
TECHNICAL UNIVERSITY OF CRETE

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

Study and implementation of

distributed asynchronous algorithms
for convex optimization

by

Thalia - Anastasia Stavrianoudaki

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DIPLOMA DEGREE OF

ELECTRICAL AND COMPUTER ENGINEERING

presentation date

THESIS COMMITTEE

Professor Athanasios P. Liavas, Thesis Supervisor

Associate Professor George N. Karystinos

Associate Professor Vasilis Samoladas

Abstract

We consider a convex optimization problem with a quadratic cost function. We

partition the data of the problem into a set of processors. We use the Message Passing

Interface (MPI) and develop parallel implementations of two iterative methods for the

solution of the optimization problem, the Gradient Descent and the Block Coordinate

Descent (BCD). We test the convergence properties of the algorithms under various

circumstances, by calculating the speed of convergence and the total communication

cost.

2

Acknowledgements

I would like to thank my family, my boyfriend and my friends, for their unconditional

love and support and for being always there for me.

I would also like to thank my supervisor, Professor Athanasios Liavas, for his

guidance and advice throughout this work.

3

Contents

List of Figures 7

List of Tables 8

1 Introduction 9

1.1 Motivation . 9

1.2 Notations . 10

1.3 Thesis Outline . 10

2 Convex Optimization 11

2.1 Convex Sets . 11

2.2 Convex Functions . 12

2.3 Gradient and Hessian of function f 13

2.4 First and Second order Taylor approximations 13

2.4.1 First-order condition of convexity 14

2.4.2 Second-order condition of convexity 15

2.5 Convex Optimization Problems . 15

2.5.1 Constrained optimization problems 15

2.5.2 Unconstrained optimization problems 16

2.6 Solving unconstrained optimization problems 16

2.6.1 Descent methods . 17

2.6.2 Gradient Direction . 17

2.7 Convergence for strongly convex functions 18

4

CONTENTS

3 Message Passing Interface 19

3.1 Multiple Instruction - Multiple Data Systems 19

3.1.1 Distributed-Memory Systems 19

3.2 Distributed-Memory APIs . 20

3.3 SPMD programs . 21

3.4 Basic MPI functions . 21

3.4.1 MPI Init and MPI Finalize 21

3.4.2 Communicators . 21

3.4.3 MPI Send and MPI Recv . 22

3.5 I/O in MPI . 24

3.5.1 Output . 24

3.5.2 Input . 24

3.6 Collective Communication . 24

3.6.1 MPI Bcast . 25

3.6.2 MPI Scatter . 25

3.6.3 MPI Allgather . 26

3.7 Taking timings . 26

4 Optimization Algorithms 28

4.1 The quadratic problem . 28

4.2 Setup . 29

4.3 Controling the condition number of f 30

4.4 Gradient Descent method . 31

4.4.1 Step size λ . 33

4.4.2 Terminating condition . 33

4.5 Block Coordinate Descent method . 33

4.5.1 Terminating condition . 35

5 Distributed Asynchronous Iterative Algorithms 36

5.1 Parallelizing the data . 36

5.2 Gradient method in MPI . 38

5.3 Block Coordinate Descent in MPI . 40

5.3.1 Dividing the data among the processes 40

5

CONTENTS

5.3.2 Conditions of convergence . 41

6 Experimental Results 44

6.1 Set up . 44

6.2 Convergence of MPI algorithms . 44

6.2.1 Convergence of Gradient Descent 45

6.2.2 Convergence of Block Coordinate Descent 47

6.3 Effect of condition number K . 49

6.4 Introducing probability p . 51

6.5 Effect of probability p . 52

6.6 Comparison of the methods . 55

6.7 Communication Cost . 55

7 Conclusion 58

6

List of Figures

2.1 Convex function . 13

2.2 Convexity proven from first - order Taylor approximation 14

3.1 A distributed-memory system . 20

4.1 Gradient Descent Method on a series of level sets 32

5.1 Row partition of matrix P and vector q 37

6.1 Gradient Descent method with n = 500 and K = 10 45

6.2 Gradient Descent method with n = 1000 and K = 10 45

6.3 Gradient Descent method with n = 1600 and K = 10 46

6.4 Block Coordinate Descent method with n = 500 and K = 10 47

6.5 Block Coordinate Descent method with n = 1000 and K = 10 48

6.6 Block Coordinate Descent method with n = 1600 and K = 10 48

6.7 Distance of f from p∗ when n = 500 and K = 100 50

6.8 Distance of f from p∗ when n = 500 and K = 1000 50

6.9 Distance of f from p∗ with p = {0.1, 0.3, 0.5, 0.8, 1}, when n = 500,

np = 2 and K = 10 . 53

6.10 Distance of f from p∗ with p = {0.1, 0.3, 0.5, 0.8, 1}, when n = 1000,

np = 2 and K = 10 . 54

6.11 Average number of iterations and communication cost for Gradient

Descent . 56

6.12 Average number of iterations and communication cost for Block Coordinate

Descent . 57

7

List of Tables

Parallel Gradient Descent Algorithm . 39

Parallel Block Coordinate Descent algorithm 43

Parallel algorithm with probability p . 52

8

Chapter 1

Introduction

1.1 Motivation

It is a common observation that, recently, the size of problems we need to solve has

significantly increased. Instead of building more complex processors, which will be

able to solve such problems, we may put multiple simple processors in one chip. Such

a change has created the need for building parallel programs, in order to make use of

the multiple processors and achieve faster solutions.

In this thesis, we implement two algorithms for solving convex (in fact, quadratic)

optimization problems in parallel, the Gradient Descent and the Block Coordinate

Descent (BCD). In both algorithms, the data are divided evenly among the processors,

so that each processor has to cope with a smaller problem.

In order to implement the parallel algorithms, we use the Message Passing Interface

(MPI), a library of functions for programming parallel systems.

We test the algorithms with various inputs and under various conditions, and we

present some experimental results.

9

CHAPTER 1. INTRODUCTION

1.2 Notations

Capital bold letters denote matrices; small bold letters denote vectors; small letters

denote scalars; (·)T determines transposition; (·)−1 will be the inverse of a matrix; In

denotes the (n× n) identity matrix; || · ||2 denotes the Euclidean norm;

1.3 Thesis Outline

This thesis is organized as follows:

• Chapter 2 introduces the basic concepts of Convex Optimization.

• Chapter 3 introduces Message Passing Interface.

• Chapter 4 presents the basic concepts behind the Gradient Descent and the Block

Coordinate Descent methods.

• Chapter 5 considers the MPI implementation of both methods.

• Chapter 6 presents experimental results derived from the implementation of the

algorithms presented in Chapter 5.

10

Chapter 2

Convex Optimization

Convex Optimization is the minimization of a convex function over a convex set.

Convexity implies that any local minimum is also a global minimum, which guarantees

that local search algorithms lead to optimal solutions. Convex Optimization arises

in scientific and engineering applications, such as automatic control systems, signal

processing, communications and networks, biomedical engineering, electronic circuit

design, finance, statistics, etc.

2.1 Convex Sets

An affine set C ⊆ Rn is a set for which the straight line joining every the pair of

points of the set lies in the set. So, for x,y ∈ C and θ ∈ R,

θx + (1− θ)y ∈ C.

A set C ⊆ Rn is called convex if, for every pair of points within the set, every point

on the straight line segment joining the pair of points is also within the set. So, for

x,y ∈ C and 0 6 θ 6 1,

θx + (1− θ)y ∈ C.

11

CHAPTER 2. CONVEX OPTIMIZATION

Some examples of convex and non-convex sets are shown in the figure below:

Convex sets (a), (b), (c) and non-convex set (d)

If a set if affine, then it is convex, while the converse is not necessarily true. For

example, straight lines are affine, and therefore, convex sets, whereas straight line

segments are convex but not affine sets.

Known convex sets are cones, hyperplanes, Euclidean balls, ellipsoids, polyhedra,

etc.

