987 6,797 9,466 7,294 5,75
request to be
served(across
all concurrent
requests) (ms)
MEM(MB) | 228-570 232-585 239-593 241-596 253-604
CPU(%) 30,9-45,2 | 31,9-55,3 | 34,3-57,7 | 39,1-66,4 | 56,7-100

» VM 147.27.60.97 (Apache server for the Web Page of the Web

App)
C=1 C=50 C=100 C=150 C=300
Time per 14,528 4,713 6,303 10,817 11,916
request to be
served(across
all concurrent
requests) (ms)
MEM(MB) 247 252 257 263 273
CPU(%) 22,7 100 100 100 100

5.2 LoRa Network Evaluation

According to LoRa specifications, there are transmission parameters
which could influence the performance of the network. These include
parameters such as bitrate, resistance to interference noise, ease of
decoding or energy consumption and can be set at system set-up.
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In order to be understood, chirp is a sinusoidal signal in which the
frequency increases or decreases over time. LoRa is a chirp spread
spectrum technique, so chirp pulses are used to encode information
(symbols). Chirp spread spectrum uses its entire allocated bandwidth to
broadcast a signal, making it robust to channel noise.

Transmission Power on a LoRa radio can be adjusted from -4 dBm to 20
dBm, in 1 dB steps, but because of hardware implementation limits, the
range is often limited to 2 dBm to 20 dBm. In addition, because of
hardware limitations, power levels higher than 17 dBm can only be used
on a 1% duty cycle.

Carrier Frequency is the center frequency that can be programmed in
steps of 61 Hz between 137 MHz to 1020 MHz. Depending on the
particular LoRa chirp, this range may be limited between 860 MHz and
1020 MHz.

Spreading Factor (SF) is the ratio between the symbol rate (BW/2°F) and
chirp rate (BW). A higher spreading factor increases the Signal to Noise
Ratio (SNR), and thus sensitivity and range, but also increases the airtime
of the packet (the LoRa radio module needs more time to send the same
amount of data). Sensitivity is the minimum magnitude of input signal
required to produce a specified output signal having a specified signal-
to-noise ratio. The number of chirps per symbol is calculated as 2°. For
example, with an SF of 12 (SF12) 4096 chirps/symbol are used. Each
increase in SF halves the transmission rate and, hence, doubles
transmission duration and ultimately energy consumption. Spreading
factor can be selected from 6 to 12.

Bandwidth (BW) is the width of frequencies in the transmission band.
Higher BW gives a higher data rate (thus shorter time on air), but a lower
sensitivity (because of integration of additional noise). A lower BW gives
a higher sensitivity, but a lower data rate. Lower BW also requires more
accurate crystals (less ppm). Data is sent out at a chirp rate equal to the
bandwidth; a bandwidth of 125 kHz corresponds to a chirp rate of 125
kcps. Although the bandwidth can be selected in a range of 7.8 kHz to
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500 kHz, a typical LoRa network operates at 500 kHz, 250 kHz or 125 kHz
(resp. BW500, BW250 and BW125)

Finally, LoRa includes a forward error correction code. The Code Rate
(CR) equals 4/(4 + n), with n € {1, 2, 3, 4}. In telecommunication and
information theory, the code rate (or information rate) of a forward
error correction code is the proportion of the data-stream that is useful
(non-redundant). That is, if the code rate is k/n, for every k bits of useful
information, the coder generates a total of n bits of data, of which n-k
are redundant.

Taking this into account, as well as the fact that SF bits of information
are transmitted per symbol, the following equation allows one to
compute the useful bit rate (Rb).

BW

For example, a setting with BW = 125 kHz, SF = 7, CR = 4/5 gives a bit
rate of Rb = 5.5 kbps.

Generally speaking, an increase of bandwidth lowers the receiver
sensitivity, whereas an increase of the spreading factor increases the
receiver sensitivity. Decreasing the code rate helps reduce the Packet
Error Rate (PER) in the presence of short bursts of interference, i.e., a
packet transmitted with a code rate of 4/8 will be more tolerant to
interference than a signal transmitted with a code rate of 4/5.

In order to evaluate our LoRa Network we used two Lorank8vl
Gateways of Ideetron and two LoRa Nodes (the combination of
Ideetron’s Nexus Board and Nexus Demoboard). We have already
described these devices in section 3.2.

5.2.1 First Experiment
As a first experiment we had two Lorank8vl gateways located in two
different areas in Chania Crete and a LoRa Node moving between them.
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From the Google Maps we see the two points on the Map where every
Gateway was placed.

