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Abstract. To improve the efficiency of transport systems across straits, bridges, submerged tunnels and subsea 
tunnels are introduced to replace ferries. For wide and especially deep straits, floating bridges are attractive. 
Floating bridges are subjected to permanent, traffic,  environmental and accidental  loads. The focus herein is 
on wind, wave and current loads. All these loads and load effects should be properly evaluated for ultimate and 
other limit state design checks. In this paper a brief overview of relevant concepts, characteristic behaviour and 
design criteria are given, followed by an outline of the modelling of   wind-, wave-, and current-induced loads 
and their effects.  Selected case studies of  a possible 4600 m long curved bridge for the crossing of the 
Bjørnafjord, are presented to illustrate typical features of such bridges. Such bridges have a number of eigen-
modes, which might be excited by the environmental loads. The response in the horizontal plane is  mainly 
induced by  wind loads, while the vertical response is  mainly induced by wave loads. Wave short-crestedness 
and inhomogeneity are found to have a significant influence on the vertical response. Ocean current loads 
mainly reduce the dynamic response in the horizontal plan due to the damping effect of the drag forces. 

1 INTRODUCTION 
Floating bridges can be traced back to trafficable timber walkways built over an array of boats that were 

secured together and anchored to the floor of the waterway; known to have been used at least 3000 years ago, 
according to the review by Wang & Wang [1]. These structures were unlikely to have a significant design 
lifespan and had to be renewed on a regular basis. The current model of modern floating bridges can be traced to 
the pontoon bridge design that was implemented in the Hobart Bridge, Australia in 1943, and was a first of its 
kind in the world. Other early designs were the floating bridges built across the Lake Washington in the Seattle 
area in 1940 and 1963.  Other examples of modern floating bridges include the 1988-m long Hood Canal Bridge 
built in 1963 (Fig. 1b) ; the Canadian 640-m long Kelowna Floating (concrete) Bridge which was opened to 
traffic in 1958, the Hawaiian’s 457-m long Ford Island Bridge which was completed in 1998. More recent 
floating bridges built from 1990s include the two Norwegian floating bridges: 845-m long Bergsøysund Floating 
Bridge built in 1992 near Kristiansund over a fjord depth of 320 m and the 1246-m long Nordhordaland Floating 
Bridge built in 1994 at Salhus over a 500m deep fjord (see Fig. 2) [2,3].    

Later there have been projects involving submerged floating tunnels have been considered as an option for 
strait crossings, especially wide crossing such as  the Gibraltar and Messina straits [4]. In the latter case a 
submerged tunnel was assessed vs a suspension bridge with a main span of 3700 m.  For Høgsfjord  in Norway a 
submerged tunnel  was also considered [2].  

So far submerged floating tunnels have not been built while immersed tunnels (resting/buried in the seabed) 
has been used in many places, essentially when the water depth is relatively small.  

Currently, the Norwegian Public Roads Administration (NPRA) is assessing replacing ferry transport across 
8 fjords by providing  bridges, submerged tunnels or subsea rock tunnels on highway E-39 from Trondheim to 
Kristiansand [3]. The width of the strait crossings is up to 6 kilometers and the water depth is up to 1300 m. Due 
to the maximum slope of roadways, a subsea tunnel in rock will be very long and expensive (Fig. 3).. Due to the 
width and depth of the fjords, the free span for bridges with towers on land, will in most cases get excessive 
span. The current largest free span is about. 2 km. Some deliberations on using a 3700 m single span suspension 
bridge have been made by NPRA [5]. 

At the moment, the NPRA is considering three possible floating bridge concepts and  a submerged tunnel 
type of concept for strait crossing (Fig. 4).. The floating bridge concepts include 

- Curved, End Anchored Floating Bridge combined with a cable stayed high bridge 
- Straight, Side Anchored Floating Bridge by mooring system combined with a cable stayed high bridge 
- Floating Suspension bridge with two pylons supported by TLPs or spar floating bodies. 
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a) Floating Xerxes bridge built in 480 B.C     b) Hood Canal bridge in the State of Washington, USA

Fig. 1   Floating bridges from ancient to modern times [1]. 

a) Nordhordaland bridge b) Bergsøysund bridge

Fig. 2 Modern floating bridges in Norway. 

Fig. 3 Indicative relative costs of strait crossing based on tunnel, submerged tunnel and floating bridge or free 
span suspension bridge for a fiord with a width B and a depth D. 

The first concept will be an extension of the existing two floating bridges in Norway; namely the 
Nordhordaland and Bergsøysund bridges [3]. However, increasing the length introduce additional challenges as 
discussed below. It is also noted that the bridges are supported on discrete pontons. 

 Another issue is that the design should provide passage for ships. This would normally imply that part of the 
bridge need to be high as indicated for the Nordhordaland bridge in Fig.2a. This feature will be directly 
accounted for in a floating suspension bridge. 
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a) Curved, end-anchored bridge b) A side-anchored  straight bridge

c) Suspension bridge with floating  pylons (towers)

d) Submerged tunnel based on one or two tubes, with excessive buoyancy, and tethered to the seabed.
Alternatively, the bridge can have less larger weight than buoyancy and be supported by pontoons in the surface. 

Fig. 4.  Floating surface bridge and submerged tunnel concepts. 

 As an example, the crossing site of Bjørnafjord  is approximately 5 km wide, and the fjord at the deepest is 
550-600m deep. The bridge was originally conceived to be a side anchored floating bridge with a ship passage 
in the North under a high bridge placed on fixed foundation and a floating bridge ending in a concrete caisson 
much in the same philosophy as the Nordhordland bridge [3]. 

The development of technology for floating bridges has benefitted from transfer of technology from ship and 
ocean technology and implemented by consideration of the unique serviceability requirements and the target 
level of safety relevant for bridges. In particular the principles and methods developed for oil and gas platforms 
and ships as well as for floating airports in the Mega-Float project in Japan during 1995-2000 and the MOB 
project in USA, especially in the period 1997-2000 [6-9].  

The focus herein is on floating surface bridges subjected to  wave-, wind and current loads. In areas with 
significant seismic action can play a role, however, it is noted that  floating bridges are compliant and not very 
sensitive to ground excitation. 

In the remaining part of this paper previous research about the global response of floating bridges is first 
described, followed by a brief summary of the design criteria and  characteristic features of the behaviour of 
floating bridges. Then the methods for modelling environmental conditions, the corresponding loads an load 
effects.  Finally, selected case studies to illustrate the dynamic behaviour of floating bridges, are briefly 
described.  
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2   PREVIOUS STUDIES OF THE GLOBAL DYNAMIC RESPONSE  OF FLOATING BRIDGES 

Floating bridges are subjected to environmental loads, especially due to wind, wave and current. The 
corresponding load effects are used in connection with appropriate criteria, typically in terms  of  displacements, 
motions or resistances, to ensure serviceability and safety [10-13]. Herein,  the focus in on the determination of 
load effects.  

Most studies on floating bridges consider pontoon-type bridges, with emphasis on the wave-induced hydro-
elastic  behaviour. The formulations are based on the theory developed for other stationary floating bodies, e.g. 
[14, 15]. In early studies Langen and Sigbjørnsson [16] and  Hartz [17] investigated numerically the behaviour 
of floating bridges. Løken et al. [18] conducted numerical and experimental study of a pontoon type  floating 
bridge under long-crested and short-crested waves – relating to the Bergsøysund bridge mentioned above. 
Numerical results based on potential flow theory presented fairly good agreements with those from the model 
test. Seif and Inoue [19] proposed a unified method for the analysis of a discrete pontoon floating bridge that 
takes into account complete hydrodynamic interaction between the pontoons. Fu et al. [20] proposed and applied 
a time-domain method for hydroelastic analysis of floating bridges based on multi-rigid-body connected by 
elastic beams. Kvåle and co-workers [21] developed a frequency  domain  method to account for the 
hydroelastic responses of pontoon type floating bridges, and applied it to investigate the dynamic behaviour of 
the Bergsøysund bridge. Kvåle et al also compared field measurements with numerical predictions of the 
response of  the Bergsøysund bridge, with a focus on determination of natural frequencies and modes based on 
ambient response. Lie et al. [22] investigated the feasibility of deploying an end-anchored floating bridge in 
Masfjorden, Norway and compared its dynamic response with a submerged tube bridge concept. Fu et al. [23] 
studied the effect of inhomogeneous wave conditions.  Fredriksen et al. [24]  presented dynamic analysis of a 
side-anchored straight bridge under wave loads, with an emphasis to optimize the design of pontoons to reduce 
resonance response in the bridge girder. Cheng et al. [25-26] investigated the effects of various hydrodynamic 
models. Sha et al. [27]  did a sensitivity study of a curved bridge under wave and wind loads. 

 Sun et al. [13] carried out an experimental investigation on the nonlinear hydro-elastic  response of a 
pontoon-type floating bridge under regular wave action. 

 Compared to wave loads, wind loads and load effects on pontoon-type floating bridges are much less 
adressed in the literature. For floating suspension bridges account of the joint occurrence of wind and wave 
loads is crucial, since they are  more sensitive to wind loads than the pontoon-type floating bridges. Volkert et 
al. [29] and Veie and Holtberget [30] assessed alternative bridge concepts for wide strait crossings, including 
floating suspension bridge alternatives.  Fredriksen et al. [31] presented a study of  a three span suspension 
bridge with pylons supported by tension-leg and catenary moored in an early phase feasibility study of a concept 
applicable for crossing of the Sulafjord.  Particular attention was paid to the floating body supporting the pylons.  

By using  state space representations for frequency  dependent wind and wave forces, Xu et al. [32-33] 
developed a time domain method to simulate the dynamic behaviour of a floating bridges and applied the 
method  to  a three-span suspension bridge with two floating pylons.  The dynamic behaviour of the bridge is 
studied considering both first and second order wave excitations as well as mean wind and linear and nonlinear 
buffeting forces. The importance of nonlinear effects in the modelling is  carefully studied to improve the 
understanding of the dynamic  behaviour of this new bridge concept. 

3 DESIGN CRITERIA 

3.1 General 
Floating bridges should in general fulfill sociopolitical criteria that address the aesthetics, environmental 

sustainability, budgetary and legal constraints. The bridge should satisfy serviceability and safety requirements 
that should be  maintained during the operational life, of say, 100 years, of the bridge, with a minimum of life 
cycle costs. In the design of floating bridges and submerged tunnels, the following loads must be considered: 
dead load, hydrostatic pressure (including buoyancy), live load, wind, waves (including swell), earthquakes, 
temperature change and  water current loads, effects of tidal change, effects of seabed movement, effects of 
movements of bearings, snow load, effects of tsunamis, effects of storm surges, ship waves, seaquake, brake 
load, effects of drift ice and ice pressure, effects of drifting bodies, and effects of marine growths (corrosion and 
friction), abnormal loads (such as impact loads due to collision of ships with the floating structure),  

Typical criteria for floating bridges are  given in e.g. [10-12].   

3.2 Serviceability criteria 
The purpose of serviceability criteria is to ensure that the structure fulfils its function as specified by the 
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owner; i.e. the comfort and safety of both drivers and pedestrians. Besides requirements to the width of the 
roadway, separation of traffic and pedestrians that use the bridge and clearance for ship traffic the bridge should 
satisfy serviceability requirements to deflections and motions; e.g. [10-12]. For instance, the maximum 
deflection and rotation of the bridge girder should be less than 1.5  m and 1 deg., respectively for 70 % of the 
characteristic traffic load. Moreover, the rotation about the bridge axis under 1-year static wind load should be 
less than 0.5 deg. while the root mean square (rms) value in 1-year storm should be less than 1.5 deg. The rms 
value of the accelerations in a 1-year storm in any lane should  be less than 0.3- 0.5 m/s2 , depending on the 
speed limit.  It should be noted that the design specification for the Hood Canal floating bridge had a 
requirement to the jerk (d3u/dt3) [10]. Since floating bridges need to accommodate passing traffic the end 
connections need provide a smooth transition from the roadway and the bridge under the action of vertical 
change of position of the bridge due to tidal water level variations and wave actions. 

3.3 Safety criteria 
Safety requirements ensure that there are no casualties, fatalities, property or environmental damage. Global 

structural failure, capsizing, sinking, and drifting off-station are failure modes which are taken care of under the 
safety criteria. Property damage could be acceptable financially, but human loss and environmental damage are 
permanent effects that are eliminated or  minimized under strict design guidelines.  

Floating bridges e.g. in Norway should in general be designed for the highest consequence and reliability 
class (CC3, RC3) [11, 13]. However, particular components  might be designed for a lower consequence class 
(CC2). The design serve life should be 100 years as a minimum. The design should  be based on the following 
principles: 

 - probability of fatalities should be  comparable to accident rate in  traffic itself, 
       and less than for voluntary  presence on offshore platforms  (target Pft  for 
       submerged tunnels  1/10 of that of offshore structures) 

 - storm monitoring and warning  will reduce that chance of fatalities due to storm  damage 
    - ”uncommon” loads and load   combinations , including accidental loads should be accounted for 
These principles are implemented by fulfilling ultimate, fatigue and accidental collapse limit states. While 

Eurocodes [13] refer to these limit states in one group as ULS criteria, the Norwegian bridges follow the 
offshore standards ISO 19900 and Norsok N-001 principles by considering separate limit states. 

This paper focuses on determination of  wave, wind and current actions and their effects  on floating bridges, 
especially for serviceability and ultimate limit state (ULS). The latter is based on characteristic values with 
reference to an annual exceedance of 10-2 and characteristic resistances and partial action and material 
(resistance), generally based on the suite of Eurocodes. However. due the additional uncertainty in action effects 
relating to wave, wind and current actions, the partial action factor is taken to be 1.6, slightly increased above 
1.5 in EN 1990 

Very large floating structures such as floating bridges are usually constructed in modules at shore-based 
facilities and moved in a floating mode to the installation site and then provided with mooring system, which is 
partly pre-installed.    

Owing to the corrosive sea environment, floating structures have to be provided with a good corrosion 
protection system. Possible degradation due to corrosion or crack growth (fatigue) requires a proper system for 
inspection, monitoring, maintenance and repair during use to ensure durability. 

4 CHARACTERISTIC FEATURES OF THE BEHAVIOUR OF FLOATING BRIDGES 

4.1 General 
The analysis and design of very large floating structures need to have special consideration when compared 

to the common size with overall size of 100 m or less.     
In floating structures, the static self-weight and pay-loads are carried by buoyancy forces. While floating 

offshore platforms with an overall size of about 100 m are rigid, very long structures such as floating bridges, 
are flexible. This implies that a concentrated force cause deformations over a certain characteristic length, c , 
only, analogous to a beam on an elastic (flexible) foundation.  

Floating bridges are subjected to wave and wind actions that exhibit a time variation  with a frequency that 
can cause dynamic effects in the bridges. As shown later, floating bridges have many natural periods that can be 
excited by random wave and wind loading. Moreover, the characteristic period of the dynamic loading  is both 
smaller and  larger than the natural periods and e.g. the characteristic length of waves is much less that the 
length of the structure. 
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4.2 Basic characteristics  
In the vertical direction low bridges are supported by continuous  or preferably discrete pontoons spaced at 

100 – 200 m., while a suspension bridge  over e.g. a 5 km span might  have two pylons with free spans of a 
length of the order of 1.5 km. The behaviour depends on the relative restoring stiffness due to buoyancy and the 
bridge girder bending stiffness. Typically the restoring stiffness is relatively small and governs the behaviour of 
the low bridge, while for the suspension bridge is relatively large and provide limited compliance. 

To carry the relatively large horizontal forces due to waves and wind two designs are envisaged. One option 
is a straight bridge supported by several clusters of catenary mooring lines anchored on the seabed.  The 
alternative is to use a curved  bridge that carry the horizontal forces by axial forces due to the “arch effect” and 
with anchoring of the bridge ends. The pylon/pontoons of a  suspension  bridge  may  be anchored by a tension-
leg or catenary mooring system. (In Fig. 4c a tension-leg system is indicated). It should  be  noted that in shallow 
water the mooring system easily becomes very stiff and virtually prevents the horizontal motion.  As a 
consequence the mooring forces become an order of magnitude larger than in a compliant system. This is 
because  the  horizontal wave and dynamic wind forces are balanced by inertia forces in a compliant system.  

Where the horizontal size of the structure is larger than the wave length, the resultant horizontal forces will 
be reduced given that different phases (direction and size) of the wave force will act on various parts of the 
structure, resulting in smaller forces in the mooring system relative to the total wave force.  

4.3 Dynamic features of the response 
The dynamic features if the bridge can  be conveniently judged based on the natural frequencies and mode 

shapes in view of the distribution of energy in the action over frequencies, direction and space (phase angle for 
the action on different parts of the structure, e.g.  [34-35].   

The dynamic amplification  factor,  DAF of mode i with a natural frequency of i   for an harmonic 
excitation with frequency,   

 
1

2 22 2DAF 1 ( 2 )  


     
(1) 

where   =  / i   and   is  the  damping ratio,  = c/ccr, where  is the critical damping. Moreover, the 

phase angle between the excitation and response,   is 
  212   arctg (2) 

Because of the wide range of natural frequencies, excitation frequencies can be both above and below the 
natural frequencies, implying both  an  inertia and stiffness dominated system, respectively.  In the former case 
the DAF is less than 1.0 since the inertia forces to some extent balances the excitation forces and reduces the 
structural response. 

It is convenient to express the effect of the spatial distribution of dynamic loading on the system by the 
generalized dynamic  modal  loading associated with a given excitation frequency.  

L

i ext i

0

q q ( x ) ( x )dx  (3) 

where qext and  qi  are the spatial distribution of loading over a structure of length L at a given excitation 
frequency and phase angle. Consider as an illustration the hydrodynamic loading (for simplicity assumed to be 
proportional to the wave elevation) a long-crested wave of length  acting on a straight bridge with a mode of 
vibration that have a  “wave length” of Ls. If the wave angle of approach,   is 90 degrees (and the number of 
“wave lengths”  Ls  is an equal number), the excitation force becomes zero. If the angle    is slightly smaller 
than 90 degrees, i.e. cos = /Ls, the excitation is completely in phase with the mode and gives a maximum 
generalized force. If the wave condition is stochastic and short-crested, similar considerations apply but the 
situation is less transparent.  If the bridge is curved the situation becomes more complex since there will be 
different phase angles of the wave load in different locations of the bridge due to the geometry.      

Analogous considerations can be made for the effect of turbulent wind. 

5 ENVIRONMENTAL CONDITIONS 

5.1 General 

In this context only the wind, wave and current loads and their static and dynamic effect is addressed.   
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Fig. 5 Illustration of the effect of phase angle in a     Fig. 6 Topography of a possible site for floating bridge 
long-crested wave on the excitation of modes.           (Bjørnafjord) and directions of  orientation 

5.2 Wave and current 

The ocean waves at a site generally consists of wind generated sea and swell. Wind-generated waves consist 
of a large number of wavelets of different heights, periods and directions superimposed on one another. 
Although regular waves are not found in real seas they can closely model some swell conditions. They also 
provide the basic components in irregular waves and are commonly used to establish wave conditions for 
design. Regular waves are characterized by the wave period and height. The kinematics and hydrodynamic 
pressure within a regular wave are described by the wave potential as described subsequently. 

During a suitably short period of time (typically 3 hours) the sea surface elevation, ς is commonly assumed 
to be a zero mean, stationary and ergodic Gaussian process, e.g. [14-15]. The Gaussian process is completely 
specified in terms of the wave spectral density, S() for long-crested waves. In the time domain the wave 
elevation may be described by a sum of long-crested waves specified by linear theory, with different amplitudes 
i ai , frequencies i  and phase angles  εi  which are uniformly distributed over (−π ,π ).   

Wave conditions are typically assumed to be stationary within short-term periods of 3 hours and described 
by a wave spectrum for the wave amplitudes: 

( , )= ( ) ( )S S D           (4) 
where S()  is the unidirectional wave spectral density and D( )  the directional distribution. The directional 

distribution for locally wind generated sea is commonly approximated as frequency independent. The wave 
spectrum   is represented by an analytical function; for instance. the simple one-parameter Pierson-Moskowitz 
spectrum  and the cosn distribution [36]  
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where  p is the mean wave direction. A more general formulation is to let the directional distribution 
depend on the frequency. Other spectra include the JONSWAP spectrum. 

To exemplify the situation consider the East-West oriented Bjørnafjorden in Fig. 6. Fig. 7 gives an indication 
of the variability of 50 year  wind conditions in the fjord due to the local topography. Fig.7a shows how the 
ocean wave condition in terms of the significant wave height propagates into a fjord system as determined by 
software such as Swan and STWave [37-38]. In the East -West oriented Bjørnafjord two possible bridge sites 
are indicated with red dots. It is seen that the waves at these sites are not affected by waves coming from the 
ocean. The main waves  are  generated by wind from North West and East. Other directions are blocked by land 
masses. The land masses surrounding the crossing  site  in  Bjørnafjorden limit the fetch from less than 5 km to 
no more than 20km.  As a result, the local wind-generated waves have limited height and period. The significant 
wave height is 2.4-2.8 m depending on direction and the spectral peak period is in the range  of  5- 7 s.  

A sample time series of the short crested wave surface elevation can be described by: 

   ( , , ) cos ( cos( ) cos( )) ( , , , , , ) 1, 2, ,6

2 ( , ) ; (6)

N M N M
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In addition to the locally generated wind sea  long-crested swell  occurs.  For instance, because of the local 
topography, swell can only reach Bjørnafjorden through passages from the North (North) West and from the 
South West. With wind predominantly from the North, we can expect the North end of the crossing structure to 
be sheltered by land yielding smaller loads than experienced at the South end of the crossing structure. Also, 
because the depth of the Bjørnafjord varies considerably, the wave system will be diffracted as it approaches 
shallower areas.  NPRA is conducting a measurement program of the wind, wave and current conditions in 
several Norwegian fjords. Due to the limited time of the measurement program before design will be carried out, 
the measurement program essentially is applied to validate hindcast predictions of local wind, wave and current 
conditions based on meteorological  and oceanographic data , [12, 40].   

It is noted that the sea state across the strait – along the bridge may be inhomogeneous; i.e. correspond to 
different spectra. Fig. 7b gives an indication about  the wave conditions across the fjord.  Moreover, the 
correlation in different points across the strait might vary [41].   

a) 50 year wind speed (m/s)with 10 min average at b) Propagation of ocean waves into the fjord 10 m
height   Courtesy: Kjeller Vindteknikk [39]. Courtesy: A. Lothe, Norconsult  [40].

Fig. 7 Macro-environmental conditions in the Bjørnafjord, Norway  [38]. 

The wave elevation at point (x; y) is described by the wave spectrum  S(), directional distribution D(), and 
random phase angle  mn . When the wave spectrum and directional distribution are given, the wave elevation at 
point (x; y) can be regarded as a function of significant wave height, Hs and  the peak period Tp, the principal 
wave direction p  and random phase angle mn  . For the floating bridge considered in this study, the wave field 
is homogeneous if these four parameters are identical for all pontoons; otherwise, the wave field is considered 
inhomogeneous [26, 41]. 

In view of their variability and the dynamic properties of the structure (with natural periods from about 120 s 
and down to a few seconds), the current velocity is considered  constant in time. However its spatial variation is 
important, especially for submerged tunnels, for which vortex induced vibrations excited by the an asymmetrical 
current across the fjord may be of interest. 

5.3 Wind 

The wind velocity field is described by three components; with U in the main - along wind direction. 
Moreover, Uw is split in a mean and turbulent component,  Ūw and uw, respectively. The mean wind velocity is 
assumed to typically follow and exponential function 

 ( ) / /w w ref refŪ h Ū h h


  (7) 
Turbulent velocities . u, v and w at two points i and j are described by wind spectra accounting for the coherence 
Consider for instance the in-line velocity, u. The spectrum in terms of the frequency f,  can  be described by the 
Kaimal spectrum: 

uu u uu
ˆS ( s, f ) S ( f ) Co ( s, f )    

where 

u u
2 5/ 3
u u

ˆf S ( f ) A f
ˆ(1 1.5 A f )

 


  
 and  u

w

f L ( z )
f̂

U


 (8a-d)      

 and the normalized co-spectrum is given by 
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uu us
w

f s
Ĉo ( s, f ) exp( c )

U ( z )

 
   

Here, s is the horizontal or vertical distance between the the points considered. uL ( z ) is the so-called integral 

length scale in the x-direction. uA  and  cus are coefficients, typically with a value of 6.8 and 10.0 respectively. 

Analogous expressions exist for the spectra wwS and uwS ; including the effect of separation between two
points normal to the main wind direction. Further details are given in e.g. [11, 42] and in papers [11, 42]. 

6 MET-OCEAN LOADS 

6.1 Wave and current loads 
     The hydrodynamic modeling of wave loads for the floating bridge has been comprehensively addressed in 
[21-33], based on the state of art in [14-15]. The pontoons are regarded as large volume structures, their 
hydrodynamic coefficients,  such as added masses, radiation damping, and transfer functions of wave excitation 
forces, etc., are first estimated based on the potential flow theory. The hydrodynamic interaction between 
adjacent pontoons are not considered, since the spacing between adjacent pontoons are more than 4 times the 
typical wave length under 100-year wave condition. The wall effect due to fjord sides on the hydrodynamic 
coefficients is not considered either. The added masses and radiation damping are then applied as radiation 
forces in time domain using the convolution technique [43]. Regarding the wave excitation forces, this study 
accounts for both first order wave loads and second-order difference-frequency wave loads. The second-order 
wave loads are taken into account by using Newman’s approximation, in which only forces in surge and sway 
and moment in yaw are considered. A more detailed description of the modeling of wave loads for low bridges 
can e.g. be found in [25-26] and for suspension bridges in [32-33]. 

The viscous drag forces on the pontoons are incorporated through the Morison’s equation by considering 
only the quadratic viscous drag term. They are caused by the wave kinematics, current velocity and floater 
velocity. The transverse viscous force per unit length is given by 

1

2
	  D(  

(9)      

where w  is the water density, uw is the transverse wave particle velocity, ub is the local transverse body velocity, 
uc is the transverse current velocity, D is the characteristic width of the body, and    is the quadratic drag 
coefficient. The drag coefficient used for the pontoons in this study is  1.0 (transverse); 0.4 (longitudinal) and 
4.8 (vertical) [36].          

6.2 Wind loads 
     Structures above the MSL are subjected to wind loads under wind conditions. Wind forces may stem from 
the mean pressure and the fluctuations in the incoming air flow (buffeting forces), vortices shed  (vortex 
shedding) and oscillations of the structure itself (motion induced forces). The corresponding   response to the 
three types of loads are treated separately, because they occur in well separately wind velocity regions, however, 
without clear borders. At the critical velocities the response increases rapidly and it is assumed that the relevant 
forced response is determined for conditions outside the critical values. 
    In the present study, the focus in the response of low bridges subjected to buffeting forces. For floating 
suspension bridges motion induced forces are also important in consideration of critical wind velocities with 
respect to instability phenomena like flutter. The buffeting  relative velocity between the wind and structures is 
accounted for when estimating the wind loads.   
    The column, tower and cables are mainly subjected to viscous drag forces. The transverse viscous drag forces 
per unit length due to winds is given by 

1

2
 D(              (10)      

where a  is the air density, Uw is the transverse wave particle velocity, ub is the local transverse body velocity, D 
is the characteristic width of the body and wi

DC  is the quadratic drag coefficient. For turbulent winds, the wind 
velocity can be expressed as a mean part Ūw and a fluctuating part uw, i.e. Uw = Ūw +uw.  
     The wind load acting on the bridge girder is more complicated than those acting on the column, tower and 
cables.  It usually consists of three parts: the mean force due to mean wind velocity, the buffeting force due to 
fluctuating wind velocity in the two transverse directions, and the frequency-dependent force induced by girder 
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motion [42]. In this study, the frequency-dependent aerodynamic forces induced by motion of the structures are 
neglected. Only the mean force and buffeting force are considered using quasi-steady theory. The instantaneous 
cross sectional drag and lift forces and moment per unit length are then given by [42]. 

2
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where D is the height of the girder. DC , LC  and MC  are the mean values of the drag, lift and torsional moment 
force coefficients (taken at the mean angle of attack), and DC , LC  and MC  are their derivatives with respect to 
the fluctuating angle of attack, α,  which is equal to  the angle between the resultant velocity and the horizontal 
axis of the cross-section,  for quasi-steady theory [42]. 
      It is normally assumed that the fluctuating wind velocities, uw and ww structural  velocities  are small 
compared to the mean wind the expression wind velocities the expression can be linearized as follows: 

2 2 2 ( , t)rel w w wU U U u x  . (12) 

Besides using the approach (I) indicated above considering airfoil-type aerodynamic loads for the bridge girder, 
simplified approach (II)  by considering  only the drag forces on the bridge girder, is envisaged. Cheng et al. 
[44] show that approach I results in a larger standard deviation in sway  and heave motions,   bending moments, 
and especially axial force. The aerodynamic lift force significantly excites the 3rd mode (dominated by 
horizontal motions) and vertical modes of the floating bridge. 
     Introduction of the motion-induced aerodynamic loads results in an aerodynamic damping and stiffness in 
terms of aerodynamic derivatives as established by Scanlan & co-workers [42, 45-46] which is necessary to 
check the critical velocity of suspension bridge with respect to flutter and other instabilities. These phenomena 
especially relate to across wind direction and torsion. Xu et al. [47] estimated the critical velocity for a 
suspension bridge with two floating pylons, both the stability criterion in terms of eigenvalue analysis of the 
impedance matrix and direct time domain analysis with very good agreement.  

. 

7  STRUCTURAL MODELLING AND DYNAMIC EQUATIONS OF MOTION 

7.1 Structural modelling 
The global model of a long bridge will normally be based on  flexible finite elements for the bridge girder, 

tower and cables; e.g. a beam model.  accommodating  axial and shear forces, bending and torsional moments 
for the girder. Pontoons are modelled as simple elements with high stiffness or as rigid elements –eccentrically 
attached to the bridge girder. The pontoons are supported by buoyancy (relatively soft springs).  
      Given the global  response of a substructures(line as section of the girder) local stresses; e.g. for fatigue 
analysis,  is obtained by a detailed shell model. 

7.2 General 

The equation of motion  can e.g.  be written as [32-33]: 

(1) (2 )(t) ( ) ( ) ( ) (t) (t) (t) (t) (t)
HydroAero

s s s h mean Buff se WA WA Radt t         
FF

M u C u K K u F F F F F F  
(13) 

Here, sM , sC and sK  symbolize the still-air mass, damping and stiffness matrix, respectively, u represents the 
degrees of freedom of the finite element model. FAero represents the wind loads that consist of a time invariant 
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part meanF  due to the mean wind velocity and a dynamic part BuffF due to turbulence in the wind field and the 

self-excited forces seF generated by the motion of the structure.. FHydro represents the wave-induced loads, which 
consists of the radiation forces RadF  induced by the motion of the submerged part of the structure and the wave 
excitation forces. Both first and second order difference and sum frequency wave forces, (1)

WAF  and (2 )
WA

F , are 
considered.  hK  is the hydrostatic restoring stiffness. 
     When a floating structure oscillates in still water, it radiates  waves resulting in oscillating fluid pressures on 
the surface of the body [15]. The hydrodynamic radiation forces   depend on the motion history. To consider the 
frequency-dependent characteristics, Cummins equation is widely used for time domain simulations of structures 
interacting with water [43]. It is a vector integro-differential equation which involves convolution terms taking 
the fluid memory effect into account and has been applied by many researchers, see for instance [48]. It is 
however very time-consuming to solve the convolution integrals during a dynamic analysis [15, 49-50]. A more 
efficient approach is to  replace the convolution integral with a state-space model . [49]. The method was  shown 
the yield  the same accuracy as by solving Cummins equation directly but with an order of magnitude  faster. 
A  simplified approach is to replace the frequency dependent added mass and damping by constant coefficient, 
which are chosen at a dominating frequency, for instance, the peak frequency of the wave or the natural 
frequency of the structural system. 
     The integrated hydrodynamic pressures give rise to radiation forces, which for a single frequency motion are 
defined as  

Rad ( ) ( )h h  F M u C u  (14) 

where ( )h M  and ( )h C  represents frequency dependent added mass and potential damping matrices. These 
matrices can be determined by the potential theory transformed into the time domain in terms of a convolution 
integral [15, 43].      
       Determination of internal forces in the hull structures is possible in some computer codes for special cases; 
i.e. when the hydrodynamic  loads  are determined by Morison formula and the structure is modelled as a frame 
consisting of beams. In general, determination of internal forces in large volume floating wind turbines requires 
a finite element model of the hull and a potential theory of hydrodynamic loads that account for radiation and 
diffraction effects. A general time-domain method for determining internal forces in floating wind turbine 
support structures  is  presented and applied for a semi-submersible wind turbine in [51].  
      Instead of using the second order Eqs of motion, a more efficient formulation by replacing it by a state space 
formulation involving a set of first order diff. equations; by the fact that the convolution integrals are avoided. 
The first order wave loads for short-crested waves  in the time domain  are given by 
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         (15) 

     The natural frequencies of the low order modes of the bridge are well below the energy content in the wave 
spectra such that these modes will not be excited by first order excitation forces.  The difference frequency 
forces can however cause wave excitations in this frequency range. For short crested waves, the difference 
frequency forces can be written as [52-53], 

( ) t ( )(2 ) (2 )

1 1 1 1
Re ( , , , ) k j kh jl

N N N N
i i

WA jl kh j k l h
l h j k

e e           

   

 F H   (16) 

Here, (2 )H contains the in-phase and out-of-phase components of the full quadratic transfer function, icH and 
isH , and represents the forces induced by the interaction of a unit amplitude wave associated with frequency 

j and direction l  and a unit amplitude wave associated with frequency k and direction h . If the direction 

interaction effects are ignored, i.e., the terms where l h  , the computational effort significantly since far less
quadratic transfer functions needs to be obtained. The mean drift force is included in equation above and can be 
found by putting k j  : Moreover, if Newman’s  approximation implying neglecting term outside the 

diagonal in (2 )H , further reduction in computational efforts are achieved, at the expense of reduced accuracy. 
Modelling of the motion induced aerodynamic forces is one of the major challenges in the time domain 
simulations of the dynamic response since they are dependent on the motion history. One possibility is to use so 
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called quasi-steady theory where the self-excited forces are modelled using coefficients from static wind tunnel 
tests. The coefficients in the quasi-steady model are frequency independent, making the model convenient to 
implement in the time domain. It can however be challenging to model the self-excited forces accurately using 
quasi-steady theory, which has resulted in a number of suggestions for improvements [54].The fluid memory 
effect can be taken into account by transfer functions in the frequency domain, or by convolution integrals in the 
time domain. The self-excited forces for bridge decks are commonly modelled in frequency domain using flutter 
derivatives as proposed by Scanlan  and coworkers [45-46]. – analogous to  hydrodynamic radiation.  In time 
domain simulations of self-excited forces for bridge applications, it is common to start with an empirical 
expression for the transfer function in the frequency domain or the indicial functions in time domain. The 
challenge is to fit the various models to the experimental data of the aerodynamic derivatives.  Chen et al. [55]. 
replaced the convolution integrals with a state-space model, to make the numerical simulation more efficient. 
They conducted flutter and buffeting analysis of a bridge in time domain, but in terms of generalized 
coordinates. Øiseth, Xu et al. [32, 50] also used a state-space model and introduced the state variables as 
additional degrees of freedom in each node of a beam element to simulate the fluid memory effect.    

8. COMPUTATIONAL STRATEGY FOR LOAD EFFECT  ANALYSIS

8.1 General 
As mentioned above the wave and wind processes are assumed to be stationary in 3 hours and 10 min periods 
respectively. Since there is an interaction between the response due to waves and wind, an integrated analysis of 
wind and wave load effects is in principle desirable, considering simultaneously the two loads in the time 
domain. However, to do a dynamic analysis involving both waves and wind, would be cumbersome in  the time 
domain analysis with say eighteen 10 min periods in each 3 hours period. A practical approach would be to use a 
60 min period for both, with appropriate adjustment of the long-term data to refer to such a characteristic 
duration.  Account of the long-term variability of wave and wind conditions  represented by the probability 
density function of the parameters describing the wave and wind conditions should then refer to 1 hour data 
samples. To reduce the statistical uncertainty several (e.g. 5-6) samples should be made for each condition. 
      In the design of floating bridges many load conditions need to be considered to account for the variation in 
the combined wave, current and wind conditions. Hence, the reference is a so-called long-term analysis, in 
which the response from all short term conditions  which  are assumed to be stationary, are combined based on 
the probability of occurrence of the various short term met-ocean conditions, e.g. [35, 56].  
      Analyses also need to be carried out for conceptual or detailed design requiring different degree of 
refinement. A variety of methods – refined and simplified – is hence desirable for dealing with the 
aerodynamics, hydrodynamics, structural and possible soil mechanics. In general highly efficient methods are 
required to accomplish analysis in the early design stages when alternative designs need to be assessed. Hence, 
simplified mechanics models need to be pursued.  
     The action effects needed for ULS design check is characteristic values corresponding to an annual 
exceedance probability of 10-2 by recognizing the variability of environmental conditions in the long-term period 
and the short-term periods. 

8.2 Short-term analysis 
     In principle the stochastic dynamic response under wave and wind-induced loads can be determined in the 
frequency or time domain [34, 35, 42]. Frequency domain approaches are particularly attractive for linear 
systems or systems that can be linearized with a reasonable accuracy. Moreover, frequency domain methods are 
very attractive when the mass or damping are frequency dependent. Time domain approaches imply a 
cumbersome  integro-differential equation, as mentioned above, when dealing with frequency properties. On the 
other hand, linearization of nonlinear features can yield significant uncertainties for extreme values since 
linearization often is made sya to represent the standard deviation in the response.  
     Xu et al. [32] compared a frequency and time domain approach for a suspension bridge with floating pylons, 
by first checking that the linear part of the time domain agreed with the frequency domain method. They found 
that the nonlinearities associated with the geometric stiffness were small while the  nonlinear feature of the 
buffeting wind load had 10 % effect on the girder response. 

12



T.Moan

     The basic integrated dynamic analysis is a short term analysis considering the stochastic nature of waves and 
turbulence of wind.  Since some natural frequencies may be as small as 0.01 Hz a long sample may be needed in 
a time domain analysis to capture the load effects (motions) due to wind and low frequency hydrodynamic loads. 
On the other hand the time step needs to be small to capture all phenomena – including high frequency features 
associated with e.g. a mechanical or hydraulic drivetrain.  
     In the simulation of the load effects in short-term conditions it is important that the sampling time is 
sufficiently long to limit the statistical uncertainty, especially when determining extreme values. Moreover, 
when estimating extreme values efforts to use realistic methods to fit the sample and then extrapolate to extreme 
values. Alternative methods, such as Weibull tail, global maxima and a recently proposed extrapolation method 
(ACER) based on the mean upcrossing rates, can be used for obtaining the extreme values, see e.g. [35]. 
     In the short-term  period the maximum response can be expressed by 

                                                     Xmax = xmean + k· x                                                                                                                                   (17)
where  xmean  and x are the mean and standard deviation, respectively, and k  is a constant depending on the 
number of individual maxima in  the short term period and the relevant fractile value to be used. 

8.3 Long-term analysis 
     A full long-term analysis (FLTA) is the most accurate  approach to determine  the effects due to 
environmental loads, both in terms of extreme load effects for ULS design check and load effect histories (i.e. 
stress ranges) for FLS design check. Since the full long-term analysis is time consuming   simplified methods 
such as the environmental contour method (ECM) [33, 35, 56-58] and simplified full long-term analysis (SLTA) 
[59, 33] have been proposed. SLTA is the same as FLTA except that it only include the important environmental 
conditions and ignore the others that do not contribute much to the long-term results Xu  [33] found that the 
SLTA can predict the long-term extreme load effect as accurately as the FLA with about 10% of the effort.   
    The ECM is in a way a special SLTA method based on identification of the (single) environmental condition 
that contribute most to the long-term extreme value. This method has been extensively been used  for offshore 
structures subjected to wave loads and wind turbines  subjected to wind and wave loads  [35, 56]. These 
methods are approximate and need to be validated by FLTA, as e.g. illustrated for suspension wind loads on 
bridges and wave and wind loads on a floating suspension bridge by Xu et al . [33].  Since contour methods use 
only a single short-term condition to predict the long-term extreme, the short-term extreme value used would 
normally be a fractile value, larger than the expected maximum in Eq. (17).   
     Cyclic load histories for fatigue (and possibly wear) design checks normally  need  to be based on a  long 
term analysis.   
     The ULS design check is based on checking the nominal stress as compared with the strength, considering 
yielding and possible buckling effects,  in representative locations as illustrated for the bridge girder in Fig. 8. 
The normal axial stress and shear stress due to axial force and bending moments;  and shear forces and  torsional 
moment, respectively, based on beam theory,  are considered. 

.

Fig. 8. Typical bridge steel girder cross-section 

      The focus in this paper is on the global dynamic analysis and not the detailed design check. Given the axial 
force and   bending moments in a cross section the axial stress is determined by beam theory. The shear stress 
stem from shear forces and  St. Venant  torsion of the cross section. It is noted that instantaneous extreme values 
should be considered. Since the maximum cross-sectional resultant forces and moments do not necessarily occur 
at the same time simplified approaches using combination factors on the different extreme values. 

9. CASE STUDIES

9.1 General  
    In this section a brief account of the comprehensive case studies made of an early floating bridge concept   for 
crossing of the Bjørnafjord  [25, 26, 44]. It is anchored at both ends and has a bridge girder curved in the 
horizontal plane, with a radius of 5000 m and with a total  length of  approximately 4600 m.  Moreover, the 
bridge girder is a vierendeel  beam, consisting of two parallel steel boxes connected by cross-beams. this bridge 
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concept includes a high bridge part and a floating bridge part. the high bridge is cable-stayed located in the 
South and is designed for ship navigation. it has a main span of 490 m and a back span of 370 m. a total of 80 
cables are used  to carry the girder. the floating bridge part is supported by 19 pontoons with a span of 197 m. It 
can also be divided into a high part and a low part, where the high part is used to smoothly connect the main 
span. the pontoons are 28 by 68 m and 14.5 high with a draft of 10.5  m. Further details are given in [25].  
      The first 5 modes with natural periods are  56.7, 31.7 and down  to 14.3 s are horizontal modes with some 
contribution from torsion. The natural periods for the primarily torsional modes are 11.9 and 11.5 s, 
respectively. Then are 20  vertical modes,  some with contribution from torsion, with natural period in the range 
of 11.5 – 7.5 s, governed by the heave of the pontoons. Modes 17 and 18 have natural periods of 10.6 and 10.5 
s, respectively. There are many modes, essentially torsional with natural period in the range of 7 to 3.5 s. 

Fig. 9  Curved end-anchored floating bridge concept for the Bjørnafjord 

Fig. 10  Normal  modes of the bridge. 

14



T.Moan

9.2 Wave-induced response 
The standard deviation of the strong axis bending moment, Mz, along the bridge girder is demonstrated in 

Fig. 11. It is seen that short-crested waves yield larger dynamic response than the long-crested waves for the 
present direction.  By a closer look at the response spectra it is found that the long-crested waves mainly excite 
the second resonant mode, whereas the short-crested wave excite both the second and third resonant modes. 

The static weak axis bending moment in the low bridge due to gravity loads, varies between +4·105 and  - 
8·105 kNm,in the field and  at the pontoon support corresponding a continuous beam. The weak axis bending 
moment My is mainly induced by the heave motion of the pontoons, and hence the girder. The  standard 
deviation of the wave induced moment along the girder follows a similar trend as that of heave motion. The My 
is not affected by the second order wave loads, but is strongly influenced by the short-crested waves. For girder 
nodes between A3 and A14, the My of short-crested waves is almost twice of that of long-crested waves. Power 
spectral analysis also reveals that it is  also due to the excited resonant eigen-modes with a period of about 7.8 s. 

a) Strong axis bending moment, Mz

b) Weak axis dynamic bending moment

Fig. 11    Standard deviation of the dynamic response under wave loading with a sea state with Hs =2.4 and Tp = 
5.9 and   principal wave direction, p = 270 degrees. Short-crestedness parameter : n=4. 

9.3 Response in non-homogeneous wave loads 
The effect of inhomogeneous waves are investigated  by specifying the significant wave height Hs, peak 

period Tp, principle wave direction p and random seed number for the phase angle to generate the time series 
of wave elevations at each pontoon. Homogeneous wave conditions are generated by make these parameters 
identical for each pontoon.  The wave conditions considered are specified in Table 1. The effect on the strong 
axis bending moment is limited, but Fig.11b shows that the weak axis bending moment is significantly influence 
by the inhomogeneity, especially for the girder between A3 and A10. Examination of the response spectra 
shows that this is because inhomogeneous wave cases LC2.3 and LC2.4 excite several strong resonant responses 
with frequency ranging from 0.76 rad/s to 1.12 rad/s. 
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Table 1.  Homogeneous versus inhomogeneous 100 years wave conditions. Pontoons A1 – A21 are numbered 
from South to North. 
Case Definition of wave conditions 
LC2.1 Hom. Hs = 2:4 m, Tp = 5:9 s,,p = 288_, and identical random phase angles of each wave 

components    
LC2.2 Inhom. Hs = 2:4 m, Tp = 5:9 s, p = 288_, and different  random phase angles of each wave 

components    
LC2.3 Inhom. Wave parameters: A3-A6: Hs=1.6 m, p=315; A7-A12: Hs==2.0 m, p=300; A13-A18: Hs 

=2.4 m, p=285; A19-A21: Hs= 2.0m,p=270. Identical random phase angles.. 
LC2.4 Inhom. Wave parameters: A3-A6: Hs=1.6 m, p=315; A7-A12: Hs==2.0 m, p=300; A13-A18: Hs 

=2.4 m, p=285; A19-A21: Hs= 2.0m,p=270. Different  random phase angles.. 

Fig. 12  The standard deviations  of the  moment about bridge girder weak axis My along the bridge girder under 
100-year wave condition. 

9.4 Response under combined wind, wave and current loads 
The effect of combined wave, wind and current was investigated by Cheng et al. 26. An example of results 

for dynamic response in terms of the standard deviation are shown in Figures 13 and 14. The plots  display the 
standard deviation in each section and does not necessarily say anything about the simultaneous occurrence of 
the response. It is seen that   the horizontal displacement (not shown), axial force and strong axis bending 
moment are mainly induced by wind loads while wave excitation dominate the vertical response (heave -not 
shown, weak axis bending moment) and torsion (not shown).  It is noted that the turbulent wind can cause 
significantly larger low-frequency responses than second order wave excitation. A closer look at the results 
show that the current and a mean wind reduces the dynamic response due to their damping effects especially on 
the horizontal motion, axial force and strong axis bending.  

