
TECHNICAL UNIVERSITY OF CRETE 

SCHOOL OF ELECTRICAL & COMPUTER ENGINEERING 

INTELLIGENT SYSTEMS LABORATORY 

 

 

THESIS 

LoRaWare: A service oriented architecture for 

interconnecting LoRa devices with the Cloud   

 

Tsakos Konstantinos 

 

COMMITTE: 

Petrakis G.M. Euripides Professor, ECE, TUC (supervisor) 

Deligiannakis Antonios Assoc. Professor, ECE, TUC 

Sotiriadis Stelios Assist. Professor, Birkberk, UL, UK 

 

CHANIA 2018 



2 
 

ABSTRACT 

In this work, we show how the advantages of a Low Power 

Wide Area Network (LPWAN) protocol can be exploited to 

support greater availability and usability of Internet of Things 

(IoT) applications. The main idea is to show how LPWAN 

networks can be interconnected with the Cloud where IoT 

data can be transferred securely for persistent storage and 

further processing. To show proof of concept, we 

experimented with LoRa technology and LoRaWAN, the 

latest successful representative of LPWAN protocols. The 

LoRaWAN protocol is characterized by long range, low 

power and low data rate transmission.  We applied a typical 

experimental setup with LoRa environmental sensors 

transmitting measurements over long distances using LoRa 

protocol to gateways and from there to the cloud. Our 

scenario is application agnostic (as it is independent of 

sensor types and need not be aware of the actual  IoT 

measurements). The advantage of this scenario is that whole 

cities can be covered with a small number of gateways 

where, each gateway is capable of dealing with even 

thousands of sensors.  

The LoRa Nodes transmit RF packets with LoRa modulation 

which are captured by one or more Gateways.  The 

Gateway receives LoRa packets from sensors in range and 

re-transmits them to the cloud over internet using an IP 

protocol (e.g. a basic one such as UDP). In this work we opt 

for MQTT a more elaborate lightweight publish-subscribe IP 

protocol offering advance security, better routing control 

and visibility of the communication (i.e. easier handling and 

control of data packets). 

The focus of this work is on interconnecting the gateways 

with the cloud. We develop the Network Server, a solution 

that runs as a service on the cloud and whose purpose is to 



3 
 

(a) receive LoRa packets from gateways (b) decode their 

payload from ASCII characters to bits (base 64 encoding) (c) 

dedublicate packets received from more than one 

gateways (d) decrypt the payload (AES 128 bit encryptions is 

applied by LoRA) and (e) make data available to the cloud 

services in NGSI - JSON format. For outgoing packets the 

same solution is applied in reverse order: packets are 

encrypted, encoded and transmitted to target gateways (is 

supported by the LoRaWare with some additional 

configurations-haven’t been tested). The service is 

developed for FIWARE cloud, a pan-European cloud 

infrastructure which is supported by the EU. NGSI is the 

protocol which is used by every Generic Enabler of Fiware 

ecosystem as a data exchange model. One of them is the 

Publish/Subscribe Context Broker which mediates between 

devices and applications. Our architecture ,referred to as 

LoRaWare, allows  IoT developers to enhance the 

capabilities of LoRa enabled applications using advanced 

FIWARE services supporting persistent storage and data 

analytics, service synthesis using Mashups etc. In our example 

implementation, humidity and temperature measurements 

are monitored in real - time on the cloud while historical 

values are stored in MySQL database. 

We run an exhaustive set of experiments using real and 

simulated (but realistic) data in order to study the system 

response time and system scalability.  

We report average end-to-end processing times (i.e. from 

the moment IoT data are received by the network server to 

the time they are stored in the database) and also average 

time spent on each service in the processing sequence.  

To study system scalability we stressed the system with a 

large synthetic (but realistic) payload simulating up to 2.000 

requests (i.e. data packets) received by the Network server 



4 
 

and processed on the cloud. Our experimental results 

demonstrate that our system is still capable of performing 

real - time or close to real time for many thousands of 

concurrent requests.  

In a different experiment, we study the practical range of 

LoRa transmission in a real urban environment (in the city of 

Chania) with two gateways placed apart from each other.  

The experimental results reveal that the rate of packages 

captured by any of the two gateways decreases drastically 

with the distance from the sensors in all cases. 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

ΠΕΡΙΛΗΨΗ 

Σε αυτή την εργασία, παρουσιάζουμε πως τα πλεονεκτήματα 

ενός χαμηλής κατανάλωσης και ευρείας περιοχής 

δικτύου(LPWAN) πρωτοκόλλου μπορούν να εκμεταλλευθούν 

για να υποστηρίξουν μεγαλύτερη διαθεσιμότητα και 

χρησιμότητα εφαρμογών του διαδικτύου των πραγμάτων 

(IoT). Η βασική ιδέα είναι να δείξουμε πως τα LPWAN δίκτυα 

μπορούν να διασυνδεθούν με το Νέφος όπου τα IoT δεδομένα 

μπορούν να μεταφερθούν με ασφάλεια για μόνιμη 

αποθήκευση και επιπλέον επεξεργασία. Για να αποδείξουμε τη 

γενική ιδέα, πειραματιστήκαμε με την τεχνολογία LoRa και το 

LoRaWAN, το τελευταίο αντιπροσωπευτικό από τα LPWAN 

πρωτόκολλα. Το LoRaWAN πρωτόκολλο χαρακτηρίζεται από 

μεγάλη εμβέλεια, χαμηλή ισχύ και χαμηλό ρυθμό μετάδοσης 

των δεδομένων. Εφαρμόσαμε μία τυπική πειραματική 

εγκατάσταση με LoRa περιβαλλοντικούς αισθητήρες που 

μεταδίδουν μετρήσεις σε μία μεγάλη απόσταση 

χρησιμοποιώντας το LoRa πρωτόκολλο μέχρι τα gateways 

και από εκεί στο Νέφος. Το σενάριό μας είναι ανεξάρτητο από 

τους τύπους των αισθητήρων και δεν χρειάζεται να γνωρίζει 

το είδος των πραγματικών IoT μετρήσεων. Το πλεονέκτημα 

αυτού του σεναρίου είναι ότι ολόκληρες πόλεις μπορούν να 

καλυφθούν με ένα μικρό αριθμό πυλών δικτύου(gateways) 

όπου κάθε μία είναι ικανή να εξυπηρετήσει μέχρι και χιλιάδες 

αισθητήρες. 

Οι LoRa κόμβοι μεταδίδουν πακέτα ραδιοσυχνοτήτων με 

διαμόρφωση LoRa τα οποία συλλαμβάνονται από μία ή 

περισσότερες πύλες. Κάθε πύλη λαμβάνει τα LoRa πακέτα 

από εξ αποστάσεως αισθητήρες και αναμεταδίδει αυτά στο 

Νέφος μέσω του διαδικτύου χρησιμοποιώντας ένα IP 

πρωτόκολλο (δηλ. κάποιο συνηθισμένο όπως το UDP). Σε 

αυτή την εργασία χρησιμοποιήσαμε το MQTT ένα πιο 

λεπτομερές ελαφρύ publish-subscribe IP πρωτόκολλο που 



6 
 

προσφέρει προχωρημένη ασφάλεια, καλύτερο έλεγχο 

δρομολόγησης και παρακολούθησης της επικοινωνίας 

(δηλαδή καλύτερο χειρισμό και έλεγχο των πακέτων). 

Το επίκεντρο αυτής της εργασίας είναι η διασύνδεση των 

πυλών δικτύου με το Νέφος. Αναπτύξαμε έναν εξυπηρετητή 

δικτύου , μία λύση η οποία τρέχει ως υπηρεσία στο Νέφος και 

που σκοπός της είναι (α) να λαμβάνει LoRa πακέτα από τις 

πύλες δικτύου (b) να αποκωδικοποιεί το περιεχόμενό τους 

από χαρακτήρες ASCII σε bits (base64 κωδικοποίηση) (c) να 

κρατάει ένα μοναδικό πακέτο αν λαμβάνεται από 

περισσότερες από μία πύλες δικτύου (d) να 

αποκρυπτογραφεί το περιεχόμενο (AES 128 bit 

κρυπτογράφηση εφαρμόζεται από το LoRa) και (e) να κάνει 

τα δεδομένα διαθέσιμα στις υπηρεσίες του Νέφους σε NGSI-

JSON μορφή. Για τα  πακέτα που βγαίνουν έξω από το Νέφος 

η ίδια λύση εφαρμόζεται σε αντίστροφη σειρά: τα πακέτα 

κρυπτογραφούνται, κωδικοποιούνται και μεταδίδονται σε 

στοχευόμενες πύλες (υποστηρίζεται από το LoRaWare με 

κάποιες πρόσθετες τροποποιήσεις-δεν έχει δοκιμαστεί). Η 

υπηρεσία έχει αναπτυχθεί για το Fiware Cloud , μία 

πανευρωπαϊκή υποδομή νέφους που υποστηρίζεται από την 

Ευρωπαϊκή Ένωση. Το NGSI πρωτόκολλο χρησιμοποιείται από 

κάθε Generic Enabler του Fiware οικοσυστήματος ως ένα 

μοντέλο ανταλλαγής δεδομένων.  Ένας από αυτούς είναι και ο 

Publish/Subscribe Context Broker ο οποίος μεσολαβεί μεταξύ 

συσκευών και εφαρμογών. Η αρχιτεκτονική μας, αναφέρεται 

ως LoRaWare, επιτρέπει στους IoT developers να βελτιώσουν 

τις δυνατότητες των εφαρμογών LoRa χρησιμοποιώντας 

προχωρημένες υπηρεσίες του Fiware που υποστηρίζουν 

μόνιμη αποθήκευση, ανάλυση δεδομένων, σύνθεση 

δεδομένων και υπηρεσιών με Mashups κτλπ. Στο παράδειγμα 

της υλοποίησής μας, παρακολουθούνται μετρήσεις υγρασίας 

και θερμοκρασίας σε πραγματικό χρόνο στο Νέφος ενώ 



7 
 

ταυτόχρονα αποθηκεύονται οι τιμές στο ιστορικό σε μία 

MySQL βάση δεδομένων. 

Εκτελούμε ένα εξαντλητικό σύνολο πειραμάτων 

χρησιμοποιώντας πραγματικά δεδομένα προσομοίωσης 

ώστε να μελετήσουμε τον χρόνο απόκρισης του συστήματος 

και την επεκτασιμότητα του. 

Αναφέρουμε το μέσο χρόνο επεξεργασίας από άκρο σε άκρο 

(δηλαδή από τη στιγμή που τα IoT δεδομένα λαμβάνονται από 

τον εξυπηρετητή δικτύου μέχρι τη στιγμή που αποθηκεύονται 

στη βάση δεδομένων) και επίσης τον μέσο χρόνο που 

δαπανάται σε κάθε υπηρεσία στην ακολουθία της 

επεξεργασίας. 

Για να μελετήσουμε την επεκτασιμότητα του συστήματος 

στρεσάραμε το σύστημα με ένα τεράστιο (πραγματικό) 

φορτίο προσομοιωμένο με 2000 αιτήματα (πακέτα 

δεδομένων) που λαμβάνονται από τον εξυπηρετητή δικτύου 

και επεξεργάζονται στο Νέφος. Τα πειραματικά μας 

αποτελέσματα δείχνουν ότι το σύστημα μας είναι ικανό να 

αποδίδει σε πραγματικό χρόνο ή κοντά σε πραγματικό χρόνο 

για πολλά χιλιάδες ταυτόχρονα αιτήματα. 

Σε ένα διαφορετικό πείραμα, μελετήσαμε το πρακτικό εύρος 

της LoRa μετάδοσης σε ένα πραγματικό αστικό περιβάλλον 

(στην πόλη των Χανίων) με δύο πύλες δικτύου που 

τοποθετήθηκαν μακριά η μία από την άλλη. Τα πειραματικά 

αποτελέσματα που προέκυψαν αποκαλύπτουν ότι ο ρυθμός 

των λαμβανόμενων πακέτων για κάθε μία από τις πύλες 

δικτύου μειώνεται δραστικά σε σχέση με την απόσταση των 

αισθητήρων σε όλες τις περιπτώσεις. 

 

 



8 
 

ACKNOWLEDGMENTS 

I would like to thank professor Euripides Petrakis for his valuable help 
and insightful comments. I would like also to thank the members of the 
laboratory for the excellent communication and collaboration.  



9 
 

Contents 
1. Introduction ..................................................................................................................... 11 

1.1 PROBLEM DEFINITION AND CONTRIBUTIONS ......................................................... 12 

2. Background-Related Work .............................................................................................. 14 

2.1 Cloud Computing ........................................................................................................... 14 

2.1.1 Definition ................................................................................................................ 14 

2.1.2 Advantages of Cloud ............................................................................................... 14 

2.1.3 Cloud service models .............................................................................................. 16 

2.1.4 Cloud deployment models ..................................................................................... 18 

2.1.5 Virtualization .......................................................................................................... 19 

2.1.6 Openstack ............................................................................................................... 23 

2.1.7 Fiware ..................................................................................................................... 25 

2.1.8 The NGSI Information Model.................................................................................. 26 

2.1.9 IDAS GE ................................................................................................................... 28 

2.1.10 Orion Context Broker GE ...................................................................................... 29 

2.1.11 Keyrock Identity Manager GE ............................................................................... 29 

2.2 Internet of Things (IoT) .................................................................................................. 30 

2.2.1 Devices .................................................................................................................... 30 

2.2.2 IoT protocols ........................................................................................................... 32 

2.2.3 IoT platforms .......................................................................................................... 36 

2.3 LoRa Technology ............................................................................................................ 37 

2.3.1 Characteristics of LoRa Technology ........................................................................ 38 

2.3.2 LoRaWAN protocol ................................................................................................. 38 

2.3.3 Classes of LoRa devices........................................................................................... 39 

2.3.4 LoRa Data Rates ...................................................................................................... 41 

2.3.5 Security ................................................................................................................... 41 

2.3.6 LoRa Network Architecture .................................................................................... 44 

3. LoRaWare Reference Architecture .................................................................................. 44 

3.1 LoRa Network ................................................................................................................ 46 

3.2 LoRa Backend ................................................................................................................ 47 

4. Implementation of LoRaWare Architecture .................................................................... 50 

4.1 Architectural Diagrams of LoRaWare ............................................................................ 51 

4.2 LoRa Devices .................................................................................................................. 55 

4.2.1 Nexus Board ........................................................................................................... 56 



10 
 

4.2.2 Nexus Demoboard .................................................................................................. 57 

4.2.3 PCB Antenna 868 MHz UFL ..................................................................................... 57 

4.2.4 Arduino Sketches .................................................................................................... 58 

4.3 Lorank 8 Gateway .......................................................................................................... 60 

4.3.1 The Lora-Gateway-Bridge Service .......................................................................... 61 

4.4 The Cloud Services of the LoRaWare Architecture ....................................................... 63 

4.4.1 The Mosquitto MQTT Broker.................................................................................. 63 

4.4.2 LoRa Server ............................................................................................................. 65 

4.4.3 LoRa App Server ..................................................................................................... 67 

4.4.4 JSON FILTERING ...................................................................................................... 75 

4.4.5 JSON/MQTT IoT Agent ............................................................................................ 76 

4.4.6 Orion Context Broker ............................................................................................. 79 

4.4.7 Keyrock Identity Management ............................................................................... 81 

4.5 Application Logic & Smart Home Web Application ....................................................... 84 

5. Performance Evaluation .................................................................................................. 88 

5.1Evaluation of the Cloud Infrastructure ........................................................................... 88 

5.2 LoRa Network Evaluation .............................................................................................. 95 

5.2.1 First Experiment ..................................................................................................... 97 

5.2.2 Second Experiment ............................................................................................... 101 

6. Conclusion – Future Work ............................................................................................. 103 

6.1 Conclusions .................................................................................................................. 104 

6.2 Future Work ................................................................................................................ 105 

7. References ..................................................................................................................... 106 

8. Image References .......................................................................................................... 107 

 

  



11 
 

1. Introduction 
 
The idea of the Internet of Things (IoT) combined with cloud computing, 
opens new horizons in the field of real time data collection and analysis. 
Due its scalability, modularity and affordability (no up-front investment, 
low maintenance cost) Cloud is the ideal deployment environment of IoT 
applications.  

 

Cloud Computing makes computing resources accessible over the 

network, allows high degree of resource sharing (as many user can be 

accessing the same infrastructure or service at the same time). In the 

cloud, resources are provisioned and released on-demand allowing users 

to use the cloud resources based on their actual needs and be charged 

for this. Finally, a scalable infrastructure is scalable to accommodate 

demands of the ever increasing number of users and applications. These 

operations are enabled by monitoring the actual resource usage at all 

times using appropriate monitoring solutions. 

Internet of Things is coming into the scene to allow interconnection of 

user devices and enable the processing of the huge amounts of 

information that are routinely acquired by the millions of devices 

connected to the internet. The use of wearable sensors and mobile 

devices and their capability for Internet connectivity provides significant 

benefits in applications areas that require fast and continuous 

monitoring of user data from anywhere (e.g. activity, health monitoring, 

smart cities etc.).In real-life applications, huge amounts of data are 

collected and analyzed (e.g. for scientific or business purposes). 