2.2 Convex Functions

A function f : domf ⊆ Rn → R is convex if domf is convex and if, for every pair

of points x,y ∈ domf and for 0 6 θ 6 1, it holds true that

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Geometrically, this means that the straight line segment joining (x,f(x)) and (y,f(y))

is never below that graph of function f , as seen in the following figure.

A function f : domf ⊆ Rn → R is strictly convex if domf is convex and if, for

every pair of points x,y ∈ domf where x 6= y and 0 < θ < 1, it holds true that

f(θx + (1− θ)y) < θf(x) + (1− θ)f(y).

Function f is concave if −f is convex, and strictly concave if −f is strictly convex.

An affine function is convex and concave simultaneously.

12

CHAPTER 2. CONVEX OPTIMIZATION

r r
..

............
...........
.........
.........
........
........
.........
........
.........
........
........
...

(x, f(x)) (y, f(y))

Figure 2.1: Convex function

2.3 Gradient and Hessian of function f

If f : Rn → R is differentiable, then function ∇f : Rn → R, defined as

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ,
is called the gradient of f at point x. If ∇f is differentiable, then f is twice

differentiable. The second derivative of f is the derivative of ∇f , is called Hessian

of f and is defined as:

∇2f(x) =


∂2f
∂x2

1

∂2f
∂x2∂x1

. . . ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂x2

2
. . . ∂2f

∂xn∂x2

...
...

. . .
...

∂2f
∂x1∂xn

∂2f
∂x2∂xn

. . . ∂2f
∂x2

n

 .

2.4 First and Second order Taylor approximations

Let f : Rn → R be twice differentiable. Then, the first and second order Taylor

approximations are defined as:

f(y) = f(x) +∇f(x)T (y− x) +O(‖y − x‖2)

= f(x) +∇f(x)T (y− x) +
1

2
(y− x)T∇2f(x)(y− x) +O(‖y − x‖3).

13

CHAPTER 2. CONVEX OPTIMIZATION

It can be proved that

f(y) = f(x) +∇f(z)T (y− x)

= f(x) +∇f(x)T (y− x) +
1

2
(y− x)T∇2f(w)(y− x).

for z and w on the straight line segment which joins points x and y.

2.4.1 First-order condition of convexity

Let open set domf ⊆ Rn and f : domf → R differentiable function. Then, f is

convex if and only if domf is a convex set and

f(y) ≥ f(x) +∇f(x)T (y− x), ∀x,y ∈ domf.

This inequality proves that the first-order Taylor approximation at any point of a

convex function f is a global underestimator of f . Thus, from local information

(value of function f and its gradient at some point), we get global information (a

global underestimator of the function).

r
���������

..
............
...........
.........
.........
........
........
.........
........
.........
........
........
...

f(x) +∇f(x)T (y− x)

x

f(x)

Figure 2.2: Convexity proven from first - order Taylor approximation

14

CHAPTER 2. CONVEX OPTIMIZATION

2.4.2 Second-order condition of convexity

Let open set domf ⊆ Rn and f : domf → R twice differentiable. Then, f is convex

if domf is a convex set and

∇2f(x) � 0, ∀x ∈ domf.

Equivalently, f is strictly convex if domf is a convex set and

∇2f(x) � 0, ∀x ∈ domf.

Known convex functions are ex, x2, |x|, aTx+b, ||Ax||2, 1
2
xTPx + qTx, where A, a,P

and b,q are given matrices and vectors, respectively.

2.5 Convex Optimization Problems

2.5.1 Constrained optimization problems

A generic optimization problem is defined as

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p.

where vector x ∈ Rn is called the optimization variable, function f0 : domf0 ⊆
Rn → R cost function, the inequalities fi(x) ≤ 0 where fi : domfi ⊆ Rn → R, for

i = 1, . . . ,m, are called inequality constraints, and the equalities hi(x) = 0, where

hi : domhi ⊆ Rn → R, for i = 1, . . . , p, are called equality constraints. These

problems are called constrained optimization problems.

A point x is called feasible if it satisfies all constraints. A convex optimization

problem is called feasible if at least one feasible point exists, otherwise it is called

infeasible. The set of all feasible points is called a feasible set and is defined as

X := {x ∈ D|fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}.

15

CHAPTER 2. CONVEX OPTIMIZATION

2.5.2 Unconstrained optimization problems

A problem defined as

minimize
x

f(x), (2.1)

where f : Rn → R is a convex function, is called unconstrained convex optimization

problem.

A point x∗ ∈ Rn is the solution to the problem if and only if

∇f(x∗) = 0. (2.2)

Point x∗ is called optimal point. The minimum value of f is equal to p∗ := f(x∗).

p∗ may take values ±∞. If the problem is infeasible, then p∗ =∞. If feasible points

xk exist, with f(xk) → −∞ when k → ∞, then p∗ = −∞ and the optimization

problem is called unbounded from below.

2.6 Solving unconstrained optimization problems

Relation (2.2) is usually a system of non-linear equations, which rarely has a closed-form

solution, and it is usually solved through direct or indirect iterative processes. An

iterative process produces a sequence of points xk ∈ Rn such that xk → x∗, when

k →∞.

A direct iterative process is trying to calculate x∗ by solving system (2.2), whereas

an indirect iterative process is using properties of function f to calculate x∗ indirectly.

The methods we will use start from an initial point x0 ∈ domf , for which the set

S = {x|f(x) ≤ f(x0)}

is closed, i.e. it contains all its limit points. This is satisfied if x0 ∈ domf and f is

a closed function, that is, if for each α ∈ R, the sublevel set {x ∈ domf |f(x) ≤ α}
is a closed set.

Important cases of closed functions are continuous functions with closed domf ,

such that

f(x) =
1

2
xTPx + qTx

16

CHAPTER 2. CONVEX OPTIMIZATION

where P = PT � 0, as well as continuous functions with open domf if and only if

f(x) tends to ∞ when x tends to a boundary point of domf .

2.6.1 Descent methods

Descent methods are indirect iterative methods for solving (2.1) or (2.2). Assume

that at the k-th iteration, our estimate for the solution of (2.2) is point xk. Then,

the next point is given by

xk+1 = xk + tk∆xk.

We choose tk > 0 and ∆xk such that

f(xk+1) ≤ f(xk),

with equality if and only if xk = x∗.

Since f is a convex function, we know that, if ∇f(xk)T (y − xk) ≥ 0, then f(y)

≥ f(xk). So, in order to develop a descent method, ∆xk needs to be chosen so that

∇f(xk)T∆xk < 0

and tk so that

tk = argmin
t>0

f(xk + t∆xk).

2.6.2 Gradient Direction

The most popular choice for ∆xk is

∆xk = −∇f(xk),

which is called negative gradient direction. Geometrically, we are moving along

the direction where the reduction rate of f on point xk is maximum.

17

CHAPTER 2. CONVEX OPTIMIZATION

2.7 Convergence for strongly convex functions

Convergence analysis of optimization problem solving methods is crucial, since it

provides a performance measure of the methods, the convergence rate, the speed

at which a sequence approaches its limit. In this section, we will study the convergence

of the gradient direction method, assuming the objective function is strongly convex.

Let f : Rn → R strongly convex twice differentiable function. We assume there

exist 0 < m ≤M , such that:

mIn � ∇2f(x) �MIn, ∀x ∈ S, (2.3)

where S := {x ∈ Rn|f(x) ≤ f(x0)}.
Then, it can be shown that

f(x)− p∗ ≤
1

2m
||∇f(x)||22 (2.4)

for any x ∈ Rn. That is, if ||∇f(x)||22 is “small”, then f(x) is “close” to the optimal

value p∗.

It can also be shown that, for any x ∈ Rn,

||x− x∗||2 ≤
2

m
||∇f(x)||2. (2.5)

That is, if ||∇f(x)||2 is “small”, then x is “close” to the optimal point x∗. Thus, a

terminating condition of the gradient direction algorithm may be the following

||∇f(x)||2 < ε

for “small” ε > 0.

18

Chapter 3

Message Passing Interface

Message Passing Interface (MPI) is a communication protocol for programming parallel

computers. It is a library of functions that can be called from C, C++, and Fortran

programs, and is widely used in science applications.

