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Abstract

Differential privacy is the state-of-the-art definition for privacy, that “addresses the
paradox of learning nothing about an individual while learning useful information about
a population” (Dwork and Roth). In other words, differential privacy guarantees that any
analysis performed on a sensitive dataset leaks no information about the individuals whose
data are contained therein. In this thesis, we develop differentially private algorithms to
analyze distributed and streaming data.

In the distributed model, we consider the particular problem of learning -in a dis-
tributed fashion- a global model of the data, that can subsequently be used for arbitrary
analyses. We build upon PrivBayes, a differentially private method that approximates the
high-dimensional distribution of a centralized dataset as a product of low-order distribu-
tions, utilizing a Bayesian Network model. Specifically, we examine three novel approaches
to learning a global Bayesian Network from distributed data, while offering the differential
privacy guarantee to all local datasets. Our work includes a detailed theoretical analysis
of the distributed, differentially private entropy estimator which we use in one of our algo-
rithms, as well as a detailed experimental evaluation, using both synthetic and real-world
data.

In the streaming model, we focus on the problem of estimating the density of a stream
of users (or, more generally, elements), which expresses the fraction of all users that
actually appear in the stream. We offer one of the strongest privacy guarantees for the
streaming model, namely user-level pan-privacy, which ensures that the privacy of any user
is protected, even against an adversary that observes, on rare occasions, the internal state
of the algorithm. We provide a detailed analysis of an existing, sampling-based algorithm
for the problem, and propose two novel modifications that significantly improve it, both
theoretically and experimentally, by optimally using all the allocated “privacy budget”.
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Chapter 1

Introduction

“Historically, privacy was almost
implicit, because it was hard to find
and gather information. But in the
digital world, whether it’s digital
cameras or satellites or just what you
click on, we need to have more explicit
rules - not just for governments but for
private companies.”

Bill Gates

The importance of privacy in the era of Big Data is well-understood. The recent
Facebook-Cambridge Analytica scandal is only the last in a series of major privacy breaches,
that point out the need to reconsider our perspective on the significance of protecting the
data that we generate. At the same time, however, it would be a huge mistake to miss
the opportunities that the massive availability of data offers.

Until recently, the need for privacy was much less established, as our data mostly
lived within our personal computers and were protected by our passwords. The need to
securely store our data within our computers, combined with the needs to perform secure
electronic transactions and communicate securely (to mention but a few), were addressed
by cryptography and formal approaches were developed early on in the history of computer
science.

In contrast, nowadays most of our data live in the Cloud, or in the servers of Google,
Facebook, Amazon etc., and only a tiny fraction of them still lives within our personal
computers. Furthermore, taking the explosion of analytics into account, we may even not
be able to prevent our data from being included in analyses, both for advertisement and
for research purposes. How will our privacy be protected?

Cryptography may still be the answer in some cases, but even if we manage to develop
methods to analyze encrypted data sufficiently well, there are still some unsurmountable
problems. Once an individual’s data enter a database, they may even stay there forever;
nobody can guarantee that the cryptographic techniques used will still protect the indi-
vidual’s privacy in, say, 25 years from now. Moreover, the effect of an individual’s data
on the result of an analysis, which will essentially be published, cannot be protected by
cryptography.

That being said, we have to distinguish between security and privacy. The fact that our
data are securely stored today does not mean that our privacy is protected; neither today
nor in the future. Classical cryptography has provided decent solutions in guaranteeing
security. In the case of privacy, however, a totally different calculus applies. It is clear that
a formal definition for privacy is also essential, together with a set of tools (e.g. algorithms,
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2 Introduction

software), that will allow us guarantee that the privacy (according to this definition) of
individuals who contribute their data to datasets and analyses is protected.

1.1 The Promise of Differential Privacy

“You will not be affected, adversely or
otherwise, by allowing your data to be
used in any study or analysis, no
matter what other studies, datasets or
information sources are available.”

The promise of differential privacy.
Cynthia Dwork & Aaron Roth

Early approaches in privacy-preserving data analysis suffered from a series of attacks
(e.g. linkage attacks, differencing attacks, reconstruction attacks), and commonly used
privacy definitions, like k-anonymity [57], were shown to be flawed. On the contrary, dif-
ferential privacy meets the requirements in being a formal privacy definition. Introduced
in 2006 by Cynthia Dwork, Frank McSherry, Kobi Nissim, and Adam Smith [21], differen-
tial privacy is a strong and mathematically rigorous guarantee, that describes a promise,
made by a data holder, to an individual that contributes its data to a dataset, that the
individual’s privacy will be protected.

As Dwork and Roth [24] argue, differential privacy addresses the paradox of learning
nothing about an individual while learning useful information about a population. In
addition to being a strong privacy guarantee, differential privacy as a definition has math-
ematical properties that facilitate the design of algorithms which satisfy it. As a result,
numerous methods that realize the differential privacy guarantee have been developed in
the past few years, and now we are definitely one step closer to privacy-preserving data
analysis.

1.2 Distributed and Streaming Data

The paradigm of our data living in a static database that is protected by a curator (e.g.
database administrator) belongs to the past to a large extent. Nowadays, our data are
everywhere and in various forms:

- They are often distributed among several databases. This is common, for example,
in medical applications, where different hospitals possess different parts of a joint
database of the clinical records of individuals.

- Or, they are dynamically created and arrive continuously in a stream. Being able to
monitor such a stream and extract statistics is important for many disciplines, like
-for instance- epidemiology.

We mention these two particular applications due to their obvious connections with pri-
vacy; medical data are by definition sensitive.

1.3 Thesis Organization & Contributions

In this section we jointly outline the organization of this thesis and its key contributions.

In Chapter 2, we formalize the notion of differential privacy. We give the basic defini-
tions and theorems, and present the most common mechanisms that are used as building



Introduction 3

blocks to provide the differential privacy guarantee. In addition, we describe in detail the
traditional differential privacy model, and emphasize some points that often cause confu-
sion in the literature.

In Chapter 3, we develop differentially private algorithms to analyze distributed data,
and we consider a model where a large dataset is horizontally distributed among mutually
distrustful parties. We address the particular problem of distributed learning of Bayesian
Networks with differential privacy. The key contributions of the chapter are the following:

- We formally describe differential privacy in the distributed model, we examine several
alternative approaches to solving our problem, and we provide a detailed survey of
the related work that addresses ours, or similar models.

- We present PrivBayes [64],[65], the state-of-the-art method in learning Bayesian
Networks with differential privacy, we identify the challenges that arise when moving
PrivBayes from a centralized to a distributed environment, and we examine three
novel approaches to learning a global Bayesian Network from distributed data, while
offering the differential privacy guarantee to all local datasets.

- We provide a detailed theoretical analysis of the distributed, differentially private
entropy estimator which we use in one of our algorithms.

- We experimentally evaluate our algorithms using both synthetic and real-world data.

In Chapter 4, we develop differentially private algorithms to analyze streaming data,
and we consider the cashier-register streaming model. We address the particular problem
of estimating the density of a stream of users, and we offer one of the strongest privacy
guarantees for the streaming model, namely user-level pan-privacy, which ensures that
the privacy of any user is protected, even against an adversary that observes, on rare
occasions, the internal state of the algorithm. The key contributions of the chapter are
the following:

- We formally describe differential privacy in the streaming model, we analyze in-
depth the existing definitions and approaches, and we provide an extensive survey
of the related work.

- We provide for the first time a detailed analysis of the sampling-based, pan-private
density estimator, proposed by Dwork et al. [23], we identify its main limitation, in
that it does not use all the allocated privacy budget.

- We examine two different novel approaches to modifying the original estimator, based
on optimally tuning the Bernoulli distributions it uses, as well as on using continuous
distributions (Laplace, Gaussian), and we analyze the theoretic guarantees that our
modified estimators offer.

- We experimentally compare our algorithms.

In Chapter 5, we conclude this thesis, and we provide directions for future work and
possible extensions to our solutions.



4 Introduction



Chapter 2

Differential Privacy

In this chapter, we formalize the notion of differential privacy. In addition, we present
some key theorems that follow from the definitions which we introduce, and describe the
most common mechanisms that are used as building blocks to provide the differential
privacy guarantee.

We consider a model of computation, where a database, or (more generally) a dataset D
contains the sensitive data of individuals, called the data owners; each record/tuple/data
point (the terms are used interchangeably) in D corresponds to a single individual. We
assume the existence of a trusted entity by the data owners, called the data holder or
curator. The data holder has direct access to the sensitive dataset and analyzes it, ensuring
that any output produced by the analysis does not violate the owners’ privacy. A key thing
to notice is that the data holder and the data analyst is a common (and trusted) entity. A
line of work considers the data analyst to be a separate, untrusted entity that observes the
result of the analysis, which is performed by the (trusted) data holder. We do not follow
this approach, and we refer to the untrusted entity against which we want to protect the
data as the adversary. We call this the traditional differential privacy model.

We also need to distinguish between the interactive and the non-interactive case.

- In the interactive case, the data holder is adaptively asked queries on the sensitive
dataset and still has to protect the owners’ privacy. In other words, the adversary
observes the output of every analysis performed by the data holder, and may pose
a new query based on this output.

- In the non-interactive case, the data holder analyzes the sensitive dataset only once.
The output of the analysis is published, so the adversary has access to it, but the
original dataset is not accessed again and may even be destroyed.

In our work, we focus on the non-interactive case, so that the analysis that is to be
performed on the sensitive data is decided and known in advance.

2.1 Basic Definitions & Theorems

In defining differential privacy, it is useful to think of the dataset D as a finite collection
of records from a universe U . The histogram representation of D is a function hist(D) :
U → N|U|, where the i-th entry hist(D)i (for some i ∈ {1, ..., |U|}) represents the number
of tuples in D of type U [i] (assuming that an arbitrary ordering is defined over U).

We proceed by introducing the notion of adjacency between datasets, which (infor-
mally) refers to a pair of datasets that differ on a single record. Depending on the inter-
pretation of the word “differ”, two different definitions have been used in the literature.

Definition 2.1 (Adjacency). Datasets D and D′ are adjacent, denoted adj(D,D′), if ...

5



6 Differential Privacy

A: ... D can be obtained from D′ by either adding or removing a single record, so:

||hist(D)− hist(D′)||1 =

|U|∑
i=1

|hist(D)i − hist(D′)i| ≤ 1

B: ... D can be obtained from D′ by changing the value of a single record, so:

||hist(D)− hist(D′)||1 =

|U|∑
i=1

|hist(D)i − hist(D′)i| ≤ 2

As we will shortly see, the notion of adjacency plays a key role in the definition of
differential privacy, and depending on the approach we follow to defining adjacency, we
end up with a (slightly) different flavor of differential privacy (Kifer and Machanavajjhala
[43]). If Definition 2.1(A) is used, we speak of unbounded differential privacy, whereas
if Definition 2.1(B) is adopted, we speak of bounded differential privacy. Bounded dif-
ferential privacy derives its name from the fact that the adjacent datasets involved have
essentially the same size; in unbounded differential privacy there is no such restriction. In
the literature, both approaches are assumed to be fine and one is free to choose whichever
is more convenient.

We are now ready to formally define differential privacy, which intuitively guarantees
that a randomized algorithm accessing a sensitive dataset produces similar outputs on
similar (adjacent) inputs. As a result, the impact of any single record (individual) on the
algorithm’s output is negligible, and hence no information is leaked about the individuals
whose data are in the dataset.

Definition 2.2 (Differential Privacy). A randomized algorithm Alg : U → O is ε-
differentially private if for all O ⊆ O, and for all pairs of adjacent datasets D,D′,

P[Alg(D) ∈ O] ≤ eε P[Alg(D′) ∈ O]

where the probability space is over the coin flips of Alg.

The parameter ε, called the privacy budget, quantifies the privacy risk. In general,
smaller values of ε imply more privacy, as the distributions of outputs of the algorithm
for adjacent inputs tend to “come closer”. How we should pick ε in practice is an open
question; Hsu et al. [38] address this question and propose a method for choosing ε.

An additional remark is that ε-differential privacy is a statistical in nature, worst-
case guarantee, in that it ensures that for every run of algorithm Alg (on every possible
input), the output observed is almost equally likely to be observed on every adjacent
input. Therefore, several relaxations of the original Definition 2.2 have been considered;
for example, (ε, δ)-differential privacy guarantees that for every pair of adjacent datasets,
it is extremely unlikely that the observed output will be more likely to be observed with
the one input of the pair than with the other. In other words, (ε, δ)-differential privacy
allows a privacy leakage with some small probability δ.

We next present some key theorems; their proofs can be found in [24]. Theorem 2.1 is
known as the Post-Processing Theorem, and illustrates that differential privacy is immune
to post-processing; an adversary cannot compute a function of the output of a differentially
private algorithm and make it less private.

Theorem 2.1 (Post-Processing). Let Alg : U → O be a randomized algorithm that sat-
isfies ε-differential privacy. Let f : O → O′ be an arbitrary randomized mapping. Then
f(Alg) : U → O′ also satisfies ε-differential privacy.
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Theorem 2.2, known as the Sequential Composition Theorem, shows that if we compose
multiple differentially private mechanisms, the privacy budget adds up. For simplicity, we
only present the theorem for the case of two mechanisms, but we note that it holds in
general.

Theorem 2.2 (Sequential Composition). Let Alg1 : U → O1 be a randomized algorithm
that satisfies ε1-differential privacy, and let Alg2 : U → O2 be a randomized algorithm
that satisfies ε2-differential privacy. Then their combination Alg1,2 = (Alg1,Alg2) : U →
O1 ×O2 satisfies (ε1 + ε2)-differential privacy.

Differential privacy also composes when a sequence of differentially private mechanisms
is applied in parallel on non-intersecting subsets of the entire dataset. Theorem 2.3 is
known as the Parallel Composition Theorem.

Theorem 2.3 (Parallel Composition). Let Alg1 : U → O1 be a randomized algorithm that
satisfies ε1-differential privacy, and let Alg2 : U → O2 be a randomized algorithm that sat-
isfies ε2-differential privacy. Let D1, D2 be two partitions of the dataset D, such that D1∪
D2 = D and D1 ∩D2 = ∅. Then their combination Alg1,2(D) = (Alg1(D1),Alg2(D2)) :
U → O1 ×O2 satisfies (max{ε1, ε2})-differential privacy.

An important thing to notice is that parallel composition does not hold for bounded
differential privacy; Definition 2.2 is violated when removing a record from D1 and adding
a record to D2 (or vice-versa). Nevertheless, if our goal is to separately offer the differ-
ential privacy guarantee to each subset of D, so that the adjacency relation is considered
separately for D1 and D2, then parallel composition does hold. This is the case in the
approach we follow to applying differential privacy in the distributed model, in Chapter
3.

Finally, the next Theorem 2.4, protects the privacy of groups of size k. It also addresses
the case that multiple (k) records in the dataset refer to the same individual.

Theorem 2.4 (Group Privacy). Any ε-differentially private algorithm Alg : U → O is
(k ε)-differentially private for groups of size k. That is, for all datasets D,D′ such that
||hist(D)− hist(D′)||1 ≤ k and for all O ⊆ O,

P[Alg(D) ∈ O] ≤ ek ε P[Alg(D′) ∈ O]

where the probability space is over the coin flips of Alg.

Now that we have developed a better understanding of differential privacy, we make an
additional remark on definition 2.1. Any algorithm that satisfies ε-unbounded differential
privacy also satisfies 2 ε-bounded differential privacy, since changing the value of one record
is equivalent to first removing the old version of the record and then adding the new one.

2.2 Achieving Differential Privacy

Differential privacy is a definition, and not an algorithm. In practice, we are interested in
developing algorithms that satisfy Definition 2.2 and hence offer the differential privacy
guarantee to their input datasets.

Definition 2.3. A randomized algorithm that satisfies Definition 2.2 is called a privacy
mechanism.

As the reader may have noticed, a privacy mechanism is essentially a randomized
algorithm, i.e. an algorithm that employs a degree of randomness as part of its logic and
produces an output that is a random variable (or vector). We do not formally introduce
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the notion of randomized algorithms here and we refer the interested reader to the book
by Mitzenmacher and Upfal [47].

In this section, we present three primitive differentially private mechanisms, which we
use throughout our work. More sophisticated mechanisms have been developed (e.g. sparse
vector technique, multiplicative weights mechanism, subsample and aggregate framework),
that achieve much better results by reconsidering the computational goal of specific tasks.
We refer the interested reader to the monograph by Dwork and Roth [24] for a detailed
presentation of such mechanisms.

2.2.1 Randomized Response

Randomized response is a research method proposed by Warner [59] that allows respon-
dents to a survey on a sensitive issue to protect their privacy against the interviewer,
while still providing credible answers. We next present an simple version of randomized
response, based on an example Dwork and Roth [24]. We slightly modify the original
example, in that the data holder perturbs the sensitive dataset D before publishing or
analyzing it. We assume that D consists of a binary record b (a bit) per individual, which
indicates whether the individual does or does not have a particular property.

Algorithm 2.1: Simple Randomized Response

Input: Dataset D
Output: Differentially private dataset D̃

1 Initialize D̃ = ∅
2 for each b ∈ D do
3 Flip a fair coin
4 if tails then

5 b̃ = b
6 else
7 Flip a second fair coin
8 if heads then

9 b̃ = 1
10 else

11 b̃ = 0

12 Add b̃ to D̃

13 Return D̃

Theorem 2.5 examines the privacy guarantees of 2.1. We remark that, throughout this
work, by log we refer to the natural logarithm.

Theorem 2.5 (Randomized response). The version of randomized response described in
Algorithm 2.1 satisfies log 3-differential privacy.

The power of randomized response is that it provides plausible deniability, and it
directly perturbs the sensitive dataset (privacy by process). As a result, even if an in-
dividual’s record indicates that it has the property in question, the individual may still
credibly argue that it does not.

2.2.2 Laplace Mechanism

The Laplace mechanism [21] provides a way to transform a numeric function f : U → RN
(that inputs a dataset D and outputs a vector f(D) ∈ RN ) into a differentially private
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mechanism. We first introduce the notion of the sensitivity of f , which intuitively captures
the effect of a single record on the output of f .

Definition 2.4 (`1-sensitivity). The `1-sensitivity of a function f : U → RN is:

∆f = max
adj(D,D′)

||f(D)− f(D′)||1

We next introduce the Laplace distribution, which is a symmetric, double-sided version
of the exponential distribution. Throughout our work, we slightly abuse notation and use
Laplace(µ, b) (instead of X ∼ Laplace(µ, b)) to refer to a random variable that follows
the Laplace Distribution. Similarly, we use Bernoulli(p) to refer to a Bernoulli random
variable with parameter p, and so forth.

Definition 2.5 (Laplace distribution). A random variable X ∼ Laplace(µ, b) has proba-
bility density function:

fX(x|µ, b) =
1

2b
e−
|x−µ|
b , x ∈ R

where µ is a location parameter, such that E[X] = µ, and b > 0 is a scale parameter, such
that var(X) = 2b2.

Theorem 2.6 (Laplace mechanism). Given any function f : U → RN , the Laplace mech-
anism, that on input D ∈ U outputs:

f̃(D) = f(D) + [X1 ... XN ]T

where Xi are i.i.d. Laplace(0, ∆f
ε ) random variables, satisfies ε-differential privacy.

2.2.3 Exponential Mechanism

The main limitation of the Laplace mechanism is that it can only handle numeric functions
of the dataset. In contrast, the Exponential mechanism [45] provides a way to transform
arbitrary (e.g. categorical) functions of the dataset into differentially private mechanisms.
We now consider an arbitrary function f : U → O that maps an input dataset D to an
arbitrary object O ∈ O. The Exponential mechanism is based upon a scoring/quality/u-
tility function (the terms are used interchangeably) q : U × O → R, that measures the
quality q(D,O) of the output O when the input is D.

Theorem 2.7 (Exponential mechanism). Given any function f : U → O, the Exponential

mechanism, that on input D ∈ U outputs an element O ∈ O with probability ∝ e
ε q(D,O)

2∆q ,
where q : U × O → R and ∆q = maxO∈Omaxadj(D,D′) |q(D,O) − q(D′, O)|, satisfies ε-
differential privacy.

The Exponential mechanism defines a distribution pEM over the set of possible out-
puts, and then samples from pEM . Intuitively high-quality outputs are favored, as they are
more likely to be sampled. pEM can be arbitrarily complex, so the Exponential mechanism
can be a double-edged sword:

- On the one hand, the Exponential mechanism is general; for example, the Laplace
mechanism can be viewed as an instance of the Laplace mechanism.

- On the other hand, in many occasions it may not even be possible to sample efficiently
from pEM .
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2.3 Data Analytics with Differential Privacy

Differential privacy has been established as the state-of-the-art model in privacy-preserving
data analytics. Therefore, there now exists a vast literature in the field of data analytics
with differential privacy; a survey of the related work is beyond the scope of this thesis.
We refer the interested reader to the survey by Chaudhuri and Sarwate [52] (and the many
references therein), who provide an overview of the work that connects differential privacy
with many areas that relate to data analytics, namely statistics and robust statistics, sig-
nal processing and machine learning (classification, regression, dimensionality reduction,
filtering). Nevertheless, in Chapters 3 and 4 we do extensively review efforts that relate
to the models that we examine, namely the distributed and the streaming model.



Chapter 3

Distributed Bayesian Network
Learning with Differential Privacy

We consider a model where a large dataset is horizontally distributed among mutually
distrustful parties (data holders) that are not able or willing to share their part, forming
a distributed database. Our goal is to perform privacy-preserving data mining, and in
particular, to make inferences about the population, without compromising the privacy
of the individuals whose data are used. The model we described applies, for instance,
in biomedical data analysis, and constitutes a major limitation in biomedical research.
Hospitals and other trustworthy entities maintain the clinical records of individuals, but
are unable to share and accurately analyze them, due to the risk of privacy breaches
(Figure 3.1).

We aim to achieve something more general compared to (most) previous approaches in
privacy-preserving data mining over distributed data. In this direction, we examine three
approaches in learning -in a distributed and privacy-preserving fashion- a model that
approximates the (high-dimensional) data distribution as a product of low-order marginal
and conditional distributions. This is achieved by exploiting the attribute dependencies
that are present in the data distribution; the theory of probabilistic graphical models
offers tools to efficiently examine these dependencies. Our first approach is an exact
approach, in that it requires each data holder to share noisy versions of the algorithm’s
sufficient statistics; we also provide a detailed theoretical analysis of this approach. The
other two approaches are based on heuristic techniques, inspired from popular ideas from
the distributed machine learning literature. Finally, once we have the privacy-preserving
approximation of the data distribution in hand, we are able to perform arbitrary analyses
on our data (e.g. classification).

