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Abstract

In this thesis, we present the basic principles of polar coding for the binary erasure

channel. We explain the process of channel polarization and demonstrate that polar

coding is capacity achieving. Then, we present efficient techniques for the coding

process, two different implementations of the successive decoder, and an efficient

method for the construction of the code (i.e., the selection of the virtual channels

that will carry the useful information). Finally, we show how polar coding can be

used for the degraded broadcast channel to transmit public data to two receivers

and private data to one of them.



3

Acknowledgements

I would like to thank my friends and my family for supporting me during my studies

and especially my sister Eleftheria. Also, I would like to thank my supervisor,

Professor Georgios Karystinos, for his guidance and assistance throughout these

months.



4

Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Symmetric Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Bhattacharyya Parameter . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Binary Symmetric Channel (BSC) . . . . . . . . . . . . . . . . . . . 7

1.4 Binary Erasure Channel (BEC) . . . . . . . . . . . . . . . . . . . . . 8

2 Polarization for Binary-input Channels . . . . . . . . . . . . . . . . 9

2.1 Basic Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Successive Cancellation Decoding . . . . . . . . . . . . . . . . . . . . 22

2.4 Performance on BEC . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Application of Polar Coding to the Degraded Broadcast Binary Era-

sure Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



5

List of Figures

1.1 BSC(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 BEC(ε) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 The channel W2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Symmetric capacity of BSC and BEC, before and after the basic po-

larization step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 I(W2
(0)) + I(W2

(1)) = 2C for BSC. . . . . . . . . . . . . . . . . . . . 16

2.4 Properties of BEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Channel polarization for a BEC with ε = 0.5 and N = 211. . . . . . . 18

2.6 Channel polarization for a BEC with ε = 0.2 and N = 211. . . . . . . 19

2.7 The channel W4 and its relation to W2 and W . . . . . . . . . . . . . . 20

2.8 Recursive construction of WN from two copies of WN/2. . . . . . . . . 21

2.9 BER of transmissions over BEC, with rate = 0.5. . . . . . . . . . . . 24

2.10 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.11 Symmetric Capacities of new virtual channels N = 220. . . . . . . . . 25

2.12 Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



6

Chapter 1

Introduction

Polar codes are the first explicitly proven codes with implementable complexity that

can achieve Shannon capacity, due to Professor Erdal Arikan, whose breakthrough

in 2009 created a huge interest in academia [2]. Polar codes can be used in commu-

nication links that are vulnerable to errors due to random noise, interference etc.

that disrupt the original data stream at the receiving end. Channel coding basically

uses a set of algorithmic operations on the original data stream at the transmitter

and another set on the received data stream at the receiver, to correct these er-

rors. These operations at the transmitter and receiver are respectively denoted as

encoding and decoding operations [3].

The main goal of channel coding is to develop high-performance channel codes

that eliminate the errors in communications as much as possible. The real challenge

here is to accomplish this in low complexity that allows practical implementation.

The complexity of a code determines everything, e.g., how much power it consumes,

how much memory it needs, all of which that determine whether a code is good for

any practical use or not [3].

The polar-coding transformation involves two key operations called channel com-

bining and channel splitting. At the encoder, channel combining assigns combina-

tions of bits to specific channels. The channel splitting that follows performs an

implicit transformation operation, translating these bit combinations into decoder-

ready vectors. The decoding operation at the receiver tries to estimate the original

input bits by using a successive-cancellation decoding technique [3].

Channel combining, channel splitting, and successive-cancellation decoding es-

sentially convert a block of bits into a polarized bit stream at the receiver. In this

way, a received bit and its associated channel end up being either a “good channel”

or “bad channel.” It has been mathematically proven that, as the size of the bit

block increases, the received bit stream polarizes in a way that the number of “good

channels” approaches Shannon capacity. This phenomenon is what gives polar codes

their name and makes them the first explicitly proven capacity-achieving channel

codes [3].

In channel polarization, that we are going to explain in Chapter 2, we construct

a set of N channels out of N independent copies of a given B-DMC W , by combining

and splitting those copies. Two examples of binary-input symmetric-output mem-
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oryless channels are the binary symmetric channel (BSC) and the binary erasure

channel (BEC).

1.1 Symmetric Capacity

Given a binary-discrete memoryless channel (B-DMC) W with input alphabet X =

{0, 1} and output alphabet Y , we define the symmetric capacity as

I(W ) =
∑
y∈Y

∑
x∈X

1

2
W (y|x) log2

W (y|x)
1
2
W (y|0) + 1

2
W (y|1)

. (1.1)

Symmetric capacity is the mutual information between the input and the output of

the channel, when the input distribution is uniform (P (X = 0) = P (X = 1) = 1
2
).

Consequently, when the channel is symmetric (where the optimal input distribution

is the uniform), its Shannon capacity is equal to its symmetric capacity.