Furthermore, A Low-Power Wide-Area Network (LPWAN)1 or LPWA 

network or Low-Power Network(LPN) is a type of wireless 

telecommunication wide area network designed to allow long range 

communications at a low bit rate among things (connected objects) , 

such as sensors operated on a battery. The low power, low bit rate and 

intended use distinguish this type of network from a wireless WAN that 

is designed to connect users or businesses, and carry more data, using 

more power. The LPWAN data rate ranges from 0,3 kbit/s to 50 kbit/s 
                                                           
1
 https://en.wikipedia.org/wiki/LPWAN 



12 
 

per channel. A LPWAN may be used to create a private wireless sensor 

network, but may also be a service or infrastructure offered by a third 

party, allowing the owners of sensors to deploy them in the field without 

investing in gateway technology. 

Due to its long range, high mobility, security and low power 

consumption, LoRa is considered to be a promising technology and  is 

projected to support billions of IoT devices which can be connected to 

internet. Public and private networks using this technology can provide 

coverage that is greater in range compared to that of existing cellular 

networks.  

1.1 PROBLEM DEFINITION AND CONTRIBUTIONS 
 

The present work attempts to become the technological bridge of the 

three important technologies referred to above namely, IoT, Cloud 

computing and LPWAN. We are motivated by the need to support 

interconnection of large numbers of devices to the cloud, where 

monitoring of the IoT network, persistent storage and analysis of the big 

amounts of IoT data can take place taking advantage of the scalability, 

modularity and low cost maintenance of cloud services. In particular, 

taking advantage of the modularity and extendibility of cloud services, 

new applications can be designed and deployed on the cloud capable of 

serving the needs of diverse application domains and of large numbers 

of users. 

The need to interconnect networks of LoRa devices and the cloud has 

been acknowledged many times in the past by many investigators and 

practitioners. The appropriate technological bridge (referred to as 

Network server) would run on the cloud and its purpose would be to 

receive LoRa encoded data packets from gateways, decode the packets 

and forward the transmitted payloads in a format that is commonly 

understandable by services running on the cloud. An obvious 

disadvantage of such a solution is the lack of standardization in this area 

mainly due to the heterogeneity of the cloud providers. However, most 

providers adopt the REST standardization for their services and a JSON 



13 
 

format for data transmission rather than the more general XML format 

(which would incur an additional overhead for encoding and decoding). 

Besides, the scalability of such a solution has not been studied 

elsewhere.  

In this work we design and develop LoRaWare a Network server as a 

service on FIWARE cloud infrastructure. An important advantage of the 

proposed solution is adoption of the NGSI framework and protocol for 

subscribing LoRa networks to the cloud and the use of the Publish-

Subscribe context broker service of Fiware for making their data 

available to the users. The service allows LoRa Devices to subscribe their 

information to the cloud and at the same time, user to subscribe to this 

information and get notified every time new information becomes 

available.  

To show proof of concept we propose an event based architecture on 

FIWARE which is capable of using information generated by LoRa 

networks of devices. This is a generic architecture that shows how data 

can be stored, analyzed and used by other services in a form that is 

network agnostic (ie. an application or user need not to be aware of the 

peculiarities of LoRa in order to use information from LoRa networks or 

in order to communicate with the LoRa devices).  

In order to study scalability of the solution we stress the LoRaWare (the 

network service and all services subscribing to LoRa devices) with  large 

synthetic (but realistic) payloads produced by many concurrent users 

and we report total response times of the Network Services as well 

response times consumed by each individual LoRa Service. The 

experimental results demonstrate the LoRaWare (and the Network 

Server) scales-up very well responding in real or in close to real-time in 

all cases.  

In a different experiment, we study the practical range of LoRa 

transmission in a real urban environment (in the city of Chania) with two 

gateways placed apart from each other.  The experimental results reveal 

that the rate of packages captured by any of the two gateways 

decreases drastically with the distance from the sensors in all cases. 



14 
 

2. Background-Related Work 
 

2.1 Cloud Computing 

2.1.1 Definition 
According of National Institute of Standards and Technology (NIST) 

definition2, Cloud Computing is a model for enabling convenient, on-

demand network access to a shared pool of configurable computing 

resources (e.g., networks, servers, storage, applications, and services) 

that can be rapidly provisioned and released with minimal management 

effort or service provider interaction. This cloud model promotes 

availability and is composed of three service models and four 

deployment models. 

2.1.2 Advantages of Cloud3 
Cloud computing has 3 main benefits: 

 Flexibility which means that users can scale services to fit their 

needs customize applications and access cloud services from 

anywhere with an internet connection.  

 Efficiency as enterprise users can get applications to market 

quickly, without worrying about underlying infrastructure costs or 

maintenance.  

 Strategic value because cloud services give enterprises a 

competitive advantage by providing the most innovative 

technology available. 

Every advantage of the above hides more specific benefits. 

To begin with, flexibility means scalability, as cloud infrastructure can be 

scaled on demand to support fluctuating workloads. In addition, users 

can have storage options as they can choose public, private or hybrid 

storage offerings, depending on security needs and other 

considerations. Furthermore, it provides control choices, which means 

                                                           
2
 https://www.nist.gov/sites/default/files/documents/itl/cloud/cloud-def-v15.pdf 

3
https://www.ibm.com/cloud/learn/benefits-of-cloud-computing  



15 
 

that organizations can determine their level of control as-a-service 

options. These include software as a service (SaaS), platform as a service 

(PaaS) and infrastructure as a service (IaaS). Also, tool selection gives 

the opportunity to users to select from a menu of prebuilt tools and 

features a solution that fits their specific need. Finally, security features 

such as virtual private cloud, encryption and API keys help keep data 

secure. 

On the other hand, efficiency means accessibility because cloud-based 

applications and data are virtually accessible from any internet-

connected device. Furthermore, developing in the cloud enables users to 

get their applications to market quickly (speed to market). Also, it 

provides security to data, as hardware failures do not result in data loss 

because of networked backups. In addition, efficiency brings savings on 

equipment. Cloud computing uses remote sources, saving organizations 

the cost of servers and other equipment. Finally, a “utility” pay structure 

means that users only pay for the resources they use. 

Finally, strategic value means streamlined work as cloud service 

providers (CSPs) manage underlying infrastructure, enabling 

organizations to focus on application development and other priorities. 

In addition, service providers regularly update offerings to give users the 

most up-to-date technology (Regular updates). Also, worldwide access 

means teams can collaborate from widespread locations (collaboration). 

Finally, organizations can move more nimbly than competitors who must 

devote IT resources to managing infrastructure (Competitive edge). 

 



16 
 

2.1.3 Cloud service models4 

 

Figure 1: Cloud Service Models - Differences between IaaS, PaaS and SaaS 

There are 3 cloud service models (Figure 1): Infrastructure as a service 

(IaaS), Platform as a service (PaaS) and Software as a service (SaaS). At 

IaaS, a vendor provides clients pay-as-you-go access to storage, 

networking, servers and other computing resources in the cloud. At 

PaaS, a service provider offers access to a cloud-based environment in 

which users can build and deliver applications. The provider supplies 

underlying infrastructure. Finally, at SaaS, a service provider delivers 

software and applications through the internet. Users subscribe to the 

software and access it via the web or vendor APIs. 

To become more specific, IaaS is a cloud computing offering in which a 

vendor provides users access to computing resources such as servers, 

storage, and networking. Organizations use their own platforms and 

applications within a service provider’s infrastructure. Instead of 

purchasing hardware outright, users pay for IaaS on demand. 

Infrastructure is scalable depending on processing and storage needs. In 

addition, IaaS saves enterprises the costs of buying and maintaining their 

own hardware. Because data is on the cloud, there can be no single 

                                                           
4
 https://www.ibm.com/cloud/learn/iaas-paas-saas 



17 
 

point of failure. Finally, this model enables the virtualization of 

administrative tasks, freeing up time for other work. 

PaaS is a cloud computing offering that provides users with a cloud 

environment in which they can develop, manage and deliver 

applications. In addition to storage and other computing resources, 

users are able to use a suite of prebuilt tools to develop, customize and 

test their own applications. PaaS provides a platform with tools to test, 

develop and host applications in the same environment. Furthermore, it 

enables organizations to focus on development without having to worry 

about underlying infrastructure. This model gives the opportunity to 

providers to manage security, operating systems, server software and 

backups and it also facilitates collaborative work even if teams work 

remotely. 

Finally, SaaS is a cloud computing offering that provides users with 

access to a vendor’s cloud-based software. Users do not install 

applications on their local devices. Instead, the applications reside on a 

remote cloud network accessed through the web or an API. Through the 

application, users can store and analyze data and collaborate on 

projects. SaaS vendors provide users with software and applications via 

subscription model. Users do not have to manage, install or upgrade 

software because providers manage this. Data is secure in the cloud, as 

equipment failure does not result in loss of data. Also, use of resources 

can be scaled depending on service needs and applications are 

accessible from almost any internet-connected device, from virtually 

anywhere in the world. 



18 
 

2.1.4 Cloud deployment models5 

 

Figure 2: Cloud deployment models 

There are 4 cloud deployment models (Figure 2): 

 The most common and well-known deployment model is Public 

Cloud. A Public Cloud is a huge data center that offers the same 

services to all its users. The services are accessible for everyone 

and much used for the consumer segment. Examples of public 

services are Facebook, Google and LinkedIn. For consumers, Public 

Cloud offerings are usually free of charge, for professionals there 

is usually a per-per-use (or user) pricing model. The Public Cloud is 

always hosted by a professional Cloud supplier. 

 The other commonly used deployment model is Private Clouds. 

There are lots of discussions for how strict the definition of Private 

Clouds should be. In general a customer’s internally hosted data 

center is regarded as a Private Cloud. If we add virtualization and 

automation, such a setup may very well be regarded as a Private 

Cloud. A professional Cloud vendor may also offer a Private Cloud 

to their customers by supporting a separate hardware 

environment in the data center. A Private Cloud is therefore 

                                                           
5
 https://www.visma.com/blog/cloud-basics-deployment-models/ 



19 
 

mostly suited for sensitive data, where the customer is dependent 

on a certain degree of security. Private Clouds, to a certain degree, 

loose the economy of scale compared to a Public Cloud. 

 A way to preserve the benefits of economy of scales with the 

Private Cloud is a Community Cloud. This is cooperation between 

users who share some concerns like security, application types, 

legislative issues and efficiency demands. In other words, a 

Community Cloud is a closed Private Cloud for a group of users. 

For governments this is called Government Cloud and is a type of 

Cloud that is more and more adapted. Due to legislative issues, a 

Government Cloud may be the answer to country specific judicial 

concerns. 

 The Hybrid Cloud is a combination of both Private and Public. This 

is a setup that is much used for large companies. Vital data is 

usually preferred in a Private Cloud and supporting services in 

Public, for instance search, email, blogs, CRM etc. In other words 

strategic applications are run separately. 

2.1.5 Virtualization 
Virtualization6 refers to the creation of a virtual resource such as a 

server, desktop, operating system, file, storage or network. 

It is the key to cloud computing7, since it is the enabling technology 

allowing the creation of an intelligent abstraction layer which hides the 

complexity of underlying hardware or software. 

The main goal of virtualization is to manage workloads by radically 

transforming traditional computing to make it more scalable. 

Virtualization has been a part of the IT landscape for decades now, and 

today it can be applied to a wide range of system layers, including 

operating system-level virtualization, hardware-level virtualization and 

                                                           
6
 https://www.techopedia.com/definition/719/virtualization 

7
 https://www.computerworld.com/article/2468246/cloud-computing/why-virtualization-is-the-

foundation-of-cloud-computing.html 



20 
 

server virtualization. 

 

Figure 3: Difference between traditional and virtual architecture 

It is commonly hypervisor-based8. The hypervisor isolates operating 

systems and applications from the underlying computer hardware so the 

host machine can run multiple virtual machines (VM) as guests that 

share the system's physical compute resources, such as processor cycles, 

memory space, network bandwidth and so on. (Figure 3) 

 

Figure 4: Hypervisor type 1 & type 2 

There are two hypervisor types (Figure 4): 

Type 1 hypervisors, sometimes called bare-metal hypervisors, run 

directly on top of the host system hardware. Bare-metal hypervisors 

                                                           
8
 https://whatis.techtarget.com/definition/virtualization-architecture 



21 
 

offer high availability and resource management. Their direct access to 

system hardware enables better performance, scalability and stability. 

Examples of type 1 hypervisors include Microsoft Hyper-V, Citrix 

XenServer and VMware ESXi. 

 

A type 2 hypervisor, also known as a hosted hypervisor, is installed on 

top of the host operating system, rather than sitting directly on top of 

the hardware as the type 1 hypervisor does. Each guest OS or VM runs 

above the hypervisor. The convenience of a known host OS can ease 

system configuration and management tasks. However, the addition of a 

host OS layer can potentially limit performance and expose possible OS 

security flaws. Examples of type 2 hypervisors include VMware 

Workstation, Virtual PC and Oracle VM VirtualBox. 

 

Figure 5: Virtual Machines stuck vs Containers stuck 

 

The main alternative to hypervisor-based virtualization is 

containerization (Figure 5). A container9 image is a lightweight, stand-

alone, executable package of a piece of software that includes 

everything needed to run it: code, runtime, system tools, system 

                                                           
9
 https://www.docker.com/what-container 



22 
 

libraries, settings. Available for both Linux and Windows based apps, 

containerized software will always run the same, regardless of the 

environment. Containers isolate software from its surroundings, for 

example differences between development and staging environments 

and help reduce conflicts between teams running different software on 

the same infrastructure. 

 

Figure 6: Docker logo 

Docker is a computer program that performs operating-system-level 

virtualization also known as containerization. 

Docker is a tool that can package an application and its dependencies in 

a virtual container that can run on any Linux server. This helps enable 

flexibility and portability on where the application can run. 



23 
 

2.1.6 Openstack 

 

Figure 7: Openstack logo 

OpenStack10 is a cloud operating system that controls large pools of 

compute, storage, and networking resources throughout a datacenter, 

all managed through a dashboard that gives administrators control while 

empowering their users to provision resources through a web interface. 

 

Figure 8: OpenStack embraces a modular architecture to provide a set of core services that facilitates 
scalability and elasticity as core design tenets. 

OpenStack11 embraces a modular architecture to provide a set of core 

services that facilitates scalability and elasticity as core design tenets 

(Figure 8). 

OpenStack Compute service (nova) provides services to support the 

management of virtual machine instances at scale, instances that host 

multi-tiered applications, dev or test environments, “Big Data” crunching 

Hadoop clusters, or high-performance computing. 

                                                           
10

 https://www.openstack.org/software/ 
11

 https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html 



24 
 

The OpenStack Object Storage service (swift) provides support for 

storing and retrieving arbitrary data in the cloud. The Object Storage 

service provides both a native API and an Amazon Web Services S3-

compatible API. The service provides a high degree of resiliency through 

data replication and can handle petabytes of data. 

The OpenStack Block Storage service (cinder) provides persistent block 

storage for compute instances. The Block Storage service is responsible 

for managing the life-cycle of block devices, from the creation and 

attachment of volumes to instances, to their release. 

The OpenStack Networking service (neutron, previously called 

quantum) provides various networking services to cloud users (tenants) 

such as IP address management, DNS, DHCP, load balancing, and 

security groups (network access rules, like firewall policies). This service 

provides a framework for software defined networking (SDN) that allows 

for pluggable integration with various networking solutions. 

The OpenStack Dashboard (horizon) provides a web-based interface for 

both cloud administrators and cloud tenants. Using this interface, 

administrators and tenants can provision, manage, and monitor cloud 

resources. The dashboard is commonly deployed in a public-facing 

manner with all the usual security concerns of public web portals. 

The OpenStack Identity service (keystone) is a shared service that 

provides authentication and authorization services throughout the 

entire cloud infrastructure. The Identity service has pluggable support 

for multiple forms of authentication. 

The OpenStack Image service (glance) provides disk-image management 

services, including image discovery, registration, and delivery services to 

the Compute service, as needed. 



25 
 

2.1.7 Fiware12 

 

Figure 9: Fiware logo 

The FIWARE middleware platform provides a rather simple yet powerful 

set of APIs (Application Programming Interfaces) that ease the 

development of Smart Applications in multiple vertical sectors. The 

specifications of these APIs are public and royalty-free. Besides, an open 

source reference implementation of each of the FIWARE components is 

publicly available so that multiple FIWARE providers can emerge faster 

in the market with a low-cost proposition. 

FIWARE provides an enhanced OpenStack-based cloud environment plus 

a rich set of open standard APIs that make it easier to connect to the 

Internet of Things, process and analyse Big data and real-time media or 

incorporate advanced features for user interaction. 

The FIWARE Community is an independent Open Community whose 

members are committed to materialize the FIWARE mission, that is: “to 

build an open sustainable ecosystem around public, royalty-free and 

implementation-driven software platform standards that will ease the 

development of new Smart Applications in multiple sectors”. The 

FIWARE Community is not only formed by contributors to the 

technology (the FIWARE platform) but also those who contribute in 

building the FIWARE ecosystem and making it sustainable over time. As 

such, individuals and organizations committing relevant resources in 

FIWARE Lab activities or activities of the FIWARE Accelerator, FIWARE 

Mundus or FIWARE iHubs programmes are also considered members of 

the FIWARE community. 

FIWARE Lab is a non-commercial sandbox environment where 

innovation and experimentation based on FIWARE technologies take 

place. Entrepreneurs and individuals can test the technology as well as 

                                                           
12

 https://www.fiware.org/ 



26 
 

their applications on FIWARE Lab, exploiting Open Data published by 

cities and other organizations. FIWARE Lab is deployed over a 

geographically distributed network of federated nodes leveraging on a 

wide range of experimental infrastructures. 