3.1 Multiple Instruction - Multiple Data Systems

Multiple instruction - Multiple data (MIMD) systems consist of a collection of fully

independent processing units or processors, each of which has its own control unit

and its own ALU, and support multiple simultaneous instructions on multiple data.

Such systems usually function asynchronously, which means that there is no global

clock so, at any time, different processors may be executing different instructions on

different pieces of data.

There are two types of MIMD systems: shared-memory and distributed-memo-

ry systems, but our focus will lie on the latter.

3.1.1 Distributed-Memory Systems

A distributed-memory system consists of processor-memory pairs connected by an

interconnection network, where each processor can directly access only its own private

memory, as shown in figure 3.2. Thus, the processors communicate with each other

by sending and receiving messages, or by using special functions that provide access

19

CHAPTER 3. MESSAGE PASSING INTERFACE

to the memory of another processor.

Figure 3.1: A distributed-memory system
Adapted from “Parallel Programming in MPI”, by P. S. Pacheco,

Morgan Kaufmann, 1997

3.2 Distributed-Memory APIs

Message passing is the most widely used application programming interface (API) for

developing distributed-memory programs.

An important property of such APIs is that they can be used with shared-memory

hardware. Hence, shared-memory is partitioned into private address spaces for the

various processes, and a library or compiler implements the communication needed.

In message-passing programs, a program running at one processor-memory pair is

called a process, and two processes can communicate by calling a send and a receive

function. There also exist functions for various collective communications, such as a

broadcast function, in which a single process transmits the same data to all the other

processes.

The processes typically identify each other by ranks in the range 0, 1, ..., p − 1,

where p is the number of processes.

The implementation of message-passing we will use is Message Passing Interface

(MPI).

20

CHAPTER 3. MESSAGE PASSING INTERFACE

3.3 SPMD programs

Despite the fact that each process almost always does something fundamentally

different from the other processes, we compile a single program, not a different

program for each process. In other words, a single program is written and different

processes may perform different actions. Such programs are called Single Program,

Multiple Data or SPMD programs.

Additionally, each MPI program should be able to run with any number of processes,

because the resources available are not and will not always be the same.

3.4 Basic MPI functions

3.4.1 MPI Init and MPI Finalize

MPI Init does all the necessary setup of the MPI system. It allocates storage for

message buffers and defines the rank of each process. Before the call of MPI Init, no

other MPI function should be called. Its syntax is

int MPI Init(

int* argc p /* in/out */

char*** argv p /* in/out */);

The arguments argc p and argv p are pointers to the arguments of main (argc and

argv). Hence, both arguments can be NULL.

MPI Finalize frees any resources allocated for MPI. After the call of MPI Finalize,

no other MPI function should be called. Its syntax is

int MPI Finalize(void);

3.4.2 Communicators

A communicator is a collection of processes that are allowed to send messages to

each other. The default communicator in MPI is MPI COMM WORLD, is defined

by MPI Init and it includes every process the user declared at the beginning of the

execution of the program.

21

CHAPTER 3. MESSAGE PASSING INTERFACE

The syntax of two of the most common functions on communicators is:

int MPI Comm size(

MPI Comm comm /* in */

int* comm sz /* out */);

int MPI Comm rank(

MPI Comm comm /* in */

int* my rank /* out */);

The first argument of both functions is the communicator, which in our program is

the default communicator, MPI COMM WORLD. comm sz indicates the number of

processes of the communicator, and my rank the rank of the calling process in the

communicator.

3.4.3 MPI Send and MPI Recv

MPI Send

Each send is carried out by a call to MPI Send, whose syntax is:

int MPI Send(

void* msg buf p /* in */

int msg size /* in */)

MPI Datatype msg type /* in */)

int dest /* in */)

int tag /* in */)

MPI Comm comm /* in */);

The first three arguments determine the contents of the message: msg buf p is a

pointer to the block of memory containing the message to be sent, msg size holds

the amount of data in the message, and msg type determines the type of the message

to be sent. The size of msg buf p must be less than or equal to msg size. Some

MPI Datatypes are: MPI CHAR, MPI SHORT, MPI INT, MPI FLOAT, etc.

22

CHAPTER 3. MESSAGE PASSING INTERFACE

The last three arguments determine the destination of the message: dest holds

the rank of the process that will receive the message, tag is the message ID, and

communicator specifies that the message will be received by a process belonging to

the same communicator with the process sending the message. tag is used so that, if

the receiving process requests messages with a certain tag, messsages with different

tags will be buffered by the network until the process requests them.

MPI Recv

A call to MPI Recv has syntax:

int MPI Recv(

void* msg buf p /* out */

int buf size /* in */)

MPI Datatype buf type /* in */)

int source /* in */)

int tag /* in */)

MPI Comm communicator /* in */)

MPI Status* status p /* out */);

The first six arguments correspond to the arguments of MPI Send, and specify the

memory available for receiving the message: msg bug p containing the message to be

received, which is of size buf size and of type buf type, source specifies the rank of

the process sending the message, tag holds the message ID and communicator must

match the communicator used by the sending process.

The final argument, status p, contains a pointer to an MPI Status structure where

information about the received message is stored. In many cases it will not be used

by the calling function, so MPI STATUS IGNORED can be passed.

23

CHAPTER 3. MESSAGE PASSING INTERFACE

3.5 I/O in MPI

3.5.1 Output

MPI allows all the processes in the default communicator MPI COMM WORLD

full access to stdout, so most MPI implementations allow all the processes to print

messages.

However, most MPI implementations do not provide any automatic scheduling of

access to output devices. Thus, if multiple processes are trying to write to stdout, the

order in which the output of the processes appears on the screen will be unpredictable.

It can happen that the output of one process will be interrupted by the output of

another process.

The reason this happens is that the processes are “competing” for access to the

shared output device and it is not possible to predict the order in which the processes’

output will be queued up. Thus, the output can vary across runs.

3.5.2 Input

Unlike output, most MPI implementations allow only process 0 in the default communi-

cator MPI COMM WORLD to access stdin. This happens because if multiple processes

have access to stdin, the program would not know which process would get which part

of the input data, for example, if the data should be divided by lines or characters.

Thus, in order to write MPI programs that can use scanf, we will have process 0

to read the data and then send the data to the processes that will need it.

3.6 Collective Communication

Collective communication is a communication of data that involves more than two

processes. A collective operation is executed by having all processes in the same

communicator call the communication routine with matching arguments. There are

many collective operations with different functionalities, but our focus will lie on the

ones used in our applications.

24

CHAPTER 3. MESSAGE PASSING INTERFACE

3.6.1 MPI Bcast

MPI Bcast is a collective operation in which data belonging to a single process is sent

to all the processes in the communicator. Its syntax is:

int MPI Bcast(

void* data p /* in/out */

int count /* in */)

MPI Datatype datatype /* in */)

int source proc /* in */)

MPI Comm comm /* in */);

The first argument, data p, is a pointer to the block of memory containing the message

to be sent by process source proc to all processes in the communicator comm. The

arguments count and datatype indicate the number of characters and the type of the

message respectively.

3.6.2 MPI Scatter

MPI Scatter reads a vector that is on a single process and sends only the needed

components to each of the other processes in the communicator. Its syntax is:

int MPI Scatter(

void* send buf p /* in */

int send count /* in */)

MPI Datatype send type /* in */)

void* recv buf p /* out */)

int recv count /* in */)

MPI Datatype recv type /* in */)

int src proc /* in */)

MPI Comm comm /* in */);

25

CHAPTER 3. MESSAGE PASSING INTERFACE

Suppose that communicator comm contains comm sz processes. Then, MPI Scatter

divides the data referenced by send buf p into comm sz pieces and sends each piece to

the corresponding process. send count holds the amount of data going to each process

and recv count the amount of data received by each process, so these two arguments

have the same value. recv buf p stores the data that each process will receive, while

src proc indicates the process sending the data, that is process 0.