1.2 Bhattacharyya Parameter

In addition to the symmetric capacity above, we introduce the Bhattacharyya pa-

rameter of a B-DMC W , which is used as measure of reliability of the channel, as it

constitutes an upper bound on the probability of maximum-likelihood (ML) decision

error when W is used only once to transmit a 0 or 1 [1].

Z(W ) =
∑
y∈Y

√
W (y|0)W (y|1). (1.2)

The following are true for any B-DMC W channel, showing the relation between the

symmetric capacity and the Bhattacharyya parameter

I(W ) > log
2

1 + Z(W )
, (1.3)

I(W ) ≤
√

1 + Z(W )2. (1.4)

1.3 Binary Symmetric Channel (BSC)

The binary symmetric channel, shown in Fig. 1.1, has input one of two binary digits

(0, 1) and output the input digit, either correctly with probability 1− p or inverted

with p. The symmetric capacity of BSC is

I(W ) = 1 + p log2(p) + (1− p) log2(1− p). (1.5)
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Figure 1.2: BEC(ε)

1.4 Binary Erasure Channel (BEC)

The binary erasure channel has input one of two binary digits (0, 1) and output either

the same digit with probability 1− ε or a message that the bit was not received with

probability ε, as shown in Fig. 1.2. In BEC there is no incorrect information. The

symmetric capacity of BEC is

I(W ) = 1− ε. (1.6)
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Chapter 2

Polarization for Binary-input

Channels

Channel polarization is a method for constructing code sequences that achieve the

symmetric capacity I(W ) of any binary-input discrete memoryless channel W . The

symmetric capacity is the highest rate achievable, subject to using the input letters

of the channel with equal probability. In this chapter we will explain the construction

of the Polar codes, proposed by E. Arikan [1].

2.1 Basic Polarization

Channel polarization is an operation by which one manufactures a new set of N

channels {W (i)
N : 1 ≤ i ≤ N} out of N independent copies of a given discrete mem-

oryless channel W , that show a polarization effect in the sense that, as N becomes

large, the symmetric capacity terms tend towards 0 or 1 for all but a vanishing

fraction of indices i [1].

To achieve this effect, we combine two independent copies of binary-input chan-

nel W1 to obtain the channel W2 : X 2 → Y2 with the transition probabilities (2.1)

and (2.2) [1]. Fig. 2.1 shows how to construct channel W2. We set x1 to be the

result of the XOR between u1 and u2 and x2 to be equal to u2. By combining a

pair of copies of W , we construct a new composite channel denoted as W2 with two

bits as input and two bits as output. After this transformation, the first channel

degrades and the second upgrades in terms of symmetric capacity.

Figure 2.1: The channel W2.
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We define the channel W2 : X 2 → Y2, shown in Fig. 2.1 as

W2(y1, y2|u1, u2) = W2(y1, y2|x1, x2)

= W (y1|x1)W (y2|x2) = W (y1|u1 ⊕ u2)W (y2|u2),

with the following transition probabilities for each channel

W2
(1)(y1, y2|u1) =

∑
u2

p(y1, y2|u1, u2)p(u2|u1)

=
∑
u2

p(y1, y2|u1, u2)p(u2)

=
1

2
p(y1, y2|u1, u2 = 0) +

1

2
p(y1, y2|u1, u2 = 1)

=
1

2
p(y1, y2|x1, x2 = 0) +

1

2
p(y1, y2|x1, x2 = 1)

=
1

2
p(y1|x1)p(y2|x2 = 0) +

1

2
p(y1|x1)p(y2|x2 = 1)

=
1

2

∑
u2

p(y1|x1)p(y2|x2)

=
1

2

∑
u2

p(y1|u1 ⊕ u2)p(y2|u2), (2.1)

W2
(2)(y1, y2, u1|u2) = p(y1, y2|u1, u2)p(u2|u1)

= p(y1, y2|u1, u2)p(u2)

=
1

2
p(y1, y2|u1, u2)

=
1

2
p(y1, y2|x1, x2)

=
1

2
p(y1|x1)p(y2|x2)

=
1

2
p(y1|u1 ⊕ u2)p(y2|u2), (2.2)

for all u1, u2 ∈ X , y1, y2 ∈ Y , with u1, u2 independent.

In the Appendix, we calculate the previous transition probabilities one-by-one,

for both BSC and BEC, and then we use them in (1.1) to compute the symmetric

capacity of the W2
(1) and W2

(2) channels.

After the calculations, we observe that, for the BSC,

I(u1; y1, y2) < 1−H(p) and I(u2; y1, y2, u1) > 1−H(p)
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and, for the BEC,

I(u1; y1, y2) < 1− ε and I(u2; y1, y2, u1) > 1− ε.

All the above are shown in Fig.2.2a and Fig.2.2b.