Fig. 13 Axial force in the bridge girder under wave and wind conditions. When waves are included: Hs = 2.4 m 
and Tp = 5.9 s.  Principal wave direction = 270.  Short-crestedness parameter: n=4. When wind is included: Ūw 
= 31 m/s. TI= 14 %. 
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a) Weak axis bending moment

b) Strong axis bending moment
Fig. 14  Bending moments in the bridge girder under wave and wind conditions. When waves are included: Hs = 
2.4 m and Tp = 5.9 s.  Principal wave direction = 270.  Short-crestedness parameter: n = 4. When wind is 
included: Ūw = 31 m/s. TI= 14 %. 

10. CONCLUSIONS
To improve the efficiency of transport systems across straits floating  bridges are attractive to replace ferries.

Designing a reliable and cost-effective floating bridge for a wide and deep fjord is very challenging because of 
the complex environmental conditions and the dynamic character of such bridges.  First a brief overview of 
relevant floating bridge concepts as well as relevant serviceability and safety criteria  are given, followed by an 
outline of the modelling of  wind-, wave-, and current-induced loads and their effects and the challenges 
associated with such analyses. A case study of  the response in a possible 4600 m long curved bridge for the 
crossing of the Bjørnafjord, are presented to illustrate the features of such bridges. The considered floating 
bridge consists of a cable-stayed high bridge part and a pontoon-supported low bridge part. It also has a number 
of eigen-modes, which might be excited by the environmental loads. The sway motion, axial force and strong 
axis bending moment of the bridge girder are mainly induced by lift, drag and moment wind loads, while the 
heave motion, weak axis bending moment and torsional moment are mainly induced by wave loads. The vertical 
response is significantly influenced by short-crestedness and inhomogeneity in the wave conditions. Current 
loads mainly reduce the dynamic response of the sway motion, axial force and strong axis bending moment due 
to the damping effect of the drag forces. 

Further work remains regarding collection of environmental data and modelling of the complex 
environmental conditions in coastal areas, developing   simplified ULS design checks considering the variation 
in time and space of the combined  wind-, wave- and current load effects and the inherent uncertainty. A 
particular challenge is to clarify the possible effect of structural instability (the global second order effect or 
buckling) of possible slender curved bridges. An uncertainty assessment should be carried out and serve as a 
reassessment of the inherent safety; i.e. the partial safety factors used in the design of such structures. 

17



T.Moan

ACKNOWLEDGEMENT 
I would especially like to acknowledge the cooperation with professors Shixiao Fu, Zhen Gao and Ole 

Øiseth, dr. Zhengshun Cheng and Mr. Yuwang Xu and the support from the Norwegian Public Road 
Administration. 

REFERENCES 
[1] Wang, C., and Wang, B., (2015). Large Floating Structures: Technological Advances. Springer Science+ 
Business Media Singapore.  

[2] Skorpa, L., Jakobsen, B. and  Østlid, H.  (2017). Prof. Torgeir Moan and the Record-breaking Fjord 
Crossings in Norway. Paper OMAE 2917-62659. In Proc.36th International Conference on Ocean, Offshore and 
Arctic Engineering, OMAE2017 June 25-30, 2017,  ASME. Trondheim, Norway.  

 [3] Eidem, M. E., (2017). “Overview of floating bridge projects in Norway”. Paper  OMAE2017-62714 In 
Proc.36th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2017 June 25-30, 2017, 
ASME. Trondheim, Norway.  

[4] https://en.wikipedia.org/wiki/Submerged_floating_tunnel 

[5] Isaksen, B. et al. (2013). A 3700 m songle span suspension bridge.  Strait Crossing Conf., June 13.-19. 2013, 
Bergen. Proc. published by the Norwegian Public Road Administration. 

[6] TRAM (Technical Research Association of Mega-Float). (2002). Summary of Practical Research on Mega-
Float Airport in 2002 (in Japanese). 

[7] Suzuki, H. (2005). Overview of Megafloat: Concept, design criteria, analysis and design. Marine Structures, 
Vol. 18, pp. 111–132. 

[8] Mobile Offshore Base Science and Technology Program (2000). Final Report, Technical Report TR-2125-
OCN, Naval Facilities Engineering and Expeditionary Warfare Center, Port Hueneme CA, December 2000. 

[9] Remmers, G., Taylor, R., Palo, P., & Brackett, R. (1999). Mobile offshore base: A Seabasing option. In 
Proc. of the 3rd International Workshop on Very Large Floating Structures (VLFS ’99), Honolulu, Hawaii, 
September 22–24, 1999. 

[10] Washington State Department of Transportation: Design Criteria for the Hood Canal  Floating Bridge (for 
the reconstructed bridge of 1982) , September 15 1980. Seattle 

[11] Norwegian Public Road Administration. (2017). N400. Handbook for design of bridges, ferry quays and 
other load carrying structures (in Norwegian).  

[12] Norwegian Public Road Administration (2017). Design Basis Bjørnafjorden Side- and end anchored 
floating bridges. 

[13] Norwegian Standard (2016). NS-EN 1990:2002+A1:2005+NA:2016 Basis of Design (Norwegian version 
of EN 1990).   

[14] Newman, J. N., (1977). Marine Hydrodynamics. Cambridge: The MIT press. 

[15] Faltinsen, O.M. (1993). Sea loads on ships and offshore structures. Cambridge: Cambridge University 
Press. 

[16] Langen, I., and Sigbjørnsson, R., (1980). “On stochastic dynamics of floating bridges”. Engineering 
structures, Vol. 2(4), pp. 209–216. 

[17] Hartz, B. (1981). “Dynamic response of the hood-canal floating bridge”. In Second ASCE/EMD  Specialty 
conference on dynamic response of structures, Atlanta, GA, USA. 

[18] Løken, A. E., Oftedal, R. A., and Aarsnes, J. V. (1990). “Aspects of hydrodynamic loading and responses 

18



T.Moan

in design of floating bridges”. In Second Symposium on Strait Crossings, Trondheim, Norway. Proc. published 
by the Norwegian Public Road Administration. 

[19] Seif, M. S., and Inoue, Y., (1998). “Dynamic analysis of floating bridges”. Marine Structures, Vol. 11(1), 
pp. 29 – 46. 

[20] Fu,S., Cui, W., Chen, X.., and  Wang,C. (2005). “Hydroelastic analysis of a nonlinearly connected floating 
bridge subjected to moving loads”. Marine Structures, Vol. 18(1), pp. 85–107. 

[21] Kvåle, K. A., Sigbjørnsson, R., and Øiseth, O., (2016). “Modelling the stochastic dynamic behavior of a 
pontoon bridge: a case study”. Computers & Structures, Vol. 165, pp. 123–135. 

[22] Lie, H., Fu, S., Fylling, I., Fredriksen, A. G., Bonnemaire, B., and Kjersem, G. L., (2016). “Numerical 
modelling of floating and submerged bridges subjected to wave, current and wind”. In Proc.   35th International 
Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers. 
OMAE2016.  June 19 – 24, 2016,  ASME. Pusan, Korea. 

[23] Fu, S., Wei, W., Ou, S., Moan, T., Deng, S., and Lie, H., (2017). “A time-domain method for hydroelastic 
analysis of floating bridges in inhomogeneous waves”. In Proc.36th International Conference on Ocean, 
Offshore and Arctic Engineering, OMAE2017 June 25-30, 2017, ASME. Trondheim, Norway.  

 [24] Fredriksen, A.G. et al. (2017) Hydrodynamical Aspects Of Pontoon Optimization for a Side-Anchored 
Floating Bridge.  Paper OMAE2017-62698. Proc.  36th International Conference on Ocean, Offshore and Arctic 
Engineering OMAE2017 June 25-30, 2017, ASME. Trondheim, Norway.  

[25] Cheng, Z., Gao, Z., and Moan, T. (2017). “Hydrodynamic load modeling and analysis of a floating bridge 
in homogeneous wave conditions”. Marine Structures, Vol. 59, pp 122-141. 

 [26] Cheng, Z., Gao, Z., and Moan, T., (2017). “Wave load effect analysis of a floating bridge in a fjord 
considering inhomogeneous wave conditions”. Submitted for possible publication. 

[27] Sha, Y.,  Amdahl, J., Aalberg, A. & Yu, Z. (2018).  Numerical investigations of the dynamic response of a 
floating bridge under environmental loadings. Ships and Offshore Structures, DOI: 0.1080/17445302. 
2018.1426818. 

[28] Sun, J., Jiang, P., Sun, Y., Song, C., and Wang, D. (2017). “An experimental investigation on the nonlinear 
hydroelastic response of a pontoon-type floating bridge under regular wave action”. Ships and Offshore 
Structures, pp. 1–11. 

[29] Volkert, O., Bruer, A. and Veie, J. (2013). “How to cross the 7500m wide Boknafjord.” Strait Crossings. 
Conf., Bergen. Proc. published by the Norwegian Public Road Administration. 

[30] Veie, J., and S.H. Holtberget. (2015). “Three span floating suspension bridge crossing the Bjørnafjord.” 
Conf. on Multi-Span Large Bridges. pp. 373-380. 

[31] Fredriksen AG, Bonnemaire B, Lie H, Munkeby J, Nesteby A, Buckholm P, et al. (2016). Comparison of 
Global Response of a 3-Span Floating Suspension Bridge with Different Floater Concepts.  In Proc. 35th 
International Conference on Ocean, Offshore and Arctic Engineering: American Society of Mechanical 
Engineers;  V007T06A66-VT06A66. 

[32] Xu, Y., Øiseth, O., and  Moan, T. (2018). Time domain simulations of wind- and wave-induced load effects 
on a three-span suspension bridge with two floating pylons. Marine Structures. Vol. 58, March 2018, pp. 434-
452. 

[33] Xu, Y., Øiseth, O., Moan, T. and  Næss, A. (2017). Prediction of long-term extreme load effects due to 
wave  and wind for cable supported bridge with floating pylons . Submitted for publication. 

[34] Clough, R.W. and Penzien, J. (1975). Dynamics of Structures, McGrawHill, New York. 

19



T.Moan

[35] Næss, A. and  Moan, T. (2012). Stochastic Dynamic Analysis of Marine Structures, Cambridge University 
Press. 

[36] DNV GL, (2014). Enviromental conditions and enviromental loads (DNV-RP-C205). Det norske Veritas 
as, Oslo, Norway. 

[37] https://csdms.colorado.edu/wiki/Model:STWAVE 

[38] https://www.tudelft.nl/en/ceg/about-faculty/departments/hydraulic-engineering/sections/environmental- 
fluid-mechanics/research/swan/ 

[39] Norwegian Public Road Administration (2016): Bjørnafjorden Hydrodynamics Workshop. June 27-28 2016 

[40] Lothe, A., and Musch, O., (2015). Bjørnafjorden submerged floating tube bridge: sea state simulations. 
Tech. report, Norconsult AS. Trondheim. 

[41] Cheng, Z., Gao, Z., and Moan, T., (2017). Field Measurements of Inhomogeneous Wave Conditions in 
Bjørnafjorden. Submitted to the ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering 

[42] Strømmen, E., (2010). Theory of bridge aerodynamics. Springer Science & Business Media. 

[43] Cummins, W. E., (1962). The impulse response function and ship motions. Institut für Schiffbau, 
Universität Hamburg, Hamburg. 

[44] Cheng, Z., Gao, Z., and Moan, T., (2018). “Numerical modelling and dynamic analysis of a floating bridge 
subjected to wind, wave and current  loads”. Submitted for possible publication. 

[45] Scanlan RH, Tomko J. (1971). Air foil and bridge deck flutter derivatives. Journal of Soil Mechanics & 
Foundations Div.   

[46] Scanlan R, Budlong K, Béliveau J. (1974) Indicial aerodynamic functions for bridge decks. Journal of 
Sanitary Engineering Division . Vol.100. 

[47] Xu, Y., Øiseth, O., Næss, A.  and Moan, T. (2017) Prediction of long-term extreme load effects due to wind 
for cable supported bridges using time domain simulations. Engineering Structures.  Vol. 148, pp. 239-253. 

[48] Kashiwagi M. Transient responses of a VLFS during landing and take-off of an airplane (2004). Journal of 
Marine Science and Technology, Vol. 9, pp. 14-23. 

[49] Taghipour R., Perez T., Moan T. (2008). Hybrid frequency–time domain models for dynamic response 
analysis of marine structures. Ocean Engineering; Vol.35, pp. 685-705. 

[50] Øiseth O., Rönnquist A., Sigbjörnsson R. (2010). Simplified prediction of wind-induced response and 
stability limit of slender long-span suspension bridges, based on modified quasi-steady theory: a case study. 
Journal of wind engineering and industrial aerodynamics, Vol. 98, pp. 730 - 41. 

[51]  Luan, C., Gao, Z. and Moan, T. (2017). Development and verification of a time-domain approach for 
determining forces and moments in structural components of floaters with an application to floating wind 
turbines. Marine Structures. Vol. 51,pp. 87-109. 

[52] Pinkster J. (1988). The influence of directional spreading of waves on mooring forces.  OTC-paper No. 
5629. Offshore Technology Conference: Offshore Technology Conference; Houston. 

[53] Marthinsen T, Winterstein SR.(1992). Second-order load and response statistics for tension-leg platforms. 
Report RMS-9, Reliability Marine Struc Program, Dept. Civil Engineering, Stanford University. 

[54]  Diana G, Rocchi D, Argentini T, Muggiasca S. (2010). Aerodynamic instability of a bridge deck section 
model: Linear and nonlinear approach to force modeling. Journal of Wind Engineering and Industrial 
Aerodynamics ;Vol. 98:pp. 363-74. 

20



T.Moan

[55] Chen X, Matsumoto M, Kareem A. (2000). Time Domain Flutter and Buffeting Response Analysis of 
Bridges. Journal of Engineering Mechanics , Vol. 126, pp. 7-16. 

[56] Norwegian Standard. (2017). Norsok N-003 Action and action effects. Standard Norway.Oslo. 

[57] Haver, S., and Winterstein, S. (2009) “Environmental contour lines: A method for estimating long term 
extremes by a short term analysis”, Transactions, Society of Naval Architects and Marine Engineers, Vol. 116, 
pp. 116–127. 

[58] Winterstein, S., Ude, T., Cornell, C., Bjerager, P., and Haver, S., (1993). Environmental parameters for 
extreme response: Inverse form with omission factors, In Proc. of 6th International Conference on Structural 
Safety and Reliability, Innsbrück, 1993. 

[59] Videiro, P. M., and Moan, T. (1999). Efficient evaluation of long-term distributions. In Proc.of the 18th 

International Conference on Offshore Mechanics and Arctic Engineering, ASME. .  

[60] Giske, F.-I. Grøtta; Leira, B. J.; Øiseth, O. (2017). Full long-term extreme response analysis of marine 
structures using inverse FORM. Probabilistic Engineering Mechanics;Vol. 50,  pp. 1-8. 

21



9th GRACM International Congress on Computational Mechanics 

Chania, 4-6  June 2018 

A PERFORMANCE-BASED SEISMIC DESIGN METHOD FOR RC/MRFS USING MODAL 

STRENGTH REDUCTION FACTORS 

Edmond V. Muho
1

, George A. Papagiannopoulos
 2

 Dimitri E. Beskos
1

1State Key Laboratory of Disaster Reduction in Civil Engineering 
 Tongji University, 

Shanghai, CN-200092, China 

e-mail: edmondmuho@gmail.com; dimisof@hotmail.com 

2Department of Civil Engineering 

 University of Patras 

 Patras, GR-26504 Greece e-

mail: gpapagia@upatras.gr 

Keywords: Seismic Design, Reinforced Concrete Structures, Force Based Design, Performance Based Design, 

Modal Strength Reduction Factors, Equivalent Modal Damping Ratios. 

Abstract. A performance-based seismic design method for plane reinforced concrete (R/C) moment-resisting 
frames (MRF) is proposed. The method is a force-based seismic design one, utilizing not a single strength 
reduction factor as all modern codes do, but different such factors for each of the first significant modes of the 
frame. These modal strength reduction factors incorporate dynamic characteristics of the structure, different 
performance targets and different soil types. Thus, the proposed method can automatically satisfy deformation 
demands at all performance levels without requiring deformation checks at the end of the design process, as it is 
the case with code-based design methods. Empirical expressions for those modal strength reduction factors as 
functions of period, deformation/damage and soil types, which can be used directly in conjunction with the 
conventional elastic pseudo-acceleration design spectra with 5% damping for seismic design of R/C MRFs, are 
provided. These expressions have been obtained through extensive parametric studies involving nonlinear 
dynamic analyses of 38 frames under 100 seismic motions. The method is illustrated by numerical examples 
which demonstrate its advantages over code-based seismic design methods.

1 INTRODUCTION 

Modern seismic codes like Eurocode 8 [1] employ linear elastic response spectrum analysis in conjunction with 

the strength reduction (R) or behavior factor (q), which takes into account in a very approximate manner (just 

constant values depending on structural type) the inelastic behavior of the structure. The deformation check is 

done at the end of the design process and usually leads to heavier structural sections than those originally 

selected for satisfaction of strength requirements. This approach of seismic design is known as the force-based 

design (FBD) because seismic forces are the main parameters.

During the last 20 years or so, a new seismic design philosophy emerged, the performance-based design 

(PBD), which considers three or four design levels, each one corresponding to a specific seismic intensity and 

specific performance requirements in terms of deformation and/or damage [2-6].

Two main weaknesses are found in the behavior factor value provided in all modern codes: The first is that it is 

not fully linked to the dynamic characteristics of the structure. The second one is that it cannot control 

deformation as required in the performance based design.

In this paper, a performance-based seismic method for reinforced concrete (R/C) moment resisting frames 

working in the framework of the familiar FBD method is proposed. The main idea is to construct modal 

strength reduction factors for the first few modes and four performance levels (Immediate Occupancy, 

Damage Control, Life Safety and Collapse Prevention), which depend on the dynamic characteristics of the 

structure, the deformation, the damage and the soil type. 
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2 EQUIVALENT MODAL DAMPING RATIOS AND STRENGTH REDUCTION FACTORS 

The transfer function R(ω), for a viscously damped linear elastic multi - degree - of - freedom building is 

defined in the frequency domain as the ratio of the roof absolute acceleration U̅̈r(ω) of the building over the

acceleration u̅̈g(ω) at its base, i.e.,

R(ω) =
U̅̈r(ω)

u̅̈g(ω)
(1) 

where U̅̈r(ω) = u̅̈g(ω) + u̅̈r(ω), u̅̈g(ω) and u̅̈r(ω) are the earthquake motion and roof relative motion,

respectively, in the frequency domain, ω is the frequency and overbars denote Fourier transformation. It can be 

proved [6] that 
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where φrj is the jth modal shape at the top floor r, and ξj and Γj are the damping ratio and corresponding

participation factor at mode j. Furthermore, ωj and ωm are natural frequencies corresponding to the eigenvalues

problem with m > j and ωk are resonant frequencies.

The above equation, on the assumption that φrj, ωj, Γj and R(ωk) are known, can be seen as a system of N

(number of mode shapes considered) non - linear algebraic equations to be solved for the modal damping ratios ξκ

of the linear structure. The criterion of equivalence of energies is the shape of the |R(ω)| versus ω curve. When 

the distorted shape of the non-linear structure with many peaks curve becomes smooth with visible peaks for the 

first few modes as in Fig. 1.a, at that moment, this curve represents the equivalent linear structure for which Eq. 

(2) is applicable. However, when the structure is non - linear, that curve has a distorted shape as in Fig. 1.b with 

no visible peaks, especially for higher modes. More details can be found in [6]. 

By providing progressively Rayleigh type viscous damping to the structure, one succeeds in obtaining 

smoother and smoother |R(ω)| versus ω curves for that structure until for some value of damping the curve 

becomes completely smooth with clearly visible peaks (Fig. 1.a). At that value of damping the structure is just 

below its first yield point (first plastic hinge) and hence, the originally non - linear structure has become an 

equivalent linear for which Eq. (2) for determination of the equivalent damping ratios ξk is applicable.

(a)  (b)

FIGURE 1: Transfer function of (a) a linear and (b) a non-linear structure structure with equivalent  damping 

Having found the equivalent modal damping ratios ξk, the seismic response of the equivalent linear structure

can be determined in conjuction with the absolute acceleration response spectra due to the presence of high 

amounts of damping [6-8].  

The modal contribution to the seismic design force is given as Μk
∗Sa,k(Tk, ξeq,k), where Mk

∗  is the effective

mass. The absolute modal strength reduction factor qk for the kth mode can be expressed as the ratio of the modal

elastic base shear Vel,k over the corresponding modal base shear just below the first yield Vs,k
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qk =
Vel,k

Vs,k

=
Μk

∗Sa,k(Tacc,k, ξ5%)

Μk
∗Sa,k(Tacc,k, ξeq,k) 

=
Sa,k(Tacc,k, ξ5%)

Sa,k(Tacc,k, ξeq,k)
(3) 

where ξk is the damping ratio, Sa,k(Tk, 5%) the absolute maximum acceleration of the structure with 5% damping,

Sa,k(Tacc,k, ξeq,k) the absolute maximum acceleration of the structure with other than 5% damping and Tacc,k is the

damped period of the k-th mode computed as Tacc, k=Tk/√1-ξ
k

2. 

The transition from the absolute modal strength reduction factors qk into the pseudo-strength reduction factors

q̅k used for the purpose of design is accomplished here by the following procedure. In order to relate Tacc,k with

Tk at 5% damping and any other damping ratio ξeq, one defines Sa,k(Tacc,k, ξ5%) = κ1Sa,k(T,k, ξ5%) and

Sa,k(Tacc,k, ξeq,k) = κ2Sa,k(Tk, ξeq,k). Moreover, according to Papagiannopoulos et al. [9], Sa,k(T,k, ξ5%) =

λ1PSa,k(T,k, ξ5%) and Sa,k(Tk, ξeq,k) = λ2PSa,k(T,k, ξeq,k). Thus, Eq. (3) can be written as

q̅k =
k2λ2

κ1λ1

qk (4) 

3 R/C FRAMES, SEISMIC MOTIONS AND PERFORMANCE LEVELS 

3.1 R/C frames considered 

A total number of 38 regular R/C MRFs 2 to 20 storeys was designed for this study. The frames are realistically 

designed and detailed in accordance to EC2 [10] and EC8 [1] for medium ductility class (DCM).   

The material properties selected for the design of the R/C frames were C25/30 for concrete and S500 for 

reinforcing steel. Live loads (Q) were set equal to 2kN/m2. Seismic loads (E) were calculated in accordance to 

EC8’s response spectrum with ground acceleration equal to ag = 0.3g (g = 9.81 m/sec2), soil type B (medium

dense sand or stiff clay) and strength reduction factor equal to q=3.9. The combinations of loads used for the design 

were 1.35G+1.5Q and ±E+G+0.3Q.  

All structural elements for design purposes were modeled with a reduced stiffness of 50% of the gross section 

(EIeff = 0.5EIg) to account for the cracking effect on concrete members according to EC8 [1]. Beams were

designed as T-beams with an effective width equal to beff = 1.2 m, the same for all of them. The philosophy of

Strong Column - Weak Beam (capacity design) has been followed. All columns have been considered to be fixed 

to the ground.  The complete set of the 38 R/C designed frames with all the pertinent details can be found in [11]. 

Analyses have been performed using Ruaumoko 2-D software [12]. Every column or beam in bending was 

modeled as one elastic element with two plastic hinges at its ends [13]. The load-deformation curve of the flexural 

frame elements is modeled by the Takeda hysteretic model of Fig. 2.a.  

(a)  (b)

FIGURE 2: (a) Takeda hysteresis rule for moment M (or force F) versus rotation θ (or displacement d) and (b) 

strength degradation model in terms of ductilities. 
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A more realistic estimate of the effective elastic stiffness is given by 

EIeff =
My

φy
(5) 

where My and φy are the moment and rotation at first yield. In this study, both the effective stiffness EIeff = 0.5EI

as stipulated by EC8 [1] and the one described by Eq. (5) are employed in the nonlinear analyses. The loss of 

strength is modeled in the Ruaumoko 2-D software [12] as a function of the maximum ductility as shown in Fig. 

2.b.  

Ground motions used 

In order to perform non-linear IDA, a set of 100 far fault historical earthquake accelerograms recorded 

worldwide were selected from Pacific Earthquake Engineering Research Center (PEER) ground motion database 

[14], 25 for each one of the four soil classes A, B, C, D of EC8 [1]. Details about these motions can be found in 

[11]. 

Performance levels considered 

Usually four structural performance levels are identified: Immediate Occupancy (IO), Damage Control (DC), 

Life Safety (LS) and Collapse Prevention (CP) [15,16]. According to SEAOC [16] and FEMA 356 [15], for the 

cases of R/C MRFs, the IDR values corresponding to IO, DC, LS, CP are equal to 0.5% (or 1.0% considering 

EIeff = My/φy) , 1.5%, 2.0% (or 2.5%), 4.0%. Moreover, FEMA 356 [15] sets limits for plastic rotations θpl equal

to 0.010, 0.015, 0.020, 0.025 for beams and 0.005, 0.010, 0.015 and 0.020 for columns for IO, DC, LS and CP 

levels, respectively.  

4 MODAL STRENGTH REDUCTION FACTORS 

Tables 1 and 2 summarize the expressions for the design modal strength reduction factors q̅k for two effective

stiffness cases  (EIeff = 0.5EIg and EIeff = My/φy), but only for soil class B. The cases pertaining to soil classes

A, C and D can be found elsewhere [11].  Figure 3 presents those factors for the two types of member stiffnesses, 

in a pictorial form for the particular case of soil class B and the first mode. 

(a) (b)

FIGURE 3: Modal strength reduction factors q̅1 versus period for various IDRs, soil B and two effective

stiffnesses: (a) EIeff = 0.5EIg and (b) EIeff = My/φy

Modal strength reduction factors q̅k for EIeff = 0.5EIg and Soil B

q̅1 q̅2 q̅3 q̅4 
IO: -0.04T+1.12 -0.07T+1.10 -0.06T+1.07 -0.05T+1.05 

DC: -0.20T+2.45 1.19T2-2.98T+3.16 -1.06T+1.98 -1.40T+1.91 

LS: 0.46T+3.60 1.14T2+2.47T+3.38 17.64T2+14.44T+0.98 -22.94T2+19.07T+0.33 

CP: -0.19T2+0.34T+4.17 -1.51T2+3.21T+2.88 -10.91T2+11.93T+1.18 -22.94T2+19.07T+0.33 

Table 1: Modal strength reduction factors q̅k for design using EIeff = 0. EIg and Soil B
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Modal strength reduction factors q̅k for EIeff = My/φy and Soil B

q̅1 q̅2 q̅3 q̅4

IO: 1.00 1.00 1.00 1.00 

DC: -0.11T+1.72 -0.11T+1.38 -0.27T+1.38 -0.23T+1.30 

LS: 0.07T2- 0.61T+2.86 0.21T2-0.91T+2.27 1.49T2-2.40T+2.24 3.00T2-3.95T+2.58 

CP: 0.37T2-2.36T+5.54 -1.22T+3.64 -10.84T3- 21.55T2 +13.82T+1.37 -10.02T2+10.38T+1.62 

Table 2: Modal strength reduction factors q̅k for design using EIeff = My/φy and Soil B

5 NUMERICAL EXAMPLES 

In all cases, the design was accomplished with the aid of the structural software SAP2000 [17] and evaluated 

through nonlinear time history analysis by the Ruaumoko-2D software [12] employing 36 accelerograms, adjusted 

to the seismic intensities of the four performance levels.  

FIGURE 4: Numbering system of the columns, beams and the corresponding reinforcement 

Two four-storey frames designed for LS with effective stiffness 𝐄𝐈𝐞𝐟𝐟 = 𝟎. 𝟓𝐄𝐈𝐠

A 4 storey RC frame called Frame A was designed following EC2 [10] and EC8 [1] regulations for a peak 

ground acceleration (PGA) = 0.30g and soil class B. The effective rigidity for all the members was assumed to be 

EIeff = 0.5EIg. The strength reduction factor was taken equal to q = 3.9 [1] and the frame was designed for strength

at the life safety (LS) level for the design earthquake and for a maximum deformation of 1% IDR under the frequent 

earthquake, which here is taken as the design seismic action multiplied by 0.5. Moreover, stability sensitivity 

coefficient θ, should be less than 0.2 for the design seismic action in order to avoid a second order analysis (P-Δ). 

The first period was T1=1.04 sec and the final sectional dimensions and reinforcement are shown in the first half 

of Table 3 with numbering system as in Fig. 4. Symbols used in Fig. 4 and Table 3 and all subsequent ones, are as 

follows: h is the cross-section height of columns and beams, R is the reinforcement ratio, i.e., the reinforcement 

area normalized to the cross-sectional area bd, where b is the width and d=h-4cm; the symbol Rc indicates the total

reinforcement ratio of columns and R1, R2, R3 and R4 indicate the reinforcement ratios of each side of the beams

following the index of Fig. 4. The reinforcement value coming from the effective slab width in tension is 

symbolized by a star on R1 and is equal to 250mm2/m.  In Table 3 only the necessary geometric sizes and

reinforcement of the members of the frame are shown. Frames are symmetric, i.e., outer (1,4) and middle (2,3) 

columns have the same geometry and reinforcement, beams No. 5 and No. 7 also have the same geometry and 

reinforcement etc. 

By increasing gradually the q=3.90 until the strength check is just satisfied, one can easily determine that the 

above dimensions of Table 3 correspond to a strength reduction factor q=3.00, which accounts for both strength 

demand/capacity and deformation (allowable IDR and P-Δ effects) and is smaller than the originally used q=3.90, 

as expected.  

A 4 storey RC frame called Frame B was also designed by the proposed seismic design method for the same 

soil class B and target value of 2.50% IDR, which corresponds to LS level [16]. Final sectional dimensions and 

reinforcement for the Frame B considering strength demand/capacity satisfaction are shown in the second half of 

Table 3.  For the dimensions of Frame B, the periods of the designed frame were T1=1.04 sec, T2=0.33 sec, T3=0.18 
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sec and T4=0.11 sec and the corresponding modal strength reduction factors from Table 1 were found to be q̅1 =
3.12 , q̅2 = 2.69, q̅3 = 3.01, q̅4 = 2.15. It is interesting to observe that q̅1 = 3.12  is almost the same as the

realistic value of q=3.00 of Frame A designed by EC8 [1]. Using the elastic design spectrum of EC8 [1] for soil 

class B, PGA=0.30g, q=1 and damping ξ=5%, and dividing its ordinates at the values of the initial Tk (k=1-4) by 

the corresponding q̅k (k=1-4), one obtains the four design spectrum values 0.125, 0.340, 0.275 and 0.340 from

which a design base shear of 480 kN can be obtained. The so obtained dimensions of Frame B also satisfy 

deformation requirements and second order effects P-Δ automatically because they have been obtained by using 

deformation dependent q̅k.

Frame A 

Column h(cm) Rc(%) Beam h(cm) R1
∗ (%) R2(%) R3

∗ (%) R4(%)
1 40 1.41% 5 40 1.35 1.24 1.40 1.24 

2 45 1.23% 6 40 1.40 1.24 1.40 1.24 

8 40 1.26% 12 40 1.34 1.18 1.34 1.24 

9 45 1.26% 13 40 1.34 1.24 1.34 1.24 

15 40 1.26% 19 40 1.03 0.87 1.05 0.94 

16 45 1.10% 20 40 1.05 0.94 1.05 0.94 

22 35 1.68% 26 40 0.47 0.47 0.58 0.47 

23 40 1.26% 27 40 0.58 0.47 0.58 0.47 

Frame B 

Column h(cm) Rc(%) Beam h(cm) R1
∗ (%) R2(%) R3

∗ (%) R4(%)
1 40 1.41% 5 40 1.45 1.29 1.45 1.34 

2 45 1.65% 6 40 1.45 1.34 1.45 1.34 

8 40 1.26% 12 40 1.40 1.24 1.41 1.26 

9 45 1.42% 13 40 1.41 1.26 1.41 1.26 

15 40 1.26% 19 40 1.13 0.99 1.16 1.03 

16 45 1.12% 20 40 1.16 1.03 1.16 1.03 

22 35 1.68% 26 40 0.47 0.47 0.66 0.58 

23 40 1.26% 27 40 0.66 0.58 0.66 0.58 

Table 3: Final Sectional dimensions and reinforcement ratios for Frames A and B 

The two frames (A and B) are now compared with the aid of non-linear time-history analyses. The results are 

outlined in Table 4 for comparison purposes. It is observed that, even though the proposed method appears to 

provide deformation results only slightly better than those coming from EC8[1], it leads to a lighter structure as 

the design base shear of Frame B is smaller than that of Frame A. Frames A and B are re-analyzed by non-linear 

dynamic analyses using the secant stiffness to yield, i.e., EIeff = My/φy and the maximum response values are

shown in Table 4 in parenthesis. The IDR and beam θpl values for both Frames A and B are higher than those

obtained using EIeff = 0.5EIg but Frame B, even though it was designed only considering strength

demand/capacity, shows a slightly better control of the deformations. 

Frame A Frame B 

T1(sec) 1.04 (1.62) 1.04 (1.59) 

Mean./Max. IDR (%) 1.39/1.98 (2.17/3.48) 1.41/1.95 (2.10/3.02) 

Mean./Max. Beam θpl 0.009/0.016 (0.009/0.027) 0.008/0.015 (0.008/0.022) 

Mean./Max. Column θpl 0.007/0.014 (0.004/0.011) 0.007/0.014 (0.004/0.011) 

Design Base Shear (kN) 443 480 

1st Yield Base Shear (kN) 550 (570) 598 (607) 

Table 4: Response results of dynamic non-linear analyses for Frames A and B with EIeff = 0.5EIg and in

parenthesis with EIeff = My/φy
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Performance-based design example 

Two 4-storey R/C frames called Frame C and Frame D are now designed by the proposed method using the 

EIeff = 0.5EIg and EIeff = My/φy, respectively, the corresponding q̅k from Tables 1 and 2, soil class B and for

four performance levels: immediate occupancy (IO) with IDR = 0.5% (or 1.0% considering  EIeff = My/φy) under

the frequently occurred earthquake, damage control (DC) with IDR = 1.5 % under the occasional occurred 

earthquake, life safety (LS) with IDR = 2.5% under the design basis earthquake and collapse prevention (CP) with 

IDR = 4.0% under the maximum considered earthquake as proposed by SEAOC [16]. SEAOC [16] proposes to 

scale the design seismic forces of LS level by 1.50 for CP level, by 0.50 for DC level and by 0.30 for IO level. For 

each performance level described above use is made of the corresponding modal strength reduction factors. 

The proposed method was used to design Frames C and D for the four performance levels separately and from 

the four resulting designs, the strongest ones were selected. The final design base shears of Frames C and D 523 

kN and 565 kN, respectively, correspond to the CP performance level for both Frames. Thus, the CP performance 

level controls the design for both frames. Table 5 provides final dimensions and reinforcement of Frames C and 

D. 

Frame C 

Column h(cm) Rc(%) Beam h(cm) R1
∗ (%) R2(%) R3

∗ (%) R4(%)
1 40 1.76% 5 40 1.53 1.40 1.58 1.43 

2 45 1.65% 6 40 1.58 1.43 1.58 1.43 

8 40 1.41% 12 40 1.53 1.34 1.53 1.35 

9 45 1.65% 13 40 1.53 1.35 1.53 1.35 

15 40 1.26% 19 40 1.24 1.06 1.24 1.08 

16 45 1.26% 20 40 1.24 1.08 1.24 1.08 

22 35 1.88% 26 40 0.47 0.47 0.66 0.58 

23 40 1.26% 27 40 0.66 0.58 0.66 0.58 

Frame D 

Column h(cm Rc(%) Beam h(cm) R1
∗ (%) R2(%) R3

∗ (%) R4(%)
1 40 2.12% 5 40 1.59 1.45 1.64 1.53 

2 45 2.17% 6 40 1.64 1.53 1.64 1.53 

8 40 1.43% 12 40 1.58 1.41 1.58 1.43 

9 45 1.65% 13 40 1.58 1.43 1.58 1.43 

15 40 1.26% 19 40 1.29 1.14 1.29 1.16 

16 45 1.38% 20 40 1.29 1.16 1.29 1.16 

22 35 1.88% 26 40 0.58 0.47 0.77 0.58 

23 40 1.26% 27 40 0.77 0.58 0.77 0.58 

Table 5: Final Sectional dimensions and reinforcement ratios for Frames C and D 

Frames C and D were analyzed for their deformational response through non-linear dynamic analysis. Results 

are outlined in Table 6 for both frames C and D. Table 6 provides additionally response results for Frame C, in 

parenthesis, for the case of the secant stiffness to yield of Eq. (5). It is observed that the maximum IDR values of 

Frame C for both stiffnesses and for CP, LS and DC levels are below the maximum allowed values of 4.00%, 

2.00% and 1.5%, respectively, while for the IO level one (0.48% for EIeff = 0.5EIg) is below and the other (0.64%

for EIeff = My/φy) above the maximum allowable one of 0.50%. The plastic rotations θpl for both stiffnesses and

for IO, DC and LS levels are below the maximum allowed values, while for the CP level are above the maximum 

allowable one. Considering Frame D, one can see from the second half of Table 6 that all the maximum IDR and 

𝜃𝑝𝑙 values for all levels are below or slightly above the maximum allowable values for those levels. Considering

the mean response values, all of them resulted to be lower than the maximum allowable values. 

It is interesting here to evaluate the performance of Frame A, designed by EC8 [1], under the CP level. This is 

shown in Fig. 11 (b), where in total, 18 beam and 6 column plastic hinges have maximum 𝜃𝑝𝑙 values above the

limit value for the CP level, with a maximum exceedance equal to 36% and 33%, respectively. 

Thus, the proposed seismic design method can be successfully used in the framework of the performance-based 

design philosophy and provide results of high accuracy. The use of EIeff = My/φy and the corresponding q̅k can

provide controlled designs of even higher accuracy.  
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Figure 5. Plastic hinges distribution under CP performance level of (a) Frame D designed with �̅�𝑘 for the LS

and 𝐸𝐼𝑒𝑓𝑓 = 𝑀𝑦/𝜙𝑦 and (b) EC8 Frame A (maximum response from 36 accelerograms)

Frame C 

IO DC LS CP 

Max. IDR (%) 0.49 (0.69) 0.81 (1.14) 1.42 (2.13) 2.10 (2.96) 

Max. Beam θpl 0.000 (0.000) 0.005 (0.004) 0.014 (0.023) 0.027 (0.038) 

Max. Column θpl 0.000 (0.000) 0.002 (0.000) 0.013 (0.012) 0.026 (0.032) 

Frame D 

IO DC LS CP 

Max. IDR (%) 0.69 1.14 2.05 2.74 

Max. Beam θpl 0.000 0.000 0.015 0.027 

Max. Column θpl 0.000 0.000 0.015 0.025 

Table 6: Deformation Response of Frames C and D designed by the proposed method for 4 performance levels. 

6 CONCLUSIONS 

On the basis of the preceding developments, the following conclusions can be stated: 

 Unlike the conventional code-based approach that considers a single strength reduction factor q value

for all modes, the proposed approach with modal strength reduction factors q̅k offers a more rational

alternative. Furthermore, since these factors take into account the dynamic (period T) and

deformational (IDR, θpl) characteristics of the structure, lead to more accurate results than code based

methods and without the need of final deformation checks in an iterative way.

 Comparisons of the proposed design method against the EC8 method with the aid of non - linear

dynamic analyses on the basis of some characteristic examples, have shown that even though the EC8

method handles well designs at the Life Safety performance level, the proposed method controls more

accurately and in a more rational way the deformations than the former method. In addition, the

proposed method appears to be more economical than the EC8 method with respect to concrete and

reinforcing steel materials.

 The proposed method is a performance - based seismic design, which can consider three to four

performance levels depending on the design needs. In addition, the proposed method offers two

options concerning the effective member stiffness selection (EIeff = 0.5EIgor EIeff = My/φy).

Design examples involving four performance levels and two effective member stiffness types have

demonstrated the successful applicability of the proposed method.

 The use of modal strength reduction factors  q̅k in conjunction with EIeff = 0.5EIg gives satisfactory

results even though EIeff = My/φy leads to more accurate results. The use of EIeff = My/φy with the

corresponding q̅k leads to designs with a more controlled performance than those with the use of

EIeff = 0.5EIg and this is achieved with only a slight increase of concrete and steel material
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Abstract. The problem of the dynamic response of an infinite beam resting on a Winkler foundation to a load 

moving on its surface with variable speed is solved here analytically/numerically under conditions of plane strain. 

The beam is linearly elastic with viscous damping and obeys the theory of Bernoulli-Euler. The elastic foundation 

is characterized by its spring constant and hysteretic damping coefficient. The moving point load has an amplitude 

harmonically varying with time and moves with constant acceleration or deceleration along the top beam surface. 

The problem is solved by first applying the Fourier transform with respect to the horizontal coordinate x and the 

Laplace transform with respect to time t to reduce the governing equation of motion of the beam to an algebraic 

one, which is solved analytically. The transformed beam deflection solution is inverted numerically after some 

simplifying analytical manipulations to produce the time domain beam response. Parametric studies are conducted 

in order to assess the effects of the various parameters on the response of the beam, especially those of acceleration 

and deceleration. Comparisons with the case of a finite beam are also done in order to assess the effect of the 

beam length.

1 INTRODUCTION 
The simplest possible model for a rigid pavement under moving vehicle loads is that of an elastic beam or plate 

on Winkler elastic foundation [1]. The beam or plate can be finite or infinite, thin or thick, with or without viscous 
damping and the Winkler foundation can consist of vertical and/or horizontal springs and zero or nonzero damping 
of the viscous or hysteretic type. One can mention here the works of Thompson [2], Achenbach and Sun [3], Sun 
[4,5], Kim and Roesset [6], Basu and Kameswara Rao [7] and Yu and Yuan [8], dealing with an infinite beam and 
the one by Lee [9] dealing with a finite beam.  

All the existing works utilizing the above models are restricted to the case of loads moving with constant speed. 
Consideration of constant speed though, does not fully reflects reality, since vehicle loads usually move with speed 
varying with time.  

Very recently, Beskou and Muho [10], were able to study the effect of variable speed on the response of a finite 
beam on a Winkler foundation to moving loads analytically. The problem was solved in [10] by modal 
superposition and computation of the resulting Duhamel’s integral numerically. This method is applicable only in 
cases the beam is finite with well-defined boundary conditions at its two ends so as to express its lateral deflection 
as a superposition of its modal shapes. In cases where the beam is of infinite extend, this method is not applicable. 
The method of using a moving coordinate system to eliminate the time and reduce the problem to an ordinary 
differential equation which can be easily solved (e.g., in [2,3,7]), is restricted to the case of loads moving with 
constant speed.  

In the present work, the problem of an infinite beam resting on a Winkler foundation and subjected to a load 
moving with variable speed on its top surface is solved analytically/numerically by extending the method of Yu 
and Yuan [8] from the constant speed case to the variable speed case.  

The method employs Fourier and Laplace transforms with respect to the horizontal coordinate x and the time 
t, respectively, to reduce the governing equation of motion of the beam to an algebraic one, which is easily solved 
analytically. Then the transformed beam deflection solution is inverted numerically after some simplifying 

31

mailto:edmondmuho@gmail.com
mailto:nikidiane@gmail.com


Edmond V. Muho, Niki D. Beskou. 
analytical manipulations to produce the time domain beam response. This method is similar to the one employing 
a double Fourier transform with respect to both x and t described in Kim and Roesset [6] but leads to a much 
simpler transformed solution than the one of [6]. Thus, the present method requires the numerical evaluation of 
simpler integrals than in [6] where the double inverse fast Fourier transform is used.  

Damping is considered for both the beam and the foundation, while the point load may be constant or varying 
harmonically with time. Extensive parametric studies are performed to assess the various problem parameters on 
the response. Comparisons with the case of the finite beam of [10] with very large length are also made in the 
framework of validation studies. 

2 STATEMENT AND SOLUTION OF THE PROBLEM 

Consider an infinite Bernoulli-Euler beam resting on a Winkler elastic foundation and subjected to a 
concentrated load P(x,t) moving on its surface with a variable speed V(t), as shown in Fig. 1. The equation of 
lateral motion of this beam has the form  

𝐸𝐼 𝑤′′′′(𝑥, 𝑡) + 𝑘𝑓 𝑤(𝑥, 𝑡) + 𝑐 �̇�(𝑥, 𝑡) + 𝑚�̈�(𝑥, 𝑡) = 𝑃(𝑥, 𝑡) (1) 

where w = w(x,t) is the lateral deflection of the beam, EI is the flexural rigidity of the beam, kf is the foundation 
spring constant, c = cb + cf is the damping coefficient with cb corresponding to the beam and cf to the foundation, 
m is the beam mass per unit length, primes and overdots denote differentiation with respect to the horizontal 
coordinate x and time t, respectively and P(x,t) is the moving concentrated (point) load. This load can be expressed 
as  

𝑃(𝑥, 𝑡) = 𝑃𝑜  𝛿(𝑥 − 𝑥𝑜) (2) 

where Po is its constant magnitude, δ denotes the Dirac delta function and xo is expressed in terms of the initial 
velocity Vo and the constant acceleration (with + sign) or deceleration (with – sign) as  

𝑥𝑜 = 𝑉𝑜 ±
1

2
 𝑎 𝑡2 (3) 

Initial conditions are assumed to be zero and w and its derivatives with respect to x tend to zero as x approaches 
±∞.  