3.6.3 MPI Allgather

MPI Allgather gathers data from all the processes in the communicator, and broadcasts

the combined data to all the processes. Its syntax is:

int MPI Allgather(

void* send buf p /* in */

int send count /* in */)

MPI Datatype send type /* in */)

void* recv buf p /* out */)

int recv count /* in */)

MPI Datatype recv type /* in */)

MPI Comm comm /* in */);

The function concatenates the contents of each process’ send buf p and the concatenated

data are stored in each process’ recv buf p. send count holds the amount of data to

be sent from each process, and recv count holds the amount of data received from

each process, so usually these two arguments are the same.

3.7 Taking timings

In order to test the performance of an MPI program, MPI provides a function which

returns the number of seconds that have elapsed since some time in the past. Its

syntax is:

double MPI Wtime(void);

26

CHAPTER 3. MESSAGE PASSING INTERFACE

Usually, we are not interested in the time taken from the beginning to the end of

the program execution, but only in the time it takes to execute a specific part of the

program. Thus, we can time a block of code as follows:

double start time, end time;

. . .

start time = MPI Wtime();

. . . /* Code to time */

end time = MPI Wtime();

printf(”Process %d, elapsed time = %e seconds”, my rank, end time -

start time);

27

Chapter 4

Optimization Algorithms

Quadratic programming is the problem of optimizing a quadratic objective function,

and is widely used in finance, statistics, signal and image processing, computer

systems and chemical production. In this chapter, we will describe two methods we

implemented to solve a quadratic problem without constraints, the Gradient Descent

method and the Block Coordinate Descent method.

4.1 The quadratic problem

An unconstrained quadratic optimization problem with n variables is formulated as

follows. Given:

• an (n× n) symmetric matrix P and

• an n-dimensional vector q

the objective of quadratic programming is to find an n-dimensional vector x which

will be the solution to the problem:

minimize
x∈Rn

f(x) =
1

2
xTPx + qTx

where f : Rn → R is the objective function.

Any constants contained in the objective function are left out of the general

formulation of the quadratic problem. The fraction 1
2

in front of the quadratic term

is added to remove the coefficient of 2 that occurs when taking the derivative of a

28

CHAPTER 4. OPTIMIZATION ALGORITHMS

second order polynomial.

For matrix P applies:

P = PT � 0.

The gradient and the Hessian of the quadratic function discussed above are defined

as follows:

∇f(x) = Px + q, (4.1)

∇2f(x) = P. (4.2)

From the second-order condition of convexity discussed in paragraph 2.4.2, to analyze

a function’s convexity or strict convexity, one can compute its Hessian and verify that

it is non-negative definite or positive definite, respectively. In the quadratic problem,

the Hessian is equal to matrix P, and since P � 0, our function is strictly convex.

We note that the quadratic optimization problem of interest has a closed-form

solution. In the sequel, we use iterative algorithms for its solution in order to study

their behaviour in multi-processing environments.

4.2 Setup

To begin with, all matrix/vector data were created in Matlab and stored in .txt

files, whereas the programs implementing both Gradient Descend method and Block

Coordinate Descent method were written in C++ and use the MPI library. For

matrix/vector operations we used routines of Eigen library, a C++ template library

for linear algebra.

29

CHAPTER 4. OPTIMIZATION ALGORITHMS

4.3 Controling the condition number of f

The condition number of a function with respect to an argument measures how

sensitive the output of the function is with respect to changes of the input.

Recall that for f : Rn → R strongly convex twice differentiable function, we have

assumed there exist 0 < m ≤M such that

mIn � ∇2f(x) �MIn, ∀x ∈ S

where S := {x ∈ Rn|f(x) ≤ f(x0)}.
Then, the condition number of function f is defined as:

K :=
M

m
.

In order to control the condition number of our function, we express matrix P in

Matlab as

P = UΛUT .

Matrix U is an (n× n) orthonormal matrix, which means that its rows and columns

are orthogonal unit vectors, i.e. UUT = UTU = In. It is constructed by calculating

the singular-value decomposition of a random (n× n) matrix A, using Matlab’s svd

function, as:

[U,S,V] = svd(A);

and its columns are the eigenvectors of matrix P.

Matrix Λ is an (n × n) diagonal matrix, which holds in the main diagonal the

eigenvalues λi of matrix P, for i = 1, . . . , n. It is constructed by selecting the smallest

and largest eigenvalues, λmin and λmax respectively, creating (n−2) random uniformly

distributed numbers in the interval [λmin, λmax], and placing these values in the main

diagonal of matrix Λ.

30

CHAPTER 4. OPTIMIZATION ALGORITHMS

The condition number of our function is:

K :=
λmax

λmin

.

and we have:

λminIn � ∇2f(x) � λmaxIn, ∀x ∈ S.

Vector q ∈ Rn is a vector of independent normally distributed random numbers.

Both P and q are stored in .txt files, to be used later in our program.

Note: The singular value decomposition of an (n × n) matrix A is a factorization

of A into a product of matrices of the form USVT , where:

• U is an (n×n) orthonormal matrix whose columns hold the eigenvectors of AAT ;

• V is an (n×n) orthonormal matrix whose columns hold the eigenvectors of ATA;

• S is an (n × n) diagonal matrix whose diagonal elements hold the square roots

of the eigenvalues of both AAT and ATA.

4.4 Gradient Descent method

Gradient Descent is an iterative optimization algorithm for finding the minimum of

a function. It is based on the observation that if the objective function f(·) is defined

and differentiable in a neighborhood of a point x, then f(·) descreases fastest if we

move along the direction of −∇f(x). If we move along the direction of the positive

of the gradient at the current point, then the local maximum of the function would

be found, and the method would be called gradient ascent.

Assuming that in the k-th step of the iterative process our estimate for the solution

of the problem is xk, it follows that the next point is given by

xk+1 = xk − λk∇f(xk)

for a step-size λk for which

f(xk+1) ≤ f(xk).

31

CHAPTER 4. OPTIMIZATION ALGORITHMS

Based on these observations, the method begins from an initial point x0 and

constructs the sequence x0, x1, x2, . . . , such that

f(x0) ≥ f(x1) ≥ f(x2) ≥ . . .

so, at each step, function f is dcreased until the sequence {xk} converges to a local

minimum. If f(x) is (strongly) convex, any local minimum is also a global minimum.

Thus, the gradient descent converges to a global minimum.

The global minimum of f(x) is called optimal point, is defined as x∗, and for it

holds that

∇f(x∗) = 0.

The gradient descent method is illustrated in figure (4.1) below. It is assumed

that f is defined on a plane. The blue curves are the level sets of function f . The

red arrows show the direction of the negative gradient from one point to the other,

while trying to reach the optimal point.

Figure 4.1: Gradient Descent Method on a series of level sets
Adapted from https://en.wikipedia.org/wiki/Gradient descent

32

CHAPTER 4. OPTIMIZATION ALGORITHMS

4.4.1 Step size λ

Note that the value of step size λ is allowed to change at every iteration. A careful

selection of λ is crucial. We can either choose a fixed step size which will assure

convergence or choose a different step size at each iteration. In our program, we

chose a fixed step size. It can be shown that

λ =
1

λmax

is a good choice for the step size, and this is our choice in our experiments.

4.4.2 Terminating condition

In section 2.7 of Chapter 2, we mentioned that

||x− x∗||2 ≤
2

λmin

||∇f(x)||2.

Thus, if ||∇f(x)||2 is “small”, then this x is “close” to optimal point x∗. Based on

this fact, in our programs we use the terminating condition

||∇f(xk)||2 < ε

where ε is “small” (for example, ε = 10−4).

4.5 Block Coordinate Descent method

Coordinate Descent is an iterative algorithm which minimizes the objective function

along coordinate directions. Thus, at each iteration the function is minimized along

one coordinate or coordinate block, while keeping the other coordinates or coordinate

blocks fixed.