We assume that our distributed database consists of homogeneous records, and each
record consists of N attributes X1, ..., XN , from a set A. In statistical machine learning,
each attribute is viewed as a random variable, and, thus, a record x (or data point -
the terms are used interchangeably) can be viewed as a realization of the random vector
X = [X1 ... XN ]T . All attributes are observed, so there exist no hidden variables. A
(relatively small) number of missing values may exist for some attributes; this can be
faced using elementary techniques, like mean imputation.

We also assume that we deal with discrete data, so ∀i ∈ {1, ..., N}, Xi takes values from
the discrete alphabet domain(Xi). If continuous attributes exist, we propose to discretize
them using any discretization technique; in doing so, we are able to accurately estimate
quantities like the mutual information, that play a major role in our solution. On the
contrary, estimating such quantities for continuous data is a much harder problem.

We next introduce some notation, that will allow us to formally describe our model.

11
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Figure 3.1: Motivating application

Table 3.1: Table of notations

Notation Description

N Data dimension - number of attributes per data point

Xi Attribute i (i ∈ {1, ..., N})
A Set of all attributes: A = {X1, ..., XN}
x Data point: x = (x1, ..., xN ) (∀i ∈ {1, ..., N} : xi ∈ domain(Xi))

M Number of data holders (degree of distribution)

Dj Dataset of holder j (j ∈ {1, ...,M})
nj Size of dataset of holder j (j ∈ {1, ...,M}): nj = |Dj |
n Size of total dataset: n =

∑M
j=1 nj

Therefore, for some i ∈ {1, ..., N}, byXi we refer to the i-th attribute (random variable)
in A, while xi denotes a realization of Xi. Accordingly, by X we refer to the random vector
that consists of all N attributes in A, while x denotes a realization of X (a data point).
In addition, for some j ∈ {1, ..., N} and j 6= i, consider the set A′ = {Xi, Xj , ...} ⊆ A. By
XA′ we refer to the random vector that consists of all attributes in A′, while xA′ denotes
a realization of XA′ , which is in fact a tuple that consists of the values that the attributes
in A′ take in data point x. So, for instance, both X and XA refer to the same random
vector, and x, xA both refer to realizations of this random vector.

Finally, we introduce the notation that we use for frequency and probability distri-
butions. We denote by dA′ the Cartesian product of the domains of the attributes in
A′:

dA′ = domain(Xi)× domain(Xj)× ...

Also, if |dA′ | = d, and we define an arbitrary ordering over the set dA′ , then for some
k ∈ {1, ..., d}, dA′ [k] = (xi, xj , ...) represents the k-th element in dA′ , and is, in fact, one
of the d possible realizations of the random vector XA′ . Given a dataset D, the joint
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frequency distribution of the attributes in A′ is defined (and computed) as:

cXA′ = cA′ = [c1 ... cd]
T , where ck =

∑
x∈D

1( xA′ = dA′ [k] )

Since we view the attributes as random variables, we make the assumption that there exists
an underlying probability distribution (that generated D); we denote the joint probability
distribution of the attributes in A′ by:

pXA′ = pA′ = [p1 ... pd]
T , where pk = P( XA′ = dA′ [k] )

Of course, in practice we only have the data in D; pA′ is just a model that lives in our
head. The maximum likelihood estimate of pA′ is computed from cA′ as:

p̂A′ =
1

|D|
cA′

In general, usingˆwe refer to the maximum likelihood (empirical) estimate of the underlying
quantity, and using˜we refer to a perturbed (noisy) estimate.
Finally, we assume that there exist no zero-probability events, so pi > 0, ∀i ∈ {1, ..., d},
although it is possible not to observe an event, so that ci = 0, for some i ∈ {1, ..., d}.

3.1 Differential Privacy in the Distributed Model

Recall that, in the traditional differential privacy model, it is assumed that there exists a
trusted entity by the data owners, whose sensitive data are in the dataset, called the data
holder or curator. This entity has direct access to the private dataset and analyzes it,
ensuring that any output produced by the analysis satisfies differential privacy. Therefore,
the data holder and the data analyst is a common (and trusted) entity.

This is not the case in several real-world applications; the data owners often do not
trust the entity that collects and analyzes their data, so the traditional model needs to
be modified. The local model, introduced by Kasiviswanathan et al. [41], is motivated by
such situations, and is, in fact, a generalization of randomized response. Each data owner
maintains its own database (of size 1 - a single data point), and provides the analyst with
noisy answers to queries about it (satisfying differential privacy).

In our model, there are two additional changes. Firstly, the data holder and the data
analyst are separate entities. The former is trusted by the data owners (e.g. hospitals),
whereas the latter is not. Secondly, we assume that there exist multiple data holders (all
trusted), each maintaining the sensitive data that belong to a subset of the data owners.
We also assume that these subsets are non-overlapping, so each data owner’s record is
stored by exactly one data holder. Therefore, although the local model could apply to our
model, we can avoid having each data owner perturb its own record, and make the data
holders responsible for the perturbation. In particular, each trusted data holder collects
its subset of the sensitive data from the data owners and either responds to queries, or
performs arbitrary analyses on them; critically, the answers given must satisfy differential
privacy (using the standard definition), and the overall privacy budget consumed must
meet the privacy requirements. Then, the analyst only gets to see these answers, and
since differential privacy is immune to post-processing, the owners’ privacy is preserved.

Several efforts in the differential privacy literature have addressed this, or closely re-
lated models. A line of work attempts to combine differential privacy with secure mul-
tiparty computation. For example, Pathak et al. [48] propose a method for the analyst
to learn a global, differentially private classifier from locally trained classifiers, which are
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perturbed and aggregated using a secure protocol. Alhadidi et al. [2] address the problem
of privacy-preserving data publishing, in the special case that the data are horizontally
partitioned among two parties; they develop a two-party protocol for the exponential
mechanism, and their solution relies on generalization. Goryczka et al. [33] consider the
problem of secure sum aggregation in the distributed model (using various secure multi-
party computation protocols and encryption schemes), while preserving differential privacy
for the aggregated data (using distributed versions of the Laplace mechanism).

The main limitation of these hybrid solutions is that they sacrifice some of the most
significant advantages of differential privacy; for example, they introduce the need of
having a secret key, and they require making assumptions about the computational power
of the adversary. To avoid such limitations, we focus on achieving pure differential privacy.
We identify two paths we could follow to address our model:

- Distributed data mining with differential privacy. The (untrusted) analyst
develops a distributed algorithm, so it communicates with the (trusted) data holders
during its execution. The data holders respond to the analyst’s queries, ensuring
that their answers satisfy differential privacy.
This approach can be viewed as a collaborative approach, since a global model is
jointly learned, and its major advantage is that the entire dataset is directly utilized.

- Data publishing with differential privacy. Each (trusted) data holder con-
structs a model (e.g. a probabilistic graphical model) or synopsis (e.g. a histogram)
of its dataset, which it then publishes, or uses to generate and publish a synthetic
dataset. If the published model/synopsis/dataset satisfies differential privacy, then
any analysis performed on it will also guarantee differential privacy, since differential
privacy is immune to post-processing. The (untrusted) analyst collects all model-
s/synopses/datasets, merges them, and runs a centralized, non-private algorithm on
the merged result.
Clearly, the major advantage of this approach is that the published datasets can be
used for arbitrary analyses. Zheng [68] investigates (among others) the implications
of publishing the model versus publishing a synthetic dataset (generated using the
model).

3.1.1 Distributed Data Mining with Differential Privacy

Most efforts on distributed data mining with differential privacy are task-specific, so the re-
sult of the distributed, differentially private algorithm is, for instance, a privacy-preserving
classifier.

The parallelizable nature of stochastic gradient descent facilitates the design of dis-
tributed machine learning algorithms that are based on this optimization method. Rajku-
mar et al. [51] build a global classifier, not by combining locally trained classifiers (like
Pathak et al. [48]), but instead, by directly optimizing the overall multiparty objective;
their solution is based on Gaussian objective perturbation and guarantees (ε, δ)-differential
privacy. Shokri et al. [54] propose a method that allows multiple data owners to jointly
learn a neural network model, without even sharing their sensitive datasets; each data
owner only shares small subsets of its models parameters during training. Direct privacy
leakage is prevented, since no sensitive dataset is shared, and indirect privacy leakage,
which could occur by sharing the parameters, is also prevented by using the sparse vector
technique (a primitive differentially private mechanism).

Some authors consider a slightly modified model; they assume the existence of a pub-
lic dataset, originating from data owners who are willing to share their data, The public
dataset is used to enhance the utility of their analyses, which are all classification-related.
Ji et al. [40] develop a method to train a differentially private logistic regression model
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from distributed data. Their solution is based on properly modifying the Newton-Raphson
method, which they use to solve the underlying optimization problem. Xie et al. [62]
propose an ensemble learning method to aggregate locally trained binary classifiers and
regressors. The local models are trained in a differentially private manner (using the ex-
pected risk minimization technique of Chaudhuri et al. [10]), and the aggregation method
is based on using the public data. Hamm et al. [34] also investigate the problem of ag-
gregating locally trained classifiers (that guarantee differential privacy), but they assume
that the public dataset consists of auxiliary unlabeled data. Their main contribution is
in the aggregation method; they demonstrate the limitations of using majority voting,
and therefore propose a new risk, weighted by class probabilities (estimated from the
ensemble).

Wahab et al. [1] examine a different data mining task, and in particular, they propose
a distributed association rules mining framework. Their solution is based on having the
data owners anonymize their data using a simple differentially private scheme.

3.1.2 Data Publishing with Differential Privacy

As we already noted, the main advantage of this approach is that it produces a general
and query/task independent result that can be used for arbitrary analyses. Hence, a vast
literature has been developed on data publishing with differential privacy. An important
line of work is based on constructing and publishing differentially private synopses of
the input dataset. Barak et al. [3] examine the release of contingency tables (frequency
distributions) via Fourier decompositions. Hay et al. [36] and Xu et al. [63] investigate the
similar problem of releasing histograms, whereas Ding et al. [19] work with data cubes.
Other synopses have also been used, like spatial decompositions (Cormode et al. [16]),
and wavelet transforms, which allow to more accurately answer range queries (Xiao et al.
[61]). Cormode et al. [16] examine more sophisticated summarization techniques, based
on sampling, filtering and sketching.

The first connection between differential privacy and probabilistic inference is due to
Williams et al. [60]; they apply probabilistic inference to the noisy data, and, taking into
account that the perturbation process is known, they attempt to estimate the parameters
of the model that generated the data. Dimitrakakis et al. [18] examine the connections
between differential privacy and Bayesian inference by introducing a differentially private
mechanism based on posterior sampling. Several subsequent efforts build upon their ideas
(e.g. Zhang et al. [67], Foulds et al. [27], Bernstein et al. [5]).

The state of the art solution in data publishing with differential privacy is PrivBayes,
introduced by Zhang et al. [64], [65]. The authors identify that the main problem in
publishing high-dimensional data (that consist of a relatively large number of attributes
N = |A|) with differential privacy is that the perturbation required inevitably overlaps
the signal in the data. By high-dimensional, we refer to data whose domain size |dA|
is comparable with the total number of data points n. The proposed solution, namely
PrivBayes, is inspired from the theory of probabilistic graphical models, and is based on
learning the Bayesian Network (directed graphical model) that best fits the data, while
satisfying differential privacy. The learned Bayesian Network provides an approximation of
the high-dimensional data distribution as a product of low-order conditional and marginal
distributions; these low-order distributions contain much more compact signal that is not
severely damaged by the required perturbation. Finally, a synthetic dataset is published
by sampling tuples (data points) from the approximate distribution. As we already noted
in the introduction of this chapter, our solution is also based on this idea, and is strongly
inspired by PrivBayes.

Following PrivBayes, Chen et al. [11] develop a sampling-based framework to explore
the dependencies among all attributes and build a dependency graph, and then approxi-
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mate the data distribution based on the junction tree algorithm. However, the version of
the sparse vector technique they use to satisfy differential privacy is shown to be flawed.
Ping et al. [50] implement PrivBayes as part of their proposed DataSynthesizer, a software
tool that takes a sensitive dataset as input and outputs a synthetic, statistically similar
dataset.

3.1.3 Our Approach: Distributed Data Publishing with Differential Pri-
vacy

We aim to combine the two approaches, in that:

- we jointly learn a global, differentially private model (specifically a Bayesian Net-
work) utilizing the entire dataset, and

- we publish either the model itself, or a dataset generated from the model, so that it
can be used for arbitrary analyses.

Thus, our approach can be characterized as a distributed data publishing with differential
privacy approach. One of the solutions that we offer is based on a purely distributed
algorithm, in that the data holders incrementally respond to the analyst’s queries during
the execution of the algorithm, and a single (global) model is learned in a distributed
fashion. The other two solutions are hybrid, as the information that each data holder
shares is a synopsis/model of its local dataset, which the analyst utilizes to learn a global
model.

In a recent work, Su et al. [56] also develop a distributed version of PrivBayes, in
order to privately learn (at once) a (global) Bayesian Network from distributed data, and
then use it to publish a synthetic dataset. However, their solution does not meet the
requirements we have posed, in two ways. Firstly, they assume the existence of a semi-
trusted curator, an intermediate entity that assists the data holders to collectively learn
the global model. In particular, the data holders and the curator collaboratively identify
the Bayesian Network that best fits the integrated dataset D in a sequential manner; their
key contribution is in the construction of the search frontier, which consists of the set
of candidate edges to add to the Bayesian Network in the next update step. Secondly,
their solution is based on the distributed (multi-party) version of the Laplace mechanism
(Pathak et al. [48]), which requires the use of cryptography.

3.2 Bayesian Networks

In this section, we provide the necessary background for Bayesian Networks, which con-
stitute the basic building block of our solution.

3.2.1 Basic Definitions

A Bayesian Network (Pearl [49]) is a probabilistic graphical model, and in particular a
directed graphical model, that defines a family of joint probability distributions over a set
of attributes/random variables. More formally, we give the following definitions, following
Koller and Friedman [44]

Definition 3.1 (Bayesian Network structure). A Bayesian Network structure G is a di-
rected acyclic graph whose nodes represent attributes X1, ..., XN from a set A. Let Pa(Xi)
denote the parents of Xi in G and NonDesc(Xi) denote the set of attributes that are not
descendants of Xi in G. Then G encodes the following set of conditional independence
assumptions:

( Xi ⊥ NonDesc(Xi) ) | Pa(Xi) , ∀i ∈ {1, ..., N}
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Figure 3.2: Example Bayesian Network structure

An example Bayesian network structure is illustrated in Figure 3.2. Using this example,
we identify the types of connections between nodes, and the (in)dependence relations they
imply for the corresponding attributes:

- X1 → X3: direct dependence, X3 6⊥ X1.

- X1 → X3 → X5: indirect causal effect, X5 6⊥ X1, but (X5 ⊥ X1)|X3.

- X5 ← X3 ← X1: indirect evidential effect, X1 6⊥ X5, but (X1 ⊥ X5)|X3.

- X6 ← X2 → X4: common cause, X4 6⊥ X6, but (X4 ⊥ X6)|X2.

- X5 → X6 ← X2: common effect, X5 ⊥ X2, but (X5 6⊥ X2)|X6.

Definition 3.2 (Factorization). Let G be a Bayesian Network structure over a set of
attributes A = {X1, ..., XN}. The distribution pA factorizes according to G if pA can be
expressed as a product:

pA =

N∏
i=1

pXi|Pa(Xi)

Each individual factor pXi|Pa(Xi) represents the set of all conditional probability distribu-
tions of Xi, one for each realization of the attributes in Pa(Xi), and is called a conditional
probability table.
We denote the set of all conditional probability tables by: Θ = {Θ1, ...,ΘN}, where
Θi = pXi|Pa(Xi), ∀i ∈ {1, ..., N}.

Definition 3.3 (Bayesian Network). A Bayesian Network over a set of attributes A is a
pair B = (G,Θ), where pA factorizes according to G and is specified based on the conditional
probability distributions in Θ.

Definition 3.4 (Bayesian Network degree). Let B = (G,Θ) be a Bayesian Network over
a set of attributes A = {X1, ..., XN}. We define the degree k of B as the in-degree G:

k = max
i∈{1,...,N}

|Pa(Xi)|

Based on Definitions 3.1, 3.2, 3.3, we see that any joint probability distribution over a
set of attributes A can be represented using a Bayesian Network (by the chain rule). In
practice, we are particularly interested in distributions that factorize according to sparse
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graphs, that lead to compact representations and efficient inference.
Example. Consider a probability distribution p over N attributes {X1, ..., XN}, such that
domain(Xi) = d, ∀i ∈ {1, ..., N}. Then, p is originally represented using dN parameters,
each corresponding to the probability of a specific realization of the random vector X. A
Bayesian Network allows us to represent p using only

N∑
i=1

|Θi| =
N∑
i=1

d|Pa(Xi)|+1 = O(Ndk)

parameters, which can be substantially smaller (usually k << N).
The time complexity of both making inferences using p, and sampling from p, can

significantly decrease. More specifically,

- By inference, we basically refer to two tasks. Assume that we observe a subset
A1 of the attributes in A, and let A2 = A \ A1. The first task is the calculation
of posterior probabilities, namely pA2|A1

. The second task is the calculation of
the most probable configuration (realization) for the unobserved attributes, namely
argmaxxA2

∈dA2
pA2|A1

. As an example, in case the unobserved attributes correspond
to a set of class attributes, calculating the most probable configuration provides a
solution for the corresponding classification problem.

- As far as sampling is concerned, efficient algorithms exist, and probably the simplest
among them is prior sampling (which we utilize throughout this work). Instead of
sampling from the N -dimensional joint distribution p, we separately draw a sample
for each attribute Xi (∀i ∈ {1, ..., N}) from the proper conditional distribution in
Θi. To be able to do so, we need to ensure that, by the time we draw a sample
for Xi, we have already sampled for all attributes in Pa(Xi); this is achieved by
topologically ordering the attributes based on G.

The power of Bayesian Networks is twofold. Besides the computational gain they offer,
by allowing us to approximate a high-dimensional distribution as a product of low-order
conditional and marginal distributions, Bayesian Networks are also highly interpretable
models, and can hence be used for knowledge discovery.

3.2.2 Learning Bayesian Networks

In real-world applications, we only have access to data, which we assume that follow
a distribution p over a set A = {X1, ..., XN} of attributes, that can be encoded by a
Bayesian Network. Sometimes the Bayesian Network structure is known; for example, it
may be given by an expert, or it may be determined by the physical properties of the
application. However, our focus is on the case that the structure is unknown, and our
objective is to find both the structure and the parameters of the Bayesian Network that
best fits our dataset D. As we already noted in the introduction of this chapter, we make
the assumption that our data are fully-observed, in the sense that no hidden variables
exist.

In general, there are three approaches to learning Bayesian Networks of unknown
structure from data, namely:

- score-based, where the Bayesian Network learning problem is viewed as a model
selection problem and is solved using optimization methods,

- constraint-based, where the Bayesian Network is viewed as a representation of inde-
pendences and the learning process is based on independence tests, and
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- Bayesian model averaging, where an ensemble of possible structures is learned and
aggregated.

We focus on the score-based approach, which we adopt in our work.
The first step in score-based Bayesian Network learning is to assign each possible

Bayesian Network B a score. A natural choice for scoring function is the likelihood function
L, which measures the probability of observing the data in D (assuming that individual
data points are i.i.d.), given a model. In our case, the model is a Bayesian Network
B = (G,Θ), so, denoting by pB the distribution encoded by B, we conclude that the score
of B is:

L(B;D) =
∏
x∈D

pB(x) =
∏
x∈D

N∏
i=1

pXi|Pa(Xi)(xi,xPa(Xi)) =
N∏
i=1

∏
x∈D

Θi(xi,xPa(Xi))

which illustrates the decomposability of the global likelihood into local likelihoods (one
for each parameter Θi), based on the Bayesian Network structure. If we instead use the
logarithm of L as scoring function, it turns out that:

`(B;D) = logL(B;D) = n

N∑
i=1

Î(Xi; Pa(Xi))− n
N∑
i=1

Ĥ(Xi)

where by Ĥ and Î we refer to the empirical entropy and mutual information respectively.
The next step is to find the Bayesian Network structure G that achieves the highest

score. Noting that the only term in the log-likelihood score that depends on G is the
empirical mutual information, gives that:

max
B

`(B;D) = max
G

max
Θ

`(G,Θ;D)︸ ︷︷ ︸
MLE of Θ given G

= max
G

`(G, Θ̂;D) = max
G

N∑
i=1

Î(Xi; Pa(Xi))

which demonstrates that the structure G∗ that maximizes the log-likelihood score is the
one that has the maximum sum over all attributes, of the mutual information between
each attribute and its parents in G∗, when the maximum likelihood parameters Θ̂ are used
for G∗. From an information theoretic point of view, it can be shown that G∗ minimizes
the Kullback-Leibler divergence between the actual data distribution, and the distribution
encoded by the Bayesian Network structure G∗.

Solving the aforementioned optimization problem turns out to be hard in general.
Specifically, taking into account that our graph consists of N nodes, there are O(2N

2
)

potential structures that form our search space (super-exponential in the number of at-
tributes). Consequently, heuristic (local-search) algorithms are employed in practice, like
hill-climbing and simulated annealing. Nevertheless, for the special case that k = 1
(Bayesian Networks with degree 1), the well-known Chow-Liu algorithm [12] (Algorithm
3.1) allows us to greedily find the optimal structure.