The one Gateway was placed on a urban area (Figure 50):

Figure 50: Route of the experiment and the red point where the one gateway was placed (urban area)

The second Gateway was placed on a semi urban area (Figure 51):

Figure 51: Route of the experiment and the red point where the one gateway was places (semi urban area)

We configure one of our LoRa Nodes suitably in order to succeed the
best range we could, ignoring the power consumption. More specifically,
we declare from the Arduino sketches the Spread factor as 12, the
bandwidth as 125kHz and the Transmission Power at 17 dbm. These are
the maximum values in order to succeed the best range we can.
However the Code Rate was by default set at 4/5. Theoretically, we

98



wanted to configure it at 4/8, but we couldn’t change this parameter in
the code as it is fixed.

We drove in a route from the one Gateway to the other and back. The
sensor was sending one package per minute (Class A device) and the
gateways were writing the metadata and the physical payload of every
received packet into a .csv file. This procedure was run by executing an
Ideetron’s test script on every gateway called “util_pkt_logger”.

After processing the data of the two .csv files (one for every gateway),
two diagrams (one for every gateway) were exported:

The following diagrams show the SNR (Sound to Noise Ratio) and the
RSSI (Received Signal Strength Indicator) values of the successfully
captured packets in comparison with the distance between the
transmission point and the gateway (base station)

The first diagram shows the results taken from the Gateway on the Semi
Urban Area (Figure 52):
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Figure 52: RSSI & SNR values in db of the successfully captured packets by the Gateway on the Semi Urban
Area

Totally, 50 packets were transmitted. From them only 10 were captured.
The longest transmission was happened 4,37 km far from the gateway.
However, the longest transmission which successfully captured from the
gateway was 1,23 km far from the gateway. Generally, 20% of the
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transmissions were captured successfully. We can also notice that the
nearest we are to the Gateway, the highest RSSI and SNR we take in db.

Speaking about the Gateway on the Urban Area the results were
relatively worse and are presented in the following diagram (Figure 53):

20

-20

-40

M RSSI(db)

m SNR(db)
-60

-80

-100

-120

Figure 53: RSSI & SNR values in db of the successfully captured packets by the Gateway on the Urban Area

Totally, 27 packets were transmitted. From them only 6 were captured.
The longest transmission was happened 4,37 km far from the gateway.
However, the longest transmission which successfully captured from the
gateway was only 134m far from the gateway. Generally, 22,22% of the
transmission were captured successfully.

In conclusion, the results from the first experiment were relatively
different from the LoRa’s expectations. This could be due to the noise
interference of the area. Furthermore, the elevation of the gateways
plays a great role to the expected range. We could have taken better
results if we have placed the gateways on a high point with free sight
similar to this where cellular antennas’ are placed. In addition the
environment of route was not an open terrain, but there were buildings,
metal structures and a non-uniform ground with many obstacles. Finally,
we could expect better results, in case we could also decrease the Code
Rate parameter and succeed a smaller bit rate.
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5.2.2 Second Experiment

In the second experiment we used one gateway of the same model as in
the first experiment. We also used two LoRa Nodes of the same type.
This time we conduct the experiment by walking in case the speed of the
car influenced the performance in the first experiment. The nodes were
configured similarly with Spread Factor equal to 12, Bandwidth equal to
125KHz, the Transmission Power equal to 17dbm and the Code Rate
equal to 4/5. Every node was sending again one packet per minute (Class
A device).

Below is the route we walked with the two sensors and the gateway’s
location (Figure 54):
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Figure 54: Route of the second experiment and the red point where the Gateway was placed

We executed again the “util_pkt_logger” script on the gateway and from
the .csv file we took the following diagram (Figure 55) which presents
the RSSI and SNR values in comparison with the distance from the point
of successfully captured transmission to the gateway’s location:
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Figure 55: RSSI & SNR values in db of the successfully received packets by the Gateway

Totally, 74 packets were transmitted (37 per node). From them only 14
were captured. The longest transmission was happened 1,36 km far
from the gateway. However, the longest transmission which successfully
captured from the gateway was 923m far from the gateway. Generally,
18,92% of the transmission were captured successfully. We conclude
that there are no differences in the results from the previous experiment
although we changed the rate we moved. However besides all the
reasons of the first experiment, we had also placed the gateway inside a
building which may also have influenced the performance.