The method begins from an initial point

x0 = (x0
0, . . . ,x

0
n−1),

33

CHAPTER 4. OPTIMIZATION ALGORITHMS

where n is the problem size, and cyclically moves along one coordinate or coordinate

block at a time, minimizes on it and moves to the next. Assuming that, in the

k-th iteration, our estimate for the solution of the problem is xk, we calculate the

i-th coordinate of iteration (k + 1), xk+1
i , by using the Jacobi or the Gauss-Seidel

coordinate descent algorithms.

The Jacobi coordinate descent algorithm is defined as:

xk+1
i = argmin

xi∈Xi

f(xk
0, . . . ,x

k
i−1,xi,x

k
i+1, . . . ,x

k
n−1)

and the Gauss - Seidel coordinate descent algorithm as:

xk+1
i = argmin

xi∈Xi

f(xk+1
0 , . . . ,xk+1

i−1 ,xi,x
k
i+1, . . . ,x

k
n−1).

The Jacobi algorithm can be parallelized by assigning each block of coordinates xi

to a different processor, whereas the Gauss-Seidel algorithm can be parallelized if a

coloring scheme is applied.

Block Coordinate Descent (BCD) is based on the same logic, with the only

difference being that the coordinates are partitioned into blocks. Suppose we break

the n coordinates in b blocks, where each block holds n
b

coordinates. That way, at

each iteration, we compute a block of coordinates.

Each coordinate or coordinate block is minimized exactly, by solving the problem

with closed form, or inexactly, by minimizing it along the gradient direction.

In this thesis, we will implement a Jacobi Block Coordinate Descent algorithm to

solve the quadratic problem discussed above.

Note that for both methods, we have:

f(x0) ≥ f(x1) ≥ f(x2) ≥ . . . (4.3)

34

CHAPTER 4. OPTIMIZATION ALGORITHMS

4.5.1 Terminating condition

As the terminating condition for our algorithm we used

||xk − x∗||2 < ε,

where ε is “small”, ε = 10−4 specifically.

This inequality means that, if the distance between the point calculated from

iteration k and the optimal point is “small”, then we can say that the optimal point

is reached and the iterative method should end.

35

Chapter 5

Distributed Asynchronous

Iterative Algorithms

We will now consider distributed asynchronous implementations of the algorithms

discussed in the preceding chapter. An iterative algorithm is parallelized by separating

it into several local algorithms operating concurrently at different processors.

5.1 Parallelizing the data

At the beginning of the program execution, the number of processes are set from the

user, and no more processes can be added before the program finishes execution. Each

process is assigned a unique integer called rank, from 0 to np − 1, with np denoting

the total number of processes in the communicator.

Given a network of np processes, we want to solve

minimize
x∈Rn

f(x) =
1

2
xTPx + qTx

We will solve the problem with row partition. We suppose that np evenly divides

n, the number of rows of P and q, so there will be np block-rows, one for each process

in the communicator. The row partition is shown in the figure below:

36

CHAPTER 5. DISTRIBUTED ASYNCHRONOUS ITERATIVE ALGORITHMS

...
Pnlocal−1,0 . . .

. . .

. . .
...

P0,0

Pnlocal−1,n−1

P0,n−1

...

...

Pn−nlocal,0

Pn−1,0

. . .

. . .

. . .

Pn−nlocal,n−1

Pn−1,n−1

...

...

q0

qnlocal−1

qn−nlocal

qn−1

...

...

Figure 5.1: Row partition of matrix P and vector q

So, in each process, a row - block of P and q will be stored, which are Plocal and

qlocal respectively. The number of rows of each block is equal to

nlocal =
n

np
.

So, Plocal will be of size (nlocal × n), and qlocal will be of size nlocal.

To be more specific, process 0 will have rows 0, . . . , nlocal − 1, process 1 will have

rows nlocal, . . . , 2nlocal − 1, and so on.

As mentioned in section 3.6.2, MPI function MPI Scatter reads in an entire vector

that is on process 0 and partitions its data evenly between the processes. We have:

MPI Scatter(P, nlocal × n, MPI DOUBLE, Plocal,

nlocal × n, MPI DOUBLE, 0, MPI COMM WORLD);

MPI Scatter(q, nlocal, MPI DOUBLE, qlocal,

nlocal, MPI DOUBLE, 0, MPI COMM WORLD);

MPI Scatter divides P and q into blocks of size (nlocal)×n and nlocal respectively,

and sends each blocks to its corresponding process. In fact, process 0 will get the first

block, process 1 will get the second block, and so on.

The second and fifth argument hold the amount of data going to each process and

the amount of data received by each process respectively, so they are equal.

37

CHAPTER 5. DISTRIBUTED ASYNCHRONOUS ITERATIVE ALGORITHMS

The seventh argument denotes the source process so, since P and q are read from

the .txt files in process 0, then process 0 is the source process.

The final argument denotes the communicator in which the receiving processes

belong to, which is equal to the default communicator.

Then, a call to MPI Bcast is made, to send step t to all the processes in the

communicator, as follows:

MPI Bcast(t, 1, MPI DOUBLE, 0, MPI COMM WORLD);

Specifically, process 0, which is the source process since it calculates step t, sends it

into all the processes belonging to the default communicator. t is of size 1 and of

type MPI DOUBLE, as observed from the second and third argument respectively.

5.2 Gradient method in MPI

After the data are divided among the processes, we set initial point

x0 =


0

0
...

0


where x0 ∈ Rn and then we begin the iterative method.

At each step of the iterative process, each process computes a block of the next

point as follows. Suppose that in the k-th step of the process, each process’ estimate

for the solution of the problem is xk
local, then the next local point is given by:

xk+1
local = xk

local + λ∆xk.

∆xk moves along the direction of the negative of the local gradient, i.e. the block of

gradient for each process, as:

∆xk = −∇localf(xk) = −(Plocalx + qlocal).

38

CHAPTER 5. DISTRIBUTED ASYNCHRONOUS ITERATIVE ALGORITHMS

Algorithm 5.1 Parallel Gradient Descent Algorithm

Set x0 ∈ Rn, k = 0
start time = MPI Wtime();
while (terminating condition is FALSE) do
∇localf(xk) = Plocalx

k + qlocal

∆xk = −∇localf(xk)
xk+1
local = xk

local + λ∆xk

MPI Allgather(∇localf(xk))
MPI Allgather(xk+1

local)
k := k + 1

end while
end time = MPI Wtime();

Then, we need to concatenate and broadcast to all processes the blocks of xk+1

and ∇localf(xk) of each process, because the first is needed in the next computation of

∆xlocal and the second is needed for the terminating condition. To do so, MPI Allgather

was used. We have:

MPI Allgather(gradientlocal, local n, MPI DOUBLE,

gradient, local n, MPI DOUBLE, MPI COMM WORLD);

MPI Allgather(xlocal, local n, MPI DOUBLE,

x, local n, MPI DOUBLE, MPI COMM WORLD);

MPI Allgather concatenates vectors gradientlocal and xlocal to vectors gradient

and x respectively, and broadcasts them to all the processes belonging to the default

communicator MPI COMM WORLD.

The second and fifth argument of MPI Allgather denote the number of elements

to be gathered from each process and the number of elements to be received by each

process, so they are equal.

A pseudocode of the parallel program we implemented is shown in Table 5.1.

39

CHAPTER 5. DISTRIBUTED ASYNCHRONOUS ITERATIVE ALGORITHMS

5.3 Block Coordinate Descent in MPI

5.3.1 Dividing the data among the processes

The problem will be solved with closed-form solution. When we refer to closed-form

solution, we mean solving the problem

∇f(x) = 0⇒ Px + q = 0⇒ x = −P−1q.

Since each process has access to a block-row of P and q, each process is called to

solve a “smaller” local problem with closed-form solution, i.e. a problem of the form:

∇localf(x) = 0⇒ Axlocal + b = 0⇒ xlocal = −A−1b, (5.1)

where A is an (nlocal × nlocal) matrix and b is an (nlocal × 1) vector.

In order to construct A and b, we partition matrix P in np block-rows and np

block-columns and vector q in np blocks. For the objective function we have:

f(x) =
1

2

[
xT
1 . . . xT

i . . . xT
np

]


P1,1 . . . P1,i . . . P1,np

...
. . .