An important limitation of the likelihood score is that it favors more complex structures
over simpler ones. In fact, if we do not artificially constrain the number of parents allowed
for each attribute (as in the case of the Chow-Liu algorithm), then any algorithm using the
likelihood score will almost always return a fully connected structure. This results from
the fact that adding an additional parent to any attribute will almost always increase the
score, since for any random variables X,Y, Z, we have Î(X;Y,Z) ≥ Î(X,Y ) (information
never hurts). Therefore, in practice, we either learn fixed-degree Bayesian Networks (this
is the case in PrivBayes), or we penalize more complex structures depending on the dataset
size (e.g. BIC score).
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Algorithm 3.1: Chow-Liu Algorithm

Input: Dataset D
Output: BN structure G

1 Initialize G0 to a fully connected (undirected) graph
2 for i=1 to N do
3 Estimate (and store) p̂Xi from D
4 for j=1 to i-1 do
5 Estimate (and store) p̂Xj ,Xi from D

6 Compute weight Î(Xj ;Xi) of edge (Xj , Xi) in G0

7 G = MaximumWeightSpanningTree(G0)
8 Give directions to edges in G
9 Return G

Once the Bayesian Network structure G is known, we are left with a simple parameter
estimation task; we have to estimate the parameters in Θ. A common approach to achieve
this is to (once again) use the maximum likelihood principle. The decomposability of
the likelihood function, which we demonstrated earlier, allows us to maximize each local
likelihood Li(Θi;D) =

∏
x∈D Θi(xi,xPa(Xi)) separately, and then combine the solutions

to get the (global) maximum likelihood estimate Θ̂ for Θ:

Θ̂ = {Θ̂1, ..., Θ̂N}, where Θ̂i = argmaxΘiLi(Θi;D)

We described a purely frequentist approach to learning Bayesian Networks from data,
in that we utilize the likelihood score to learn the structure and then estimate the pa-
rameters that maximize the likelihood function. An alternative path would be to adopt
a Bayesian approach, and treat the candidate structures (in the structure learning phase)
or the parameters (in the parameter learning phase) as random; we would assign them
prior distributions, and we would maximize the posterior distribution of the data, instead
of the likelihood. We do not further discuss the Bayesian approach here, but we mention
that its main advantage over the frequentist approach is that it avoids overfitting.

3.3 PrivBayes

In this section, we provide an overview of PrivBayes. We also highlight the changes that
need to be performed in our model, as well as the assumptions we make. Apparently,
a first major change originates from the fact that PrivBayes addresses the traditional
differential privacy model, where the data holder and the analyst are the same, trusted
entity. Therefore, the original solution depends on a centralized algorithm (the single
dataset D is analyzed by a trusted entity), and the only requirement is that the resulting
Bayesian Network satisfies differential privacy (both the structure and the parameters).

PrivBayes consists of three phases, which we briefly present here in order to be able
argue about the privacy guarantees of the overall algorithm. In the next subsections, we
present each of the first two phases separately; the third phase is trivial, so we fully develop
it here.

- Structure learning phase. During this phase, the analyst accesses the sensitive
data in D. It uses an ε1-differentially private algorithm to learn the structure of a
k-degree Bayesian Network that accurately encodes the conditional independencies
that are present in the underlying data distribution.
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- Parameter learning phase. During this phase, the analyst utilizes the learned
structure, and again accesses the sensitive data in D. It uses an ε2-differentially
private algorithm to estimate the parameters of the learned k-degree Bayesian Net-
work.

- Synthetic data generation phase. During this phase, no access to the sensitive
data is performed. The analyst utilizes the learned model to sample n′ tuples (data
points) from the approximate distribution (encoded by the Bayesian Network). The
sampling step is performed using prior sampling, and does not access the sensitive
data - only the output of the first two phases is used. Since (as we argue in theorem
3.1) the output of the first two phases satisfies differential privacy, according to the
post-processing theorem, so does the result of the third phase, and no additional
perturbation is required.
We note that the value of n′ depends on the application, but a reasonable choice
would be to set n′ = n. Also, in case we are interested in the model, and not in
publishing a synthetic dataset, the data generation phase may even be skipped.

Theorem 3.1. Let ε1 and ε2 be the privacy budget consumed during each of the first two
phases of PrivBayes respectively. Then, the overall algorithm satisfies (ε1 + ε2)-differential
privacy.

Theorem 3.1 directly follows from the composition theorem of differential privacy. The
choice of ε1 and ε2 determines the balance between the quality of the learned structure
and the learned parameters. Assuming that the total available privacy budget is ε, and by
setting ε1 = β ε and ε1 = (1−β) ε, the authors of PrivBayes experimentally conclude that
the optimal split is achieved for some β ∈ [0.2, 0.5]. For simplicity, in our work we assume
that, whenever the privacy budget has to be split between the two phases, ε1 = ε2 = ε

2 ,
so the overall algorithm satisfies ε-differential privacy.

3.3.1 Structure Learning Phase

The structure learning phase of PrivBayes is based on a greedy extension of the Chow-
Liu algorithm (Algorithm 3.1) for higher degree Bayesian Networks, which we present in
Algorithm 3.2. The authors of PrivBayes propose the aforementioned approach, instead
of the local-search algorithms that are commonly used for learning the structure of higher
degree Bayesian Networks, because these algorithms perform too many data accesses and
incur a high cost in terms of sensitivity; as a result, a prohibitive amount of noise is added.

Lemma 3.1 quantifies the sensitivity of the empirical mutual information; the proof
can be found in the full PrivBayes paper [65]. We remark that the sensitivity is computed
using the definition of adjacent datasets that leads to bounded differential privacy, so ∆Î
expresses the maximum change in the empirical mutual information that is caused by
changing the value of one data point.

Lemma 3.1. For any random variables X and Y , the sensitivity of Î(X;Y ) is:

∆Î =

{ 1
n log n+ n−1

n log n
n−1 if X or Y is binary

2
n log n+1

2 + n−1
n log n+1

n−1 otherwise

The output G of Algorithm 3.2 consists of the N − 1 attribute-parent pairs each of
which was added using the exponential mechanism (line 12) with the empirical mutual
information as scoring function and with privacy budget ε1

N−1 . Thus, Theorem 3.2 directly
follows (by the composition theorem).

Theorem 3.2. Algorithm 3.2 satisfies ε1-differential privacy.
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Algorithm 3.2: Greedy BN Structure Learning

Input: Dataset D, BN degree k, Privacy budget ε1

Output: BN structure G
1 Initialize G = ∅ and V = ∅
2 for each A′ ⊆ A such that |A′| ≤ k + 1 do
3 Estimate (and store) p̂A′ from D

4 Arbitrarily select an attribute X from A
5 Add (X, ∅) to G and X to V
6 for i=1 to N-1 do
7 Initialize Ω = ∅
8 for each X ∈ A \ V do
9 for each Pa(X) ⊆ V such that |Pa(X)| ≤ k do

10 Compute Î(X; Pa(X)) using p̂X , p̂Pa(X), and p̂X,Pa(X)

11 Add (X, Pa(X), Î(X; Pa(X))) to Ω

12 Sample a tuple (X,Pa(X), Î(X;Pa(X))) from Ω w/ prob. ∝ Î(X;Pa(X)) ε1
2(N−1)∆Î

13 Add (X,Pa(X)) to G and X to V

14 Return G

How to pick k. Based on our earlier discussion on Bayesian Networks, it is not hard
to notice that, excluding the first k attributes that are inserted in G, all other N − k
attributes will have exactly k parents (see Section 3.2.2 - information never hurts). A
natural question is how to pick k in practice. To answer this question, the authors of
PrivBayes introduce the notion of θ-usefulness, which enables PrivBayes to automatically
select k. In particular, the user-specified parameter θ expresses the minimum-allowed
ratio of average scale of signal to average scale of noise in each entry in the conditional
probability tables of the resulting k-degree Bayesian Network. So, for example, when the
privacy budget is small, PrivBayes will favor smaller values for k, so that the dimension of
the resulting conditional probability distributions is small enough and the signal contained
is not dominated by the noise. Although this notion could apply to our model as well, we
focus on different aspects of PrivBayes, and, hence, assume that k is known in advance.

Improving the scoring function. A key contribution of PrivBayes is that the au-
thors identify a significant limitation in using the empirical mutual information as scoring
function for the exponential mechanism. Specifically, although limn→∞∆Î = 0 (for both
binary and non-binary domains), ∆Î > logn

n , so the empirical mutual information can be

quite large compared to the range of Î, and, as a result, the exponential mechanism cannot
distinguish between high-scoring and low-scoring attribute-parent pairs. Recall that the

probability of sampling a particular pair is ∝ Î(X;Pa(X)) ε1
2(N−1)∆Î

, so when Î(X; Pa(X)) and ∆Î

are comparable for many candidate pairs (X; Pa(X)), their sampling probabilities tend to
become uniform. PrivBayes tackles this limitation by introducing two alternative scoring
functions, that have small sensitivities compared to their ranges, but, at the same time,
their behavior is similar with that of the empirical mutual information.

- The first, namely F , relies on the notion of maximum joint distributions and has
sensitivity ∆F = 1

n . It can be efficiently computed only for binary domains.

- The second, namely R, relies on the L1 distance between p̂X,Pa(X) and p̂X p̂Pa(X)

(the distribution that minimizes the empirical mutual information), and has sensi-
tivity ∆R = 3

n + 2
n2 . It can be efficiently computed for arbitrary domains.
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This optimization directly applies to all our proposed solutions. Nevertheless, we choose
to maintain the empirical mutual information as scoring function (in all the solutions we
examine), because, firstly, it is a well-understood function, and secondly, it facilitates our
theoretical analysis.

3.3.2 Parameter Learning Phase

The parameter learning phase of PrivBayes also follows the frequentist approach we de-
scribed in Section 3.2.2.

Algorithm 3.3: BN Parameter Learning

Input: Dataset D, BN structure G, Privacy budget ε2

Result: BN parameters Θ
1 Initialize Θi = ∅, ∀ i ∈ {1, ..., N}
2 for i = 1 to N do
3 Estimate p̂Xi,Pa(Xi)

4 Compute noisy p̃Xi,Pa(Xi) = p̂Xi,Pa(Xi) + Laplace(0, 2N
nε2

)

5 Set negative values in p̃Xi,Pa(Xi) to 0 and normalize

6 Compute Θ̃i = p̃Xi|Pa(Xi) (by marginalizing p̃Xi,Pa(Xi))

7 Add Θ̃i to Θ̃

8 Return Θ̃

The output Θ̃ of Algorithm 3.3 consists of the N conditional probability tables Θ̃i,
i ∈ {1, ..., N}, each of which represents the set of conditional distributions of an attribute,
given all realizations of its parents. Notice that each Θ̃i is constructed using a noisy version
of the maximum likelihood estimate of the joint probability distribution of attribute Xi

and its parents. The sensitivity of the maximum likelihood estimate (using n data points)
is ∆p̂ = 2

n ; the proof is almost identical with that of Theorem 3.4, where we argue about
the sensitivity of the frequency distribution over a set of attributes (which is the basis of
the maximum likelihood estimate). In total, we estimate N noisy distributions using the
Laplace mechanism (line 4), each with privacy budget ε2

N , so (again) by the composition
theorem:

Theorem 3.3. Algorithm 3.3 satisfies ε2-differential privacy.

Consistency. We remark that, although the distributions in Θ̃ have no consistency
issues (since each of them is the conditional distribution of a different attribute, given
a different realization of its parents), the intermediate joint distributions p̃ computed by
Algorithm 3.3 are (generally) not consistent. Specifically, an arbitrary attribute X is likely
to be involved in several joint distributions, and we have no guarantees that the marginals
of X derived using different joint distributions will be the same. Following PrivBayes, we
also ignore these consistency issues, as they have no impact on the final result.

3.3.3 PrivBayes in the Distributed Model

As we already argued, PrivBayes follows a score-based approach to learning the target
Bayesian Network, and, in particular, PrivBayes finds a greedy solution to the optimization
problem which we described in Section 3.2.2. We re-formulate this optimization problem,
taking into account that in our case, the data are distributed among M data holders.

max
B

`(B;D1, ..., DM ) = max
G

N∑
i=1

Î(Xi; Pa(Xi))
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= max
G

N∑
i=1

∑
x∈dXi

p∈dPa(Xi)

( ∑M
j=1 c

(j)
Xi,Pa(Xi)

(x,p)

n

× log2

n
∑M

j=1 c
(j)
Xi,Pa(Xi)

(x,p)∑M
j=1 c

(j)
Xi

(x)
∑M

j=1 c
(j)
Pa(Xi)

(p)

)

The main observation is that the scoring function which we optimize is non-linear with
respect to the frequency distributions c, and, consequently, we cannot compose the global
value of the scoring function from its local values. Although here we examine the empirical
mutual information, our argument is true for all scoring functions introduced in PrivBayes.
Notice that the sufficient statistic to estimate the empirical mutual information between
an attribute and its parents is their joint frequency distribution, and, hence, to solve our
optimization problem we need to have all the (k + 1)-dimensional frequency distributions
(where k is the degree of the target Bayesian Network).

The key question that needs to be answered is what information each data owner shares
with the (untrusted) analyst; we refer to this question as the What to share? question.
Furthermore, depending on the answer to this question, we need to figure out how to com-
bine the information shared by different data holders. In the next sections, we examine
different answers to the What to share? question.

Once the Bayesian Network structure G is known, we again follow a frequentist ap-
proach and adjust Algorithm 3.3 to the distributed model. As we will see, depending on
the structure learning approach used, the analyst may need or need not re-access the data
to estimate the Bayesian Network parameters. The latter may be the case if the analyst
has already retrieved the required local distributions, or is (somehow) able to estimate
them. Therefore, we introduce the boolean parameter retrieved that indicates whether
the analyst already possesses the distributions p̃Xi,Pa(Xi), ∀i ∈ {1, ..., N}.

Algorithm 3.4: Distributed BN Parameter Learning

Input: Datasets D1, ..., DM , BN structure G, Boolean retrieved
Result: BN parameters Θ

1 Initialize Θi = ∅, ∀ i ∈ {1, ..., N}
2 for i = 1 to N do
3 if retrieved == False then
4 for j = 1 to M do

5 QUERY(Dj): retrieve local c̃
(j)
Xi,Pa(Xi)

6 Estimate global p̃Xi,Pa(Xi) = 1
n

∑M
j=1 c̃

(j)
Xi,Pa(Xi)

7 Compute Θ̃i = p̃Xi|Pa(Xi) (by marginalizing p̃Xi,Pa(Xi))

8 Add Θ̃i to Θ̃

9 Return Θ̃

Notice that, in contrast to Algorithm 3.3, no perturbation is performed in Algorithm
3.4. Since the analyst is not trusted, it is the data holders’ responsibility to properly
perturb their local frequency distributions, and handle any negative frequencies that may
appear, prior to sharing them. Although it is a straightforward application of the Laplace
mechanism, we explain in detail how each data holder properly perturbs its local frequency
distribution in Section 3.4.1.
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3.4 Sharing the Noisy Sufficient Statistics

The first approach to answering the What to share? question is based on asking each
data holder to share its part of the sufficient statistics, that is, all (k + 1)-dimensional
frequency distributions. In doing so, the analyst is able to compose the global sufficient
statistics (since the empirical frequency distribution is composable by simply summing
the counts), and evaluate the scoring function for all candidate structures. In that sense,
this approach, which we call Sharing the Noisy Sufficient Statistics (Algorithm 3.5), is an
exact approach.

Algorithm 3.5: Sharing the Noisy Sufficient Statistics

Input: Datasets D1, ..., DM , BN degree k
Output: BN structure G

1 Initialize G = ∅ and V = ∅
2 for each A′ ⊆ A such that |A′| = k + 1 do
3 for j = 1 to M do

4 QUERY(Dj): retrieve local c̃
(j)
A′

5 Estimate global p̃A′ = 1
n

∑M
j=1 c̃

(j)
A′

6 Arbitrarily select an attribute X from A
7 Add (X, ∅) to G and X to V
8 for i=1 to N-1 do
9 Initialize Ω = ∅

10 for each X ∈ A \ V do
11 for each Pa(X) ⊆ V such that |Pa(X)| ≤ k do
12 Compute p̃X,Pa(X), p̃X , p̃Pa(X) by marginalizing the proper

distributions, and then Ĩ(X; Pa(X))

13 Add (X, Pa(X), Ĩ(X; Pa(X))) to Ω

14 Select (X,Pa(X)) with the highest Ĩ(X; Pa(X))
15 Add (X,Pa(X)) to G and X to V

16 Return G

In order to satisfy differential privacy, each data holder responds to the queries on its
dataset using the Laplace mechanism. We provide a more detailed analysis of the privacy
guarantees of Algorithm 3.5 in Section 3.4.1.

Once the analyst collects the frequency distributions, it does not need to access the
data again. This leads to the following two significant advantages:

- First, with the (noisy) sufficient statistics to estimate the empirical mutual informa-
tion at hand, any algorithm (e.g. local search) can be used to address the structure
learning optimization problem. Nevertheless, as shown in Algorithm 3.5, we keep
using the greedy extension of the Chow-Liu Algorithm (to fairly compare the ap-
proaches we examine).

- Second, once the structure learning phase is completed, the parameter learning Al-
gorithm 3.4 utilizes the already-retrieved distributions, and hence the entire privacy
budget can be consumed in the structure learning phase.

On the downside, each data holder has to share
(
N
k+1

)
frequency distributions, which

may be prohibitive for high-degree Bayesian Networks, in terms of both perturbation
and communication cost. To attack this problem, we could examine more sophisticated
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techniques in sharing the required frequency distributions, like the ones we presented in
Section 3.1.2. Nevertheless, as Xu et al. [63] demonstrate, even the naive application
of the Laplace mechanism performs sufficiently well compared to such techniques for a
variety of datasets.

In the next two subsections, we provide a detailed privacy and accuracy analysis of
Algorithm 3.5.

3.4.1 Privacy Analysis

We first examine the privacy guarantees of Algorithm 3.5. The following theorem quantifies
the amount of noise each data holder must add to each frequency distribution it shares
in order to preserve differential privacy. Recall that the frequency distribution cA′ of the
attributes in A′ can be viewed as a d-dimensional vector, where d = |dA′ |.

Theorem 3.4. Let b =
2( N
k+1)
ε . If, ∀A′ ⊆ A such that |A′| = k+1, each data holder shares

c̃A′ = cA′ + η, where η = [η1 η2 ... ηd]
T is a random vector of i.i.d. Laplace(0, b) entries,

then Algorithm 3.5 preserves ε-differential privacy for any dataset Dj (j ∈ {1, ...,M}).

Proof. Let D, D′ = D∪{x′}\{x} be two adjacent datasets of the same size, possessed
by an arbitrary data holder. Assume that xA′ = dA′ [j] for some j ∈ {1, ..., d}, that is,
the attributes A′ in x take the j-th value from their joint domain dA′ . Accordingly,
assume that x′A′ = dA′ [j

′] for some j′ ∈ {1, ..., d}. The sensitivity of the frequency
distribution c is:

∆c = max
D,D′
||c(D)− c(D′)||1 = max

D,D′

d∑
i=1

|ci(D)− ci(D′)|

= |cj(D)− (cj(D)− 1)|+ |cj′(D)− (cj′(D) + 1)| = 2

since removing x from the dataset will cause the count of dA′ [j] to decrease by one, and
adding x′ to the dataset will cause the count of dA′ [j

′] to increase by one. By simple
application of the Laplace mechanism, it follows that adding i.i.d. Laplace(0, ∆c

ε′ ) noise
to each count will preserve ε′-differential privacy.

The untrusted analyst interacts with the data only by viewing the underlying frequency
distributions. In total, each data holder shares

(
N
k+1

)
frequency distributions, and to

compute each of them, a new data access is required. Therefore, by the composition
theorem, if ε′ = ε

( N
k+1)

, the overall algorithm preserves ε-differential privacy.

3.4.2 Accuracy Analysis

To argue about the accuracy of Algorithm 3.5, we examine in detail part of the pipeline
it implements.

For each A′ ⊆ A such that |A′| = k + 1, each data holder computes the (local)
joint frequency distribution of the attributes in A′. Therefore, if c(j) is the distribution
that holder j ∈ {1, ...,M} computes, then, assuming that |dA′ | = d, holder j shares the
following d-dimensional vector:

c̃(j) = c(j) + η(j) = [c
(j)
1 c

(j)
2 ... c

(j)
d ]T + [η

(j)
1 η

(j)
2 ... η

(j)
d ]T = [c̃

(j)
1 c̃

(j)
2 ... c̃

(j)
d ]T
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where η(j) is picked as described in Theorem 3.4. Then, the analyst collects the noisy
vectors c̃(1), ..., c̃(M), it merges them as:

c̃ =
M∑
j=1

c̃(j) =
M∑
j=1

c(j) + η(j) = c +
M∑
j=1

η(j)

and it estimates the corresponding probability distribution p̃ = 1
n′ c̃. Notice that:

n′ =
d∑
i=1

M∑
j=1

c̃
(j)
i =

d∑
i=1

M∑
j=1

c
(j)
i + η

(j)
i = n+

d∑
i=1

M∑
j=1

η
(j)
i

so n′ is the sum of the actual total dataset size n, plus the sum of d×M zero-mean Laplace
random variables, and, hence, it is also random with E[n′] = n. To simplify our analysis,
we assume that the analyst divides by n and we ignore the consistency issues this causes
to the corresponding probability distribution. The resulting vector p̃ = p̃A′ (we have so
far skipped the subscript A′ for simplicity in presentation), is subsequently utilized in the
following two ways:

- To compute the joint entropy of the attributes in A′, H̃(A′).

- To compute the joint probability distributions of attributes in subsets of A′ by
marginalization, and then, their joint entropies.

Once the analyst has computed all the required entropies, it may compute the mutual
information between an attribute X and its candidate parent set Pa(X), utilizing the
well-known formula:

Ĩ(X; Pa(X)) = H̃(X) + H̃(Pa(X))− H̃(X,Pa(X))

The pipeline we described is (partly) depicted in the diagram below.

c
(1)
i c̃

(1)
i . . . p̃1

...
...

c
(j)
i c̃

(j)
i + c̃i p̃i H(•) H̃(A′)

...
...

c
(M)
i c̃

(M)
i . . . p̃d

+η
(1)
i

+η
(j)
i

× 1
n

+η
(M)
i

The aforementioned process is executed for all
(
N
k+1

)
sets A′. Thus, when the an-

alyst needs to compute the mutual information between X and Pa(X), it first selects
a set A′ such that {X} ∪ Pa(X) ⊆ A′. Then, it performs the necessary marginaliza-
tions, to extract p̃X , p̃Pa(X), p̃X,Pa(X); the last distribution needs to be computed only if
{X}∪Pa(X) ⊂ A′ - otherwise the analyst already has it. Finally, after computing the en-
tropies of these three distributions (H̃(X), H̃(Pa(X)), and -potentially- H̃(X,Pa(X))),



28 Distributed Bayesian Network Learning with Differential Privacy

the analyst utilizes them to estimate I(X; Pa(X)). Of course, in practice, the analyst
would not need to compute the entropies, as the mutual information can be derived di-
rectly from the probability distributions. Nevertheless, we adopt this approach to facilitate
our theoretical analysis of the algorithm.