The FIWARE Catalogue contains a rich library of components (Generic 

Enablers) with reference implementations that allow developers to put 

into effect functionalities such as the connection to the Internet of 

Things or Big Data analysis, making programming much easier. All of 

them are public, royalty-free and open source! 

Generic Enablers (GEs) offer a number of general-purpose functions, 

offered through well-defined APIs, easing development of smart 

applications in multiple sectors. They will set the foundations of the 

architecture associated to our application. 

The FIWARE Catalogue includes links to other catalogues bringing 

information about domain-specific enablers (DSEs) to be combined with 

those serving general purposes (Generic Enablers - GE). They may be 

helpful for those who plan to develop applications in the domains of 

energy, creative media, smart manufacturing, health and wellbeing and 

the agrifood sector. 

2.1.8 The NGSI Information Model13 
OMA14  NGSI defines two interfaces for exchanging information based on 

the information model. The interface OMA NGSI-10 is used for 

exchanging information about entities and their attributes, i.e., attribute 

values and metadata. The interface OMA NGSI-9 is used for availability 

information about entities and their attributes. Here, instead of 

exchanging attribute values, information about which provider can 

provide certain attribute values is exchanged. 

The central aspect of the NGSI-9/10 information model is the concept of 

entities. Entities are the virtual representation of all kinds of physical 

objects in the real world. Examples for physical entities are tables, 

                                                           
13

 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/NGSI-9/NGSI-
10_information_model 
14

 https://en.wikipedia.org/wiki/Open_Mobile_Alliance 



27 
 

rooms, or persons. Virtual entities have an identifier and a type. For 

example, a virtual entity representing a person named “John” could have 

the identifier “John” and the type “person”. 

Any available information about physical entities is expressed in the 

form of attributes of virtual entities. Attributes have a name and a type 

as well. For example, the body temperature of John would be 

represented as an attribute having the name “body_temperature” and 

the type “temperature”. Values of such attributes are contained by value 

containers. This kind of container does not only consist of the actual 

attribute value, but also contains a set of metadata. Metadata is data 

about data; in in our body temperature example this metadata could 

represent the time of measurement, the measurement unit, and other 

information about the attribute value. 

There is also a concept of attribute domains in OMA NGSI 9/10. An 

attribute domain logically groups together a set of attributes. For 

example, the attribute domain "health_status" could comprise of the 

attributes "body_temperature" and "blood_pressure". 

The data structure used for exchanging information about entities is 

context element. A context element contains information about 

multiple attributes of one entity. The domain of these attributes can also 

be specified inside the context element; in this case all provided 

attribute values have to belong to that domain. 

Formally, a context element contains the following information 

 an entity id and type 

  a list of triplets <attribute name, attribute type, attribute value> 

holding information about attributes of the entity 

  (optionally) the name of an attribute domain 

 (optionally) a list of triplets <metadata name, metadata type, 

metadata value> that apply to all attribute values of the given 

domain 



28 
 

2.1.9 IDAS GE15 
The IDAS component is an implementation of the Backend Device 

Management GE, according to the FIWARE reference architecture. We 

need this component if we plan to connect IoT devices/gateways to 

FIWARE-based ecosystems.  

IoT Agents translate IoT-specific protocols into the NGSI context 

information protocol, that is the FIWARE standard data exchange model. 

We do not need this component if our devices or gateways natively 

support the NGSI API. 

By using an IoT Agent , our devices will be represented in a FIWARE 

platform as NGSI entities in a ContextBroker. This means that we can 

query or subscribe to changes of device parameters status by querying 

or subscribing to the corresponding NGSI entity attributes at the 

ContextBroker. 

Additionally, we may trigger commands to our actuation devices just by 

updating specific command-related attributes in their NGSI entities 

representation at the Context Broker. This way, all developers 

interactions with devices are handled at a Context Broker, providing an 

homogeneous API and interface as for all other non-IoT data in a 

FIWARE ecosystem. 

Currently there are four supported IoT Agents by Fiware which have 

been implemented with node.js: 

 IoTAgent-JSON 1.6.2 (HTTP/MQTT transport): 

This IoT Agent is designed to be a bridge between an HTTP/MQTT+JSON 

based protocol and the FIWARE NGSI standard used in FIWARE, like the 

Orion Context Broker. 

 IoTAgent-LWM2M 0.4.0 (CoaP transport) 

This IoT Agent is designed to be a bridge between a Lightweight M2M 

protocol and the FIWARE NGSI standard. 

                                                           
15

 https://catalogue-server.fiware.org/enablers/backend-device-management-idas 



29 
 

 IoTAgent-UL 1.5.2 (HTTP/MQTT transport) 

This IoT Agent is designed to be a bridge between an UltraLight2.0 

protocol and the FIWARE NGSI standard. 

 IoTAgent-node-lib 2.5.1 

This repository does not belong to an executable agent, but it is a library 

to create new agents. This core library allows developing new agents for 

specific southbound protocols/standards/messages. 

2.1.10 Orion Context Broker GE16 
Orion Context Broker is able to mediate between consumer producers 

(e.g. sensors) and every context consumer application. It is an 

implementation of the Publish/Subscribe Context Broker GE, providing 

the NGSI9 and NGSI10 interfaces. Using these interfaces, clients can do 

several operations: 

 Register context producer applications, e.g. a temperature sensor 

within a room 

  Update context information, e.g. send updates of temperature 

 Being notified when changes on context information take place 

(e.g. the temperature has changed) or with a given frequency 

(e.g. get the temperature each minute) 

 Query context information. The Orion Context Broker stores 

context information updated from applications, so queries are 

resolved based on that information. 

Orion is a C++ implementation of the NGSIv2 REST API binding 

developed as a part of the FIWARE platform. 

2.1.11 Keyrock Identity Manager GE17 
Identity Management covers a number of aspects involving users' access 

to networks, services and applications, including secure and private 

authentication from users to devices, networks and services, 

authorization & trust management, user profile management, privacy-

                                                           
16

 https://catalogue-server.fiware.org/enablers/publishsubscribe-context-broker-orion-context-
broker 
17

 https://catalogue-server.fiware.org/enablers/identity-management-keyrock 



30 
 

preserving disposition of personal data, Single Sign-On (SSO) to service 

domains and Identity Federation towards applications. The Identity 

Manager is the central component that provides a bridge between IdM 

systems at connectivity-level and application-level. Furthermore, 

Identity Management is used for authorizing foreign services to access 

personal data stored in a secure environment. Hereby usually the owner 

of the data must give consent to access the data. 

2.2 Internet of Things (IoT) 
The Internet of Things (IoT)18 is the network of physical devices, 

vehicles, home appliances and other items embedded with electronics, 

software, sensors, actuators, and connectivity which enables these 

objects to connect and exchange data. Each thing is uniquely identifiable 

through its embedded computing system but is able to inter-operate 

within the existing Internet infrastructure. 

2.2.1 Devices 
IoT devices, or any of the many things in the internet of things, are 

nonstandard computing devices that connect wirelessly to a network 

and have the ability to transmit data. 

 

Figure 10: Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in billions) 

 

                                                           
18

 https://en.wikipedia.org/wiki/Internet_of_things 



31 
 

This statistic19 (Figure 10) shows the number of connected devices 

(Internet of Things; IoT) worldwide from 2015 to 2025. For 2020, the 

installed base of Internet of Things devices is forecast to grow to almost 

31 billion worldwide. The overall Internet of Things market is projected 

to be worth more than one billion U.S. dollars annually from 2017 

onwards. 

So we could understand how crucial the role of Cloud Computing is in 

order to deal with this rapid increase. 

IoT devices have some fundamental characteristics. First of all, 

everything communicates which means that smart things have the 

ability to wirelessly communicate among themselves, and form adhoc 

networks of interconnected objects. In addition, everything is identified. 

Each thing has a unique identifier (e.g., IP address if IPv4 – 32bit address 

space, but due to limited address space IoT will have to use IPv6 - 128 bit 

address space). Finally, everything interacts which means that smart 

things can interact with their environment through sensing and 

actuation capabilities. 

IoT devices may be sensors, actuators, microcontrollers or shields. 

Sensors are devices that detect and respond to some type of input from 

the environment (temperature, motion, humidity, pressure etc.)  

Actuators are systems which convert electrical signals to physical actions 

(for interacting with environment). 

Microcontrollers are small computers on a single board containing 

processor, memory and i/o peripherals. They are embedded with low 

power consumption and small size. 

IoT Node shields are integrated solutions on a board for secure 

connectivity (e.g., AES encryption) along with programmable board 

(m2m). 

                                                           
19

 https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ 



32 
 

2.2.2 IoT protocols 
As we have already mentioned, IoT devices communicate among 

themselves, but in order to succeed this task they have to use a non-ip 

communication protocol. There are several non-ip protocols which have 

both advantages and disadvantages relatively with the domain of their 

usage. The most popular IoT non-ip protocols are presented below: 

Radio-frequency identification (RFID)20 uses electromagnetic fields to 

automatically identify and track tags attached to objects. The tags 

contain electronically-stored information. Passive tags collect energy 

from a nearby RFID reader's interrogating radio waves. Active tags have 

a local power source (such as a battery) and may operate hundreds of 

meters from the RFID reader. Unlike a barcode, the tag need not be 

within the line of sight of the reader, so it may be embedded in the 

tracked object. 

Near-field communication (NFC)21 is a set of communication protocols 

that enable two electronic devices, one of which is usually a portable 

device such as a smartphone, to establish communication by bringing 

them within 4 cm (1.6 in) of each other. NFC devices are used in 

contactless payment systems, similar to those used in credit cards and 

electronic ticket smartcards and allow mobile payment to 

replace/supplement these systems. This is sometimes referred to as 

NFC/CTLS (Contactless) or CTLS NFC. NFC is used for social networking, 

for sharing contacts, photos, videos or files. NFC-enabled devices can act 

as electronic identity documents and keycards. NFC offers a low-speed 

connection with simple setup that can be used to bootstrap more 

capable wireless connections. 

 Zigbee22 is an IEEE 802.15.4-based specification for a suite of high-level 

communication protocols used to create personal area networks with 

small, low-power digital radios, such as for home automation, medical 

device data collection, and other low-power low-bandwidth needs, 

designed for small scale projects which need wireless connection. 

                                                           
20

 https://en.wikipedia.org/wiki/Radio-frequency_identification 
21

 https://en.wikipedia.org/wiki/Near-field_communication 
22

 https://en.wikipedia.org/wiki/Zigbee 



33 
 

Hence, Zigbee is a low-power, low data rate, and close proximity (i.e., 

personal area) wireless ad hoc network. Its low power consumption 

limits transmission distances to 10–100 meters line-of-sight, depending 

on power output and environmental characteristics.[1] Zigbee devices 

can transmit data over long distances by passing data through a mesh 

network of intermediate devices to reach more distant ones. Zigbee is 

typically used in low data rate applications that require long battery life 

and secure networking (Zigbee networks are secured by 128 bit 

symmetric encryption keys.) Zigbee has a defined rate of 250 kbit/s, best 

suited for intermittent data transmissions from a sensor or input device. 

Bluetooth23 is a wireless technology standard for exchanging data over 

short distances (using short-wavelength UHF radio waves in the ISM 

band from 2.4 to 2.485 GHz) from fixed and mobile devices, and building 

personal area networks (PANs).  

Bluetooth Low Energy24 (Bluetooth LE, colloquially BLE, formerly 

marketed as Bluetooth Smart) is a wireless personal area network 

technology designed and marketed by the Bluetooth Special Interest 

Group (Bluetooth SIG) aimed at novel applications in the healthcare, 

fitness, beacons, security, and home entertainment industries. 

Compared to Classic Bluetooth, Bluetooth Low Energy is intended to 

provide considerably reduced power consumption and cost while 

maintaining a similar communication range. 

Wi-Fi or WiFi25   is a technology for wireless local area networking with 

devices based on the IEEE 802.11 standards. Devices that can use Wi-Fi 

technology include personal computers, video-game consoles, 

smartphones and tablets, digital cameras, smart TVs, digital audio 

players and modern printers. Wi-Fi compatible devices can connect to 

the Internet via a WLAN and a wireless access point. Such an access 

point (or hotspot) has a range of about 20 meters (66 feet) indoors and a 

greater range outdoors. Hotspot coverage can be as small as a single 

room with walls that block radio waves, or as large as many square 

                                                           
23

 https://en.wikipedia.org/wiki/Bluetooth 
24

 https://en.wikipedia.org/wiki/Bluetooth_Low_Energy 
25

 https://en.wikipedia.org/wiki/Wi-Fi 



34 
 

kilometres achieved by using multiple overlapping access points.Wi-Fi 

most commonly uses the 2.4 gigahertz (12 cm) UHF and 5.8 gigahertz (5 

cm) SHF ISM radio bands. Anyone within range with a wireless modem 

can attempt to access the network; because of this, Wi-Fi is more 

vulnerable to attack (called eavesdropping) than wired networks. Wi-Fi 

Protected Access is a family of technologies created to protect 

information moving across Wi-Fi networks and includes solutions for 

personal and enterprise networks. Security features of Wi-Fi Protected 

Access constantly evolve to include stronger protections and new 

security practices as the security landscape changes. 

DASH726 Alliance Protocol (D7A) is an open source Wireless Sensor and 

Actuator Network protocol, which operates in the 433 MHz, 868 MHz 

and 915 MHz unlicensed ISM band/SRD band. DASH7 provides multi-

year battery life, range of up to 2 km, low latency for connecting with 

moving things, a very small open source protocol stack, AES 128-bit 

shared key encryption support, and data transfer of up to 167 kbit/s.  

LoRa27 is a patented wireless data communication technology developed 

by Cycleo of Grenoble, France, and acquired by Semtech in 2012. LoRa 

uses license-free sub-gigahertz radio frequency bands like 169 MHz, 433 

MHz, 868 MHz (Europe) and 915 MHz (North America). It enables very-

long-range transmissions (more than 10 km in rural areas) with low 

power consumption. The technology is presented in two parts — LoRa, 

the physical layer and LoRaWAN, the upper layers. LoRa is described 

analytically in section 2.3 

On the other hand, ip protocols are needed in order to collect data from 

the IoT and interconnect it on the Cloud or other computing systems. 

Some of the main ip protocols are presented below: 

The Transmission Control Protocol (TCP)28 is one of the main protocols 

of the Internet protocol suite. It belongs to the Transport Layer of The 

Open Systems Interconnection model (OSI model). TCP originated in the 

initial network implementation in which it complemented the Internet 
                                                           
26

 https://en.wikipedia.org/wiki/DASH7 
27

 https://en.wikipedia.org/wiki/LoRa 
28

 https://el.wikipedia.org/wiki/Transmission_Control_Protocol 



35 
 

Protocol (IP). Therefore, the entire suite is commonly referred to as 

TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a 

stream of octets (bytes) between applications running on hosts 

communicating via an IP network. Major Internet applications such as 

the World Wide Web, email, remote administration, and file transfer 

rely on TCP.  

Applications that do not require reliable data stream service may use the 

User Datagram Protocol (UDP)29, which also belongs to Transport Layer 

of OSI and provides a connectionless datagram service that emphasizes 

reduced latency over reliability. UDP is suitable for purposes where error 

checking and correction are either not necessary or are performed in the 

application. It avoids the overhead of such processing in the protocol 

stack. Time-sensitive applications often use UDP because dropping 

packets is preferable to waiting for packets delayed due to 

retransmission, which may not be an option in a real-time system. 

The Hypertext Transfer Protocol (HTTP)30 is an application protocol for 

distributed, collaborative, and hypermedia information systems.  HTTP is 

the foundation of data communication for the World Wide Web. 

Hypertext is structured text that uses logical links (hyperlinks) between 

nodes containing text. HTTP is the protocol to exchange or transfer 

hypertext. HTTP is not ideal for many of the special IoT needs. For 

example, it is unsuitable for emitting information from one to many, 

listening for events whenever may happen and pushing information over 

unreliable networks. Also, HTTP is slow (not ideal for real-time 

processing), uses more battery and is less reliable. 

MQTT (Message Queuing Telemetry Transport)31 is an ISO standard 

(ISO/IEC PRF 20922) publish-subscribe-based messaging protocol. It 

works on top of the TCP/IP protocol. It is designed for connections with 

remote locations where a "small code footprint" is required or the 

network bandwidth is limited.  It is ideal for long battery-life of devices, 

fast responses, one to many communication due to the 

                                                           
29

 https://en.wikipedia.org/wiki/User_Datagram_Protocol 
30

 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol 
31

 https://en.wikipedia.org/wiki/MQTT 



36 
 

publish/subscribe mechanism and reliable data transmissions. The 

publish-subscribe messaging pattern requires a message broker. From 

the broker we can monitor and handle the routing of the mqtt packets. 

Relying on TCP, MQTT allows also using TLS (Transport Layer Security) in 

order to encrypt the data and have a secure communication. 

Constrained Application Protocol (CoAP)32 is a specialized Internet 

Application Protocol for constrained devices. It enables those 

constrained devices called "nodes" to communicate with the wider 

Internet using similar protocols. CoAP is designed for use between 

devices on the same constrained network (e.g., low-power, lossy 

networks), between devices and general nodes on the Internet, and 

between devices on different constrained networks both joined by an 

internet. This protocol is also being used via other mechanisms, such as 

SMS on mobile communication networks. Essentially, it is a service layer 

protocol that is intended for use in resource-constrained internet 

devices, such as wireless sensor network nodes. It is designed to easily 

translate to HTTP for simplified integration with the web, while also 

meeting specialized requirements such as multicast support, very low 

overhead, and simplicity. Multicast, low overhead, and simplicity are 

extremely important for Internet of Things (IoT) and Machine-to-

Machine (M2M) devices, which tend to be deeply embedded and have 

much less memory and power supply than traditional internet devices 

have. Therefore, efficiency is very important. CoAP can run on most 

devices that support UDP or a UDP analogue. 