The two bit channels created after the basic polarization step are defined as

upgraded and degrated channels. We observe that for both BSC and BEC, the

degraded channel has smaller capacity than the original channel and the upgraded

bigger (Fig. 2.2a and Fig. 2.2b). This property is mathematically expressed as

I(W2
(1)) 6 I(W ) 6 I(W2

(2)). (2.3)

(a) BSC Capacity. (b) BEC Capacity.

Figure 2.2: Symmetric capacity of BSC and BEC, before and after the basic polar-
ization step.
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It is important to mention that the single step channel transformation preserves

the symmetric capacity:

I(W2
(1)) + I(W2

(2)) = 2I(W1). (2.4)

Proof.

I(W2
(1)) + I(W2

(2)) = I(u1; y1, y2) + I(u2; y1, y2, u1)

= I(u1; y1, y2) + I(u2; y1, y2|u1) + I(u2;u1), according to chain rule

= I(u1; y1, y2) + I(u2; y1, y2|u1), u2, u1 are i.i.d. so I(u2;u1) = 0,

= I(u1, u2; y1, y2)

= I(x1, x2; y1, y2)

= I(x1; y1) + I(x2; y2) = 2I(W1).

Additionally, we can also prove that:

I(W4
(1)) + I(W4

(2)) + I(W4
(3)) + I(W4

(4)) = 4I(W1) (2.5)

Proof.

I(W4
(1)) + I(W4

(2)) + I(W4
(3)) + I(W4

(4)) =

= I(u1; y1, y2, y3, y4) + I(u2; y1, y2, y3, y4, u1)+

+ I(u3; y1, y2, y3, y4, u1, u2) + I(u4; y1, y2, y3, y4, u1, u2, u3)

(according to the chain rule),

= I(u1; y1, y2, y3, y4) + I(u2; y1, y2, y3, y4|u1) + I(u2;u1)+

+ I(u3; y1, y2, y3, y4, u2|u1) + I(u3;u1) + I(u4; y1, y2, y3, y4, u2, u3|u1) + I(u4;u1)

(u4, u3, u2, u1 are i.i.d. so I(u2;u1) = I(u3;u1) = I(u4;u1) = 0)

= I(u1; y1, y2, y3, y4) + I(u2; y1, y2, y3, y4) + I(u3; y1, y2, y3, y4|u2)+

+ I(u3;u2) + I(u4; y1, y2, y3, y4, u2|u2) + I(u4;u2)
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(u4, u3, u2 are i.i.d. so I(u3;u2) = I(u4;u2) = 0)

= I(u1; y1, y2, y3, y4) + I(u2; y1, y2, y3, y4) + I(u3; y1, y2, y3, y4)+

+ I(u4; y1, y2, y3, y4|u3) + I(u4;u3)

(u4, u3 are i.i.d. so I(u2;u3) = 0)

= I(u1; y1, y2, y3, y4) + I(u2; y1, y2, y3, y4) + I(u3; y1, y2, y3, y4) + I(u4; y1, y2, y3, y4)

= I(u1, u2, u3, u4; y1, y2, y3, y4)

= I(x1, x2, x3, x4; y1, y2, y3, y4)

= I(x1; y1) + I(x2; y2) + I(x3; y3) + I(x4; y4) = 4I(W1).

Finally, the above properties can be generalized for N bits:

N∑
i=1

I(WN
(i)) = NI(W ) (2.6)

Proof.

N∑
i=1

I(WN
(i)) = I(u1; y

N
1 ) + I(u2; y

N
1 , u1) + I(u3; y

N
1 , u1, u2) + ...+ I(uN ; yN1 , u

N−1
1 )

= I(u1; y
N
1 ) + I(u2; y

N
1 |u1) + ...+ I(uN ; yN1 |uN−11 )

= I(u1...uN ; y1...yN) = I(x1...xN ; y1, ...yN)

= I(x1; y1) + I(x2; y2) + I(x3; y3) + ...+ I(xN ; yN) = NI(W )

with u1, u2, ..., un i.i.d.
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For the BEC, the following two properties are true

I(W2
(1)) = I(W )2, (2.7)

I(W2
(2)) = 2I(W )− I(W )2. (2.8)

Proof.

According to (1.2),

Z(W2
(2)) =

∑
y21 ,u1

1

2

√
W2

(2)(y1, y2, u1|0)
√
W2

(2)(y1, y2, u1|1)

=
∑
y21 ,u1

1

2

√
W (y1|u1 ⊕ 0)W (y2|0)

√
W (y1|u1 ⊕ 1)W (y2|1)

=
∑
y21 ,u1

1

2

√
W (y1|u1)W (y2|0)

√
W (y1|u1 ⊕ 1)W (y2|1)

=
∑
y2

√
W (y2|0)W (y2|1)

∑
u1

1

2

∑
y1

√
W (y1|u1)W (y1|u1 ⊕ 1)

= Z(W ) · 1 · Z(W )

= Z(W )2

For any BEC(ε) W, Z(W ) = ε,

Z(W ) =
∑
yεΥ

√
W (y|0)W (y|1)

=
√
W (0|0)W (0|1) +

√
W (e|0)W (e|1) +

√
W (1|0)W (1|1)

=
√

(1− ε) · 0 +
√
ε · ε+

√
0 · (1− ε)

= ε

We also know that the symmetric capacity of BEC is

I(W ) = 1− ε.
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We conclude that Z(W ) = 1− I(W ) for BEC.