...
. . .

...

Pi,1 . . . Pi,i . . . Pi,np

...
. . .

...
. . .

...

Pnp,1 . . . Pnp,i . . . Pnp,np





x1

...

xi

...

xnp


+

+
[
qT
1 . . . qT

i . . . qT
np

]


x1

...

xi

...

xnp


,

where xi is the i-th block of x and is of size (1× nlocal), xT
i denotes the transpose of

xi and is of size (nlocal × 1), Pi,i denotes a block of P of size (nlocal × nlocal) and qT
i

is the i-th block of the transpose of q and is of size (nlocal × 1).

40

CHAPTER 5. DISTRIBUTED ASYNCHRONOUS ITERATIVE ALGORITHMS

By linear algebra operations in the above equation, we get:

f(x) =
1

2
x1P1,1x

T
1 + · · ·+ 1

2
x1Pi,1x

T
i + · · ·+ 1

2
x1Pnp,1x

T
np

+ · · ·

+
1

2
xiP1,ix

T
1 + · · ·+ 1

2
xiPi,ix

T
i + · · ·+ 1

2
xiPnp,ix

T
np

+ . . .

+
1

2
xnpP1,npx

T
1 + · · ·+ 1

2
xnpPi,npx

T
i + · · ·+ 1

2
xnpPnp,npx

T
np

+x1q
T
1 + · · ·+ xiq

T
i + · · ·+ xnpq

T
np.

For the i-th block, we define the coefficient of the second order term as matrix A

and the coefficient of the first order term as vector b. Thus:

A = Pi,i, (5.2)

b = Pi,1x1 + · · ·+ Pi,npxnp + xiq
T
i . (5.3)

5.3.2 Conditions of convergence

Unfortunately, this method does not always converge. A sufficient but not necessary

condition of convergence for the method is if matrix P is diagonally dominant.

However, the method can sometimes converge even if this condition is not satisfied.

41

CHAPTER 5. DISTRIBUTED ASYNCHRONOUS ITERATIVE ALGORITHMS

In order to solve this problem, at iteration (k + 1), we compare the value fk+1
local

with the value fk
local, i.e. the values of f of iterations k + 1 and k, as computed by

each process. From theory (equation 4.3), we must have:

fk+1
local ≤ fk

local ≤ . . .

However, if this does not happen at iteration (k + 1) for some process, then this

process does not update its part of x at iteration (k + 1), but it keeps the one it

calculated at iteration k. This way, we guarantee that the condition 4.3 is satisfied,

and that our algorithm always converges.

The algorithm begins from initial point

x0 =


0

0
...

0


and at each iteration, each process computes its A and b using the equations 5.2 and

5.3, and then solves the problem:

xk+1
local = −A−1localb

k
local

where xk+1
local denotes the block of x for iteration (k+ 1) which each process calculates,

A−1local denotes matrix A of each process, and bk
local denotes vector b of each process

as calculated using vector x of iteration k. As one can easily observe, each process’

A remains the same at each iteration, but b changes since it depends on vector x,

which changes at each iteration.

Then, in order to ensure that our method will always converge, we apply the check

we introduced above, i.e.:

if (f(xk+1
local) > f(xk

local))

xk+1
local = xk

local

This way, we ensure that the condition fk+1
local ≤ fk

local is satisfied.

42

CHAPTER 5. DISTRIBUTED ASYNCHRONOUS ITERATIVE ALGORITHMS

Algorithm 5.2 Parallel Block Coordinate Descent algorithm

Set x0 ∈ Rn, k = 0
start time = MPI Wtime();
Calculate A
while (terminating condition is FALSE) do

Calculate b
xk+1
local = −A−1 ∗ b

if (f(xk+1
local) > f(xk

local))
xk+1
local = xk

local

MPI Allgather(xk+1
local)

k := k + 1
end while
end time = MPI Wtime();

After each process calculates the new point xk+1
local, MPI function MPI Allgather is

used, as shown below:

MPI Allgather(xlocal, local n, MPI DOUBLE,

x, local n, MPI DOUBLE, MPI COMM WORLD);

to concatenate and broadcast the new point to all the processes in the communicator.

A pseudocode of the parallel program we implemented for Block Coordinate Descent

is shown in Table 5.2

43

Chapter 6

Experimental Results

In this chapter, we present results obtained from the MPI programs of Gradient

Method and Block Coordinate Descent method.

6.1 Set up

We note that all figures below were created in Matlab, by importing data from files

created by the MPI algorithms. For all the figures below, we used Matlab’s function

semilogy, which plots data in the logarithmic scale for the y-axis.

6.2 Convergence of MPI algorithms

In order to confirm the convergence of our algorithms, we examined our implementations

for multiple problem sizes n and number of processes np. More specifically, the set

for n is {500, 1000, 1600} and np is taken from the set {2, 4, 10}.
We note that the condition number K for the problems presented in this section

is equal to 10. More about the condition number on section 6.3.

44

CHAPTER 6. EXPERIMENTAL RESULTS

6.2.1 Convergence of Gradient Descent

The left figures below present the distance of f at each iteration k from p∗, the

minimum value of f . The right figures present the distance of x at each iteration k

from x∗, the optimal point reached.

We observe that f is minimizing and the optimal point x∗ is reached since all

figures tend to 0, so our method converges irrespective of the problem size and the

number of processes.

0 10 20 30 40 50

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 2

0 10 20 30 40 50

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 4

0 10 20 30 40 50

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 10

0 10 20 30 40 50 60 70 80

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 500, np = 2

0 10 20 30 40 50 60 70 80

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 500, np = 4

0 10 20 30 40 50 60 70 80

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 500, np = 10

Figure 6.1: Gradient Descent method with n = 500 and K = 10

0 10 20 30 40 50 60

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1000, np = 2

0 10 20 30 40 50 60

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1000, np = 4

0 10 20 30 40 50 60

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1000, np = 10

0 10 20 30 40 50 60 70 80

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 1000, np = 2

0 10 20 30 40 50 60 70 80

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 1000, np = 4

0 10 20 30 40 50 60 70 80

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 1000, np = 10

Figure 6.2: Gradient Descent method with n = 1000 and K = 10

45

CHAPTER 6. EXPERIMENTAL RESULTS

0 5 10 15 20 25 30 35 40 45

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1600, np = 2

0 5 10 15 20 25 30 35 40 45

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1600, np = 4

0 5 10 15 20 25 30 35 40 45

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1600, np = 10

0 10 20 30 40 50 60 70 80

iter

10
-10

10
0

10
10

||
x

k
 -

 x
*
||

n = 1600, np = 2

0 10 20 30 40 50 60 70 80

iter

10
-10

10
0

10
10

||
x

k
 -

 x
*
||

n = 1600, np = 4

0 10 20 30 40 50 60 70 80

iter

10
-10

10
0

10
10

||
x

k
 -

 x
*
||

n = 1600, np = 10

Figure 6.3: Gradient Descent method with n = 1600 and K = 10

The number of iterations and the run time for the above problems are shown in

the table below:

Number of iterations

Problem size n np = 2 np = 4 n = 10

500 77 77 77

1000 78 78 78

1600 76 76 76

Run Time

Problem size n np = 2 np = 4 n = 10

500 0.33 0.46 5.58

1000 1.3 2.44 9.05

1600 3.45 5.18 14.88

From the multiple times we run the algorithm, but also from the results presented

above, we observe that the problem size does not interfere much on the number of

iterations, but only on the run time of the algorithm.

We can also observe that, as the number of processes increase, the number of

iterations until the optimal point is reached remains the same. However, the time it

takes for the algorithm to converge increases.

46

CHAPTER 6. EXPERIMENTAL RESULTS

6.2.2 Convergence of Block Coordinate Descent

In this section we present the results taken when applying the method of Block

Coordinate Descent at the same data as in section 6.2.1. As in the previous section,

the left figures present the distance of f at each iteration k from p∗, whereas the right

figures present the distance of x at each iteration k from x∗.