2.2.3 IoT platforms 
IoT platforms are the support software that connects everything in an 

IoT system. An IoT platform facilitates communication, data flow, device 

management, and the functionality of applications. Essentially, an IoT 

platform helps to connect new hardware and handle different 

communication protocols. Furthermore, it helps to provide security and 

authentication for devices and users and to collect, visualize and analyze 

data. Finally, it gives the ability to be integrated with other web services. 

                                                           
32

 https://en.wikipedia.org/wiki/Constrained_Application_Protocol 



37 
 

 2.3 LoRa Technology33 

 

Figure 11: LoRa logo 

As we have already mentioned, LoRa technology constitutes a Semtech 

innovation which is easy to plug into the existing infrastructure and 

offers a solution to serve battery-operated IoT applications. Semtech 

builds LoRa technology into its chipsets. These chipsets are then built 

into the products offered by a vast network of IoT partners and 

integrated into LPWANs from mobile network operators worldwide. 

LoRa is the physical layer or the wireless modulation utilized to create 

the long range communication link. Many legacy wireless systems use 

frequency shifting keying (FSK) modulation as the physical layer because 

it is a very efficient modulation for achieving low power. LoRa is based 

on chirp spread spectrum modulation, which maintains the same low 

power characteristics as FSK modulation but significantly increases the 

communication range. Chirp spread spectrum has been used in military 

and space communication for decades due to the long communication 

distances that can be achieved and robustness to interference, but LoRa 

is the first low cost implementation for commercial usage. 

One technology cannot serve all of the projected applications and 

volumes for IoT. WiFi and BLE are widely adopted standards and serve 
                                                           
33

 https://lora-alliance.org/about-lorawan 



38 
 

the applications related to communicating personal devices quite well. 

Cellular technology is a great fit for applications that need high data 

throughput and have a power source. LPWAN offers multi-year battery 

lifetime and is designed for sensors and applications that need to send 

small amounts of data over long distances a few times per hour from 

varying environments 

 

2.3.1 Characteristics of LoRa Technology34 
LoRa technology has some fundamental characteristics. First of all, it 

enables GPS-free (geolocation), which gives the opportunity to create 

low power tracking applications. In addition, infrastructure investment, 

operating expenses and end-node sensors are at a low cost in contrast 

with other technologies. Furthermore, LoRa technology is standardized, 

which means that improved global interoperability speeds adoption and 

roll out of LoRaWAN-based networks and IoT applications. Speaking 

about LoRa protocol, it is designed specifically for low power 

consumption extending battery lifetime up to 20 years. On the other 

hand, single base station provides deep penetration in dense 

urban/indoor regions and it also connects rural areas up to 30 miles(48 

km) away (long range). Finally, LoRa provides secure communication, as 

AES128 encryption is embedded into the end-to-end nodes, and it 

supports millions of messages per base station, ideal for public network 

operators serving many customers (high capacity). 

2.3.2 LoRaWAN protocol 

 

Figure 12: LoRa Stack 
                                                           
34

 https://www.semtech.com/technology/lora/what-is-lora 



39 
 

LoRaWAN is a protocol specification built on top of the LoRa technology 

developed by the LoRa Alliance (Figure 12). It uses unlicensed radio 

spectrum in the Industrial, Scientific and Medical (ISM) bands to enable 

low power, wide area communication between remote sensors and 

gateways connected to the network. This standards-based approach to 

building a LPWAN allows for quick set up of public or private IoT 

networks anywhere using hardware and software that is bi-directionally 

secure, interoperable and mobile, provides accurate localization, and 

works the way you expect. 

LoRaWAN™ defines the communication protocol and system 

architecture for the network while the LoRa® physical layer enables the 

long-range communication link. The protocol and network architecture 

have the most influence in determining the battery lifetime of a node, 

the network capacity, the quality of service, the security, and the variety 

of applications served by the network. 

2.3.3 Classes of LoRa devices 
End-devices serve different applications and have different 

requirements. In order to optimize a variety of end application profiles, 

LoRaWAN™ utilizes different device classes. The device classes trade off 

network downlink communication latency versus battery lifetime (Figure 

13). In a control or actuator-type application, the downlink 

communication latency is an important factor. 



40 
 

 

Figure 13: LoRa Class of Device- Downlink Network Communication Latency in comparison with battery 
lifetime 

Bi-directional end-devices (Class A): End-devices of Class A allow for bi-

directional communications whereby each end-device’s uplink 

transmission is followed by two short downlink receive windows. The 

transmission slot scheduled by the end-device is based on its own 

communication needs with a small variation based on a random time 

basis (ALOHA-type of protocol). This Class A operation is the lowest 

power end-device system for applications that only require downlink 

communication from the server shortly after the end-device has sent an 

uplink transmission. Downlink communications from the server at any 

other time will have to wait until the next scheduled uplink. 

Bi-directional end-devices with scheduled receive slots (Class B): In 

addition to the Class A random receive windows, Class B devices open 

extra receive windows at scheduled times. In order for the end-device to 

open its receive window at the scheduled time, it receives a time-

synchronized beacon from the gateway. This allows the server to know 

when the end-device is listening. 

Bi-directional end-devices with maximal receive slots (Class C): End-

devices of Class C have almost continuously open receive windows, only 

closed when transmitting. However, this class of devices reduce the 

battery lifetime. 



41 
 

In addition to the class A structure of uplink followed by two downlink 

windows, class C further reduces latency on the downlink by keeping the 

receiver of the end-device open at all times that the device is not 

transmitting (half duplex). Based on this, the network server can initiate 

a downlink transmission at any time on the assumption that the end-

device receiver is open, so no latency. The compromise is the power 

drain of the receiver (up to ~50mW) and so class C is suitable for 

applications where continuous power is available. For battery powered 

devices, temporary mode switching between classes A & C is possible, 

and is useful for intermittent tasks such as firmware over-the-air 

updates. 

2.3.4 LoRa Data Rates 
In addition to frequency hopping, all communication packets between 

end-devices and gateways also include a variable ‘Data rate’ (DR) setting. 

The selection of the DR allows a dynamic trade-off between 

communication range and message duration. Also, due to the spread 

spectrum technology, communications with different DRs do not 

interfere with each other and create a set of virtual ‘code’ channels 

increasing the capacity of the gateway. To maximize both battery life of 

the end-devices and overall network capacity, the LoRaWAN network 

server manages the DR setting and RF output power for each end-device 

individually by means of an Adaptive Data Rate (ADR) scheme. LoRaWAN 

baud rates range from 0.3 kbps to 50 kbps. 

2.3.5 Security  
Security is a primary concern for any mass IoT deployment and the 

LoRaWAN specification defines two layers of cryptography: 

A unique 128-bit Network Session Key (NewSKey) shared between the 

end-device and network server. It is used for interaction between the 

Node and the Network. This key is used to check the validity of messages 

(Message Integrity Code-MIC). 

A unique 128-bit Application Session Key (AppSKey) shared end-to-end 

at the application level. It is used for encryption and decryption of the 

payload. The payload is fully encrypted between the Node and the 



42 
 

Network Server which means that nobody in the middle of the 

communication is able to read the contents of the messages which are 

sent or received. 

AES algorithms are used to provide authentication and integrity of 

packets to the network server and end-to-end encryption to the 

application server. By providing these two levels, it becomes possible to 

implement ‘multi-tenant’ shared networks without the network 

operator having visibility of the users payload data. 

To participate in a LoRaWAN network, each end-device has to be 

personalized and activated. Activation of an end-device can be achieved 

in two ways, either via Over-The-Air Activation (OTAA) when an end-

device is deployed or reset, or via Activation By Personalization (ABP) in 

which the two steps of end-device personalization and activation  are 

done as one step. 

After Activation By Personalisation(ABP) the following information is 

stored in the end-device:  

 DevAddr: Consists of 32 bits and identifies the end-device within 

the current network 

 AppEUI: Is a global application ID in IEEE EUI64 address space that 

uniquely identifies the entity able to process the JoinReq frame 

 NwkSKey 

 AppSKey 

Under certain circumstances, end-devices can be activated by 

personalization. Activation by personalization directly ties an end-device 

to a specific network.  Activating an end-device by personalization 

means that the DevAddr and the two session keys NwkSKey and 

AppSKey are directly stored into the end-device.  The end-device is 

equipped with the required information for participating in a specific 

LoRa network when started. Each device should have a unique set of 

NwkSKey and AppSKey.  

For over-the-air activation, end-devices must follow a join procedure 

prior to participating in data exchanges with the network server. An end-



43 
 

device has to go through a new join procedure every time it has lost the 

session context information (the information that server sends into the 

join accept message after the join request by the device). The join 

procedure requires the end-device to be personalized with the following 

information (be stored into the device) before its starts the join 

procedure:  

 DevEUI: Is a global end-device ID in IEEE EUI64 address space that 

uniquely identifies the end-device 

 AppEUI: Is a global application ID in IEEE EUI64 address space that 

uniquely identifies the entity able to process the JoinReq frame 

 AppKey: is an AES-128 root key specific to the end-device. 

Whenever an end-device joins a network via over-the-air 

activation, the AppKey is used to derive the session keys NwkSKey 

and AppSKey specific for that end-device to encrypt and verify 

network communication and application data. 

For over-the-air-activation, end-devices are not personalized with any 

kind of network key.  Instead, whenever an end-device joins a network, a 

network session key specific for that end-device is derived to encrypt 

and verify transmissions at the network level.  This way, roaming of end-

devices between networks of different providers is facilitated.  Using 

both a network session key and an application session key further allows 

federated network servers in which application data cannot be read or 

tampered by the network provider. 



44 
 

2.3.6 LoRa Network Architecture 

 

Figure 14: LoRa Network Architecture 

LoRaWAN network architecture (Figure 14) is deployed in a star-of-stars 

topology in which gateways relay messages between end-devices and a 

central network server. The gateways are connected to the network 

server via standard IP connections and act as a transparent bridge, 

simply converting RF packets to IP packets and vice versa. The wireless 

communication takes advantage of the Long Range characteristics of the 

LoRa physical layer, allowing a single-hop link (network coverage area is 

equal with the radio range of a single node) between the end-device and 

one or many gateways. All modes are capable of bi-directional 

communication, and there is support for multicast addressing groups to 

make efficient use of spectrum during tasks such as Firmware Over-The-

Air (FOTA) upgrades or other mass distribution messages. 

The intelligence and complexity is pushed to the network server, which 

manages the network and will filter redundant received packets, 

perform security checks, schedule acknowledgments through the 

optimal gateway, and perform adaptive data rate, etc. 

3. LoRaWare Reference Architecture 
The Reference Architecture (RA) (Figure 15) is a generic high-level 

conceptual model which highlights the LoRaWare Ecosystem consisting 

of three interconnected parts namely (a) Sensing platform implemented 

as network of Things connected to the cloud through an internet 



45 
 

Backhaul, (b) the Back-End Cloud implementing a Network Server to 

support connectivity with the Sensing Platform, a Web Proxy, and a 

context server providing application-specific services (context services) 

and (c) the consumer (end-user) applications which connect with the 

cloud to receive services and through it connect to the sensing platform 

and the end-users (e.g., individuals who receive coaching instructions). 

Each consumer subscribes to particular services and IoT devices (through 

“Publish/Subscribe” context services running on the cloud) that publish 

information from the sensing environment (e.g., activity, health 

information). 

 

Figure 15: LoRaWare Reference Architecture 



46 
 

3.1 LoRa Network 

 

Figure 16: LoRaWare Network (Front end) 

The LoRa Network (Figure 16) consists of Lora devices and LoRa 

Gateways in a star-of-stars topology. Devices transmit RF packets with 

LoRa modulation which are captured by one or many Lora gateways 

(uplink transmission). 

LoRa gateways convert the LoRa packets to an IP protocol in order to be 

transmitted over the Internet to the Network Server (Cloud). This 

operation is done using the packet forwarder, a semtech’s open source 

software, which is running on every gateway. Furthermore, LoRa 

gateways receive downlink messages (from the Network server to the 

gateway) in order to convert them from the IP protocol to LoRa and 

transmit it wirelessly to a specific LoRa device. 

The most common IP protocol which is used by the semtech’s packet 

forwarder for the communication between the LoRa Gateways and the 

Network Server is the UDP protocol. However, we can choose other 

protocols for this purpose like MQTT over TCP for secure one-to-many 

communication, easier handling and monitoring of the packets sent or 

received by the Gateways and Network Server. 

 



47 
 

3.2 LoRa Backend 
The LoRa Backend (Figure 17) consists of the Fiware 

Infrastructure which accommodates all the Cloud Services of 

the LoRaWare Architecture. In this section we describe the 

functionality of every service and how it is connected with the 

other services. 

 

Figure 17: LoRaWare Service Oriented Architecture (Back end) 

 Network Service 

The intelligence and complexity of the LoRa sensing network is pushed 

to the network server on the FIWARE cloud, which manages the 

network, filters redundant received packets, performs security checks, 

schedules acknowledgments through the optimal gateway, perform 

adaptive data rate, etc. The Network Server can be viewed as an 

enhanced version of IDAS - Device Management GE of FIWARE that is 

used to assist connection of IoT devices to a FIWARE cloud platform. 

More specifically, we choose to convert into the gateway the LoRa to 

MQTT, as it provides some benefits like easy monitoring and routing of 

the packets, secure and one-to-many communication and easy 

development of mqtt clients. In addition, there is one IoT Agent of IDAS 

which supports the MQTT protocol so it is very simple to convert the 

LoRa to MQTT and the MQTT to the NGSI format in order to publish data 



48 
 

into the NGSI Context Broker from the Network Service. It maps the 

requests coming from IoT devices to NGSI entities. 

The Network Service transforms data to JSON format and then with the 

suitable asynchronous calls, they are forwarded to an NGSI Compliant 

Content Broker (i.e., the Publish Subscribe Context Broker GE of 

FIWARE), Web Proxy and  other cloud services. 

 Web Proxy 

IoT of today comprises a collection of isolated Internet of Things that 

can’t really interact with each other, nor can they be searched and 

discovered on the Web and used by applications. Although lightweight 

Web servers can be embedded in small devices and enable such 

functionality, they feature limited resources and the solution is not 

optimal for battery life time, sensor autonomy and cost). The Web Proxy 

keeps the virtual image of each device or sensor (their descriptions and 

services) so that Things become part of the Web just like Web sites: they 

can be published, consumed, aggregated, filtered and searched for by 

humans and applications. Supporting this functionality in LoRaWare will 

lead to higher degree of interoperability with other systems as other 

applications can search and discover Things on the LoRaWare platform 

to connect to. 

 NGSI Context Broker 

The NGSI Context Broker is a Publish/Subscribe service for managing 

device subscriptions and user subscriptions to data and sensors. It 

mediates between devices (producers) and applications (consumers). 

 Database services 

Database services are used to permanently store information about user 

(administrator and consumers(, sensors and sensor data (history data) 

and user subscription history. It is implemented as a relational (e.g. 

MySQL) or NoSQL databse (e.g., Casandra, MongoDB). 

 Data Analytics 



49 
 

Data Analytics Service will demonstrate functionality related to 

uncovering hidden patterns in data, unknown correlations, user 

preferences and useful business information (e.g. user’s data may 

provide feedback for enhancing system functionality and users 

acceptance). The project will utilize the COSMOS big data analysis GE or 

the Data Visualization - SpagoBI GE  of FIWARE. 

 Event Processing Service 

The Event Processing module handles events (e.g. creates alarm 

notifications based on end-user conditions and information received 

from the sensors) and notifies the Publish/Subscribe service, which is 

responsible for passing this information to the end-users. The Complex 

Event Processing (CEP) GE of FIWARE is a reference implementation of 

this service. 

 User Identity & Authorization Management 

The cloud platform, provides also mechanisms for user Identity and 

Authorization Management supporting access control based on user 

roles and access policies on services and data using FIWARE Keyrock 

Identify management GE providing Single Sign On (SSO) service of users 

to services in conjunction with Authorization PDP GE  or PEP Proxy GE  

that manage user permissions and access policies to resources (all 

services above are protected by an OAuth2.0 mechanism ). 

 

 Mashup Service 

The Mashup Service allows application developers to compose new 

applications. This will not only take significantly less time to build an 

application, but also minimize the effort required to maintain the system 

each time a device or service is added, removed, or updated. Using 

services such as IFTTT   or Node-RED , devices can be integrated with 

modern Web applications and services with minimal effort  (physical 

mashups). A Mashup Editor with similar capabilities is offered in FIWARE 

(WireCloud Mashup GE ). 

 Application Logic 



50 
 

The Application Logic implements application or use-case specific 

(business) services and orchestrate the transferring of the information to 

the appropriate individual services (storage, identification and 

information manager). It implements application intelligence for 

handling context events (e.g., a rule based system) or decides whether 

the consumers must handle these events 

4. Implementation of LoRaWare 

Architecture 
 

In this section we describe the implementation of the architecture, the 

operations and the components of the system. 

More specifically, we present the architecture of the system as a whole 

and for ease of presentation we discuss independently the functionality 

of each component. Then, we describe the sensors we used, the 

gateways, the services that run on the gateways and on the Cloud. To 

show proof of concept, at the end of this section we present an 

application running on LoRaWare. 