Z(W2
(2)) = Z(W )2 ⇔

⇔ 1− I(W2
(2)) = (1− I(W ))2

⇔ 1− I(W2
(2)) = 1 + I(W )2 − 2I(W )

⇔ I(W2
(2)) = 2I(W )− I(W )2

considering that 2I(W ) = I(W2
(1)) + I(W2

(2)), we can also prove that

I(W2
(1)) = I(W )2.
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In the following figures, we also show in Matlab that, when we implement the

transition probabilities calculated at the Appendix, their properties are confirmed.

Figure 2.3: I(W2
(0)) + I(W2

(1)) = 2C for BSC.

Figure 2.4: Properties of BEC.
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We also computed I(u2; y1, y2) and I(u1; y1, y2, u2) to see if the polarization step

works in this case. In the figures we realized that those two capacities are exactly

the same with the initial Capacity C, therefore the channel polarization step does

not apply in this situation. Nevertheless, the capacity preserving property (2.4) is

still true.

Proof.

I(u2; y1, y2) = I(u2; y1|y2) + I(u2; y2), according to chain rule.

But,

I(u2; y1|y2) = I(y1;u2|y2) = I(y1; y2, u2)− I(y1; y2)

= I(y1;u2) + I(y1; y2|u2)− I(y1; y2)

We observe that y2 → u2 → y1 and u2 → x1 → y1 are Markov chains. From the

first Markov chain we notice that y1 is independent from y2 when we know u2, so

I(y1; y2|u2) = 0.

From the second chain, we notice that I(u2;x1) ≥ I(u2; y1), but I(u2;x1) = 0

because u2 and x1 are independent, so I(u2; y1) = 0.

In conclusion, I(u2; y1|y2) = 0 + 0− I(y1; y2), but I(u2; y1|y2) cannot be negative, so

I(y1; y2) = 0 which means that

I(u2; y1, y2) = I(u2; y2) = I(x2; y2) = I(W1), (2.9)

I(u1, u2; y1, y2) = I(x1, x2; y1, y2) = I(x1; y1) + I(x2; y2) = 2I(W1). (2.10)

I(u1, u2; y1, y2) can also be written as

I(u1, u2; y1, y2) = I(u1; y1, y2|u2) + I(u2; y1, y2)

I(u1; y1, y2|u2) = I(u1; y1, y2, u2) − I(u1;u2), (u1, u2 are independent which means

I(u1;u2) = 0, so)

⇒ I(u1; y1, y2|u2) = I(u1; y1, y2, u2). (2.11)

From (2.9), (2.10), and (2.11), we can prove that

I(u1, u2; y1, y2) = I(u1; y1, y2|u2) + I(u2; y1, y2)⇒

2I(W1) = I(u1; y1, y2, u2) + I(W1)⇒

I(u1; y1, y2, u2) = I(W1).
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We can recursively calculate the symmetric capacities of the manufactured chan-

nels using the following formulas (2.12), (2.13) with I(W ) = 1 − ε [1]. This whole

process shows the polarization effect, meaning that, as N becomes large, the sym-

metric capacity tends to become either 0 or 1. We decide that the information bits

are sent across the noiseless channels (I(W ) close to one) and the frozen (fixed) bits

are sent across the noisy ones (I(W ) close to zero).

In the case of BEC(0.5), the symmetric capacity is 0.5 bits per channel use. Af-

ter implementing (2.12) and (2.13) in Matlab, we observe that almost half of the

channels are perfect and the other half are useless. This is the effect of channel

polarization.

I(WN
(2i-1)) = I(WN/2

(i))2 (2.12)

I(WN
(2i)) = 2I(WN/2

(i))− I(WN/2
(i))2 (2.13)

Figure 2.5: Channel polarization for a BEC with ε = 0.5 and N = 211.
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In the case of BEC(0.2), the symmetric capacity is 0.8 bits per channel use. Us-

ing (2.12) and (2.13) in Matlab, we observe that almost the 80% of the channels are

perfect and the 20% are useless.

Figure 2.6: Channel polarization for a BEC with ε = 0.2 and N = 211.
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2.2 Encoding

In Fig. 2.8, at the random Nth level of polarization we combine two copies of WN/2.