Following the approach in [8], the Fourier transform with respect to x and the Laplace transform with respect 
to t are applied on Eq. (1) to reduce this partial differential equation into an algebraic one, which can be easily 
solved analytically. These two transforms for a function f(x,t) are defined as  

𝑓(̅𝜉, 𝑡) =
1

√2𝜋
∫ 𝑓(𝑥, 𝑡)

∞

−∞

𝑒𝑖𝜉𝑥𝑑𝑥 (4) 

𝑓(𝑥, 𝑠) = ∫ 𝑓(𝑥, 𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡  (5) 

Application of Fourier transform with respect to x on Eq. (1) results in 

Figure 1. Infinite beam on Winkler foundation with moving load 
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𝐸𝐼 𝜉4�̅�(𝜉, 𝑡) + 𝑘𝑓�̅�(𝜉, 𝑡) + 𝑐�̅̇�(𝜉, 𝑡) + 𝑚�̅̈�(𝜉, 𝑡) = �̅�(𝜉, 𝑡) (6) 

where, 

�̅�(𝜉, 𝑡) = 𝑃𝑜 ∫  𝛿(𝑥 − 𝑥0) 𝑒−𝑖𝜉𝑥𝑑𝑥
+∞

−∞

= 𝑃𝑜  𝑒−𝑖𝜉𝑥0  (7) 

Application of Laplace transform with respect to t on Eq. (6) results in 

𝐸𝐼 𝜉4�̃̅�(𝜉, 𝑠) + 𝑘𝑓�̃̅�(𝜉, 𝑠) + 𝑐𝑠�̃̅�(𝜉, 𝑠) + 𝑚𝑠2�̃̅�(𝜉, 𝑠) = �̃̅�(𝜉, 𝑠) (8) 

where, in view of (7), 

�̃̅�(𝜉, 𝑠) = ∫  �̅�(𝜉, 𝑡) 𝑒−𝑖𝑠𝑡𝑑𝑡 = 𝑃𝑜 ∫ 𝑒−𝑖𝜉𝑥0  𝑒−𝑖𝑠𝑡𝑑𝑡 = 𝑃𝑜 ∫ 𝑒−𝑖(𝜉𝑥0+𝑠𝑡)𝑑𝑡
+∞

−∞

+∞

−∞

+∞

−∞

 (9) 

Equation (8) can be easily solved for the doubly transformed displacement �̃̅�(𝜉, 𝑠) reading as 

�̃̅�(𝜉, 𝑠) =
�̃̅�(𝜉, 𝑠)

(𝐸𝐼 𝜉4 + 𝑘𝑓 + 𝑐𝑠 + 𝑚𝑠2)
(10) 

The solution w(x,t) can be obtained from (10) by inversion of the Laplace and Fourier transforms. The inverse 
Laplace transform of Eq. (10) is  

𝐿−1[�̃̅�(𝜉, 𝑠)] = 𝐿−1 [
�̃̅�(𝜉, 𝑠)

(𝐸𝐼 𝜉4 + 𝑘𝑓 + 𝑐𝑠 + 𝑚𝑠2)
]       (11) 

Following [8], one can write Eq. (11) as 

𝐿−1[�̃̅�(𝜉, 𝑠)] =
1

𝑚

1

𝑏(𝜉)
𝐿−1 [�̃̅�(𝜉, 𝑠)

 𝑏(𝜉)

(𝑠 + 𝑐𝑚)2 + 𝑏2(𝜉)
]

(12) 

where 

𝑐𝑚 =
𝑐

2𝑚
 ,   𝑏(𝜉) = √

𝐸𝐼

𝑚
𝜉4 +

𝑘𝑓

𝑚
−

𝑐2

4𝑚2
    (13) 

Next, by defining 

𝐺(𝑠) = �̃̅�(𝜉, 𝑠) ,     𝐻(𝑠) =
 𝑏(𝜉)

(𝑠 + 𝑐𝑚)2 + 𝑏2(𝜉)
  (14) 

and letting g(t), h(t) to represent the inverse Laplace transforms of G(t) and H(t), respectively, one has 

𝑔(𝑡) = �̅�(𝜉, 𝑡) ,     ℎ(𝑡) = 𝑒−𝑐𝑚 𝑡𝑠𝑖𝑛[𝑏(𝜉) 𝑡]    (15) 

Use of the convolution operation (denoted by *) makes possible to write 

𝐿−1[𝐻(𝑠)𝐺(𝑠)] = 𝑔(𝑡) ∗ ℎ(𝑡) = ∫ 𝑔(𝑠) ℎ(𝑡 − 𝑠) 𝑑𝑠
𝑡

0

  (16) 

and hence obtain Eq. (12) in the form 

𝐿−1[�̃̅�(𝜉, 𝑠)] =
1

𝑚

1

𝑏(𝜉)
 ∫ 𝑔(𝑠) ℎ(𝑡 − 𝑠) 𝑑𝑠

𝑡

0

  (17) 

Use of Eq. (7) and (15)2 into Eq. (17) enables one to write it as 

𝐿−1[�̃̅�(𝜉, 𝑠)] =
1

𝑚

1

𝑏(𝜉)
∫  𝑃𝑜  𝑒−𝑖𝜉𝑥0  𝑒−𝑐𝑚 (𝑡−𝑠)𝑠𝑖𝑛[𝑏(𝜉) (𝑡 − 𝑠)] 𝑑𝑠

𝑡

0

    (18) 
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Substitution of xo by its expression (3) in Eq. (18) can provide the displacement w in integral form in the time 
domain as   

�̅�(𝜉, 𝑡) = 𝑃𝑜

1

𝑚

1

𝑏(𝜉)
 ∫ 𝑒−𝑖𝜉(𝑉0𝑠±

1
2

𝑎 𝑠2) 𝑒−𝑐𝑚 (𝑡−𝑠)𝑠𝑖𝑛[𝑏(𝜉) (𝑡 − 𝑠)]  𝑑𝑠
𝑡

0

 (19) 

Taking the inverse Fourier transform of Eq. (19), one can obtain the solution in time and space as 

𝑤(𝑥, 𝑡) = 𝑃𝑜

1

𝑚

1

2𝜋
∫

1

𝑏(𝜉)
{∫ 𝑒−𝑖𝜉(𝑉0𝑠±

1
2

𝑎 𝑠2) 𝑒−𝑐𝑚 (𝑡−𝑠)𝑠𝑖𝑛[𝑏(𝜉) (𝑡 − 𝑠)] 𝑑𝑠
𝑡

0

} 𝑒𝑖𝜉𝑥𝑑𝜉
+∞

−∞

 (20) 

Finally, by using the relation 

1

2
 ∫ 𝑒𝑖𝜉(𝑥−𝑦)𝑑𝜉

+∞

−∞

= ∫ 𝑐𝑜𝑠 [𝜉 (𝑥 − 𝑦)] 𝑑𝜉
∞

0

      (21) 

the final form of the displacement in space and time domain is obtained in integral forms as 

𝑤(𝑥, 𝑡) = 𝑃𝑜

1

𝑚

1

𝜋
∫

1

𝑏(𝜉)
∫ 𝑒−𝑐𝑚 (𝑡−𝑠)𝑠𝑖𝑛[𝑏(𝜉) (𝑡 − 𝑠)]

𝑡

0

 𝑐𝑜𝑠 [𝜉 (𝑥 − 𝑉0𝑠 ±
1

2
𝑎 𝑠2)]  𝑑𝑠 𝑑𝜉

∞

0

 (22) 

Equation (22) is solved numerically by the Mathematica software [11] by using the Gauss-Kronrod algorithm. 

3 VALIDATION STUDY 

The method of solution presented in the previous section is validated for the special case of the load moving 
with constant speed by comparing its results against those of Kim and Roesset [6]. The method of Kim and Roesset 
[6] employs a double Fourier transform in space and time and determines the response numerically by inverting 
the transformed solution with the aid of the fast Fourier transform algorithm. The results of Kim and Roesset [6] 
are based on the following values: EI = 2.3 kNm2, kf = 68.9 MPa, m = 48.2 kg/m, different constant velocities (α 
= 0 m/s2, Vo = 9.525, 95.25 and 114.3 m/s) and distributed load q = -70 kN/m over a length d = 0.15 m. The 
concentrated load Po is related to its equivalent distributed load q by the relation 

𝑃𝑜 =  2𝑞 (
𝑆𝑖𝑛 [

𝑑
2

𝜉]

𝜉
)   (23) 

in the Fourier transformed domain. Thus, Eq. (22) is modified to accommodate the distributed load q and takes the 
form  

𝑤(𝑥, 𝑡) =
1

𝑚

1

𝜋
∫

1

𝑏(𝜉)
 2𝑞 (

𝑆𝑖𝑛 [
𝑑
2

𝜉]

𝜉
) ∫ 𝑒−𝑎𝑐 (𝑡−𝑠)𝑠𝑖𝑛[𝑏(𝜉) (𝑡 − 𝑠)]

𝑡

0

 𝑐𝑜𝑠 [𝜉 (𝑥 − 𝑉0𝑠 ±
1

2
𝑎 𝑠2)]  𝑑𝑠 𝑑𝜉

∞

0
(24) 

Figure 2 shows the maximum values of the lateral beam displacement w versus distance on either side of the 
center of load application for three values of constant velocity Vo and zero damping as obtained by the present 
method and the one in [6]. The results are identical.  

4 PARAMETRIC STUDIES 

Using the obtained analytical solution of the previous section, parametric studies are conducted in this section 
in order to assess the effect of the various parameters of the problem on the response. The data used here are the 
same as in [10]. Thus, E = 30 GPa, h = 0.20 m and b = 1.0 m for the beam, Vo = 0, 24, 40 m/s, α = 0, 6, 12 m/s2, 
kf = 40, 120 MPa, c = 500, 1500 kNs/m, m = 1019 kg/m and Po = 80 kN. Beam deflections w were normalized 
(denoted by �̅�) by dividing them with mgl4/π3EI, where l is a beam length taken here to be 50 m. 

Table 1 provides the dimensionless maximum infinite beam deflection �̅� ·105 resting on an elastic foundation 
under a one-axle moving accelerating load for various values of the parameters Vo, α, kf and c. For comparison 
purposes, values of �̅� as computed by the method of reference [10] for the case of l = 50 m are also presented. As 
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the length l of the finite beam of [10] increases, the case of the infinite beam considered here can be approximately 
simulated. Table 2 provides corresponding results for the case of deceleration, while Figs 3 and 4 depict the beam 
deflection  �̅� versus the time 𝑡̅ = 𝑡/[(2/𝜋)√𝑚𝑙4/𝐸𝐼] for c = 500 kNs /m, various values of Vo and α and kf = 40 
and 120 MPa, respectively.  

Figure 2. Beam displacement under the load versus distance along the x axis for zero damping 

Figure 3. One-Axle modeling: Deflection �̅� versus time �̅�  for various initial velocities V0 and accelerations α 
with kf  =40 MPa, c = 500 kNs/m and infinite beam length. 

Figure 4. One-Axle modeling: Deflection �̅� versus time �̅�  for various initial velocities V0 and accelerations α 
with kf  = 120 MPa, c = 500 kNs/m and infinite beam length. 
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Looking at the Tables 1, 2 and Figs 3, 4, one can reach the same conclusions as in [10] and in addition can 
observe that the response of the finite beam with l = 50 m approaches that of the present infinite beam especially 
for small foundation stiffness and high damping (kf = 40 MPa, c = 1500 kNs/m) as well as for high speed and 
acceleration. In general, deflections of the infinite beam are higher than those of the finite beam, especially for 
small damping. 

V0 (m/s) 𝑎 (m/s2) kf ( MPa) c (kNs/m) Infinite Beam 
(1) 

Finite Beam l=50m 
(2) 

[(1)-(2)]/1 
(%) 

0 

0 - - - - - 

6 
40 500 0.826504 0.772461 6.54% 

1500 0.748733 0.736073 1.69% 

120 500 0.364954 0.313203 14.18% 
1500 0.358306 0.310275 13.41% 

12 
40 500 0.818648 0.769446 6.01% 

1500 0.693399 0.703747 -1.49% 

120 500 0.365607 0.313301 14.31% 
1500 0.350829 0.307532 12.34% 

20 

0 
40 500 0.828043 0.771379 6.84% 

1500 0.765709 0.723657 5.49% 

120 500 0.365825 0.31324 14.37% 
1500 0.359809 0.309321 14.03% 

6 
40 500 0.819550 0.768431 6.24% 

1500 0.706256 0.693172 1.85% 

120 500 0.366001 0.313331 14.39% 
1500 0.351924 0.306605 12.88% 

12 
40 500 0.810274 0.765529 5.52% 

1500 0.660133 0.667097 -1.05% 

120 500 0.366068 0.313404 14.39% 
1500 0.343859 0.303978 11.60% 

40 

0 
40 500 0.810215 0.759587 6.25% 

1500 0.649872 0.622355 4.23% 

120 500 0.365272 0.313583 14.15% 
1500 0.343529 0.298929 12.98% 

6 
40 500 0.804898 0.756814 5.97% 

1500 0.614450 0.604659 1.59% 

120 500 0.362642 0.313679 13.50% 
1500 0.338370 0.296573 12.35% 

12 
40 500 0.793924 0.754102 5.02% 

1500 0.583276 0.588641 -0.92% 

120 500 0.365961 0.313759 14.26% 
1500 0.330183 0.294285 10.87% 

Table 1: Dimensionless maximum deflection �̅� ∗ 105 of an infinite beam on elastic foundation under moving 
accelerating load for various parameters 

5 CONCLUSIONS 

On the basis of the previous developments, the following conclusions can be drawn: 

1. The dynamic response of an infinite beam resting on a Winkler foundation to a one-axle moving load
with acceleration or deceleration has been obtained analytically and parametric studies have been
conducted to assess the effects of the various parameters on the beam response.

2. Increasing values of the foundation constant or the viscous damping result in decreasing values of the
beam deflection. Increasing values of acceleration and speed result in decreasing values of the beam
deflection, while increasing values of deceleration and speed have the opposite effect.

3. The response of the finite beam with a length of 50 m approaches that of the infinite beam, especially
for small foundation stiffness and high damping.
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Table 2: Dimensionless maximum midspan deflection �̅� ∗ 105 of infinite beam on elastic foundation under
moving decelerating load for various parameters 
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V0 (m/s) 𝑎 (m/s2) kf (MPa) c (kNs/m) One Axle (1) Finite Beam l=50m 
(2) 

[(2)-(1)]/1 
(%) 

20 

-6 
40 500 0.832028 0.774418 6.92% 

1500 0.799478 0.760616 4.86% 

120 500 0.365800 0.313152 14.39% 
1500 0.363572 0.312144 14.15% 

-12 
40 500 

1500 
0.831555 - - 0.804197 

120 500 
1500 

0.366011 - - 0.363311 

40 

-6 
40 500 0.818187 0.762516 6.80% 

1500 0.692825 0.642180 7.31% 

120 500 0.365432 0.313504 14.21% 
1500 0.350562 0.301334 14.04% 

-12 
40 500 0.823309 0.765363 7.04% 

1500 0.720596 0.664572 7.77% 

120 500 0.364849 0.313420 14.10% 
1500 0.355099 0.303884 14.42% 
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Abstract. Accurate nonlinear cyclic static and dynamic analysis of reinforced concrete structures is necessary 

when trying to capture the behavior of concrete structures during earthquake excitations. The development of an 

objective and robust 3D constitutive modeling approach that will be able to account for the accumulated material 

damage during the cyclic loading of concrete structures is of great importance in order to realistically describe 

the physical failure mechanisms [1]. The proposed method is based on the experimental results and the concrete 

modelling of Kotsovos and Pavlovic [2] as modified by Markou and Papadrakakis [3]. The objective of this 

research work is to propose a computationally efficient modeling method that accounts for the accumulated 

damage developed in both concrete and steel materials during cyclic static and dynamic excitations.  

Two new damage factors are proposed herein that take into account the number of openings and closures of cracks 

during the nonlinear cyclic analysis, thus provide with the ability to account for the accumulated damage in both 

steel and concrete materials. Furthermore, a solution strategy that describes the behavior of concrete during the 

cyclic static and dynamic analysis is also presented.  

The proposed numerical method is validated by comparing its numerical response with the corresponding 

experimental data of a beam-column frame joint and a two-storey reinforced concrete frame, which were tested 

under cyclic static and dynamic loading conditions, respectively. Based on the numerical findings, the proposed 

algorithm manages to accurately capture the experimental results, while the simulation of the understudy models 

was performed with computational robustness and efficiency. This numerical outcome demonstrates the potential 

of the proposed 3D detailed modeling approach to be implemented for the seismic assessment of full-scale 

reinforced concrete structures through nonlinear cyclic static and dynamic analysis. 

1 INTRODUCTION
During the last decades, many numerical simulations of reinforced concrete (RC) structures under cyclic 

loading conditions have been proposed. Most models tend to introduce many material parameters that are 
associated with the nonlinear behavior of concrete structures. They place emphasis on post-peak material 
characteristics in order to describe phenomena such as ductility, confinement, concrete cracking and crushing of 
reinforced concrete structures. These models can describe only certain aspects of concrete behavior and their 
implementation is limited to examples of small practical interest. It is important to formulate a constitutive model 
which represents accurately the actual mechanical behavior of concrete structures. An efficient and robust 
algorithm is developed in order to satisfy this cause. 

Most models use elastoplastic uniaxial constitutive laws in order to describe the mechanical behavior of 
concrete. Others use the “equivalent uniaxial strain” concept to combine the uniaxial laws with biaxial or triaxial 
behavior of concrete. Other approaches propose constitutive models based on biaxial or triaxial failure surfaces. 
In addition to that, many researchers use the compression field theory to treat the behavior of cracked RC elements 
subjected to shear. Furthermore, many models combine the plasticity formulations for the behavior of concrete 
under compression with the fracture energy based smeared crack approaches for the behavior of concrete under 
tension. Furthermore, many models which are based on damage mechanics are proposed for concrete behavior 
under monotonic and cyclic loading conditions.  

A detailed literature review in regards to the modeling of RC structures under cyclic loading conditions can be 
found in [3]. Few of these models have been used successfully for 3D dynamic analysis. Spiliopoulos and Lykidis 
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[4] and Cotsovos [5] used the constitutive model of Kotsovos and Pavlovic [3] integrated in 27-noded hexahedral 
elements for cyclic and dynamic analysis of RC structures. The latter introduces some restrictions in regards to the 
number of cracks that are allowed to open in each iteration, in an attempt to obtain convergence during the analysis. 
Moreover, none of these researchers investigated the computational efficiency of their proposed models, which is 
deemed crucial when dealing with dynamic nonlinear analyses of RC structures. Recently, Moharrami et al. [6] 
proposed a 3D constitutive model, which combines the elastoplastic and smeared crack approaches in order to 
describe the cyclic and dynamic behavior of concrete structures.  

The proposed model in this research work, describes the triaxial behavior of concrete by using realistic 
assumptions without the need of introducing numerous concrete material parameters. The objective of the present 
paper is the formulation and numerical implementation of an accurate simulation of RC structures subjected to 
dynamic loading conditions. The uniaxial compressive and tensile strengths, the Young Modulus of elasticity and 
the Poisson’s ratio are the only material parameters, which are needed to be defined for the analysis of concrete. 
The accuracy, numerical simplicity and the computational efficiency are the most important features in order to 
show the practical use of any model that can be easily implemented in predicting the nonlinear static and dynamic 
behavior of RC structures. Therefore, the proposed model adopts the numerical approach which was proposed in 
[3] (for cyclic loading conditions) thus it is further integrated herein for simulating the dynamic response of RC 
structures. The concrete model takes into account the effect of crack-closing through the use of a new damage 
factor. The numerical simulation is based on the proposed model by Markou and Papadrakakis [1], which was an 
extension of the model presented by Kotsovos and Pavlovic [2]. In order to account for the concrete’s accumulated 
damage and its effect on the behavior of the steel rebars, a second damage factor is introduced for the steel material.

2 CONCRETE MATERIAL CONSTITUTIVE MODEL 
The constitutive modelling of concrete has to describe a realistic behavior of concrete under generalized three 

dimensional states of stress. Therefore, it has to take into account the effect of out of plane small stresses that are 
usually ignored. The stress-strain relationships are expressed most conveniently by decomposing each state of 
strain and stress into hydrostatic and deviatoric components, where the proposed model uses two moduli of 
elasticity (bulk K and shear G) and an equivalent external stress (σid) in order to describe the constitutive relations 
as presented by the combined approach [2]. The bulk modulus K and the shear modulus G describe the non-linear 
σ0-ε0(h) and τ0-γ0(d) behavior combined with the use of σid in order to take into account the coupling effect of τ0-ε0(d)

(h and d stand for hydrostatic and deviatoric components, respectively). The constitutive relations take the 
following form:  

0 0( ) 0( ) 0( ) / (3 )h d id sK         (1) 

0 0( ) 0 / (2 )d sG      (2)

where Ks and Gs are the secant forms of bulk and shear moduli, respectively. The secant forms of bulk, shear 
modulus and σid are expressed as functions of the current state of stress which derived by regression analysis of 
the experimental data found in [2]. 

It is evident that when the deciatoric stress of an uncracked Gauss point of a concrete element, is less than the 
50% of the corresponding ultimate strength, then the elastic constitutive matrix is used. Otherwise, the constitutive 
material matrix is updated using the tangent expressions of bulk and shear modulus [1]. The constitutive material 
matrix of the uncracked concrete is presented in eq. 3.  
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 (3) 

The strength envelope of concrete is expressed by the value of the ultimate deviatoric stress by using the 
expressions of Willam and Warkne [7].  
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 (4) 

Additionally, the new criterion of crack closing which was introduced in [5], uses the strains that caused the 
initial formation of the cracks so as to determine whether a crack that starts to close will be eventually closed in a 
numerical manner as well. The criterion of crack closure takes the following form:  

i cra    (5) 
where εi is the current strain in the i-direction which is normal to the crack plane and εcr is the strain that caused 
the crack formation. Parameter a is a reduction factor, which takes the following form: 

max

max max

1 cr cra


  
  

 
(6) 

The maximum strain εmax is determined through the iterative Newton-Raphson procedure, whereas, in every 
internal Newton-Raphson iteration, the strains that are formed along the norm of the crack planes are calculated. 
Therefore, during an internal iteration when a crack is formed at a Gauss Point, it is assumed that εmax = εcr. Then, 
in every i iteration (internal or external) the strains εi that are formed normal to the crack planes are checked if 
they are larger than the previously calculated εmax. If this is the case, then εmax is set equal to εi. For more details in 
regards to the closing crack criterion can be found in [5]. When the criterion of crack-closure is satisfied at a Gauss 
Point, which had prior to that only one crack formation, then a part of the stiffness is lost along the previously 
crack plane which was assumed to form in an orthogonal direction to the maximum principle tensile stress. 
Therefore the constitutive matrix takes the following form: 

where β is a shear retention factor, an and as are constants with recommended values of 0.25 and 0.125, 
respectively. The factor, Dc is a proposed damage factor that describes the accumulated energy loss due to the 
number of times a crack has opened and closed. After a numerical investigation the proposed factor takes the 
following form:

where fcc is the number a crack has closed which is updated in every iteration for every Gauss Point. A schematic 
representation of Eq. 8 can be seen in the Fig. 1. 

Fig. 1. Schematic representation of the values of the damage factor D Eq. 8 as a function of the parameter a and 
fcc. 
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Similarly, the constitutive matrix follows the above procedure in the cases when a crack is closed at a Gauss 
point, which had previously one, two or three cracks. After the crack closure, the stresses are corrected by using 
the following expression: 

1i i iC΄     (9) 

Finally, when all the cracks have been closed (uncracked Gauss Point) and the reduction factor aof one of the 
previous cracks (any of the possibly three cracks) is larger than 0.5, then the constitutive matrix takes the following 
form: 

(1 )cC΄΄ D C   (10) 
The proposed behavior of both cracked and uncracked Gauss points are described in the flow charts presented 

in Figs. 2 and 3. 
Furthermore, a level of damage that is occurred due to the opening of cracks affects the contribution of steel 

reinforcement to surrounding concrete areas. In this way, a modification of the steel stress-strain relation of 
Menegotto-Pinto [8] is described. In this way, some pinching characteristics and the loss of bonding between steel 
reinforcement with the surrounding cracked concrete can indirectly be taken into account by reducing the stiffness 
contribution of steel reinforcement [9]. The average of all parameters a (Eq. 7) at the 8 Gauss Points within a single 
hexahedral element can determine the level of damage of the concrete hexahedron as shown in the following 
expression: 

 1s ElementD a   (11) 

where, 

1

ncr

i

Element

a

a
ncr




, ncr is the number of cracked Gauss Points (12) 

In the case of unloading, when the structure reaches its initial deformation, a material deterioration of the steel 
reinforcement is computed based on the following proposed formulae: 

' (1 )s s sE D E  (13) 

The material deterioration is applied when σs ∙ εs < 0, which describes the situations when crack closures and
re-openings occur and the pinching phenomena are excessive. The modified material model is illustrated in Fig. 
2. 

Fig. 2. Menegotto-Pinto steel model by taking into account the accumulated damage due to opening/closure of 
cracks. 
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3 NUMERICAL VALIDATION OF THE PROPOSED MODEL UNDER STATIC CYCLIC 
ANALYSIS.   

The beam-column joint shown in Fig. 7, has been analyzed by Kusuhara and Shiohara [10] under static cyclic 
loading. The uniaxial compressive concrete strength was reported to be equal to fc=28.3 MPa and the yielding 
stress of the steel reinforcement was 456 MPa for the 13 mm diameter bars in the beam section, while the yielding 
stress for the 13 mm diameter of the column section was 357 MPa. The Young modulus of elasticity for the 
longitudinal bar reinforcement was ES = 176 GPa. For the stirrup reinforcement, 6 mm in diameter rebars were 
used with a yielding stress of 326 MPa and a Young modulus of elasticity equal to 151 GPa. 

(a) (b) 
Fig. 3. (a) Geometry and reinforcement details of beam column joint [10] and (b) imposed displacement history 

of the interior frame joint. 

The frame joint was subjected to different cyclic loading sets according to the experimental setup. The loading 
history that was modeled in this section, is presented in the form of imposed displacements in Fig. 3b, where 15 
total displacement cycles can be seen. For the numerical model construction, the concrete domain was discretized 
with 8-noded hexahedral finite elements and the steel reinforcement was discretized with the beam finite element. 
A total number of 128 concrete (23cm x 15cm x 15cm) and 888 steel elements were used so as to discretize the 
entire frame joint, as illustrated in Fig. 4. The beam-column frame joint is supported according to the experimental 
configuration shown in Fig. 3, where the boundary conditions implemented within the developed model are shown 
in Fig. 4. As it can be seen in Fig. 4, the displacements were imposed at the top section of the column, while a 216 
kN compressive force was also applied at the same section.  

(a) (b) 
Fig. 4. RC beam-column frame joint. 3D views of the FE mesh of (a) concrete and (b) steel reinforcement 

elements. 

The numerically curves are compared with the corresponding experimental curves in Fig 5. As it can be seen, 
the numerical results match very well with the experimental ones in terms of stiffness, strength and energy 
dissipation. Furthermore, Fig. 5 shows that the proposed model manages to capture efficiently the pinching effect 
in the case where both damage factors are implemented. It must be noted here that, during the analysis the steel 
rebars did not develop severe yielding but a bond degradation has occurred due to the opening of diagonal cracks 
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inside the joint according to the experimental results [32]. This observation indicates the importance of accounting 
the damage within the concrete domain and numerically transferring it to the steel rebar’s material response 
through the proposed damage factor DS.  

Fig. 2. Beam-Column frame joint. Comparison between numerical and experimental results. Complete force-
displacement history. 

The required Newton-Raphson internal iterations per load increment are shown in Fig. 6. As it resulted, all the 
displacement increments required a reasonable number of internal iterations to reach convergence regardless the 
intense nonlinear behavior of the structure. 77% of the displacement increments require less than 5 internal 
iterations to converge, while 95% of the displacement increments require less than 10 internal iterations. A total 
of 173 seconds were required so as to solve 610 displacement increments. This illustrates the computational 
efficiency of the proposed algorithm and the overall stability of the nonlinear solution procedure.  

Fig. 6. RC beam-column frame joint. Required Newton-Raphson iteration per displacement increment. 

4 NUMERICAL IMPLEMENTATION FOR DYNAMIC ANALYSIS 

A two-level RC frames denoted as H30 [11], which was subjected to dynamic loading conditions is investigated 
in this section. The iterative method uses an energy convergence tolerance criterion set to 10-4, where the nonlinear 
Newmark integration method was used for the dynamic analysis. The geometric and reinforcement details are 
shown in Fig. 7a. The uniaxial cylinder compressive strength of concrete (fc) was 50 MPa. The yielding stress (fy) 
of steel reinforcement was 500 MPa and the masses of the frame were 2.87 and 2.62 tons at the lower and upper 
girders, respectively. The Frame H30 was designed by assuming a ductility of q = 5. 

The frame was subjected to horizontal motions applied at its base as shown in Fig. 7b. The base motions 
foresaw of three sinusoidal events that were applied in sequence, as described in [11]. The three accelerograms 
exhibited a maximum magnitude of approximately one and two times the magnitude of the design ground 
acceleration of the frame, which was 0.30g.  
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(a) (b) (c) 
Fig. 3. (a) Geometric and reinforcement details of RC specimen H30, (b) Hexahedral FE mesh and (c) embedded 

rebar elements. 

For the numerical model (H30), a total of 2,384 embedded rebar elements were used, while for the RC slabs, 
128 8-noded hexahedral elements were used (red elements). The mass density of the RC slab-elements has been 
set appropriately in order to take into account the mass of the structure based on the experimental setup [11]. The 
steel rebars were simulated as embedded beam elements within the hexahedral concrete elements as presented in 
[12]. 

The frame developed excessive cracking which occurred at the first dynamic cycles of the dynamic excitation 
(first 3 s of the experiment, see Fig. 9). This led to significant strength degradations mainly during the third round 
of dynamic loading (t > 17 s) due to the yielding and fracture of the longitudinal reinforcement at the base of the 
frame, which was also observed during the experiment [11]. The numerically computed displacements of the first 
and the second floor slabs of the RC frame are compared with the experimental data in Figs. 9 and 10.  

The numerical results indicate that the proposed model managed to capture accurately the experimental data 
during the dynamic tests. During the last dynamic test, the model exhibited a relatively stiffer behavior compared 
to the experimental data. This can be attributed to severe damages developed at the base which led the specimen 
practically to fail due to excessive cracking and rebar failures. This explains the remaining deformation that can 
be noted during the last 5 seconds of the experiment (see Figs. 9 and 10). The numerical model managed to describe 
the overall behavior of the frame in a satisfactory manner, without any numerical instabilities. 

Fig. 4. H30 frame. Comparison between the numerical and experimental results of the 1st level displacement 
response. 
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Fig. 10. H30 frame. Comparison between the numerical and experimental results of the 2nd level displacement 
response. 

The required internal iterations, for H30 numerical models, are shown in the Fig 11. As it resulted, the required 
internal iterations per dynamic step during the solution procedure were limited to an average of 2 to 3, underlining 
the numerical stability of the proposed method. Based on the numerical findings, a 78% of the dynamic steps 
required less than 5 internal iterations to achieve convergence. The total required time for solving the nonlinear 
dynamic problems was 565 s, which refers to the solution of 3,826 dynamic time increment steps. 

Finally, Fig. 12 shows the crack patterns that were formed at the end of the dynamic event 3. The numerical 
crack patterns appear to be a denser than the experiment ones, which is attributed to the smeared crack method. 
However, there is a good agreement on the distribution, the location and the direction of the cracks predicted by 
the numerical model. 

Fig. 11. Required Newton-Raphson internal iterations per dynamic step increment H30. 

Fig. 12. H30 frame. Comparison of numerical and experimental crack patterns. 

5 CONCLUSIONS 

In this research work, a 3D detailed finite-element model was proposed for the nonlinear static cyclic and 
dynamic analysis of RC structures. The concrete material constitutive model describe a realistic behavior of 
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concrete under generalized three dimensional states of stress and treats cracking with the smeared crack approach. 
The numerical model has been integrated with a newly proposed concrete damage factor that was constructed by 
using the characteristics of cracking during the nonlinear static cyclic or dynamic analysis. Furthermore, a damage 
factor for the steel material that is also directly connected to the number of opening and closing of concrete cracks 
was introduced. 

The proposed model was applied in a beam-column joint specimen, which was subjected to cyclic loading 
conditions and a two-level RC frame that was subjected to dynamic loading conditions. The numerical study 
revealed that the steel damage factor was crucial in the case of the static cyclic loading. Furthermore, the proposed 
concrete damage factor was found to play a controlling role during the dynamic analysis of the frame, while the 
ability of the proposed modeling approach in predicting the experimental data accurately and efficiently was 
illustrated. Finally, the numerical ability to capture the 3D cyclic behavior of reinforced concrete structures was 
presented herein, which is crucial when dealing with large-scale models [13]. 
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Abstract. In most cases in the analysis of beam-like structures, Euler – Bernoulli beam theory assumptions are 
adopted, while in the case of non-negligible shear deformation effect, these assumptions are relaxed by using 
Timoshenko beam theory. However, both theories maintain the assumptions that plane cross-sections remain plane 
(no out-of-plane deformation) and that their shape does not change after deformation (no in-plane deformation). 
In order to take into account warping effects in the context of a beam theory, the inclusion of non-uniform warping 
is necessary, relaxing the assumption of plane cross-section. The shear flow associated with non-uniform warping 
leads also to in-plane deformation of the cross-section, relaxing the assumption that the cross-section shape does 
not change after deformation. For this purpose the so-called higher order beam theories have been developed 
taking into account warping (out-of-plane deformation) and distortional (in-plane deformation) effects. In order 
to avoid the usage of 2d or 3d theory of elasticity models, in this paper, a beam finite element is employed for the 
postbuckling analysis of arbitrarily shaped homogeneous beams, taking into account warping and distortional 
phenomena due to axial shear, flexure and torsion. The beam is subjected to arbitrary axial, transverse and/or 
torsional concentrated or distributed load, while its edges are restrained by the most general linear boundary 
conditions. The analysis consists of two stages. In the first stage, where the Boundary Element Method is employed, 
a cross-sectional analysis is performed based on the so-called sequential equilibrium scheme establishing the 
possible in-plane (distortion) and out-of-plane (warping) deformation patterns (axial, flexural and torsional 
modes) of the cross-section. In the second stage, where the Finite Element Method is employed, the extracted 
deformation patterns are included in the buckling analysis multiplied by respective independent parameters 
expressing their contribution to the beam deformation. The four rigid body displacements of the cross-section 
together with the aforementioned independent parameters consist the degrees of freedom of the beam. The non-
linear finite element equations are formulated with respect to the aforementioned degrees of freedom. The 
influence of warping and distortional phenomena in postbuckling analysis is investigated through a numerical 
example. 

1 INTRODUCTION 

In most cases in the analysis of beam-like structures, Euler – Bernoulli beam theory assumptions are adopted, 
while in the case of non-negligible shear deformation effect, these assumptions are relaxed by using Timoshenko 
beam theory. However, both theories maintain the assumptions that plane cross-sections remain plane (no out-of-
plane deformation) and that their shape does not change after deformation (no in-plane deformation). In order to 
take into account warping effects in the context of a beam theory, the inclusion of non-uniform warping is 
necessary, relaxing the assumption of plane cross-section. The shear flow associated with non-uniform warping 
leads also to in plane deformation of the cross-section, relaxing the assumption that the cross-section shape does 
not change after deformation. For this purpose the so-called higher order beam theories have been developed taking 
into account warping [1]  (out-of-plane deformation) and distortional (in-plane deformation) effects [2]. Higher-
order beam theories are of increased interest due to their important advantages over refined approaches such as 3-
D solid or shell solutions. These advantages are summarized having in mind that beam models a) Require less 
modelling time, b) Permit isolation of structural phenomena and results’ interpretation (rotations, warping 
parameters, stress resultants etc. are also evaluated in addition to displacements and stress components), c) 
Facilitate support modeling and external loading application, d) Require significantly less number of DOFs, thus 
reducing computational time, e) Facilitate parametric analyses without construction of multiple models. 
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Usually in engineering applications, non-linear analysis, including buckling, is crucial for the evaluation of the 
actual response of a structure. Thus, in this paper, a beam finite element is employed for the postbuckling analysis 
[3] of arbitrarily shaped homogeneous beams, taking into account warping and distortional phenomena due to 
axial, shear, flexure and torsion behavior. The beam is subjected to arbitrary axial, transverse and/or torsional 
concentrated or distributed load, while its edges are restrained by the most general linear boundary conditions. The 
analysis consists of two stages. In the first stage, where the Boundary Element Method is employed, a cross-
sectional analysis is performed based on the so-called sequential equilibrium scheme establishing the possible in-
plane (distortion) and out-of-plane (warping) deformation patterns (axial [4] , flexural and torsional modes [5]) of 
the cross-section. In the second stage, where the Finite Element Method is employed, the extracted deformation 
patterns are included in the buckling analysis multiplied by respective independent parameters expressing their 
contribution to the beam deformation. The four rigid body displacements of the cross-section together with the 
aforementioned independent parameters consist the degrees of freedom of the beam. The non-linear finite element 
equations are formulated with respect to the aforementioned degrees of freedom. The influence of warping and 
distortional phenomena in postbuckling analysis is investigated through a numerical example. 

The essential features and novel aspects of the proposed formulation, compared with previous ones, are 
summarized as follows. 
i) A very general beam theory is presented for the non-linear analysis of beams including axial warping and

distortional effects, additionally to shear, flexural and torsional ones, following the sequential equilibrium
scheme and employing BEM.

ii) The cross-section can be thin- or thick-walled. The formulation does not stand on the assumption of thin-walled
structure.

iii) It performs non-linear analysis of prismatic members based on a higher-order beam theory, which is of
increased interest due to its important advantages over refined approaches such as 3-D solid or shell solutions.

iv) The influence of Poisson ratio is taken into account in the buckling analysis of beams.
v) The beam is supported by the most general linear boundary conditions including elastic support or restraint.

2 STATEMENT OF THE PROBLEM 

2.1 Displacement components 

Let us consider a prismatic beam of length L  (Figure 1a), of an arbitrarily shaped cross-section of area Α  
(Figure 1b). The cross-section consists of a homogeneous material, with modulus of elasticity E  and poisson ratio 
ν , occupying the two-dimensional multiply connected region Ω  of the ,y z  plane (Figure 1b) and is bounded by 
the jΓ ( )1,2,...,j K=  boundary curves, which are piecewise smooth, i.e. they may have a finite number of 
corners. In Figure 1 CYZ  is the principal bending coordinate system through the cross-section’s centroid C , 
while cy , cz  are its coordinates with respect to Syz  principal shear system of axes through the cross section’s 
shear center S . Finally, it holds that cY y y= −  and cZ z z= − . 

The beam can be supported by the most general linear boundary conditions and is subjected to the combined 
action of the arbitrarily distributed or concentrated axial loading ( )xp X  along X  direction, transverse loading 

( )yp x  and ( )zp x  along the y , z  directions, respectively, twisting moment ( )xm x  along x  direction, bending 

moments ( )P
Ym x , ( )P

Zm x  along Y , Z  directions, respectively, as well as bending ( )S
Y

m x
ϕ

, ( )S
Z

m x
ϕ

 and primary 

and secondary torsional ( )P
x

m x
ϕ
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x

m x
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 and axial ( )P
u

m x
ϕ
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u
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ϕ

 warping moments, and higher moments 

( )P
Dum x , ( )S

Dum x , ( )P
DYm x , ( )S

DYm x , ( )P
DZm x , ( )S

DZm x , ( )P
Dxm x , ( )S

Dxm x  which, in what follows, will be referred 
to as distortional moments. The displacement field consists of two parts, i.e. the rigid body part and the end effects 
part (warping and distortional effects). Under the aforementioned loading the displacement field of the beam with 
respect to the Syz  system of axes is given as 

( ) ( )
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where 

( ),P
Y y z Zφ = −  ( ),P

Z y z Yφ = − (1d,e) 

L 

C: Centroid 
S: Shear center 

(a) 

1

K
jj=

Γ = Γ
 

Ω 

1Γ C 

y 

z 

Y 

Z 

zC 

yC r q P= −

n 

S 
KΓ

(b) 
Figure 1: Prismatic beam under loading (a) with a homogeneous cross section of arbitrary shape occupying the 

two dimensional region Ω (b). 

and 

( ) ( )( ) ( ) ( )( )sin cosP P P
Y Z x Y xx x x xη η θ η θ= − ⋅ + ⋅  (1f) 

( ) ( )( ) ( ) ( )( )cos sinP P P
Z Z x Y xx x x xη η θ η θ= ⋅ + ⋅ (1g) 

( )P
Y Y xη θ= −     ( )P

Z Z xη θ=  (1h,i) 

where ( ), ,u x y z , ( ), ,v x y z , ( ), ,w x y z  are the axial and transverse beam displacement components with respect 
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to the Sxyz  system of axes. Moreover, ( )u x  denotes the “average” axial displacement of the cross-section, ( )v x

, ( )w x  are the components of deflection of the center of twist S  along y and z  axes, respectively, while ( )x xθ  

is the angle of twist about the longitudinal axis x . ( )j
i xη  ( , , ,i u Y Z x=  and ,j P S= ) are the independent warping 

parameters introduced to describe the nonuniform distribution of primary ( j P= ) or secondary ( j S= ) warping 
due to axial behavior ( i u= ) or due to bending about Y ( i Y=  ) or Z  ( i Z= ) axes or due to torsion about x  axis 
( i x= ). ( )j

iz x  ( , , ,i u Y Z x=  and ,j P S= ) are the independent distortional parameters introduced to describe the 
nonuniform distribution of primary ( j P= ) or secondary ( j S= ) distortion due to axial behavior ( i u= ) or due 
to bending about Y ( i Y=  ) or Z  ( i Z= ) axes or due to torsion about x  axis ( i x= ). ( )P

Y xη and ( )P
Z xη  are 

related with the respective bending rotations ( )Y xθ , ( )Z xθ  due to bending about the Y , Z axes, according to 

Eqs. (1h-i). Despite the fact that ( )P
Y xη and ( )P

Z xη  are basically rigid body rotations, they are referred as primary 

independent warping parameters, for generality purposes, because they correspond to ( )P
Yz x  and ( )P

Zz x  which 
are the primary independent distortional parameters introduced to describe the nonuniform distribution of primary 
flexural distortion due to bending about the centroidal Y , Z axes, respectively. ( ),j

i y zφ  ( , , ,i u Y Z x=  and 
,j P S= ) are the primary ( j P= ) or secondary ( j S= ) warping functions related with axial behavior ( i u= ) or 

shear due to bending about Y ( i Y=  ) or Z  ( i Z= ) axes or torsion about x  axis ( i x= ). ( ),j
iv y z  ( , , ,i u Y Z x=

and ,j P S= ) are the primary ( j P= ) or secondary ( j S= ) components of distortional functions along Y  axis 
related to axial behavior ( i u= ) or shear due to bending about Y ( i Y=  ) or Z  ( i Z= ) axes or torsion about x
axis ( i x= ). ( ),j

iw y z  ( , , ,i u Y Z x=  and ,j P S= ) are the primary ( j P= ) or secondary ( j S= ) components of 
distortional functions along Z  axis related to axial behavior ( i u= ) or shear due to bending about Y ( i Y=  ) or 
Z  ( i Z= ) axes or torsion about x  axis ( i x= ). 

According to sequential equilibrium scheme [4,5] in each equilibrium stage four deformation modes are added 
(one due to axial behavior, two due bending about Y  and Z  axes and one due to torsion about x  axis) each of 
which includes one warping and one distortional function . Thus, the number of degrees of freedom (dofs) of each 
node is 

Rigid Body Warping & Deformation 
  Dofs Distortion      Modes

4 2 4dofs stagesN N
 
 = + ⋅ ⋅
 
 

(2) 

where stagesN  is the number of equilibrium stages which participate in the model. The displacement field that 
includes up to secondary deformation modes, expressed by Eqs. (1), corresponds to 2stagesN =  and 20dofsN = . If 
up to tertiary deformations modes are taken into account it will be 3stagesN =  and 28dofsN =  etc. It is worth here 
noting that the non-linear terms of the displacement field are present in the primary warping part of the axial 
displacement component ( ), ,u x y z and in the rigid body part of the two transverse displacement components 

( ), ,v x y z  and ( ), ,w x y z . Thus, the additional terms that are added in the displacement field in order to take into 
account tertiary phenomena or more follow the pattern of secondary terms of the latter displacement components 
(Eqs. (1a-c)). 

2.2 Linear stress components 

According to [4] the linear stress components which correspond to Eqs.(1a)-(1c) are 

6 26 1 6 6 2 1dofs dofs

lin lin
Material totN N×× × ×

= ⋅ ⋅σ K D d (3a) 

where 
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6 6

2 0 0 0
2 0 0 0

2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Material

µ λ λ λ
λ µ λ λ
λ λ µ λ

µ
µ

µ

×

+ 
 + 

+ 
=  

 
 
 
 

K  (3b) 

1

2 1 ,
1

dofs

dofs
dofs

N

tot
N x

N

×

×
×

 
 =  
  

d
d d  (3c) 

where ( )( )2 1Eµ ν= + and ( ) ( )( )1 1 2E vλ ν ν= + − are the shear modulus and the Lamé coefficient of the

material, respectively. linD  is a matrix containing expressions which are functions of the cross-sectional 
coordinates, the warping functions and the components of distortional functions. T =d ( )u x , ( )v x , ( )w x , 

( )x xθ , ( )P
u xη  ( )P

Y xη , ( )P
Z xη , ( )P

x xη , ( )S
u xη , ( )S

Y xη , ( )S
Z xη , ( )S

x xη , ( )P
uz x , ( )P

Yz x , ( )P
Zz x , ( )P

xz x , 

( )S
uz x , ( )S

Yz x , ( )S
Zz x , ( ) TS

xz x  ) is the displacement vector. Finally, ( ),i⋅  denotes differentiation with respect to 
i . 

2.3 Non-Linear strain components 

Substituting Eqs.(1a)-(1c) in the non-linear (Green) strain-displacement relations 

2 2 21
2xx

u u v w
x x x x

ε
 ∂ ∂ ∂ ∂     = + + +      ∂ ∂ ∂ ∂       

(4a) 

2 2 2
1
2yy

v u v w
y y y y

ε
      ∂ ∂ ∂ ∂

= + + +      ∂ ∂ ∂ ∂       
(4b) 

2 2 21
2zz

w u v w
z z z z

ε
 ∂ ∂ ∂ ∂     = + + +      ∂ ∂ ∂ ∂       

(4c) 

xy
u v u u v v w w
y x y x y x y x

γ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
(4d) 

xz
w u u u v v w w
x z z x z x z x

γ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
(4e) 

yz
v w u u v v w w
z y y z y z y z

γ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
(4f) 

(
2u u

x x
∂ ∂  << ∂ ∂ 

,
2

u v
y y

 ∂ ∂
<< ∂ ∂ 

, 
2u w

z z
∂ ∂  << ∂ ∂ 

, u u v u
x y x y

 ∂ ∂ ∂ ∂  << +  ∂ ∂ ∂ ∂  
, u u w u

x z x z
∂ ∂ ∂ ∂   << +  ∂ ∂ ∂ ∂  

, 

u u w v
y z y z

 ∂ ∂ ∂ ∂  << +  ∂ ∂ ∂ ∂  
i.e. the terms 

2u
x

∂ 
 ∂ 

,
2

u
y

 ∂
 ∂ 

, 
2u

z
∂ 

 ∂ 
, u u

x z
∂ ∂  

   ∂ ∂  
, u u

x y
 ∂ ∂ 

   ∂ ∂  
, and u u

y z
 ∂ ∂ 

  ∂ ∂  
 have 

been neglected as considered to be small compared with the linear and the rest of the non-linear terms) the non-
linear strain resultants are given as 

6 16 1 Erows ErowsN N× ××
= ⋅ε D E  (5) 
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where 
T

xx yy yy xy xz yzε ε ε ε ε ε =  ε is the non-linear strain vector which has been written as a product of two 

matrices. The first matrix ( ( ), , , ,j j j
i i iy z v wϕ=D D  where , , ,i u Y Z x=  and ,j P S= ) contains expressions which 

are functions of the cross-sectional coordinates, the warping functions and the components of distortional 
functions, while the second matrix ( ( ),, x=Ε Ε d d ) contains expressions which are functions of the displacements 

and their derivatives. Finally, ErowsN is the number of rows of E  matrix. 