51 
 

4.1 Architectural Diagrams of LoRaWare  

 

Figure 18: Architectural diagram of LoRaWare (LoRa Network and  LoraWare Architecture) 

At the above diagram (Figure 18) we present the whole implementation 

of our system where are shown both the lora network (devices, 

gateways and services on gateways) and the Cloud Infrastructure with 

the services running on different virtual machines.  It presents also the 

floating IPs of every virtual machine (green color), the mqtt broker’s 

topics where the data are published during every mqtt communication 



52 
 

(blue color) and the protocol which is used for the service 

communication at every part of architecture (red color) 

 

Figure 19: LoRa Network – Front end of LoRaWare 

Initially we describe the LoRa Network (Front End-Figure 19).Using the 

LoRaWAN protocol the Nodes transmit RF packets which are captured by 

one or more Gateways. After catching a LoRa packet, the Semtech’s 

packet forwarder converts it to UDP. The packet forwarder is the 

Semtech’s open source software which converts the LoRa packets to 

UDP and vice versa. Our main purpose was to convert the packets to a 

protocol which would be supported from the Fiware’s IoT agents which 

are responsible for the device management of IoT sector. We deployed 

an open-source service called lora-gateway-bridge which takes the 

packets from the Gateway’s packet forwarder and converts them from 

UDP to MQTT/TCP in order to be forwarded to the network server over 

IP. After the conversion from UDP to MQTT, the packets are forwarded 

from the lora-gateway-bridge to the Cloud via MQTT which is a 

publish/subscribe protocol. This means that a MQTT broker is needed 

for the communication between a server and a client as we have already 

referred (section 2.2.2). The publish/subscribe mechanism give us the 

ability for one to many communication. This means that every payload 

which is published in the mqtt broker could be sent to many mqtt 

clients. Practically, we could send the same packet simultaneously to 



53 
 

different cloud infrastructures for different processing. As a result, the 

network server can serve many clients  in a short time through a secure 

communication with an easy packet handling and monitoring. This is the 

reason why the MQTT protocol is faster and more secure instead of 

other IP protocols like COAP, HTTP or UDP. 

 

Figure 20: LoRaWare service oriented architecture – Back end of LoRaWare 

Figure 20 shows the back end of the LoRaWare architecture. This 

contains all the Fiware Cloud Infrastructure with the services run on it. 

The services have been deployed and run on four different virtual 

machines of the Fiware Lab and we use also a public instance for the 

Keyrock Identity Management operations. Except of all devices and 

services, it presents also the floating IPs of every virtual machine (green 

color), the mqtt broker’s topics where the data are published at every 

level (blue color) and the protocol which is used for the service 

communication at every part of architecture (red color). 



54 
 

The virtual machine with floating ip 147.27.60.211 hosts the services for 

the LoRa Network Server. Generally, the network server is responsible to 

know the active sessions (devices that have joined the network), serve 

the new nodes when join the network, decode and decrypt the physical 

payload of the packets, deduplicate the received data (which is 

potentially captured by multiple gateways) , authenticates this data to 

make sure that these are not replay attacks. Also, it manages the state of 

the node through mac-commands (e.g, to change data rate, channels, 

etc.). 

More specifically, the lora-server is subscribed on a specific topic of mqtt 

broker where the lora-gateway-bridge service publishes the packets 

which are passed by the gateway’s packet forwarder. After the 

decoding, the decryption and the deduplication of the packets we 

publish them on a different mqtt broker on another virtual machine with 

floating ip 147.27.60.202. Practically, we could use the same mqtt 

broker instance hosted on the vistual machine with floating ip 

147.27.60.211 but we deploy a second mqtt broker on the  other virtual 

machine because  in the future if we use also devices  that support 

directly the mqtt protocol they won’t have to pass from the first virtual 

machine and the lora network server. 

On the virtual machine with floating ip 147.27.60.202 we have develop 

our own json parser in order to filter the json payloads that the lora 

server publishes to the mqtt broker. JSON filtering service gives the 

format of the payload that is needed for the Fiware’s JSON/MQTT IoT 

agent. More specifically it ignores the metadata of the payload and 

keeps only the values of the sensors as an one level key value pair JSON 

payload which is republished on a different topic of the mqtt broker. 

Finally, we register our devices (sensors) to the JSON/MQTT IoT agent 

which is subscribed on a specific mqtt broker’s topic (different for every 

device) waiting for json payload to be published. Every time a payload is 

published at a mqtt broker’s topic, the payload is then converted from 

MQTT to NGSI protocol by the IoT agent and is forwarded at the Context 

Broker.  



55 
 

The Orion Context Broker is an implementation of the Fiware’s 

Publish/Subscribe Context Broker GE, providing the NGSI9 and NGSI10 

interfaces (sections 2.1.8 & 2.1.10). Using these interfaces, clients can do 

several operations such as register context producer applications, 

update context information, being notified when changes on context 

information take place or query context information. 

Two LoRa sensors are sending measures about Humidity and 

Temperature every minute. The application informs us for the current 

Humidity and Temperature and also for the date and time they were 

measured. The measures are changed automatically in the User 

Interface every time a different payload is transmitted. All different 

measures are stored in a database on a different virtual machine which 

gives the opportunity to develop other applications using our sensor’s 

data independently. Our application finally provides historical 

measurements about the last 10 different measures of temperature and 

humidity for every sensor and these are changed automatically every 

time a different measure is captured. 

Finally, we use the public instance of the Keyrock Identity Manager 

service of Fiware for authentication during the log in and for controlling 

users access to services according to their roles.  (e.g., administrator, 

user, etc.). 

 

4.2 LoRa Devices35 
We used two same set of boards from Ideetron company which 

constitute a LoRa Node. 

Every Node has one Nexus Board which constitutes the microcontroller, 

one Nexus Demoboard where a number of sensors is mounted on it and 

a PCB antenna for the transmission of RF packets. 

                                                           
35

 https://webshop.ideetron.nl/ 



56 
 

4.2.1 Nexus Board 

 

Figure 21: Ideetron’s Nexus Board Microcontroller 

  

Nexus Board (Figure 21) is the microcontroller we chose for our LoRa 

Nodes. It is based on a Arduino Mini shape. It needs power supply of 

3,3Vdc and its dimensions are 23x33 mm. 

On the nexus board are placed the following components: 

ATMEGA328P-AU  MCU, 8BIT, ATMEGA, 20MHZ, TQFP-32 

DS2401P+  SILICON SERIAL NUMBER 

MCP7940M-I/MS  RTC, I2C, 64BYTES SRAM 

AZ1117CR-3.3TRG1  LDO VOLT REG, 0.5A, 3.3V (normal mode; select) 

W25X40CLSNIG-ND FLASH 4MBIT 

U.FL antenna connector 

RFM95W or RFM98W (select) 

 



57 
 

4.2.2 Nexus Demoboard 

 

Figure 22: Ideetron’s Nexus Demoboard 

We used Ideetron’s Nexus Demoboard (Figure 22) where are mounted 

the following components: 

Header for LoRa Nexus Board 

PIR, Panasonic EKMB110111 

Temp. & RH% sensor Si7021-A20 

LDR: NSL 19M51 

Potentiometer 10kA 4-turn 

Movement sensor MVS0608.02 

2x LED 

2x Push button 

4.2.3 PCB Antenna 868 MHz UFL 

 

Figure 23: Ideetron’s PCB Antenna 868MHz UFL 

We connected the PCB antenna (Figure 23) with the nexus board 

antenna UFL connector.  

The Antenna has the following features: 



58 
 

Cable Length: 10 cm (65 mm outside PCB) 

PCB dimensions: 100x28 mm 

Weight: 4 gram 

4.2.4 Arduino Sketches 
Combining the three above components e.g., the nexus board, the nexus 

demoboard and the PCB antenna we have a complete LoRa Node. 

A code or program written for Arduino called Sketch. Ideetron provides 

many Arduino sketches which can be loaded on the nexus board using a 

TTL cable and the Arduino IDE in order to make the Node functional. The 

For our own application, we use the TH06 arduino sketch of Ideetron for 

low power LoRaWan. This sketch wakes up the Node each minute, 

measures the temperature, humidity from the Demoboard and 

transmits the results in LPP format. This sketch makes use of the Nexus 

Demoboard and defines the basic characteristics of our Node such as 

data rate, class of device, frequency channel and the type of the 

activation. We chose the Class A device and the Activation By 

Personalization. Every time we cut the power supply of node, we have to 

activate it again every time we turn it on. This can be done from the 

lora-app-server UI which we will describe below. 

 Relatively with the node’s payload, we use the Cayenne36 LPP format. 

The Cayenne Low Power Payload (LPP) provides a convenient and easy 

way to send data over LPWAN networks such as LoRaWAN. The Cayenne 

LPP is compliant with the payload size restriction, which can be lowered 

down to 11 bytes, and allows the device to send multiple sensor data at 

one time. 

Additionally, the Cayenne LPP allows the device to send different sensor 

data in different frames. In order to do that, each sensor data must be 

prefixed with two bytes: 

 Data Channel: Uniquely identifies each sensor in the device across 
frames, eg. “indoor sensor” 

                                                           
36

 https://github.com/myDevicesIoT/cayenne-docs/blob/master/docs/LORA.md 



59 
 

 Data Type: Identifies the data type in the frame, eg. 
“temperature” 

The payload structure is a sequence of bytes as we can see below: 

 

Finally, Data Types conform to the IPSO Alliance Smart Objects 
Guidelines, which identifies each data type with an “Object ID”. 
However, as shown below, a conversion is made to fit the Object ID into 
a single byte.  

 

Each data type can use 1 or more bytes to send the data according to 
the following table (Figure 24).  

 

Figure 24: Cayenne LPP format – Table of Data representation 



60 
 

The whole logic of the Cayenne LPP format has been implemented in 
Ideetron’s Arduino sketches we used in order to be possible to project 
our payloads clearly on a dashboard. We take the temperature 
measures in Celsius degrees and the humidity measures in percentage. 

4.3 Lorank 8 Gateway 

 

Figure 25: Ideetron’s Lorank8v1 Gateway 

The Lorank 8 (Figure 25) is the first LoRa Gateway with professional 

specifications which constitutes an Ideetron’s product. With almost 50 

DSP pipes on board it processes 8 LoRa transmissions simultaneously. 

This enables the connection with several tens of thousands end nodes 

around the gateway. And, with a sensitivity of -138 dBm and a maximum 

power of 500 mW we can easily reach the most distant nodes.  

According to Ideetron, although the maximum connection distance is 

~25km in open terrain, buildings and metal structures do hinder the 

transmission. Experience learns that distances of 5km are realistic if the 

gateway is mounted on a (high) point with free sight. 

The hardware is based on the high quality radio board of IMST(tm) and 

the open source Beagle Board. Also, the software is completely open 

source and may be changed to our liking.  

Lorank Gateway has the following characteristics: 



61 
 

Hardware:  

-Frequency band   : 868 MHz  

-Sensitivity: -138 dBm  

-Maximum power: 27 dBm (500mW)  

-LoRa demodulators: 49  

-Simultaneous channel : 8  

-Max connected nodes: ~60 thousand (*)  

-Processor: 1GHz, ARM Cortex A8  

-OS: Debian / Angstrom Linux  

-Wifi: Optional (via USB, not implemented yet)  

-Current   : 1A  

-Max Current USB  : 500mA  

-Power Adapter     : 5Volt= , 2Amp  

(*) This is a theoretical maximum, under the assumption that nodes only send once 

per hour. Due to collisions, resend packets, packet loss etc., the number of nodes 

that can effectively be handled is lower, typically 10..20 thousand.  

Software:  

-Lora libraries  : Semtech, with modifications from Beta Research BV  

-basic packet forwarder     : Semtech,  

-poly packet forwarder  : Beta Research BV, based on code from Semtech  

-Installation scripts  : Beta Research BV  

-Beagle Bone : Various versions 

4.3.1 The Lora-Gateway-Bridge Service37 
As we have already described, the gateway uses the UDP protocol in 

order to send the data to the network server. However, we have 

deployed on the gateway an open-source-service called lora-gateway-

                                                           
37

 https://github.com/brocaar/lora-gateway-bridge 



62 
 

bridge. LoRa Gateway Bridge is a service which abstracts the packet-

forwarder UDP protocol into JSON over MQTT. 

There are three basic reasons why we chose the MQTT protocol for the 

communication between the Gateway and the Cloud: 

 Visibility: Because LoRa Gateway Bridge publishes the content of 

the UDP packets as JSON over MQTT, it becomes trivial to monitor 

the data that is sent and received by each gateway just by 

subscribing at all topics of the mqtt broker. This wouldn’t be easy 

with UDP. 

 Routing: The MQTT broker will handle the routing of which 

(downlink) frame must be sent to which LoRa Gateway Bridge 

instance. This could be easy just by publishing the downlink 

payload into different topics (different for every gateway). 

 Security: By running the LoRa Gateway Bridge on the gateway 

itself, it is possible to use MQTT over Transport Layer Security 

(TLS), meaning the transport between the gateway and server(s) is 

secure. 

 One to many Communication:  The publish/subscribe mechanism 

means that every payload which is published in the mqtt broker 

could be sent to many mqtt clients (they subscribe to the topic 

where the server publishes data). Practically, we could send the 

same packet simultaneously to different cloud infrastructures for 

different processing just by one transmission. As a result, the 

network server can serve many clients in a short time 

simultaneously. 

The only configuration we had to do, was to modify the packet-

forwarder of the gateway so that it would send its data to the LoRa 

Gateway Bridge. We did that only by changing the following 

configuration keys in the file “global_conf.json” via ssh connection to the 

gateway: 

 server_address to the IP address / hostname(0.0.0.0 for localhost) 
of the LoRa Gateway Bridge 



63 
 

 serv_port_up to 1700 (the default port that LoRa Gateway Bridge 
is using) 

 serv_port_down to 1700 (same) 

After that we run the packet forwarder and the lora-gateway-bridge as 

services in the Ubuntu Operating System of the Gateway.We should 

follow this procedure for every gateway we would like to add in our 

LoRaWare Architecture. Finally, lora-gateway-bridge publishes its data 

into the mqtt broker. We describe this operation in the next section. 

4.4 The Cloud Services of the LoRaWare 

Architecture 
All Cloud Services of our architecture have been deployed in several 

Virtual Machines which we created using the Dashboard of the Fiware 

lab. Only for the Keyrock Identity Manager we used a public instance 

that Fiware provides. 

4.4.1 The Mosquitto MQTT Broker38 
Eclipse Mosquitto is an open source (EPL/EDL licensed) message broker 

that implements the MQTT protocol versions 3.1 and 3.1.1. Mosquitto is 

lightweight and is suitable for use on all devices from low power single 

board computers to full servers. 

The MQTT protocol provides a lightweight method of carrying out 

messaging using a publish/subscribe model. This makes it suitable for 

Internet of Things messaging such as with low power sensors or mobile 

devices such as phones, embedded computers or microcontrollers. 

The lora-gateway-bridge we described in the previous section is 

publishing LoRa frames to the MQTT broker. Every client which is 

subscribed to the MQTT topic “gateway/+/rx”, could monitor and 

receive those frames. The “+” on a topic represents a single-level 

wildcard. Any topic matches to a topic including the single level wildcard 

if it contains an arbitrary string (the Gateway ID in our case) instead of 

the wildcard. For example, we can monitor all the received data from all 

gateways just by subscribing to the topic “gateway/+/rx”, but we can 

                                                           
38

 https://mosquitto.org/ 



64 
 

monitor only the received data from the gateway with ID: 

1dee18c14948a955 just by subscribing to the topic 

“gateway/1dee18c14948a955/rx”. 

While the single level wildcard only covers one topic level, the multi 

level wildcard “#” covers an arbitrary number of topic levels. In order to 

determine the matching topics it is required that the multi level wildcard 

is always the last character in the topic and it is preceded by a forward 

slash. A client subscribing to a topic with a multi level wildcard is 

receiving all messages, which start with the pattern before the wildcard 

character, no matter how long or deep the topics will get. If we only 

specify the multilevel wildcard as a topic (#), it means that we will get 

every message sent over the MQTT broker. For example, if a client 

subscribes to the topic “gateway/1dee18c14948a955/#” , can monitor 

topics like “gateway/1dee18c14948a955/rx” (received data from the 

gateway with the specific ID), “gateway/1dee18c14948a955/tx” 

(transmitted data to the gateway with the specific ID” or 

“gateway/1dee18c14948a955/stats” (statistics about the gateway with 

specific ID).  

For debugging purposes we can use in the terminal the command 

mosquito_sub in order to subscribe to a specific topic and see the data. 

When we are subscribed to the gateway/+/rx, we see the data received 

from every gateway. If we don’t see anything, it means either that the 

LoRa Gateway Bridge does not receive data from the packet forwarder 

or that the MQTT credentials/authorizations are invalid (the user is not 

authorized to subscribe to the MQTT topic). 

In addition, there is also the mosquito_pub command, which can be 

used for publishing data into the mqtt broker. However, for both 

publishing and subscribing into the mqtt broker there are specific 

libraries for the most common programming languages in order to 

achieve a communication via the MQTT protocol. We used one of them 

for our json filtering which we are going to describe in a section below. 

Such libraries are also used for the Go programming language into the 

lora server service as and for the Node JS into the MQTT IoT Agent . 



65 
 

We deployed two MQTT brokers in different Virtual Machines whose 

flowting IPs are presented in the architectural diagram of 

LoRaWare(Figure ?). 