In conclusion, the results from the second experiment were also
relatively different from the LoRa’s expectations. This could be due to
the noise interference of the area. Furthermore, the placement of the
gateway inside a building with a very small elevation had also a great
impact on the performance. In addition the environment of route was
not an open terrain, but there were buildings, metal structures and a
non-uniform ground with many obstacles. Finally, we could expect
better results, in case we could also decrease the Code Rate parameter
and succeed a smaller bit rate.
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Concluding the results from the two experiments about the LoRa
Network we can present the estimated percentage of the successfully
received packets in comparison with the distance from the base station
(Figure 56). We notice that only in the first 150m we have a 100%
success of transmission in the Urban Area and in the first 300m in the
Semi Urban Area. The percentage is reduced with a bigger rate in the
Urban Area. After 1km we have a 0% success in the urban Area and after
1,5 km a 0% success in the Semi Urban Area. We could improve these
results for both areas if we placed the Gateways on a higher elevation
with a uniform environment with an open terrain and free sight without
obstacles in order to restrict the noise interferences.
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Figure 56: Estimated percentage of the successfully captured packets in comparison with the distance from the
base station places on Urban and Semi Urban Area

6.Conclusion - Future Work

In this section we are going to present our conclusions about this thesis
and suggest further expansions in order to improve the system’s
functionality and performance.
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6.1 Conclusions
The main goal of this thesis was to design and develop a service oriented

architecture in order to interconnect LoRa devices with the Cloud.

During this project we came to the following conclusions:

Cloud computing provides a big variety of services which can be
very useful for the easy and fast development of applications. For
example, the device management service (loT Agent), the Context
Broker and the Keyrock Identity Manager of Fiware constitute
required services for the most applications of the loT sector.
Relative services are provided also from other Cloud providers.
The usage of service oriented architectures and the RESTful Web
Services facilitate the communication among services even if they
are deployed on different cloud environments.

With the virtualization we can easily start the development of our
application and avoid incompatibility problems due to the
hardware architecture or the physical resources.

The MQTT is an open protocol which is ideal for constrained
networks with low bandwidth, high latency, data limits and fragile
connections. It is a publish/subscribe protocol which gives us the
opportunity to check the packets which are published.
Furthermore, it is secured as it runs over TCP and there is a variety
of MQTT client libraries which are available at the most
programming languages and could simplify the job of a developer.
LoRa constitutes a constantly evolving technology. We can cover
whole cities with LoRa devices using just a few gateways with low
cost. The LoRa network performance depends on the morphology
of the environment and the obstacles between the nodes and the
base stations. Furthermore, the location and the elevation of the
gateways can play a great role to deal with the interferences.
Finally, transmission parameters of the nodes such as the
spreading factor and the bandwidth have significant impact on the
network coverage, as they affect the data rate. Generally, there is
a trade-off between the power consumption and the long range of
LoRa protocol. We need to find the suitable point in order to
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consume the less power and have the range we want for our
network’s requirements. Finally, the small bit rate makes LoRa
unsuitable for applications which require continuous and massive
data transmissions.

6.2 Future Work

Below we describe a few plans for the future in order to improve the
performance of our system, the coverage of the LoRa Network and to
expand the functionality of the LoRaWare Architecture.

e As we have already noticed in the backend evaluation of our
system, the applogic and the storage in the database covers most
of the response time. In order to reduce this latency we would like
to use a NoSQL database like the mongodb to store the persist
data instead of MySQL database we used.

e Also, we would use better sensors and gateways in order to
succeed a better range of the network. Furthermore, we would
like to do more experiments about the network performance after
placing the gateways at a high point (high elevation) with free
sight (no obstacles) in order to approach the maximum range that
the protocol could practically succeed.

e Our architecture contains the basic services for interconnecting
LoRa devices to the Cloud. However our future goal is to expand
this architecture with other services. For example, data analytics
service will demonstrate functionality related to uncovering
hidden patterns in data, unknown correlations, user preferences
and useful business information (e.g. user’s data may provide
feedback for enhancing system functionality and users
acceptance). COSMOS big data analysis GE or the Data
Visualization —SpagoBl GE of Fiware could be used for such
operations. In addition, an Event Processing module could be
added to handle events (e.g. creates alarm notifications based on
end-user conditions and information received from the sensors)
and notify the Publish/Subscribe service, which is responsible for
passing the information to the end-user. The Complex Event
Processing (CEP) GE of Fiware is a reference implementation of
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this service. Finally, a Mashup Service would allow application
developers to compose new applications. This would not only take
significantly less time to build an application, but also to minimize
the effort required to maintain the system each time a device or
service was added, removed or updated. Using services as IFTTT or
Node-RED, devices can be integrated with modern Web
applications and services with minimal effort (physical mashups).
A Mashup Editor with similar capabilities is offered in Fiware, the
WireCloud Mashup GE.
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