Our main argument is that, if the noisy entropy estimate H̃(A′) for an arbitrary set
A′ is close to the true entropy H(A′), then so will be the mutual information estimates
computed over the course of the algorithm, and therefore, Algorithm 3.5 will construct a
BN structure that accurately encodes the data distribution.

Before starting our analysis, we point out that we use the Big O for multiple variables
as described by Cormen et al. [13], despite the inconsistencies demonstrated by Howell
[37], so for a vector x ∈ Rn and two functions f, g defined on some subset of Rn:

f(x) = O(g(x)) as x→∞

⇔ ∃M,∃C > 0 such that ∀x with ||x||∞ ≥M , |f(x| ≤ C|g(x)|

In practice, we may be interested in settings where some of the variables are fixed (for
instance, we may not care about having an arbitrarily large number of data holders).
If this is the case, we may view these variables as constants, which would simplify the
resulting expressions.

We start our analysis with a few useful lemmas. Proving the first of them (Lemma
3.2) involves tedious computations; equivalent results were obtained by Harris [35].

Lemma 3.2. Let c = [c1 ... cd]
T be a random vector that follows a multinomial distribution

with parameters n,p, where p = [p1 ... pd]
T and

∑d
i=1 pi = 1. Then, ∀i ∈ {1, ..., d}, the

first 6 moments of ci are:

E[ci] = npi

E[c2
i ] = n2p2

i + n(−p2
i + pi)

E[c3
i ] = n3p3

i + n2(−3p3
i + 3p2

i ) + n(2p3
i − 3p2

i + pi)

E[c4
i ] = n4p4

i + n3(−6p4
i + 6p3

i ) + n2(11p4
i − 18p3

i + 7p2
i )

+n(−6p4
i + 12p3

i − 7p2
i + pi)

E[c5
i ] = n5p5

i + n4(−10p5
i + 10p4

i ) + n3(35p5
i − 60p4

i + 25p3
i )

+n2(−50p5
i + 110p4

i − 75p3
i + 15p2

i )

+n(24p5
i − 60p4

i + 50p3
i − 15p2

i + pi)

E[c6
i ] = n6p6

i + n5(−15p6
i + 15p5

i ) + n4(85p6
i − 150p5

i + 65p4
i )

+n3(−225p6
i + 525p5

i − 390p4
i + 90p3

i )

+n2(274p6
i − 750p5

i + 715p4
i − 270p3

i + 31p2
i )

+n(−120p6
i + 360p5

i − 390p4
i + 180p3

i − 31p2
i + pi)

In addition, for j 6= i:

E[cicj ] = n(n− 1)pipj

E[c2
i cj ] = n(n− 1)pipj + n(n− 1)(n− 2)p2

i pj

In proving the next Lemma 3.3 we utilize the multinomial theorem, the linearity of
expectations and the independence assumption between the Laplace random variables.

Lemma 3.3. Let η1, ..., ηM be i.i.d. Laplace(0, b) random variables. Then, ∀i ∈ {1, ...,M}
and for some κ ∈ N:

E[ηκi ] =

{
0 if κ is odd
bκκ! if κ is even
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Also, taking into account that:

E[(
M∑
i=1

ηi )κ] =
∑

(κ1,κ2,...,κM ):
κ1+κ2+...+κM=κ

κ!

κ1!κ2!...κM !

M∏
i=1

E[ηκii ]

it follows that:

E[
M∑
i=1

ηi] = 0 , E[(
M∑
i=1

ηi )2] = 2Mb2

E[(

M∑
i=1

ηi )3] = 0 , E[(

M∑
i=1

ηi )4] = 12(M2 +M)b4

E[(
M∑
i=1

ηi )5] = 0 , E[(
M∑
i=1

ηi )6] = 240(M3 + 2M)b6

Lemma 3.4 is an application of the well-known Cauchy-Schwarz inequality on the
expectations of random variables.

Lemma 3.4. For any two random variables X and Y :

|E[XY ]| ≤
√
E[X2]E[Y 2]

where equality holds if and only if X = cY for some constant c ∈ R.

The next Lemma 3.5 will allow us to bound sums that appear in our analysis.

Lemma 3.5. Let p = [p1 ... pd]
T be a probability distribution over a discrete alphabet of

size d, and let 0 < pmin ≤ pi, ∀i ∈ {1, ..., d}. Then:

(i)
d∑
i=1

1

(pi)κ
≤ d

(pmin)κ
= O(

d

(pmin)κ
) (for some κ ∈ N)

If, in addition, pmin <
1
e2

, then:

(ii)

d∑
i=1

(1 + log pi)
2 ≤ d(1 + log pmin)2 = O(d log2 pmin)

(iii)
d∑
i=1

|1 + log pi|
pi

≤ d |1 + log pmin|
pmin

= O(
d log pmin
pmin

)

(iv)
d∑
i=1

|1 + log pi|
(pi)2

≤ d |1 + log pmin|
(pmin)2

= O(
d log pmin
(pmin)2

)

The asymptotic expressions hold for d→∞, pmin → 0.

We make the following remarks concerning the proofs of the inequalities that appear
in Lemma 3.5:

- Inequality (i): the proof is trivial.

- Inequalities (ii), (iii), (iv): the function f(x) = |1 + log(x)|, x ∈ (0, 1], has the
following behavior:
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1
e2
≤ x ≤ 1 ⇔ f(x) ≤ 1

0 < x < 1
e2
⇔ f(x) > 1 and f is monotonically decreasing.

Thus, if pmin <
1
e2

, then maxi f(pi) = f(pmin). Taking this into account, we derive
the desired results by simple algebra.

For example, we apply inequalities (i) and (ii) for a uniform distribution (assuming d ≥
8⇔ pmin = 1

d <
1
e2

):∑d
i=1

1
(pi)κ

=
∑d

i=1
1

( 1
d

)κ
= dκ+1

∑d
i=1(1 + log pi)

2 = d(1 + log 1
d)2

The last Lemma 3.6 is due to Basharin [4] who first examined the properties of the
empirical entropy estimator, and Harris [35], who performed a much more detailed analysis.

Lemma 3.6. Let p = [p1 ... pd]
T be a probability distribution over a discrete alphabet of

size d, and let H(p) = −
∑d

i=1 pi log2 pi be the entropy functional of p. The empirical
entropy entropy estimator is computed as:

Ĥ = H(p̂) = −
d∑
i=1

p̂i log2 p̂i = − log2(e)
d∑
i=1

p̂i log p̂i

where p̂ is the maximum likelihood estimate of p using n independent data points.
Ignoring the log2(e) scale factor, the bias and mean squared error of Ĥ are:

E[Ĥ −H] = − d− 1

2n
+

1−
∑d

i=1
1
pi

12n2
+O(

1

n3
)

E[(Ĥ −H)2] =

∑d
i=1 pi log2

2 pi −H2

n
+
d2 − 1

4n2
+O(

1

n3
)

Following all previous authors on the topic, we also ignore the scale factor in our
analysis, and work with the entropy defined using the natural logarithm. This has no
essential effect on the computation, and at the end, we can multiply everything through
by log2(e) to change the base back to base two.

Taking these into account, we provide two theorems that give the conditions under
which our distributed, differentially private entropy estimator accurately approximates
the true entropy. In the first (Theorem 3.5), we examine the estimator’s bias.

Theorem 3.5. The absolute bias of the distributed, differentially private entropy estimator
H̃ used by Algorithm 3.5 is:

| E[H̃ −H] | =
d− 1

2n
+O(

dMb2

pminn2
+

dMb2

(pmin)2n3
+

dM2b4

(pmin)3n4
)

If pmin = ω( 1
n) and we pick ε = ω(

√
M

pminn
Nk+1), then the noise terms get dominated by

the O( dn) term, and the bias of H̃ converges asymptotically to that of the empirical entropy

estimator Ĥ (Lemma 3.6).

Proof. Let k be the degree of the target Bayesian Network. We fix a set of attributes
A′ ⊆ A such that |A′| = k + 1, and assume |dA′ | = d. For simplicity in presentation,
we skip the subscripts and denote the joint frequency and probability distributions of
the attributes in A′ by c and p respectively.
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Recall that, based on the algorithm’s pipeline and our assumptions:

c̃ = c +

M∑
j=1

η(j)

so c̃ is the sum of vector c ∼ Multinomial(n,p) and M i.i.d. Laplace(0, b) random

vectors (with independent entries). Each entry in c̃ is computed as c̃i = ci +
∑M

j=1 η
(j)
i ,

∀i ∈ {1, ..., d}. We utilize Lemmas 3.2 and 3.3, and we use red fonts to emphasize the
additive terms that emerge due to the perturbation:

E[c̃i] = npi

E[c̃2
i ] = n2p2

i + n(−p2
i + pi) + 2Mb2

E[c̃3
i ] = n3p3

i + n2(−3p3
i + 3p2

i ) + n(2p3
i − 3p2

i + pi + 6piMb2)

E[c̃4
i ] = n4p4

i + n3(−6p4
i + 6p3

i ) + n2(11p4
i − 18p3

i + 7p2
i + 12p2

iMb2)

+n[−6p4
i + 12p3

i − 7p2
i + pi + 12(−p2

i + pi)Mb2]

+12(M2 +M)b4

E[c̃5
i ] = n5p5

i + n4(−10p5
i + 10p4

i ) + n3(35p5
i − 60p4

i + 25p3
i + 20p3

iMb2)

+n2[−50p5
i + 110p4

i − 75p3
i + 15p2

i + 60(−p3
i + p2

i )Mb2]

+n[24p5
i − 60p4

i + 50p3
i − 15p2

i + pi

+(40p3
i − 60p2

i + 20pi)Mb2 + 60pi(M
2 +M)b4]

E[c̃6
i ] = n6p6

i + n5(−15p6
i + 15p5

i ) + n4(85p6
i − 150p5

i + 65p4
i + 30p4

iMb2)

+n3[−225p6
i + 525p5

i − 390p4
i + 90p3

i + 180(−p4
i + p3

i )Mb2]

+n2[274p6
i − 750p5

i + 715p4
i − 270p3

i + 31p2
i

+(330p4
i − 540p3

i + 210p2
i )Mb2 + 180p2

i (M
2 +M)b4]

+n[−120p6
i + 360p5

i − 390p4
i + 180p3

i − 31p2
i + pi

+30(−p2
i + pi)Mb2 + 180(−p2

i + pi)(M
2 +M)b4]

+240(M3 + 2M)b6

In addition, for j 6= i:

E[c̃ic̃j ] = n(n− 1)pipj

E[c̃2
i c̃j ] = n3p2

i pj + n2(−3p2
i pj + pipj) + n(2p2

i pj − pipj + 2pjMb2)

Noting that p̃i = c̃i
n ⇒ E[p̃κi ] =

E[c̃κi ]
nκ (∀κ ∈ N), and thus, E[p̃i] = npi

n = pi, we compute
the central moments of each p̃i:

E[p̃i − pi] = 0

E[(p̃i − pi)2] =
1

n
(−p2

i + pi) +
1

n2
2Mb2

E[(p̃i − pi)3] =
1

n2
(2p3

i − 3p2
i + pi)

E[(p̃i − pi)4] =
1

n2
(3p4

i − 6p3
i + 3p2

i )

+
1

n3
[−6p4

i + 12p3
i − 7p2

i + pi + 12(−p2
i + pi)Mb2]

+
1

n4
12(M2 +M)b4

E[(p̃i − pi)5] =
1

n3
(−20p5

i + 50p4
i − 40p3

i + 10p2
i )
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+
1

n4
[24p5

i − 60p4
i + 50p3

i − 15p2
i + pi

+(40p3
i − 60p2

i + 20pi)Mb2]

E[(p̃i − pi)6] =
1

n3
(−15p6

i + 45p5
i − 45p4

i + 15p3
i )

+
1

n4
[130p6

i − 390p5
i + 415p4

i − 180p3
i + 25p2

i

+(90p4
i − 180p3

i + 90p2
i )Mb2]

+
1

n5
[−120p6

i + 360p5
i − 390p4

i + 180p3
i − 31p2

i + pi

+30(−p2
i + pi)Mb2 + 180(−p2

i + pi)(M
2 +M)b4]

+
1

n6
240(M3 + 2M)b6

In addition, for j 6= i:

E[(p̃i − pi)(p̃j − pj)] =
1

n
pipj

E[(p̃i − pi)2(p̃j − pj)] =
1

n2
(2p2

i pj − pipj)

We take a third order Taylor expansion (with remainder) of H̃ around the true entropy
H:

H̃ = H −
d∑
i=1

(1 + log pi)(p̃i − pi)−
1

2

d∑
i=1

(p̃i − pi)2

pi
+

1

6

d∑
i=1

(p̃i − pi)3

p2
i

− 1

12

d∑
i=1

(p̃i − pi)4

[(1− c)pi + cp̃i]3

where c ∈ [0, 1]. We next take E[H̃], and by linearity of expectations, we examine the
expectation of each term in the Taylor expansion separately:

d∑
i=1

(1 + log pi)E[p̃i − pi] = 0

d∑
i=1

E[(p̃i − pi)2]

pi
=

d∑
i=1

1

n

−p2
i + pi
pi

+
1

n2
2Mb2

1

pi

=
d− 1

n
+

2Mb2
∑d

i=1
1
pi

n2

=
d− 1

n
+O(

dMb2

pminn2
)

d∑
i=1

E[(p̃i − pi)3]

p2
i

=

d∑
i=1

1

n2

2p3
i − 3p2

i + pi
p2
i

=
2− 3d+

∑d
i=1

1
pi

n2

= O(
d

pminn2
)

d∑
i=1

E[
(p̃i − pi)4

[(1− c)pi + cp̃i]3
] ≤

d∑
i=1

E[(p̃i − pi)4]

(1− c)3p3
i
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=
3− 6d+ 3

∑d
i=1

1
pi

(1− c)3n2

+
−6 + 12d− 7

∑d
i=1

1
pi

+
∑d

i=1
1
p2
i

(1− c)3n3

+
12Mb2(−

∑d
i=1

1
pi

+
∑d

i=1
1
p2
i
)

(1− c)3n3

+
12(M2 +M)b4

∑d
i=1

1
p3
i

(1− c)3n4

= O(
d

pminn2
+

dMb2

(pmin)2n3
+

dM2b4

(pmin)3n4
)

To derive the asymptotic expressions, we utilize lemma 3.5.
Let us review the variables that appear in our expression:

- n: total number of data points (n→∞).

- d: joint domain size of attributes whose entropy we estimate (d→∞).

- M : number of data holders (M →∞).

- b: noise scale (b→∞). Recall that b =
( N
k+1)
ε = O(N

k+1

ε ), so:

- N : total number of attributes (N →∞).

- ε: is the privacy budget (ε→ 0).

- pmin: minimum entry in joint probability distribution of attributes whose entropy
we estimate (pmin → 0).

So, for example, the O( d
pminn2 ) terms get dominated by the O( dMb2

pminn2 ) term.
Combining the above yields:

| E[H̃ −H] | =
d− 1

2n
+O(

dMb2

pminn2
+

dMb2

(pmin)2n3
+

dM2b4

(pmin)3n4
)

Therefore, to ensure that the bias of H̃ converges asymptotically to that of Ĥ, the
following must hold:

dMb2

pminn2 = o( d
n )

dMb2

(pmin)2n3 = o( d
n )

dM2b4

(pmin)3n4 = o( d
n )

⇔

{
ε = ω(

√
M

pminn
Nk+1)

pmin = ω( 1
n)

which completes the proof.

We next examine the estimator’s mean squared error (Theorem 3.6).

Theorem 3.6. Assume that the data distribution p satisfies pmin <
1
e2

, pmin = ω( 1√
n

)

and σ2 = O(d2), where σ2 = (
∑d

i=1 pi log2 pi)−H2.

Then, if we pick ε = ω(
√

M
n N

k+1| log(pmin)|), the mean squared error of the distributed,

differentially private entropy estimator H̃ used by Algorithm 3.5 is:

E[(H̃ −H)2] =
σ2

n
+ o(

σ2

n
)
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and it converges asymptotically to that of the empirical entropy estimator Ĥ (Lemma 3.6).

Proof. The proof of Theorem 3.6 follows that of Theorem 3.5, but involves much more
complicated computations. We therefore focus on the asymptotic behavior of the quan-
tities involved in our analysis, and we analytically compute only the dominant ones.
We begin by deriving asymptotic expressions for the central moments of each p̃i (as

n,M, b→∞), introducing the notation θ = Mb2

n2 :

E[p̃i − pi] = 0

E[(p̃i − pi)2] = O(
1

n
+
Mb2

n2
) = O(

1

n
+ θ)

E[(p̃i − pi)3] = O(
1

n2
)

E[(p̃i − pi)4] = O(
1

n2
+
Mb2

n3
+
M2b4

n4
) = O(

1

n2
+
θ

n
+ θ2)

E[(p̃i − pi)5] = O(
1

n3
+
Mb2

n4
) = O(

1

n3
+

θ

n2
)

E[(p̃i − pi)6] = O(
1

n3
+
Mb2

n4
+
M2b4

n5
+
M3b6

n6
)

= O(
1

n3
+

θ

n2
+
θ2

n
+ θ3)

In addition, for j 6= i:

E[(p̃i − pi)(p̃j − pj)] = O(
1

n
)

E[(p̃i − pi)2(p̃j − pj)] = O(
1

n2
)

We are also interested in higher order cross moments, so we apply Lemma 3.4:

E[(p̃i − pi)2(p̃j − pj)2] ≤
√
E[(p̃i − pi)4]E[(p̃j − pj)4]

=

√
O(

1

n2
+
θ

n
+ θ2)2

= O(
1

n2
+
θ

n
+ θ2)

E[(p̃i − pi)(p̃j − pj)3] ≤
√

E[(p̃i − pi)2]E[(p̃j − pj)6]

=

√
O(

1

n
+ θ) O(

1

n3
+

θ

n2
+
θ2

n
+ θ3)

= O(
1

n2
+
θ

1
2

n
3
2

+
θ

n
+
θ

3
2

n
1
2

+ θ2)

E[(p̃i − pi)2(p̃j − pj)3] ≤
√

E[(p̃i − pi)4]E[(p̃j − pj)6]

=

√
O(

1

n2
+
θ

n
+ θ2) O(

1

n3
+

θ

n2
+
θ2

n
+ θ3)

= O(
1

n
5
2

+
θ

1
2

n2
+

θ

n
3
2

+
θ

3
2

n
+
θ2

n
1
2

+ θ
5
2 )

E[(p̃i − pi)3(p̃j − pj)3] ≤
√
E[(p̃i − pi)6]E[(p̃j − pj)6]

=

√
O(

1

n3
+

θ

n2
+
θ2

n
+ θ3)2
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= O(
1

n3
+

θ

n2
+
θ2

n
+ θ3)

We take a second order Taylor expansion (with remainder) of H̃ around the true entropy
H, and examine the quantity (H̃ −H)2:

(H̃ −H)2 = [ H −
d∑
i=1

(1 + log pi)(p̃i − pi)−
1

2

d∑
i=1

(p̃i − pi)2

pi

+
1

6

d∑
i=1

(p̃i − pi)3

[(1− θ)pi + θp̃i]2
−H ]2

= [

d∑
i=1

(1 + log pi)(p̃i − pi) ]2

+
1

4
[

d∑
i=1

(p̃i − pi)2

pi
]2

+
1

36
[

d∑
i=1

(p̃i − pi)3

[(1− c)pi + cp̃i]2
]2

+[
d∑
i=1

(1 + log pi)(p̃i − pi) ] [
d∑
i=1

(p̃i − pi)2

pi
]

−1

3
[

d∑
i=1

(1 + log pi)(p̃i − pi) ] [

d∑
i=1

(p̃i − pi)3

[(1− c)pi + cp̃i]2
]

−1

6
[

d∑
i=1

(p̃i − pi)2

pi
] [

d∑
i=1

(p̃i − pi)3

[(1− c)pi + cp̃i]2
]

where c ∈ [0, 1]. We next take E[(H̃−H)2], and by linearity of expectations, we examine
the expectation of each term separately.
The first term, E[ [

∑d
i=1(1 + log pi)(p̃i − pi) ]2 ], involves the O( 1

n) terms E[(p̃i − pi)2]
and E[(p̃i − pi)(p̃j − pj)], so we compute it analytically:

E[ [
d∑
i=1

(1 + log pi)(p̃i − pi) ]2 ] =
d∑
i=1

(1 + log pi)
2 E[(p̃i − pi)2]

+2
d−1∑
i=1

d∑
j=i+1

(1 + log pi)(1 + log pj)

E[(p̃i − pi)(p̃j − pj)]

=
1

n
[(

d∑
i=1

pi log2 pi)−H2]

+
1

n2
2Mb2

d∑
i=1

(1 + log pi)
2

=
1

n
[(

d∑
i=1

pi log2 pi)−H2]

+O(d log2(pmin)θ)

= O(
σ2

n
) +O(d log2(pmin)θ)
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To ensure that the mean squared error of H̃ converges to that of Ĥ, we want the second
term to be dominated by the first, that is:

d log2(pmin)θ = o(
σ2

n
)

Given that σ2 = O(d2), the aforementioned condition is satisfied when:

log2(pmin)θ = o(
1

n
) ⇔ ε = ω(

√
M

n
Nk+1| log(pmin)|)

Note that the condition θ
pmin

= o( 1
n), which appeared in Theorem 3.5, implies the

condition we want to satisfy here.
We proceed with the remaining terms, based on Lemma 3.5, and on the assumption
that log2(pmin)θ = o( 1

n), which implies that θ = o( 1
n).