4.4.2 LoRa Server39 
LoRa Server is an open-source LoRaWAN network-server, part of the 

open-source LoRa Server project. The responsibility of the network 

server component is the de-duplacation and handling of received uplink 

frames received by the gateway(s), handling of the LoRaWAN mac-layer 

and scheduling of downlink data transmissions. 

More specifically, the LoRa Server component is responsible for the 

network. It knows about active node sessions (nodes which have join the 

network) and when a new node joins the network, it will ask the 

application-server if the node is allowed to join the network and if so, 

which settings to use for this node. 

For the active node-sessions, it de-duplicates the received data (which is 

potentially received by multiple gateways), it authenticates this data (to 

make sure that these are not replay-attacks), it forwards this (encrypted) 

data to the application-server and it will ask the application-server if it 

should send anything back. 

Besides managing the data-flows, it also manages the state of the node 

through so called mac-commands (e.g. to change the data-rate, 

channels, …). 

LoRa Server implements a gRPC API so that we could easily build our 

own application-server. 

The following table represents the features of the lora server (Figure 26): 

                                                           
39

 https://www.loraserver.io/loraserver/overview/ 



66 
 

 

Figure 26: LoRa Server’s specifications 

 

We deployed the lora server on a virtual machine of fiware lab with 

Ubuntu 14.04 Operating System running on it. 

In addition, for the lora server operation two databases are required. 

We install a PostgreSQL for the LoRa server to persist the gateway data 

and a Redis datastore to store all non-persistent data. 

PostgreSQL40 is a powerful, open source object-relational database 

system. Its main characteristics are reliability, feature robustness, and 

performance. 

Redis41 is an open source (BSD licensed), in-memory data structure 

store, used as a database, cache and message broker. It supports data 

structures such as strings, hashes, lists, sets, sorted sets with range 

queries, bitmaps, hyperlogs and geospatial indexes with radius queries. 

Redis has built-in replication, Lua scripting, LRU eviction, transactions 

and different levels of on-disk persistence, and provides high availability 

via Redis Sentinel and automatic partitioning with Redis Cluster. 

                                                           
40

 https://www.postgresql.org/ 
41

 https://redis.io/ 



67 
 

4.4.3 LoRa App Server42 
LoRa App Server is an open-source LoRaWAN application-server, part of 

the LoRa Server project. It is responsible for the device “inventory” part 

of a LoRaWAN infrastructure, handling of join-request and the handling 

and encryption of application payloads. 

It offers a web-interface where users, organizations, applications and 

devices can be managed. For integration with external services, it offers 

a RESTful and gRPC API. Device data can be sent and / or received over 

MQTT, HTTP and be written directly into InfluxDB. 

More specifically, it is compatible with the LoRa Server component and 

offers node management per application, per organization and gateway 

management per organization. It also offers user management and the 

possibility to assign users to organizations and / or applications. 

Communication with the application is using JSON over MQTT and using 

the exposed APIs. Finally it provides a web interface and an API which 

can be used for all the above operations. 

LoRa App Server uses, as LoRa Server does, a PostgreSQL database to 

persist the gateway data and stores all non-persistent data into a Redis 

datastore. 

We have deployed the LoRa App Server on the same VM with the LoRa 

Server.  

Binding the url: https://147.27.60.211:8080  with any browser we enter 

the User Interface of LoRa App Server (Figure 27): 

                                                           
42

 https://www.loraserver.io/lora-app-server/overview/ 

https://147.27.60.211:8080/


68 
 

 

Figure 27: LoRa App Server UI – Login Page 

For authentication and authorization, users can be created (Figure 28) in 

LoRa App Server. A user itself can be a global admin or a regular user. A 

global admin user is authorized to perform any action. It can for 

example manage gateways, users, create organizations, applications and 

nodes. A regular user has no permissions by default. However, it can be 

assigned to one or multiple organizations. 

 

Figure 28: LoRa App Server UI – User Creation  

LoRa App Server is able to connect to one or multiple LoRa Server 

network-server instances. Global admin users are able to add new 

network-servers to the LoRa App Server installation (Figure 29). Once a 

network-server is assigned to a service-profile or device-profile, a 

network-server can’t be removed before deleting these entities, it will 

return an error. Depending the configuration of LoRa Server and LoRa 



69 
 

App Server, we must enter the CA and client certificates in order to let 

LoRa App Server connect to LoRa Server and in order to let LoRa Server 

connect to LoRa App Server. 

 

Figure 29: LoRa App Server UI – Network server assignment 

From the UI we can manage also the organizations.  



70 
 

 

Figure 30: LoRa App Server UI – Organization creation 

An organization can be used (Figure 30) to let organizations or teams 

manage their own applications and optionally their own gateways. An 

organization can have service-profiles, device-profiles, gateways (when 

allowed), applications and users (Figure 31). 

 

Figure 31: LoRa App Server UI – List of Applications for specific organization 

The service-profile can be seen as the “contract” between an user and 

the network (Figure 32). It describes the features that are enabled for 

the user(s) of the service-profile and the rate of messages that can be 

sent over the network. When creating a service-profile, LoRa App Server 

will create the actual profile on the selected network-server, and will 

keep a reference record so it knows to which organization it belongs. 



71 
 

 

Figure 32: LoRa App Server UI – Service profile creation 

A device-profile defines the device capabilities and boot parameters 

that are needed by the network-server for setting the LoRaWAN radio 

access service. These information elements shall be provided by the end-

device manufacturer. When creating a device-profile (Figure 33), LoRa 

App Server will create the actual profile on the selected network-server, 

and will keep a reference record so it knows to which organization it 

belongs. 



72 
 

 

Figure 33: LoRa App Server UI – Device profile creation 

An application is a collection of devices with the same purpose / of the 

same type. Think of a weather station collecting data at different 

locations for example. When creating an application (Figure 34), we 

need to select the Service-profile which will be used for the devices 

created under this application. Note that once a service-profile has been 

selected, it can’t be changed. An application can be configured to 

decode the received uplink payloads from bytes to a meaningful data 

object, and to encode downlink objects to bytes. The Cayenne LPP 

codec, which is used in the Arduino sketches we load on our Nodes, is 

supported from the LoRa App Server. However, we can write our own 

javascript codec functions. 



73 
 

 

Figure 34: : LoRa App Server UI – Application creation 

A device is the end-device connecting to, and communicating over the 

LoRaWAN network. LoRa App Server supports both OTAA (over the air 

activation) and ABP (activation by personalization) type devices 

(configured by the selected device-profile). When creating or updating a 

device (Figure 35), we need to select the device-profile matching the 

device capabilities. E.g. the device-profile defines if the device is of type 

OTAA or ABP. 

 

Figure 35: LoRa App Server UI – Node (device) registration to specific application 

An organization is able to manage its own set of gateways (Figure 36). 

This feature might be unavailable when the organization is configured 

without gateway support. That a gateway belongs to a given 

organization does not mean that the usage of a gateway is limited to the 

organization. Every node in the whole network will be able to 

communicate using the gateway. The organization will be responsible 



74 
 

however for managing the gateway details (e.g. name, location) and will 

be able to see its statistics. Gateway statistics are based on the 

aggregated values sent by the gateway / packet-forwarder. In case no 

statistics are visible, it could mean that the gateway is incorrectly 

configured. 

 

Figure 36: LoRa App Server UI – Gateway registration 

LoRa App Server makes it possible to log frames sent and received by a 

gateway or device in realtime. The frame logs view on the device detail 

page (Figure 37) will display only the frames that could be related to a 

device. 



75 
 

 

Figure 37: LoRa App Server UI – Log frames received by devices in real time 

4.4.4 JSON FILTERING 
As we have already referred for the lora app server, it uses the MQTT to 

publish or receive data. With the MQTT integration lora app server 

publishes all the data it receives from the devices as JSON over MQTT. 

To receive data from our nodes, we therefore need to subscribe to its 

MQTT topic. 

As the MQTT IoT agent of fiware requires a different payload format 

than this one the lora app server publishes, we have developed our own 

JSON parser(JSON Filtering component) using the python programming 

language. 



76 
 

More specifically, we used the paho.mqtt library to subscribe to a topic 

or publish data to the mqtt broker. Our script runs always as a daemon 

on our virtual machine and it is initially connected to the topic where the 

lora app server publishes its data. After this it parses the json payload, 

keeping only the information that the MQTT IoT agent needs. Finally it 

publishes the new JSON payload on a different topic where the IoT agent 

is subscribed to receive the data from our devices. 

The topic where the LoRa App Server publishes its data and the JSON 

Filtering service is subscribed to is: “application/+/node/#” and the topic 

where the JSON Filtering service publishes the data and the JSON/MQTT 

IoT agent is subscribed to is: “/{apikey}/{devEUI}/attrs”. 

4.4.5 JSON/MQTT IoT Agent43  
By using an IoT Agent , our devices are represented in a FIWARE 

platform as NGSI entities in the ContextBroker. This means that we can 

query or subscribe to changes of device parameters status by querying 

or subscribing to the corresponding NGSI entity attributes at the 

ContextBroker. 

Additionally, we could trigger commands if we used actuation devices 

just by updating specific command-related attributes in their NGSI 

entities representation at the Context Broker. This way, all developers 

interactions with devices are handled at a ContextBroker, providing an 

homogeneous API and interface as for all other non-IoT data in a 

FIWARE ecosystem. 

We deployed on a virtual machine the JSON/MQTT IoT Agent in order to 

translate the MQTT protocol to NGSI. After parsing the decrypted data 

that LoRa-App-Server publishes into the MQTT broker, we republish 

them into a new topic:“/{apikey}/{devEUI}/attrs”. 

Essentially, we exploit the Agent’s MQTT binding, which is based on the 

existence of a MQTT broker and the usage of different topics to separate 

the different destinations and types of the messages. 

                                                           
43

 https://catalogue-server.fiware.org/enablers/backend-device-management-idas 



77 
 

All the topics used in the protocol are prefixed with the APIKey of the 

device group and the Device ID of the device involved in the interaction. 

The API Key is a secret identifier shared among all the devices of a 

service, and the DeviceID is an ID that uniquely identifies the device in a 

service. API Keys can be configured with the IoTA Configuration API or 

the public default API Key of the IoT Agent can be used in its instead.  

The Device ID must be provisioned in advance in the IoT Agent before 

the information is sent. 

In order to send multiple measures our devices can publish a JSON 

payload to an MQTT topic with the following structure: /{api-

key}/{device-id}/attrs 

The message in this case must contain a valid JSON object of a single 

level; for each key/value pair, the key represents the attribute name and 

the value the attribute value. Attribute type will be taken from the 

device provision information. 

In our case, we use the mosquito mqtt broker as we have already 

mentioned. If a device with id: 0000000000000000, API Key: 1234 and 

attribute IDs temperatureSensor and humiditySensor then all measures 

(temperature and humidity) are reported this way: 

$ mosquitto_pub -t /1234/0000000000000000/attrs -m 

'{"TemperatureSensor": 22.3, "HumiditySensor": 70}' -h 

<mosquitto_broker> -p <mosquitto_port> -u <user> -P <password> 

After publishing the data at the above format and deploying the 

JSON/MQTT IoT Agent we make a simple HTTP POST to create an IDAS 

Service: 

POST http://147.27.60.202:5351/iot/services 

 

Headers: 

 

{ 

  'Content-Type':       'application/json', 

  'X-Auth-Token' :      '[TOKEN]', 

  'Fiware-Service':     'openiot', 

  'Fiware-ServicePath': '/' 

} 

 

Payload: 



78 
 

 

{ 

  "services": [ 

    { 

      "apikey":      "1234", 

      "cbroker":     "http://0.0.0.0:1026", 

      "entity_type": "thing", 

      "resource":    "/iot/d" 

    } 

  ] 

} 

The Context Broker has been deployed at the same VM, so we use the 

url: 0.0.0.0:1026.  Furthermore, we need also an OAuth token. In order 

to obtain it, we need our Fiware account username and password after 

running the token_script.sh script that FIWARE provides. Essentially, it 

makes a rest call to obtain an OAuth token which expires after 1 hour. 

At the last step, before our devices send observations or reveive 

commands a register operation is needed. It is a HTTP Post to the IoT 

Agent’s endpoint: 

POST http://147.27.60.202:4041/iot/devices/ 

 

Headers: 

 

{ 

  'Content-Type':       'application/json', 

  'Fiware-Service':     'tourguide', 

  'Fiware-ServicePath': '/' 

} 

 

Payload: 

 

{ 

  "devices": [ 

    { 

      "device_id": "0000000000000000", 

      "protocol": "MQTT", 

      "entity_name": "Multisensor1", 

      "entity_type": "sensor", 

      "attributes": [ 

        { 

          "object_id": "temperatureSensor", 

          "name":      "temperature", 

          "type":      "number" 

        }, 

 { 

          "object_id": "humiditySensor", 

          "name":      "humidity", 

          "type":      "number" 

        } 

       ] 

    } 

  ] 

} 



79 
 

 

After register our devices into the IoT Agent, every time a new payload is 

published into the MQTT broker, the IoT agent translates it to NGSI 

format. Then we can make HTTP GET requests to the Context Broker to 

query the values of our sensors (entities). We describe the Context 

Broker in the following section. 

4.4.6 Orion Context Broker44 
We follow the Common Simple Scenario that Fiware suggests for 

connection with IoT (Figure 38). We can access IoT data as attributes of 

entities representing devices and we can also send commands to devices 

by updating command-related attributes, providing we have access 

rights for that operation. The IoT agents (as the MQTT IoT agent we use) 

stay at the southbound of the Orion Context Broker and they are used 

by IoT integrators to connect devices in this scenario. IoT Agents support 

several IoT protocols with a modular architecture. Therefore, we had to 

determine first which protocol we will use to connect our devices. In our 

case we need to translate the MQTT protocol to the NGSI format, so we 

chose the JSON/MQTT IoT Agent which is described in the previous 

section. 

                                                           
44

 https://catalogue-server.fiware.org/enablers/publishsubscribe-context-broker-orion-context-
broker 



80 
 

 

Figure 38: Fiware Reference Architecture for interconnecting IoT devices with Context broker 

When we register a device to the IoT agent, a new entity is created into 

the Context Broker. Then, we can make a simple HTTP GET request to 

the context broker in order to read measures captured from our IoT 

devices. Here is an example of a GET request and response by the 

Context Broker in order to read the temperature value from the 

Multisensor1: 

REQUEST: 

GET 

'http://147.27.60.202:1026/v2/entities/Multisensor1?attrs=temperature

' 

RESPONSE: 

{ 

  "id":"Multisensor1", 

  "type":"sensor", 

  "temperature":{ 

    "type":"number", 

    "value":"27.4", 

    "metadata":{ 

        "TimeInstant":{ 

          "type":"ISO8601", 



81 
 

          "value":"2018-05-20T20:52:25.768Z" 

                                        } 

                                    } 

                                } 

} 

We deployed the Context Broker on the same VM with JSON/MQTT IoT 

Agent using docker. We downloaded images for Orion Context Broker 

and MongoDB from the public repository of images called Docker Hub. 

Then we have created two containers based on both images.  

4.4.7 Keyrock Identity Management45 
  In order to implement OAuth2 authentication in our application we use 

our account on Fiware Lab. In order to create an account we visit the url: 

https://account.lab.fiware.org/ (Figure 39) 

 

Figure 39: Fiware lab welcome page 

 

After following the instructions filling our data, we receive a 

confirmation mail. Once we have an account we can start creating 

organizations and applications. 

The first step to start managing authorization in our application is to 

register the application in FIWARE Account. In order to do that we have 

to click on “Register” option of the Account Portal (Figure 40). The 

                                                           
45

 https://catalogue-server.fiware.org/enablers/identity-management-keyrock 

https://account.lab.fiware.org/


82 
 

“Home Sensors Monitoring” application is the app we have developed 

for demonstration purposes of our LoRaWare Architecture. 

 

Figure 40: Fiware lab – Account Portal 

Then we follow the steps with the data of our application. Once 

registered, we have to implement OAuth2 protocol in our application. 

The message flow between our web application and IDM account server 

is represented below (Figure 41): 

 

Figure 41: Message flow for OAUTH2 authentication using Keyrock Identity Management 

In order to implement this flow we used the curl library of PHP. 

We redirect to the fiware portal 

https://account.lab.fiware.org/oauth2/authorize  in order to sign in and 

after the authentication an access code is returned.  

After the callback, we make a HTTP GET request with the access code in 

its payload at the https://account.lab.fiware.org/oauth2/token url. This 

request requires also the OAuth2 credentials (ClientID and Client Secret) 

https://account.lab.fiware.org/oauth2/authorize
https://account.lab.fiware.org/oauth2/token


83 
 

which we can find in our Fiware Account Portal during the registration 

procedure of our application (Figure 42): 

 

Figure 42: OAuth2 credentials can be found in the Fiware Account Portal after register an application 

The response of our request is an access token. We make another 

request at the url: http://account.lab.fiware.org/user?access_token= 

using the access token as an argument to request the user’s data (Figure 

43). 

 

Figure 43: Message flow for OAuth2 authentication and user info request after successful authentication 

http://account.lab.fiware.org/user?access_token


84 
 

The whole procedure we described above is part of our app logic which 

we are going to describe further in the next section. 

4.5 Application Logic & Smart Home Web 

Application 
We have developed a web application using the LoRaWare Architecture. 