For an array of inputs {ui}Ni=1 we obtain a new one {vi}Ni=1, by replacing the odd

indexed u’s with the XOR of consecutive pairs, which means that the odd indexed

u2i−1 will be equal to ui ⊕ ui+1, for each i = 1,. . . , N/2. The even indexed u’s, on

the other hand, remain as they are. The operator RN is a permutation, known as

the reverse shuffle operation, which simply separates the odd-indexed from the even-

indexed elements [1]. Odd-indexed signals become input to the first copy of WN/2

and even-indexed to the second one. The permutation essentially rotates cyclically

the bit-indexes to the left. More specifically, the first input v1 is expressed as v00...0,

where the string of zeros has length n = log2N . Accordingly, all the rest N − 1

v’s are expressed in the same binary way. Essentially, the permutation changes

the order of this bit string cyclically, by right shifting by one the bit-indices. For

example, for n = 2 (Fig. 2.7), the input u41 = (u00, u01, u10, u11) is transformed

to v41 = (u00, u10, u01, u11), which means that u41 = (u1, u2, u3, u4) is converted to

v41 = (u1, u3, u2, u4). The outputs of the two channels W2 are y41.

The encoding complexity, with the help of Master Theorem, is

T (N) =
N

2
+Θ(N) + 2T (

N

2
)⇒

T (N) = Θ(N log2N). (2.14)

Figure 2.7: The channel W4 and its relation to W2 and W .
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The generalized encoding scheme, where the recursive construction of WN from

two copies of WN/2 is depicted.

Figure 2.8: Recursive construction of WN from two copies of WN/2.



2.3. Successive Cancellation Decoding 22

2.3 Successive Cancellation Decoding

The successive cancellation (SC) decoder, introduced in [1], decides with the rule

of closest neighbor on the ith bit (1 ≤ i ≤ N) that is transmitted over W
(i)
N , by

computing (2.15) and (2.16) for BEC and (2.17) and (2.18) for BSC.

More specifically, for the BEC with erasure probability ε, first we use the recur-

sive formulas of the symmetric capacity (2.12), (2.13). After the recursive calcu-

lation, we assign the frozen bits (usually 0’s) wherever the capacity has its lowest

prices, so that we can use the good channels (those with high capacity) to transmit

the information bits.

To decode successfully, we calculate the transition probabilities by using the

efficient recursive formulas (2.15), (2.16). Each estimation is carried out by using

the knowledge of frozen and previously estimated symbols. More specifically, if ui

is a frozen bit, then ûi takes the value of ui, and, if ui is an information bit, then

the decoder computes the transition probabilities for BEC or the likelihood ratios

(LR) for BSC.

We implemented two decoding approaches, a slow (complexity O(N2)) and a

fast (complexity O(N log2N)). In the slow decoder, we store each calculation of

(2.15) and (2.16) in a matrix and we estimate the original value of û by comparing

W
(i)
N (yN1 , u

i−1
1 |0) and W

(i)
N (yN1 , u

i−1
1 |1). The fast, on the contrary, was generated by

observing that several computed values are calculated more than one time, so we

store them in a cell array of size N × (log2N + 1) to avoid recalculation and to use

the stored values when needed. In each cell, both probabilities W
(i)
N (yN1 , u

i−1
1 |0) and

W
(i)
N (yN1 , u

i−1
1 |1), are stored so that we can compare them easily and use them for the

calculations. Each cell is filled after Θ(1) calculations, which implies that the com-

plexity of this decoding is O(N log2N). The calculation of a probability at length

N for both decoders is reduced to the calculation of two probabilities. Accordingly,

at length N/2, each calculation of a probability at length N/2 requires the calcula-

tion of two probabilities at length N/4 and so on. This recursion can be computed

until it reaches the block length 1, at which point we calculate W (yi|0) and W (yi|1).

The following decoding scheme estimates sequentially every information symbol

for BEC:

ûi ,

ui , when ui is a frozen bit,

arg maxxε(0,1)W
(i)
N (yN1 , u

i−1
1 |x) , otherwise,
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using the recursive formulas

W
(2i−1)
2N (y2N1 , u2i−21 |u2i−1) =

∑
u2i

1

2
W

(i)
N (yN1 , u

2i−2
1,o ⊕ u2i−21,e |u2i−1 ⊕ u2i)

·W (i)
N (y2NN+1, u

2i−2
1,e |u2i), (2.15)

and

W
(2i)
2N (y2N1 , u2i−11 |u2i) =

1

2
W

(i)
N (yN1 , u

2i−2
1,o ⊕ u2i−21,e |u2i−1 ⊕ u2i) ·W

(i)
N (y2NN+1, u

2i−2
1,e |u2i).

(2.16)

For the BSC, we followed the same procedure as in BEC for the slow decoder.

For the fast decoder, we also took advantage of the fact that some of the recursions

were calculated more than once, with the only difference being the storage of the

computations in an array. The decoded ûi for BSC is estimated as

ûi


ui , if ui is a frozen bit,

0 , if L
(i)
N (yN1 , û

i−1
1 ) ≥ 1,

1 , otherwise.