E[ [

d∑
i=1

(p̃i − pi)2

pi
]2 ] =

d∑
i=1

E[(p̃i − pi)4]

p2
i

+2

d−1∑
i=1

d∑
j=i+1

E[(p̃i − pi)2(p̃j − pj)2]

pipj

= O(
d2

(pmin)2
) O(

1

n2
+
θ

n
+ θ2)

= O(
d2

(pmin)2
) [O(

1

n2
) + o(

1

n2
)]

E[ [

d∑
i=1

(p̃i − pi)3

[(1− c)pi + cp̃i]2
]2 ] ≤ E[ [

d∑
i=1

(p̃i − pi)3

(1− c)2p2
i

]2 ]

=
d∑
i=1

E[(p̃i − pi)6]

(1− c)4p4
i

+2
d−1∑
i=1

d∑
j=i+1

E[(p̃i − pi)3(p̃j − pj)3]

(1− c)4p2
i p

2
j

= O(
d2

(pmin)4
) O(

1

n3
+

θ

n2
+
θ2

n
+ θ3)

= O(
d2

(pmin)4
) [O(

1

n3
) + o(

1

n3
)]

E [
d∑
i=1

(1 + log pi)(p̃i − pi)
d∑
i=1

(p̃i − pi)2

pi
]

=
d∑
i=1

(1 + log pi)

pi
E[(p̃i − pi)3] +

∑
(i,j):i 6=j

1 + log pi
pj

E[(p̃i − pi)(p̃j − pj)2]

= O(
d2 log(pmin)

pmin
) O(

1

n2
)

E [
d∑
i=1

(1 + log pi)(p̃i − pi)
d∑
i=1

(p̃i − pi)3

[(1− c)pi + cp̃i]2
]
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≤ E[
d∑
i=1

(1 + log pi)(p̃i − pi)
d∑
i=1

(p̃i − pi)3

(1− c)2p2
i

]

=
d∑
i=1

1 + log pi
(1− c)2p2

i

E[(p̃i − pi)4] +
∑

(i,j):i 6=j

1 + log pi
(1− c)2p2

j

E[(p̃i − pi)(p̃j − pj)3]

= O(
d2 log(pmin)

(pmin)2
) O(

1

n2
+
θ

1
2

n
3
2

+
θ

n
+
θ

3
2

n
1
2

+ θ2)

= O(
d2 log(pmin)

(pmin)2
) [O(

1

n2
) + o(

1

n2
)]

E [
d∑
i=1

(p̃i − pi)2

pi

d∑
i=1

(p̃i − pi)3

[(1− c)pi + cp̃i]2
]

≤ E[
d∑
i=1

(p̃i − pi)2

pi

d∑
i=1

(p̃i − pi)3

(1− c)2p2
i

]

=

d∑
i=1

E[(p̃i − pi)5]

(1− c)2p3
i

+
∑

(i,j):i 6=j

E[(p̃i − pi)2(p̃j − pj)3]

pi(1− c)2p2
j

= O(
d2

(pmin)3
) O(

1

n
5
2

+
θ

1
2

n2
+

θ

n
3
2

+
θ

3
2

n
+
θ2

n
1
2

+ θ
5
2 )

= O(
d2

(pmin)3
) [O(

1

n
5
2

) + o(
1

n
5
2

)]

We want all the resulting terms to go to zero faster than the dominant O(σ
2

n ) term.

Thus, we need to ensure that all five terms are o(σ
2

n ), which gives us five conditions to
satisfy. It is easy to see that the stronger condition, which implies the remaining four
ones is:

1

(pmin)2n
= o(1) ⇔ pmin = ω(

1√
n

)

which completes the proof.

3.5 Noisy Majority Voting

As we argued, a major limitation of the Sharing the Sufficient Statistics approach is
the high communication cost it incurs; recall that the joint frequency distribution of the
attributes in a set A′ is a vector of dimension |dA′ |, which can be quite large. To tackle
this problem, we may be tempted to ask each data holder to instead share the local
(noisy) value of the scoring function for each candidate attribute-parent pair. However,
this approach is also problematic:

- Each data holder has to share an even larger number of scores, and specifically∑k+1
i=1

(
N
i

)
scores.

- The analyst has to re-access the data to the learn the parameters.

- The empirical mutual information is non-linear, so the analyst cannot compose the
global score from local scores. A naive solution (which does not work well in practice)
would be to take the mean or median of the local scores. An alternative solution,
which we leave as an open question, would be to use a linear scoring function.
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Motivated by these observations, we propose a second answer (Algorithm 3.6) to the What
to share? question, which is based on the notion of majority voting from the distributed
machine learning literature. Specifically, each data holder incrementally reports (a noisy
version of) the highest mutual information attribute-parent pair that it would add to the
Bayesian Network. The analyst collects all votes, and adds the most-voted pair to the
structure.

Algorithm 3.6: Noisy Majority Voting

Input: Datasets D1, ..., DM , BN degree k
Output: BN structure G

1 Initialize G = ∅ and V = ∅
2 Arbitrarily select an attribute X from A; add (X, ∅) to G and X to V
3 for i=1 to N-1 do
4 Initialize multi-set votes = ∅
5 for j = 1 to M do

6 QUERY(Dj): get (X,Pa(X)) with the highest Ĩ(X,Pa(X)) , subject to:
X ∈ A \ V and Pa(X) ⊆ V

7 Add (X,Pa(X)) to votes

8 Find most-voted (X,Pa(X)) in votes (break ties arbitrarily)
9 Add (X,Pa(X)) to G and X to V

10 Return G

In order to satisfy differential privacy, each data holder responds to the queries on
its dataset using the exponential mechanism with the empirical mutual information as
scoring function and with privacy budget ε1

N−1 . This is, in fact, exactly what we describe
in Algorithm 3.2 (line 12).

Once the Bayesian Network structure is known, Algorithm 3.4 is used to learn the
parameters; the analyst now has to retrieve the N required frequency distributions to
estimate the parameters (retrieved = False), and the data holders respond to its queries
using the Laplace mechanism, with privacy budget ε2

N .

Theorem 3.7. Let ε1 and ε2 be the total privacy budget that each data holder uses in
responding to the analyst’s queries, during the structure learning phase (Algorithm 3.6) and
the parameter learning phase (Algorithm 3.4 with input retrieved = False), respectively.
Then, the overall algorithm satisfies (ε1 + ε2)-differential privacy for any dataset Dj (j ∈
{1, ...,M}).

3.6 Sharing the Noisy Model

In the final approach we examine, the data holders first learn a local (noisy) model, and
then share it with the analyst. Therefore, the answer to the What to share? question is the
model, and this is, in fact, equivalent with having each data holder locally run PrivBayes
and publish the learned model. The analyst collects the local models and aggregates them
using a technique inspired by knowledge probing; it generates a synthetic dataset using
each local model (of size proportional to that of the local dataset that was used to learn
the local model), and then it learns a global model based on the synthetic data.

Each data holder constructs its local model using Algorithms 3.2 and 3.3, which were
shown to jointly satisfy ε-differential privacy (Theorem 3.1). Since differential privacy is
immune to post-processing, we have the following theorem.
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Algorithm 3.7: Sharing the Noisy Model

Input: Datasets D1, ..., DM , BN degree k
Output: Global BN structure G

1 Initialize Dsynth = ∅
2 for k = 1 to M do

3 QUERY(Dj): get local model structure G(j), parameters Θ(j) and dataset size
nj

4 Generate Dj,synth using Prior Sampling such that |Dj,synth| = nj
5 Add Dj,synth to Dsynth

6 Run Algorithm 3.2 with input Dsynth, k and without using the exponential
mechanism in line 12, and return resulting G

Theorem 3.8. Assume that each data holder shares an ε-differentially private local model.
Then, the global model that results by aggregating the local models according to Algorithm
3.7 also satisfies ε-differential privacy for any dataset Dj (j ∈ {1, ...,M}).

Notice that, once the analyst collects the local models, it does not need to access
the data again. In particular, the analyst learns both the structure and the parameters
of the global model using the synthetic data it generates. Thus, Algorithm 3.7 has the
exact same two advantages as Algorithm 3.5; any algorithm can be used to address the
structure learning optimization problem, and the parameter learning Algorithm 3.4 utilizes
frequency distributions originating from the synthetic data.

3.7 Experimental Evaluation

In this section, we experimentally evaluate our algorithms, both on synthetic and on real-
world data. To conduct our experiments, we build a system in Python programming
language, utilizing popular libraries (namely: NumPy, pandas and NetworkX), as well as
novel libraries we develop (prob utils.py, pgm utils.py).

We use two baselines for comparison.

- As a lower bound for performance, we use the maximum likelihood estimate of the
distribution that assumes all attributes to be independent (naive-Bayes), with no
privacy constraints.

- As an upper bound, we use a probabilistic graphical model learned with the greedy
extension of the Chow-Liu algorithm (Algorithm 3.2), by centrally collecting all data
and with no privacy constraints. For the case of synthetic data, we also evaluate for
comparison the actual underlying Bayesian Network, which is known.

3.7.1 Evaluation Metric

The metric we use in our experiments is the cross entropy between the actual data distri-
bution, p, and the distribution encoded by the learned Bayesian Network, pB. The cross
entropy between the aforementioned two distributions, over the set of attributes A (with
|dA| = d) is defined as:

H(p,pB) = E
p

[− log2 pB]

= −
d∑
i=1

pi log2 pBi
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= −
d∑
i=1

pi log2 pi + pi log2

pBi
pi

= H(p) +DKL(p||pB)

where:

- H(p) is the entropy of p, which measures the expected number of bits needed to
encode an element from dA, using a coding scheme that is optimized for p,

- DKL(p||pB) is the Kullback-Leibler divergence (relative entropy) of pB from p, which
measures the expected number of extra bits needed to encode an element from dA,
using a coding scheme that is optimized for pB rather than p,

and, thus, H(p,pB) measures the expected number of bits needed to encode an element
from dA, using a coding scheme that is optimized for the learned distribution pB, rather
than the actual distribution p.

In our experiments with synthetic data, the actual data distribution p is known, so
we are able to use the aforementioned formula. However, when experimenting with real-
world data, p is unknown, so we instead use a Monte Carlo estimate of the cross entropy,
namely the empirical cross entropy Ĥ(Dtest,pB). To compute Ĥ(Dtest,pB), we reserve a
fraction (20%) of the total dataset D which we do not use when learning the Bayesian
Network model pB. Therefore, the reserved, test dataset Dtest consists of independent
data points that were randomly drawn from D, and hence can be assumed to follow the
same distribution p. We estimate the empirical cross entropy as:

Ĥ(Dtest,pB) = − 1

|Dtest|
∑

x∈Dtest

log2 pB(x)

Before proceeding, we make an additional, important remark. In theory, we have
assumed that there exist no zero-probability events in p, so that all elements in dA have
non-zero probability and, hence, pi > 0, ∀i ∈ {1, ..., d}. In practice, however, the learned
distribution pB may contain zero-probability events, since it is the maximum likelihood
estimate of p, computed using a noisy version c̃ of the observed frequency distribution
c. Even if all elements in dA are observed (which is unlikely when d is large), so that
ci > 0, ∀i ∈ {1, ..., d}, the noise added by the Laplace mechanism may cause c̃i = 0 for
some i (it actually may cause c̃i ≤ 0, but we replace negative frequencies with 0), and,
thus, pBi = 0. If this is the case, it is not hard to see that both H(p,pB) = ∞ and
Ĥ(Dtest,pB) =∞. We tackle this problem by using additive (add-one) smoothing, so ∀i,
we estimate the smoothed probability p̃′Bi based on the smoothed frequency distribution:

c̃′i = c̃i + 1 ⇒ p̃′Bi =
c̃′i

n+ d

3.7.2 Synthetic Data

In our first set of experiments, we use a synthetic dataset, where each data point consists of
a (relatively small) set of attributes A = {X0, ..., X6}. The first six attributes (X0 −X5)
are binary, whereas the seventh attribute (X6) is ternary, so the joint domain of the 7
attributes has size d = |dA| = 26 × 3 = 192. The actual data distribution pA = p can be
encoded by the Bayesian Network illustrated in Figure 3.3.

A tedious (but straightforward) computation gives that H(p) = 5.12 bits, whereas for
a uniform distribution p′, H(p;) = − log2( 1

192) = 7.58 bits. This illustrates that p is far
from perfectly random, and, by identifying the dependencies that are present in p, we
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Figure 3.3: Actual data distribution

Figure 3.4: Cross entropy for varying privacy budget ε.
Number of data holders: M = 3. Bayesian Network degree: k = 1.

may be able to save a significant amount of bits! If we manage to perfectly approximate
p, then we expect H(p,pB) = H(p,p) = H(p) +DKL(p||p) = 5.12 + 0 = 5.12 bits.

In all our experiments, we average each measurement over 100 independent repetitions.
In each repetition, we use prior sampling to generate a synthetic dataset of n ≈ 40, 000
data points, according to the distribution we described. We partition the n data points
among the M data holders using a round-robin partitioning scheme, so that each data
holder has b nM c data points.

In Figures 3.4 and 3.5 we observe that all algorithms perform significantly better
than the naive-Bayes, and approach the optimum value of bits per data point of the true
Bayesian Network as ε increases; Algorithm 3.5 (noisy ss) asymptotically outperforms
the other algorithms, but is more sensitive to noise. We also notice that the non-private
algorithm accurately learns the true Bayesian Network.

The key thing to notice in Figure 3.6 is the robustness of Algorithm 3.6 to the number
of data holders. On the contrary, the performance of Algortihms 3.5 and 3.7 deteriorates
as the number of data holders increases.

Finally, comparing Figures 3.4 and 3.5, and as we also observe in Figure 3.7, as the
Bayesian Network degree increases, the performance of Algorithm 3.5 (noisy ss) worsens.
This is expected, since a higher degree Bayesian Network implies the use and perturbation
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Figure 3.5: Cross entropy for varying privacy budget ε.
Number of data holders: M = 3. Bayesian Network degree: k = 2.

Figure 3.6: Cross entropy for varying number of data holders M .
Privacy budget: ε = 0.1. Bayesian Network degree: k = 1.
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Figure 3.7: Cross entropy for varying Bayesian Network degree.
Privacy budget: ε = 0.1. Number of data holders: M = 3.

of higher dimensional distributions. In contrast, Algorithms 3.6 (noisy mv) and 3.7 (noisy
model) slightly improve as the degree increases.

3.7.3 Real-World Data

In our second set of experiments, we utilize real-world data from the Diabetes dataset
([55]) of the UCI Machine Learning Repository.

The dataset was extracted from a large database that represents 10 years of clinical
care at US hospitals and includes over 50 attributes representing patient and hospital
outcomes. In particular, a total of 101,766 records (data points) were selected, based on
the following inclusion criteria:

- It is an inpatient encounter (a hospital admission).

- It is a diabetic encounter, that is, one during which any kind of diabetes was entered
to the system as a diagnosis.

- The length of stay was at least 1 day and at most 14 days.

- Laboratory tests were performed during the encounter.

- Medications were administered during the encounter.

Next, attribute (feature) selection was performed (by clinical experts) and only attributes
that were potentially associated with the diabetic condition or management were retained
(55 attributes, describing the diabetic encounters, including demographics, diagnoses, di-
abetic medications, number of visits in the year preceding the encounter, and payer in-
formation). The final attributes in each record include (among others): patient id, race,
gender, age, admission type, time in hospital, medical specialty of admitting physician,
number of lab test performed, HbA1c test result, diagnosis, number of medication, dia-
betic medications, number of outpatient, inpatient, emergency visits in the year before
the hospitalization, etc.

We perform additional pre-processing to the dataset, as we describe in the next three
steps.

- First, we remove identification-related attributes (e.g. patient id) and attributes
with a high percentage of missing values (e.g. weight - 97 percent of values are
missing). We are left with 43 attributes.



44 Distributed Bayesian Network Learning with Differential Privacy

Figure 3.8: Cross entropy for varying privacy budget ε.
Number of data holders: M = 3. Bayesian Network degree: k = 1.

- Second, we identify 3 diagnosis-related attributes with large domains (almost 1,000
values per attribute) and compress their domains into 9 general groups of diagnoses,
as described in [55]. The final domain sizes vary from 2 to 118; we have a total of
almost 1032 possible tuples, so (inevitably) we will not observe a huge number of
events.

- Third, we remove records that refer to the same patient. Such records cannot be
considered statistically independent, and, also, differential privacy is guaranteed at
a record level, so the privacy of a patient that has multiple records is violated. We
note that one solution that would allow each patient to have multiple records is the
group differential privacy guarantee. We are left with approximately 70,000 records.

In all our experiments, we average each measurement over 20 independent repetitions.
We again split the data among the data holders using a round-robin partitioning scheme.
We first experiment for varying privacy budget ε (Figure 3.8). We observe that Algorithm
3.5 (noisy ss) is significantly worse; it appears that it is highly sensitive to the data dimen-
sion and the domain sizes of the attributes, which are significantly increased compared
to the synthetic data we experimented with. Algorithm 3.6 (noisy mv) outperforms the
other two algorithms and approaches the performance of the non-private algorithm.

We next experiment for varying number of data holders. Figure 3.9 confirms the
robustness of Algorithm 3.6 (noisy mv) to the number of data holders, and validates that
-for complex datasets- Algorithm 3.6 (noisy mv) is the clear winner. The performance of
Algorithm 3.7 (noisy model) significantly worsens as number of holders increases. When
the dataset is split among a larger number of data holders, each holder possesses a smaller
dataset, and therefore the quality of the local models deteriorates. Finally, the behavior
of Algorithm 3.5 (noisy ss) may at first seem strange, as it differs from the algorithm’s
behavior in the corresponding experiment with synthetic data (Figure 3.6). This behavior
illustrates that when the data dimension and the domain sizes of the attributes are both
large, the impact of the number of data holders is not critical. A possible explanation
for the improvement in performance is that, as the number of data holders increases,
more zero-mean noise terms are added to the frequency distributions, and hence the noise
cancels out.
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Figure 3.9: Cross entropy for varying number of data holders M .
Privacy budget: ε = 0.1. Bayesian Network degree: k = 1.

3.8 Discussion

To summarize, in this chapter we addressed the problem of distributed learning of Bayesian
Networks with differential privacy. After formally describing our model and identifying
the challenges that arise when moving from a centralized to a distributed environment, we
examined three solutions, namely Sharing the Noisy Sufficient Statistics, Noisy Majority
Voting and Sharing the Noisy Model.

Our detailed experimental evaluation indicates that Noisy Majority Voting is robust
to all the parameters we examined (privacy budget, number of data holders, Bayesian
Network degree), and significantly outperforms the other algorithms when the data are
high-dimensional. We also note that the behavior of Sharing the Noisy Sufficient Statistics
is consistent with our theoretical analysis, which predicted that:

- When the privacy budget ε exceeds a certain threshold, our differentially private
entropy estimates converge to the non-private ones, and thus the learned distribution
accurately approximates the non-private one.

- When either the number of data holders M or the Bayesian Network degree k in-
creases, our differentially private entropy estimates worsen, and so does the perfor-
mance of the algorithm.
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Chapter 4

Pan-Private Stream Density
Estimation

We work in the data stream model ([30], [17]). The input is represented as a finite sequence
of tuples (from some finite domain) which is not available for random access, but instead
arrives one at a time in a stream. We thus deal with dynamic data, and we assume that
each input tuple corresponds to some user from a universe U , who is identified by a unique
key (user id).

More specifically, in what follows, we consider the cashier-register streaming model:
each update is of the form (user id, update value), where the update values are strictly
positive integers. For further simplicity, we permit only unit updates, so the stream can
be viewed as a sequence of user id’s. Each user is mapped to a state that accumulates the
user’s updates. We note that, although our work does not apply to the (most general)
turnstile streaming model, where negative updates are also allowed, it can be extended
to the special case where both unit insertions and unit deletions are allowed, and, at any
time step, each user’s state can be either 1 (user is present) or 0 (user is absent).

In general, streaming algorithms should be able to operate in a single pass (each tuple
is examined at most once in fixed arrival order) and in real-time (each tuple’s processing
time must be low), and should require small space. For most problems, it is not possible
to offer exact answers while satisfying these requirements, so a common approach is to
offer (α, β)-approximate answers, that is, with probability at least 1 − β the computed
answer is within an additive / multiplicative factor α of the actual answer.

The particular problem we examine is the following: given an input data stream, we
want to estimate its density, that is, the fraction of U that actually appears in the stream.
This statistic is closely related to the well-studied distinct count (a.k.a. 0th frequency
moment and Hamming norm), which expresses the number of distinct users that appear
in the stream. The density is more convenient in that it is normalized and takes values in
the [0, 1] interval.

Additionally, given that the focus of this thesis is the design of privacy-preserving al-
gorithms, we also want to protect the privacy of the users that appear in the stream. We
would like to offer a strong privacy guarantee, such as differential privacy, adjusted to the
streaming model.

Before proceeding with the technical part of this chapter, we briefly present two po-
tential applications, that motivate the study of this problem.

- We borrow this example from Dwork [20]. Consider a website for an epidemic disease
self-assessment. Users interact with the website to figure out whether the symptoms
they are experiencing may be indicative of the disease. An epidemiological study

47
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would be interested in answering queries, like the following:

SELECT COUNT( DISTINCT ip_addr )

FROM data_stream

SELECT COUNT( DISTINCT ip_addr )

FROM data_stream

WHERE symptom1 = "YES", ...

An individual’s medical record is undoubtedly an extremely sensitive piece of infor-
mation, so knowing even the presence of a user in such a website would constitute a
major privacy breach.

- We mentioned that our work can be extended to support both unit insertions and
deletions. This extension is especially useful in the context of dynamic graphs; user
id’s are replaced by edge id’s, and each update either inserts or deletes an edge. An
example sequence of updates is the following:

( (edgei, insert), (edgej , insert), (edgei, delete), ... )

The density of an undirected graph G = (V,E) is defined as: d(G) = 2|E|
|V |(|V |−1)

and expresses the fraction of edges that are present. For a dynamic graph, created
through a stream S, it is not hard to see that d(G) = d(S).

If our focus is, for example, on social graphs, which depict personal relations of Inter-
net users, then any analysis performed on the graph (such as the density estimation)
must not leak information about the existence of individual edges.

Table 4.1: Table of notations

Notation Description

U Universe of users, w.l.o.g.: U = {1, ..., |U|}
T Stream length

st Stream update at time step t: t ∈ {1, ..., T}, st ∈ U
S Input stream: S = (s1, ..., sT )

au(t) State of user u ∈ U after t updates: au(t) =
∑t

i=1 1(si = u)

a(t) State vector after t updates: a(t) = [a1(t) ... a|U|(t)]

F0(S) Number of distinct users in S: F0(S) = ||a(T )||0
d(S) Density of S: d(S) = F0(S)

|U|

4.1 Differential Privacy in the Streaming Model

So far, we have considered differential privacy on static datasets, and have assumed that
an adversary only has access to the output of the privacy-preserving algorithm. In the
model we examine in this chapter, where the data arrive dynamically in a stream, two
privacy models (definitions) have been developed ([23],[22],[20]).

- Pan-Privacy. In pan-privacy, the internal state of the algorithm is also differentially
private, as is the joint distribution of the internal state and the output. This protects
the privacy of the data in case the data holder is subject to compulsory, non-private
data release, because of a subpoena, or faces an intrusion from a hacker.
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- Continual Observation. In continual observation, the goal is to continually mon-
itor and report statistics about events that occur dynamically in discrete time steps,
and to ensure that the output sequence is differentially private. This is the case,
for example, when monitoring incidence of influenza, traffic conditions and search
trends.