2.4 Principle of virtual work 

According to principle of virtual work 

U Wδ δ=   (6) 

where Uδ  and Wδ are the virtual work of the internal and external actions of the beam, respectively. 

3 VIRTUAL WORK OF THE INTERNAL ACTIONS 

The virtual work of the internal actions of beam is given as 

( )
1 6 6 1

xx xx yy yy zz zz xy xy xz xz yz yz
V V

U dV dVδ σ δε σ δε σ δε σ δγ σ δγ σ δγ δ Τ

× ×

 = + + + + + = ⋅ 
 ∫ ∫ ε σ (7) 

Substituting Eqs. (5) and (3) in Eq. (7) the expression of the virtual work of the non-linear part of the internal 
actions can be written as 

1 2 22 1 1 2 2 10 0
2

Erows Erows dofs Erows dofsdofs dofs dofs

dofs Erows

L L
gc gc

tot tot totN N N N NN N Ntot
N N

U dx dxδ δ δ
Τ

Τ Τ

× × ×× × ×
×

 ∂
= ⋅ ⋅ = ⋅ ⋅ ⋅ ∂ 

∫ ∫
EE K d d K d

d
(8a) 

where 

, ,1 1 1 1 21 1, ,

1

Erows dofs dofs dofsdofs dofs
Erows dofs dofs ErowsErows dofs dofs Erows

Erows

x x totN N N NN Nx x totN N N NN N N N
N

δ δ δ δ δ δ

Τ
ΤΤ

Τ Τ Τ Τ

× × × ×× ×
× ×× ×

×

  
     ∂ ∂ ∂ ∂ ∂ = ⋅ + ⋅ = ⋅ + ⋅ = ⋅     ∂ ∂ ∂ ∂ ∂      

   

E E E E EE d d d d d
d d d d d

2 dofs ErowsN N

Τ

×



(8b) 

6 6 22 6 6Erows dofsErows dofs

gc
MaterialN NN N

dΤ

× ×× ×Ω

= ⋅ ⋅ Ω∫K D K D (8c) 

gcK  is a matrix that contains the non-linear geometric constants of the cross-section of the beam. 

3.1 Virtual work of external actions 

According to [4] the virtual work of the external actions of the beam is given as 
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0

1 21 3 10
2 3

0
00

3 11 2 1 20
2 3 2 3

dofsj

dofs

dofs dofs

dofs dofs

L K

tot j
Nj tot j

N

tot totxx x L
tot totN Nx x L
N N

W ds dx

d

δ δ

δ δ

Τ

Τ

×= ×Γ
×

Τ Τ

Τ Τ
== =

×× ×Ω = =
× ×

  
   ∂

= ⋅ ⋅   ∂      
 
    ∂ ∂

+ ⋅ ⋅ Ω + ⋅ ⋅    ∂ ∂     
 

∑∫ ∫

∫

ud t
d

u ud t d t
d d 3 1L

L
x L

d
=

×Ω

 
 

Ω 
 
 
 

∫

(9) 

where [ ]u v wΤ =u . T
x y zt t t =  t  is the vector applied on the lateral surface of the beam including end cross-

sections ( 0,x L= ) , denoted by 0Ω  and LΩ . 

3.2 Flexural and torsional modes. 

The calculation of the ( ),j
i y zφ  ( , , ,i u Y Z x=  and , , .j P S etc= ) warping functions and ( ),j

iv y z  and

( ),j
iw y z  ( , , ,i u Y Z x=  and ,j P S= ) components of distortional functions for axial ( i u= ), flexural ( ,i Y Z= ) 

and torsional ( i x= ) modes, which have been employed in section 2.1, are obtained after solving corresponding 
boundary value problems, formulated exploiting the local equilibrium equations and the corresponding boundary 
conditions according to the so called sequential equilibrium scheme, as presented in [4] for axial and [5] for flexural 
and torsional modes, employing the Boundary Element Method. More specifically, in order to compute the 
involved warping and distortional functions, local equilibrium is sequentially fulfilled by introducing additional 
warping and distortional functions, so as to equilibrate non-equilibrated stress residuals [5]. 

4 NUMERICAL SOLUTION 

The described problem is numerically solved employing the Finite Element Method (FEM) for the 
discretization and the incremental solution of Eq. (6). 

5 NUMERICAL EXAMPLE AND CONCLUSIONS 

In the numerical example, a beam of a standard closed steel profile (HEB500x300x8, 8 22.1 10E kN m= ⋅ , 
7 28.08 10 kN mµ = ⋅ , 0.3ν = ) having length 5m is examined. Distortion as well as transverse displacements are 

prohibited at both ends which are free to warp or move axially. The beam is subjected to uniform axial loads 
applied at both ends. Thus, in what follows, due to symmetry of geometry and loading, the half beam is modeled. 
Axial displacement as well as warping is prohibited at the new end of the beam. Let us define as x, y, z the 
longitudinal axis, the strong axis and the weak axis of the beam, respectively. The origin of the system of axes is 
at the centroid of the cross section where the load is applied. 

The non-linear response is evaluated employing the High Order Beam Theory (HOBT- present study) for 
varying number of degrees of freedom ( dofsN ) of each Finite Element (FE) node (25 2-noded Finite Elements-FE) 
and is compared with the corresponding results obtained by Solid Finite Elements (Solid FEM) [6] (4000 FE). The 
geometric constants of HOBT were calculated employing 1024 linear discontinuous boundary elements (16 Gauss 
Points) and 268 domain quadrilateral cells (2x2 Gauss Points). The non-linear analysis is conducted by inducing 
an initial imperfection which arise from 1st linear buckling mode having a maximum displacement equal to 
0.05mm.  

In Figure 2 the deformed shape of the beam for Axial Load = 4500KN as calculated employing HOBT for 
Ndofs =52 (Figure 2a) and Solid FEM (Figure 2b) as well as the load-displacement curves of axial displacement 
at point A (Figure 2c) and transverse displacement along y axis at point B (Figure 2d) as calculated employing 
HOBT for increasing Ndofs and Solid FEM. Point A, which lies on the cross section where the load is applied, is 
located at x=0, y=0.15, z=0 while Point B, where the maximum transverse displacement is developed (see Figures 
2a-b) , is located at x=0.2, y=0.15, z=0. The contour color of Figures 2a and b represents the value of each point’s 
displacement vector. 

From the aforementioned results can be concluded that: 
• As the number of dofsN  increases HOBT (present study) converges with 3d Solid FEM. 
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Load .
A

.B

(a) (b) 

(c) 

(d) 
Figure 2: Deformed shape of the beam of the numerical example for Axial Load = 4500KN as calculated 

employing HOBT for Ndofs =52 (a) and Solid FEM (b) as well as the load-displacement curves of 
axial displacement at point A (c) and transverse displacement along y axis at point B (d) as calculated 
employing HOBT for increasing Ndofs and Solid FEM. 

• Distortional phenomenon has great influence in the calculation of the non-linear response of the beam as
local buckling dominates.

Amalia K. Argyridi and Evangelos J. Sapountzakis.

54



• HOBT (present study) is able to capture local buckling phenomena with high accuracy which classical
beam theories are unable to do.
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Abstract. The KDamper is a novel passive vibration isolation and damping concept, based essentially on the 

optimal combination of appropriate stiffness elements, which include a negative stiffness element. The KDamper 

concept ensures the static stability of the structure, does not require heavy masses and can achieve better 

dynamic characteristics, compared to the “Quazi Zero Stiffness” (QZS) isolators and the traditional Tuned Mass 

Damper (TMD). Contrary to the TMD and its variants, the KDamper substitutes the necessary high inertial 

forces of the added mass by the stiffness force of the negative stiffness element. Among others, this can provide 

comparative advantages in the very low frequency range. The paper proceeds to a systematic approach for the 

optimal design and selection of the KDamper parameters, for a multi storey building structure. A dynamic 

system consisting from a simplified flexible structure model and KDamper devises is considered and its transfer 

functions are derived. These transfer function are formed for various implementations of the KDamper devises, 

and are transformed in a parametric form, and an optimization procedure is used to minimize them for 

appropriate excitation and response points. Finally, an application case of a 3-storey concrete building 

structure is presented under seismic excitations of broad frequency range. 

1 INTRODUCTION 

 In response to the damage generated by earthquakes occurring in densely populated areas, the design codes 
for the design of buildings, bridges and industrial facilities changed with the intention to achieve better seismic 
performance. In order to mitigate the effects of earthquake shaking on structures, many theories have been 
developed, with seismic isolation being the most popular approach to earthquake-resistant design, as it is based 
on the concept of reducing the seismic demand rather than increasing the earthquake resistance capacity of the 
structure. Contemporary seismic isolation systems for bridge applications provide i) horizontal isolation from the 
effects of earthquake shaking, by decoupling the bridge deck from bridge substructure during earthquakes, and ii) 
an energy dissipation mechanism to reduce displacements. In this context, a variety of isolation devises including 
elastomeric bearings (with and without lead core), frictional/sliding bearings, roller bearings and newly-
fabricated hardware incorporating negative stiffness elements for vibration isolation have been developed, with 
the latter being the most promising. 

The concept of negative stiffness elements (or “anti-springs”) has a long history, being first introduced in the 
pioneering publication of (Molyneaux, 1957), as well as in the milestone developments of (Platus, 1999). The 
central concept of these approaches is to significantly reduce the stiffness of the isolator and consequently to 
reduce the natural frequency of the system even at almost zero levels (Carella et al., 2007), being thus called 
“Quazi Zero Stiffness” (QZS) oscillators. In this way, the transmissibility of the system for all operating 
frequencies above the natural frequency is reduced, resulting to enhanced vibration isolation. An initial 
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comprehensive review of such designs can be found in (Ibrahim, 2008). 

The negative stiffness behavior is primarily achieved by special mechanical designs involving conventional 
positive stiffness pre-stressed elastic mechanical elements, such as post-buckled beams, plates, shells and pre-
compressed springs, arranged in appropriate geometrical configurations. Some interesting designs are described 
in (Winterflood et al., 2002), (Virgin et al., 2008). However, alternatively to elastic forces, other forms of 
physical forces can be used to produce an equivalent negative stiffness effect, such as gravitational (Dyskin and 
Pasternak, 2012), magnetic (Robertson et al., 2009) or electromagnetic (Zhou and Liu, 2010). Among others, 
Quazi Zero Stiffness (QZS) oscillators are finding numerous applications in seismic isolation (DeSalvo, 2007), 
(Iemura and Pradono, 2009), (Sarlis et al., 2012), (Attary et al., 2015). 

However, Quazi Zero Stiffness (QZS) oscillators suffer from their fundamental requirement for a drastic 
reduction of the stiffness of the structure almost to negligible levels, which limits the static load capacity of such 
structures. 

In the same direction, a novel type of oscillator has been proposed (Antoniadis et al., 2015), incorporating a 
negative stiffness element, which can exhibit extraordinary damping properties, without presenting the drawbacks 
of the traditional linear oscillator, or of the ’zero-stiffness’ designs. This oscillator is designed to present the same 
overall (static) stiffness as a traditional reference original oscillator. However, it differs both from the original 
SDoF oscillator, as well as from the known negative stiffness oscillators, by appropriately redistributing the 
individual stiffness elements and by reallocating the damping. Although the proposed oscillator incorporates a 
negative stiffness element, it is designed to be both statically and dynamically stable. Once such a system is 
designed according to the approach proposed in (Antoniadis et al, 2015), it is shown to exhibit an extraordinary 
damping behaviour. Moreover, a drastic increase of several orders of magnitude has been observed for the 
damping ratio of the flexural waves propagating within layered periodic structures incorporating such negative 
stiffness oscillators (Chronopoulos et al., 2015).  

In this paper, an initial approach towards the implementation of the KDamper to the seismic isolation of multi 
storey building structures is considered. The Transfer Functions are formed for the top floor’s displacement with 
a harmonic base excitation, first for the optimum solution of placing 3KDamper and then for 3 additional cases of 
placing 1 KDamper in all possible positions. The dynamic response of all the test cases is examined before and 
after the implementation of the KDampers. Finally the new damping ratio of the structure is calculated. 

2 OVERVIEW OF THE KDAMPER CONCEPT IN A 3-DOF SYSTEM 

Figure 1a presents a 3-DOF system of masses m1, m2, m3, static stiffness k1, k2, k3, with the damping ratios ζ1-3

common for all the modes of the system. Figure 1b presents the basic layout of the vibration isolation and 
damping concept to be considered. The first basic requirement of the KDamper is that the overall static stiffness 
of the system is maintained, as it is stated in Equation1, where kR1-3 and kD1-3 represent the stiffness of the 
conventional springs, kN1-3 is the algebrical value of the negative stiffness element and k1-3 stands for the initial 
static stiffness element of the uncontrolled system. 

(a) (b) 

Figure 1. Schematic presentation of a 3-DoF system mounted on a fixed base (a) and (b) schematic presentation 
of the considered vibration absorption concept 
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 (1) 

In this way, the KDamper can overcome the fundamental disadvantages of the QZS oscillator, which is the 
reduction of the overall stiffness of the system that simultaneously limits the static loading bearing capacity off 
the structure. 

The resulting equations of motion after the implementation of the 3-KDamper devises, on a 3-DOF system on 
a fixed base, for an input ground motion xG are: 

3 33 3 3 3 2 3 3 3 3 33( k )( ) k ( ) ( ) GR D Dm x k x x x y c x y m x          (2.1) 

33 3 3 3 3 3 3 2 33 3( ) ( ) ( ) GD D D N Dm y k x y c x y k y x m x        (2.2) 

2 22 3 3 3 2 3 3 2 2 2 2 1 2 2 2 2 22( )( ) ( ) ( )( ) ( ) ( ) GR N R D Dm x k k x x k y x k k x x k x y c x y m x              (2.3) 

22 2 2 2 2 2 2 2 22 2( ) ( ) ( ) GD D D N Dm y k x y c x y k y x m x        (2.4) 

1 11 2 2 2 1 2 2 1 1 1 1 1 1 1 1 11( )( ) ( ) (k ) x ( ) ( ) GR N R D Dm x k k x x k y y k k x y c x y m x             (2.5) 

11 1 1 1 1 1 1 11 1( ) ( ) GD D D N Dm y k x y c x y k y m x        (2.6) 

Assuming a harmonic ground excitation in the form of: 

2 j t
G Gx X e  

(3) 

And a steady state response of: 

1 1 2 2 3 3( ) , ( ) , ( )j t j t j tx t X e x t X e x t X e     (4.1) 

1 1 2 2 3 3( ) , ( ) , ( )j t j t j ty t Y e y t Y e y t Y e     (4.2) 

Where X1-3 and Y1-3 denote the complex response amplitudes, the equations of motion (2.1-6) become: 

2 2
3 3 3 3 3 3 3 3 2 3 3 3 3[ ] [ ] [ ]R D D R D D Gm s k k k c s X k k X k c s Y m              (5.1) 

2 2
3 3 3 3 3 3 3 3 3 2 3[ ]Y [ ]X [ ]XD D D N D D N D Gm s k c s k k c s k m            (5.2) 

2 2
2 3 3 3 2 2 2 2 2 2 2 1 3 3 3 3 3 2 2 2 2[ ]X [ ]X [ ]X [ ] [ ]YR N R D D R R N D D Gm s k k k k k k c s k k k k k Y k c s m X                   (5.3) 

2 2
2 2 2 2 2 2 2 2 2 1 2[ ]Y [ ]X [ ]XD D D N D D N D Gm s k c s k k c s k m X         (5.4) 

2 2
1 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1[ ]X [ ]X [ ]Y [ s]YR N R D D R N D D Gm s k k k k k k c s k k k k c m X                (5.5) 

2 2
1 1 1 1 1 1 1 1 1[ ]Y [ ]XD D D N D D D Gm s k c s k k c s m          (5.6) 
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The damping matrix of the uncontrolled system, [CS]3x3, is not explicitly known but is obtained with the help 

of Rayleigh’s approach using same damping ratio in all modes. Then it is expanded in order to agree with the 
total Degrees of Freedom of the considered problem. The resulting Transfer Functions of the system for the 
relative response amplitudes X3, X2, X1, Y3, Y2 and Y1 for a ground motion xG, are: 

3

3

21, 1 2

2

1

1 ( ,1)

[ ]
[ ] , 1 6

D

i

Ui

DG

D

m

m

mU
TF H

mX

m

m


 

  
  
  
  

     
  
  
  

    

 (6) 

 Where: 

 1,6 3 3 2 2 1 1[ ] T
U X Y X Y X Y (7.1) 

2
3 3 3 3 3(1,1) (1,1)R D D SH m s k k k c s C s      (7.2) 

3 3(1,2) (2,1) D DH H k c s     (7.3) 

3 3(1,3) (3,1) (1,2)sR SH H k k C     (7.4) 

2
3 3 3 3(2,2) D D D NH m s k c s k    (7.5) 

3(2,3) (3,2) NH H k   (7.6) 

2
2 3 3 3 2 2 2 2(3,3) (2,2)R N R D D SH m s k k k k k k c s C s         (7.7) 

2 2(3,4) H(4,3) D DH k c s     (7.8) 

2 2(3,5) (5,3) (2,3)sR SH H k k C      (7.9) 

2
2 2 2 2(4,4) D D D NH m s k c s k    (7.10) 

2(4,5) (5,4) NH H k   (7.11) 

2
1 2 2 2 1 1 1 1(5,5) (3,3)R N R D D SH m s k k k k k k c s C s         (7.12) 

1 1(5,6) (6,5) D DH H k c s     (7.13) 

2
1 1 1 1(6,6) D D D NH m s k c s k    (7.14) 

(1,5) (5,1) (1,3)SH H C s   (7.15) 

(1, 4) (4,1) 0H H   (7.16) 
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(1,6) (6,1) 0H H    (7.17) 

(2, 4 6) (4 6,2) 0H H     (7.18) 

(3 4,6) (6,3 4) 0H H     (7.19) 

3 IMPLEMENTATION OF THE KDAMPER CONCEPT TO A 3-STOREY CONCRETE BUILDING 
STRUCTURE 

A typical 3-storey concrete building structure as shown in Figure 2 (C20/25, Hfloor = 3.5 m, gtot
’ = 3.5 kN/m2, 

q= 2.5 kN/m2), is examined. The structure is considered fixed at its base. The seismic excitation are that of JMA 
(1995) and TABAS, as shown in Figure 3. 

Figure 2. Ground floor plan of a typical floor of the structure 

Figure 3. Seismic excitations of JMA (1995) and TABAS 

The KDamper devises are placed between each of the 3 floors of the structure as the optimum solution, with 
the sum of the addition masses of the devises to be equal to the 10% of the total mass of the system, and the 
stiffness elements and the damping coefficients are determined after optimization. Then in order to evaluate the 
utility of these devises, each time a KDamper is placed in each floor with the same mass as in the case of the 3 
KDampers, to clarify the contribution of each devise to the total reduction of the Transfer Function and the 
displacement at the top of the structure. The systems parameters are: 
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Masses 

1 2 3 10.09m m m tn  

X - stiffness 
1, 2, 3, 98616.91 /x x xk k k kN m  

Y - stiffness 
1, 2, 3, 32872.3 /y y yk k k kN m  

Table 1. System’s parameters 

3.1 Transfer Functions for the top floor displacement 

In Figure 4 are the Transfer Functions for displacement of the 3rd floor, for a harmonic ground motion, by 
selecting a constant value for the additional equal masses of each of the 3 KDampers 1%, 2%, 5% and 10% 
respectively. The maximum values for the Transfer Functions are minimized with the proper selection of the 
dimensional parameters each of the 3 KDampers, through optimization with the limitation that the additional 
stiffness are not more that 15% and 30%, as shown in Figure 4. 

Figure 4. Transfer Function for the displacement of the 3rd floor 

In Figure 5 are the Transfer Functions for 3 additional cases. This time the initial system is controlled by 
placing 1 KDamper in the 1st floor, 2nd floor and 3rd floor respectively. The additional mass of the KDamper is 
constant and equal to 10% of the floors mass and the maximum value of the additional stiffness is not more than 
30%. Again the maximum values for the Transfer Functions are minimized with the proper selection of the 
parameters of the KDamper, through optimization. 
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1st case 2nd case 3rd case 

Figure 5. Transfer Function for 3 additional cases of placing 1KDamper instead of 3 

3.2 Numerical Results 

In Table 2 are the dimensional parameters each of the 3KDampers placed between each floor of the structure, 
for an additional mass of each devise mDi=10%mi, that are taken through optimization with the limitation that the 
additional stiffness of the structure is not more than 30%. The system is solved using the Newmark-β with linear 
acceleration. In Figure 6 the structure’s dynamic response is presented in terms of the floor’s displacements, for 
each of the considered excitations, which is the critical factor that determines the stresses of the structure. 

#KDamper kRi (kN/m) kDi (kN/m) kNi (kN/m) mDi (tn) cDi (kNs/m) 
KDamper1 9838.0 2827.54 -2196.3 10 83.0 
KDamper2 9131.9 4238.14 -2894.7 10 77.8 
KDamper3 7748.3 2646.31 -1972.6 10 71.5 

Table 2: Dimensional parameters of the case of placing 3KDampers in between each floor 
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Figure 6.Compatative results between the initial and the isolated system, for the case of placing 3 KDampers 
between each floor with an additional mass mDi=10%mi 

Initial 
system (m) 

3KDamper 
system (m) 

Reduction 
(%) 

Reduction 
(%) 

Excitation JMA (1995) TABAS JMA (1995) TABAS JMA (1995) TABAS 
1st floor drift 0.1434 0.1246 0.088 0.0461 38.6 63 
2nd floor drift 0.1186 0.0994 0.0826 0.0492 30.35 50.5 
3rd floor drift 0.066 0.0649 0.044 0.0326 33.33 49.77 

Table 3: Dynamic response of the isolated system with 3KDampers 

In Table 4 are the results for each of the 3 floor’s drifts, for the 3 additional cases of the implementation of 
1KDamper instead of 3. For each of the 3 cases the additional mass is equal to 10% of the floor’s mass, that the 
KDamper is placed, and the maximum value that the additional stiffness can have is 30% of the initial stiffness ki. 
In the case of KDamper-1, the KDamper is placed between the fixed base and the 1st floor, in the case of 
KDamper-2, the KDamper is placed between the 1st and 2nd floor and in the last additional case of KDamper-
3,the devise is placed between the 3rd and the 2nd floor. Again the rest of the KDamper’s parameters are taken 
through optimization. 

Initial 
system (m) 

KDamper-1 
system (m) 

Reduction 
(%) 

Reduction 
(%) 

Excitation JMA (1995) TABAS JMA (1995) TABAS JMA (1995) TABAS 
1st floor drift 0.1434 0.1246 0.118 0.0764 17.7 38.68 
2nd floor drift 0.1186 0.0994 0.0801 0.0512 32.46 48.49 
3rd floor drift 0.066 0.0649 0.0446 0.0426 32.42 34.36 
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Initial 

system (m) 
KDamper-2 
system (m) 

Reduction 
(%) 

Reduction 
(%) 

Excitation JMA (1995) TABAS JMA (1995) TABAS JMA (1995) TABAS 
1st floor drift 0.1434 0.1246 0.1064 0.063 25.8 49.44 
2nd floor drift 0.1186 0.0994 0.0948 0.0572 20.07 42.45 
3rd floor drift 0.066 0.0649 0.0437 0.0351 33.79 45.92 

Initial 
system (m) 

KDamper-3 
system (m) 

Reduction 
(%) 

Reduction 
(%) 

Excitation JMA (1995) TABAS JMA (1995) TABAS JMA (1995) TABAS 
1st floor drift 0.1434 0.1246 0.1098 0.0602 23.43 51.68 
2nd floor drift 0.1186 0.0994 0.0869 0.0548 26.73 44.87 
3rd floor drift 0.066 0.0649 0.0689 0.0543 -4.4 16.33 

Table 4: Dynamic response for each of the 3 additional cases of placing 1KDamper 

In order to calculate the exact value of the new damping ratio, the isolated system is subjected to a free 
vibration with initial conditions (Figure 7), that of the first modal eigenform of the uncontrolled system, and is 
calculated as in Equation 9, and the results are in Table 5. 

Figure 7. 3rd floor’s displacement for a free vibration with initial conditions 

3
2

3

X ( ) 2ln
X ( ) 1

t

t T





 
 

  
(9) 

Uncontrolled 
system 

3KDamper 
system 

KDamper-1 
system 

KDamper-2 
system 

KDamper-3 
system 

Damping ratio (%) 5  27.73 15.34 16.48 13.31 

Table 5. New damping ratio of the isolated systems 
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4 CONCLUSIONS 

The KDamper concept can provide a realistic option for seismic isolation of existing concrete building 
structures. The implementation of the 3KDamper devises as shown, has drastically reduced the dynamic response 
of the floor’s drifts up to 63% and above 30% for the considered excitation, in all the floor’s drifts and has 
improved the damping ratio to 27.73%  

Furthermore, the implementation of only 1KDamper devise with the same additional mass as an individual 
KDamper, in the 3KDampers concept, has shown remarkable results in the floor’s drifts reaching 50% and in 
most cases more than 25%, offering high damping properties (around 15%) at the same time. It must be noted 
that in the last 3 additional cases only 1/3 of the total additional mass of the optimum solution is used. 

Finally, the inherit non-linear nature of the negative stiffness force can be exploited to offer further potential 
advantages of the KDamper concept, such as robustness, broadband response and energy sinks. 
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Abstract. The lubrication flow of a Bingham plastic in long tubes of varying radius is modeled using the 

approach proposed by Fusi and Farina (Appl. Math. Comp. 320, 1-15 (2018)). Both the plastic viscosity and the 

yield stress are assumed to vary linearly with the total pressure. Under the lubrication approximation a final 

set of two highly non-linear ordinary differential equations with unknowns the total pressure and the shape 

(radius) of the yield surface are solved by using two different techniques. A pseudospectral numerical method 

utilizing Chebyshev orthogonal polynomials and an analytical perturbation method with the small parameter 

being the difference of the two dimensionless parameters which are introduced due to the pressure-dependence 

of the yield stress and the consistency index of the fluid. In the former, ten spectral coefficients are adequate to 

fully resolve the pressure and yield-surface profiles down to machine accuracy. In the latter, three terms in the 

perturbation expansions are found analytically, and then are suitably processed using techniques which 

accelerate the convergence of series. The agreement between the two techniques is excellent. The implications of 

the pressure-dependence of the material parameters and the applicability windows of the method are also 

discussed. 

1 INTRODUCTION 
We consider the axisymmetric Poiseuille flow of a Bingham plastic with pressure-dependent rheological 

parameters. More specifically, we consider the flow in long horizontal tubes of yield-stress materials with 
pressure-dependent yield stress, * * *( )y y p  ,  and plastic viscosity, * * *( )p  , where *p  is the pressure. 
Hence, the constitutive equation can be written in tensorial form as follows: 

* * * *

* *
* * * * * * *

*

, ( )

( )
( ) , ( )

y

y

y

p

p
p p

 


  



  


 
   
   

γ 0

τ γ
(1) 

where *τ  is the viscous extra-stress tensor and *γ  is the rate-of-deformation tensor, * * * * *( )T  γ v v , 
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*v is the velocity vector, and * tr( ) / 2  * *γ γ  and * * *tr( ) / 2  τ τ   are the magnitudes of *γ  and 
*τ , respectively. Equation (1) is a generalization of the classical Bingham-plastic equation 

The axisymmetric Poiseuille flow of a fluid obeying Eq. (1) is of interest in fluid transport in long tubes, 
where high pressures are required to drive the flow, e.g. in oil-drilling. Hermoso et al. reported experimental data 
at different pressures and temperatures for the rheological behavior of two oil-based drilling fluids, obeying the 
Bingham-plastic and the Herschel-Bulkley models [1] and employed the following linear equation [1] 

* * * * * *
0 0( ) 1 ( )y p p p       (2) 

where *
0  denotes the yield stress at a reference pressure *

0p  and *  is the yield-stress growth coefficient. As for 
the plastic viscosity, Hermoso et al. (2014) used the Barus-type equation [2], a linearized versión of which is 

* * * * * *
0 0( ) 1 ( )p p p       (3) 

where *
0  is the plastic viscosity at the reference pressure and * 0   is the plastic-viscosity growth coefficient.

Damianou and Georgiou [3] analyzed the plane Poiseuille flow of a Bingham plastic of material parameters 
obeying Eqs. (2) and (3), such that 

* * * *

* * * *
0 0* * * * * * * * *

0 0*

, ( )

1 ( )
2 1 ( ) , ( )

y

y

p

p p
p p p

 

 
   



 

            
  

γ 0

τ γ
(4) 

and reported explicit analytical solutions for the velocity, the pressure, and the width of the central unyielded 
región, which is constant despite the pressure-dependence of the material parameters. In axisymmetric Poiseuille 
flow, however, the radius of the unyielded core is not constant in the general case. As pointed out in Ioannou and 
Georgiou [4], an analytical solution with a cylindrical unyielded region can be derived only when the growth 
coefficients *  and *  are equal, which is indeed a reasonable assumption for certain oil-drilling fluids. 

Panaseti et al. [5] extended the lubrication-approximation method of Fusi et al. [6] to model the flow of a 
Herschel-Bulkley fluid in a symmetric long channel of varying width, under the assumption that both the 
consistency index and the yield stress vary linearly with pressure. In this method, the unyielded domain is 
modeled as an evolving non-material volume and by means of an integral formulation for the balance of linear 
momentum a single integro-differential equation is derived for the pressure. The yield surface and the two 
velocity components are then calculated from the pressure by means of closed form expressions. The main 
advantages of this method: (a) the yield surface, i.e. the interface between yielded * *( )y   and unyielded 

* *( )y   parts of the flow domain, is calculated exactly; and (b) the lubrication-approximation paradox is 
avoided and the correct shape of the yield surface, unlike other lubrication-approximation approaches [7]. 

Fusi and Farina [8] extended their method in [6] to time-dependent axisymmetric flows. In this geometry, the 
zero-order approximation leads to a system formed by an integral equation and an algebraic equation for the yield 
surface and for the plug velocity, respectively. Fusi and Farina [8] focused on the effects of oscillating walls on 
the flow. The objective of the present work is to study the steady-state axisymmetric Poiseuille flow of a 
Bingham plastic with pressure-dependent rheological parameters using the method of Fusi and Farina. We are 
interested in particular in the general case where the growth coefficients *  and *  are not equal and thus the 
unyielded core may be diverging or diverging depending on the relative values of these two parameters. 

2 LUBRICATION APPROXIMATION 

We consider the steady-state, pressure-driven flow of an incompressible Bingham plastic obeying constitutive 
equation (4) in a long tube of length *L  and constant radius *R , as illustrated in Fig. 1. A uniform pressure *

inp

is applied at the inlet of the tube ( * 0z  ) while the pressure at the exit plane ( * *z L ) is * *
out inp p , i.e. the 

imposed pressure difference is * * *
in outP p p   . Without loss of generality, we assume here that *

outp  is 
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Figure 1. Schematic of the Poiseuille flow configuration showing the unyielded core and the coordinate system 

equal to the reference pressure *
0p  that appears in Eq. (4), * *

0 outp p . Assuming that the azimuthal velocity 

component is zero ( * 0v  ) and the flow is axisymmetric (derivatives with respect to *  are zero), the

velocity vector in cylindrical coordinates is of the form * * * * * * *( , ) ( , )r ze er zv r z v r z v . In the flow of interest 

(see Fig. 1), the yielded and the unyielded regions are separated by the yield surface * * *( )r z  for 
* *0 z L   where * * *0 ( )z R  . For brevity, we will use the symbols * *(0)in   and * * *( )out L   

hereafter. 
The main idea in the method of Fusi et al. [5] is the use of the integral balance of linear momentum 

in the unyielded region  * * * * * * *( , , ) : [0, ], [0, ], [0,2 ]z r z L r        .which moves in the z-

direction as a solid, i.e. at a constant axial velocity *
cv . Therefore, in * : 

* * * * * * *and 0 for 0 ( )z c rv v v v r z       (5) 

Fusi et al. [5] showed that in the absence of body forces 

 
*

* * *

* * * * * *2 * *2 *

( )
0

2 ( ) 0
L

z zz rz in in out out
r z

p dz p p


     


       
   (6) 

where * * */z d dz  . 

The governing equations are rendered dimensionless by scaling *z  by *L , *r  and *  by *R , * *( )op p  by 
* * *
0 /L R , *

zv  by * * *
0 0/R  , *

rv  by * *2 * *
0 0/ ( )R L  , and the extra-stress components by *

 . With these scales, 
the continuity equation and the two components of the momentum equation become: 

( )1 0r zrv v

r r z

 
 

 
 (7) 

( )1z z rz zz
r z

v v rp
Re v v

r z z r r z

 
 

    
     

     
    (8) 

3 2r r rr rz rr
r z

v v p
Re v v

r z r r z r

   
   

      
      

     
(9) 

where 
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*

*

R

L
  (10) 

is the aspect ratio and 

* *2 *
0

*2
0

R
Re

 


  (11) 

is the Reynolds number. The components of the dimensionless rate-of-deformation tensor are as follows: 

2 , , 2 , 2r z r z r
rr rz zz

v v v v v

r r z z r
       

   
    

   
(12) 

As for the non-zero components of the stress tensor we get 

0, 1
, , , ,1 1 , 1

ij

ij ij

p

ij rr rz zzp
p p

  


    



   


  
     
 

(13) 

where 

* * * * * *

* *,a L L
a

R R

   
    (14) 

are the plastic-viscosity and yield-stress growth parameters, 

2 2 2 2
22 r z r z rv v v v v

r z r r z
  

           
            

            

(15) 

and 

 2 2 2 21
2 rr zz rz        (16) 

The above equations hold in the yielded domain {( , , ) :0 1, ( ) 1, 0 2 }D z r z z r          . The 
dimensionless form of Eq. (6) is  

 
1

2 2
( )

0

2 ( ) 0z zz rz in in out outr z
p dz p p


     


          (17) 

The system of Eqs. (7)-(9) and (17) is closed by appropriate boundary conditions. At the wall, no-slip and no-
penetration conditions are imposed, i.e. 

0 at 1, 0 1r zv v r z     (18) 

Along the yield surface, the unyielded constant core velocity is imposed: 

0, at ( ), 0 1r z cv v v r z z     (19) 

and all components of the rate-of-deformation tensor vanish: 

0 at  ( ), 0 1rr rz zz r z z           (20) 
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Regarding the total pressure, this is zero at the exit of the tube (z=1), and equal to the dimensionless pressure 
difference driving the flow at the tube entrance (z=0): 

( ,0) , ( ,1) 0p r P p r         (21) 

where * * * * *
0( ) / ( )in outP p p R L   . 

In this work, the zero-order solution is derived and therefore the small parameter ε is set to zero. From the r-
momentum equation it is deduced that the pressure depends only on z, i.e. ( )p p z , and so do the yield-stress 

y  and the viscosity  . Integrating the z-momentum equation with respect to r, demanding that 

(1 )rz y p        at the yield surface, and applying the no-slip boundary condition at the wall, we 
obtain the following expression for the axial velocity component: 
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Therefore, the constant velocity of the unyielded core is 
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As for the radial velocity component, this can be found by integration of the continuity equation with respect 
to r and applying the no-penetration boundary condition:  
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(24) 

For the volumetric flow rate Q it is easily found that 
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Equations (23) and (25) constitute a system of two equations, the first of which is algebraic and the second is a 
first-order ordinary differential equation. The unknowns are the shape of the yield surface ( )z  , the total 
pressure ( )p p z  and constants cv  and Q . Since, the ODE is of first order, only one boundary condition is 
required. Also, two additional auxiliary conditions are needed due to the presence of cv  and Q  in the equations 
in order to derive a unique solution. Hence, the accompanying auxiliary conditions are: 

1

0

(0) , (1) 0, 1 0
2
zp

p P p p dz


 
 

      
 

  (26) 

The above system of equations is solved using two different methods, an analytical technique and a numerical 
method, which are presented in the following section. 

3 METHODS OF SOLUTION 

Before proceeding with the general solution of the system of Eqs. (23), (25) and (26), recall that an analytical 
solution of the general flow (without the use of the lubrication approximation) exists when the two growth 
coefficients α and β are equal [4]. This is also the case with the lubrication-approximation solution derived 
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above. Indeed, for 0a   , we find that the radial velocity vanishes and thus the radius of the unyielded core 
is constant while ( )z zv v r . More specifically,  

2 32 ( 1) 1 1, ,
ln(1 ) 2 8 6 24c

a
v Q

a P

 


 


    

 
(27) 

while the pressure and the velocity are given by: 

1(1 ) 1 1, ( 1) 1 , 0
2

z

z r

a P r
p v r v
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 (28) 

Let us point out that the above solution is simply the first term of the Taylor expansion of the analytical solution 
derived by Ioannou and Georgiou [4] in terms of the aspect ratio  . The critical pressure gradient, 

cP , below 
which no flow occurs can be found from Eq. (27) as the pressure at which 1  : 

2 1a

c

e
P

a


   (29) 

For 0a   , the critical pressure difference is 2cP  . The above special solutions are the base state for 
the perturbation solution. Moreover, they are useful in testing the numerical method described below. 

We solve the system of (23), (25) and (26) using a pseudospectral method with Chebyshev orthogonal 
polynomials. The method is standard and details can be found in any textbook on spectral methods (see for 
instance the book of Hesthaven et al. [9]). Briefly, first we map the dimensionless physical domain [0,1]  into the 
computational domain [ 1,1]  by introducing a new independent variable y as 2 1 (1 ) / 2y z z y     . 
Then, the pressure and the shape of yield surface are represented as:  

0 0

ˆ ˆ( ) ( ), ( ) ( )
M M

k k k k

k k

p y p T y y T y 
 

     (30) 

where ˆ
kp  and ˆ

k  are the spectral coefficients of p  and  , respectively, M is the total number of coefficients, 

and 1( ) cos( cos ( ))kT y k y  are the Chebyshev polynomials. This representation generates 2M+2 unknowns 
which, along with cv  and Q , require 2M+4 equations. Since the governing equations are strongly non-linear, the 
computational domain is discretized in M+1 nodes and the discretized form of Eq. (23) at all nodes except from 
the first one, the discretized form of Eq. (25) at all nodes, and the three auxiliary conditions of  Eq. (26), provide 
2M+4 algebraic equations. This system of non-linear equations is solved using a Newton iterative scheme with an 
absolute convergence criterion 10-12. The values of M were chosen in the range between 8 and 14 (depending on 
the magnitude of the parameters); in all cases both p  and   were resolved down to machine accuracy. Before 
presenting the results, however, we also describe a perturbation method which allows the derivation of an 
asymptotic solution of the system of interest.  

In order to find an approximate analytical solution of the flow, a perturbation method is employed with the 
small parameter being the difference between the two growth paramters a   . Then all unknown variables 
are expanded in standard power series in terms of  : 

2
0 1 2 ... as 0,   where , , ,cp v Q              (31) 

The zero-order terms have been already derived above; these are given by Eqs. (27) and (28) for 0a   : 

0 0 0 0, , ,c cp p v v Q Q     (32) 

Substituting expressions (31) and (32) into Eqs. (23), (25) and (26), expanding all quantities suitably, and 
collecting all terms of the same powers in δ, results in sequence of perturbation problems. We solve analytically 
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the equations at ( )O   and 2( )O  . Hence, the asymptotic solution for all variables is found in series form with 
three terms: 

2
1 2, , , ,asym cp v Q           (33) 

However, the analytical solutions at first and second order in δ are too long to be given here. Thus, expressions 
(33) are mainly used to check and validate the numerical results. In fact, these approximate solutions can also be 
processed further using series-convergence acceleration techniques, such as Shanks’ non-linear transformation 
[10]. 

First, we verified the correctness of the pseudospectral method by comparing the numerical results with the 
analytical solution given by Eqs. (27) and (28). As a test-case we set 30P   and 0.1, 0.15a    and 0.2. 
In all cases, the calculated solutions with M=10 were accurate up to 10 significant digits. As a second test-case, 
we set 0.1a  , 0.15  , and 30P   to run the pseudospectral code and get the numerical results num ; 
both the pressure and the yield surface were resolved down to machine accuracy using only M=12 spectral 
coefficients. This indicates that for typical values of the dimensionless parameters the maximum accuracy for all 
variables is achieved with the pseudospectral code.   

4 RESULTS AND DISCUSSION 

In the previous section, the critical pressure difference cP  has been derived analytically for the special case 
where a  . Obtaining an analytical expression of cP  when a   is out of the question. This is thus 
determined either numerically or asymptotically.  Representative results are provided in Fig. 2.  It should be 
noted that in the range of the parameters for which the asymptotic series solution is physically admissible, the 
agreement between the asymptotic and numerical solutions is excellent. Figure 2a shows cP  versus the yield-
stress growth parameter β for various values of the plastic-viscosity growth parameter. In Figs. 2b and 2c, cP  is 
plotted versus α for various values of β. The growth parameters ,a   should be considered small, but in order to 
exaggerate the changes and the effects of the parameters, we also use ,a  values as large as unity. We observe 
that cP  increases monotonically with   for all values of α. This is expected, since the yield stress increases 
with   (recall that 0 p P   ). If now β is fixed, an increase in a  enhances the plastic viscosity of the fluid. 
Even though intuitively the critical pressure difference for a more viscous fluid is expected to be higher, this is 
not true at high values of  . For fixed values of β higher than 0.3, cP  decreases with a . The effect of a on 

cP  is more clearly illustrated seen in Figs. 2b and 2c, where results for low and high values of   are 
presented. In the former case (Fig. 2b), the dependence of cP  on a  is weak and cP  passes through a 
minimum. At higher values of   the variation of cP  with a  becomes more significant and the minimum is 
shifted farther to the right so that cP  appears to decrease monotonically in the range of interest. 

Finally, in Figure 3 we plotted the yield surfaces for various values of the applied pressure difference, 
starting from cP P    (which of course gives a uniform shape of the yield surface 1  ) and increasing P in 
order to obtain a yield surface as close as possible to the axis of the symmetry of the tube.  First, in Fig. 3a, the 
results are presented for 0a    for which 2cP  ; in this case  2 / P   =constant. In Fig. 3b, results 
are shown for 0.2, 0a   , i.e. for a fluid with constant yield stress, for which 2cP   too. Since   , 
the radius of the unyielded core is decreasing downstream. In Fig. 3c, the plastic viscosity is constant, i.e. 0a  , 
while the yield stress varies with the pressure with 0.2  ; these parameters give 2.48cP  . Since   , 
the radius of the unyielded core is increasing downstream. 
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Figure 2. Critical pressure difference for flow to occur: (a) effect of β for various values of α; (b) effect of α for 
low values of β; (c) effect of α for high values of β 
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Figure 3. The shape of the yield surface for various values of the imposed pressure difference P : (a) α=β=0; 
(b) α=0.2, β=0; (c) α=0, β=0.2 
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5 CONCLUSIONS 

The axisymmetric Poiseuille flow of a Bingham plastic with pressure dependent rheological parameters has 
been studied using the lubrication-approximation method of Fusi and Farina (2018), which has the advantage of 
predicting the correct shape of the yield surface at zero order. Both the plastic viscosity and the yield surface 
have been assumed to vary linearly with the pressure, thus attaining higher values upstream. The perturbation 
method leads to explicit expressions for the two velocity components in terms of the radius of the unyielded core 

( )z  and the pressure distribution ( )p z . These two variables are calculated by solving a system of a first-order 
ODE and an algebraic equation. This is solved both numerically using a pseudospectral method and by means of 
simple perturbation method which allows the derivation of some asymptotic results. It is also solved analytically 
for the special case where the yield-stress growth parameter   is equal to the plastic-viscosity growth parameter 
 . The effects of these two parameters on the critical pressure cP  required to drive the flow have been 
studied. While it increases monotonically with   for any value of  , cP  decreases with the plastic-viscosity 
growth coefficient   at least initially. When   is low, this reduction is weak and cP  passes  through a 
minimum, and then starts increasing with  ; for higher values of  , cP appears to decrease monotonically for 
the wide range of values considered and the initial reduction is more pronounced. It has also been demonstrated 
that the shape of the central unyielded core depends on the relative values of   and  . This is converging when 
  , diverging when   , and cylindrical when   .  

The method of Fusi and Farina (2018), exploited here in order to tackle steady-state viscoplastic flow in a 
cylindrical tube, is more general and can be applied to tubes of non-constant radius, e.g. converging or diverging 
tubes, or tubes with a stenosis, or even with oscillating walls. We are thus planning to extend the present work to 
flows more relevant to industrial applications.  
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Abstract. The pulsatile pressure driven fully-developed flow of a rarefied gas through a long circular tube is 

investigated, based on the time-dependent linear BGK equation, by decomposing the flow into its steady and 

oscillatory parts. As the oscillation frequency is increased the amplitude of all macroscopic quantities is 

decreased, while their phase lag with respect to the pressure gradient is increased reaching the limiting value of 

90
0
. As the gas becomes more rarefied higher frequencies are needed to trigger this behavior. The computation 

of the inertia and viscous forces in terms of the gas rarefaction and oscillation parameters, clarifies when the 

flow consists of only one oscillating viscous region or of two regions, namely the inviscid piston flow in the core 

and the oscillating Stokes layer at the wall with the velocity overshooting. The maximum value of the time 

average oscillatory pumping power is one half of the corresponding steady one. 

1 INTRODUCTION 

Time-dependent vacuum gas flows are strongly related to gas distribution systems of fusion reactors, 

consisting of channels with different lengths and cross sections. The flow in such pipe networks varies from the 

free molecular regime up to the hydrodynamic limit or in the whole range of the Knudsen number. Depending on 

the vacuum pumping system, the driving pumps and the operating conditions, phenomena related to oscillatory 

gas flow may produce enhanced counter flow of gas [1,2]. The detailed investigation of the pulsatile and 

oscillatory motion of gases in the whole range of the Knudsen number is important to avoid such harmful 

phenomena and to compute the associated energy losses.  

In the hydrodynamic (or viscous) regime, pulsatile and oscillatory pressure-driven fully-developed flows, 

through channels of various cross sections have received, over the years, considerable attention [3-6]. In the slip, 

transition and free molecular regimes however, where in addition to the oscillation frequency, the level of gas 

rarefaction plays a significant role in the flow properties and patterns, the corresponding work in rarefied 

pulsatile gas flows is very limited. In the slip regime, the oscillatory flow in rectangular channels has been solved 

in [7], based on the unsteady Stokes equation subject to slip boundary conditions. Of course, continuum-based 

models are valid provided that both the mean free path and time are much smaller than the characteristic channel 

size and the pressure gradient oscillation time respectively. Therefore, in the transition and free molecular 

regimes the flow must be modeled by kinetic theory based on the Boltzmann equation or reliable kinetic model 

equations [8]. 