The likelihood ratio is defined as

L
(i)
N (yN1 , u

i−1
1 ) =

W
(i)
N (yN1 , u

i−1
1 |0)

W
(i)
N (yN1 , u

i−1
1 |1)

.

To estimate L
(i)
N (yN1 , û

i−1
1 ), we use the recursive formulas

L
(2i−1)
N (yN1 , u

2i−2
1 ) =

L
(i)
N/2(y

N/2
1 , u2i−21,o ⊕ u2i−21,e )L

(i)
N/2(y

N
N/2+1, u

2i−2
1,e ) + 1

L
(i)
N/2(y

N/2
1 , u2i−21,o ⊕ u2i−21,e ) + L

(i)
N/2(y

N
N/2+1, u

2i−2
1,e )

(2.17)

and

L
(2i)
N (yN1 , u

2i−1
1 ) = [L

(i)
N/2(y

N/2
1 , u2i−21,o ⊕ u2i−21,e )]1−2u2i−1 · L(i)

N/2(y
N
N/2+1, u

2i−2
1,e ). (2.18)

At the Nth level, each calculation of a LR at length N is reduced to the calcula-

tion of two LRs at length N/2, each calculation of a LR at length N/2 is reduced to

the calculation of two LRs at length N/4 and so on. This recursion can be computed

down to block length 1, at which point the LRs have the form

L
(1)
1 (y1) =

W (yi|0)

W (yi|1)
.
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2.4 Performance on BEC

In Fig. 2.4, we observe the improvement of the BER performance as the block

length grows larger. This happens because perfect channel polarization is accom-

plished when the block length increases to infinity.

Figure 2.9: BER of transmissions over BEC, with rate = 0.5.
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-Tx

-

C1
-

C2
-

R1

R2

Figure 2.10: Signal model

2.5 Application of Polar Coding to the Degraded

Broadcast Binary Erasure Channel

In Fig. 2.10, we have a transmitter Tx and two receivers Rx1 and Rx2. Between

the transmitter and the receivers there are two communication channels C1 and

C2. They are both BECs with erasure probability ε1 = 0.25 and and ε2 = 0.5 and

capacity equal to 0.75 and 0.5 accordingly.

Figure 2.11: Symmetric Capacities of new virtual channels N = 220.
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-
X1

-
X2

-
XN

W

W

W

-
Y1

-
Y2

-
YN

public
bits

bit-channels good for
both R1 and R2

private
bits

bit-channels good for
R1 but bad for R2

frozen
bits

bit-channels bad for
both R1 and R2

...

...

...

...

...

...

Figure 2.12: Encoding.

After polar encoding of N = 220 at the transmitter, 220 new virtual channels

between the transmitter and each receiver are created. We can recursively calculate

the symmetric capacities of the new virtual channels of Rx1 and Rx2, using the

formulas (2.12), (2.13) with I(W ) = 1− ε. Then we sort them and plot them in Fig.

2.11, where we observe that the 75% of the virtual channels of the first receiver have

capacity equal to 1. The capacities of the second receiver’s new virtual channels are

50% equal to 1 and the other 50% equal to 0. The transmitter takes advantage of

the fact that, between 0.25 and 0.5, only the capacities of the first receiver are equal

to 1 and sends the private data with rate Rprivate = C1 − C2. This way, only the

first receiver can decode successfully the private information, while the capacities of

the second one are 0. When the transmitter needs to send public data to both, it

uses rate Rpublic = C2, so that both Rx1 and Rx2 can recover it.

As shown in Fig. 2.12, we used the encoding of polar codes to transmit the private

data only over those bit-channels W
(i)
N that are bad for Rx2, public information to

the bit-channels that are good for both Rx1 and Rx2, and frozen bits to those that

are bad for both Rx1 and Rx2.
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Appendix

Transition Probabilities of BSC for I(u1; y1, y2):

• p(y1 = 0, y2 = 0|u1 = 0) = 1
2
(1− p)2 + 1

2
p2

• p(y1 = 0, y2 = 0|u1 = 1) = 1
2
(1− p)p+ 1

2
p(1− p)

• p(y1 = 0, y2 = 1|u1 = 0) = 1
2
(1− p)p+ 1

2
p(1− p)

• p(y1 = 0, y2 = 1|u1 = 1) = 1
2
(1− p)2 + 1

2
p2

• p(y1 = 1, y2 = 0|u1 = 0) = 1
2
(1− p)p+ 1

2
p(1− p)

• p(y1 = 1, y2 = 0|u1 = 1) = 1
2
(1− p)2 + 1

2
p2

• p(y1 = 1, y2 = 1|u1 = 0) = 1
2
(1− p)2 + 1

2
p2

• p(y1 = 1, y2 = 1|u1 = 1) = 1
2
(1− p)p+ 1

2
p(1− p)

Transition Probabilities of BSC for I(u2; y1, y2, u1):