The two notions provide orthogonal guarantees, and some work addresses pan-privacy
under continual observation. Let us present a simple example:

Example. Consider an algorithm that takes as input a data stream S = (s1, ..., sT ),
and upon arrival of each element si, outputs some estimate fi = f(s1, ..., si). Pan-privacy
ensures that the state of the algorithm is subject to a differential privacy constraint, so
privacy is preserved against an adversary that observes the internal state and a (single)
output of the algorithm, say fj for some j ∈ {1, ..., T}. We can think of this single out-
put as the final output, so that j = T . Differential privacy under continual observation
ensures that the entire sequence of outputs f1, ..., fT satisfies differential privacy. The two
definitions can be combined, by ensuring that the internal state, the output sequence and
their joint distribution, all satisfy differential privacy.

A very important notion in differential privacy is that of adjacency ; as we already
argued, two (static) datasets are adjacent if they differ on a single record. But how should
we define adjacency in the streaming model? When are two data streams considered to
be adjacent? We (informally) introduce the following two notions:

- Event-level privacy. Two data streams are considered event-level adjacent if they
differ on a single update st for some t ∈ {1, ..., T}. Event-level privacy protects
the privacy of st and an adversary cannot distinguish whether st did or did not
appear. In the epidemic disease self-assessment website, event-level privacy protects
the privacy of single visits to the website. In a dynamic graph, event-level privacy
protects the privacy of a single insertion / deletion of an edge between any two nodes.

- User-level privacy. Two data streams are considered user-level adjacent if they
differ on all (or some) updates that refer to a user u ∈ U . User-level privacy protects
the privacy of u and an adversary cannot distinguish whether u did or did not ever
appear, independently of the actual number of appearances of u. In the epidemic
disease self-assessment website, user-level privacy protects the privacy of all the visits
of a user (IP-address) to the website. In a dynamic graph, user-level privacy protects
the privacy of any edge, regardless of how many times this edge has been inserted
deleted.

As in the case of static datasets, the word “differ” in the phrases “differ on a single
update” and “differ on all (or some) updates that refer to a user” can be interpreted in
two ways. According to the first interpretation, the different updates are present in the
one data stream and absent in the other; in the traditional differential privacy model,
this interpretation would lead to unbounded differential privacy. According to the second
interpretation, the different updates are present in both data streams, but refer to two
different users; in the traditional differential privacy model, this interpretation would lead
to bounded differential privacy.

The privacy level affects the amount of perturbation used, so a much stronger guarantee
like user-level privacy requires excessively more perturbation. Kellaris et al. [42] attempt
to bridge the gap between event-level and user-level privacy and develop a framework
in-between; they introduce w-event privacy, which protects any event sequence occurring
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within a window of w time steps.

For completeness, and before proceeding with our specific problem (density estima-
tion), we present the basic definitions for both pan-privacy and continual observation,
along with some related work.

4.1.1 Pan-Privacy

As we already argued, the definition of pan-privacy aims to protect against an adversary
that can, on rare occasions, observe the internal state of the algorithm. This is, of course, in
addition to the standard -for differential privacy- assumptions about the adversary having
arbitrary control over the input, arbitrary prior knowledge and arbitrary computational
power.

Before formally defining the model, we remark that ordinary streaming algorithms
based on sampling and sketching techniques do not provide the pan-privacy guarantee.
Sampling techniques maintain information about a subset of the users, so an intruder
with access to the sample (the internal state of the algorithm) would violate the privacy
of the sampled users. Sketching techniques, like the FM Sketch [26] and the Count-Min
Sketch [14], which are based on hashing also cannot protect the privacy of the users against
an adversary who has access to the hash functions used; the hash functions are part of the
internal state.

Definition 4.1 (Adjacency). Data streams S and S ′ are (user-level) adjacent, denoted as
adj(S,S ′), if they differ only in the presence or absence of all (or some) occurrences of a
single user u ∈ U .

Notice that in Definition 4.1, we use the first interpretation of the word “differ” in
defining adjacent data streams, following Dwork et al. [23]. Therefore, two adjacent data
streams cannot have the same length. Mir et al. [46], for instance, adopt the second
interpretation, as one of the pan-private algorithms they propose requires that the total
sum of updates over all users stays the same; they replace all (or some of) the updates
that refer to user u by updates that refer to another user u′ (with the same total sum).

Definition 4.2 (Pan-privacy). Let Alg be a randomized algorithm. Let I denote its set
of internal states, and let O denote its set of possible outputs. Then Alg, mapping data
streams of finite length T to the range I × O, is ε-pan-private against a single intrusion,
if for all sets I ⊆ I and O ⊆ O, and for all pairs of adjacent data streams S,S ′

P[Alg(S) ∈ (I,O)] ≤ eε P[Alg(S ′) ∈ (I,O)]

where the probability space is over the coin flips of Alg.

We remark that Definition 4.2 speaks only of a single intrusion. To handle multiple
intrusions, we must consider interleavings of observations of internal states and output
sequences. We also have to differentiate between announced and unannounced intrusions.
In the former case (e.g. subpoena), the algorithm knows that an intrusion occurred, so it
can re-randomize its state and handle multiple announced intrusions. In the latter case
(e.g. hacking), the algorithm can only tolerate a single unannounced intrusion and strong
negative results have been proved for even two unannounced intrusions.

So far, two works have addressed the challenge of developing pan-private streaming
algorithms. They both examine variants of the same problems, applying different tech-
niques. Dwork et al. [23] work in the cashier-register streaming model and develop algo-
rithms based on sampling and randomized response. Mir et al. [46] work in the turnstile
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streaming model and rely on both existing and novel sketches; they also develop a general
noise-calibrating technique for sketches. The problems examined are the following:

- Density estimation / Distinct count: the fraction of U that appears / the number of
users with nonzero state.

- t-cropped mean / t-cropped first moment: the average / sum, over all users, of the
minimum of t and the number of appearances of the user.

- Fraction of k-heavy hitters / k-heavy hitters count: the fraction / number of users
that appear at least k times.

- t-incidence estimation: the fraction of users that appear exactly t times.

In our work, we aim to offer the user-level pan-privacy guarantee (against a single
intrusion). Our objective is to estimate the density of the given input stream, and our
algorithms are based on the density estimator of Dwork et al. [23]. The algorithm proposed
by Mir et al. [46] for the (similar) distinct count problem relies on the `0 Sketch, which is
due to Cormode et al. [15] and utilizes a family of distributions called p-stable (Indyk [39]).
Despite being particularly interesting theoretically, the pan-private algorithm of Mir et al.
[46] is extremely impractical as it involves an application of the exponential mechanism,
which requires sampling twice from a space of 2S sketches (where S is the bit size of the
sketch). To make matters worse, in order to evaluate the exponential mechanism’s scoring
function, a Hamming norm minimization problem is solved for every single sketch, which
translates to solving 2S problems.

4.1.2 Continual Observation

As we already stated, differential privacy under continual observation addresses the need
for privacy in applications that involve repeated computations over dynamic data, and
require continually producing updated outputs. We stick to Definition 4.1 for adjacent
data streams, which means that the following definition (4.3) refers to user-level differential
privacy under continual observation.

Definition 4.3 (Differential privacy under continual observation). Let Alg be a random-
ized algorithm, and let O denote its set of possible output sequences. Then Alg, mapping
data streams of finite length T to the range O, is ε-differentially private under continual
observation if for all sets O ⊆ O, for all pairs of adjacent data streams S,S ′, and for all
t ∈ {1, ..., T},

P[Alg(S(t)) ∈ O] ≤ eε P[Alg(S ′(t)) ∈ O]

where the probability space is over the coin flips of Alg.

Although our focus is on algorithms that produce a single output, we remark that
Dwork ?? shows how to modify the pan-private density estimator developed by Dwork et
al. [23] (which, we repeat, is the baseline for our work), to produce output continually.
The resulting continual observation density estimator guarantees user-level pan-privacy
under continual observation. A similar technique can be applied to all the algorithms we
develop to allow them to produce continual output while still preserving privacy.

Dwork [20] and Dwork et al. [22] initiate the study of differential privacy under con-
tinual observation; they examine the problem of continually releasing differentially private
counts (both event-level and user-level), and they also optionally guarantee pan-privacy.
Chan et al. [8] address the exact same counter problem (independently), but they only
focus on event-level privacy, and Bolot et al. [6] extend their work by proposing decayed
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sums, which emphasize on recent data more than the data of the past (in addition to
proposing a new notion of decayed privacy). Chan et al. [9] report the heavy hitters
instead of the counter values in various models (e.g. untrusted aggregator), also ensuring
event-level privacy.

A few works examine problems beyond counting. Fan et al. [25] propose a framework
to release real-time aggregate statistics under differential privacy, based on filtering and
adaptive sampling; they focus on user-level privacy. The next authors examine event-
level privacy. Friedman et al. [28] develop a framework for privacy-preserving distributed
stream monitoring based on the geometric method [53], which enables monitoring arbitrary
functions over statistics derived from distributed data streams. Bonomi et al. [7] com-
pute the longest increasing subsequence in a differentially private manner, and Upadhyay
[58] examines the connections between (ε, δ)-differential privacy and linear algebra in the
streaming model, for low-rank approximation, linear regression and matrix multiplication.

4.2 Dwork’s Density Estimator

Dwork et al. [23] proposed the first user-level pan-private algorithm for the density esti-
mation problem (Algorithm 4.1). In this section, we provide a detailed presentation and
analysis of their algorithm, which we call Dwork’s Density Estimator.

Their (randomized) algorithm takes as input the data stream S whose density we wish
to estimate, as well as the desired privacy budget and accuracy parameters. For simplicity,
we assume that the length of the stream is known in advance (that is, we know that the
output will be requested after T updates), but this assumption does not affect the analysis
of the algorithm, and can easily be dropped, so that the algorithm outputs the stream
density when it receives a special signal.

The first random choice is a sampling step - the algorithm maintains information
only about a random subset of the users, in order to keep its state small. The state of
the algorithm is a bitarray with one entry per sampled user. The entries are random
bits, generated as described below; this is the second random choice of the algorithm.
For users that have not appeared in S, their entry is drawn from a uniform Bernoulli
distribution, while for users that have appeared, their entry is drawn from a slightly biased
(towards 1) Bernoulli distribution, no matter how many times they have appeared. The
two distributions should be close enough to guarantee that the state satisfies differential
privacy, but far enough to allow collection of aggregate statistics about the fraction of
users that appear at least once. The last random choice is performed via the use of the
Laplace mechanism, when outputting the final density estimate, which guarantees that
the output also satisfies differential privacy.

We now make two important remarks concerning potential extensions of Algorithm 4.1.
The techniques described in the remarks apply (slightly modified) to all the algorithms
we present, so we do not revisit them in our work.

- Algorithm 4.1 can tolerate a single (announced or unannounced) intrusion. Dwork
et al. [23] show how to handle multiple announced intrusions, by re-randomizing the
state after each intrusion has occurred.

- Algorithm 4.1 works in the cashier-register streaming model, that is, once a user
appears in the stream, it cannot be deleted. However, as we mentioned in the
introduction of this chapter, our work also applies to the case where a user u may be
both inserted and deleted (later on) from the stream. In particular, if an update of
the form (u, insert) arrives, u’s bit is drawn Bernoulli(1

2 + ε
4), whereas if an update of

the form (u, delete) arrives, u’s bit is re-drawn Bernoulli(1
2). This allows Algorithm

4.1 to perform pan-private graph density estimation as well.
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Algorithm 4.1: Dwork’s Density Estimator

Input: Data stream S, Privacy budget ε, Accuracy parameters (α, β)
Output: Density d̃(S)

1 Pick m = O( 1
ε2 α2 log 1

β ) (or compute m∗ as described in subsection 4.2.3 and set

m = m∗)
2 Sample a random subset M ⊆ U of m users (without replacement) and define an

arbitrary ordering over M
3 Create a bitarray b = [b1 ... bm] and map M [i]→ bi, ∀ i ∈ {1, ...,m}
4 Initialize b randomly: bi ∼ Bernoulli(1

2), ∀ i ∈ {1, ...,m}
5 for t = 1 to T do
6 if st ∈M then
7 Find i : M [i] = st
8 Re-sample: bi ∼ Bernoulli(1

2 + ε
4)

9 Return d̃(S) = 4
ε ( 1
m

∑m
i=1 bi −

1
2) + Laplace(0, 1

εm)

4.2.1 Privacy Analysis

We first examine the privacy guarantees of Algorithm 4.1. We have the following theorem.

Theorem 4.1. Assume ε ≤ 1
2 . Then Algorithm 4.1 satisfies 2 ε-pan-privacy.

Proof. Let S,S ′ be two adjacent streams that differ on all occurrences of user u ∈ U .
Assume w.l.o.g. that u ∈ S and u 6∈ S ′.
Firstly, the state of Algorithm 4.1 satisfies ε-differential privacy. All the information
that Algorithm 4.1 stores as its state is the bitarray b. We distinguish the following
two cases:

- If u 6∈M : perfect privacy is guaranteed, as no information is stored on user u.

- If u ∈M : let (w.l.o.g.) b1 be the entry that corresponds to u in the bitarray. Then,
assuming that u has already appeared in the stream when the adversary views b,
b1(S) is drawn from Bernoulli(1

2 + ε
4) and b1(S ′) is drawn from Bernoulli(1

2). We
thus have to bound the following probability ratios according to the differential
privacy definition:

P( b(S) = [1 b2 ... bm] )

P( b(S ′) = [1 b2 ... bm] )
=

P( b1(S) = 1 )

P( b1(S ′) = 1 )

=
1
2 + ε

4
1
2

= 1 +
ε

2

P( b(S) = [0 b2 ... bm] )

P( b(S ′) = [0 b2 ... bm] )
=

P( b1(S) = 0 )

P( b1(S ′) = 0 )

=
1
2 −

ε
4

1
2

= 1− ε

2

Noting that e− ε ≤ 1 + ε
2 ≤

∑∞
k=0 ε

kk! = eε and e− ε ≤ 1− ε
2 ≤ e

ε , ∀ ε ∈ [0, 1
2 ], it

becomes clear that user u is guaranteed ε-differential privacy against an adversary
that observes u’s entry in b.
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The output of Algorithm 4.1 (conditioned on the state) also satisfies ε-differential pri-
vacy, as it is computed by independently applying the Laplace mechanism. Specifically,
the sensitivity of d̃ is

∆d̃ = max
S,S′: adj(S,S′)

|d̃(S)− d̃(S ′)| = 1

m

so we add noise ∼ Laplace(0, 1
εm).

The overall Algorithm 4.1 satisfies 2 ε-pan-privacy. Specifically, for all possible states
(bitarrays) b and outputs (estimated densities) d̃, it holds that

P( b(S) = b , d̃(S) = d̃ ) = P( b(S) = b ) P( d̃(S) = d̃ | b(S) = b )

≤ eε P( b(S ′) = b )

eε P( d̃(S ′) = d̃ | b(S ′) = b )

= e2 ε P( b(S ′) = b , d̃(S ′) = d̃ )

so the definition of pan-privacy is satisfied.

4.2.2 Accuracy Analysis

As far as the accuracy of Algorithm 4.1 is concerned, we have two theorems. The first
quantifies the bias and mean squared error of the estimator. Although Dwork et al. [23]
demonstrate that their estimator is unbiased, they do not discuss its mean squared error.

Let SM be the subsequence (sub-stream) of the original stream S that consists only of
updates that refer to users in M . In particular, SM is constructed as:

for i = 1 to T

if si ∈M : add si to SM

Lemma 4.1. A special case of the law of total variance states that, if events A and B
partition the whole outcome space of a random variable b, then:

var(b) = var(b|A)P(A) + var(b|B)P(B)

+E[b|A]2(1− P(A))P(A) + E[b|B]2(1− P(B))P(B)

−2E[b|A]P(A)E[b|B]P(B)

Theorem 4.2. For fixed sample M , Algorithm 4.1 provides an unbiased estimate d̃ of the
density of SM and has mean squared error:

E[ (d̃− d(SM ))2 ] ≤ 2(2m+ 1)

m2 ε2

Proof. We begin with the bias computation. We examine the distribution of an arbi-
trary entry in b:

bi ∼
{

Bernoulli(1
2) M [i] 6∈ SM

Bernoulli(1
2 + ε

4) M [i] ∈ SM
Note that the distribution of bi does not depend on the number of appearances of M [i];
it only depends on whether it appeared or not.
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Now, let d̂ = 1
m

∑m
i=1 bi. Then,

E[d̂] =
1

m

m∑
i=1

E[bi]

=
1

m

m∑
i=1

E[bi|M [i] ∈ SM ]P(M [i] ∈ SM )

+E[bi|M [i] 6∈ SM ]P(M [i] 6∈ SM )

=
1

m

m∑
i=1

(
1

2
+
ε

4
)d(SM ) +

1

2
(1− d(SM ))

=
1

2
+
ε

4
d(SM )

where we interpret the probability that a user is present in the sub-stream as the density
of sub-stream. This is true if all users are considered equally likely to appear.
The final estimate (output) d̃ is then computed as d̃ = 4

ε (d̂− 1
2)+Laplace(0, 1

εm), which
gives that

E[d̃] =
4

ε
(E[d̂]− 1

2
) + E[Laplace(0,

1

εm
)] = d(SM )

so it is indeed an unbiased estimate.

We proceed with the mean squared error. Given that d̃ is an unbiased estimate of
d(SM ), its mean squared error coincides with its variance.
We make use of Lemma 4.1 and of the fact that, if b ∼ Bernoulli(p), then var(b) =
p(1 − p). In our setting, we have m Bernoulli random variables bi (i = 1, ...,m), and
for each user i, A is the event that M [i] ∈ SM and B is the event that M [i] 6∈ SM .
Therefore, bi|A ∼ Bernoulli(1

2 + ε
4) and bi|B ∼ Bernoulli(1

2). By a straightforward
computation:

var(bi) =
1

4
− ε2 d(SM )2

16

⇒ var(d̂) =
1

m2

m∑
i=1

var(bi) =
1

4m
− ε2 d(SM )2

16m

⇒ var(d̃) = (
4

ε
)2var(d̂) + var(Laplace(0,

1

εm
))

=
4

mε2
− d(SM )2

m
+

2

m2 ε2

≤ 2(2m+ 1)

m2 ε2

which completes the proof. To derive the last inequality we used the fact that 0 ≤
d(SM ) ≤ 1.

The next theorem validates that the estimator provides the desired (α, β)-approximation
of the actual stream density. In contrast to Dwork et al. [23], we parameterize the proof,
so we are then able to numerically compute the tightest version of the bound we derive.

Before presenting the theorem, we prove the following useful lemma.

Lemma 4.2. For any random variables X and Y , and for some α > 0 and δ ∈ (0, 1):

P(|X + Y | > α) ≤ P(|X| > αδ) + P(|Y | > α(1− δ))
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Proof. We have that:

{(X,Y ) : |X + Y | > α} = {(X,Y ) : X + Y > α or X + Y < −α}
= {(X,Y ) : X + Y > α}
∪ {(X,Y ) : X + Y < −α}

⊆ {(X,Y ) : X > αδ or Y > α(1− δ)}
∪ {(X,Y ) : X < −αδ or Y < −α(1− δ)}

= {(X,Y ) : X > αδ or Y > α(1− δ)
or X < −αδ or Y < −α(1− δ)}

= {(X,Y ) : |X| > αδ or |Y | > α(1− δ)}

so it follows that:

P(|X + Y | > α) ≤ P(|X| > αδ or |Y | > α(1− δ))
≤ P(|X| > αδ) + P(|Y | > α(1− δ))

where the last inequality follows by the union bound.

Theorem 4.3. If the sample maintained by Algorithm 4.1 consists of m = O( 1
ε2 α2 log 1

β )
users from U , then, for fixed input S:

P( |d̃− d(S)| ≥ α ) ≤ β

where the probability space is over the random choices of the algorithm.

Proof. Let d̂ = 1
m

∑m
i=1 bi. We apply Lemma 4.2 twice, so for some α > 0 and δ1, δ2 ∈

(0, 1):

P( |d̃− d(S)| ≥ α ) = P( |d̃− d(SM ) + d(SM )− d(S)| ≥ α )

≤ P( |d̃− d(SM )| ≥ δ1α )

+P( |d(SM )− d(S)| ≥ (1− δ1)α )

= P( |4
ε
d̂− 2

ε
+ Laplace(0,

1

εm
)− d(SM )| ≥ δ1α )

+ P( |d(SM )− d(S)| ≥ (1− δ1)α )

= P( |d̂− 1

2
+
ε

4
Laplace(0,

1

εm
)− ε

4
d(SM )|

≥ ε

4
δ1α )

+ P( |d(SM )− d(S)| ≥ (1− δ1)α )

= P( |d̂− E[d̂] +
ε

4
Laplace(0,

1

εm
)| ≥ ε

4
δ1α )

+ P( |d(SM )− d(S)| ≥ (1− δ1)α )

≤ P( |ε
4

Laplace(0,
1

εm
)| ≥ ε

4
δ1δ2α )

+ P( |d̂− E[d̂]| ≥ ε

4
δ1(1− δ2)α )

+ P( |d(SM )− d(S)| ≥ (1− δ1)α )

We examine the quantities involved in the final expression. For fixed input, d(S) is
deterministic, as we do not take into account the randomness of the input. On the
contrary, d(SM ) is random (due to sampling), d̂ is random (as a sum of Bernoulli
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random variables), E[d̂] is random (as a function of d(SM )), and d̃ is random (as the
sum of d̂ and a Laplace random variable). We therefore have 3 sources of error to
control, which correspond to the following probabilities:

- p1 = P( |d(SM )− d(S)| ≥ (1− δ1)α )

- p2 = P( |d̂− E[d̂]| ≥ ε
4δ1(1− δ2)α )

- p3 = P( | ε4Laplace(0, 1
εm)| ≥ ε

4δ1δ2α )

We want p1 + p2 + p3 ≤ β. We bound each error probability separately, so for some
δ3, δ4 ∈ (0, 1), such that δ3 + δ4 < 1, we want:

p1 < δ3β , p2 < δ4β , p3 < (1− δ3 − δ4)β

• First, we bound p1.
We define, ∀i ∈ {1, ...,m},

Xi =

{
0 M [i] 6∈ SM
1 M [i] ∈ SM

and since SM was sampled uniformly at random from S, Xi ∼ Bernoulli(d(S)). It is
easy to see that, since d(SM ) = 1

m

∑m
i=1Xi, E[d(SM )] = d(S).