Our system Is distributed on four virtual machines with 2GB RAM, 

1VCPU and 20GB storage (LoRa Server, Fiware GEs, App Logic and 

Storage) and it uses also a public instance of the Keyrock Identity 

Manager GE. With the Web app we can monitor in real time the 

humidity and temperature measures from two sensors. Furthermore, we 

can be informed about the last 10 different temperature and humidity 

measures by each sensor which are updated without refreshing the web 

page. 

The application logic is the central component of our architecture. It is 

the part of our own code where happens all the communication 

between the services and their orchestration.  We have used the PHP 

server-side programming languages in order to develop the operations 

of our application and the REST calls using a PHP library called “CURL”. 

The first operation in the app logic is the repeated REST calls to the 

Context Broker in order to be informed about the values of temperature 

and humidity that our sensors measure. Then every time a value 

changes than the previous one (the last one we stored) , it is stored on a 

database. We have created a MySQL database which is distributed on a 

different VM. The database contains two tables, the one for the 

Temperature measures and the other for the Humidity measures. Every 

time a new different measure is published in the Context Broker, we 

store it in the database with device id, value and date as columns. We 

have two php scripts which are running repeatedly as daemons on our 

VM, because it is important for this procedure to happen either we 

access the Web App or Not.   

Then we can make every query we want to the database in order to 

come to statistical conclusions or process the data. We created a 



85 
 

distributed database on a different VM, as we can give privileges to 

other applications or users to have access to our sensors measures. 

Furthermore, in the app logic we make the calls to the Keyrock Identity 

Manager public instance in order to implement the OAuth2 

authentication protocol into our application as we described in section 

3.4.7. 

Finally, we developed a web application (part of the app logic into the 

same virtual machine) for demonstration purposes. It constitutes an 

example about how the LoRaWare architecture could be useful.  Our 

web application’s User Interface created using HTML and CSS 

technologies. Furthermore, it is running on the Apache server which 

supports the development with PHP. 

Binding the 147.27.60.97 endpoint from a browser we visit our 

application’s welcome page (Figure 44): 

 

Figure 44: Application’s welcome page for real time measures monitoring 

   

Then we click on the “login now” image. We are redirected to the Fiware 

Lab in order to give our Fiware’s account email and password (Figure 

45): 



86 
 

 

Figure 45: Redirection to Fiware lab page for OAuth2 authentication and access to the application 

After the successful authentication we log in the user.php page (Figure 

46) where we can monitor our two sensors current measures. Every time 

a new measure is stored in the database, the UI is updated with AJAX 

calls. In this page we see the last new different measure and the date 

and time it was published into the Context Broker: 

 

Figure 46: Web page of the application – User info, log out link, Temperature & Humidity statistics links and 
last measured values with data and time of temperature and humidity by each sensor. 

We have also the option to log out or be informed about the 

Temperature and Humidity statistics. 



87 
 

Clicking on the Temperature statistics we visit a different page of our 

application (Figure 47). There we can see the last 10 different 

Temperature statistics of the two sensors and also relative charts about 

them sorted by date: 

 

Figure 47: Temperature statistics – Last 10 different temperature measures of each sensor represented on a list 
and on charts descending sorted by date 

The Humidity Statistics link represents the same information but for the 

Humidity measures of our two sensors (Figure 48): 

 

Figure 48: Humidity statistics – Last 10 different humidity measures of each sensor represented on a list and on 
charts descending sorted by date 



88 
 

Both the statistical measures and the charts are updated automatically 

with AJAX calls every time a new different measure is stored in the 

database. In this way, we can monitor the Temperature & Humidity 

measures without refreshing the web pages of our application. 

 

5. Performance Evaluation 
In the following section we run an exhaustive set of experiments whose 

purpose is to evaluate the scalability of the back-end system and also 

the LoRa applicability in a complicated environmental terrain in the city 

of Chania. In the first part we stress the system by issuing many 

concurrent requests simulating the workload of a large IoT network with 

thousands of LoRa sensors. We measure the overall system response 

time (i.e. from the time a measurement is received by the cloud to the 

time it is stored in the database), the average response time of each 

service in the service sequence and also, the average workload (i.e. CPU, 

memory usage) of each running VM. In the second part, we attempt to 

study the long range characteristics of the LoRa network and how the 

error rate (percentage of transmitted  but not captured by a gateway 

LoRa packages  ) depends with the distance of the LoRa node from a 

gateway. 

5.1Evaluation of the Cloud Infrastructure 
 

For the implementation of our architecture we use four VMs which are 

running on the Fiware Lab Infrastructure. The first VM (Floating 

IP:147.27.60.211) contains a Mosquitto MQTT Broker, the Lora Server 

and the LoRa App Server services. The second VM (Floating 

IP:147.27.60.202) contains another Mosquitto MQTT Broker, the JSON 

filtering component, the MQTT IoT Agent and the Context Broker. The 

third VM(Floating IP:147.27.60.97) contains the App Logic and the Web 

Application which is served by the Apache Server. Finally we use a fourth 

VM(Floating IP:147.27.60.202), where we store all the data of our 

devices into a MySQL database. Every instance has a 20GB disk, 2GB 



89 
 

RAM and 1 VCPU. On the three instances is running an Ubuntu 16.04 

operating system, except of the second VM(147.27.60.202) where a 

Centos 7 operating system is running due to the Context Broker’s 

requirements.  

In the first experiment, we compute an average time in which the packet 

payload is published into the mqtt broker in the first VM until it is stored 

in the database. Via ssh, we ran the command “tcpdump” into the first 

VM which give us the ability to check the packet flows to the port 1883, 

which is the port of the MQTT Broker. Then every time a payload is 

published there we can take the timestamp information. 

Simultaneously, we ran the same command in the second VM to check 

the packet flow to the port 1026 where the Context Broker sends its 

payload. The time after the subtraction of the two timestamps was 

47,3344ms. This is the average time of the payload transmission from 

the MQTT broker to the Context Broker. We also calculated the time 

from the Context Broker response until the values were stored into the 

MySQL database. This time was 140ms(10ms for the REST calls to the 

Context Broker,30 ms to read from the database and 100 ms to write in 

the database). This is the response time of the App Logic and the 

insertion into the database. So the average time of a packet from the 

time it is sent to the Cloud until it is stored to the database is 

47,3344+140=187,3344 ms. 

After this calculation, we calculated also the average response time of 

every component of our architecture in order to come to other 

conclusions. 

The services which have an endpoint were tested with the Apache Bench 

tool. We made 2000 request at the endpoint of every service and we 

took the average time of every response to be answered. The JSON 

Filtering component was measured with the “time” library of python and 

the difference between the times in the start and in the end of the 

script. In a same way, we calculate the App Logic response time using 

the “microtime” method of PHP. 



90 
 

The following diagram represents the average time of every service to 

answer a request (Figure 49). 

 

Figure 49: Pie representing the average response time in milliseconds of each LoRaWare’s service to serve one 
request 

Essentially, the lora-gateway-bridge running on the gateway publishes 

the data into the MQTT Broker 1. The LoRa Server is subscribed to the 

specific topic and takes the data(1 ms – 1%). After the decoding and 

deduplication of the packet (1 ms – 1 %) the payload is forwarded to the 

LoRa App Server. After the decryption, the payload is published to the 

MQTT Broker2 (22ms – 13%). Then the JSON Filtering is parsing the json 

payload and republish the data to the mqtt broker but on a different 

topic (0,5ms-0%). Then the IoT Agent is subscribed to the MQTT Broker 

and takes the data (1ms-1%). The IoT Agent converts the data from 

MQTT to the NGSI protocol and forwards them to the Context Broker 

(2ms-1%). The Context Broker takes the NGSI payload and updates the 

value of an entity (2ms-1%). Finally, in the app logic a get request is done 

to the Context Broker. If the measure is different from the last received, 

then this payload is stored to the database (40ms+100ms-82%). 

Adding all the above times of every operation the sum is 170,5 ms. 

The difference between the whole average time and the sum of every 

response time independently is the network’s latency which is 187,3344-

1 1 

22 

1 
0,5 

1 

2 
2 

40 100 

RESPONSE TIME(ms) 

MQTT BROKER 1

LORA SERVER

LORA APP SERVER

MQTT BROKER 2

JSON FILTERING

MQTT BROKER 3

MQTT IOT AGENT

Context Broker

APP LOGIC

STORAGE



91 
 

170,5=16,8344ms. We expected such a short time as the VMs are 

running on the same Cloud Infrastructure. 

As a second experiment for the back end evaluation, we used the 

Apache Bench tool in order to stress the services which have an 

endpoint to be accessed. Apache Bench gives us the ability to make a 

massive number of requests and declare both the number of them and 

the number of the requests which must be served concurrently. Then it 

returns the average response time for the requests to be served. We 

make 2000 request and we increase the c parameter which represents 

the number of concurrent requests which must be served. 

Simultaneously, we check the CPU and the Memory usage of the VM on 

which every service is deployed using the HTOP tool. The HTOP is a 

lightweight program for resources management and is executed from 

the command line. It gives us the opportunity to monitor in real time the 

resources consumption per process or in total. 

Below there are indicative tables about the above experiments. For 

every service there is one table for the resources usage relatively with 

the “c” parameter and one table for the response time (in milliseconds) 

relatively with the “c” parameter and the percentage of requests which 

were served. Time per request (mean) tells us the average amount of 

time it took for a concurrent group of requests to process. Time per 

request (mean, across all concurrent requests) tells us the average 

amount of time it took for a single request to process by itself. 

 2000 requests to the MQTT Broker(147.27.60.211:1883)  

 C=1 C=50 C=100 C=150 C=300 

CPU(%) 35,1 42,4 45,3 52 56,7 

MEM(MB) 228 232 239 241 253 

 

 C=1 C=50 C=100 C=150 C=300 

50% 1 16 34 50 110 

66% 1 16 35 52 117 
75% 1 16 36 52 121 

80% 1 16 36 53 122 



92 
 

90% 1 17 37 54 122 

95% 1 17 38 55 123 
98% 1 18 39 55 124 

99% 1 20 40 56 127 
100% 5 21 40 57 129 
Time per 
request 

0,939 16,026 35,413 53,751 124,049 
Time per request 

(across all 
concurrent 
requests) 

0,939 0,321 0,354 0,358 0,413 

 

We consider that the results of the above table would be the same for 

the MQTT broker of the second VM. 

 2000 requests to the LoRa App Server (147.27.60.211:8080) 

 C=1 C=50 C=100 C=150 C=300 
CPU(%) 22,7 100 100 100 100 

MEM(MB) 247 252 257 263 277 

 

 C=1 C=50 C=100 C=150 C=300 
50% 22 1002 2020 2942 5866 

66% 22 1094 2216 3299 6797 
75% 22 1146 2325 3428 6910 

80% 23 1170 2349 3542 7094 
90% 24 1282 2596 3958 7812 

95% 25 1373 2822 4120 7949 

98% 26 1460 2922 4336 8240 
99% 28 1513 2990 4572 8860 

100% 34 1610 3375 5263 10261 
Time per 
request 

21,838 1018,013 2065,020 3119,216 6522,003 
Time per request 

(across all 
concurrent 
requests) 

21,838 20,360 20,650 20,795 21,740 

Transfer Rate 
(Kbytes/sec) 

23,21 24,89 24,54 24,37 23,31 

 

 2000 requests to the JSON/MQTT IoT Agent (147.27.60.202:4041) 

 C=1 C=50 C=100 C=150 C=300 
CPU(%) 45,2 55,3 57,7 66,4 100 



93 
 

MEM(MB) 570 585 593 596 604 

 

 C=1 C=50 C=100 C=150 C=300 

50% 4 20 7 16 120 
66% 4 52 42 84 226 

75% 4 74 76 176 357 
80% 5 81 102 207 401 

90% 5 105 1003 1004 1008 

95% 7 130 1011 1047 1140 
98% 11 1010 3010 3013 1236 

99% 1007 2013 3013 3016 2402 
100% 3013 3017 5374 9132 3017 
Time per 
request 

16,024 122,149 397,436 699,308 562,916 
Time per request 

(across all 
concurrent 
requests) 

16,024 2,443 3,974 4,662 1,876 

Transfer Rate 
(Kbytes/sec) 26,75 175,89 108,11 92,17 229 

 

 2000 requests to the Context Broker (147.27.60.202:1026) 

 C=1 C=50 C=100 C=150 C=300 

CPU(%) 30,9 31,9 34,3 39,1 58,1 
MEM(MB) 551 558 560 574 584 

 

 C=1 C=50 C=100 C=150 C=300 

50% 2 2 4 10 60 

66% 3 3 21 42 77 
75% 3 4 37 62 90 

80% 3 6 47 70 106 

90% 4 20 67 1003 1005 

95% 5 1004 1004 1015 1070 
98% 7 2329 3006 3008 1089 

99% 1003 3009 3008 3009 1099 

100% 1008 7022 6892 4413 6643 
Time per 
request 

13,024 201,628 513,774 341,110 1038,385 
Time per request 

(across all 
concurrent 
requests) 

13,024 4,033 5,138 2,274 3,461 



94 
 

Transfer Rate 
(Kbytes/sec) 

19,64 63,45 49,80 112,51 73,92 

 

 2000 requests to the Apache Server of the Web App(147.27.60.97) 

 C=1 C=50 C=100 C=150 C=300 
CPU(%) 22,1 29,8 37,1 33,3 44,8 

MEM(MB) 220 228 234 237 252 

 

 C=1 C=50 C=100 C=150 C=300 
50% 2 2 6 21 56 

66% 2 3 15 30 70 
75% 2 6 30 43 79 

80% 2 9 39 51 111 

90% 3 23 69 69 316 
95% 3 1002 1008 1013 1003 

98% 4 3004 3004 1022 5601 
99% 999 3099 3012 1030 5605 

100% 3032 7017 12417 21626 23822 
Time per 
request 

14,528 235,633 630,252 1622,485 3574,786 
Time per request 

(across all 
concurrent 
requests) 

14,528 4,713 6,303 10,817 11,916 

Transfer Rate 
(Kbytes/sec) 

61,57 189,81 141,93 82,70 75,07 

 

The following tables conclude the results for the three VMS 

(147.27.60.211, 147.27.60.202, 147.27.60.97. More specifically, we 

represent the usage of the computing resources and the average time 

for 1 request to be served from all services of every VM in comparison 

with the number of the requests which must be served concurrently. We 

added the response times per request across all concurrent requests for 

every service per VM and we show the ranges of the demanding 

computing resources. The fourth VM contains only the MySQL database 

which practically cannot be stressed with apache bench. If the time per 

request (across all concurrent requests) is increased when we increase 

the concurrent requests, it means that the VM scales up in order to 

serve them. 



95 
 

 VM 147.27.60.211 (MQTT BROKER-LORA APP SERVER) 

 

 VM 147.27.60.202 (MQTT BROKER-JSON/MQTT IoT Agent –

Context Broker) 

 C=1 C=50 C=100 C=150 C=300 
Time per 

request to be 
served(across 
all concurrent 
requests) (ms) 

29,987 6,797 9,466 7,294 5,75 

MEM(MB) 228-570 232-585 239-593 241-596 253-604 
CPU(%) 30,9-45,2 31,9-55,3 34,3-57,7 39,1-66,4 56,7-100 

 

 VM 147.27.60.97 (Apache server for the Web Page of the Web 

App) 

 C=1 C=50 C=100 C=150 C=300 
Time per 

request to be 
served(across 
all concurrent 
requests) (ms) 

14,528 4,713 6,303 10,817 11,916 

MEM(MB) 247 252 257 263 273 
CPU(%) 22,7 100 100 100 100 

 

 

5.2 LoRa Network Evaluation 
 

According to LoRa specifications, there are transmission parameters 

which could influence the performance of the network. These include 

parameters such as bitrate, resistance to interference noise, ease of 

decoding or energy consumption and can be set at system set-up. 

 C=1 C=50 C=100 C=150 C=300 
Time per 

request to be 
served(across 
all concurrent 
requests) (ms) 

22,777 20,681 21,004 21,153 22,153 

MEM(MB) 228-247 232-252 239-257 242-263 253-277 

CPU(%) 22,7-35,1 42,4-100 45,3-100 52-100 56,7-100 



96 
 

In order to be understood, chirp is a sinusoidal signal in which the 

frequency increases or decreases over time. LoRa is a chirp spread 

spectrum technique, so chirp pulses are used to encode information 

(symbols). Chirp spread spectrum uses its entire allocated bandwidth to 

broadcast a signal, making it robust to channel noise. 

Transmission Power on a LoRa radio can be adjusted from −4 dBm to 20 

dBm, in 1 dB steps, but because of hardware implementation limits, the 

range is often limited to 2 dBm to 20 dBm. In addition, because of 

hardware limitations, power levels higher than 17 dBm can only be used 

on a 1% duty cycle. 

Carrier Frequency is the center frequency that can be programmed in 

steps of 61 Hz between 137 MHz to 1020 MHz. Depending on the 

particular LoRa chirp, this range may be limited between 860 MHz and 

1020 MHz. 

Spreading Factor (SF) is the ratio between the symbol rate (BW/2SF) and 

chirp rate (BW). A higher spreading factor increases the Signal to Noise 

Ratio (SNR), and thus sensitivity and range, but also increases the airtime 

of the packet (the LoRa radio module needs more time to send the same 

amount of data). Sensitivity is the minimum magnitude of input signal 

required to produce a specified output signal having a specified signal-

to-noise ratio. The number of chirps per symbol is calculated as 2SF. For 

example, with an SF of 12 (SF12) 4096 chirps/symbol are used. Each 

increase in SF halves the transmission rate and, hence, doubles 

transmission duration and ultimately energy consumption. Spreading 

factor can be selected from 6 to 12. 