• p(y1 = 0, y2 = 0, u1 = 0|u2 = 0) = 1
2
(1− p)2

• p(y1 = 0, y2 = 0, u1 = 0|u2 = 1) = 1
2
p2

• p(y1 = 0, y2 = 0, u1 = 1|u2 = 0) = 1
2
(1− p)p

• p(y1 = 0, y2 = 0, u1 = 1|u2 = 1) = 1
2
(1− p)p

• p(y1 = 0, y2 = 1, u1 = 0|u2 = 0) = 1
2
(1− p)p

• p(y1 = 0, y2 = 1, u1 = 0|u2 = 1) = 1
2
(1− p)p

• p(y1 = 0, y2 = 1, u1 = 1|u2 = 0) = 1
2
p2

• p(y1 = 0, y2 = 1, u1 = 1|u2 = 1) = 1
2
(1− p)2

• p(y1 = 1, y2 = 0, u1 = 0|u2 = 0) = 1
2
(1− p)p

• p(y1 = 1, y2 = 0, u1 = 0|u2 = 1) = 1
2
(1− p)p

• p(y1 = 1, y2 = 0, u1 = 1|u2 = 0) = 1
2
(1− p)2
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• p(y1 = 1, y2 = 0, u1 = 1|u2 = 1) = 1
2
p2

• p(y1 = 1, y2 = 1, u1 = 0|u2 = 0) = 1
2
p2

• p(y1 = 1, y2 = 1, u1 = 0|u2 = 1) = 1
2
(1− p)2

• p(y1 = 1, y2 = 1, u1 = 1|u2 = 0) = 1
2
(1− p)p

• p(y1 = 1, y2 = 1, u1 = 1|u2 = 1) = 1
2
(1− p)p

Transition Probabilities of BEC for I(u1; y1, y2):

• p(y1 = 0, y2 = 0|u1 = 0) = 1
2
(1− ε)2

• p(y1 = 0, y2 = 0|u1 = 1) = 0

• p(y1 = 0, y2 = e|u1 = 0) = 1
2
(1− ε)ε

• p(y1 = 0, y2 = e|u1 = 1) = 1
2
(1− ε)ε

• p(y1 = 0, y2 = 1|u1 = 0) = 0

• p(y1 = 0, y2 = 1|u1 = 1) = 1
2
(1− ε)2

• p(y1 = e, y2 = 0|u1 = 0) = 1
2
(1− ε)ε

• p(y1 = e, y2 = 0|u1 = 1) = 1
2
ε2 + 1

2
ε2

• p(y1 = e, y2 = e|u1 = 0) = 1
2
ε2 + 1

2
ε2

• p(y1 = e, y2 = e|u1 = 1) = 1
2
(1− ε)ε

• p(y1 = e, y2 = 1|u1 = 0) = 1
2
(1− ε)ε

• p(y1 = e, y2 = 1|u1 = 1) = 0

• p(y1 = 1, y2 = 0|u1 = 0) = 0

• p(y1 = 1, y2 = 0|u1 = 1) = 1
2
(1− ε)2

• p(y1 = 1, y2 = e|u1 = 0) = 1
2
(1− ε)ε

• p(y1 = 1, y2 = e|u1 = 1) = 1
2
(1− ε)ε

• p(y1 = 1, y2 = 1|u1 = 0) = 1
2
(1− ε)2

• p(y1 = 1, y2 = 1|u1 = 1) = 0
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Transition Probabilities of BEC for I(u2; y1, y2, u1):