Since d(SM ) is a weighted sum of i.i.d. Bernoulli random variables, we take an additive,
two-sided Chernoff bound:

p1 = P( | 1
m

m∑
i=1

Xi −
1

m

m∑
i=1

E[Xi]| ≥ (1− δ1)α ) ≤ 2e−2mα2(1−δ1)2

and, therefore:

p1 ≤ δ3β ⇔ m ≥ 1

2α2(1− δ1)2
ln(

2

βδ3
)︸ ︷︷ ︸

m1

= O(
1

α2
ln(

1

β
))

• Next, we bound p2.

As we already mentioned, both d̂ and E[d̂] = 1
2 + ε

4d(SM ) are random. d(SM ) takes
values in the set D = {0, 1

m , ...,
m−1
m , 1}, so using the law of total probability:

p2 =
∑
d∈D

P( |d̂− E[d̂]| ≥ ε

4
δ1(1− δ2)α | d(SM ) = d ) P( d(SM ) = d )

We make the following two critical remarks:

- For fixed d(SM ) = d, E[d̂] is no longer random.

- Let di, i ∈ {1, ...,m} denote the distribution from which each bi is drawn from,
so that di = 0⇒ bi ∼ Bernoulli(1

2) and di = 1⇒ bi ∼ Bernoulli(1
2 + ε

4). Once we
fix d(SM ) = d, the di’s are not independent, as

∑m
i=1 di = md.

However, the bi’s are independent, as we impose no constraint on them and each
is drawn independently from a fixed distribution. Therefore, d̂ is a sum of inde-
pendent Poisson trials.



58 Pan-Private Stream Density Estimation

We again make use of an additive, two-sided Chernoff bound:

P( |d̂− E[d̂]| ≥ ε

4
δ1(1− δ2)α | d(SM ) = d ) ≤ 2e−2mε2 α2δ2

1(1−δ2)2 1
16

We observe that the bound is independent of d, so:

p2 ≤
∑
d∈D

2e−2mε2 α2δ2
1(1−δ2)2 1

16 P( d(SM ) = d ) = 2e−
1
8
mε2 α2δ2

1(1−δ2)2

and, therefore:

p2 ≤ δ4β ⇔ m ≥ 8

ε2 α2δ2
1(1− δ2)2

ln(
2

βδ4
)︸ ︷︷ ︸

m2

= O(
1

ε2 α2
ln(

1

β
))

• Finally, we compute p3.

p3 = P( |ε
4

Laplace(0,
1

εm
)| ≥ ε

4
δ1δ2α )

= P( |Laplace(0,
1

εm
)| ≥ δ1δ2α )

= P( Exponential(εm) ≥ δ1δ2α )

= e− ε αmδ1δ2

and, therefore:

p3 ≤ (1− δ3 − δ4)β ⇔ m ≥ 1

ε αδ1δ2
ln(

1

β(1− δ3 − δ4)
)︸ ︷︷ ︸

m3

= O(
1

ε α
ln(

1

β
))

By picking m ≥ max{m1,m2,m3} = O( 1
ε2 α2 ln( 1

β )), we ensure that:

P( |d̃− d(S)| ≥ α ) ≤ p1 + p2 + p3 ≤ δ3β + δ4β + (1− δ3 − δ4)β = β

which completes the proof.

Theorem 4.3 offers an additive error guarantee, which may not be so useful if the density
of the input stream is small. Dwork et al. [23] show how to modify their algorithm to
obtain a multiplicative error guarantee, which is more meaningful in such cases. We do
not examine this point in our work.

As we already stated, our parameterized proof allows us to optimally tune the param-
eters δ1, δ2, δ3, δ4 and, as a result, to compute the tightest version of the bound we derive.
In particular, for fixed ε, α,m, the tightest bound β on P( |d̃− d(S)| ≥ α ) is computed
by numerically solving the following optimization problem:

minimize
δ1,δ2

β(δ1, δ2) = 2e−2mα2(1−δ1)2

+ 2e−
1
8
mε2 α2δ2

1(1−δ2)2
+ e− ε αmδ1δ2

subject to 0 ≤ δ1 ≤ 1

0 ≤ δ2 ≤ 1
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4.2.3 Picking the Optimal Sample Size

Theorem 4.3 provides an asymptotic expression for the sample size m to achieve the desired
approximation accuracy. A question that arises is how we should pick m in practice. This
is again achieved by taking advantage of our parameterized proof and numerically solving a
similar optimization problem, which allows us to compute the optimal (minimum) sample
size m∗ that achieves the desired approximation accuracy, according to the bounds we
derived. Specifically, for fixed ε, α, β, we define:

m(δ1, δ2, δ3, δ4) = max{ m1,m2,m3 }

= max{ 1

2α2(1− δ1)2
ln(

2

βδ3
) ,

8

ε2 α2δ2
1(1− δ2)2

ln(
2

βδ4
) ,

1

ε αδ1δ2
ln(

1

β(1− δ3 − δ4)
) }

Then, we pick m∗ as the solution to the following optimization problem:

minimize
δ1,δ2,δ3,δ4

m(δ1, δ2, δ3, δ4)

subject to 0 ≤ δi ≤ 1 , i ∈ {1, 2, 3, 4}
δ3 + δ4 ≤ 1

Figure 4.1 illustrates the proposed sample sizes for varying privacy budget. We repeat
that our approach allows us to compute the tightest version of the specific bound that we
derive on the probability of error and hence on the sample size. Specifically, the sample
sizes we propose are smaller by more than an order of magnitude, compared to the sample
sizes proposed by Roth in his lectures, who arbitrarily proposes to pick m = 128

ε2 α2 ln( 1
β ).

Nevertheless, we remark that the bound itself is not tight; this is an experimental obser-
vation and indicates that the same accuracy can be achieved with even smaller samples.

4.3 Optimal Bernoulli Density Estimator

In this section, we modify Algorithm 4.1 and derive a novel algorithm that significantly
outperforms the original algorithm (both theoretically and experimentally). The key rea-
son behind our algorithm’s superiority is that -in contrast to Algorithm 4.1- it manages
to use all the allocated privacy budget.

4.3.1 On the Use of the Allocated Privacy Budget

Recall that, in order to ensure that its state satisfies differential privacy, Algorithm 4.1
utilizes two different distributions, one for users that do not appear in the stream, and
one for users that do appear. We now introduce a little extra notation; the bit that
corresponds to a user from the former category is drawn from the distribution with pmf
finit = Bernoulli(1

2), while the bit that corresponds to a user from the latter category is
drawn from fupd = Bernoulli(1

2 + ε
4). Although by finit and fupd we formally denote the

probability mass functions of the two Bernoulli distributions, at some points we use the
same notation to refer to the distributions themselves (abusing notation a little bit). To
satisfy differential privacy, we have to ensure that, ∀b ∈ {0, 1}:

e− ε ≤ R(b) =
fupd(b)

finit(b)
≤ eε
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Figure 4.1: Proposed sample size

Figure 4.2 illustrates that Algorithm 4.1 does ensure that its state satisfies differential
privacy (as we have already proved in Theorem 4.1).

At the same time however, it is not hard to observe that Algorithm 4.1 fails to use all
the allocated privacy budget. We have already shown (in the proof of Theorem 4.1) that
R(0) = 1− ε

2 and R(1) = 1 + ε
2 . Let ε′ > 0 be the actual privacy budget that Algorithm

4.1 consumes. Then:

e− ε
′ ≤ 1− ε

2 ≤ e
ε′

e− ε
′ ≤ 1 + ε

2 ≤ e
ε′

}
⇒ ε ′ ≥ max{ ln(1 +

ε

2
) , − ln(1− ε

2
) }

Figure 4.3 illustrates the actual privacy budget used by Algorithm 4.1 for each allocated
privacy budget.

4.3.2 Optimally Tuning the Bernoulli Distributions

Based on the aforementioned observation, we optimally tune the Bernoulli distributions
used (with pmf’s finit and fupd), by picking a pair of parameters that tightly satisfies ε-
differential privacy, for any given ε. In particular, we maximize the distributions’ distance
(or, more precisely, the difference of their parameters), which allows us to more accurately
distinguish between users that did not appear and users that appeared in the stream,
during the density estimation computation (without sacrificing the users’ privacy!).

We propose that the parameters of finit and fupd are picked symmetric around some
value c; although the choice of c (among the permitted values) does not seem to affect
the algorithm, we explicitly show later what values c is permitted to take. For example,
we could set c = 1

2 , or c = 1
2 + ε

8 , as in Algorithm 4.1. In doing so, we end up with the
following distributions:

finit = Bernoulli(c− x)
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Figure 4.4: Optimal Bernoulli - State differential privacy

fupd = Bernoulli(c+ x)

for some x > 0 that corresponds to half the difference of the distributions’ parameters.
Clearly, we want 0 < c − x < c + x < 1. For example, in Algorithm 4.1, x = ε

8 , and
0 < c− x = 1

2 < c+ x = 1
2 + ε

4 < 1 , ∀ ε ∈ (0, 1
2 ].

The modification we propose is in the selection of x. Again, to satisfy differential
privacy, we have to ensure that, ∀b ∈ {0, 1}:

e− ε ≤
fupd(b)

finit(b)
≤ eε ⇔

{
e− ε ≤ c+x

c−x ≤ e
ε

e− ε ≤ c−x
c+x ≤ e

ε

⇒ x ≤ eε − 1

eε + 1
c = tanh(

ε

2
)c

Since our goal was to maximize the difference of the distributions’ parameters, we pick
x = tanh( ε2)c. The proposed distributions are:

finit = Bernoulli( c (1− tanh(
ε

2
) )

fupd = Bernoulli( c (1 + tanh(
ε

2
) )

and, since both parameters have to be greater than zero and less than one, we can de-
termine the values that c can take for each fixed ε. For 0 < ε ≤ 1

2 , it is easy to see that
0 < tanh( ε2) < 1

4 (since tanh( ε2) is a monotonically increasing function of ε), so we can
pick any c ∈ (0, 4

5 ], regardless of the specific value of ε ∈ (0, 1
2 ].

Figure 4.4 illustrates that the proposed Bernoulli distributions indeed use all the allo-
cated privacy budget.

4.3.3 Estimator & Analysis

We now present the modified algorithm, which we call the Optimal Bernoulli Density
Estimator. For simplicity, we set c = 1

2 .
We proceed with the privacy and accuracy analysis of Algorithm 4.2, following the

lines of our analysis of Algorithm 4.1.
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Algorithm 4.2: Optimal Bernoulli Density Estimator

Input: Data stream S, Privacy budget ε, Accuracy parameters (α, β)
Output: Density d̃(S)

1 Compute m∗ and set m = m∗

2 Sample a random subset M ⊆ U of m users (without replacement) and define an
arbitrary ordering over M

3 Create a bitarray b = [b1 ... bm] and map M [i]→ bi, ∀ i ∈ {1, ...,m}
4 Initialize b randomly: bi ∼ Bernoulli(1

2(1− tanh( ε2))), ∀ i ∈ {1, ...,m}
5 for t = 1 to T do
6 if st ∈M then
7 Find i : M [i] = st
8 Re-sample: bi ∼ Bernoulli(1

2(1 + tanh( ε2)))

9 Return d̃(S) = 1
tanh( ε

2
)( 1
m

∑m
i=1 bi −

1
2 + 1

2 tanh( ε2)) + Laplace(0, 1
εm)

Theorem 4.4. Assume ε ≤ 1
2 . Then Algorithm 4.2 satisfies 2 ε-pan-privacy and utilizes

all the allocated privacy budget.

Proof. The proof is identical with that of Theorem 4.1. The only modification is on
proving that the state (bitarray) satisfies ε-differential privacy, and in particular, for a
user u ∈ M that appears in stream S and does not appear in stream S ′ (again, let b1
be the entry that corresponds to u in the bitarray), we have:

P( b(S) = [1 b2 ... bm] )

P( b(S ′) = [1 b2 ... bm] )
=

P( b1(S) = 1 )

P( b1(S ′) = 1 )

=
1
2(1 + eε−1

eε+1)
1
2(1− eε−1

eε+1)
= eε

P( b(S) = [0 b2 ... bm] )

P( b(S ′) = [0 b2 ... bm] )
=

P( b1(S) = 0 )

P( b1(S ′) = 0 )

=
1
2(1− eε−1

eε+1)
1
2(1 + eε−1

eε+1)
= e− ε

so user u is guaranteed ε-differential privacy against an adversary that observes u’s
entry in b.

Theorem 4.5. For fixed sample M , Algorithm 4.2 provides an unbiased estimate d̃ of the
density of SM and has mean squared error:

E[ (d̃− d(SM ))2 ] ≤ 1

4m tanh2( ε2)
+

2

m2 ε2

Proof. The proof is similar with that of Theorem 4.2.

We begin with the bias computation. In order to examine the distribution of an
arbitrary entry in b, we introduce the notation pinit = 1

2(1 − tanh( ε2)) and pupd =
1
2(1 + tanh( ε2)). Then,

bi ∼
{

Bernoulli(pinit) M [i] 6∈ SM
Bernoulli(pupd) M [i] ∈ SM
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Denoting d̂ = 1
m

∑m
i=1 bi, and applying a similar computation as in the proof of Theorem

4.2, gives:

E[d̂] = pinit + (pupd − pinit)d(SM )

=
1

2
(1− tanh(

ε

2
)) + tanh(

ε

2
)d(SM )

The final estimate (output) d̃ is:

d̃ =
d̂− pinit
pupd − pinit

+ Laplace(0,
1

εm
)

=
1

tanh( ε2)
(d̂− 1

2
+

1

2
tanh(

ε

2
)) + Laplace(0,

1

εm
)

so it is an unbiased estimate.

We proceed with the mean squared error. Again, since d̃ is an unbiased estimate of
d(SM ), its mean squared error coincides with its variance. Also, recall that we have m
Bernoulli random variables bi (i = 1, ...,m), so applying the law of total variance gives
us:

var(bi) = pinit(1− pinit) + d(SM )[−pinit(1− pinit) + pupd(1− pupd)]
+ d(SM )(1− d(SM ))(pupd − pinit)2

=
1

4
[1− tanh2(

ε

2
)] + d(SM )(1− d(SM )) tanh2(

ε

2
)

⇒ var(d̂) =
1

m2

m∑
i=1

var(bi)

=
1

4m
[1− tanh2(

ε

2
)] +

d(SM )(1− d(SM ))

m
tanh2(

ε

2
)

⇒ var(d̃) = (
1

pupd − pinit
)2var(d̂) + var(Laplace(0,

1

εm
))

=
1

4m
[

1

tanh2( ε2)
− 1] +

d(SM )(1− d(SM ))

m
+

2

m2 ε2

≤ 1

4m tanh2( ε2)
+

2

m2 ε2

which completes the proof. To derive the last inequality, we used the fact that, since
0 ≤ d(SM ) ≤ 1, it follows that d(SM )(1− d(SM )) ≤ 1

4 .

Theorem 4.6. If the sample maintained by Algorithm 4.2 consists of m = O( 1
ε2 α2 log 1

β )
users from U , then, for fixed input S:

P( |d̃− d(S)| ≥ α ) ≤ β

where the probability space is over the random choices of the algorithm.

Proof. The proof is similar with that of Theorem 4.3, so we only focus on the differences.

Let d̂ = 1
m

∑m
i=1 bi. We again apply Lemma 4.2 twice, so for some α > 0 and δ1, δ2 ∈
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(0, 1):

P( |d̃− d(S)| ≥ α ) = P( |d̃− d(SM ) + d(SM )− d(S)| ≥ α )

≤ P( |d̃− d(SM )| ≥ δ1α )

+P( |d(SM )− d(S)| ≥ (1− δ1)α )

= P( | 1

tanh( ε2)
d̂− 1

2

1

tanh( ε2)
+

1

2
+ Laplace(0,

1

εm
)

−d(SM )| ≥ δ1α )

+ P( |d(SM )− d(S)| ≥ (1− δ1)α )

= P( |d̂− E[d̂] + tanh(
ε

2
)Laplace(0,

1

εm
)|

≥ tanh(
ε

2
)δ1α )

+ P( |d(SM )− d(S)| ≥ (1− δ1)α )

≤ P( | tanh(
ε

2
)Laplace(0,

1

εm
)| ≥ tanh(

ε

2
)δ1δ2α )

+ P( |d̂− E[d̂]| ≥ tanh(
ε

2
)δ1(1− δ2)α )

+ P( |d(SM )− d(S)| ≥ (1− δ1)α )

= p3 + p2 + p1 (respectively)

As in the proof of Theorem 4.3, we have 3 sources of error to control, and we want
p1 + p2 + p3 ≤ β. We bound each error probability separately, so for some δ3, δ4 ∈
(0, 1), such that δ3 + δ4 < 1, we want:

p1 < δ3β , p2 < δ4β , p3 < (1− δ3 − δ4)β

Bounding p1 and p3 is identical, as these error probabilities are unchanged. We copy
the bounds we derived in Theorem 4.3:

p1 ≤ 2e−2mα2(1−δ1)2 ≤ δ3β

⇔ m ≥ 1

2α2(1− δ1)2
ln(

2

βδ3
)︸ ︷︷ ︸

m1

= O(
1

α2
ln(

1

β
))

p3 ≤ e− ε αmδ1δ2 ≤ (1− δ3 − δ4)β

⇔ m ≥ 1

ε αδ1δ2
ln(

1

β(1− δ3 − δ4)
)︸ ︷︷ ︸

m3

= O(
1

ε α
ln(

1

β
))

We focus on p2. The difference is due to the fact that we now have E[d̂] = 1
2(1 −

tanh( ε2)) + tanh( ε2)d(SM ). Although E[d̂] has changed, it still is a random mean (as
d(SM ) is random), so we again apply the total probability theorem:

p2 =
∑
d∈D

P( |d̂− E[d̂]| ≥ tanh(
ε

2
)δ1(1− δ2)α | d(SM ) = d ) P( d(SM ) = d )

Based on observations identical to those we made when proving theorem 4.3, we again
make use of an additive, two-sided Chernoff bound:

P( |d̂− E[d̂]| ≥ tanh(
ε

2
)δ1(1− δ2)α | d(SM ) = d ) ≤ 2e−2m tanh2( ε

2
)α2δ2

1(1−δ2)2
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and since the bound is independent of d:

p2 ≤
∑
d∈D

2e−2m tanh2( ε
2

)α2δ2
1(1−δ2)2

P( d(SM ) = d ) = 2e−2m tanh2( ε
2

)α2δ2
1(1−δ2)2

and, therefore, noting that tanh(x2 ) = x
2 −

x3

24 +O(x5) = O(x):

p2 ≤ δ4β ⇔ m ≥ 1

2 tanh2( ε2)α2δ2
1(1− δ2)2

ln(
2

βδ4
)︸ ︷︷ ︸

m2

= O(
1

ε2 α2
ln(

1

β
))

By picking m ≥ max{m1,m2,m3} = O( 1
ε2 α2 ln( 1

β )), we ensure that:

P( |d̃− d(S)| ≥ α ) ≤ p1 + p2 + p3 ≤ δ3β + δ4β + (1− δ3 − δ4)β = β

which completes the proof.

Asymptotically, the lower bound on the sample size to achieve the desired approxima-
tion accuracy is not improved. We again compute the proposed sample size by numerically
solving the optimization problem described in section 4.2.3, with the slightly modified cost
function:

m(δ1, δ2, δ3, δ4) = max{ m1,m2,m3 }

= max{ 1

2α2(1− δ1)2
ln(

2

βδ3
) ,

1

2 tanh2( ε2)α2δ2
1(1− δ2)2

ln(
2

βδ4
) ,

1

ε αδ1δ2
ln(

1

β(1− δ3 − δ4)
) }

The resulting proposed sample size is illustrated in Figure 4.5.

4.4 Laplace Density Estimator

In this section, we examine an alternative modification to Algorithm 4.1. Although the
algorithm we derive fails to match the performance of Algorithm 4.2, it also manages to
outperform the original algorithm and may provide useful theoretical insights.

4.4.1 Using Continuous Distributions

We again focus on modifying the state of Algorithm 4.1. The main idea is to replace the
bitarray b (which stores bits drawn from either of the two Bernoulli distributions finit
and fupd), by an array of real numbers x, drawn from two continuous distribution. Our
motivation is that the algorithm’s output is itself a real number, so by storing a flexible,
real value per user (instead of a hard, binary value), we expect to boost accuracy. Although
this approach increases the algorithm’s space requirements (×32 or ×64 bits per user if
floating point arithmetic is used), we argue that, to achieve the same levels of accuracy,
we will need to maintain a sample of less users, and we will therefore offer perfect privacy
for more users.

We propose using the following two Laplace distributions:

finit = Laplace(µinit, b)
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Figure 4.5: Proposed sample size

fupd = Laplace(µupd, b)

where µinit < µupd and the scale of the two distributions is the same. Therefore, if a (sam-
pled) user does not appear in the stream, his entry in x will be drawn from Laplace(µinit, b),
whereas if a user appears, his entry will be drawn from Laplace(µupd, b).

Before presenting the new algorithm (Algorithm 4.3), we examine the privacy guaran-
tees of the modified state. As we show, the definition of differential privacy determines
the values the parameters of the two distributions may take.

Theorem 4.7. Assume ε ≤ 1
2 . If

µupd−µinit
b = ε, then Algorithm 4.3 satisfies 2 ε-pan-

privacy.

Proof. The proof is identical with that of Theorem 4.1. The only modification is on
proving that the modified state x (array of real values) satisfies ε-differential privacy,
and in particular, for a user u ∈ M that appears in stream S and does not appear
in stream S ′ (again, let x1 be the entry that corresponds to u in the array), we want,
∀x ∈ (−∞,∞):

P( x(S) = [x x2 ... xm] )

P( x(S ′) = [x x2 ... xm] )
=

P( x1(S) = x )

P( x1(S ′) = x )

=
fupd(x)

finit(x)

=
1
2be
−
|x−µupd|

b

1
2be
− |x−µinit|

b

= e
|x−µinit|−|x−µupd|

b
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Figure 4.6: Illustration of the proposed Laplace distributions

≤ e
|x−µinit−x+µupd|

b

= e
µupd−µinit

b

= eε

where the inequality holds due to the triangle inequality. Proving that
fupd(x)
finit(x) ≥ e− ε

is identical. Therefore, user u is guaranteed ε-differential privacy against an adversary
that observes u’s entry in x.