Bandwidth (BW) is the width of frequencies in the transmission band. 

Higher BW gives a higher data rate (thus shorter time on air), but a lower 

sensitivity (because of integration of additional noise). A lower BW gives 

a higher sensitivity, but a lower data rate. Lower BW also requires more 

accurate crystals (less ppm). Data is sent out at a chirp rate equal to the 

bandwidth; a bandwidth of 125 kHz corresponds to a chirp rate of 125 

kcps. Although the bandwidth can be selected in a range of 7.8 kHz to 



97 
 

500 kHz, a typical LoRa network operates at 500 kHz, 250 kHz or 125 kHz 

(resp. BW500, BW250 and BW125) 

Finally, LoRa includes a forward error correction code. The Code Rate 

(CR) equals 4/(4 + n), with n ∈ {1, 2, 3, 4}. In telecommunication and 

information theory, the code rate (or information rate) of a forward 

error correction code is the proportion of the data-stream that is useful 

(non-redundant). That is, if the code rate is k/n, for every k bits of useful 

information, the coder generates a total of n bits of data, of which n-k 

are redundant.  

Taking this into account, as well as the fact that SF bits of information 

are transmitted per symbol, the following equation allows one to 

compute the useful bit rate (Rb). 

 

For example, a setting with BW = 125 kHz, SF = 7, CR = 4/5 gives a bit 

rate of Rb = 5.5 kbps. 

Generally speaking, an increase of bandwidth lowers the receiver 

sensitivity, whereas an increase of the spreading factor increases the 

receiver sensitivity. Decreasing the code rate helps reduce the Packet 

Error Rate (PER) in the presence of short bursts of interference, i.e., a 

packet transmitted with a code rate of 4/8 will be more tolerant to 

interference than a signal transmitted with a code rate of 4/5. 

In order to evaluate our LoRa Network we used two Lorank8v1 

Gateways of Ideetron and two LoRa Nodes (the combination of 

Ideetron’s Nexus Board and Nexus Demoboard). We have already 

described these devices in section 3.2. 

5.2.1 First Experiment 
As a first experiment we had two Lorank8v1 gateways located in two 

different areas in Chania Crete and a LoRa Node moving between them. 



98 
 

From the Google Maps we see the two points on the Map where every 

Gateway was placed. 

The one Gateway was placed on a urban area (Figure 50): 

 

Figure 50: Route of the experiment and the red point where the one gateway was placed (urban area) 

The second Gateway was placed on a semi urban area (Figure 51): 

 

Figure 51: Route of the experiment and the red point where the one gateway was places (semi urban area) 

 

We configure one of our LoRa Nodes suitably in order to succeed the 

best range we could, ignoring the power consumption. More specifically, 

we declare from the Arduino sketches the Spread factor as 12, the 

bandwidth as 125kHz and the Transmission Power at 17 dbm. These are 

the maximum values in order to succeed the best range we can. 

However the Code Rate was by default set at 4/5. Theoretically, we 



99 
 

wanted to configure it at 4/8, but we couldn’t change this parameter in 

the code as it is fixed. 

We drove in a route from the one Gateway to the other and back. The 

sensor was sending one package per minute (Class A device) and the 

gateways were writing the metadata and the physical payload of every 

received packet into a .csv file. This procedure was run by executing an 

Ideetron’s test script on every gateway called “util_pkt_logger”. 

After processing the data of the two .csv files (one for every gateway), 

two diagrams (one for every gateway) were exported: 

The following diagrams show the SNR (Sound to Noise Ratio) and the 

RSSI (Received Signal Strength Indicator) values of the successfully 

captured packets in comparison with the distance between the 

transmission point and the gateway (base station) 

The first diagram shows the results taken from the Gateway on the Semi 

Urban Area (Figure 52): 

 

Figure 52: RSSI & SNR values in db of the successfully captured packets by the Gateway on the Semi Urban 
Area 

Totally, 50 packets were transmitted. From them only 10 were captured. 

The longest transmission was happened 4,37 km far from the gateway. 

However, the longest transmission which successfully captured from the 

gateway was 1,23 km far from the gateway. Generally, 20% of the 

-140

-120

-100

-80

-60

-40

-20

0

20

6m 36m 210m 400m1,23km626m 500m 510m 40m 27m

RSSI(db)

SNR(db)



100 
 

transmissions were captured successfully. We can also notice that the 

nearest we are to the Gateway, the highest RSSI and SNR we take in db. 

Speaking about the Gateway on the Urban Area the results were 

relatively worse and are presented in the following diagram (Figure 53): 

 

Figure 53: RSSI & SNR values in db of the successfully captured packets by the Gateway on the Urban Area 

Totally, 27 packets were transmitted. From them only 6 were captured. 

The longest transmission was happened 4,37 km far from the gateway. 

However, the longest transmission which successfully captured from the 

gateway was only 134m far from the gateway. Generally, 22,22% of the 

transmission were captured successfully. 

In conclusion, the results from the first experiment were relatively 

different from the LoRa’s expectations. This could be due to the noise 

interference of the area. Furthermore, the elevation of the gateways 

plays a great role to the expected range. We could have taken better 

results if we have placed the gateways on a high point with free sight 

similar to this where cellular antennas’ are placed. In addition the 

environment of route was not an open terrain, but there were buildings, 

metal structures and a non-uniform ground with many obstacles. Finally, 

we could expect better results, in case we could also decrease the Code 

Rate parameter and succeed a smaller bit rate. 

-120

-100

-80

-60

-40

-20

0

20

14m 134m 134m 130m 10m 5m

RSSI(db)

SNR(db)



101 
 

5.2.2 Second Experiment 
In the second experiment we used one gateway of the same model as in 

the first experiment. We also used two LoRa Nodes of the same type. 

This time we conduct the experiment by walking in case the speed of the 

car influenced the performance in the first experiment. The nodes were 

configured similarly with Spread Factor equal to 12, Bandwidth equal to 

125KHz, the Transmission Power equal to 17dbm and the Code Rate 

equal to 4/5. Every node was sending again one packet per minute (Class 

A device). 

Below is the route we walked with the two sensors and the gateway’s 

location (Figure 54): 

 

Figure 54: Route of the second experiment and the red point where the Gateway was placed 

We executed again the “util_pkt_logger” script on the gateway and from 

the .csv file we took the following diagram (Figure 55) which presents 

the RSSI and SNR values in comparison with the distance from the point 

of successfully captured transmission to the gateway’s location: 



102 
 

 

Figure 55: RSSI & SNR values in db of the successfully received packets by the Gateway 

 

Totally, 74 packets were transmitted (37 per node). From them only 14 

were captured. The longest transmission was happened 1,36 km far 

from the gateway. However, the longest transmission which successfully 

captured from the gateway was 923m far from the gateway. Generally, 

18,92% of the transmission were captured successfully. We conclude 

that there are no differences in the results from the previous experiment 

although we changed the rate we moved. However besides all the 

reasons of the first experiment, we had also placed the gateway inside a 

building which may also have influenced the performance.  

In conclusion, the results from the second experiment were also 

relatively different from the LoRa’s expectations. This could be due to 

the noise interference of the area. Furthermore, the placement of the 

gateway inside a building with a very small elevation had also a great 

impact on the performance. In addition the environment of route was 

not an open terrain, but there were buildings, metal structures and a 

non-uniform ground with many obstacles. Finally, we could expect 

better results, in case we could also decrease the Code Rate parameter 

and succeed a smaller bit rate. 

-140

-120

-100

-80

-60

-40

-20

0

20

RSSI(db)

SNR(db)



103 
 

Concluding the results from the two experiments about the LoRa 

Network we can present the estimated percentage of the successfully 

received packets in comparison with the distance from the base station 

(Figure 56). We notice that only in the first 150m we have a 100% 

success of transmission in the Urban Area and in the first 300m in the 

Semi Urban Area. The percentage is reduced with a bigger rate in the 

Urban Area. After 1km we have a 0% success in the urban Area and after 

1,5 km a 0% success in the Semi Urban Area. We could improve these 

results for both areas if we placed the Gateways on a higher elevation 

with a uniform environment with an open terrain and free sight without 

obstacles in order to restrict the noise interferences. 

 

Figure 56: Estimated percentage of the successfully captured packets in comparison with the distance from the 
base station places on Urban and Semi Urban Area 

 

6. Conclusion – Future Work 
In this section we are going to present our conclusions about this thesis 

and suggest further expansions in order to improve the system’s 

functionality and performance. 

0%

20%

40%

60%

80%

100%

120%

0m 150 300m 500m 800m 1km 1,5km

%
 o

f 
su

cc
e

ss
fu

lly
 c

ap
tu

re
d

 p
ac

ke
ts

 

% captured packets in comparison with distance from 
the Gateway 

Semi Urban Area
Urban Area



104 
 

6.1 Conclusions 
The main goal of this thesis was to design and develop a service oriented 

architecture in order to interconnect LoRa devices with the Cloud. 

During this project we came to the following conclusions: 

 Cloud computing provides a big variety of services which can be 

very useful for the easy and fast development of applications. For 

example, the device management service (IoT Agent), the Context 

Broker and the Keyrock Identity Manager of Fiware constitute 

required services for the most applications of the IoT sector. 

Relative services are provided also from other Cloud providers.  

 The usage of service oriented architectures and the RESTful Web 

Services facilitate the communication among services even if they 

are deployed on different cloud environments.  

 With the virtualization we can easily start the development of our 

application and avoid incompatibility problems due to the 

hardware architecture or the physical resources. 

 The MQTT is an open protocol which is ideal for constrained 

networks with low bandwidth, high latency, data limits and fragile 

connections. It is a publish/subscribe protocol which gives us the 

opportunity to check the packets which are published. 

Furthermore, it is secured as it runs over TCP and there is a variety 

of MQTT client libraries which are available at the most 

programming languages and could simplify the job of a developer. 

 LoRa constitutes a constantly evolving technology. We can cover 

whole cities with LoRa devices using just a few gateways with low 

cost. The LoRa network performance depends on the morphology 

of the environment and the obstacles between the nodes and the 

base stations. Furthermore, the location and the elevation of the 

gateways can play a great role to deal with the interferences. 

Finally, transmission parameters of the nodes such as the 

spreading factor and the bandwidth have significant impact on the 

network coverage, as they affect the data rate. Generally, there is 

a trade-off between the power consumption and the long range of 

LoRa protocol. We need to find the suitable point in order to 



105 
 

consume the less power and have the range we want for our 

network’s requirements. Finally, the small bit rate makes LoRa 

unsuitable for applications which require continuous and massive 

data transmissions. 

6.2 Future Work 
Below we describe a few plans for the future in order to improve the 

performance of our system, the coverage of the LoRa Network and to 

expand the functionality of the LoRaWare Architecture. 

 As we have already noticed in the backend evaluation of our 

system, the applogic and the storage in the database covers most 

of the response time. In order to reduce this latency we would like 

to use a NoSQL database like the mongodb to store the persist 

data instead of MySQL database we used. 

 Also, we would use better sensors and gateways in order to 

succeed a better range of the network. Furthermore, we would 

like to do more experiments about the network performance after 

placing the gateways at a high point (high elevation) with free 

sight (no obstacles) in order to approach the maximum range that 

the protocol could practically succeed. 

 Our architecture contains the basic services for interconnecting 

LoRa devices to the Cloud. However our future goal is to expand 

this architecture with other services. For example, data analytics 

service will demonstrate functionality related to uncovering 

hidden patterns in data, unknown correlations, user preferences 

and useful business information (e.g. user’s data may provide 

feedback for enhancing system functionality and users 

acceptance).  COSMOS big data analysis GE or the Data 

Visualization –SpagoBI GE of Fiware could be used for such 

operations. In addition, an Event Processing module could be 

added to handle events (e.g. creates alarm notifications based on 

end-user conditions and information received from the sensors) 

and notify the Publish/Subscribe service, which is responsible for 

passing the information to the end-user. The Complex Event 

Processing (CEP) GE of Fiware is a reference implementation of 



106 
 

this service. Finally, a Mashup Service would allow application 

developers to compose new applications. This would not only take 

significantly less time to build an application, but also to minimize 

the effort required to maintain the system each time a device or 

service was added, removed or updated. Using services as IFTTT or 

Node-RED, devices can be integrated with modern Web 

applications and services with minimal effort (physical mashups). 

A Mashup Editor with similar capabilities is offered in Fiware, the 

WireCloud Mashup GE. 

7.  References 
[1] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038744/ A Study 

of LoRa: Long Range & Low Power Networks for the Internet of Things 

[2] LoRa Alliance - LoRaWAN Specification Authors: N. Sornin (Semtech), 

M. Luis (Semtech), T. Eirich (IBM), T. Kramp (IBM), O.Hersent (Actility) 

[3] LoRaWAN Network Server Demonstration:  Gateway to Server 

Interface Definition 

[4] Ideetron Manual Nexus LoRaWAN low power 

[5]https://pdfs.semanticscholar.org/d77f/f1693e1482e05e9c12df768a2

8b4e7fef759.pdf LoRa Transmission Parameter Selection Author: Martin 

Bor, Utz Roedig 

[6] https://www.fiware.org/developers/catalogue/ 

[7] https://www.loraserver.io/ 

[8] https://forum.loraserver.io/ 

[9] RIOT Reference Architecture 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038744/
https://pdfs.semanticscholar.org/d77f/f1693e1482e05e9c12df768a28b4e7fef759.pdf
https://pdfs.semanticscholar.org/d77f/f1693e1482e05e9c12df768a28b4e7fef759.pdf
https://www.fiware.org/developers/catalogue/
https://www.loraserver.io/
https://forum.loraserver.io/


107 
 

8.  Image References 
[1][Figure 1] https://rajivramachandran.wordpress.com/2012/06/19/cloud-service-

models-iaas-vs-paas-vs-saas/ 

[2][Figure 2] https://www.researchgate.net/figure/Cloud-deployment-

model_fig2_260192916 

[3][Figure 3] https://whatis.techtarget.com/definition/virtualization-architecture 

[4][Figure 4] https://en.wikipedia.org/wiki/Hypervisor 

[5][Figure 5] https://yourdailytech.com/storage-architecture/containers-dont-

contain-the-whole-future/ 

[6][Figure 6] 

https://www.theverge.com/circuitbreaker/2018/5/25/17386716/docker-

kubernetes-containers-explained 

[7][Figure 7] https://www.openstack.org/ 

[8][Figure 8] https://docs.openstack.org/security-guide/introduction/introduction-

to-openstack.html 

[9][Figure 9] https://www.fiware.org/ 

[10][Figure 10] https://www.statista.com/statistics/471264/iot-number-of-

connected-devices-worldwide/ 

 [11][Figure 11,12,13,14] https://www.mouser.com/pdfdocs/LoRaWAN101_final.pdf 

[12] [Figure 15,17] RIOT Reference Architecture 

[13][Figure 16] http://blog.janjongboom.com/2016/04/04/intro-to-lora.html 

[14] [Figure 21,22,23,25] https://webshop.ideetron.nl/ 

[15] [Figure 24] https://github.com/myDevicesIoT/cayenne-

docs/blob/master/docs/LORA.md 

[16] [Figure 26] https://www.loraserver.io/loraserver/overview/ 

[17][Figure 38] https://fiwaretourguide.readthedocs.io/en/latest/connection-to-the-

internet-of-things/introduction/  

[18][Figure 41,43] https://www.slideshare.net/alvaroalonsogonzalez/lesson-3-

applications-how-to-create-oauth2-tokens  

  

https://rajivramachandran.wordpress.com/2012/06/19/cloud-service-models-iaas-vs-paas-vs-saas/
https://rajivramachandran.wordpress.com/2012/06/19/cloud-service-models-iaas-vs-paas-vs-saas/
https://www.researchgate.net/figure/Cloud-deployment-model_fig2_260192916
https://www.researchgate.net/figure/Cloud-deployment-model_fig2_260192916
https://whatis.techtarget.com/definition/virtualization-architecture
https://en.wikipedia.org/wiki/Hypervisor
https://yourdailytech.com/storage-architecture/containers-dont-contain-the-whole-future/
https://yourdailytech.com/storage-architecture/containers-dont-contain-the-whole-future/
https://www.theverge.com/circuitbreaker/2018/5/25/17386716/docker-kubernetes-containers-explained
https://www.theverge.com/circuitbreaker/2018/5/25/17386716/docker-kubernetes-containers-explained
https://www.openstack.org/
https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html
https://docs.openstack.org/security-guide/introduction/introduction-to-openstack.html
https://www.fiware.org/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.mouser.com/pdfdocs/LoRaWAN101_final.pdf
http://blog.janjongboom.com/2016/04/04/intro-to-lora.html
https://webshop.ideetron.nl/
https://github.com/myDevicesIoT/cayenne-docs/blob/master/docs/LORA.md
https://github.com/myDevicesIoT/cayenne-docs/blob/master/docs/LORA.md
https://www.loraserver.io/loraserver/overview/
https://fiwaretourguide.readthedocs.io/en/latest/connection-to-the-internet-of-things/introduction/
https://fiwaretourguide.readthedocs.io/en/latest/connection-to-the-internet-of-things/introduction/
https://www.slideshare.net/alvaroalonsogonzalez/lesson-3-applications-how-to-create-oauth2-tokens
https://www.slideshare.net/alvaroalonsogonzalez/lesson-3-applications-how-to-create-oauth2-tokens