In this framework, very recently, the rarefied oscillatory flow in a cylindrical tube has been simulated, based 

on the linearized BGK equation, with the assumption of small oscillatory pressure gradient amplitude [9]. Here, 

the analysis is extended to pulsatile flows in circular tubes and computational results are provided for the flow 

rate, the wall shear stress and the pumping power as well as for the acting inertia and viscous forces. 

2 FLOW CONFIGURATION AND DEFINITION OF MACROSCOPIC QUANTITIES 

Consider the time-dependent isothermal flow of a monatomic rarefied gas through an infinite long circular 

tube of radius R . The flow is caused by a pulsatile pressure gradient that consists of a constant part that does not 

vary in time and that produces a steady flow forward, plus an oscillatory part, with the oscillation frequency  , 

that moves the fluid back and forth and that produces zero net flow over each cycle [9]. 

The main flow quantities of the pulsatile flow are introduced first in dimensional and then, in dimensionless 

form. The local pulsatile pressure gradient depends on the flow direction z  and time t . It may be written as  
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ˆ ˆ, ,
cos exp

PUL S S SdP t z dP z dP z t dP z dP z dP z dP z
t i t

dz dz dz dz dz dz dz
 

        
               

 (1) 

where ˆ /PULdP dz , /SdP dz  and ˆ /dP dz  refer to the pulsatile, steady and oscillatory pressure gradients,

  /dP z dz   is the amplitude of the oscillating pressure gradient, while  denotes the real part of a complex 

expression, with 1i   . It is evident that the time average over one period of the pressure gradient of the 

oscillatory flow is zero, while of the pulsatile flow is different than zero and equal to the steady pressure gradient. 

Due to the linearity of Eq. (1), the steady and oscillatory parts of the pulsatile fully-developed flow can be solved 

independently of each other. This is a useful breakdown, because the steady part of the flow has already been 

solved in [8] and therefore, only the oscillatory part remains for investigation.  

The pulsatile pressure gradient generates a gas flow in the z direction, which is characterized by its 

pulsatile velocity and shear stress distributions given by  

           ˆ ˆ, , expPUL S SU t r U r U t r U r U r i t              (2) 

           ˆ ˆ, , expPUL S SΠ t r Π r Π t r Π r Π r i t              , (3) 

respectively. The superscript ^ always denotes time-dependent quantities. The complex functions  U r  and

 Π r  completely determine the oscillatory pressure driven flow. Integrating the velocity over the cross section

the mean velocity and wall shear stress are defined: 

       
1ˆ ˆ ˆ, expPUL PUL S S

A

U t U t r dA U U t U U i t
A





              (4) 

       , , ,
ˆ ˆ ˆ, expPUL W PUL S W W S W WΠ t Π t r d Π Π t Π Π i t



              (5) 

The quantities with the subscript “S” always denote the steady part, while U  and WΠ  are complex and related to 

the oscillatory part. 

Furthermore, the pulsatile mass flow rate is defined as 

         ˆ ˆ, , expPUL PUL S S

A

M t t z U t r dA M M t M M i t 



                 (6) 

where SM  and  M t  denote the steady and oscillatory mass flow rates, while the mass density  ,t z   

varies in time and in the axial direction (it is constant at each cross section) and it is defined by the equation of 

state once the operating pressure and temperature are specified.  

Next, based on the mean velocity and wall shear stress, the inertia (or acceleration)  ˆ
IF t   and viscous 

 ˆ
VF t   forces acting on a fluid volume A dz   passing through the channel are given by 

 
   

 ,

ˆ ˆ
ˆ ˆPUL
PUL I I

U t U t
F t dz A dz A F t

t t
 

  
         

  
(7) 

and 

      , , ,
ˆ ˆ ˆ
PUL V S V V S W WF t F F t dz Π Π t            .  (8) 

As expected the inertia force is related only to the oscillatory part, while the viscous force has both steady and 

oscillatory parts. At any point in time, the driving pressure force 
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     , ,
ˆ ˆ ˆ
PUL P S P P SF t F F t A dP A dP t           (9) 

must equal the net sum of the viscous and inertia forces that may add or subtract from each other at different 

times within the oscillatory cycle. Then, the following steady and oscillatory force balances are formed: 

Steady: ,S S WA dP dz Π    (10) 

Oscillatory:  
 

 
ˆ

ˆ ˆ
W

U t
A dP t dz A dz Π t

t



        


(11) 

It is noted that due to the fully-developed flow there is no net momentum flux. 

Finally, the pumping power needed to drive the pulsatile flow is defined as    ˆ ˆ
PUL SE t E E t      , where the 

steady the oscillatory pumping powers are given by the product of the corresponding acting pressure forces times 

the mean velocities written as S S SE A dP U   and 

         ˆ ˆ cos expE t A dP t U t A dP t U i t               (12) 

respectively. Since the oscillatory part  Ê t   does not produce any net flow forward and since the steady part

SE  is the same as that in steady flow, any power expenditure on the oscillatory part of the flow reduces the 

efficiency of the flow. It is noted that the integral of the oscillatory pumping power over one cycle is nonzero, 

hence oscillatory flow requires energy to maintain even the net flow is zero. 

The parameters which define the problem in dimensional form include the gas properties, the operating 

pressure and temperature, the channel geometry and the oscillation frequency. They are significantly reduced by 

introducing the corresponding quantities in dimensionless form, allowing in parallel, a more detailed flow 

investigation.  

The two dimensionless flow parameters defining the present pulsatile flow are specified [9]. The first one is 

the gas rarefaction parameter   and it is given by 
PR




 , where   is the gas viscosity at some reference 

temperature T  and 2 gR T   is the most probable molecular speed ( gR  is the gas constant). The rarefaction 

parameter is proportional to the inverse Knudsen number. The second one is the frequency parameter   and it is 

given by 
P




 , where  /P   is the intermolecular collision frequency and   the oscillation frequency.

Hence, small and large values of   correspond to high and low pressure gradient oscillation respectively. As 

  , the oscillatory part of the flow diminishes. When both 1   and 1  , the flow is in the

hydrodynamic or slip regimes. 

Also, the dimensionless independent space and time variables /r r R , /z z R  and t t  , are 

introduced. The dimensionless area and perimeter of the tube cross section are defined by 
2/A A R  and 

/ R    respectively, while / 2A  . The dimensionless amplitude of the oscillatory pressure gradient is 

 

 

 

 1dP z dP zR
X

P z dz P z dz


 

 
,  (13) 

with 1X  . This assumption is typical in fully-developed flows (also in steady-state setups), in order to permit 

the linearization of the governing kinetic equation and it is valid for any pressure difference provided that the 

channel is adequately long [8,9]. For comparison purposes between the oscillatory and steady flow, the amplitude 

of the oscillatory pressure gradient is taken equal to the steady one ( / /SdP dz dP dz  ). In this way, SX X , 

and the peak values of the macroscopic quantities (velocity, flow rate, shear stress, and pumping power) of the 

oscillatory flow can be compared with the corresponding ones of the steady flow. 

All velocities (pulsatile, oscillatory and steady) are non-dimensionalized by the most probable speed  . More 

specifically, Eq. (2) is divided by  X  to yield
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     ˆ ˆ, ,PUL Su t r u r u t r  (14) 

where  Su r  is the steady flow velocity and  ˆ ,u t r  is the oscillatory flow velocity, which may be written as

               ˆ , exp exp cosA P A Pu t r u r it u r i u r t u r t u r             
(15) 

In Eq. (15) the subscripts A  and P  denote the amplitude and the phase of the complex oscillatory velocity 

 u r . The mean velocities are also non-dimensionalized by the most probable speed   and the resulting mean

steady and oscillatory velocities are denoted by Su  and  û t  respectively.

Next, the dimensionless flow rate is defined by introducing (14) and (15) along with the equation of state 

2 / 2P   into Eq. (6) to obtain    2 ˆ /PUL PULM t R PXG t   , where    ˆ ˆ
PUL SG t G G t  . Here, SG  is the 

well-known steady flow rate [8],  Ĝ t  is the oscillatory flow rate and they are given by

 

1

0

4S SG u r rdr     and    

1

0

ˆ ˆ4 ,G t u t r rdr  . (16) 

The oscillatory flow rate  Ĝ t  may be also written as

        ˆ exp exp cosA P A PG t G it G i G t G G t             (17)

where the flow rate G , as well its amplitude AG  and phase PG , may be computed by integrating accordingly the 

corresponding velocity quantities. It is readily seen that the dimensionless flow rates may be connected to the 

dimensionless mean velocities by the following expressions: 2S SG u  and    ˆ ˆ2G t u t .

All stresses (pulsatile, oscillatory and steady) are non-dimensionalized by the reference pressure P . More 

specifically, Eq. (3) is divided by  2PX  to yield

           ˆ ˆ, , cosPUL S S A Pt r r t r r r t r            , (18) 

where  S r  is the steady shear stress and  ˆ ,t r  is the oscillatory shear stress. In Eq. (18) the subscripts A

and P  denote the amplitude and the phase of the corresponding oscillatory complex shear stresses. The pulsatile 

wall shear stress is obtained for 1r  . 

All forces in Eqs. (7-9) are divided by  2
PPX R  to yield the corresponding dimensionless ones: 

     ,

ˆ
ˆ ˆ sinPUL I I A P

dG
F t F t dzA dzA G G t

dt

 

 
    (19) 

       , , , , , ,
ˆ ˆ ˆ2 2 cosPUL V S V V S W W S W W A W PF t F F t dz t dz t                 

(20) 

     , ,
ˆ ˆ 1 cosPUL P S P PF t F F t Adz t    (21) 

The balance equations of the dimensionless steady , ,S V S PF F and oscillatory      ˆ ˆ ˆ
I V PF t F t F t   forces are: 

Steady: , 1/ 4S W   (22) 

Oscillatory:    , ,sin 4 cos cosA P W A W PG G t t t


 


    (23) 

Equation (22) has been also reported in previous works related to steady fully-developed flows [10,11]. Equation 
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(23) is the corresponding one for oscillatory flow. The first and second terms at the left hand side refer to the 

inertia and viscous forces respectively, while the right hand side refers to the pressure forces. 

Finally, the dimensionless pumping power is derived by dividing Eq. (12) by    2X XP R  to find

   ˆ ˆ
PUL SE t E E t  , where the steady pumping power is / 2S SE AdzG  and the oscillatory one is written as 

        
1 1 1ˆ cos cos exp cos cos
2 2 2

A P A PE t Adz tG t Adz t G i G t AdzG t G t       (24) 

By integrating Eq. (34) over one oscillation cycle, the average pumping power over the cycle is formed as 

   

2

0

1 1ˆ cos
2 4

A PE E t dt AdzG G




  . (25) 

In the low frequency regime, where 0PG   and A SG G , it is seen that the average oscillatory pumping power 

is half of the corresponding steady one ( / 2SE E ). 

The prescribed pulsatile flow is solved here in the whole range of   and  , which may vary from zero to 

infinity. The solution is based on the kinetic modeling described in the next section. 

3 KINETIC FORMULATION 

For arbitrary values of the parameters   and   the flow must be simulated based on kinetic theory, where 

the main unknown is the distribution function  , ,f f t  r ξ , which is a function of time t , position vector

 , ,x y z   r  and molecular velocity vector  , ,x y z  ξ . The unknown distribution obeys the time-

dependent nonlinear two-dimensional BGK equation [12] 

 M
r z

f f f f P
f f

t r r z


 

 

   
    
      

(26) 

where  /P   is the collision frequency and

     
3/2

2
ˆ, , exp 2

2

M
PUL

m
f t n m kT

kT

             
r ξ ξ U (27) 

is the local Maxwellian distribution. Due to the assumption of isothermal fully-developed flow the temperature 

T  is constant and the number density  n n z  varies only in the z direction. Also, the macroscopic velocity

has only the z  component and it is the same with the pulsatile velocity defined in Eq. (2), i.e., 

 ˆ ˆ0,0,PUL PULUU . The pulsatile velocity  ˆ ,PULU t r   and shear stress  ˆ ,PULΠ t r   (defined in Eq. (3)) at 

some position z  in the flow direction may be obtained by the first and second moments of f : 

   
1ˆ , , ,PUL zU t r f t d
n

     r ξ ξ    and        ˆ ˆ, , ,PUL r z PULΠ t r m U f t d      r ξ ξ  (28) 

The condition of small local pressure gradient ( 1X ) allows the linearization of Eq. (26) by representing

the unknown distribution function as 

     0
ˆ, , 1 , , expPULf t f Xh t r Xz it      

 
r ξ c , (29) 

where /c ξ , 
2

0 3/2 3
exp

n
f c

 
  
 

is the absolute Maxwellian and  ˆ , , ,PULh t x y c  is the unknown 

perturbed distribution function referring to the pulsatile fully-developed flow, which may be decomposed as 
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     ˆ ˆ, , , , ,PUL Sh t r h r h t r c c c (30) 

with  ˆ ,Sh r c  and  ˆ , ,h t r c  referring to the steady and oscillatory parts respectively. Substituting expressions

(29) and (30) into Eq. (26) and introducing the dimensionless variables, yields the following two linearized BGK 

kinetic model equations: 

   2 ,S S
r z S S

ch h
c c u r h r

r r






 
     

c (31) 

   
ˆ ˆ ˆ

ˆˆ2 , , ,it
r z z

ch h h
c c e c u t r h t r

t r r




 

  
     
   

c  (32) 

where cosrc    and sinc   . The first one describes the steady fully-developed flow through a circular 

tube and it is solved in [10]. The second one describes the oscillatory fully-developed flow and it is the one to be 

solved in the present work. However, since it is also solved in [9], the non-dimensionalization and the 

linearization are omitted here and only the final kinetic equation is given as  

sin 1
cos

2

Y Y
i Y u

r r

  
   

 

   
     

   
. (33) 

The complex velocity and shear stress are given by the moments of Y  as 

 
2

2

0 0

1
u r Ye d d



   




      and      
2

2

0 0

1
cosr Ye d d



     




   . (34) 

Turning to the boundary conditions it is noted that purely diffuse scattering is assumed at the wall, i.e., 
M

wf f  , where the superscript    denotes particles departing from the wall and 
M

wf  is the Maxwellian

distribution defined by the wall conditions. Based on the above and following the linearization and projection 

procedures in [9] it is deduced that the wall boundary ( 1r  ) is given by 

 1, , 0Y    , / 2 3 / 2    . (35) 

At the symmetry axis ( 0r  ), molecules are reflected specularly, i.e., 

   0, , 0, ,Y Y      , 0 / 2   , 3 / 2 2    . (36) 

The kinetic formulation of the oscillatory fully-developed flow setup is properly defined by Eqs. (33-36). The 

numerical solution is deterministic and it has been extensively applied in steady-state and time-dependent flow 

configurations with considerable success [8,13,14].  

4 RESULTS AND DISCUSSION 

In Fig. 1 the oscillatory flow rate    ˆ cosA PG t G t G  and the pulsatile one    ˆ ˆ
PUL SG t G G t   are 

plotted versus time  0,2t   for  0.1,1,10   and  0.1,1,10  . The oscillatory flow rate over one cycle,

takes both positive and negative values (the fluid is moved forth and back) and the time average flow rate over 

one cycle is zero (no net flow). The amplitude of the oscillatory flow rate is reduced as   is decreased and this 

behavior becomes even stronger as   is increased (less gas rarefaction). The time evolution of the pulsatile flow 

rate is obtained by superimposing on the oscillatory flow rate the corresponding steady one, which depends only 

on  . Since the steady flow is independent of   the behavior of the pulsatile flow rate with respect to   is 

qualitatively the same with the oscillatory one. Consequently, at large   (e.g., 10  ), where the amplitude of 

the oscillatory flow rate is large, the difference between the amplitude of the pulsatile flow rate and the 

corresponding steady one is also large. On the contrary, as the oscillatory flow tends to diminish, which is 

happening as   is decreased and   is increased, the pulsatile flow rate gradually tends to the steady one at the 

corresponding  . This is particularly evident at 0.1   and 10  , where  ˆ
PUL SG t G . It is also noted that 
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the pulsatile flow rate takes only positive values, i.e., there is no flow reversal at any time. This observation may 

be technologically significant in applications where a pulsatile flow is desired, e.g. in order to enhance mixing or 

heat transfer under rarefied conditions, without however having particles moving opposite to the pumping 

direction or hot gas transported backwards into colder regions. 

Figure 1: Oscillatory Ĝ and pulsatile ˆ
PULG  flow rates over one oscillation period for various values of   and  . 

In Fig. 2, the oscillatory mean wall shear stress amplitude  , ,W A    and phase  , ,W P    are plotted in 

terms of   with 
20.1,1,10,50,10  

  . For very small values of   the mean wall shear stress amplitude ,W A

takes the same value as the corresponding steady one , 0.25S W  . As   is increased it is slightly reduced and 

then, from some   in the late transition or slip regimes it is rapidly decreased. The value of   where this rapid 

decrease of ,W A  is starting depends on   and it is increasing as   is decreasing. Thus, the variation of ,W A

depends monotonically on   and does not include the local maxima observed in the variation of AG  that has 

been reported in [9]. With regard to the phase difference, ,W P  is always monotonically increased with   and it 

is almost independent of the oscillation frequency  . At very small values of   it is almost zero, then at 

moderate values of   it is rapidly increased and finally, at large values of   it is asymptotically increased 

reaching the limiting value of / 2 . The dependency of the oscillatory wall shear stress Ŵ  on   and   is very

close to the corresponding one of the flow rate Ĝ  shown in Fig. 1 and therefore, it is omitted here. 

Figure 2: Oscillatory wall shear stress amplitude ,W A  and phase ,W P  in terms of   for various values of  . 

Next in Fig. 3, the oscillatory pumping power, defined as    ˆ / cos cos / 2A PE Adz G G t t   (see Eq. (24)),

is plotted in terms of  0,2t   for  0.1,1,10   and
20.1,1,10,10  

 
. The pumping power has two peaks 

within each oscillatory cycle because it consists of the product of the oscillatory pressure times the oscillatory 

flow. Its integral over one cycle is not zero in order to drive the oscillatory flow, although the oscillatory net flow 

is zero. The dependency of the oscillatory pumping power on   and   is similar to the one observed for the 

flow rate, i.e. in general, as   is decreased (the oscillation frequency is increased) its amplitude is decreased and 

its phase lag is increased. This behavior becomes more dominant as   is increased. 

82



A. Tsimpoukis and D. Valougeorgis 

As pointed above, even when the flow is reversed, which is occurring at the second half of the oscillation 

cycle at time  / 2,t    where the flow rate is negative, the pumping power remains positive. It is seen

however, in Fig. 3 that at certain times  0,2t  , the oscillatory pumping power may become negative. This is

more evident at large   and small   and it is occurring because in dense gases and at relatively high frequencies 

the flow rate is completely out of phase with the pressure gradient (it becomes proportional to a sinusoidal 

function). Thus, when the pressure gradient becomes negative and the flow is reversed, the sign of the flow rate 

remains positive for a certain time interval and during this interval the overall pumping power becomes negative. 

This time interval is increased as   is decreased. Of course in rarefied gases and/or low frequencies Ê  is always 

positive because the flow rate is in phase with the pressure gradient. 

Figure 3: Oscillatory pumping power Ê  over one oscillation period for various values of   and   (pumping 

power is divided by Adz ). 

Finally, in Fig. 4, the oscillatory inertia, ˆ
IF , viscous ˆ

VF  and pressure ˆ
PF  forces are plotted over one 

oscillation period  0,2t   for  0.1,1,10   and  0.1,1,10  . In all cases the force balance equation (23) is

satisfied. The inertia forces refer to the core flow and the viscous forces refer to the Stokes layer. The phase 

difference between these two forces is always / 2 . In the cases of  0.1   ,  1    and  10  

the viscous and inertia forces lag and lead the corresponding pressure force respectively by a phase angle of 

/ 4 . The amplitudes of the two forces are about the same. Then, in the cases of  10, 1,0.1    and

 1, 0.1   , the inertia forces almost coincide with the corresponding pressure forces, while the viscous

forces lag the other two forces by almost / 2  and their amplitudes are close to zero. The flow consists of two 

regions: the core region oscillating in a plug mode and, adjacent to the wall, the oscillating thin viscous or Stokes 

layer with the velocity overshooting. In the cases of  1, 10    and  0.1, 1,10    this behavior is

reversed, i.e., the viscous coincide with pressure forces, while the inertia forces lead by almost / 2  and their 

amplitudes are close to zero. The flow consists of one oscillating region with no velocity overshooting. This 

description clarifies the behavior of the inertia and viscous forces in terms of   and  . 

5 CONCLUDING REMARKS 

The pulsatile isothermal fully-developed flow in a circular tube is investigated by decomposing the flow into 

the steady and oscillatory parts. The steady part is well-known and therefore, the investigation is focused mainly 

on the oscillatory part, which is numerically solved, based on the time-dependent linear BGK equation, in a wide 

range of the gas rarefaction parameter   and the oscillation parameter  . 

Always as   is decreased (i.e., the oscillation frequency is increased) the amplitude of all macroscopic 

quantities is decreased and their phase lag with respect to the pressure gradient is increased. Actually, at very 

small   the amplitude tends to diminish and the phase lag approaches the limiting value of / 2 . It is important 

to note however, that as   is decreased (i.e., the gas becomes more rarefied) higher frequencies are needed to 

trigger the behavior described above. The amplitude of the oscillatory pressure gradient is taken to be equal with 

the steady pressure gradient. Having this in mind it is useful to note that the pulsatile flow rate is always positive 

and therefore, there is no flow reversal. Furthermore, the amplitude of the wall shear stress is increased with   

being always smaller than the corresponding steady ones. In terms of   the wall shear stress amplitude remains 

almost constant in the free molecular and transition regimes and then it is rapidly reduced. The phase lag of the 

wall shear stress is increased as   is increased.  
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Figure 4: Oscillatory inertia ˆ
IF , viscous ˆ

VF  and pressure ˆ
PF  forces over one oscillation period for various 

values of   and   (forces are divided by Adz ). 

The oscillatory pumping power has two peaks within each oscillatory cycle and its integral over one cycle is 

not zero. The nonzero pumping power is needed to maintain the oscillatory flow, even though the oscillatory net 

flow is zero and it is increased as the oscillation frequency is reduced. By adding the oscillatory pumping power 

to the steady one, yields the total power to maintain the pulsatile flow. 

Finally, the inertia and viscous forces, having always a phase difference of / 2 , are computed in a wide 

range of   and  . Their amplitudes are about the same when   . As   is increased and   is decreased the 

inertia forces dominate causing a core oscillating plug flow with a thin Stokes layer. In the opposite situation 

(i.e., as   is decreased and   is increased) the viscous forces become more important causing a typical viscous 

oscillatory flow without velocity overshooting. 
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Abstract. A robust optimization scheme for the aerodynamic design of diffuser augmented wind turbine (DAWT) 

blades is presented in this study, using an asynchronous, parallel, meta-model assisted differential evolution (DE) 

algorithm, along with an in-house computational code, that is based on the well-known Blade Element Momentum 

(BEM) theory and serves as the evaluator. The parallelization of the DE algorithm is performed using the Message 

Passing Interface (MPI) library functions, while it is realized by means of an asynchronous approach, aiming to 

maximize the parallel efficiency. Additionally, further acceleration is achieved through the combination of the DE 

with a Multilayer Perceptron (MLP) and a Radial-Basis Function (RBF) Artificial Neural Networks (ANNs), which 

serve as surrogate models and work as an ensemble. Direct learning is used for the training of each RBF network 

and the back-propagation algorithm is applied to determine the synaptic weights of the MLP network, through an 

iterative supervised training procedure. Finally, the proposed methodology is applied to the design of improved 

rotor blades for a real-world DAWT application, demonstrating its ability to produce effective blades that enhance 

significantly the aerodynamic performance of the rotor. 

1 INTRODUCTION 

In recent years, the wind power sector has become one of the fastest growing industries and the most substantial 
provider of renewable and sustainable energy [1]. However, the unpredictable nature of the wind and its relatively 
dilute energy content are significant barriers to the wider application of wind turbines technology, considering that 
these factors increase the uncertainty on the power output estimations and the cost of energy production. Therefore, 
in quest of improving the economics of wind energy harvesting, notable efforts have been made to develop efficient 
wind concentrators, that is, configurations capable of increasing the energy density of the wind and, thus, 
enhancing the power output of wind turbines [2, 3]. 

The diffuser augmented wind turbine (DAWT) is considered to be such an innovative wind energy conversion 
system, that involves the addition of a static diffuser around the rotor, as a means to control the expansion of the 
wake and create a region of high subatmospheric pressure at the diffuser exit; a phenomenon that eventually results 
in augmenting the mass flow rate passing through the turbine. Consequently, this promising wind energy harvester 
has the ability to yield power performance coefficients well in excess of the Betz limit and, thus, extract additional 
power from the wind compared with a conventional bare wind turbine with the same rotor diameter [4–7]. Besides, 
the shrouding of the rotor blades also provides lower sensitivity to turbulence and better resistance to fatigue, while 
reduces the fluctuating blade loads, the tip losses and the emitted noise levels [2]. 

In this work, a versatile optimization methodology for the efficient design of diffuser augmented wind turbine 
blades is demonstrated, using a parallel and meta-model assisted Differential Evolution (DE) algorithm, along with 
an in-house Blade Element Momentum (BEM) code, to serve for the performance analysis of each candidate blade 
design. The optimization is conducted on a multi-processor platform, while the parallelization is realized by means 
of an asynchronous approach, applying a Master-Slave model, to overcome the synchronization barrier at the end 
of each generation, maximize the parallel efficiency and eventually decrease the overall computational time.  

2 THE BLADE ELEMENT MOMENTUM (BEM) MODEL 

The BEM theory is considered to be the current standard for assessing the rotor performance in turbine design 
applications, because it is able to obtain remarkably accurate results for a wide range of operating conditions, in a 
very short period of time [8, 9]. The method relies on the combination of the blade element and one-dimensional 
momentum theories, in order to estimate the distribution of the axial and tangential velocities over the rotor plane, 
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which in turn define the local flow conditions and the forces exerted on the blades. However, the classical BEM 
theory is unable to account for the diffuser’s effect on the calculation of the axial and tangential induction factors. 
For this reason, several studies have been carried out, aiming to modify the momentum part of the classical BEM 
theory and, thus, make it applicable to the performance analysis of DAWT rotors as well [2, 10–12]. Herein, such 
an in-house computational BEM code is utilized for the evaluation of each candidate blade design, which has been 
developed based on the extended BEM model proposed by Rio Vaz et al. [11]. In this section, the main points of 
the particular model are highlighted, while a detailed description can be found in [11, 13]. 

Let us consider an elementary control volume, in the shape of an annular streamtube (Figure 1). The thrust 𝑑𝑇 
and torque 𝑑𝑀 exerted on the examined streamtube can result from the application of the integral momentum and 
moment of momentum equations on the examined control volume, under the assumption that the rotational velocity 
upstream of the rotor is equal to zero and denoting as 𝑢𝜃 the rotational velocity in the wake [11] 

𝑑𝑇 = 4𝜌𝜋𝑟 𝑑𝑟 𝑎𝑎(1 − 𝑎𝑎 )𝑉0
2, (1) 

𝑑𝑀 = 2𝜌𝑎𝑡𝑉12𝜔𝑟2𝑑𝐴 = 2𝜋𝑟2𝜌𝑉1𝑢𝜃 𝑑𝑟, (2) 
where 𝑉0 is the velocity of the wind far upstream, 𝑉1 is the axial component of velocity at the rotor plane, 𝑎𝑎 is the 
axial induction factor, 𝑎𝑡 = 𝑢𝜃/(2𝜔𝑟) is the tangential induction factor and 𝑑𝐴 = 2𝜋𝑟 𝑑𝑟 is the cross-sectional 
area of the control volume at the rotor plane. 

Figure 1. The control volume used for the derivation of the modified 1D momentum theory (left) and the induced 
velocities on the rotor plane (right). 

The power output augmentation achieved by a DAWT is mainly attributed to the high subatmospheric pressure 
created at the diffuser exit, which results in an increased velocity and mass flow rate at the rotor plane. The velocity 
speed-up ratio 𝛾 for the unloaded diffuser configuration (without the presence of a turbine rotor) is defined as the 
ratio of the axial velocity of the flow at the rotor plane to the freestream velocity. Thus, the flow velocity at the 
rotor, is given by 

𝑉1 = 𝑉2 = 𝑢 = 𝛾(1 − 𝑎𝑎 )𝑉0, (3) 

while the speed-up ratio 𝜀 for the DAWT configuration, can be expressed as a function of 𝛾 as 

𝜀 = 𝑉1/𝑉0 = 𝛾(1 − 𝑎𝑎). (4) 

According to BEM theory, each blade is divided spanwise into 𝑁 elements of length 𝑑𝑟; it is assumed that each 
blade element acts independently of the surrounding ones and operates aerodynamically as a 2D airfoil section. 
The relative velocity 𝑉𝑟𝑒𝑙  seen by a blade section is a combination of the induced axial velocity 𝛾(1 − 𝑎𝑎  )𝑉0 and 
the induced tangential velocity (1 + 𝑎𝑡)𝜔𝑟 at the rotor plane, as illustrated in Figure 1, where 𝜃 is the twist angle 
of the section, i.e. the angle between the chord 𝑐 and the plane of rotation, and 𝜑 is the angle between the plane of 
rotation and the direction of the relative velocity 𝑉𝑟𝑒𝑙 . Therefore, the local angle of attack 𝛼 is given by 

𝛼 = 𝜑 − 𝜃. (5) 

In addition, by observing Figure 1, the expression connecting the local inflow angle 𝜑 with the axial and tangential 
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induction factors can be extracted as 

𝜑 = 𝑡𝑎𝑛−1  (𝛾
(1 − 𝑎𝑎  )𝑉𝑜

(1 + 𝑎𝑡)𝜔𝑟
). (6) 

During this analysis, the interest lies only on the forces exerted normal and tangential to the rotor plane. Thus, by 
projecting the lift and drag forces in these directions, the normal 𝐹𝑛 and tangential 𝐹𝑡 forces on the examined airfoil 
section are formed as follows 

𝐹𝑛 = 𝐿 𝑐𝑜𝑠(𝜑) + 𝐷 𝑠𝑖𝑛(𝜑), (7) 

𝐹𝑡 = 𝐿 𝑠𝑖𝑛(𝜑) − 𝐷 𝑐𝑜𝑠(𝜑). (8) 
The normal and tangential forces can be expressed in dimensionless form, by introducing the normal and tangential 
force coefficients 

𝐶𝑛 = 𝐹𝑛/(0.5𝜌𝑉𝑟𝑒𝑙
2 𝑐), (9) 

𝐶𝑡 = 𝐹𝑡/(0.5𝜌𝑉𝑟𝑒𝑙
2 𝑐). (10) 

The elementary thrust and torque on the annular streamtube swept by the examined blade element, considering 
that 𝐹𝑛 and 𝐹𝑡 are forces per length and denoting the number of the rotor’s blades as 𝐵, are calculated as follows 

𝑑𝑇 = 𝐵𝐹𝑛 𝑑𝑟, (11) 

𝑑𝑀 = 𝑟𝐵𝐹𝑡  𝑑𝑟. (12) 
So, by taking into consideration equations (13) and (14), which connect the freestream velocity, the relative 
velocity, the inflow angle, the induction factors and the velocity speed-up ratio for the unloaded diffuser case, 

𝑉𝑟𝑒𝑙𝑠𝑖𝑛(𝜑) = 𝛾𝑉𝑜(1 − 𝑎𝑎), (13) 

𝑉𝑟𝑒𝑙𝑐𝑜𝑠(𝜑) = 𝜔𝑟(1 + 𝑎𝑡), (14) 
equations (11) and (12) can be rearranged as 

𝑑𝑇 =
1

2
𝜌𝛣

𝛾2𝑉𝑜
2(1 − 𝑎𝑎)2

sin2(𝜑)
𝑐𝐶𝑛𝑑𝑟, (15) 

𝑑𝑀 =
1

2
𝜌𝛣

𝛾𝑉𝑜(1 − 𝑎𝑎)𝜔𝑟(1 + 𝑎𝑡)

sin(𝜑) cos(𝜑)
 𝑐𝐶𝑡  𝑟𝑑𝑟. (16) 

Therefore, the expressions providing the axial and tangential induction factors for the case of a DAWT rotor can 
be obtained by equating equations (1) and (15) for 𝑑𝑇, as well as equations (2) and (16) for 𝑑𝑀, given that the 
rotor solidity 𝜎 is defined as 𝜎 = 𝛣𝑐/(2𝜋𝑟).  

𝑎𝑎 = 1 [(4sin2(𝜑)) (𝛾2𝜎𝐶𝑛)⁄ + 1]⁄  (17) 

𝑎𝑡 = 1 [(4 sin(𝜑) cos(𝜑)) (𝜎𝐶𝑡)⁄ − 1]⁄  (18) 
By observing the expressions providing the axial and tangential induction factors, it is evident that the presence of 
the diffuser is incorporated within the BEM model, by using only the velocity speed-up ratio 𝛾 at the rotor plane 
of the unloaded diffuser, while the calculation of the induction factors for each blade element can be achieved by 
following the typical iterative process [14]. Finally, the particular BEM code is further enhanced by the addition 
of tip/hub losses and Reynolds number correction models, along with the Glauert’s correction model with Buhl’s 
modification [15], specially adapted for the analysis of DAWT rotors [13]. 

3 THE ASYNCHRONOUS DIFFERENTIAL EVOLUTION ALGORITHM 

3.1 Basic Features 

Evolutionary algorithms (EAs) imitate nature’s selection process using a population-based search mechanism, 
to deal with demanding high-dimensional real-world optimization problems. They are a class of heuristic methods 
with low sensitivity to local minima treatment and they provide efficient balance between exploitation of the best 
solutions and exploration of the search space. Additionally, as they combine features of directed and stochastic 
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search, they are more robust than directed search methods. In this work a Differential Evolution (DE) algorithm is 
utilized within the proposed optimization framework, which is a versatile parallel stochastic search method, 
introduced by Storn and Price [16], capable of handling non-differentiable, nonlinear and multimodal cost 
functions, providing superior convergence performance than other EAs.  

Below, a brief description of the basic features of a classic DE algorithm is presented. Given a cost function 

𝑓(𝑿) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), (19) 

where 𝑿 is a vector (chromosome) that contains the 𝑛 design variables, the objective of the optimization problem 
lies on the minimization of this cost function through the adjustment of the values of the design variables, with 
respect to the prescribed upper and lower bounds for each one of them. Differential Evolution evolves a fixed-size 
population of 𝑁𝑝 chromosomes for a finite number of generations 𝐺𝑚𝑎𝑥. The initialization of the first population 
is established by randomly assigning values to the parameters within the given boundaries of the design variables. 

After the evaluation of each individual’s cost function, operators are applied to the population, simulating the 
according natural processes. Initially, the mutation operator is applied, which generates a new chromosome, based 
on three randomly selected individuals of the current generation 𝐺. The formation of the new parameter vector is 
realized by adding a weighted difference vector between the two members of the triad to the third one, the so-
called “donor”. Then, the uniform crossover scheme is applied; the mutant and the chromosome of the current 
population are subjected to a discrete recombination which produces the final candidate solution. 

𝑥′𝑘,𝑖
𝐺+1 = {

𝑥𝐶𝑘,𝑖
𝐺 + 𝐹(𝑥𝐴𝑘,𝑖

𝐺 − 𝑥𝐵𝑘 ,𝑖
𝐺 )     𝑖𝑓 (𝑟 ≤ 𝐶𝑟 𝑜𝑟 𝑖 = 𝑖∗)

𝑥𝑘,𝑖
𝐺  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (20) 

where 𝑥𝐶𝑘,𝑖
𝐺  are the elements of the “donor” vector, 𝐺 is the current generation and 𝑖∗ is a randomly selected integer 

within [1, 𝑛], chosen once for all members of the population. The random number 𝑟 is seeded for every gene of 
each chromosome, whereas the parameters 𝐹 and 𝐶𝑟 control the mutation and crossover operations, respectively. 
Specifically, the scale factor 𝐹 controls the diversification rate of the population, while the crossover probability 
𝐶𝑟 controls the fraction of design values that are inherited from the mutant. Moreover, the design variable, which 
corresponds to the randomly selected index, 𝑖∗, is taken from the mutant to ensure that the trial vector does not 
duplicate the initial one. Subsequently, each member of the resulting intermediate population is evaluated and 
competes against its counterpart in the current population; the best fitted individuals are the ones that will form 
the next generation. The DE selection scheme ensures the survival of the elitists and can be described (for a 
minimization problem) as follows: 

𝑿𝑘
𝐺+1 = {

𝑿𝑘
′𝐺+1 𝑖𝑓  𝑓(𝑿𝑘

′𝐺+1) ≤ 𝑓(𝑿𝑘
𝐺)

𝑿𝑘
𝐺  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (21) 

The process is successively repeated, providing populations with better fitted individuals. 

3.2 Surrogate Models 

In each DE generation, each trial vector (offspring) must be first evaluated and then compared with its parent, 
so as to select the better-fitted between them to pass to the next generation. The concept of utilizing surrogate 
models in this evaluation procedure is to replace the, generally, costly exact evaluations with fast inexact 
approximations. Each offspring is pre-evaluated, using the available surrogate models, in a fast screening 
procedure. If an offspring is pre-evaluated and found lower-fitted than its parent, then no further exact evaluation 
is taking place and the current vector (parent) is transferred to the next generation, while the offspring is 
abandoned. On the contrary, if the offspring is pre-evaluated as better-fitted than its parent, an exact re-evaluation 
is performed after the pre-evaluation, along with a second comparison between the two vectors. If the offspring is 
found again better-fitted than its parent, then the offspring passes to the next generation. Otherwise, its parent will 
pass to the next generation and the offspring is abandoned. 

An additional small percentage (5%-10%) of the candidate solutions are selected with uniform probability to 
be exactly evaluated, without taking into account their pre-evaluation by the utilized surrogate models, in order to 
further enhance the robustness of the procedure. Moreover, in the first two generations of the DE, all trial vectors 
are exactly evaluated, so as to initialize the central data base required for the training and testing of the surrogate 
models. As it was previously described, only exactly-evaluated candidate solutions have the opportunity to pass 
to the new generation. Therefore, the current population always comprises individuals that have been selected 
using exact evaluation. The surrogate models predictions replace exact evaluations only for the less-promising 
individuals, using the pre-evaluation procedure to quickly reject them, without spending valuable resources. Each 
evaluated chromosome, along with its resulted fitness, are stored in the central database. The training and testing 
data sets are selected in each generation from the corresponding database to be used by all available surrogate 
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models. If 𝑁𝑅 is the length of the training set and 𝑁𝑇 is the length of the testing set, the 𝑁𝑅 + 𝑁𝑇 best members 
of the central database are deterministically selected in each generation and, from this set, 𝑁𝑅 members are 
randomly selected to be used as the training set, the rest 𝑁𝑇 being used for testing. In this way, the surrogate 
models, which are re-trained and re-tested in each generation, evolve with the population and use only the currently 
most-promising individuals for approximating the cost function.  

The utilized surrogate models can be used either independently or as an ensemble. In the first case a single 
surrogate is used throughout the whole optimization procedure, while in the second case in each generation all 
surrogates are re-trained and re-tested (using the same training and testing data sets for all surrogates) and then 
only the best one is used in the pre-evaluation phase of the trial vectors. The selected surrogate (different in each 
generation) is the one with the lower value of the testing error. In the current work, the DE algorithm is combined 
with a Multilayer Perceptron (MLP) and a Radial-Basis Function (RBF) Artificial Neural Networks (ANNs), 
working as an ensemble [17, 18]. The number of hidden units in each one of the two hidden layers of the MLP 
network is twice the number of the design variables. For the RBF networks the number of centers (𝑀) is set equal 
to 2/3 of the number of training data (𝑁𝑅). Direct learning is used for the training of each RBF network, based on 
a matrix formulation of its governing equations. The presentation of the network with the 𝑁𝑅 input (training) 
patterns allows for the formulation of a (𝑁𝑅 𝑥 𝑀) matrix, which is inverted through the Gram-Schmidt technique, 
providing the 𝑀 values of the connection weights to the single output unit of the network (which are the only 
adjustable parameters of the RBF network). The back-propagation algorithm is used to determine the synaptic 
weights of the MLP network, through an iterative supervised training procedure [17, 18]. The main phases of the 
current optimization procedure are presented as a flow chart in Figure 2. 

Figure 2. Flowchart with the main phases of the optimization framework. 

3.3 Parallel Implementation 

The concept behind the developed parallelization strategy is to enable the cooperation of the DE with different 
simulation software in the form of executables. The required data transfer between the DE and the simulation 
software is succeeded with appropriate text files, while the communication among the processors and the parallel 
implementation is achieved using MPI (Message Passing Interface) library functions. The proposed strategy 
appears to be quite efficient, regardless the use of text files, considering that the computational time of data transfer 
is negligible compared to the one of the evaluation step. The population members are distributed a priori among 
the available processors and each processor is in charge for the evaluation of one individual. Next, a unique rank 
is assigned to each processor, while one of them is identified as the master node that keeps track of the whole 
procedure. This node performs all the pre-process that is required prior to the beginning of the optimization 

90



Stavros N. Leloudas, Giorgos A. Strofylas and Ioannis K. Nikolos 
procedure, which includes the creation of a working folder for each processor where the executables comprising 
the evaluation step and their corresponding text files are replicated. Furthermore, the master node distributes all 
the necessary information concerning the DE algorithm to all other processors, i.e., the number of the design 
variables, their upper and lower bounds and the control parameters for the DE algorithm. After the completion of 
the initialization step, the main procedure begins; each processor is generating a random individual within the 
specified bounds for each gene of the chromosome and evaluates it. Next, the fitness values of the candidate 
solutions and their corresponding chromosomes are broadcasted to all processors, to update their databases with 
the new population members. Each processor evolves separately one chromosome, and the new resulting one is 
stored in its corresponding working folder. All the operations needed (mutation, crossover and selection) for the 
evolution process, are implemented after the evaluation step of each generation on each node separately for its 
assigned chromosome. Nevertheless, the auxiliary evaluations of the surrogate models are performed only by the 
master node for all chromosomes. According to the prescribed procedure, a Boolean array is filled, indicating if 
the new trial vector is better fitted than its parent and should be exactly evaluated. Subsequently, all selected 
candidates are exactly evaluated, while, for the rest, the fitness values and trial vectors are explicitly broadcasted 
by the master node to their corresponding processors for the consistency of the procedure. The optimization process 
is terminated when a prescribed number of generations is reached. 

In the asynchronous implementation of the DE algorithm the generation is not strictly defined and the current 
population (at each time instant) can comprise individuals belonging to actually different “generations”. Each 
newly generated trial vector (offspring) can replace its parent (if better fitted) and become a member of the current 
population just after the completion of its evaluation process, without waiting for the completion of the evaluation 
phases of the rest members of the auxiliary population. Therefore, individuals evolve independently, without full 
coordination between generations. As a result, asynchronous update has the clear advantage that the improved 
solutions can contribute to the evolution immediately, and can speed up the convergence to become faster than the 
corresponding synchronous update. 

4 TWIST AND CHORD OPTIMIZATION OF DAWT BLADES 

The previously described optimization methodology was applied for the design of improved rotor blades for 
the DAWT of Donqui Urban Windmills [19]. The actual diffuser geometry, shown in Figure 3, was designed by 
the National Aerospace Laboratory (NLR) in the form of a circular NACA 2207 airfoil, with an exit-area-ratio (i.e., 
the ratio of the diffuser exit area to the rotor swept area) equal to 1.728 and an exit plane diameter equal to 2 m, 
while the diffuser is further equipped with a 0.04 m high Gurney flap. The velocity speed-up distribution over the 
rotor plane for the unloaded diffuser case is shown in Figure 3, as it was measured by van Dorst [20] and 
numerically approximated by Kesby et al. [12] through CFD simulations. Furthermore, the original blade for the 
3-bladed rotor with a diameter equal to 1.5 m was also designed by NLR, utilizing the NACA 2207 profile along 
the entire blade span. A 3D representation of the original blade is illustrated in Figure 8.  

Figure 3. The Donqui Urban Windmills diffuser geometry [19] and the velocity speed-up distribution over the 
rotor plane, for the unloaded diffuser. 

In this study, two distinct blade geometries are produced through a twist and chord optimization procedure, for 
the 3-bladed rotor of the Donqui Urban Windmills DAWT, as alternatives to the original blade configuration; for 
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the first optimized blade, denoted as BD1, the NACA 2207 is employed for the entire span (similarly to the original 
blade), while for the second blade design, denoted as BD2, the RG15 airfoil is proposed, which is a low Reynolds 
number airfoil with a maximum thickness of 8.92% located at 30.2% of the chord and a maximum camber of 1.8% 
located at 39.7% of the chord. The lift and drag coefficients for the particular airfoil profiles (inputs to the BEM 
code) were calculated with XFOIL software [21] at 600,000 Reynolds, which is the diffuser Reynolds number 
[19]; subsequently, they were extrapolated to the full 360° range of angles of attack, applying the Montgomerie’s 
360° extrapolation method [22].  

4.1 Parameterization, Constraints and Cost Function 

The parameterization of the twist and chord distributions is realized by utilizing two 2nd degree B-Spline curves 
with 5 control points, permitting the movement of each control point only in the y-direction. Therefore, the number 
of design variables for each one of the encountered optimization cases is 10, corresponding to 𝑦 coordinates of the 
B-Spline curves used to represent the twist and chord distributions. As long as the design objective is concerned, 
it is defined as the maximization of the rotor power output for a range of ambient wind speeds between 5 m/s and 
8 m/s, using an increment of 1 m/s. Hence, considering that the current DE algorithm is designed to deal with 
minimization problems, the objective function is formed as follows 

𝑓 = 1800 − (𝑃5 + 𝑃6 + 𝑃7 + 𝑃8) (21) 

where 𝑃𝑘 is the aerodynamic power output of the rotor for the operational point corresponding to k m/s. 
In this optimization study only explicit constraints are employed, which are formed by the acceptable bounds 

of the considered design variables. The extraction of the particular ranges was based on a trial and error basis, in 
order to achieve upper and lower bounds that do not restrict or magnify inefficiently the search space and 
simultaneously do not permit undesirable twist and chord distributions to be created. Specifically, the bounds for 
the design variables corresponding to the chord B-Spline curve were set in such a way so the optimal chord 
distribution to result in a blade geometry as rigid as the current one; while regarding the bounds for the design 
variables corresponding to the twist B-Spline curve, they were set in such a way so the optimal twist distribution 
to be as smooth as possible, resulting in a less complicated geometry. 