Figure 4.6 provides an example illustration of the two distributions, for ε = 0.1. Ob-
serve that the ratio of the two distributions tightly satisfies the differential privacy defi-
nition, except for some x ∈ (µinit, µupd). However, since ∃x such that the ratio is almost
equal to either eε or e− ε, we conclude that Algorithm 4.3 uses all the allocated privacy
budget.

To achieve the best possible accuracy, we would want to maximize the difference µupd−
µinit, as well as to pick the minimum possible b. In doing so, it would have been easier
to distinguish between users that did not appear and users that appeared in the stream,
during the density estimation computation. However, what Theorem 4.7 tells us is that
we only have one degree of freedom, so increasing the difference of the means, leads to an
increase in the scale of the distributions (that is, the distributions become more uniform,
and, hence, harder to distinguish).

4.4.2 Estimator & Analysis

We now present the new estimator, namely the Laplace Density Estimator.
We have already argued on the algorithm’s privacy guarantees, so we proceed with the

accuracy analysis.
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Algorithm 4.3: Laplace Density Estimator

Input: Data stream S, Privacy budget ε, Accuracy parameters (α, β)
Output: Density d̃(S)

1 Compute m∗ and set m = m∗

2 Sample a random subset M ⊆ U of m users (without replacement) and define an
arbitrary ordering over M

3 Create an array x = [x1 ... xm] and map M [i]→ xi, ∀ i ∈ {1, ...,m}
4 Arbitrarily pick µinit, µupd and set b =

µupd−µinit
ε

5 Initialize x randomly: xi ∼ Laplace(µinit, b), ∀ i ∈ {1, ...,m}
6 for t = 1 to T do
7 if st ∈M then
8 Find i : M [i] = st
9 Re-sample: xi ∼ Laplace(µupd, b)

10 Return d̃(S) = 1
µupd−µinit (

1
m

∑m
i=1 xi − µinit) + Laplace(0, 1

εm)

Theorem 4.8. For fixed sample M , Algorithm 4.3 provides an unbiased estimate d̃ of the
density of SM and has mean squared error:

E[ (d̃− d(SM ))2 ] =
2(m+ 1)

m2 ε2

Proof. The proof is similar with that of Theorem 4.2.

We begin with the bias computation. We examine the distribution of an arbitrary entry
in x:

xi ∼
{

Laplace(µinit, b) M [i] 6∈ SM
Laplace(µupd, b) M [i] ∈ SM

Denoting d̂ = 1
m

∑m
i=1 xi, and applying a similar computation as in the proof of Theorem

4.2, gives:

E[d̂] = µinit + (µupd − µinit)d(SM )

The final estimate (output) d̃ is:

d̃ =
d̂− µinit

µupd − µinit
+ Laplace(0,

1

εm
)

so it is an unbiased estimate.

We proceed with the mean squared error. Again, since d̃ is an unbiased estimate of
d(SM ), its mean squared error coincides with its variance. We now have m Laplace
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random variables xi (i = 1, ...,m) with the same scale parameter b, so:

var(xi) = 2b2

⇒ var(d̂) =
1

m2

m∑
i=1

var(xi) =
2b2

m

⇒ var(d̃) = (
1

µupd − µinit
)2var(d̂) + var(Laplace(0,

1

εm
))

=
2b2

m(µupd − µinit)2
+

2

m2 ε2

=
2b2

m(b ε)2
+

2

m2 ε2

=
2(m+ 1)

m2 ε2

which completes the proof.

We conclude that neither the bias, nor the variance (and mean squared error) of our
estimator depends on the choice of µinit, µupd and b.

Before proceeding with the next theorem, we give the following definition and provide
some useful lemmas.

Definition 4.4. A random variable X with mean E[X] = µ is sub-exponential if there are
non-negative parameters (vs, bs) such that:

E[eλ(X−µ)] ≤ e
v2
sλ

2

2 , ∀|λ| < 1

bs

The control on the moment generating function, when combined with the Chernoff
technique allows us to prove the following concentration inequality, called the sub-exponential
tail bound. We omit the proof, as it is based on a standard technique.

Lemma 4.3. Suppose that random variable X is sub-exponential with parameters (vs, bs).
Then,

P(|X − E[X]| ≥ α) ≤

 e
− α2

2v2
s 0 ≤ α ≤ v2

s
bs

e−
α

2bs α > v2
s
bs

We observe that, when α is small enough, the exponent is quadratic in α, whereas for
larger α, the exponent is linear (so the bound is not as tight).

Lemma 4.4. Let X ∼ Laplace(µ, b). Then X is sub-exponential with parameters (vs, bs) =
(2b,
√

2b).

Proof. The moment generating function of the random variable X − µ is:

E[eλ(X−µ)] =
1

1− b2λ2
, ∀|λ| < 1

b

Taking into account that: 1
1−x ≤ 1+2x ≤ e2x, ∀ 0 < x < 1

2 and setting x = b2λ2, gives:

E[eλ(X−µ)] ≤ e2b2λ2
, ∀|λ| < 1√

2b
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We therefore set vs = 2b, which gives:

E[eλ(X−µ)] ≤ e
v2
sλ

2

2 , ∀|λ| < 1√
2b

and proves the desired result, according to Definition 4.4.

Lemma 4.5. Let X =
∑m

i=1Xi, where Xi ∼ Laplace(µi, b). Then X is sub-exponential
with parameters (vs, bs) = (2b

√
m,
√

2b).

Proof. The moment generating function of the random variable X − E[X] is:

E[eλ(X−E[X])] =
m∏
i=1

eλ(Xi−µi) ≤
m∏
i=1

e2b2λ2
= e2b2λ2m , ∀|λ| < 1√

2b

where the inequality holds due to Lemma 4.4. We therefore set vs = 2b
√
m, which

gives:

E[eλ(X−E[X])] ≤ e
v2
sλ

2

2 , ∀|λ| < 1√
2b

and proves the desired result, according to Definition 4.4.

Lemma 4.6. Let X =
∑m

i=1Xi, where Xi ∼ Laplace(µi, b). Then,

P(|X − E[X]| ≥ α) ≤

{
e−

α2

8b2m 0 ≤ α ≤ 2
√

2bm

e
− α

2
√

2b α > 2
√

2bm

Proof. The result follows by simply combining Lemma 4.3 and Lemma 4.5.

Theorem 4.9. If the sample maintained by Algorithm 4.3 consists of m = O( 1
ε2 α2 log 1

β )
users from U , then, for fixed input S:

P( |d̃− d(S)| ≥ α ) ≤ β

where the probability space is over the random choices of the algorithm.

Proof. The proof is similar with that of Theorem 4.3, so we again only focus on the
differences.

Let d̂ = 1
m

∑m
i=1 xi and recall that µupd−µinit = ε b (by the differential privacy require-

ment). We again apply Lemma 4.2 twice, so for some α > 0 and δ1, δ2 ∈ (0, 1):

P( |d̃− d(S)| ≥ α ) = P( |d̃− d(SM ) + d(SM )− d(S)| ≥ α )

≤ P( |d̃− d(SM )| ≥ δ1α )

+P( |d(SM )− d(S)| ≥ (1− δ1)α )

= P( | d̂

µupd − µinit
− µinit
µupd − µinit

+ Laplace(0,
1

εm
)

−d(SM )| ≥ δ1α )

+ P( |d(SM )− d(S)| ≥ (1− δ1)α )
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= P( |d̂− E[d̂] + ε bLaplace(0,
1

εm
)| ≥ ε bδ1α )

+ P( |d(SM )− d(S)| ≥ (1− δ1)α )

≤ P( | ε bLaplace(0,
1

εm
)| ≥ ε bδ1δ2α )

+ P( |d̂− E[d̂]| ≥ ε bδ1(1− δ2)α )

+ P( |d(SM )− d(S)| ≥ (1− δ1)α )

= p3 + p2 + p1 (respectively)

As in the proof of Theorem 4.3, we have 3 sources of error to control, and we want
p1 + p2 + p3 ≤ β. We bound each error probability separately, so for some δ3, δ4 ∈
(0, 1), such that δ3 + δ4 < 1, we want:

p1 < δ3β , p2 < δ4β , p3 < (1− δ3 − δ4)β

Bounding p1 and p3 is identical, as these error probabilities are unchanged. We copy
the bounds we derived in Theorem 4.3:

p1 ≤ 2e−2mα2(1−δ1)2 ≤ δ3β

⇔ m ≥ 1

2α2(1− δ1)2
ln(

2

βδ3
)︸ ︷︷ ︸

m1

= O(
1

α2
ln(

1

β
))

p3 ≤ e− ε αmδ1δ2 ≤ (1− δ3 − δ4)β

⇔ m ≥ 1

ε αδ1δ2
ln(

1

β(1− δ3 − δ4)
)︸ ︷︷ ︸

m3

= O(
1

ε α
ln(

1

β
))

We focus on p2. We again apply the total probability theorem:

p2 =
∑
d∈D

P( |d̂− E[d̂]| ≥ ε bδ1(1− δ2)α | d(SM ) = d ) P( d(SM ) = d )

For fixed d(SM ), E[d̂] is no longer random. Now d̂ is a weighted sum of Laplace random
variables xi, so by Lemma 4.6:

P( |d̂− E[d̂]| ≥ ε bδ1(1− δ2)α | d(SM ) = d )

= P( |
m∑
i=1

xi − E[
m∑
i=1

xi]| ≥ mε bδ1(1− δ2)α | d(SM ) = d )

≤ 2e−
[mε bαδ1(1−δ2)]2

8b2m = 2e−
1
8
mε2 α2δ2

1(1−δ2)2

where we used the fact that, if α < 4, we are in the area where the exponent in the tail
bound is quadratic, since for ε ∈ (0, 1

2 ] and δ1, δ2 ∈ (0, 1):

mε bδ1(1− δ2)α < mε bα < 2bm

In practice, since the density takes values in the [0, 1] interval, we only care about
additive deviations α ∈ [0, 1].
Again, the bound is independent of d, so:

p2 ≤
∑
d∈D

2e−
1
8
mε2 α2δ2

1(1−δ2)2
P( d(SM ) = d ) = 2e−

1
8
mε2 α2δ2

1(1−δ2)2
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and, therefore:

p2 ≤ δ4β ⇔ m ≥ 8

ε2 α2δ2
1(1− δ2)2

ln(
2

βδ4
)︸ ︷︷ ︸

m2

= O(
1

ε2 α2
ln(

1

β
))

By picking m ≥ max{m1,m2,m3} = O( 1
ε2 α2 ln( 1

β )), we ensure that:

P( |d̃− d(S)| ≥ α ) ≤ p1 + p2 + p3 ≤ δ3β + δ4β + (1− δ3 − δ4)β = β

which completes the proof.

Observe that the bound we derive is identical with that of Algorithm 4.1 (proof of
Theorem 4.3), both asymptotically and in terms of constants. Therefore, the cost function
we use to compute the proposed sample size for Algorithm 4.3 is the same with that
presented in section 4.2.3, so we expect the solution to the optimization problem to be the
same as well.

4.4.3 Quantized Laplace Density Estimator

In order to reduce the space requirements of Algorithm 4.3, we also examine the impact of
quantization on the performance of the algorithm. In particular, instead of storing floating
point numbers in the array x, we quantize each user’s entry (which is a real value sampled
either from finit or fupd) into L fixed quantization levels, and store the quantized value.
Thus, the only modification in Algorithm 4.3 is that, after drawing a value x from either
finit = Laplace(µinit, b), or fupd = Laplace(µupd, b), we quantize it (using our pre-designed
quantizer), and store q(x).

In general, a quantizer consists of L quantization regions, which are separated by L−1
boundaries B1, ..., BL−1, and L representation points a1, ..., aL. Assume that we wish to
quantize real numbers drawn from a random variable xi with pdf fxi(x), x ∈ R, and
that q(xi) is the resulting random variable after the quantization. Then, the minimum
mean squared error quantizer is constructed by selecting the boundaries and representation
points that minimize:

E[(xi − q(xi))2] =

L∑
j=1

∫ Bj

Bj−1

fxi(x)(x− aj)2dx

where B0 = −∞ and BL = ∞. If both the boundaries and the representation points are
unknown, an iterative algorithm can be used to find them (e.g. Lloyd-Max). However, for
fixed boundaries, it is a well known result that the representation points that minimize
the mean squared error are selected as:

aj = E[xi|Bj−1 < xi ≤ Bj ] =

∫ Bj

Bj−1

xfxi|Bj−1<xi≤Bj (x)dx , j = 1, ..., L

In what follows, we focus on the case of L = 2, which in fact leads us back to storing a
single bit per user - this case will be proven to be particularly interesting, and it inspired us
in designing the Optimal Bernoulli Density Estimator (Algorithm 4.2). We briefly present
the design of our quantizer.

- The distribution of each xi depends on the density of the stream: for a sparse stream,
xi is more likely to have been drawn from finit, whereas for a dense stream, xi is
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more likely to have been drawn from fupd. Since we have no prior knowledge on the
density of the stream, we assume that xi is equally likely to have been drawn from
either distribution, which gives us the following mixture distribution:

fxi(x) =
1

2
finit(x) +

1

2
fupd(x) , x ∈ R

- For L = 2, we set the boundary B =
µinit+µupd

2 due to symmetry. Therefore, we only
have to pick the proper representation points to minimize the mean squared error.

- By simple calculus, the representation points are:

a1 =

∫ B

−∞
x
fxi(x)

2
dx = µinit −

µupd − µinit
ε

e−
ε
2

a2 =

∫ ∞
B

x
fxi(x)

2
dx = µupd +

µupd − µinit
ε

e−
ε
2

For example, we may want to end up with a1 = 0 and a2 = 1. To do so, it is easy

to see that we should pick: µinit = e−
ε
2

2e−
ε
2 +ε

and µupd = e−
ε
2 +ε

2e−
ε
2 +ε

.

We now have our binary quantizer at hand. Assume that a value x ∈ R is drawn for
the user whose entry in x is xi; if x < B =

µinit+µupd
2 , we set xi = a1, otherwise, we set

xi = a2. We examine the distribution of q(xi), which is a binary random variable:

P(q(xi) = 1|M [i] 6∈ S) = P(Laplace(µinit, b) ≥
µinit + µupd

2
)

=
1

2
e

µinit+µupd
2 +µinit

b =
1

2
e−

ε
2

P(q(xi) = 1|M [i] ∈ S) = P(Laplace(µupd, b) ≥
µinit + µupd

2
)

= 1− 1

2
e

µinit+µupd
2 −µupd

b = 1− 1

2
e−

ε
2

where we used the fact that µupd − µinit = ε b. Therefore, by picking µupd and µinit such
that a1 = 0 and a2 = 1, the quantized Laplace Density Estimator can be viewed as a
Bernoulli Density Estimator, that utilizes the following two Bernoulli distributions:

finit = Bernoulli(
1

2
e−

ε
2 )

fupd = Bernoulli(1− 1

2
e−

ε
2 )

In Figure 4.7 we examine the use of the allocated privacy budget of the derived
Bernoulli distributions, and compare it with that of Algorithm 4.1 and 4.2.

4.4.4 Comments on the Use of Other Continuous Distributions

The connections of the Laplace distribution with the definition of differential privacy are
well understood, so our choice of this particular continuous distribution is quite natural.

Truncated Distributions. One may argue that it would be beneficial to truncate the
utilized distributions, in order to avoid large (either positive or negative) values, which
may lead to a poor estimate.

For example, it would be a reasonable choice to truncate the distributions and allow
them to take values in the [0, 1] interval, so that each user’s entry is interpreted as a
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Figure 4.7: Quantized Laplace - State differential privacy

probability of the user having appeared in the stream. Taking into account that the trun-
cated probability density that corresponds to a pdf f(x), x ∈ (−∞,∞), is computed as

ftrunc(x) = f(x)∫ 1
−∞ f(x)−

∫ 0
−∞ f(x)

, ∀x ∈ [0, 1], we would pick the distributions’ means symmet-

ric around 1
2 , so that the normalization factors cancel out when examining the ratio

fupd
finit

(in order to satisfy differential privacy). If user u (whose entry is x1) has not appeared,
then x1 is more likely to be closer to 0, whereas if u has appeared, then x1 is more likely
to be closer to 1.

However, the truncation appears to be problematic. The truncated distributions’
means come closer to each other (because of the truncation), while the (common) scale
parameter does not change. Consequently, for fixed privacy budget, we end up with two
harder-to-distinguish distributions.

Gaussian Distributions. The incompatibility of the Gaussian distribution with ε-
differential privacy is well understood, and unfortunately appears in our setting as well. In

particular, the problem arises when attempting to keep the ratio
fupd
finit

bounded between e− ε

and eε, and is due to the square in the exponent of the Gaussian distribution. Although we
managed to keep the ratio bounded by truncating the Gaussian distributions and properly
selecting their means and (common) variance, the performance of the derived estimator is
not promising.

4.5 Experimental Evaluation

In this section, we experimentally compare the algorithms we presented. We conduct all
our experiments in MATLAB. In each experiment, we generate a stream of length T = 105.
The universe is the set U = {1, ..., 105} and the stream is either uniform or zipfian (with
parameter 1). In the former case we expect to observe a stream density of 0.63, while in
the latter of 0.25.

In our first set of experiments, we examine the mean squared error of the algorithms,
as a function of the allocated privacy budget. We remark that in those experiments, we
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Figure 4.8: MSE for varying privacy budget, and for various sample sizes (Uniform Stream)

do not take into account the input parameters α, β in order to pick the proper sample size;
instead we fix the sample size (as a fraction of the universe size) and examine how each
the algorithm performs, for varying ε. For each ε, we independently repeat the experiment
300 times. Notice that in each sub-figure we also plot the theoretical mean squared error
(exact or upper bound) of each algorithm.

We present the experimental results in Figures 4.8 and 4.9. The experimental and
theoretical mean squared errors coincide for all algorithms. The first thing we observe
is the superiority of all the algorithms we propose over Dwork’s algorithm. The second
is that, among our algorithms, the binary ones (Optimal Bernoulli Density Estimator
denoted as optBern, Quantized Laplace Density Estimator denoted qLap) clearly beat
the continuous ones (Laplace Density Estimator, Gauss Density Estimator). Finally, we
mention the robustness of all algorithms to the input stream distribution; the differences
between uniform and zipfian are insignificant.

We next examine our second evaluation metric, that is, the probability P(|d̃−d(S)| ≥ α)
(which we call probability of error for simplicity). Our experiments are again for fixed
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sample size (as a fraction of the universe size), for fixed α, and for varying privacy budget
ε. The illustrated probability of error is the empirical probability, computed over 1000
repetitions per ε.

We present the experimental results in Figures 4.10 and 4.11. Our second metric
confirms the ranking of the algorithms in terms of performance, which we observed in the
first set of experiments. The key thing to notice is that the bounds on the probability
of error which we computed theoretically are not tight; we computed the tightest version
of the bound, and the resulting probability was significantly larger than all the empirical
probabilities we plot in Figures 4.10, 4.11.

4.6 Discussion

To summarize, in this chapter we examined differential privacy in the streaming model, and
addressed the particular problem of pan-private stream density estimation. We analyzed
the sampling-based pan-private density estimator proposed by Dwork et al. [23], and
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we improved it by identifying that it does not use all the allocated privacy budget. We
managed to tackle this problem by proposing modifications to Dwork’s estimator that are
based on optimally tuning the Bernoulli distributions it uses, as well as on using continuous
distributions (Laplace, Gaussian). Based on both our theoretical and experimental results,
the Optimal Bernoulli Density Estimator is the algorithm of choice.
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Chapter 5

Conclusions & Future Work

In this thesis, we developed differentially private algorithms to analyze distributed and
streaming data.

5.1 Distributed Model

In the distributed model, we addressed the problem of distributed learning of Bayesian
Networks with differential privacy. After formally describing our model and identifying
the challenges that arise when moving from a centralized to a distributed environment, we
examined three solutions, namely Sharing the Noisy Sufficient Statistics, Noisy Majority
Voting and Sharing the Noisy Model.

Through our theoretical analysis and our detailed experimental evaluation, we conclude
that the first approach, Sharing the Noisy Sufficient Statistics, asymptotically outperforms
the other approaches when the privacy budget exceeds a certain threshold. However, its
performance is significantly worse below that threshold, and it is more sensitive to the
data dimension, the number of data holders and the Bayesian Network degree. The
second approach, Noisy Majority Voting is robust to all the parameters we examined
(privacy budget, data dimensions, number of data holders, Bayesian Network degree),
and significantly outperforms the other algorithms when the data are high-dimensional.

There are many directions in which the work we presented in the distributed model
(Chapter 3) can be continued. Firstly, instead of having the data holders share their full,
high-dimensional frequency distributions, we may ask them to send a more compact repre-
sentation, such as a Sketch. Secondly, as we argued, the (global) scoring function (mutual
information) used in the Bayesian Network learning problem is non-linear and hence it is
not composable from its local values; however, sketch-based methods for approximating
the global entropy of distributed streams have been developed (Gabel et al. [29]), and we
could apply their ideas in our setting as well. Finally, although we followed a score-based
approach in learning the global Bayesian Network, we remark that an approach based on
Bayesian model averaging could also be examined.

5.2 Streaming Model

In the streaming model, we addressed the problem of pan-private stream density estima-
tion. We analyzed for the first time the sampling-based pan-private density estimator
proposed by Dwork et al. [23], and we improved it by identifying that it does not use
all the allocated privacy budget. We managed to tackle this problem by proposing novel
modifications to Dwork’s estimator that are based on optimally tuning the Bernoulli dis-
tributions it uses, as well as on using continuous distributions (Laplace, Gaussian). Based
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on both our theoretical and experimental results, the Optimal Bernoulli Density Estimator
is the algorithm of choice.

There are also several directions in which the work we presented in the streaming
model (Chapter 3) can be extended. Firstly, we identify that the sampling step performed
by our algorithm’s is naive; we may apply more sophisticated sampling techniques that
are optimized for our particular problem, such as Distinct Sampling [31]. Secondly, we
could examine other approaches in density estimation, based on the well-known FM-Sketch
and its variants [32]; although our early work on these approaches was not fruitful, there
is definitely much more to try. Finally, it would be interesting to combine the model
we described in Chapter 2 with that of Chapter 3, and develop differentially private
algorithms for our problems in the model of distributed streams. For example, Zhang
et al. [66] address the problem of learning Bayesian Network from distributed streams,
although without privacy considerations.
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