• p(y1 = 0, y2 = 0, u1 = 0|u2 = 0) = 1
2
(1− ε)2

• p(y1 = 0, y2 = 0, u1 = 0|u2 = 1) = 0

• p(y1 = 0, y2 = 0, u1 = 1|u2 = 0) = 0

• p(y1 = 0, y2 = 0, u1 = 1|u2 = 1) = 0

• p(y1 = 0, y2 = e, u1 = 0|u2 = 0) = 1
2
(1− ε)ε

• p(y1 = 0, y2 = e, u1 = 0|u2 = 1) = 0

• p(y1 = 0, y2 = e, u1 = 1|u2 = 0) = 0

• p(y1 = 0, y2 = e, u1 = 1|u2 = 1) = 1
2
(1− ε)ε

• p(y1 = 0, y2 = 1, u1 = 0|u2 = 0) = 0

• p(y1 = 0, y2 = 1, u1 = 0|u2 = 1) = 0

• p(y1 = 0, y2 = 1, u1 = 1|u2 = 0) = 0

• p(y1 = 0, y2 = 1, u1 = 1|u2 = 1) = 1
2
(1− ε)2

• p(y1 = e, y2 = 0, u1 = 0|u2 = 0) = 1
2
(1− ε)ε

• p(y1 = e, y2 = 0, u1 = 0|u2 = 1) = 0

• p(y1 = e, y2 = 0, u1 = 1|u2 = 0) = 1
2
(1− ε)ε

• p(y1 = e, y2 = 0, u1 = 1|u2 = 1) = 0

• p(y1 = e, y2 = e, u1 = 0|u2 = 0) = 1
2
ε2

• p(y1 = e, y2 = e, u1 = 0|u2 = 1) = 1
2
ε2

• p(y1 = e, y2 = e, u1 = 1|u2 = 0) = 1
2
ε2

• p(y1 = e, y2 = e, u1 = 1|u2 = 1) = 1
2
ε2

• p(y1 = e, y2 = 1, u1 = 0|u2 = 0) = 0

• p(y1 = e, y2 = 1, u1 = 0|u2 = 1) = 1
2
(1− ε)ε

• p(y1 = e, y2 = 1, u1 = 1|u2 = 0) = 0

• p(y1 = e, y2 = 1, u1 = 1|u2 = 1) = 1
2
(1− ε)ε
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• p(y1 = 1, y2 = 0, u1 = 0|u2 = 0) = 0

• p(y1 = 1, y2 = 0, u1 = 0|u2 = 1) = 0

• p(y1 = 1, y2 = 0, u1 = 1|u2 = 0) = 1
2
(1− ε)2

• p(y1 = 1, y2 = 0, u1 = 1|u2 = 1) = 0

• p(y1 = 1, y2 = e, u1 = 0|u2 = 0) = 0

• p(y1 = 1, y2 = e, u1 = 0|u2 = 1) = 1
2
(1− ε)ε

• p(y1 = 1, y2 = e, u1 = 1|u2 = 0) = 1
2
(1− ε)ε

• p(y1 = 1, y2 = e, u1 = 1|u2 = 1) = 0

• p(y1 = 1, y2 = 1, u1 = 0|u2 = 0) = 0

• p(y1 = 1, y2 = 1, u1 = 0|u2 = 1) = 1
2
(1− ε)2

• p(y1 = 1, y2 = 1, u1 = 1|u2 = 0) = 0

• p(y1 = 1, y2 = 1, u1 = 1|u2 = 1) = 0
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Proof of I(W4
(4)) = 2I(W2

(2))− I(W2
(2))2:

Z(W4
(4)) =

∑
y41 ,u

3
1

√
W4

(4)(y41, u
3
1|0)

√
W4

(4)(y41, u
3
1|1)

=
∑
y41 ,u

3
1

1

8

√
W (y1|u1 ⊕ u2 ⊕ u3 ⊕ 0)W (y2|u3 ⊕ 0)W (y3|u2 ⊕ 0)W (y4|0)

·
√
W (y1|u1 ⊕ u2 ⊕ u3 ⊕ 1)W (y2|u3 ⊕ 1)W (y3|u2 ⊕ 1)W (y4|1)

=
1

8

∑
y1,u31

(
√
W (y1|u1 ⊕ u2 ⊕ u3)W (y1|u1 ⊕ u2 ⊕ u3 ⊕ 1)) ·

∑
y2

√
W (y2|u3)W (y2|u3 ⊕ 1)

·
∑
y3

√
W (y3|u2)W (y3|u2 ⊕ 1) ·

∑
y4

√
W (y4|0)W (y4|1)

=
1

8
(
∑
y1,u21

√
W (y1|u1 ⊕ u2 ⊕ 0)W (y1|u1 ⊕ u2 ⊕ 1)+

+
∑
y1,u21

√
W (y1|u1 ⊕ u2 ⊕ 1)W (y1|u1 ⊕ u2 ⊕ 0)) · Z(W ) · Z(W ) · Z(W )

=
1

8
(
∑
y21 ,u1

√
W (y1|u1 ⊕ 0)W (y1|u1 ⊕ 1) +

∑
y1,u1

√
W (y1|u1 ⊕ 1)W (y1|u1 ⊕ 0)+

+
∑
y1,u1

√
W (y1|u1 ⊕ 0)W (y1|u1 ⊕ 1) +

∑
y1,u1

√
W (y1|u1 ⊕ 1)W (y1|u1 ⊕ 0)) · Z(W )3

=
1

8
· 4

∑
y1,u1

√
W (y1|u1)W (y1|u1 ⊕ 1) · Z(W )3

=
1

8
· 4(

∑
y1

√
W (y1|0)W (y1|0⊕ 1) +

∑
y1

√
W (y1|1)W (y1|1⊕ 1)) · Z(W )3

=
1

8
· 4 · 2Z(W ) · Z(W )3

= Z(W )4

= Z(W2
(2))2

Z(W4
(4)) = Z(W2

(2))2 ⇔

⇔ 1− I(W4
(4)) = (1− I(W2

(2)))2

⇔ 1− I(W4
(4)) = (1 + I(W2

(2))2 − 2I(W2
(2))

⇔ I(W4
(4)) = 2I(W2

(2))− I(W2
(2))2
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