We observe that f is minimizing and the optimal point x∗ is reached since all

figures tend to 0, so our method converges irrespective of the problem size and the

number of processes.

0 5 10 15

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 2

0 5 10 15 20 25

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 4

0 5 10 15 20 25 30 35 40

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 10

0 5 10 15 20

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 500, np = 2, K = 10

0 5 10 15 20 25 30

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 500, np = 4, K = 10

0 10 20 30 40 50

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 500, np = 10, K = 10

Figure 6.4: Block Coordinate Descent method with n = 500 and K = 10

47

CHAPTER 6. EXPERIMENTAL RESULTS

0 2 4 6 8 10 12 14 16 18

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1000, np = 2

0 5 10 15 20 25

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1000, np = 4

0 5 10 15 20 25 30

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1000, np = 10

0 5 10 15 20 25

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 1000, np = 2

0 5 10 15 20 25 30

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 1000, np = 4

0 5 10 15 20 25 30 35

iter

10
-5

10
0

10
5

||
x

k
 -

 x
*
||

n = 1000, np = 10

Figure 6.5: Block Coordinate Descent method with n = 1000 and K = 10

0 2 4 6 8 10 12 14

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1600, np = 2

0 5 10 15 20

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1600, np = 4

0 5 10 15 20 25

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 1600, np = 10

0 2 4 6 8 10 12 14 16

iter

10
-4

10
-2

10
0

||
x

k
 -

 x
*
||

n = 1600, np = 2

0 5 10 15 20 25

iter

10
-4

10
-2

10
0

||
x

k
 -

 x
*
||

n = 1600, np = 4

0 5 10 15 20 25

iter

10
-4

10
-2

10
0

||
x

k
 -

 x
*
||

n = 1600, np = 10

Figure 6.6: Block Coordinate Descent method with n = 1600 and K = 10

The number of iterations and the run time for the above problems are shown in

the table below:

Number of iterations

Problem size n np = 2 np = 4 n = 10

500 22 31 52

1000 23 31 35

1600 18 25 27

48

CHAPTER 6. EXPERIMENTAL RESULTS

Run Time

Problem size n np = 2 np = 4 n = 10

500 4.36 2.24 2.08

1000 47.45 14.73 7.73

1600 147.73 44.39 11.03

From the multiple times we run the algorithm, but also from the results presented

above, we observed that the problem size does not interfere much on the number of

iterations, but only on the run time of the algorithm, just like the Gradient Descent

method. However, the run time increases more when the problem size increases, in

compare to the Gradient Descent method.

An essential notice is that the number of iterations the algorithm needs until the

optimal point is reached increases as the number of processes increase, whereas the

run time is significantly reduced. This is very important, since it might take more

iterations to converge, but it needs less time, so the algorithm is more efficient.

6.3 Effect of condition number K

So far, we have seen the effect that the size of the problem and the number of

processes have on both our algorithms. In this section we will study the effect of

the condition number K. We will focus on problems with n = 500, np will be on the

set {2, 4, 10} and we will present results with K = {100, 1000}. Note that we have

already presented results with K = 10 in the previous section.

49

CHAPTER 6. EXPERIMENTAL RESULTS

0 100 200 300 400 500 600

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 2, K = 100

0 100 200 300 400 500 600

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 4, K = 100

0 100 200 300 400 500 600

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 10, K = 100

0 20 40 60 80 100 120 140

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 2, K = 100

0 50 100 150 200 250

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 4, K = 100

0 50 100 150 200 250 300

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 10, K = 100

(a) Gradient Descent (b) Block Coordinate Descent

Figure 6.7: Distance of f from p∗ when n = 500 and K = 100

0 1000 2000 3000 4000 5000 6000

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 2, K = 1000

0 1000 2000 3000 4000 5000 6000

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 4, K = 1000

0 1000 2000 3000 4000 5000 6000

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 10, K = 1000

0 200 400 600 800 1000 1200 1400

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 2, K = 1000

0 500 1000 1500 2000

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 4, K = 1000

0 500 1000 1500 2000 2500

iter

10
-5

10
0

10
5

f
k
 -

 p
*

n = 500, np = 10, K = 1000

(a) Gradient Descent (b) Block Coordinate Descent

Figure 6.8: Distance of f from p∗ when n = 500 and K = 1000

The number of iterations and the run time for the above problems are:

Number of iterations for Gradient Descent

Condition number K np = 2 np = 4 n = 10

100 698 698 698

1000 7255 7255 7255

50

CHAPTER 6. EXPERIMENTAL RESULTS

Run Time for Gradient Descent

Condition number K np = 2 np = 4 n = 10

100 4.5 9.88 51.47

1000 49.48 90.18 646.2

Number of iterations for Block Coordinate Descent

Condition number K np = 2 np = 4 n = 10

100 153 246 297

1000 1607 2415 3012

Run Time for Block Coordinate Descent

Condition number K np = 2 np = 4 n = 10

100 45.76 20.13 15.24

1000 468.54 170.18 150.55

From the figures above, we observe that when the condition number increases, the

number of iterations needed for both algorithms to reach the optimal point increases

proportionally. More specifically, we notice that when K increases by the power of

10, the iterations also increase by the power of 10.

We should also notice that, when K increases, the run time of both algorithms

also increases proportionally.

6.4 Introducing probability p

In this phase of the thesis, we introduce probability p to our programs.

In fact, before the iterative method begins, we set variable p equal to a value taken

from the set {0.1, 0.2, . . . , 1}. Then, at each iteration, each process separately, choses

randomly a value in the interval [0, 1], and stores it in variable tmp p. If the randomly

chosen tmp p is less than probability p, then the process moves on to calculating new

xlocal, otherwise

xk+1
local = xk

local.

Actually, after each iteration, some blocks of x are updated, and some others not.

51

CHAPTER 6. EXPERIMENTAL RESULTS

Algorithm 6.1 Parallel algorithm with probability p

Set x0 ∈ Rn, k = 0, p
start time = MPI Wtime();
while (terminating condition is FALSE) do
tmp p = rand()
if (tmp p < p)

update xlocal

MPI Allgather(xk+1
local)

k := k + 1
end while
end time = MPI Wtime();

Probability p was introduced in order to observe the changes in the number of

iterations and the run time of the algorithms, as well as if the optimal point will be

affected by the fact that at each iteration not every process updates its xlocal.

Thus, in order to measure the time taken for both methods to minimize the function

and calculate the optimal point x∗, we use MPI function MPI Wtime, as described

in section 3.7.

A pseudocode of the parallel program with the probability p is shown in Table 6.1.

6.5 Effect of probability p

In this section, we present results after running both algorithms to observe the effect

probability p has on their convergence. Since we have analyzed the effect of n, np

and K in the previous sections, for convenience we will present results when n = 500,

np = 2 and K = 10. Probability p is chosen to be in the set {0.1, 0.3, 0.5, 0.8, 1}.

52

CHAPTER 6. EXPERIMENTAL RESULTS

0 100 200 300 400 500 600

iterations

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

f(
x

k
)

-
p

*

n = 500, np = 2, K = 10

p = 1

p = 0.8

p = 0.5

p = 0.3

p = 0.1

0 50 100 150 200

iterations

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

f(
x

k
)

-
p

*

n = 500, np = 2, K = 10

p = 1

p = 0.8

p = 0.5

p = 0.3

p = 0.1

(a) Gradient Descent (b) Block Coordinate Descent

Figure 6.9: Distance of f from p∗ with p = {0.1, 0.3, 0.5, 0.8, 1}, when n = 500, np = 2
and K = 10

The number of iterations and the run time of the algorithms are showen in the

tables below:

Number of iterations

Method p = 1 p = 0.8 p = 0.5 p = 0.3 p = 0.1

Gradient Descent 77 94 156 252 829

Block Coordinate Descent 22 27 49 72 248

Number of iterations

Method p = 1 p = 0.8 p = 0.5 p = 0.3 p = 0.1

Gradient Descent 0.33 1.08 1.93 2.37 6.12

Block Coordinate Descent 6.36 6.58 7.5 7.61 8.02

From the figures above, we observe that, when p decreases, the number of iterations

and the run time of the algorithms increase. This makes sence, since, as p decreases,

the probability of tmp p to be less than p decreases, which means not every process

updates its xlocal at every iteration, so it takes more iterations and more time to reach

the optimal point x∗.