4.2 Optimization Results 

The optimization of both blade configurations was carried out on a DELLTM R815 PowerEdgeTM server, with 
four AMD OpteronTM 6380 sixteen-core processors at 2.50 GHz (64 cores in total). The population size of the DE 
was set to 60, while the algorithm was executed for a total of 2000 “generations”. The overall elapsed computation 
time for the optimization of BD1 and BD2 blades was equal to 25.11 and 24.16 minutes respectively. 

The twist and chord distributions of the optimized blade designs BD1 and BD2, along with the twist and chord 
distributions of the original blade are presented through Figures 4 - 6. It is evident that the optimization procedure 
resulted in blade designs that differ significantly from the original blade, with a much smother and less complicated 
twist distribution; a fact that makes them quite attractive from a manufacturing point of view, as simpler geometries 
are easier to be constructed. As long as the comparison between the twist and chord distribution of BD1 and BD2 
is concerned, no significant variation is observed, as shown in Figure 6. This is mainly attributed to the similarity 
between the lift and drag coefficient curves of the NACA 2207 and RG15 airfoils. However, since the RG15 airfoil 
has a maximum thickness that is 27.4 % larger than the maximum thickness of the NACA 2207, the corresponding 
BD2 blade is expected to provide better structural features. 

The aerodynamic performance of the 3-bladed DAWT rotor under investigation is presented in Figure 7. As it 
can be observed, the utilization of BD1 and BD2, instead of the original blade geometry, results in a visible 
improvement of the aerodynamic power output for all the considered operational points. In particular, the BD1 
leads to a mean increase of the aerodynamic power of the rotor of approximately 18.2 %, while the corresponding 
percentage for BD2 is 19.4 %. Furthermore, Figure 7 demonstrates the ability of the employed BEM code to 
approximate the experimental results for the original blade [20] with high accuracy.  

At this point, it should be highlighted that the optimization of both BD1 and BD2 was conducted by including 
the correction model proposed by Prandtl to account for the blade tip losses, based on the findings of Phillips [2], 
who noticed that tip losses exist on DAWT blades as well, despite the relatively close proximity of the blades tips 
to the diffuser wall; a similar conclusion was also drawn by Kesby et al. [12]. Nevertheless, the inclusion of such 
a correction model during the BEM analysis of a DAWT rotor may result in an underestimation of the total power 
output, as the presence of the shroud around the rotor blades produces a noticeable reduction of the particular 
losses, compared to a bare wind turbine. For this reason, the aerodynamic performance of the examined DAWT 
rotor for BD1 and BD2 optimized blades without the application of a tip losses correction model, is also presented 
in Figure 7. The 3D drawings of the optimized and original blade designs are presented in Figure 8. 
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Figure 4. Twist and chord distributions of the optimized blade BD1. 

Figure 5. Twist and chord distributions of the optimized blade BD2. 

Figure 6. Comparison between the twist and chord distributions of the optimized blades BD1 and BD2. 
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Figure 7. The increased power output of the rotor, utilizing the optimized blade geometries BD1 and BD2. 

Figure 8. 3D drawings of the original blade (left), optimized blade BD1 (center) and optimized blade BD2 
(right). 

5 CONCLUSIONS 

In this work, a robust optimization scheme for the aerodynamic design of DAWT blades was presented, using 
an asynchronous parallel, meta-model assisted DE algorithm, along with an in-house BEM code, specially tailored 
for the performance analysis of DAWT rotors. The proposed methodology was applied to the design of improved 
blades for the rotor of Donqui Urban Windmills DAWT, resulting in two new blade geometries, capable of notably 
increasing the power output performance of the particular application. The first optimized blade (BD1) uses the 
same airfoil (NACA 2207) as the original (reference) blade of the DAWT, while the second optimized blade (BD2) 
uses the RG15 airfoil. The resulted optimal twist and chord distributions for the two optimized blades are very 
similar to each other, as a consequence of the common cost function used for both design optimization runs.  

ACKNOWLEDGEMENTS 

This research has been financially supported by the General Secretariat for Research and Technology (GSRT) 
and the Hellenic Foundation for Research and Innovation (HFRI) (Scholarship Code: 624). 

50

100

150

200

250

300

350

400

450

500

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

A
er

o
d

y
n

am
ic

 P
o

w
er

 -
[W

at
t]

Freestream Velocity - [m/s]

Original Blade - Experimental

Original Blade - BEM Model With Tip-Losses

BD1 - BEM Model Without Tip-Losses

BD1 - BEM Model With Tip-Losses

50

100

150

200

250

300

350

400

450

500

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

A
er

o
d

y
n

am
ic

 P
o

w
er

 -
[W

at
t]

Freestream Velocity - [m/s]

Original Blade - Experimental

Original Blade - BEM Model With Tip-Losses

BD2 - BEM Model Without Tip-Losses

BD2 - BEM Model With Tip-Losses

94



Stavros N. Leloudas, Giorgos A. Strofylas and Ioannis K. Nikolos 
REFERENCES 

[1] Hjort, S. and Larsen, H. (2015), “Rotor Design for Diffuser Augmented Wind Turbines,” Energies, Vol. 8, No. 
10, pp. 10736–10774. 

[2] Phillips, D. G. (2003), An Investigation on Diffuser Augmented Wind Turbine Design, Ph.D. Thesis, University 
of Auckland. 

[3] Shonhiwa, C. and Makaka, G. (2016), “Concentrator Augmented Wind Turbines: A Review,” Renewable and

Sustainable Energy Reviews, Vol. 59, pp. 1415–1418. 

[4] Lilley, G. M. and Rainbird, W. J. (1956), A Preliminary Report on the Design and Performance of Ducted

Windmills, The College of Aeronautics, Cranfield University, Report No. 102. 

[5] Igra, O. (1977), “The Shrouded Aerogenerator,” Energy, Vol. 2, No. 4, pp. 429–439. 
[6] Gilbert, B. L., Oman, R. A. and Foreman, K. M. (1978), “Fluid Dynamics of Diffuser-Augmented Wind 

Turbines,” Journal of Energy, Vol. 2, No. 6, pp. 368-374. 

[7] Hansen, M. O. L., Sørensen, N. N. and Flay, R. G. J. (2000), “Effect of Placing a Diffuser around a Wind 
Turbine,” Wind Energy, Vol. 3, No. 4, pp. 207–213. 

[8] Refan, M. and Hangan, H. (2012), “Aerodynamic Performance of a Small Horizontal Axis Wind Turbine,” 
Journal of Solar Energy Engineering, Vol. 134, No. 2. 

[9] Liu, S. and Janajreh, I. (2012), “Development and Application of an Improved Blade Element Momentum 
Method Model on Horizontal Axis Wind Turbines,” International Journal of Energy and Environmental

Engineering, Vol. 3, No. 1, p. 30. 

[10] Fletcher, C. A. J. (1981), “Computational Analysis of Diffuser-Augmented Wind Turbines,” Energy

Conversion and Management, Vol. 21, No. 3, pp. 175–183. 

[11] Tavares Dias do Rio Vaz, D. A., Amarante Mesquita, A. L., Pinheiro Vaz, J. R., Cavalcante Blanco, C. J. and 
Pinho, J. T. (2014), “An Extension of the Blade Element Momentum Method Applied to Diffuser Augmented 
Wind Turbines,” Energy Conversion and Management, Vol. 87, pp. 1116–1123. 

[12] Kesby, J. E., Bradney, D. R. and Clausen, P. D. (2016), “Determining Diffuser Augmented Wind Turbine 
Performance Using a Combined CFD/BEM Method,” Journal of Physics: Conference Series, Vol. 753, No. 8, 
p. 082033.

[13] Leloudas, S. N., Lygidakis, G. N. and Nikolos, I. K. (2017), “Assessment of a Modified Blade Element 
Momentum Methodology for Diffuser Augmented Wind Turbines,” Proceedings of the ASME 2017

International Mechanical Engineering Congress and Exposition, Tampa, Florida, USA, November 3–9, 2017, 
Vol. 7, V007T09A079. 

[14] Hansen, M. O. L. (2007), Aerodynamics of Wind Turbines, Earthscan. 

[15] Buhl, M. L. (2005), A New Empirical Relationship between Thrust Coefficient and Induction Factor for the

Turbulent Windmill State, Technical Report NREL/TP-500-36834, National Renewable Energy Laboratory. 

[16] Storn, R. and Price, K., (1995), “Differential Evolution: A Simple and Efficient Adaptive Scheme for Global 
Optimization Over Continuous Spaces,” Journal of Global Optimization, Vol. 23, No. 1. 

[17] Nikolos, I. K. (2011), “Surrogate Modeling in Evolutionary Based Engineering Design Optimization,” 
Tsompanakis, Y. and Topping, B.H.V. (Eds.), Computational Science, Engineering & Technology Series, 
Stirlingshire, UK, pp. 173–203. 

[18] Nikolos, I. K. (2013), “On the Use of Multiple Surrogates within a Differential Evolution Procedure for High-
Lift Airfoil Design,” International Journal of Advanced Intelligence Paradigms, Vol. 5, No. 4, pp. 319–341. 

[19] ten Hoopen, P. D. C. (2009), An Experimental and Computational Investigation of a Diffuser Augmented

Wind Turbine, M.Sc. Thesis, Faculty of Aerospace Engineering, Delft University of Technology. 

[20] van Dorst, F. A. (2011), An Improved Rotor Design for Diffuser Augmented Wind Turbine, M.Sc. Thesis, 
Faculty of Aerospace Engineering, Delft University of Technology. 

[21] Drela, M. (1989), “XFoil: An Analysis and Design System for Low Reynolds Number Airfoils,” Conference

on Low Reynolds Number Airfoil Aerodynamics, University of Notre Dame. 

[22] Montgomerie, B. (2004), Methods for Root Effects, Tip Effects and Extending the Angle of Attack Range to

+-100deg, with Application to Aerodynamics for Blades on Wind Turbines and Propellers, FOI Swedish 
Defence Research Agency, Scientific Report FOI-R-1035-SE.

95



9th GRACM International Congress on Computational Mechanics 
Chania, 4-6 June 2018 

RAREFIED GAS FLOW ANALYSIS OVER A RE-ENTRY SPACE CAPSULE 
GEOMETRY 

Angelos G. Klothakis1, Stavros N. Leloudas2, Georgios N. Lygidakis3 and Ioannis K. Nikolos4

1,2,3,4School of Production Engineering and Management 
Technical University of Crete 

Chania, GR-73100, Greece 

e-mail: 1anklothakis@isc.tuc.gr, 2sleloudas@isc.tuc.gr, 3glygidakis@isc.tuc.gr, 4jnikolo@dpem.tuc.gr 

Keywords: Rarefied gas flow, supersonic flow, re-entry space capsule, node-centered finite-volume, three-
dimensional grid. 

Abstract. During the past years significant efforts have been applied for the effective and computationally efficient 

prediction of rarefied gas flows, especially for aerospace applications. Such flows appear to be considerably 

different from those at the continuum regime, making Navier-Stokes equations to fail against the corresponding 

phenomena without further modification. In this work, a modified in-house academic CFD (Computational Fluid 

Dynamics) solver, named Galatea, is presented and assessed. For fluids in slip flow regime, i.e., with Knudsen 

number greater than 0.01, the no-slip condition is no longer valid on solid wall surfaces, hence, velocity slip and 

temperature jump boundary conditions have been incorporated to the aforementioned solver. For its assessment 

rarefied laminar gas flow (inside the slip flow regime) is simulated over a re-entry space capsule geometry, i.e., 

the blunt portion of a spaceship returning to Earth after a spaceflight. Due to unavailability of corresponding 

experimental or numerical data, the extracted results are compared with those derived by the parallel open-source 

kernel SPARTA, which is based on the DSMC (Direct Simulation Monte Carlo) approach. A very satisfactory 

agreement is succeeded, demonstrating the proposed modified solver’s potential to predict effectively such 

complex flows. 

1 INTRODUCTION 

During the past decades a considerable effort has been exerted by various researchers to develop methodologies 
capable to accurately simulate high-velocity rarefied gas flows, e.g., over aerospace geometries [1-3]. 
Nevertheless, such flows appear to be significantly different compared to those at the continuum regime. As a 
result, the Navier-Stokes PDEs (Partial Differential Equations), used at macroscale CFD (Computational Fluid 
Dynamics) solvers, seem to fail when simulating similar phenomena without further adaptions and modifications 
[1]. In practice the rarefied gas flows are categorized depending on the computed Knudsen number, a classification 
originally introduced by Schaaf and Chambre [4]; for Knudsen numbers less than 1.0E-2 (continuum regime) the 
Navier-Stokes PDEs are valid without any additional modification, allowing ordinary CFD solvers to be employed. 
However, for values between 1.0E-2 and 1.0E-1 (slip flow regime) special treatment of wall boundary conditions 
is required; velocity slip conditions as well as temperature jump ones have to be applied (as in this work) [1]. If 
the simulation is coping with Knudsen numbers greater than 1.0E-1 (transition regime and free molecular regime), 
the rarefaction effects become the sovereign ones necessitating for alternative methodologies, i.e., the DSMC 
(Direct Simulation Monte Carlo) approach [5] or the numerical solution of the Boltzmann Equation [6]. 

Although the latter methods can actually be employed throughout all the regimes [1, 6], their implementation 
at continuum and slip flow regimes calls for excessive computational resources. Thus, Navier-Stokes approaches 
are usually preferred at those regimes. In particular for the latter regime, regarding actually rarefied gas flows and 
consequently the implementation of velocity slip and temperature jump conditions, various studies have been 
conducted during the past years (similarly to this work) examining various geometries, two- or three-dimensional 
computational fields, structured or unstructured grids, etc. [7-12]. Although the main concept of these conditions 
was proposed initially by Navier [1], the first corresponding mathematical model was introduced by Maxwell in 
1879 [13]. According to this, velocity and temperature of solid wall nodes are defined with the normal to this 
surface gradients [3]. Since then, it made its way, whereas it was enhanced with various modifications, such as 
second-order spatial accuracy [14-16] or iterative schemes assuring solution convergence [17]. 

Despite the development of the aforementioned boundary conditions (slip velocity and temperature jump ones), 
allowing CFD solvers to extend their applications at slip flow regime, the latter appear to be inadequate to predict 
flows with larger values of Knudsen number (greater than 1.0E-1) [1]. It is this observation along with the 
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excessive computational requirements of methodologies depending on the Boltzmann equation that created the 
need for the development of the DSMC (Direct Simulation Monte Carlo) approach, originally introduced by Bird 
[5]. Initially, it hadn’t been widely accepted by the scientific community, mainly because of its statistical-stochastic 
nature; thus, its implementation was confined in relatively simple simulations [5]. Gradually, its applications were 
extended in more complicated engineering problems, demonstrating its capability for accurate flow predictions 
[18]. Similarly to most of the computational methods, a trade-off relation arises between the desired accuracy and 
the available computational resources. DSMC approach calls for relatively excessive computational requirements 
in test cases involving high pressure and large-scale computational fields; a remedy for this drawback was revealed 
with the advance of the available computer systems and subsequently the capability of parallel processing [18, 19]. 

In this work the in-house academic CFD solver Galatea, which has been recently enhanced to simulate rarefied 
gas flows inside the slip flow regime (Knudsen number between 1.0E-2 and 1.0E-1), is presented in brief and 
assessed against a re-entry space capsule test case [20, 21]. For rarefied gases the capability of implementing the 
aforementioned slip velocity and temperature jump boundary conditions [1] on solid wall surfaces has been 
incorporated. In order to increase the accuracy at the same regions, the second-order accurate slip scheme of 
Beskok and Karniadakis [14, 15] has been additionally included. It was selected due to its relatively easy 
implementation on unstructured, tetrahedral or hybrid grids; it can overcome the numerical difficulties, entailed 
by the evaluation of the second derivative of slip velocity [14]. Furthermore, a normalization scheme [17] has been 
incorporated to mitigate the excessive oscillations, caused by the slip/jump boundary conditions, especially during 
the initial steps of the iterative solution procedure. The proposed solver is validated against rarefied laminar gas 
flow (inside the slip flow regime) over a re-entry space capsule geometry, i.e., the blunt portion of a spaceship 
returning to Earth after a spaceflight. Due to unavailability of corresponding experimental or numerical data, the 
obtained results are compared with those extracted by the parallel open-source kernel SPARTA [18], a DSMC-
based software [18, 19]. A very good agreement is succeeded, demonstrating the modified proposed solver’s 
potential to predict effectively such demanding flows over complex geometries. 

2 THE CFD APPROACH 

2.1 The Galatea code 

The in-house academic CFD code Galatea is based on the dimensionless Navier-Stokes PDEs along with a 
node-centered finite-volume scheme to predict inviscid, viscous laminar, and viscous turbulent flows of 
compressible fluids on tetrahedral or hybrid unstructured grids (including tetrahedral, prismatic and pyramidical 
elements) [20, 21]. For turbulence prediction the RANS (Reynolds Averaged Navier-Stokes) approach is 
implemented along with an appropriate statistical two-equation model, namely the k-ε [22], the k-ω [23] or the 
SST (Shear Stress Transport) [24]. An upwind methodology is followed for the computation of the inviscid fluxes, 
applying the Roe’s [25] or the HLLC (Harten-Lax-van Leer-Contact) approximate Riemann solver [26], coupled 
with a higher-order accurate spatial scheme; the latter is based on the MUSCL (Monotone Upwind Scheme for 
Conservation Laws) approach along with an appropriate slope limiter, namely the Van Albada-Van Leer, the Min-
mod, the Barth-Jespersen and the MLP-Venkatakrishnan (Multi-dimensional Limiting Process-Venkatakrishnan) 
one [20, 21]. For the calculation of the viscous fluxes the required velocity and temperature gradients are evaluated 
with an element-based (edge-dual volume) or a nodal-averaging method. Time integration and iterative 
approximation of the final steady-state solution is succeeded with either an explicit scheme, applying a second-
order temporal accurate four-stage Runge-Kutta (RK(4)) method, or an implicit one, implementing the Jacobi or 
the Gauss-Seidel algorithm [20]. To accelerate the solution procedure and reduce the required physical time, 
appropriate methodologies have been incorporated; an edge-based data structure, a local time-stepping technique, 
a SPMD (Single Program-Multiple Data) parallelization strategy and an agglomeration multigrid scheme. Further 
details for the Galatea solver can be found in [20] and [21]. 

2.2 Velocity slip and temperature jump boundary conditions 

No-slip conditions on solid wall surfaces appear to fail in the slip flow regime, necessitating for velocity slip 
and temperature jump ones to be imposed instead [1]. According to this methodology (Maxwell’s model), the 
values of velocity and temperature on wall boundaries are defined with the corresponding normal to the boundary 
surface gradients [13]. A schematic representation of the aforementioned slip velocity boundary conditions, 
compared with the no-slip ones, is illustrated in Figure 1. The corresponding model is defined for the dimensionless 
slip velocity 𝑈𝑠 as follows [1, 13, 14] 

𝑈𝑠 − 𝑈𝑤 =
2 − 𝜎𝑢

𝜎𝑢

𝐾𝑛
𝜕𝑈𝑠

𝜕𝑛
+

3

2𝜋

(𝛾 − 1)

𝛾

𝐾𝑛2𝑅𝑒

𝐸𝑐

𝜕𝑇

𝜕𝑠
(1) 
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where 𝑈𝑤  denotes the velocity on the wall surface, 𝐾𝑛 the Knudsen number, and 𝜕𝑈𝑠

𝜕𝑛
 the transverse velocity 

gradient, i.e., the derivative of the tangential slip velocity normal to the wall surface (denoted by vector 𝑛) [11]. 
σu is the tangential momentum accommodation coefficient (equal to unity in this study) [11, 12, 27]. The second 
RHS term, which is based on the values of the dimensionless Reynolds (𝑅𝑒) and Eckert (𝐸𝑐) numbers, the ideal 
gas constant 𝛾 and the tangential to the wall surface derivative of the temperature, represents the slip velocity 
contribution induced by the thermal creep. It is usually relatively small, because of the second-order in Knudsen 
number as well as due to the fact that in common engineering problems there is a small temperature change across 
the wall surfaces; therefore, it is quite common tactic to neglect it (as in this study) [14]. 

Figure 1. No slip and velocity slip boundary conditions. 

Similarly to the velocity slip boundary condition, the temperature jump one is described as follows [14] 

𝑇𝑠 − 𝑇𝑤 =
2 − 𝜎𝑇

𝜎𝑇

2𝛾

𝛾 + 1

𝐾𝑛

𝑃𝑟

𝜕𝑇

𝜕𝑛
(2) 

where 𝑇𝑠 is the slip temperature, 𝑇𝑤 the wall temperature and 𝜕𝑇

𝜕𝑛
 the derivative of the temperature normal to the 

wall surface. 𝑃𝑟 stands for the dimensionless Prandtl number, whereas 𝜎𝑇 for the thermal or energy 
accommodation coefficient, depending on the surface quality [14]. The latter is assumed equal to unity in this 
study [12, 27]. Improved accuracy of the final steady-state solution at the solid wall region is succeeded with the 
second-order accurate scheme of Beskok and Karniadakis [14]. It appears to overcome the numerical difficulties, 
entailed by most of the corresponding higher-order schemes, via the reconstruction of the first RHS term of 
Equation (1) with a Taylor expansion series [16]; not a straightforward procedure when complex three-dimensional 
geometries are used along with unstructured hybrid grids. Its formulation is defined as 

𝑈𝑠 − 𝑈𝑤 =
2 − 𝜎𝑢

𝜎𝑢

𝐾𝑛

(1 − 𝑏𝐾𝑛)

𝜕𝑈𝑠

𝜕𝑛
(3) 

where 𝑏 is the slip coefficient, which can be defined either experimentally or via methodologies depending on the 
Boltzmann equation or the DSMC approach [14]. It was set equal to -1.0 for the simulations encountered in this 
study [14]. 

Due to the wall function mode (Dirichlet-type) of the aforementioned boundary conditions, they are susceptible 
of leading to residual oscillations, especially during the initial iterations, or of leading the solution procedure even 
to fail. Thus, a normalization scheme was additionally incorporated, to allow for the gradual change of the solid 
wall nodal velocity and temperature values [17]. It is described as follows [17] 

𝑈𝑠
𝑖 = 𝛼𝑈𝑠

𝑖−1 + (1 − 𝛼)𝑈𝑠
𝑖 (4) 

where 𝛼 is the normalization coefficient, which it is set equal to 0.95 in this study. 

3 THE DSMC APPROACH 

The DSMC method, a stochastic particle-type methodology, was originally developed by Graeme Bird [5] in 
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1960. Its implementation is based on the assumption of a large number of particles, the so-called simulator 
particles, which represent actually the real gas particles, and consequently allow for the simulation of rarefied gas 
flows [5]. The main idea considers the division of the examined computational field in Cartesian cells to provide 
the geometric boundaries and volumes, required to sample the macroscopic properties of the flow from the 
aforementioned simulator particles taking previously into account their movements and collisions [5]. 
Summarizing, the DSMC iterative algorithm can be decomposed in the four following steps: 1) The particles move 
to their new positions using a time step. 2) At each computational cell the simulator particles are assigned a new 
index. 3) The collision pairs are selected and the corresponding intermolecular collisions are performed in a 
probabilistic manner. 4) The required macroscopic flow properties, such as velocity and temperature, are obtained 
by averaging temporally (for several time steps) the microscopic properties of the particles in the cells [5]. Figure 
2 includes the flow chart of the aforementioned iterative scheme. 

Figure 2. DSMC algorithm flow chart. 

Due to the unavailability of experimental or numerical data for the examined space capsule geometry, the 
results obtained by the modified Galatea solver were compared with those, extracted by the parallel open-source 
DSMC kernel SPARTA [18]. The aforementioned software was developed at Sandia Laboratories approximately 
in 2014, while it was distributed then as an open source code under the terms of the GPL license. It should be 
highlighted that, though being very robust and effective, it is a highly demanding software, as it requires a thorough 
understanding of the DSMC modeling [18, 19]. 

4 NUMERICAL RESULTS 

4.1 The re-entry space capsule geometry 

The proposed solver was validated against a re-entry space capsule geometry, i.e., a spherical blunt cone, 
standing for the blunt portion of a spaceship returning to Earth after a spaceflight. It resembles the REV (Robotic 
Enhanced Vehicle) of the DART (Delft Aerospace Reentry Test) demonstrator program [28]. This program began 
at Delft University of Technology approximately in 2001, aiming to study the aerodynamic phenomena appearing 
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during the re-entry phase of space vehicles. The details of this spherically blunt cone configuration, both in 2D 
and 3D, are illustrated in Figure 3. The conical forebody has 𝑟𝑛=345.22 mm, 𝐿=1546.63 mm and 𝑅=525 mm, 
where 𝑟𝑛 is the radius of the spherical nose cap, 𝑅 the cone’s base radius and 𝐿 the total length of the body. Only 
the quarter of the aforementioned three-dimensional configuration was modeled, for computational savings [20, 
21]. 

Figure 3. Capsule geometry details in 2D (top) and 3D (bottom). 

4.2 Flow data and simulation details 

As far as the flow conditions are concerned, the free-stream velocity was assumed to be 850 m/s, whereas the 
corresponding angle of attack was set equal to 0o. A relatively high Mach number was computed (3.2643), entailing 
a strong bow shock. Despite this velocity being relatively small comparing to that of such a space capsule during 
its re-entry phase, it was assumed adequate considering the initial motivation of the study to assess a modified 
Navier-Stokes solver against a rarefied gas dynamics problem. Finally, the free-stream temperature was set equal 
to 168.72 K, while this on the capsule surface to 290 K. The background pressure was set to 0.5 Pa, a value 
corresponding to an altitude of approximately 85 km. The aforementioned flow conditions are summarized in 
Table 1. 

𝑽∞ (𝐦 𝐬⁄ ) 850 
𝑹𝒆∞ 224.7 

𝑲𝒏∞ (computed with cone’s
base radius) 

0.0107 

𝝆∞ (𝐤𝐠 𝐦𝟑⁄ ) 9.986x10-6 
𝑻∞ (𝐊) 168.72 
𝑻𝒘 (𝐊) 290 

Table 1. Flow conditions. 
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Considering the aforementioned flow data, a hybrid unstructured grid was generated for the CFD solver, 

composed of 4,212,308 nodes, 21,032,650 tetrahedra and 1,168,000 prisms. The prismatic layers are located on 
the solid wall region, i.e., the surface of the space capsule, allowing for the accurate prediction of the corresponding 
viscous phenomena [20, 21]. Figure 4 depicts the complete computational grid, while Figure 5 focuses on its 
symmetry/capsule surface. To use this grid with the dimensionless Galatea solver, it was re-dimensionalized in 
order its base’s radius to become equal to unity [20]. For the calculation of the inviscid fluxes the Roe’s 
approximate Riemann solver was employed along with a second-order spatial accurate scheme, coupled with the 
Van Albada-Van Leer slope limiter [20, 25]. The nodal-averaging scheme was applied for the computation of the 
velocity and temperature gradients, and consequently the viscous fluxes. Time integration and iterative 
approximation of the final steady-state solution was succeeded with the incorporated second-order accurate in time 
four-stage Runge-Kutta scheme. The CFL number was set equal to 0.5. To accelerate the iterative procedure the 
initial grid was divided in eight sub-domains to be processed in parallel [20] (on a workstation with an AMD FXTM

8350 8-core processor at 4.00 GHz). Two coarser resolutions were constructed for each of the aforementioned sub-
grids, following the incorporated directional agglomeration strategy, in order the corresponding multigrid scheme 
to accelerate further the solution process [21]. 

Figure 4. Computational grid, used with the Galatea solver. 

The results obtained by the modified Galatea solver were compared with those extracted by the parallel open-
source kernel SPARTA [18, 19]. For its implementation a 2D-axisymmetric computational domain with 
dimensions 6 m and 2.5 m in 𝑥 − and 𝑟 −axis, respectively, was designed. Spatial discretization was succeeded 
via the division of the aforementioned domain in 10,000,000 cells, by constructing a Cartesian grid with 4000 and 
2500 cells in 𝑥 − and 𝑟 −axis, respectively. Regarding the corresponding simulation parameters, the number 
density was set equal to 2.14746×1020 m−3, whereas the time step was selected equal to 3×10−7 s. The time step 
was defined so that each particle to need approximately five time steps to cross each cell. The simulation began 
with a transient period of 100,000 steps, deriving the initial steady-state solution, while at next samples were taken 
for additional 60,000 time steps, aiming to reduce the statistical scattering error. Considering that DSMC 
methodology relies strongly on the employed number of particles, several different numbers of them were tested 
(between 10×106 and 86×106). From these tests the optimum Fnum (real particles per simulator particle) of 3×1017 

was selected, which subsequently produced a total number of 86×106 particles for the whole simulation domain. 
The aforementioned parameters, defining actually the utilized DoFs (Degrees of Freedom), were revealed to derive 
the desired accuracy, avoiding yet any excessive computational and memory requirements. The whole parameters 
used with the SPARTA solver are summarized in Table 2. The DSMC run was carried out on a DELLTM R815

PowerEdgeTM server, with four AMD OpteronTM 6380 16-core processors at 2.50 GHz (64 cores in total); 60 cores 
were used for the run, which required approximately 5 days (wall clock). 
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Figure 5. Close-up view of the symmetry/capsule surface of the three-dimensional computational grid. 

Number Density (particles/m3) 2.14746x1020 
𝑭𝒏𝒖𝒎 3x1017 

Timestep (s) 3x10-7 
Transient period 100,000 
Sampling period 60,000 

Table 2. DSMC simulation parameters. 

Figure 6. Pressure coefficient distributionσ at the capsule surface along the 𝑥 −axis (left) and the 𝑟 −axis (right). 

4.3 Numerical results and discussion 

Figure 6 illustrates the pressure coefficient Cp distributions in 𝑥 − and 𝑟 −axis, extracted by both the 
aforementioned solvers (Galatea and SPARTA). As one can observe, a very satisfactory comparison is obtained. 
A slight difference in the front area of the capsule geometry can be identified in Figure 6 (right), regarding Cp 
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distribution in the 𝑟 −axis. It stems probably from the strong bow shock in front of the capsule. 

In Figure 7 the extracted pressure contours by both solvers are presented. The compared contours appear to be 
very similar, especially in the bow shock region in front of the capsule. Pressure at the stagnation point was 
computed approximately equal to 6.8 Pa by both solvers. In Figure 8 the extracted (non-dimensional) velocity 
contours by both solvers are presented. Figure 9 contains the axial positions where velocity profiles were extracted; 
the corresponding profiles are depicted in Figure 10, where a very good agreement between the two solvers is 
observed. A steeper velocity transition at the bow shock region is computed by the SPARTA code, compared to 
the Galatea solver (positions 2, 3 and 4, in Figure 10); this is attributed to the relatively low grid density, used by 
the Galatea solver in the corresponding region (no local grid refinement was applied). 

Considering the previously described qualitative and quantitative results, a very satisfactory agreement is 
clearly identified between the employed solvers, despite the fact that they depend on completely different 
computational approaches. As a result, the proposed solver’s potential to predict effectively such demanding flows 
is demonstrated. 

Figure 7. Pressure contours, extracted by the SPARTA software (left) and the Galatea solver (right). 

Figure 8. Velocity contours, extracted by the SPARTA software (left) and the Galatea solver (right). 

Figure 9. The five axial positions (distance from the cone’s base) where velocity profiles were extracted for 
both solvers (1: x = 0 m; 2: x = 0.355 m; 3: x = 0.71 m; 4: x = 1.065 m; 5: x = 1.42 m). 
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Figure 10. Velocity profiles, extracted for both solvers at the five axial positions of Figure 9. 

5 CONCLUSIONS 

In this study the in-house academic CFD solver Galatea, which has been enhanced to simulate rarefied gas 
flows inside the slip flow regime (Knudsen number between 1.0E-2 and 1.0E-1), was presented in brief and 
assessed against a re-entry space capsule test case [20, 21]. For rarefied gases the capability of implementing the 
aforementioned slip velocity and temperature jump boundary conditions [1] on solid wall surfaces has been 
incorporated. In order to increase the accuracy at the same regions, the second-order accurate slip scheme of 
Beskok and Karniadakis [14, 15] has been also included. It was selected due to its relatively easy implementation 
on unstructured, tetrahedral or hybrid grids; it can overcome the numerical difficulties, entailed by the evaluation 
of the second derivative of slip velocity [14]. Furthermore, a normalization scheme [17] has been incorporated to 
mitigate the excessive oscillations, caused by the Dirichlet type of the slip/jump boundary conditions, especially 
during the initial steps of the iterative solution procedure. The proposed solver was validated against rarefied 
laminar gas flow (inside the slip flow regime) over a re-entry space capsule, i.e., the blunt portion of a spaceship 
returning to Earth after a spaceflight; it resembles the REV of the DART demonstrator [28]. The obtained results 
were compared with those extracted by the parallel open-source kernel SPARTA, a DSMC-based software [18, 
19]. A very good agreement was succeeded between them, concerning pressure and velocity distributions, as well 
as velocity profiles, despite the fact that they depend on completely different computational approaches. Ongoing 
work includes further investigation and validation of the capabilities of the modified CFD code Galatea, as well 
as the incorporation of more sophisticated slip velocity and temperature jump models, such as the Langmuir-
Maxwell and Langmuir-Smoluchowski ones [29]. 
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Abstract. During the past decades CFD (Computational Fluid Dynamics) has become a rapidly evolving scientific 

field of engineering, augmented significantly by the corresponding rapid evolution of the available computer 

systems and the resulting expansion of their capabilities. Therefore, CFD emerged as an indispensable tool of the 

aerospace manufacturing process and product design, allowing for the prediction of aircraft aerodynamic 

behavior in a relatively short time period. In this study, such an in-house academic CFD solver, named Galatea, 

is presented in brief and used for the flow analysis over an uncommon combat aircraft research model with 

forward swept wings and canards of the Aircraft Research Association (ARA), named M151/1. In particular, a 

configuration of the M151/1 model with expanded fuselage is examined in two different angles of attack (5.5°, 

10°), whereas main attention is directed towards the accurate computation of pressure distribution on the wing 

and canard surfaces of the aforementioned model. Due to unavailability of experimental data, the extracted results 

are compared with the corresponding ones derived using the commercial CFD solver ANSYS CFX. A satisfactory 

agreement is obtained, demonstrating the proposed solver’s potential to predict accurately such complex flows. 

1 INTRODUCTION 

Nowadays, the duration of the design process of a new aircraft has been significantly decreased, comparing to 
this of the recent past of the twentieth century. This reduction, accompanied by a rapid evolution of aerospace 
technology, stems partially from the also rapid progress of the CFD (Computational Fluid Dynamics) scientific 
field, strongly connected to the relevant development of computer technology. The aforementioned advancements 
additionally supported the cost reduction of the entire production process of a new aircraft. As a result, CFD 
appears today to be an indispensable tool of the aerospace manufacturing process, which has broadened the 
potential of achievements in the corresponding scientific domain, whereas the necessity for further research and 
evolution is indicated. 

In this work the in-house academic CFD code, named Galatea, is presented in brief and evaluated [1-3]. The 
proposed solver depends on the Navier-Stokes (RANS, Reynolds-Averaged Navier-Stokes) equations to predict 
inviscid, viscous laminar or viscous turbulent compressible fluid flows [2, 4]. For turbulence modeling appropriate 
two-equation models are additionally used [5-7]. Spatial discretization is performed with a node-centered finite-
volume scheme on three-dimensional hybrid or tetrahedral unstructured grids [2]. The convective fluxes are 
computed with either the Roe’s approximate Riemann solver [8] or the HLLC (Harten-Lax-van Leer-Contact) [9] 
one, whereas accuracy improvement is succeeded with a second-order scheme, based on the MUSCL (Monotone 
Upwind Scheme for Conservation Laws) approach [4] and appropriate slope limiting functions [10-13]. Viscous 
fluxes are calculated using the velocity components and temperature gradients, evaluated at the interfaces of the 
median control volumes [2, 4, 14]. Iterative approximation of the final steady-state solution is performed with 
either an explicit scheme, applying a four-stage Runge–Kutta method, or a point-implicit one employing the Jacobi 
or the Gauss-Seidel algorithm [2, 4, 15]. To reduce the required computation time, appropriate methodologies have 
been incorporated, namely, an edge-based data structure, a local time-stepping technique, a SPMD (Single 
Program-Multiple Data) parallelization strategy and an agglomeration multigrid scheme [3, 16, 17, 18]. 

In recent history of aerospace industry a wide variety of military aircrafts has been designed and manufactured, 
whose differences are focused not only on their mission purposes but also on their major geometrical 
characteristics. Based on long-term research [19-22], Forward Swept Wing (FSW) configuration has been 
recognized nowadays to enhance fighter aircrafts with significant performance advantages comparing to the Back 
Swept Wing (BSW) one. Such advantages become more apparent, as well as more promising, when FSW is 
combined with supercritical airfoils, canards, fly-by-wire system and advanced composite materials [19-22]. More 
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precisely, its incorporation can improve the following characteristics of such an aircraft: aerodynamic efficiency, 
maneuverability at high angles of attack, low speed handling, lift-drag ratio, and approach speed [20, 23]. The 
aforementioned improvements are associated with the spanwise flow from the wingtip to the wing root, which 
thickens the boundary layer at the latter region and subsequently alleviates the wingtip stalling problem [23]. As 
a result, the control surfaces remain effective and controllability of the aircraft is retained at the highest incidence 
angles [24]. 

FSW configuration was initially introduced in 1931, when aerodynamic data from wind tunnel tests indicated 
that a 20o FSW was superior of the widely applied BSW one, in terms of the range of active angles of attack [25]. 
During the World War ΙΙ (1940), the first FSW aircraft was developed in Germany. It was the Junkers JU-287, a 
four-engine jet attack aircraft with wings of an approximately 25° forward sweep [23-26]. Throughout the 
following years (after the end of World War ΙΙ), various studies were carried out deriving different such 
experimental models, despite metallic FSWs faced significant structural aeroelastic divergence problems 
comparing to the BSWs [25, 26]. Therefore, BSWs were preferred at that time for aircrafts designed to fly at the 
transonic and supersonic region. The aforementioned problem was overpassed two decades later with the 
advancement and use of composite materials, especially of the laminated ones [24-27], allowing scientific and 
aviation community to reconsider FSWs. In the 1980s up to 1990s, Grumman Corporation manufactured and tested 
the X-29, one of the most unusual FSW aircrafts in aviation history; its design, as well as its production and 
assessment, was the result of a joint NASA, DARPA (Defense Advanced Research Projects Agency) and USAF 
(US Air Force) program with the aforementioned company [23, 24]. The research interest regarding FSWs was 
continued. In 1997, Sukhoi Aviation Corporation presented the Su-47 Berkut, a fighter aircraft prototype with 
forward swept mid-wings, enhancing it with high aspect ratio and consequently with long-range performance 
capability [24]. Besides the aforementioned aircrafts, a variety of guided weapons, based on FSW concept, has 
been produced nowadays [23]. 

In this paper, the flow over a combat aircraft research model with FSWs and canards, named ARA (Aircraft 
Research Association) M151/1, is numerically predicted with the Galatea solver. In particular, an expanded 
fuselage configuration of the M151/1 model is examined in two different cases; their differences are focused on 
the angle of attack (5.5°, 10°), the Mach and Reynolds numbers. The methodology, followed for the development 
of the Galatea code, is analyzed in brief, whereas main attention is directed towards the accurate computation of 
pressure coefficient distributions on the wing and canard surfaces of the model. Due to the unavailability of 
experimental or numerical data in the open literature, the simulation results are compared with those derived by 
the widely applied commercial CFD software ANSYS CFX. 

2 FLOW MODELING 

The Galatea solver is based on the density-based Navier-Stokes equations (RANS), which are described in 
differential form as [2, 4, 28]  
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�⃗⃗⃗�  denotes the conservative variables’ vector, whereas 𝑆  the source term, being equal to zero in this study. All the 
aforementioned terms are based on the dimensionless primitive variables [1, 2, 4, 28, 29]. For the computation of 
the stress tensors the Boussinesq assumption is employed. Finally, the perfect gas law is used to close the PDEs 
(Partial Differential Equations) set [1, 2, 28]. For the simulation of turbulent flows, a two-equation model is used; 
three such alternative models have been incorporated in the solver, namely, the k-ε [5], the k-ω [6] and the SST 
(Shear Stress Transport) one [7]. The aforementioned modeling is performed much in the same way with the flow 
model. 
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Both flow and turbulence models’ PDEs are discretized using a node-centered finite-volume scheme, coupled 

with three-dimensional hybrid unstructured grids, composed of tetrahedral, prismatic, and pyramidical elements 
[2, 4]. The control volume of each node P is constructed by connecting with lines edge mid-points, barycenters of 
faces, and barycenters of elements that share this node. Figure 1 illustrates the contributions of a tetrahedron and 
a prism to the control volume of a node P, connected with node Q. 

Figure 1. Contributions of a tetrahedral and a prismatic element to the control volume of node P. 

The convective fluxes are obtained assuming a one-dimensional Riemann problem along each edge connecting 
adjacent nodes of the grid (through the corresponding faces of the control volumes) and consequently 
implementing either the Roe’s approximate Riemann solver [8] or the HLLC [9] one [4, 30]. To improve the spatial 
accuracy, a second-order scheme, based on the MUSCL approach, has been incorporated in the Galatea solver. 
Appropriate (alternative) limiting functions are used, namely the Van Albada-Van-Leer [10], the Min-mod [11], 
the Barth-Jespersen [12] and the MLP-Venkatakrishnan (Multi-dimensional Limiting Process-Venkatakrishnan) 
one [13]. For the computation of the diffusive fluxes, the gradients of velocity components and temperature are 
calculated at the middle of each edge. Two alternative methodologies have been developed for the aforementioned 
computation, namely an element-based [14] and a nodal-averaging one [4]. As mentioned previously, turbulence 
modeling is performed similarly to the flow one [2]. Nevertheless, only a first-order accurate scheme is 
implemented for the computation of the corresponding convective fluxes, assuring stability of the numerical 
procedure [2]. The final steady-state solution is obtained iteratively with either an explicit scheme, applying a 
second-order accurate in time four-stage Runge–Kutta method (RK(4)), or a point-implicit one employing the 
Jacobi or the Gauss-Seidel algorithm [2, 4, 15]. Further details can be found in [2]. 

Finally, in order to accelerate the solution procedure and reduce the required computation time, appropriate 
methodologies have been incorporated in the Galatea solver, namely, an edge-based data structure, a local time-
stepping technique, parallel processing and an agglomeration multigrid scheme [3]. The included SPMD 
parallelization method depends on the domain decomposition approach and the MPI (Message Passing Interface) 
communication protocol [3, 18]. The whole procedure begins with the division of the initial mesh into smaller 
ones using the METIS application [17]. Each sub-grid is assigned to a single processor, whereas an overlapping 
layer is constructed at the interfaces of adjacent partitions, allowing for the data exchange between them [2, 3]. 
For the implementation of the incorporated agglomeration multigrid scheme, gradually coarser meshes are 
generated at each sub-domain by merging (either isotropically or directionally) the neighboring control volumes 
[3, 16, 31-33]. For the stretched regions of hybrid grids (with prismatic elements) the full-coarsening directional 
approach is more suitable [3]. The multigrid accelerated solution is obtained with the FAS (Full Approximation 
Scheme) approach in a V-cycle procedure [3, 16]. Alternatively, a combined FMG-FAS (Full Multigrid-Full 
Approximation Scheme) strategy can be followed, further improving the efficiency of the proposed solver [3, 4]. 
Additional details can be found in [3]. 

3 THE AIRCRAFT RESEARCH MODEL ARA M151/1 

The model ARA M151/1, selected for this study, is an experimental fighter aircraft model with forward swept 
wings and canards; its design details have been reported in [19]. For the purposes of this study, its geometry was 
defined using the commercial CAD (Computer Aided Design) software CATIA V5, following the design details 
as analyzed in the aforementioned report. Due to different available configurations of the aircraft model (with 
expanded and non-expanded fuselage, different canard angles, etc.), its geometry construction was based on three 
basic structural parts, namely, the fuselage, the wing, and the canard. Each part was constructed separately prior 
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being combined into the complete structure, whereas only half of the aircraft was modeled for computational 
savings. 

3.1 The fuselage 

The fuselage consists of three basic compartments, namely, the main compartment, the air intake and the 
canopy one. The main fuselage and air intake compartments are defined by simple rectangular sections with 
rounded corners. The canopy is formed by elliptical sections, whereas it blends into the upper surface of the main 
fuselage compartment. Two alternative configurations of M151/1 are described in [19], with their differences 
focused on the rear part of the fuselage, i.e., an expanded and an unexpanded parallel configuration. The former 
one was selected in this study, with its rear part exhibiting a smooth crosswise expansion at the side wall; its 
geometry is illustrated in Figure 2. 

Figure 2. Geometry of the ARA M151/1 expanded fuselage configuration. 

As shown in Figure 2, the geometrical characteristics of the near-rectangular sections along the fuselage vary 
significantly. An alongside compartmental design strategy was implemented for the geometry definition. In 
particular, the fuselage was divided in thirty sub-compartments (FSs-Fuselage Stations) to be modeled separately. 
The majority of FSs was located in the front part, due to its higher complexity comparing to the aft one. Although 
the aforementioned strategy is characterized by relatively high effort and consequently slow implementation, it 
was preferred because of its resulting accuracy, as well as to avoid any possible compatibility issues between 
CATIA V5 and ANSYS CFX software. 

3.2 The wing 

The geometry of the wing, which is described by appropriate mathematical expressions in [19], has a 
trapezoidal and forward swept shape. It is based on three main airfoils (control stations), linearly connected. 
Similarly, its leading and trailing edge curves are described in detail by suitable mathematical equations. The wing 
is low mounted with a negative wing/fuselage setting angle, whereas twist extends throughout it. The leading edge 
sweep is equal to -30°. The inner wing leading edge remains unswept, entailing structurally sounder means to carry 
the wing load into the fuselage than a V-junction, usually used with a trapezoidal wing [19]. Table 1 summarizes 
the basic geometrical data of the M151/1 wing [19]. 

Wing Area 0.36 m2 
Mean Aerodynamic Chord 0.30 m 
Wing Span 1.20 m 
Aspect Ratio 4.0 
Taper Ratio 0.4 

Table 1. Basic geometrical data of the ARA M151/1 wing. 

3.3 The canard 

The shape of the canard is based on the NACA 64206 airfoil, modified at the tip region; a 4° washout is 
designed there, i.e., the tip has a 4° nose down in respect to the bodyside chord [19]. Additionally, the leading edge 
sweep is set equal to 45° in contrast to the unswept trailing edge. The derived taper ratio is computed equal to 0.2. 
In this study, the canard is rotated by -3° over the crosswise axis of the aircraft model. 
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4 NUMERICAL RESULTS 

4.1 Grid details 

Based on the aforementioned geometry, a computational grid, describing the flow domain over the aircraft 
geometry, was constructed using the commercial mesh generating software ANSYS. It consists of 8,135,315 nodes 
and 28,799,145 elements (19,115,449 tetrahedra and 9,683,696 prisms). The mesh is characterized by increased 
density on critical points of the aircraft surface, such as the leading and trailing edge regions of the main wing and 
the canard, as well as at their junction regions with the fuselage. Moreover, on the aircraft surface forty four 
prismatic layers were constructed; the first layer height was adjusted to 1.1E-5 m, whereas the growth rate was set 
to 1.115. This highly stretched (prismatic) region is required to adequately resolve the boundary layer phenomena 
at the solid wall region. Figure 3 (top) illustrates a far view of the utilized numerical grid; a close-up view of the 
same grid at the symmetry plane is presented in Figure 3 (bottom). In order this grid to be used with the 
dimensionless Galatea solver, it was re-dimensionalized. Thus, its mean aerodynamic chord became equal to unity 
[2]. 

Figure 3. Far view (top) and close-up view at the symmetry plane (bottom) of the utilized grid. 

4.2 Flow data 

As mentioned in Introduction, two test cases were examined in this study, whose differences are focused on 
the angle of attack, the Mach and Reynolds numbers. For the first simulation, the angle of attack was set equal to 
5.5°, free-stream temperature to 270.535 K and free-stream velocity to 243.28 m/s. The Mach number was 
calculated equal to 0.7377, while the Reynolds number equal to 5.133.998 (based on mean aerodynamic chord). 
At the second test case a 10° angle of attack was used, whereas the free-stream velocity and temperature were set 
equal to 210.9 m/s and 277.85 K, respectively. The Mach and Reynolds numbers were computed equal to 0.6314 
and 4.371.948, respectively. 

Due to the unavailability of corresponding experimental or numerical data, the extracted results (by the Galatea 
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solver) are compared with those derived by the commercial CFD software ANSYS CFX. For both solvers the 
same grid was used (in dimensionless form for the Galatea solver). Fully turbulent compressible flow was 
considered, whereas turbulence modeling was obtained for both solvers with the SST model; no transition 
phenomenon was assumed. In simulations performed with the Galatea solver, the Roe’s approximate Riemann 
solver was used, along with a second-order spatial accurate scheme, coupled with the Van Albada-Van Leer 
limiting function. Time integration and iterative approximation of the final steady-state solution was achieved 
applying the incorporated second-order accurate in time four-stage Runge–Kutta method (RK(4)), whereas the 
CFL number was set equal to 0.5. To reduce the required computation time (on a DELL T7500 workstation with 
two Intel® Xeon®-X5660 six-core processors at 2.8 GHz) the grid was decomposed in eight partitions to be 
processed in parallel. In addition, two coarser grid resolutions were generated, following the incorporated full-
coarsening directional agglomeration mode, in order the developed multigrid scheme to be implemented and 
consequently further acceleration to be gained. 

4.3 Numerical results and discussion 

In this section the results, extracted for both aforementioned test cases by Galatea and ANSYS CFX solvers 
are presented and discussed. Figure 4 illustrates the dimensionless pressure contours on the aircraft surface, 
produced by the Galatea solver for the second test case with 10° angle of attack. Figure 5 contains a comparison 
of the extracted pressure coefficient distributions by both the employed solvers at the canard span-wise section 
20%; the left figure refers to 5.5° angle of attack, whereas the right one to 10°. Figures 6 to 8 present the 
corresponding pressure coefficient distribution comparisons at the main wing span-wise sections 15.88%, 49.53% 
and 88.79%, respectively. Based on these results, one can observe a satisfactory agreement, despite the fact that 
the implemented solvers depend on completely different numerical approaches. Galatea solver employs a density-
based procedure while the CFX solver is based on a pressure-correction methodology. The most noticeable 
differences, between the pressure coefficient distributions produced by the two solvers, are located at the leading 
edge regions of the canard and the main wing. Less pronounced differences are observed at the corresponding 
trailing edge regions. Nevertheless, for the majority of the wing and canard surfaces, the two solvers produced 
almost identical results for the pressure coefficient. Another pressure coefficient comparison is illustrated in Figure 
9 at the symmetry plane on the fuselage of the aircraft model; the results of Galatea and ANSYS CFX appear to 
be almost identical. Finally, Figures 10 and 11 depict the dimensionless pressure contours at the canard span-wise 
section 57.5% and at the leading edge region of main wing span-wise section 7.47%, respectively, extracted by 
the Galatea solver for the test case with 10° angle of attack. Based on the aforementioned quantitative results, a 
satisfactory agreement is identified between the two solvers, demonstrating the potential of the proposed one to 
simulate accurately such demanding flows over complex geometries.  

Figure 4. Dimensionless pressure contours on the aircraft surface extracted using the Galatea solver for the 
test case with 10° angle of attack. 
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Figure 5. Pressure coefficient distribution at the canard span-wise section 20%: 5.5° angle of attack (left), 10° 
angle of attack (right). 

Figure 6. Pressure coefficient distribution at the main wing span-wise section 15.88%: 5.5° angle of attack 
(left), 10° angle of attack (right). 

Figure 7. Pressure coefficient distribution at the main wing span-wise section 49.53%: 5.5° angle of attack 
(left), 10° angle of attack (right). 
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Figure 8. Pressure coefficient distribution at the main wing span-wise section 88.79%: 5.5° angle of attack 
(left), 10° angle of attack (right). 

Figure 9. Pressure coefficient distribution at the symmetry plane: 5.5° angle of attack (left), 10° angle of 
attack (right). 

Figure 10. Dimensionless pressure contours at the canard span-wise section 57.5%, extracted by the Galatea 
solver for the test case with 10° angle of attack. 
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Figure 11. Dimensionless pressure contours at the leading edge of the main wing span-wise section 7.47%, 
extracted by the Galatea solver for the test case with 10° angle of attack. 

5 CONCLUSIONS 

In this work, the flow over a combat aircraft research model with forward swept wings and canards, ARA 
M151/1, was numerically simulated using the Galatea solver. In particular, the expanded fuselage configuration 
of the M151/1 model was examined in two different cases; their differences are focused on the angle of attack 
(5.5°, 10°), the Mach and Reynolds numbers. The methodology followed for the development of the Galatea solver 
was analyzed in brief, whereas main attention was directed towards the computation of pressure distribution on 
the wing and canard surfaces of the model. Due to the unavailability of any experimental or numerical data, the 
extracted simulation results were compared with those derived by the widely applied commercial CFD software 
ANSYS CFX. A satisfactory agreement is obtained, despite the fact that the employed solvers depend on 
completely different numerical approaches; Galatea relies on a density-based procedure while the CFX software 
is based on a pressure-correction methodology. The presented numerical simulation results revealed the proposed 
solver’s potential to predict effectively such demanding flows over complex geometries in terms of accuracy and 
geometric flexibility.  
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Abstract. A state-of-the-art application of biomimetics concerns the design of devices for thrust augmentation in 
ship propulsion. The performance of a flapping foil system that performs a combination of two periodic motions, 
a heaving and a pitching one with a phase lag between them, has been experimentally studied and numerically 
simulated in the past. Aiming to develop a control method for dynamically modifying the motion characteristics 
of the flapping foil for maximum thrust gain in an efficient way, the authors have numerically investigated in the 
past the effect of the basic motion parameters on the foil performance (thrust production, propulsion efficiency 
and required power). Parametric studies based on a very fast Boundary Element solver revealed that the 
corresponding objectives are contradicting. The present paper extends the previous work to the solution of an 
appropriately defined multi-objective problem, where simultaneous maximization of two objective functions is 
studied through Pareto-optimality and the results are physically interpreted. 

1 INTRODUCTION 
A state-of-the-art application of biomimetics, i.e. the artificial imitation of natural models in order to design 

more efficient technological systems, concerns the design of devices for propulsion augmentation in ship 
propulsion. Such devices, inspired by the thunniform swimming mode, have been proposed for marine vehicle 
and ship thrusters [1], [2]. In [3], the performance of a flapping foil system has been experimentally studied; the 
foil was moving under the combined action of two periodic (sinusoidal) motions, namely a heaving motion 
(concerning vertical displacement) and a pitching one (rotation around a point its axis) with a phase lag between 
them. In [4], the influence of the Strouhal number and the maximum angle of incidence to the performance of 
such a device were investigated. A similar device has been numerically simulated by the authors by means of a 
panel method in [5] and an unsteady Navier-Stokes Computational Fluid Dynamics (CFD) solver in [6]. In the 
latter work, the efficient production of thrust was demonstrated for a fixed Reynolds number based on numerical 
simulations and the results were compared to the available experimental data [3], [4]. The performance of the foil 
was further investigated for various maximum angles of attack corresponding to different pitching motions and 
the need for further improvement from a simulation point of view, in cases where dynamic stall is involved, was 
highlighted. 

The authors, aiming to develop a control methodology for dynamically modifying the motion characteristics 
of the flapping foil for production of maximum thrust in an efficient way, numerically investigated the effect of 
the basic motion parameters on thrust production and propulsion efficiency in terms of corresponding 
performance indices. To this end, parametric studies were performed with respect to amplitude and frequency of 
the heaving and pitching motions, as well as to phase lag between the two motions [7]. A lower fidelity 
(compared to the Navier-Stokes solver of [6]) but very fast solver, based on the Boundary Element Method [8] 
was implemented for the simulations. Alternatively to BEM, in case of thin flapping foils, the Discrete Vortex 
Method has also very successfully been applied to similar calculations [9]. The accuracy of the results of such a 
solver are satisfactory, provided that no dynamic stall phenomena (causing massive leading edge flow separation) 
are involved [5], [8]. The parametric studies in [7] revealed that the above objectives are contradicting. 
Furthermore, a static single-objective optimization problem was stated and solved in [7] for the values of the 
motion parameters that maximize the efficiency of the flapping foil system. However, the optimal solution with 
respect to efficiency yielded very low thrust, dictating that a multi-objective problem has to be solved in order to 
obtain practical and profitable solutions. 
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In the light of the above, the present paper extends the previous work to the study of a multi-objective 
optimization problem for the same flapping foil system. The objectives that are considered herein are the 
maximization of thrust coefficient (Ct), the maximization of efficiency (η) and the minimization of the power 
required to achieve the foil motion in terms of the non-dimensional power coefficient (Cp). Pareto-optimality for 
two of the above objectives is studied and the solutions lying on the Pareto curve are physically interpreted.  

2 THE FLAPPING FOIL SYSTEM 

2.1 Flapping foil motion 
A (symmetric) NACA0012 profile was considered as the hydrofoil in the present study as used also in [3], 

[4]. The hydrofoil moves forward in an infinite fluid domain at a constant speed U (Figure 1(left)), so in the 
body-fixed frame of reference the incoming flow is a uniform current parallel to x-axis (Figure 1(right)). In order 
to operate as a hydrodynamic thruster, the foil undergoes a flapping motion consisting of a vertical heaving 
motion of the foil and a simultaneous pitching motion at the same frequency. The two motions are described by 
the formulas 

0( ) sin( )y t y tω=   (1) 

0( ) sin( )t tθ θ ω ψ= +    (2) 
where ω is the angular frequency, yo is the heaving amplitude, θo is the pitching amplitude and ψ is the phase 

lag between them. The instantaneous angle of incidence (Figure 1(right)) is expressed by [3] 
1 1( ) ( ) tan ( / )a t t U dy dtθ − −= −           (3) 

According to [10], in order to generate positive thrust (i.e. in the negative x-direction) in an efficient manner, 
the phase lag should take values in the interval 75o< ψ<105o. The parameters defining the flapping motion are: 
• heave-to-chord ratio yo/c,
• Strouhal number St=yoω/(πU) (nondimensional frequency),
• phase lag ψ,
• pitching amplitude θo (that determines the maximum angle of incidence αmax).

The location of the center of rotation for the pitching motion is another geometric parameter affecting the 
pitching motion; this is considered herein to be at constant distance xR/c =1/3 from the foil leading edge. The 
chord length of the foil (c=0.1m), together with the kinematic viscosity of water ν and the inlet flow velocity U 
define the flow Reynolds number Re=Uc/ν. The four parameters defined above, i.e. St, ψ, θο and yo/c are used in 
the present work as the independent variables to control the performance of the flapping foil system. 

Figure 1. Flapping foil motion (left). Definition of the angle of incidence α(t) (right). 

2.2 Flapping foil performance 
The performance of the flapping foil system in assessed in terms of thrust production, propulsion efficiency 

and power required to achieve the flapping motion. In particular, the average thrust coefficient is used to assess 
thrust production (its maximization is desirable). This coefficient is defined by 

20.5
x

t
F

C
cUρ

=  (4) 

where the appearing average thrust force xF  achieved by the hydrofoil motion (per unit span of the hydrofoil) 
is calculated during a time interval T, sufficiently greater than the period of the phenomenon (T>>2π/ω), by the 
following formula 

0

1 ( )
T

x xF F t dt
T

= ∫  (5) 

The corresponding average mechanical power P  required for the hydrofoil motions is given by 
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0 0

1 ( ) ( ) ( ) ( )
T T

yP F t y t dt M t t dt
T

θ
  = + 
  
∫ ∫    (6) 

This has to be minimized and is considered in the form of the nondimensional power coefficient 

30.5p
PC
cUρ

=  (7) 

Finally, the efficiency of the propulsion has to be kept maximum. This is calculated by 

t x

p

C F U
C P

η = =  (8) 

The three nondimensional coefficients defined above, i.e. Ct, Cp and η are used in the present work to define 
the objectives related to the required optimum performance of the flapping foil system. 

3 THE NUMERICAL SIMULATION TOOL 
A numerical tool based on the Discrete Vortex Method (DVM) has been developed to simulate flow around 

unsteady thin hydrofoils undergoing oscillatory heaving and pitching motions, in case of uniform or gusty 
incoming flow. Effects associated with foil flexibility have also been modelled.  A brief description of this tool 
with application to flapping thruster systems is provided below, while additional details can be found in [8]. The 
solution is obtained numerically via a discretization scheme, including a wake model for the trailing edge 
vorticity, which is created by the unsteadiness of the flow. The strength of the vorticity that is being shed from 
the trailing edge of the foil is connected to the rate of circulation change around the foil; this is a consequence of 
Kelvin’s theorem concerning circulation conservation around closed paths in the fluid. Having solved for the 
vortex distribution, pressure is obtained by Bernoulli’s theorem, while forces are calculated by integration of 
pressure on the hydrofoil. In addition, a model to take into account the leading edge suction force has been 
incorporated; this force has an important effect in case of thin hydrofoils [11]. Furthermore, viscous effects are 
included by means of an empirical coefficient based on Reynolds number; this coefficient is augmented with 
extra terms to account for drag increase at higher angles of incidence [11]. 

The discretization scheme used in the above numerical method is actually based on a boundary integral 
equation formulation. According to this, a number of panels discretize the chord of the foil; the discrete panels 
along the foil chord panels according to cosine spacing method, so that panels are accumulated in the leading and 
trailing edge regions where the most significant hydrodynamic variations are expected according to linear theory. 
In addition, some more panels discretize the trailing vortex wake. Since the discrete model is assumed to start 
from rest, the number of wake panels is selected to be equal to the number of time steps and the response is 
obtained by direct integration. Time is discretized in equal discrete steps Δt. Each of the wake panels has a length 
of Δw=UΔt. The ratio of wake panel length to that of the foil panel in the trailing edge region is a control 
parameter tuned for optimum convergence. In a simplified version, the wake panels have the same direction with 
the free stream velocity which is a consequence of the material conservation of vorticity, as realized 
approximately by the present wake model. The accuracy of the method has been examined in various test cases, 
including steady-state problems starting from rest, by increasing the space and time discretization and exhibiting 
very good convergence characteristics. Some indicative results are provided herein for demonstration purposes. 

Figure 2 presents the evolution of the thrust force (in Nt) in time, as predicted numerically by the present 
DVM-based numerical tool, against corresponding experimental results from [3] for a NACA0012 flapping 
hydrofoil at Re=40000, with St=0.3, yo/c=0.75, ψ=90ο, θo=23ο. Pitching was realized around a pivot point located 
at 1/3 chord length from leading edge (xR/c=1/3). The comparison is satisfactory. 

Figure 3 presents further results of the DVM-based tool, compared against experimental results from [4], in 
the case of the same NACA0012 flapping hydrofoil at Re=40000, at large heaving amplitude. Again the pivot 
point for pitching was located at xR/c=1/3 and phase lag between heaving-pitching motions was ψ=90ο. The 
results refer to the performance of the flapping foil thruster in an extended range of motions. To this end, 
systematic simulations were performed for different values of the Strouhal number, namely 0.20, 0.25, 0.30, 0.35, 
0.40, 0.45 and pitch amplitudes ranging from 15o to 50o, resulting in effective angles of attack ranging from 5o to 
35o, approximately. Figure 3(left) depicts results concerning the thrust coefficient. Figure 3(right) contains the 
corresponding thrust plots acquired through the DVM in the parameter range tested by [4] along with iso-
efficiency curves. The overall agreement between numerical predictions and experiments is good for moderate to 
large effective angles of attack up to about 25o and Strouhal numbers up to 0.40, approximately. For large values 
of incidence angles (upper-left region of Figure 3(left)), the thrust coefficient Ct is underestimated by the DVM 
for St>0.3 with respect to the experimental values. This deviation is attributed to the fact that the NACA0012 
section, although symmetric, possesses different hydrodynamic attributes than the flat plate used to model the foil 

Dimitrios G. Koubogiannis, Ioannis Bonis, A. Priovolos and Kostas Belibassakis 

118



in the present DVM formulation. The performance of the NACA foil in the experiments worsens significantly for 
small values of effective angle of incidence as the Strouhal number increases (lower-right region of Figure 
2(right)). This is attributed to the degraded angle of incidence time signal, possessing many peaks in a motion 
period, as has been stated in [4]. 

Figure 2. Comparison of the thrust coefficient evolution in time against experimental data for a flapping 
NACA0012 foil from [3]. Solid lines correspond to values predicted by DVM, while dots refer to the 

experimental ones (Re=40000, St=0.3, yo/c=0.75, ψ=90ο, θo=23ο,  xR/c=1/3). 

Figure 3. Comparison of thrust coefficient (left) and propulsion efficiency (right) against experimental data for 
NACA 0012 foil from [4]. Solid lines correspond to the DVM results and dashed lines to the experimental data, 

respectively. In the examined case Re=40000, yo/c=1, ψ=90ο, xR/c=1/3. 

4 THE MULTI-OBJECTIVE PROBLEM 

4.1 Problem formulation 
The optimal design and operation of the flapping foil system entails the search for the optimal set of values 

for the independent variables, so as to maximize an appropriately defined objective functions related to its 
optimum performance sought by the method. As stated in a previous section, the independent variables of the 
problem are Strouhal number (St), phase lag angle (ψ), pitching amplitude (θο) and non-dimensional heaving 
amplitude as a percentage of foil chord (yo/c); i.e, the decision variable vector is x=[ St  ψ  θο  yo/c ]T. On the 
other hand, the objective functions to be maximized are thrust coefficient Ct and propulsion efficiency η, while 
minimum power coefficient Cp is desired. 

The flapping foil design for maximum efficiency exhibits a very small thrust coefficient. In engineering 
practice such a design would not be deemed practical and would not be selected. A more balanced solution would 
normally be selected, which yields a high efficiency and covers some minimal needs of propulsion. This can be 
expressed as an additional constraint on the thrust coefficient in the optimization problem [7] and it depicts that 
in reality a multi-objective approach needs to be adopted when designing such a system. Thus in the present 
work, the Pareto front of the optimal solutions is presented for the flapping foil propulsion system at hand. Since 
the thrust and power coefficients constitute parallel variables, i.e. one can be expressed as an increasing function 
of the other, only one of them can be included in the following analysis. Here, the optimization of the thrust 
coefficient versus the efficiency was considered.  

Any of the three objective functions (CT, η, CP) is a scalar time-averaged quantity, so its calculation is 
performed over a period T of the periodic phenomenon. The time-dependent, ordinary differential and algebraic 
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equations (1)–(3) are the constraints, which hold for every feasible state of the system. Each of these equations 
can be written in the form gi(x,t,z)=0, where z=[y  θ  α  U]T is the state variables vector and i=1,2,3 is the 
equation index. Equations (4)–(8) are used to evaluate the system behavior and are time-invariant, as they are 
calculated for the duration of a period. These equations are solved for the calculation of the objective function 
using the state variables trajectory that satisfies Equations (1)–(3) and therefore can also be regarded as part of 
the constraint set. The nonlinear equations gi can be concatenated in a vector function G(x,t,z)∈ℜ8. The multi-
objective optimization problem can be formally written as: 

max(Ct(x), η(x)), subject to G(x)=0 (9) 
The two optimality criteria (Ct(x), η(x)) are competitive, in the sense that optimality for one of the two leads 

to suboptimality for the other. Obtaining a solution which simultaneously optimizes all criteria is not feasible, 
therefore a satisfactory solution is sought, which is a compromise. The Pareto optimal set is the set of solutions, 
which are nondominated by any other solution. These solutions are called efficient, non-dominated, Pareto 
optimal, or objectively equivalent. If one was to traverse the set of Pareto solutions, he would observe that there 
is a certain amount of sacrifice in one objective, in order to achieve a gain in the other.  

The optimization solution adopted a feasible path approach and followed the Nested Analysis and Design 
paradigm, exploiting the simulator that has been described in the previous sections. A deterministic, gradient-
based optimization strategy has been selected here, based on the interior-point method [12]. The Broyden–
Fletcher–Goldfarb–Shanno algorithm (BFGS) approximation was employed for the Hessian matrix. The Pareto 
front is identified using Goal Programming, whereas the two objective functions are assigned weights, which are 
varied across the front. Deviation variables from the target are introduced and the objective is to minimize the 
weighted sum of deviation variables, i.e. formally: 

min(γ), subject to F(x)-weight.γ≤goal, G(x)=0 (10) 

4.2 Problem data 
The initial estimate vector for the independent variables, i.e. the starting point for the optimization solution, is 

provided in the second column of Table 1, while the corresponding range of variation for each decision variable 
(optimization domain) is provided in the third column of Table 1. The flow velocity was set to U=0.4m/s, so a 
fixed Reynolds number of Re=Uc/ν=40000 was considered in all simulations. The pivot point for the pitching 
motion was set at xR/c=1/3. 

Parameter Initial estimate Range of variation 
St 0.35 0.15÷0.6 

ψ[o] 90 45÷135 
yo/c 1 0.0÷1.0 
θο[o] 35 0÷90 

Table 1. Optimization domain and starting point of the control variables for the multi-objective problem. 

5 RESULTS AND DISCUSSION 
The results concerning the Pareto optimal solutions for the simultaneous maximization of thrust coefficient Ct 

and propulsion efficiency η are depicted in Figure 4, lying on the so-called Pareto front. In the same diagram, the 
corresponding power coefficient Cp for each point of the front is also presented. According to Figure 4, the 
minimum and maximum values of the thrust coefficient are 0.126 and 3.412, respectively, while the 
corresponding efficiency values are 0.804 and 0.227, i.e. when thrust is maximized efficiency becomes minimum 
and vice-versa. As mentioned in the previous section, as thrust increases, the required power increases too. To 
any intermediate thrust solution, between its minimum and maximum values, corresponding intermediate values 
for efficiency and power are found. Having obtained the Pareto front, the designer is free to select a great thrust 
in the cost of the increased power or a modest thrust value, achieved with better propulsion efficiency. 

Figure 5 presents the variation of the four control variables (St, ψ, yo/c, θο) as the thrust coefficient increases 
along the Pareto front. In all of these plots, the lower and upper limits of the vertical axis correspond to the range 
of variation of the corresponding variable. Figure 5(a) depicts the St-Ct plot. According to it, the Strouhal number 
takes values in almost the whole of its range and attains its maximum allowable value if a maximum thrust value 
of Ct>1.5 is to be achieved. Due to the fact that T=2yo/(USt), low thrust along the Pareto front corresponds to low 
St, i.e. large period of the flapping foil motion, while high thrust corresponds to high St, i.e. low period. 

From the ψ-Ct plot presented in Figure 5(b), it can be seen that, although the phase lag ψ is allowed to vary 
between 45o-135o, its optimal range of variation for the optimal points is in the narrow band of 80.5o-110o 
(according to the literature [3], [4], [10], the value of 90° for ψ is reported for maximum efficiency). The remark 
here is that, in order to achieve thrust solutions along the Pareto front as much as more efficiently, the phase lag 
between the two motions has to be slightly increased. 

Dimitrios G. Koubogiannis, Ioannis Bonis, A. Priovolos and Kostas Belibassakis 

120



Figure 4. Pareto optimal solution for the simultaneous maximization of thrust coefficient and efficiency, as 
well as corresponding power coefficient. 

(a) (b) 

(c) (d) 

(e)     (f) 
Figure 5. Variation of control variables with thrust coefficient along the Pareto front: (a) Strouhal number, (b) 

phase lag, (c) heaving amplitude as a percentage of foil chord, (d) pitching amplitude, (e) maximum incidence 
angle and (f) plot of pitching amplitude against maximum incidence angle. 

Figure 5(c) presents the plot of nondimensional heaving amplitude yo/c with Ct along the Pareto front. 
Although yo/c is allowed to vary between 0 and 1, its optimal range of variation is between 0.4 and 0.8. 
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Furthermore, opposite to what is found for the Strouhal number, yo/c attains its maximum value of 0.8 for values 
of thrust in the lower range and drops to 0.4 in order to obtain values Ct>1.7. This means that large heaving 
amplitude corresponds to low thrust along the Pareto front, while lower (almost half of maximum) values 
correspond to higher thrust. 

Figure 5(d) depicts the variation of pitching amplitude θo with Ct along the Pareto front. Although its 
allowable range of variation is 0o-90o, the optimal range is in the narrow band of 24.6o-35.8o. Finally, Figure 5(e) 
presents the maximum incidence angle amax for each Ct and Figure 5(f) presents the plot of the pitching amplitude 
θo against the corresponding maximum incidence angle amax. The remark derived from Figure 5(e) is that high 
thrust value Ct>1.5 is obtained for maximum incidence angle amax>20o, corresponding to flow conditions that the 
accuracy of the DVM solver becomes questionable. Although this is known, no constraint was used for amax in the 
formulation and solution of the optimization problem, intentionally, aiming to detect the trends of Ct variation in 
a broader range of foil motions even, if the solutions are more or less inaccurate in some regions of this range. 

In order to physically interpret the different foil motions corresponding to different optimal solutions along 
the Pareto front, four different solutions were selected on it corresponding to points of increasing thrust, namely 
A, B, C, D (Figure 4). Point A corresponds to the lowest thrust, while D corresponds to the maximum one. The 
values of the triad (Ct, η, CP) for these four points are A(0.126, 0.804, 0.156), B(0.952, 0.531, 1.791), C(2.269, 
0.321, 7.057) and D(3.412, 0.227, 15.051). 

(a) 

(b) 

(c) 
Figure 6. Foil motion for points A, B, C, D along the Pareto curve: (a) heaving motion, (b) pitching motions 

and (c) leading edge motion in space (moving from the left to the right with velocity U). 

Figure 6 presents the different foil motions corresponding to the points A, B, C, D of the Pareto front in 
Figure 4. In particular Figure 6(a) depicts the evolution of the heaving motion of the foil center in 
nondimensional time. Heaving of large amplitude and low frequency produces low thrust in an efficient way and 
with minimum power cost (point A). Moving towards greater thrust values, heaving of large amplitude and higher 
frequency is required (point B). By performing even higher frequency motion with lower amplitude (faster in 
time and less extended in space), both thrust and the corresponding effort (power) become greater, while 
efficiency is reduced (point C). Heaving of the lowest amplitude and the higher frequency leads to maximum 
thrust but with the lowest efficiency (point D). 
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Similarly, Figure 6(b) depicts the evolution of pitching angle in time. As shown in Figure 5(d) the amplitude 
does not significantly vary along the Pareto front. The variation of frequency was explained before (heaving and 
pitching motions have the same frequency). The remark here is that, in order to achieve higher thrust, i.e. from 
point A to point D along the Pareto front, the phase lag between the two motions has to be increased. 

Finally, Figure 6(c) presents the motion of the foil leading edge in space. It has been considered that the fluid 
is at rest while the foil moves to the right with velocity U. This figure actually indicates how the flapping foil has 
to “swim” in the fluid in order to achieve the thrust corresponding to the points A, B, C and D along the Pareto 
front. Low frequency and low amplitude motions produce low thrust with least effort and best efficiency while, in 
order to maximize thrust, significant “swimming” effort (i.e. power) is needed, mainly due to the requirement to 
realize high frequency motions of lower amplitudes and with greater phase lag between them. 

6 CONCLUSIONS 
A multi-objective problem was formulated and solved for the optimum flapping foil motion that achieves 

maximum thrust with maximum efficiency. To this end, the foil was considered to undergo combined sinusoidal 
heaving and pitching motions of the same frequency and a phase lag between them. Pareto optimal solutions were 
presented and discussed. A low fidelity compared to Navier-Stokes solver, however very fast, was utilized for the 
numerical simulations. Thrust and propulsion efficiency were proved to be contradicting objectives, while the 
power required for achieving the desired foil motion is an increasing function of the required thrust. 

The results showed that whenever low thrust is required in an efficient way, the foil has to “swim” in the fluid 
with low frequency-low amplitude motions. In order to maximize thrust against efficiency (however in an optimal 
way), a significant effort is required to make the foil move with high frequency-lower amplitude and greater 
phase lag between the two combined motions.  

Future research includes the study of the same problem with stochastic-based optimization methods (e.g. 
genetic algorithms), as well as by utilizing a more advanced simulation tool (Navier-Stokes CFD solver), while 
the aim in the long-term is to develop a methodology for the dynamic control of the flapping foil motion for 
maximum thrust. 
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Abstract. The structural performance of large span structures with the prestressed control system MBN (type 
MBN after Michalopoulos, Baniotopoulos, Nikolaidis) corresponding to lines of curved cable nets is herein 
investigated. This prestressing control system is based on the cable supported beam concept with prestressing 
control so that the structural behavior of the system is optimized. The novel optimal control system is a 
prestressing cables mechanism, where permanent loads are relieved by two lines of external curved cables (α) 
and the moving loads relieved by a passive control system of internal to the deck curved cables (β) that consists 
of a sequence of highly prestressed segments with significant length, being interconnected by non prestressed 
segments of small length.  The structural system under consideration seems to be appropriate for the design of 
large span bridges. The passive control design of the system leads to an optimal control problem for structures 
governed by variational inequalities. The accurate simulation of the complex action of the cables on the 
structure has been performed by means of the Finite Element Method within an Optimal Prestressing theoretical 
framework. In this paper a bridge model of span length L=200,0m is proposed and studied as a numerical 
application of the method. 

1 INTRODUCTION 
The structural collaboration between a deck structure and an external prestressed cable is a very 

advantageous structural system for bridges and large span structures due to the fact that external prestressing can 
be applied [2], [3], [4], [6]. However, the action of the moving loads causes on the cables large displacements 
not compatible to the connected deck or structure. In the design of structures with large spans, the significant 
values of the bending moments at the deck require very heavy members. An effective way to minimize the 
influence of bending moments to the deck is to apply the MBN (after Michalopoulos, Baniotopoulos, Nikolaidis) 
passive control system of displacements by the use of external prestressed cables. The proposed displacement 
control system for large span structures needs two parallel, external lines of flexible cables (see Figure 1). The 
optimal shape of a prestressing support cable leads to a Form-Finding problem of the structure. The analysis is 
based on the two-nodes-curved-cable-element, where large displacements and large rotations appear [1]. The 
upper cable )( ua  is actually a group of similar, parallel and loaded cables that support the simply supported 

concrete plate (deck), which in turn follows the curved shape of the loaded cables. The lower cable )( la  is also 
a group of similar, parallel and loaded external cables following also a curved shape form. The two (upper and 
lower) cable lines are connected with stanchions of appropriate length between the homologous nodes. The 
curved shape form of each one of the cable lines depends on the load distribution between the upper and the 
lower cable. For the meticulous control of the expected displacements due to the moving loads, a system of cable 
net called cable )(  is also introduced. 
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Figure 1.  Bridge model including two parallel external lines of prestressed cables 

The later have the same length and follows the same curve as the upper cable )( ua , but under the permanent 
loads are inactive, whereas activated only upon the introduction of moving loading on the structure. By this 
method one is able to obtain the best mechanical properties of the structure by using the deep curve of the lower 
cable line )( la and at the same time having the low curve form (of the upper cable line )( ua ) for the deck 
which is necessary by the design procedures. The structural system under consideration seems to be appropriate 
for the design of large span structures and bridges in earthquake prone zones. The accurate simulation of the 
complex action of the cables on the structure has been performed by means of the Finite Element Method within 
an Optimal Prestressing theoretical framework. In the present paper, a bridge model of type MBN of open length 
L=200m is proposed and studied as a numerical application of the method (see Fig. 1). 

2 FORMULATION OF THE PROBLEM 

The analysis of the proposed model has been performed by means of the Finite Element Method within an 
Optimal Prestressing theoretical framework [8]. The equations of equilibrium of the discretized structure, using 
the stiffness matrix, can be put in the form: 

}{][}{][][}{}{][ *
ooo SGeKGPuK     (1) 

where }{ oe is the initial strain vector and }{ oS is the initial stress vector. The unilateral contact effect that 
possibly appears, due to unilateral contact or no-compression effect on prestressing cables, is described by the 
inequalities: 

}{}{][ buA             (2) 
Following a similar notation, the classical support boundary conditions of the structure is put in the general form 
of equations: 

}{}{][ 0uu    (3) 

where ][ is a )( np geometric transformation matrix, }{ 0u is a p dimensional vector of given boundary 
displacements and p the number of nodes of the support boundary. The prestressing control action is modeled 
by means of a sequence of loads. The contribution of the q  prestressing forces corresponding to different groups 
of cables is taken into account under the assumption that each group contributes by introducing the same 
prestressing force which is added to the loading vector p after an appropriate transformation which is realized 
by means of an )( qn transformation matrix C . Thus, an enlarged loading vector p is applied on the 
structure, where: 

}{][}{}{ zCpp             (4) 
 Assuming that displacements and deformation are infinitesimal, the formulated structural analysis problem leads 
to the following potential energy minimization problem [9]: 







  )(}{}{][}{}{}{}{][}{

2
1

}({min zUuuCzuPuKuu ad
TTTT  (5) 

where the space of admissible displacements )(zUad is defined by: 
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 }{}{][,}{][}{)( 0uubuAuzU n

ad   (6)   
The solution of problem (4), (5) can be explicitly written as follows: 

}0{}{][}{][}{][}{}{][    TAzCpuK     (7) 
}0{}{}{][ 0  uu    (8) 

}.0{}{}{][ )( 
 SR

NbuA      (9) 

Thus, vector }{ corresponds to the discrete nodal reactions at the boundary condition (9), vector }{
corresponds to the discrete interface tractions along the unilateral contact interface and the relations (8) are more 
often written in structural analysis literature in the following complementary system of inequalities:  
No penetration relation 0}{}{][}{  buAy  (10) 
No tensile tractions }0{}{       (11) 
Complementarity  0}{},{ y    (12) 
Relations (7), (8), (9) are the well-known optimality conditions for the quadratic minimization problem (5). 
Moreover, the problem (7), (8), (9) is also known as the generalized linear complementarity problem. All the 
aforementioned describe the structural response for variable control vector }{z  and can be considered as 
parametric state models for the analysis of the optimal control problem. The prestressed cables require the 
determination of their suitable form so that the response of the system as a whole is optimized. The two flexible 
cables connected at the two extreme nodes of the structure exhibit an S-unilateral structural behavior [7] and 
therefore, are subjected to vertical loads that correspond to cable tension (see Fig. 2). Therefore, the first step is 
to formulate the general system of equations of each one of the two cables hinged from the two extreme nodes 
and loaded by a general loading corresponding to a set of vertical nodal forces [2], [9].  

n-1 n n+1

i
432

BA ωn

Pi

ω4ω3ω2ω1

1

Figure 2. On the form of the cable 

This formulation begins by introducing the desired displacement of the cables. Using the equations of each 
cable, the system (13) is first formulated. The solution of n2 ( iuiuS )()( , ) and n2 ( ililS )()( , ) non-linear

equation system with n+1 cable nodes give the unknown stresses iliu SS )()( , and unknown angles iliu )()( ,
(hence also the geometry of cables) before deformation. 
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Here i()  (upper or lower cable) denotes the left-side angle between the vertical axes that passes from the

thi  node and the cable (between the nodes i and 1i ) and iS () (upper or lower cable) is the stress of the
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cable at the section il . The system (13) mathematically describes, in a general form, the configuration of a cable
hinged from its extreme points and loaded by nodal vertical concentrated loads. The previously formulated 
system (13) can be numerically treated easily by applying suitable commercial software for each one of the two 
cable lines. The herein proposed model concerns the introduction of a net of cables )(  that acts as an effective 
passive control system of displacement against the deformations caused by moving loads. 
Thus, apart from the cables )( ua  and )( la , respectively, being the basic cables of suspension, a third set of 
cables called cables )( , being inactive in the situation of equilibrium under permanent loads is introduced. 

The latter cables are anchored in the same positions of suspension as the cables )( ua and are activated as soon 
as additional moving loads start acting on the deck. The cables )( have the same length, are parallel and 

exhibit the same geometry as the cables )( ua  (as they are found in equilibrium under the permanent loads), and 
therefore, they have equal displacements. Before the selection of the actual cross-section of cable )( the notion 

of an "ideal" cross-section of the cable )( *  is introduced. The cables )( ua have known cross-section )( uaF ,

which can be found from the calculation of the stresses due to permanent loads. The cables )( *  are hinged 

and anchored in the same positions of the suspension as the cables )( ua . The total cross-section )()( FF
ua 

of the cables, takes over the presented stress as caused by to the moving loads. Hence, due to the form finding 
the design cable )( * undertakes the 90% of moving stresses .movS  and has a cross-section that is analogously 

multiplied by the already known )( uaF . By analyzing the structure with a finite element program (taking now

into account a cross-section )()( *FF
ua  ), if the obtained stresses and displacements are within the allowable 

limits, the cable )( * is replaced by a statically equivalent, real cable )( . The real cable )( consists of a 
sequence of prestressed segments with significant length, being interconnected by non prestressed segments of 
small length. The cables are placed along the central axis of the stiffness plate embedded to a priori constructed 
channels within the mass of the stiffness plate. The cable )(  has the same geometry with respect to )( ua and 

)( * and is also hinged and anchored at the same positions of the structure. The real cables )( , as it was 

reported above, are the statically equivalent cables )( * . Note that the whole cable )( exhibits small 

deformability subjected to the same load with the ideal cable )( * and undertaking the same part of stress 
.movS . 

3 DESIGN EXAMPLE OF THE METHOD 

As a numerical application of the method a road bridge of length L=200,0m is considered [5]; Starting 
configuration are the calculated lengths by the system (13) for each one of the two cables )( ua  and )( la , each 
one separately hinged by the common ends of suspension A and B (see Fig.3). The formation of the supporting 
system begins with an arbitrary choice of dead nodal loads kNP perm

i 2370  between the two lines of cables. 

By taking into account a 20% of the total nodal load for the lower cable )( la  and an 80% for the upper cable 

)( ua , one has 474)2370(%20)( uperm
iP kN and 1900)2370(%80)( lperm

iP kN. Namely, 
the two cables system is regulated in such a way such that the permanent loads are distributed by an optimal 
distribution according to the design procedures (i.e., a desirable value for the cable deflection at the mid-span). 
Taking into consideration the solution of the cables and in particular the distribution of the permanent nodal 
loads we determine the corresponding cross-section 2700)( cmaF upper  , 0J , for the upper cable and 

22000)( cmaF lower  , 0J  for the lower cable. Concerning the cable set )(  an idealized cable )( *
with cross-section 2* 14000)( cmF  is first taken and the sum of the cross section for the upper cable 

becomes 2* 14700)()( cmFaF u   . The final form of the supporting system constitutes the initial condition 
of balance against the deflection of the structure due to the live loading. The cables )(  along with the 
additional diagonal cables (after the initial condition) are used as passive control system for the suppression of 
the displacements of the bridge. They lead to very satisfactory results for both the displacements and the stresses.  
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Figure 3. The form of the single cable model 

The complete design of the bridge has been based on a three-dimensional finite element (3-D) model using 
ANSYS computer software. In this analysis, one dimensional elements (bars, cables, stanchions) and surface 
elements (concrete upper plate) have been used. The loading cases that have been considered in the structural 
analysis problem are the following: 
COMB1: Solution for the initial deck structure where only the cable set )( ua , )( la is present. For this loading 
combination (see Figure 4), the composite structure remained at the initial condition of equilibrium (without 
displacements for the bridge). 

Figure 4. Nodal displacements at S.L.S. on the bridge for (a) the initial condition of equilibrium 

COMB2: Load combination including the initial deck structure, the cable set )( ua , )( la , the additional cables 
(β) and a distributed live load on the deck. For this loading combination, the maximum deflection at the mid-
span becomes decreases (see Figure 5) in comparison with the standard limits of vertical displacements (L/250).   
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Figure 5. Nodal displacements at S.L.S. on the bridge for the final condition without diagonal cables under 
traffic loads. 

In order to decrease the deformations and increase the stiffness of the structure, diagonal cables (see Figure 6) 
are added between consecutive nodes of the deck and the cable respectively, as an additional passive control 
system. 

BA
17

49

331 2 3
34 35 1816

5048

3231
6463

Figure 6. Form of the controlled structure including diagonal cables. 

The influence of structural response of the added diagonal cables to the system is showed clearly in Figure 7 
especially when the imposed loads act concentrated on the structure. There the maximum deflection at the mid-
span is much lower in comparison with a system without diagonal elements and with a satisfactory distribution 
along the span of the structure.  All the solutions for the Serviceability Loading States (SLS) for different 
imposed loads give satisfactory results in comparison with the respective comfortable limits of (L/750), whereas 
no extreme deformations and dangerous vibrations arise. 
Respectively the results of the solutions for the Ultimate Limit States (ULS) compared with the structural 
resistance of the members and especially the buckling and stress resistance of the upper composite deck and the 
stresses limits of the linear and cable elements of the structure. This analysis leads to the appropriate cross-
sections of all the elements of the structure according to the design limits.  

The maximum stress of the upper cable nets )( ua & )(  is kNS
ua 32017))((    and the cross section of the

cable )( becomes 2933)( cmF  , equal to the 1/15 of the ideal cross section )( * of the model. 
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Figure 7. Nodal displacements at S.L.S. on the bridge for the final condition including diagonal cables under 
traffic loads. 

4 DYNAMIC ANALYSIS AND PERFORMANCE 

The existence of high pylons leads to additional problems on the foundation, as well as the superstructure of 
the bridge. In particular, both aerodynamic and seismic loadings may cause dangerous vertical and rotational 
oscillations. The proposed MBN control system minimizes all the foregoing phenomena as well as the cost of 
construction. The modal analysis based on the previous described data of the bridge gave the more important 
mode shapes (see Figures 8 and 9), whereas the response spectrum of the reference seismic action and its 
solutions under seismic design situation led to satisfactory results. In the case of turbulent wind flow and 
specifically for an upward loading being a percentage of the main wind load, no significant motion of the 
structure arises, due to the fact that this loading does not exceed the much bigger self-weight of the bridge deck. 

Figure 8. Modal analysis of the bridge for the 1st  mode shape 
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Figure 9. Modal analysis of the bridge for the 2nd mode shape 

The structural response against earthquake damage has been evaluated satisfactorily using dynamic analysis by 
the elastic spectrum of the reference earthquake along the x, y and z directions. The behavior factor for this 
analysis estimated as q=1 taking into account elastic response for the bridge system according to Eurocode 8. In 
this analysis, the seismic performance of the system was excellent taking into account the elastic response 
spectrum Se(T) for different design cases about soil types (A to D) and seismic zones (Z1 and Z2) according 
Eurocode 8 Part 1 (see Figures 10, 11 and 12).  

Figure 10. Bridge displacements for the combination of responses 1.0·Εx+0.3·Ey+0.3·Ez 

In this analysis Ex is the horizontal seismic response parallel to the longitudinal direction of the bridge, Ey is the 
horizontal seismic response transverse to the longitudinal direction of the bridge and Ez is the vertical seismic 
response of the bridge. Although in all cases the structural system of the bridge is influenced only by the 
prestressing force and the shape form of the cables, so the action on them becomes unilateral for any loading 
case, which is minor to the weight of the structure. 
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Figure 11. Bridge displacements for the seismic direction 0.3·Εx+0.3·Ey+1.0·Ez 

On the other hand, the two respective ends of the bridge are been connected directly to the ground on small 
height abutments and therefore both the deck of the bridge and the abutments in any loading case follows the 
motion of the earth without significant oscillation and damage. 

Figure 12. Bridge displacements for the seismic design situation G+0.3·Q+0.3·Εx+0.3·Ey+1.0·Ez 

5 CONCLUSIONS 

The displacements control systems that use external prestressed cables, directly neutralize the permanent 
loads without creating significant bending moments for the structure. Applying an optimal passive control 
procedure, the value for the necessary prestressing force of the cables depend only on the neutralization of the 
permanent loads and does not depend on the length of the span of the structure. As passive control system for the 
bridge displacements a novel design is proposed which uses (β) cables and additional diagonal cables for same 
cases. This design leads to very satisfactory results for both the displacements and the stresses. 
This structural system is a very useful one for the design of large span structures in difficult design cases with 
high environmental and cost problems and especially in countries with high seismic and wind risk. The deck of 
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the structure is balanced on the curved cables, which act at a seismic action for some directions as safety 
mechanism for the bridge.  
The results at all the loading combinations and especially for the dynamic actions show that the proposed model 
MBN is suitable for a sustainable structural design. Moreover forms a structure with a high bearing capacity 
against wind and seismic action, low cost and secure. In any case this cable supported system gives new ideas for 
the optimal analysis and design of large span structures in the future. 
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Abstract. Low velocity impact damage on carbon reinforced polymer laminate composites has been identified
as a key threat to airframe structural integrity since it reduces the strength under compressive loading.
Airworthiness certification specifications dictate that the airframe structural components up to the full scale
subassemblies have to adhere to the strength and fatigue airworthiness requirements imposed whilst being
damaged. The study presented herein combines a set of numerical tools for generating an approach to
numerically quantify the damage size after low velocity impact on FRP laminates.

1 INTRODUCTION
Aircraft structures are exposed to damage threats from foreign object impacts in a wide range of

conditions. A lot of experimental and numerical analysis research and some analytical works have been devoted
to investigating the impact damage on Fiber Reinforced Polymer (FRP) laminates due to the severe consequences
it entails on the airframe structural integrity.