53

CHAPTER 6. EXPERIMENTAL RESULTS

However, despite the increase in the number of iterations, the algorithm always

reaches the optimal point x∗, so probability p does not affect the result of the

algorithms.

We will now increase the problem size to n = 1000 to see if the methods behave

any differently. We have:

0 100 200 300 400 500 600 700

iterations

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

f(
x

k
)

-
p

*

n = 1000, np = 2, K = 10

p = 1

p = 0.8

p = 0.5

p = 0.3

p = 0.1

0 20 40 60 80 100 120 140 160 180

iterations

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

f(
x

k
)

-
p

*

n = 1000, np = 2, K = 10

p = 1

p = 0.8

p = 0.5

p = 0.3

p = 0.1

(a) Gradient Descent (b) Block Coordinate Descent

Figure 6.10: Distance of f from p∗ with p = {0.1, 0.3, 0.5, 0.8, 1}, when n = 1000,
np = 2 and K = 10

The number of iterations and the run time of both algorithms are:

Number of iterations

Method p = 1 p = 0.8 p = 0.5 p = 0.3 p = 0.1

Gradient Descent 78 95 173 250 820

Block Coordinate Descent 23 30 41 59 184

Run time

Method p = 1 p = 0.8 p = 0.5 p = 0.3 p = 0.1

Gradient Descent 1.3 1.8 4.34 4.6 12.19

Block Coordinate Descent 47.45 59.72 76.21 79.84 84.17

54

CHAPTER 6. EXPERIMENTAL RESULTS

The results we got when we increase the problem size were expected. More

specifically, the number of iterations of both methods remained about the same,

whereas the run time of the algorithms increased. However, p affected both algorithms

in the same way since, when p decreases, the number of iterations and the run time

of the algorithms increases.

We mention though that both algorithms always reach the optimal point, even

when p is very small, so probability p does not affect the result of the algorithms, just

when it is reached.

6.6 Comparison of the methods

If we compare the results of sections 6.2.1 and 6.2.2, we observe that Block Coordinate

Descent needs with less iterations until it converges from Gradient Descent method.

However, it is very interesting to observe the run time it takes for both methods to

converge.

When the number of processes is ‘small’, Block Coordinate Descent needs more

time to reach the optimal point than Gradient Descent. On the other hand, when the

number of processes increases, the run time decreases, and Block Coordinate Descent

now converges faster than Gradient Descent.

So, we conclude that Gradient Descent Method is more suitable on systems with

less processes, and Block Coordinate Descent for systems with more processes.

6.7 Communication Cost

In this section, we consider the total communication cost for each process for each

method. The normalized communication cost is defined as

iters(p)× p× E
iters(1)× 1× E

(6.1)

where iters(p) is the number of iterations it takes for the method to converge with

probability p, iters(1) is the number of iterations when p = 1, and E is the unit

communication cost.

55

CHAPTER 6. EXPERIMENTAL RESULTS

Since the unit communication cost is independent of the probability p, the definition

can be simplified as:
iters(p)× p
iters(1)

(6.2)

Our main purpose is to examine the communication cost for each probability p

and discover an optimal p which minimizes the total communication cost for each

method.

The figures on the left below present the average number of iterations both methods

need to converge, calculated after multiple runs of both algorithms, whereas the

figures on the right show the communication cost, based on the average number of

iterations, as calculated using equation 6.2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

0

100

200

300

400

500

600

700

800

900

a
v
e

ra
g

e
(i
te

rs
(p

))

Average number of iterations - Gradient Descent

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

a
v
e

ra
g

e
(i
te

rs
(p

))
 *

 p
 /

 i
te

rs
(1

)

Communication cost - Gradient Descent

Figure 6.11: Average number of iterations and communication cost for Gradient
Descent

From the figures above, we can observe that the optimal communication cost is

achieved on average for p = 1. We should also recall that the minimum number of

iterations and run time of the algorithm were achieved when p = 1. Having said

that, we conclude that adding the factor of p does not improve the performance of

the method.

56

CHAPTER 6. EXPERIMENTAL RESULTS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

0

20

40

60

80

100

120

140

160

180

200

a
v
e
ra

g
e
(i
te

rs
(p

))

Average number of iterations - BCD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

a
v
e

ra
g

e
(i
te

rs
(p

))
 *

 p
 /

 i
te

rs
(1

)

Communication cost - BCD

Figure 6.12: Average number of iterations and communication cost for Block
Coordinate Descent

From the figures presented above, we can notice that the optimal communication

cost is achieved on average for p = 0.3. However, as observed in section (6.5), p affects

the number of iterations, since, as p descreases, the number of iterations increase,

whereas it has some or little influence on the run time of the algorithm, based on the

data of the system. Therefore, the probability chosen for the method depends on the

system available, as well as on our requirements.

57

Chapter 7

Conclusion

In this thesis, we considered a convex optimization problem with a quadratic cost

function, which was partitioned into a set of processors with their own local cost

function. We examined the Gradient Descent method and the Block Coordinate

Descent method to solve the above problem, and used Message Passing Interface (MPI)

to parallelize the methods. We tested the convergence properties and the computational

cost of both algorithms under various circumstances, and we reached the conclusion

that the Gradient Descent is more suitable for systems with a few processors, whereas

the Block Coordinate Descent performs better with more processors.

58

Bibliography

[1] A. P. Liavas, “Convex Optimization Lecture Notes”, 2015.

[2] “Eigen Library”, http://eigen.tuxfamily.org.

[3] P. S. Pacheco, “Parallel Programming in MPI”, Morgan Kaufmann, 1997.

[4] D. P. Bertsekas, “Convex Optimization Algorithms”, Athena Scientific, 2015.

[5] D. P. Bertsekas, N. J. Tsitsiklis, “Parallel and Distributed Computation:

Numerical Methods”, Athena Scientific, 1997

[6] “https://en.wikipedia.org/wiki/Gradient_descent”

[7] MPICH, “https://www.mpich.org/static/docs/v3.2/www3/”

59

https://en.wikipedia.org/wiki/Gradient_descent
https://www.mpich.org/static/docs/v3.2/www3/

	List of Figures
	List of Tables
	Introduction
	Motivation
	Notations
	Thesis Outline

	Convex Optimization
	Convex Sets
	Convex Functions
	Gradient and Hessian of function f
	First and Second order Taylor approximations
	First-order condition of convexity
	Second-order condition of convexity

	Convex Optimization Problems
	Constrained optimization problems
	Unconstrained optimization problems

	Solving unconstrained optimization problems
	Descent methods
	Gradient Direction

	Convergence for strongly convex functions

	Message Passing Interface
	Multiple Instruction - Multiple Data Systems
	Distributed-Memory Systems

	Distributed-Memory APIs
	SPMD programs
	Basic MPI functions
	MPI_Init and MPI_Finalize
	Communicators
	MPI_Send and MPI_Recv

	I/O in MPI
	Output
	Input

	Collective Communication
	MPI_Bcast
	MPI_Scatter
	MPI_Allgather

	Taking timings

	Optimization Algorithms
	The quadratic problem
	Setup
	Controling the condition number of f
	Gradient Descent method
	Step size
	Terminating condition

	Block Coordinate Descent method
	Terminating condition

	Distributed Asynchronous Iterative Algorithms
	Parallelizing the data
	Gradient method in MPI
	Block Coordinate Descent in MPI
	Dividing the data among the processes
	Conditions of convergence

	Experimental Results
	Set up
	Convergence of MPI algorithms
	Convergence of Gradient Descent
	Convergence of Block Coordinate Descent

	Effect of condition number K
	Introducing probability p
	Effect of probability p
	Comparison of the methods
	Communication Cost

	Conclusion