Impact damage is categorized in terms of the energy and the subsequent damage size obtained from the
event, although impact velocity is also an important factor [1]. The study herein focused on impacts with energies
up to 50J, as it is the case when Barely Visible Damage (BVID) is most likely to form. This category
encompasses low-velocity impacts such as dropped tools (4-10m/s) as well as intermediate velocity impacts with
impactors of relatively small mass, like runway debris (100-150m/s). Metallic airframe structures are subjected to
such impacts as well but they tend to absorb the impact kinetic energy by plastic deformation, unlike the mainly
elastic behaving until failure CFRP structures, which respond to failure in a subtle manner, hiding the damage
extends within the laminated structure from visual inspection on many occasions.

The classic preliminary stage airframe component design procedure mainly addresses and fulfills a
number of quasi-static and dynamic loading scenarios in terms of strength and deformation criteria. Not so much
attention is payed at this stage to the structural performance degrading environment the structure is to be
immersed into. Certain acceptable strength and deformation levels are sought and on some occasions even
material fatigue considerations are taken into account during early design. This approach has spawned through
the usage of mostly metallic materials for airframes. The performance of structures made of CFRP materials is
directly affected by the environment imposing its performance degradation effects by reducing the allowable load
carrying levels.

Airworthiness certification specifications require the damaged CFRP structures to attain the acceptable
performance levels [2] and this condition has to be proven by test. The airworthiness structural verification
testing pyramid [3] commences with tests at the specimen level and proceeds to subcomponent testing until the
full scale structure clearance tests. Testing at the specimen level for material characterization is easy and
relatively cheap. A great deal of research on impact on composites has been performed based on square, circular
or rectangular plates with standardized dimensions aiming at understanding the damage formation and the
residual strength decrease especially when under a follow on compression loading. As pointed out by Abrate [4],
the results of tests done on samples cannot directly represent the response of the full scale structure. Relevant
work has been presented by the U.S. Federal Aviation Administration (FAA) [5] mainly describing the
phenomena by parametric formulae curve fitting procedures as resulted from elementary specimen type testing. It
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can be stated for the impact damage on CFRP structures, there is a lack of information available on transforming
simple plate specimen results into meaningful full scale structural design guidelines.

Numerical simulations with progressive damage modelling capturing the degrading material response
onto a complete structural detail can provide with adequate information and level of fidelity. On the other hand
they can be quite costly in terms of the resources needed. They are generally employed at a later design phase
than the preliminary design stage, mainly for complementary design verification rather than design exploration.
An alternative resource of information can come from previously tested similar structural components if access to
such data is an option but even if so, these cannot account for a new material or for radically new design details.

The approach suggested within this work, provides with a method to quantify the damage size
influencing the structural residual strength from low velocity impacts on FRP structural details, in an effort to
optimize a component prior to actually manufacturing and testing. A scaled down numerical analysis
methodology is proposed, verified by plate specimen tests, that can be further on used to generating more
complicated design details which are practically more difficult to manufacture and test. Results from
experimental research on plate specimen along with numerical model results of various design details were used
to validate the proposed method presented in this work.

2 EXPERIMENTAL DATA
Experimental data used for validation were obtained from [6], where the damage resistance and CAI

strength of IM7/977-3 toughened carbon-epoxy laminates were examined. The data have been used to calibrate
and validate the generated numerical models and were employed in the benchmarking against the developed
analytical procedure. Samples comprising of 17 lamina layers of 100mm x 150mm dimension were impacted by a
5.81kg impactor according to ASTM D7136 [7], with energies ranging from 8J to 20J. The specimen layup
sequence was [±45,0,90,0,±45,0,90,0,±45,0,90,±45]s. The lamina properties of the composite used in the
experiments are shown in Table 1. Impacted laminates were inspected by nondestructive and destructive
inspection techniques and the size of the resulting damage imprints was documented. Some of the analyzed
samples (impacted and pristine) underwent quasi-static compression after impact test for determining the CAI
strength according to ASTM D7137 [8].

Laminate property Symbol Value Unit

Longitudinal tensile modulus E11 162 GPa

Transverse tensile modulus E22 8.19 GPa

In-plane shear modulus G12 4.96 GPa

In-plane Poisson’s ratio ν12 0.12 --

Mode I critical strain energy release rate GIC 170 J/m2

Mode II critical strain energy release rate GIIC 580 J/m2

Longitudinal tensile strength XT 2110 MPa

Transverse tensile strength YT 64 MPa

Longitudinal compressive strength XC 1680 MPa

Transverse compressive strength YC 100 MPa

Shear strength S 121 MPa

Nominal ply thickness tply 0.115 mm

Nominal laminate density 1506 kg/m3

Table 1 Laminate material properties [6]

3 NUMERICAL MODELLING OF IMPACT
For the numerical simulation of the impact and CAI on FRP laminates, commercial software code LS-

DYNA© was used [9, 10]. The aim of the numerical simulations was to generate data on the impact and CAI
response of simple plates as well more complex geometries, like slightly curved plates and/or stiffened panel
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bays. The numerical results from plate specimen tests have been validated against the results from the
experimental study [6] described in the previous section.

3.1 Material modelling
There are many material modelling options available for modeling FRP materials with failure and

degradation. In this study, MAT_054/055 was used.

3.2 Laminate modelling
Amongst the various modeling techniques for a composite laminate, the use of solid or shell elements

can be chosen depending on the desired simulation fidelity. Factors influencing the final choice are the scale of
modelled phenomena, the structure of interest, the desired accuracy and the available computational resources.

Solid elements were used in many previous studies [11, 12] to model composite targets impacted at
various velocities where a single element across the thickness was used for each layer. This approach proved to
give a very good correlation with experimental results. Moreover, unlike shell elements, that are assumed to be in
a plane stress state, solid elements do not neglect the through-the-thickness normal and shear stress tensor
components. The main challenges associated with three-dimensional composite models are their very high
computational cost as well as laborious FE mesh generation for thin and complex aerospace structures [13].
Composites can be also modelled with the use of shell elements provided that the thickness of the laminate is
significantly lower than the remaining dimensions of the structure [14]. Separate plies are then represented by
multiple integration points across the shell layer thickness. However, this way of composite modelling does not
enable to predict delamination failure since one element accounts for the complete layup across the thickness.
Another approach has been described in reference [13] that made it possible to capture the interface failure using
2D elements. The plies forming the laminate are grouped into sub-laminates separated by a cohesive layer or with
an appropriate contact definition. This approach has been used in this study as shown in figure 3.

An alternative combining the two aforementioned methods is a thick shell modelling technique. Thick
shells have been developed in order to achieve the computational efficiency of 2D shell elements while
maintaining the 3D nature of solid elements. A study revealed that this method may bring challenges in terms of
solution instability during delamination propagation and the occurrence of severe hour-glassing [14].

A significant amount of comparative analysis and discussion on the subject has been presented in the last
decade [13,14,15]. It has been shown that all models are capable of providing a valuable insight into the response
of a composite material subjected to low-velocity impact, however, with different levels of accuracy. A very good
correlation with the experimental data was obtained with the use of solid and thin shell elements [14]. The latter
method was also indicated as giving the most realistic prediction of internal energy and contact force [15]. All
researchers agreed, however, that the accuracy of numerical solutions for all methods is strongly dependent on
the simulation parameters, such as the element size, contact parameters as well as the number of interfaces.

3.3 Inter-laminar modelling
Since delamination is believed to play the key role in the impact damage size creation and the post-

impact behavior of composites under compressive loading, there is a need for a reliable finite element procedure
of modelling this phenomenon.

In this study, inter-laminar modelling used the *CONTACT_[...]_TIEBREAK keyword. When the
bonding layer is sufficiently thin to neglect the influence of its mass a contact definition between the bonded
layers that has the traction separation laws built in can be used. When the failure criterion is reached the bonding
is released and the contact behaves like a normal surface to surface contact.

According to Heimbs et al. [11], tiebreak contacts give less accurate results than the equivalent cohesive
layer, due to the change in bending stiffness of the model with increasing number of interfaces and the inability to
represent the delamination of each ply constituting the laminate. It is, therefore, suggested that this method
should be used for first approximation. However, the results of comparative studies carried out [14, 15] lead to
the opposite conclusions. Good accuracy and agreement with experimental results were recorded, proving that
2D shell elements combined with tiebreak contacts are capable of delivering satisfactory levels of accuracy.

3.4 The drop weight impact numerical model set-up
The laminate model has been created with four separate fully integrated shell elements layers comprising

eight plies each, shown in figure 1. Shell layers were bonded together with the use of surface to surface contact
definition, which is the preferred choice in case of limited input data availability and results in reasonable
accuracy [12, 13]. The boundary conditions were according to ASTM D7136 [7] experimental set up procedure
as shown in figure 2. Initial velocity applied to the ball impacting the plate varied for different simulation cases to
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meet the predefined impact energy condition. The mass of the impactor was 5.81kg, which is in agreement with
the experimental study performed in [6].

Figure 1 Drop weight impact simulation on a composite laminate modelled by 4 shell element layers representing
17 laminate plies

Figure 2 Boundary conditions assumed for the drop weight simulation

3.5 The CAI numerical model set-up
The laminate models used for CAI test simulation was identical to the ones used for the drop weight

scenarios but with an artificial damage implemented in the structure. Following the methodology used in
experimental studies [12], the impact damage has been represented by releasing contact between two top shell
layers in the damage zone as shown in figure 3. Boundary conditions imposed on the model used for simulating the
quasi-static compression test as per ASTM D7137 [8] are shown in Figure 4.

Figure 3 CAI simulations on a composite laminate having removed the inter-laminar bond between the outermost
sub-laminate and the rest of the plate
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Figure 4 Boundary conditions in CAI test simulation

A simulation of the post-impact residual compressive strength test has been also performed. A sample
impacted with the energy of 11.5J and subsequently tested in compression by has been chosen for comparison.
The simulation resulted in the CAI strength of 210.6 MPa, which is 12.3% more than the experimental value of
171 MPa. Moreover, the damage pattern observed in the numerical simulation shows an excellent agreement with
ASTM D7137 standard [8], as shown in figure 5.

Figure 5 CAI failure mode of the numerical model

3.6 Validation of the numerical models
The numerical model results of impact and CAI strength have been correlated with the results form

experimental impact simulations for five representative energy levels [6]. Quantities compared with the
experimental data for the impact modelling were the delamination size in terms of width as shown in figure 6 as
well as energy absorbed during impact, measured as a difference between the initial and final impactor kinetic
energy.
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Figure 6 Delamination envelope size on the impacted laminate

In figures 8 and 9 the comparison between the impact and absorbed energy from the experimental survey
and the numerical simulations is shown. An interesting observation can be made, suggesting that the numerical
model absorbed more energy from the actual experiment under the same impact energy but for the same absorbed
energy levels, the delamination sizes are comparable. From the numerical study, a good correlation between the
absorbed energy and the peak impact force was found, observation which meant that there was a good correlation
between the impact force and the delamination size.

Figure 8: Impact energy versus absorbed energy from the impact
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Figure 9: Absorbed energy from the impact versus maximum delamination width

4 ANALYTICAL PREDICTION OF DAMAGE SIZE
A significant amount of work on impact dynamics modeling exists in the literature, the majority of

which require numerical tools to be solved [4, 7]. Olsson has provided with closed form analytic solutions based
on theoretical models of impact on composite laminates [16].

A research review on composites impact resistance [9, 17, 18] suggested the existence of a direct
correlation between the laminate fracture toughness GIIC and the damage extent after impact. Studies carried out
[19, 20] led to the conclusion that there is a threshold impact force, below which delamination does not occur. A
simple model has been proposed based on quasi-isotropic layups [7].

(1)

Where

Fcr Threshold impact force below which delamination does not occur (N),

Eflex Equivalent flexural modulus of the laminate (MPa),

t Laminate thickness (mm),

GIIC Fracture toughness under mode II (J/m2),

ν Laminate in-plane Poisson’s ratio
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On the other hand, delamination size can be directly related to the impact and plate parameters
according to equation (2) [1], where the nominator in this expression is the Peak Impact Force:

(2)

Where

D Delamination width of an assumed circular delamination (mm),

Vo Impactor velocity (mm/s2),

M impactor mass (kg),

kb Equivalent plate stiffness at the impact location if assumed a linear spring (N/mm)

t Laminate thickness (mm),

τ Average shear strength (MPa)

Overall, equations (1) and (2) combine in the following expression (3):

(3)

On figure 10, the correlation between the experimental, numerical and analytical results is shown.

Figure 10: Experimental and numerical results relative to the proposed peak force delamination relation
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Equation (3) in essence, relates the impactor velocity and mass with the material properties of the target
structure, amongst them being the equivalent plate stiffness of the target at the impact location. The proposition
in this work is that in the case the target structure is different than the plate specimens per ASTM D7136, this can
be reflected onto the equivalent plate stiffness and hence result on a different damage size according to equation
(3). The numerical results on figure 10 are drawn from simple plates, curved plates and bays within stiffened
panels.

5 CONCLUSIONS
A semi-analytical methodology was proposed for quantifying the damage size from low velocity impact

on FRP laminate airframe design details other than simple plate specimen. The method is suggested for
preliminary design analysis prior to component testing. The method has been partially validated via flat plate
impact specimen testing and partially through LSDYNA numerical analysis of some more complicated design
details. The numerical modeling strategy proposed was in good agreement with the experimental survey.

A proper evaluation of the effects from impact damage can result only after testing the full scale
component which would exclude major re-design improvements at that stage. The method can provide with very
useful insights to designs benchmarking, design envelope exploration and design optimization.
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Abstract. In the case of large temperature variations, the thermomechanical properties of a material should be 
considered as temperature-dependent rather than constants. In the present article the effect of the temperature-
dependency of the properties on the thermoelastic response of a ceramic/metal functionally graded layer of finite 
thickness is investigated. The functionally graded layer is subjected to uniform ramp-type thermal loading at its 
upper surface and the resulting transient fields of stress and temperature inside the layer are presented, within 
the theory of linear coupled thermoelasticity. In the above analysis, zirconia is used as the ceramic material and 
a titanium alloy is used as the metal material. The properties of these materials are assumed to be a cubic 
function of the temperature. Moreover, the variation of the properties inside the functionally graded layer is 
considered to be linear. For the numerical analysis the Galerkin finite element method is used, whereas the 
Newmark method is employed for the time integration of the problem. 

1 INTRODUCTION 
Functionally graded materials (FGMs) are advanced materials with continuously varying properties [1]. In 

the simplest FGMs their properties vary gradually between the properties of two materials. One of the most 
important applications of FGMs is the thermal protection of metals in high-temperature environments [2]. To be 
more specific, FGMs made of ceramic and metal constituents are suitable for the protection of metal layers under 
thermal loads. 

In such applications the behavior of a ceramic/metal FGM under severe thermal loading is of major 
importance. Furthermore, when large temperature variations occur the effect of the temperature on the 
thermomechanical properties of a material cannot be ignored. Consequently, in the case of large temperature 
variations the thermomechanical properties of a material should be taken as temperature-dependent [3-4]. 

In this article we study the dynamic thermoelastic behavior of a ceramic/metal functionally graded layer, 
where the volume fraction of the metal constituent varies linearly from 0 to 1. In this configuration zirconia 
(ZrO2) is used as the ceramic material and a titanium alloy (Ti-6Al-4V) is used as the metal material. The 
ZrO2/Ti-6Al-4V functionally graded layer is subjected to uniform ramp-type thermal loading, where the 
temperature at the upper surface of the layer gradually rises up to a final temperature. The governing equations 
are derived from the theory of linear coupled thermoelasticity. Moreover, the properties of the materials are 
considered as temperature-dependent, thus leading to a system of nonlinear differential equations.  

The numerical analysis of the aforementioned one-dimensional problem is based on the Galerkin finite 
element method, while the Newmark method is used for the time integration. The effect of the temperature-
dependency of the thermomechanical properties of the materials is discussed. The authors of this contribution 
have also studied the effect of the temperature-dependency of the properties in the case of a functionally graded 
ceramic/metal half-space under thermal shock conditions [5]. 

2 GOVERNING EQUATIONS AND NUMERICAL ANALYSIS 

2.1 Effective Properties 
Consider an initially undeformed, stress-free and at uniform temperature of 0 300T K  ceramic-metal 

functionally graded layer of total thickness L , as shown in Figure 1. The ceramic material is zirconia (ZrO2) and 
the metal material is a titanium alloy (Ti-6Al-4V). 
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Figure 1. Ceramic/metal functionally graded layer 

In this paper, the thermomechanical properties of the materials are considered as temperature-dependent. At 
high temperatures, the material properties can be expressed as cubic functions of absolute temperature T  [6]. 
Table 1 shows the properties of ZrO2 and Ti-6Al-4V as functions of absolute temperature T  [7,8]. 

Zirconia (ZrO2) 

Elasticity Modulus E  Pa  
9 3 6 2

10 3

244.26596 10 (1 1.3707 10 1.21393 10
3.681378 10 )

T T
T

 



      

 

Poisson Ratio    40.2882 (1 1.13345 10 )T    
Thermal Expansion Coef. a  1 K  6 6 2 11 312.7657 10 (1 0.00149 1.0 10 0.6775 10 )T T T         

Thermal Conductivity k  J mKs  8 21.7 (1 0.0001276 6.648 10 )T T      

Density  3kg m    5700  

Specific Heat Capacity c  J kgK  4 8 2487.34279 (1 3.04908 10 6.037232 10 )T T     

Table 1: Material properties of ZrO2 as functions of absolute temperature T  [7,8] 

Titanium Alloy (Ti-6Al-4V) 
Elasticity Modulus E  Pa  9 4122.55676 10 (1 4.58635 10 )T     

Poisson Ratio     40.28838235 (1 1.12136 10 )T    
Thermal Expansion Coef. a  1 K  6 6 27.57876 10 (1 0.00065 0.31467 10 )T T      

Thermal Conductivity k  J mKs  1.20947 (1 0.0139375 )T    

Density  3kg m    4429  

Specific Heat Capacity c  J kgK  4 7 2625.29692 (1 4.2238757 10 7.1786536 10 )T T       

Table 2: Material properties of Ti-6Al-4V as functions of absolute temperature T  [7,8] 

Graphically, the properties of ZrO2 and Ti-6Al-4V as functions of absolute temperature T  are shown in 
Figure 2. It is concluded that the Poisson ratio   and the density   of the materials can be considered as 
temperature-independent. On the other hand, as temperature rises the difference between the thermal expansion 
coefficient a , the thermal conductivity k  and the specific heat capacity c  of the two materials increases. 
Finally, the elasticity modulus E  is reduced at high temperatures since the materials soften, which could lead to 
reduced stresses. 
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Figure 2. Material properties of ZrO2 and Ti-6Al-4V as functions of absolute temperature T

The macroscopic effective properties inside the functionally graded layer depend on the volume fraction of 
the constituents. The volume fraction of the metal constituent mV  inside the FGM layer is supposed to be linear: 

  ,      0m
xV x x L
L

    (1)

where x  is the depth inside the layer ( 0x   at the upper surface and x L  at the lower surface). 
In this paper, the effective material properties in the FGM layer is based on the simple rule of mixture. 

Therefore, if  P T  is a temperature-dependent material property of the FGM, which has the value  cP T  in the 

ceramic material and  mP T  in the metal material, then the value of   P T  as a function of x  is given by: 

             , 1 ,      0c c m m c m
x xP x T P T V x P T V x P T P T x L
L L

        
 

(2) 

where cV  is the volume fraction of the ceramic constituent inside the FGM layer.  

2.2 The initial-boundary value problem 
The ceramic-metal functionally graded layer is initially undeformed, stress-free and has a uniform 

temperature 0 300T K . At time 0t  , the temperature of the upper surface starts to increase linearly with 
regard to time, until the temperature of the upper surface is 900uT K . Mechanically, the upper surface is free 
to deform. On the other hand, the lower surface of the layer has a steady temperature 300lT K  and it is 
mechanically fixed. 

Based on the coupled theory of linear thermoelasticity for isotropic materials, the above dynamic one-
dimensional problem is described by the following equations [9]: 
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where  ,u u x t  and   0,x T T T     are the unknown displacement and temperature fields, respectively, 

 ,x T   and  ,x T   are the Lame constants,  ,x T   is the thermal constant,  ,x T   is the 

density,  ,k k x T  is the thermal conductivity and  ,c c x T  is the specific heat capacity. 
For reasons of normalization we now introduce the following dimensionless variables:   
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(4) 

where l  and v  are a characteristic length and a characteristic speed respectively, xx  is the stress field, the 
index m  indicates that the material parameter refers to the metal material at temperature 0T , Ec


 is the 

normalized speed of the elastic dilatational wave and   is a dimensionless coupling parameter. The normalized 
formulation of the aforementioned initial-boundary value problem is given by: 

       

       

   

2

2

2 1
2 0

,      
01 1

with initial-boundary conditions

,0 0,    ,0 0,   

m m m mEm

m
m m m mKm

T T T Tu u
x x c x L l

tT c T T u k T
c x k x xc

u x u x

   


   

   
 

   
          

                      

 

  
   

  
  


   

   

       

 , 0 0,    ,0 0

,  02
0,  ,    0, 0,    , 0,    , 0

,  2
xx

x x
t t

t t L t u L t
t

 


  



  
 
              


   

 
        



(5) 

where 0   is a normalized temporal parameter and a dot above a variable symbolizes partial differentiation 
with regard to normalized time. 

It is mentioned that the stress xx  and the heat flux xq  are given by: 
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(6) 

2.3 Finite element formulation 
The initial-boundary value problem (5) is solved numerically via the Galerkin finite element method [10]. 

Linear Lagrange shape functions are used for both the displacement and the temperature variables. The finite 
element formulation for the governing equations in the initial-boundary value problem (5) has the following 
form: 
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(7) 

where 0 1 


 is the natural coordinate, ih


 is the length of element i ,  1   N
 

 is the vector of the 
linear Lagrange shape functions, and ,u θ

 
are the unknown vectors of displacement and temperature 

respectively. Furthermore, the normalized stress and heat flux are given by: 
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Assembling the element matrices equations (7) we obtain the global system of nonlinear equations in the 
matrix form: 
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(9) 

The time integration of the matrix equations (9) is done by utilizing the Newmark method  [10]. Since 
equations (9) are nonlinear, the matrices need to be recalculated at each time step. A finite element Matlab code 
is developed for the numerical analysis of the above problem of linear coupled thermoelasticity with 
temperature-dependent properties. 

3 RESULTS AND DISCUSSION 

In this section the numerical results of the initial-boundary value problem (5) are presented. The 

characteristic length and the characteristic speed are taken as 
 2

m

vm m m m

k
l

c   



 and 2m m

Em
m

v c
 




 

respectively. The total thickness of the functionally graded layer is L l , which means that the normalized total 
thickness is 1L L l 


. The resulting transient fields of temperature and stress are studied and the effect of the 

temperature-dependency of the material properties is discussed. For the numerical analysis, 1000 finite elements 
and 4000 time steps are used. 

Concerning the boundary conditions of the problem, Figure 3 shows the time evolution of the normalized 
temperature change 


 at the upper surface of the layer ( 0x 


) for 0  , 1 4  , 1 2   and 1  . The case 

0   corresponds to thermal shock conditions, where the temperature change occurs instantly. 
In the case of temperature-dependent properties, the material properties depend on the temperature field and 

consequently the distribution of the material properties in the FGM layer is different at different times. Figure 4 
shows the distribution of the material properties at time 4.00t 


 for the case of temperature-dependent and 

temperature-independent properties. This distribution is linear when temperature-independent properties are 
considered, due to the linear variation of the constituent’s volume fraction inside the FGM layer. The graphs 
shown in Figure 4 are in agreement with the graphs shown in Figure 2: when the temperature-dependency is 
considered, the modulus of elasticity E  and the thermal expansion coefficient a  are reduced, while the thermal 
conductivity k  and the specific heat capacity c  increase. The results of Figure 4 refer to the value 0  . 

Subsequently, the transient fields of temperature change 


 and stress xx


 are investigated. These fields at 
time 1.50t 


are shown in Figures 5 and 6, respectively, for the cases of temperature-dependent and

temperature-independent properties. The values 0   and 1   are considered. From Figure 5 it is concluded 
that the temperature is slightly increased for temperature-dependent properties, mainly due to the increase of the 
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thermal conductivity. On the other hand, the value of the temporal parameter   does not effect the temperature 
field. On the contrary, from Figure 6 it is deduced that the stresses increase significantly for low values of 
parameter  . Moreover,  if the temperature-dependency of the material properties is ignored then the stresses are 
overestimated, since the value of the elasticity modulus of the materials is higher at low temperatures. This result 
is more obvious when 0  . 

Figure 3. Time evolution of the normalized temperature change 


 at 0x 


 for different values of parameter   

Figure 4. Variation of the material properties in the FGM layer at time 4.00t 


, for the cases of temperature-
dependent and temperature-independent properties ( 0  ) 
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The above observations are further confirmed by Figures 7 and 8, which show the time evolution of 
temperature change and stress, respectively, at the middle of the FGM layer, when thermal shock conditions are 
considered ( 0  ). At Table 3, the maximum values of the normalized displacement u


, the normalized 

temperature change 


 and the normalized stress xx


 at position 0.50x 


 are presented for 0  , 1 4  , 
1 2  , 1  , 2   and 4  . The cases of temperature-dependent and temperature-independent material 

properties are considered. The results of Table 3 indicate that the displacements and the stresses are notably 
increased as 0  , while the temperature field is not effected by the parameter  . On the other hand, the 
calculated displacements and stresses are overestimated when the temperature-dependency of the properties is 
not taken into account, while the temperature is slightly reduced. This fact shows that, regarding the 
displacements and the stresses, the assumption of temperature-independent properties leads to conservative 
results. 

Figure 5. Variation of the normalized temperature change 


 in the FGM layer at time 1.50t 


, for the cases of 
temperature-dependent and temperature-independent properties ( 0   or 1  )

Figure 6. Variation of the normalized stress xx


 in the FGM layer at time 1.50t 


, for the cases of temperature-
dependent and temperature-independent properties ( 0   or 1  )
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Figure 7. Temporal evolution of the normalized temperature change 


 at position 0.50x 


 when 0  , for the 
cases of temperature-dependent and temperature-independent properties

Figure 8. Temporal evolution of the normalized stress xx


 at position 0.50x 


 when 0  , for the cases of 
temperature-dependent and temperature-independent properties

  0 1/4 1/2 1 2 4 

Temperature 
Dependent 
Properties 

max u


0.48 0.46 0.43 0.39 0.36 0.17 
max


 0.77 0.77 0.77 0.77 0.77 0.73 

max xx


1.05 0.95 0.81 0.56 0.31 0.06 

Temperature 
Independent 
Properties 

max u


0.55 0.53 0.50 0.44 0.38 0.19 
max


 0.71 0.71 0.71 0.70 0.70 0.66 

max xx


1.95 1.40 1.06 0.73 0.47 0.14 

Table 3: Maximum values of normalized displacement u


, normalized temperature change 


 and normalized 
stress xx


 at position 0.50x 


, for the cases of temperature-dependent and temperature-independent properties 

and for different values of the temporal parameter   
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4 CONCLUSIONS 

In this paper the resulting thermal and stress fields inside a ceramic/metal functionally graded layer subjected 
to ramp-type thermal loading at the upper surface are numerically studied employing the linear coupled 
thermoelasticity theory. In this study, the temperature-dependency of the material properties is taken into 
account. The variation of the volume fraction of the metal constituent in the FGM layer is assumed to be linear. 
A finite element code is developed for the numerical analysis of this nonlinear thermoelastic problem. 

A numerical investigation with regard to the temporal parameter   shows that the displacements and the 
stresses in the FGM layer increase significantly as the temperature change at the upper surface occurs faster. 
This is especially notable when 0  , which corresponds to thermal shock conditions. On the other hand, the 
temperature field is not effected by the parameter  . 

Furthermore, when the temperature-dependency of the properties is ignored, the calculated displacements 
and stresses are overestimated. This points out that the assumption of materials with temperature-independent 
properties leads to conservative results. 
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Abstract. A large-scale composite wind turbine blade model is designed and analyzed under different loading 
and damage scenarios to assess structural integrity. The influence of several damage patterns in conjunction 
with structural failures identification by using dynamic measurements from the structure is studied. A large-
scale wind turbine with blade span of approximately 25m is considered. In terms of design approach, the Blade 
Element Momentum (BEM) theory is promoted. There is a wide range of options in terms of materials and 
manufacturing techniques utilized in the wind turbine industry. The most common combinations include 
composite laminates with embedded threaded steel rods in the root section, connecting the blade to the hub 
through a bolted connection. Polyester, vinyl ester and epoxy resins are common, matched with reinforcing 
wood, glass, and carbon fibers. Composite epoxy glass, carbon fiber and memory foam are used here. A 
preliminary analysis for the structural health monitoring is done and several investigations are carried out to 
calculate the response of the structure under different failure scenarios. 

1 INTRODUCTION 
Wind turbines convert the kinetic energy of the wind into mechanical power and then to electricity through a 

generator. These are large rotating machines whose components, such as blades and blade joints, are subjected to 
high wind forces and other environmental phenomena that may compromise the integrity of the structure. These 
forces can limit the productive lifetime of the blades causing them to fail, subjecting the wind turbine to major 
maintenances. Indisputably, blades are critical components of the wind turbines since they suffer from fatigue due 
to the dynamic loading posed on them. The composite microstructure of blades enhances this phenomenon.  

Within the scope of the current project, a model of a composite large-scale wind turbine blade will be 
structurally analyzed under different scenarios that will assess the integrity of the build. The main focus of the 
project will be the study of the influence of several damage patterns, while the blade is in operation, in 
conjunction with structural failures identification by using dynamic measurements from the structure. In the 
baseline scenario, a large-scale wind turbine with blade span of approx. 25m, will be taken in consideration. The 
location of installation is the Mount Panachaiko, Peloponnese, Greece. 

In terms of design approach, the Blade Element Momentum (BEM) theory will be fostered. The whole idea 
behind BEM assumes that the forces acting on the operating wind turbine blades are responsible for the change 
in axial momentum of the air passing through the swept area of the rotating wind turbine blades [1]. BEM analysis 
is the combination of results from blade element theory and momentum theory. Blade element theory refers to 
the analysis of forces at a section of the blade, as a function of blade geometry, in which the blade is split into 
sections along the length of the blade and each section is analyzed separately. With BEM model, it is also 
possible to calculate the steady loads and thus also the thrust and power for different settings of wind speed, 
rotational speed and pitch angle. 

The design of the airfoil is the balanced output of two considerations that include: (i) the aerodynamic and (ii) 
the structural aspect of it. Aerodynamic considerations are the ones dictating the design of the outer shell of the 
blade while structural considerations are more vital for the design of the inner of the blade [2]. Structurally, the 
blade is typically hollow, with the outer geometry formed by two separate shells: one on the suction and one on 
the pressure side. In order to transfer shear loads, one or more structural webs of different geometries are fitted to 
support and join the two shells together (see Figure 1). 
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Figure 1 Sketches of various blade design approaches: (a) Single shear web, (b) Double shear web, (c) With 
load carrying box girder [2].

Nowadays, there is a wide range of materials and manufacturing techniques utilized in the wind turbine 
industry. The most utilized material combinations used are composite laminates with embedded threaded steel 
rods in the root section, connecting the blade to the hub in a bolted connection. Polyester, vinyl ester and epoxy 
resins are common, matched with reinforcing wood, glass, and carbon fibers. A wide range of manufacturing 
processes are also utilized in blade manufacturing, encompassing: wet lay-up, pre-preg, filament winding, 
pultrusion, and vacuum infusion (with and without secondary adhesive bonding). More details can be found in [3].

2 PROJECT DEFINITION 

2.1 Assumptions Definition 
Mount Panachaiko is the most northern mountain of the Peloponnese state area and is occupying the north-

central area of Achaia State. To have a better insight of the weather conditions that take place at Mount 
Panachaiko Mountain we accessed the National’s Observatory of Athens Database. The focus was on the annual 
accumulative results of measurements of the year 2015 since they were unshortened in comparison to 2016 data. 
Regarding the temperature data, the average max temperature was 11.7°C while the average min temperature was 
5.8 °C. The mean temperature during 2015 was 8.5 °C. In the same manner as previously mentioned, the monthly 
values of wind speed are summarized. The average wind speed has been measured to be 13.5 km/hr (3.75 m/s) 
while the strongest wind speed of the year recorded was 96.6 km/hr (26.85 m/s). The recorded weather 
conditions will be taken as reference in the context of calculating the possible values of the operating loads that 
the wind turbine blade of our design must come through. 

2.2 Nominal Loads Definition 
The use of computer analysis software such as fluid dynamics (CFD) and finite element (FEA) is now 

commonplace within the wind turbine industry [4]. Dedicated commercially available software such as LOADS, 
YawDyn, MOSTAB, GH Bladed, SEACC and AERODYN are utilized to perform calculations based on blade 
geometry, tip speed and site conditions [5]. To simplify calculations, it has been suggested that a worst case 
loading condition has to be identified compared to which all other loads may be tolerated [6]. The worst case 
loading scenario is dependent on blade size and method of control. For small turbines without blade pitching, a 
50-year storm condition would be considered as in the limiting case. For larger turbines (D > 70 m), loads 
resulting from the mass of the blade become critical and they should be considered. In practice, several load 
cases are considered with published methods detailing mathematical analysis for each of the IEC load cases [7]. 
Modern load analysis of a wind turbine blade would typically consist of a three-dimensional CAD model 
analyzed using the Finite Element Method [8]. Certification bodies support this method and conclude that there is 
a range of commercial software available with accurate results [9]. These standards also allow the blade stress 
condition to be conservatively modeled using classical stress analysis methods. Traditionally, the blade would be 
modeled as a simple cantilever beam with equivalent point or uniformly distributed loads used to calculate the 
flap wise and edgewise bending moment. The direct stresses for root sections and bolt inserts would also be 
calculated. 

2.3 Assessment of Structural Health Monitoring (SHM) implementation 
Structures, in general, confront damages due to several reasons, such as earthquakes, hurricanes, strong wind 

loads, extremely high temperatures and impact by birds. This means that a suitably defined system, which will be 
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able to monitor the structural performance of the whole structure through an automated process, is highly 
desirable if not necessary. In the particular case of the wind turbines, this need increases dramatically due to the 
fact that these structures are very often difficultly accessible (e.g. offshore structures). The Structural Health 
Monitoring (SHM) system is in fact a damage identification procedure, which helps to predict possible damages 
of the host structure and take available measures where necessary. In the case of wind turbines, a SHM system 
can prevent significant economic loss and therefore it is very popular. It consists of three main steps, and namely 
the signal monitoring, the processing, and the interpretation, and it is basically a vibration-based monitoring 
system. This lies to the fact that vibrations can be used for the detection of hidden or internal damages which are 
impossible to observe visually [8]. 

The concept behind vibration-based SHM is that the occurring failures of the structure usually affect the 
structural characteristics such as stiffness. This means that with dynamic analysis tools, such as modal analysis 
one can quantify the damage severity of the structure by its eigen-modes or eigen-values. In this project, a wind 
turbine blade, based on proposed composite materials, will be modeled based on bibliography. Furthermore, the 
structural reliability will be validated computationally using Finite Element Methods and be compared to the 
industry standards. To this extent, SHM techniques were utilized in order to detect some of the most common 
model failure scenarios [9]. 

The wind turbines' blades are manufactured using composite materials which generally improve the electrical 
conductance and/or the energy harvesting efficiency. However, composites exhibit anisotropic properties which 
makes the mechanism behind potential damages and failures complicated. Cracks, delamination of fibers and 
other failures can be caused even by a minor impact. Finally, composites are influenced by ageing and/or material 
fatigue. Structural health monitoring combines in-situ sensors with intelligent algorithms for on-line damage 
detection. This method can achieve high accuracy and reliability for damage detection at the minimum cost [10]. 

2.4 Material Properties requirements definition 
Key trade-off elements involved in wind turbine blade design regard thorough aerodynamic and structural 

analyses that dictate the shape and geometry, as well as, the materials selected in the manufacturing stage. While 
the blade geometry varies according to the physical loadings exerted on the structure and drag – efficiency 
parameters, the process of material selection considers the basic requirements, both physical and chemical, that 
the structure must meet. According to the international standards, the selection of materials for a wind turbine 
blade involves several key aspects such as high structural rigidity, resistance to torsion, fatigue & corrosion 
resistance, a lightweight structure and high temperature tolerance. Composites materials consist of two or more 
components, which are combined to produce a final product with special properties and characteristics, different 
from the individual constituents. They are composed of a matrix phase, such as polymer, ceramic or metal and a 
reinforcing phase that includes materials as carbon, glass, aramid (Kevlar™) and silicon carbide fibers or 
particulates. The advantages provided by the high-performance fiber – composites are numerous, including the 
ability to tailor lay-ups for optimum strength and stiffness, improved fatigue life, corrosion resistance and, with 
good design practice, reduced assembly costs due to fewer parts and fasteners. Furthermore, the specific strength 
and specific modulus of high strength fiber composites is translated to great weight and materials savings [11]. 
Common composite systems utilized in wind turbine blade manufacturing include glass and/or carbon fibers as 
the reinforcement agent and thermosetting polymer matrices, e.g. epoxies, polyester, etc. 

Glass fiber composites are the most predominant selection for wind turbine blade applications. There are 
various glass fiber varieties (density ranging between 2.44-2.72 g/cm3), each exhibiting certain physical 
properties that answer the needs of a specific type of applications. A typical glass fiber is based on silica (SiO2), 
with additions of certain oxides of boron, sodium, calcium, iron and aluminum that produce different types of 
glass fiber. The content of these oxides in the glass structure affects both its physical and chemical properties 
and, thus, the different glass fiber types are utilized in various applications depending on the application and the 
surrounding environment.  

The most common type of glass fiber used for wind turbine blades is E-type with fiber diameter of 10-35 μm. 
In Table 1, the major physical parameters for this type of glass fibers are provided. For applications in wind 
turbine blade sector that higher rigidity is required H-type of glass fiber can be used. This kind of glass fiber 
provides stiffness at around 82-86 GPa. Carbon fibers are typically 7-8 μm in diameter. They consist of small 
crystallites of “turbostatic” graphite, one of the allotropic forms of carbon [12].  
The use of sandwich composites (top/bottom skin and core) instead of monolithic laminates for several parts of 
wind turbine blade that are loaded in compression (e.g. the flange or spar cap), will add additional buckling 
capacity to the structure by keeping the lightweight design requirement. Their skin part of a sandwich composite 
in the wind energy industry is comprised of composites of either glass or carbon fibers. For the core selection, 
there are two general options that include homogeneous or non-homogeneous support structures. The first, as 
shown in Figure 2 below, is comprised of a solid support structure, such as foam and balsa that relies on the core 
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material’s physical properties. The second core selection can be support structure of a non-solid geometry, such 
as honeycomb core and corrugated core that best fits the application’s needs. 

E=76 GPa 

ρ=2.54 g/cm3 

σ ≈ 3.45 GPa 

Tmax≈550 ℃ 

α=4.9×10-6 Κ-1 

Table  1 Properties of E-type Glass fiber. 

Figure 2 Sandwich core materials and alternatives [12]. 

A major disadvantage of utilizing sandwich composites compared to monolithic ones is that the former is 
more prone to delamination and failure due to the presence of large weak interfaces between adjacent materials 
with very different stiffness and strength properties. This implies that sandwich composites are sensitive to failure 
by interlaminar shear or through the application of concentrated loads, at joints and points or lines of support, 
and due to localized effects induced in the vicinity of geometric and material discontinuities. Therefore, severe 
through-thickness shear and normal stresses are induced.  

A way of improving the damage tolerance, as well as, the skin/core interface properties is by developing 
composite sandwich systems with structural elements in the form of fibers, pins, stitches, or even structural plate 
elements extending in the through-thickness direction of the sandwich laminate. This kind of strategy, of through-
thickness elements, will provide strong and stiff connections between core and the skin laminates, adequate load 
redistribution in the occurrence of local damage and in-plane stiffness and strength properties at the sandwich 
composite part. 

3 THE WIND TURBINE BLADE DESIGN 

Some of the airfoil families utilized for horizontal axis wind turbines (HAWTs) have included the NACA 
44XX, NACA 23XXX, NACA 63XXX, and NASA LS series airfoils. All the aforementioned airfoils suffer 
noticeable performance degradation from roughness effects resulting from leading-edge contamination. It has 
also been noticed that annual energy losses due to leading-edge roughness are greatest for stall-regulated rotors. 
The loss is proportional to the reduction in maximum lift coefficient Cl, max along the blade. The airfoil families 
are classified either as thick or thin. Thick airfoil families with thickness between 16% and 21%, are commonly 
found in stall-regulated wind turbines. Their utilization indicates that the tip-region airfoils are thick enough to 
accommodate overspeed-control aerodynamic devices and to reduce the blade weight. On the other hand, airfoil 
families that are labeled are thin with thickness between 11% and 15%, are more suited to variable-pitch or 
variable-rpm turbines that use full-span blade pitch. As a general rule, greater thickness is opted for the blade root 
airfoils to withstand structural and dynamic considerations. The blade-root airfoil thickness falls in the range of 
18% to 24%. It has been assessed that thicknesses greater than 26% result to poor performance characteristics. In 
1992, an airfoil family (Figure 3) was designed for extra-large blades for turbines rated at 400-1000 kW. This 
family, which is included in stall-regulated rotors, is composed of the S816, S817, and S818 airfoils.The tip-
region airfoil has a Cl, max of 1.1 and a thickness of 16%. The primary outboard airfoil has a Cl, max of 1.2 
and a thickness of 21% while the root airfoil has Cl, max of 1.3 and a thickness of 24%.
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Figure 3 Illustration of airfoils location along the blade span and illustration of different pitch angles of airfoils 
with reference to the root of the blade. 

4 ANALYSES AND APPLICATIONS ON THE BLADE FOR DAMAGE IDENTIFICATION 

In this section, the applications which were studied are discussed in detail. At first, some information about 
the smart composite materials which were chosen for the structure are provided. Then, the details of the analyses 
which were carried out along with the tools which were used for the identification of two different cracks are 
given. 

4.1 Wind turbine blade materials 

The structure has a sandwich form not only concerning the external surfaces, but and the internal spars as 
well. The thickness of the structure differs from point to point. At the spars, where larger stiffness is needed we 
assume that more material is necessary, while the external surfaces are thinner, thus less material is used. More 
specifically, the thickness at the different surfaces vary from 0,035 m to 0,1 m. 

More specifically, two different material formulations were considered here. The first one is the so-called “As 
Is model” which consists of an isotropic elastic PVC foam as the core material of the sandwich, and an Epoxy E-
Glass material for the external surfaces. The total mass of the structure in this case is 4.619,63 kg. The second 
model which is considered here, the so-called “To Be model”, consists of the same PVC foam material for the 
core of the structure, however, the external material is chosen to be an orthotropic elastic Epoxy Carbon material 
with enhanced characteristics in terms of electrical conductance, i.e. in terms of sensing ability, which is very 
useful in these applications. The total mass of the blade in this case is 3.686,39 kg. The characteristics and 
critical values of the materials which were used, are given in detail below. The isotropic elastic PVC foam, which 
is used for the core of the blade, is an elastic material of density which equals to 80 kg/m3. The detailed material 
properties of this foam are given in the next table. 

Density [kg/m3] 80 
Young's Modulus [Pa] 1,02 x108 
Poisson's Ratio 0,3 
Bulk Modulus [Pa] 8,5 x107 
Shear Modulus [Pa] 3,9231 x107 

Table 2 PVC foam material properties. 

4.2 Static Analyses 

In the present investigation, the blade structure is discretized using quadrilateral finite elements creating a 
mesh which consists of 22.767 nodes and 19.549 elements. One static analyses for each model, i.e. the As Is 
model and the To Be model, are carried out. 
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Figure 4 Wind turbine blade mesh 

Figure 5 Wind turbine blade's spars mesh 

A simple two-point loading at two different points, i.e. at two different sub-surfaces of the lower surface is 
considered. The loading is applied in a ramp form at the direction of the Z axis and the magnitude of the force at 
the two sub-surfaces is equal to 1 x105 N and 4 x105 N respectively (see Figure 6). 

Figure 6 Two-point loading at the suction side of the blade (1st loading scenario). 

The results of the analysis for the As Is model, for the five loading scenarios are presented in Figures 7-9 
below. 

Figure 7 Deformations [m] of the blade from the static analysis of the As Is model for the 1st loading scenario 
(Two-point loading at the suction side of the blade).  
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Figure 8 Von-Mises stresses [Pa] of the blade from the static analysis of the As Is model for the 1st loading 
scenario (Two-point loading at the suction side of the blade). 

Figure 9 Von-Mises stresses [Pa] of the spars from the static analysis of the As Is model for the 1st loading 
scenario (Two-point loading at the suction side of the blade). 

The results of the analysis for the To Be model, for the five loading scenarios are presented in the Figures 10-
12 below. As can be easily seen, the stresses are concentrated at the location of the spar and mainly across its 
main direction. More specifically, one can observe that the spars receive stresses at the vertical edge of the spar, 
as well as near the upper and the bottom area near the fixed end respectively. As for the deformations, one can 
observe that the maximum deformation is 1.79 m, which is clearly lower than the model with the E-glass fibers. 
As for the Von-Mises stresses, one can clearly observe that they appear mostly at the left side of the blade and in 
the front corner (exactly at the point where the internal spar ends). This is a critical point for the structure, as 
many failures may appear there. 

Figure 10 Deformations [m] of the blade from the static analysis of the To Be model for the 2nd loading scenario 
(Two-point loading at the pressure side of the blade). 
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Figure 11 Von-Mises stresses [Pa] of the blade from the static analysis of the To Be model for the 1st loading 
scenario (Two-point loading at the suction side of the blade). 

Figure 12 Von-Mises stresses [Pa] of the spar from the static analysis of the To Be model for the 1st loading 
scenario (Two-point loading at the suction side of the blade). 

4.3 Damage identification and SHM 

As already discussed previously, modal analysis tools can be very useful for damage identification in smart 
composite structures. This is due to the alteration of the structural dynamics which is imposed by the damages or 
the failures. More specifically, the mass and the stiffness of the structure are altered due to the damage, and thus 
the eigen-frequencies change indicating the existence of the damage. 

This means that the first step for the damage identification is the conduction of a complete modal analysis 
before and after the appearance of the damage (crack) followed by a steady state response analysis. In the present 
investigation, three different cases are studied; the undamaged model and two models with different cracks, i.e. 
Crack_1 and Crack_2 as shown in Figure 13) are studied. The specific cracks were selected as two of the most 
popular damages that maintenance crews come across. 

Figure 13 The model with the first and the second crack near the root and the trailing edge respectively 
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In order to study the behavior of the blade before and after the appearance of the cracks we focus on the first 
six eigen-modes of the structure for the two formulations, i.e. the As Is (E-Glass) and the To Be (E-Carbon) 
model. The analysis, which was carried out, was the steady-state response analysis, where a loading of 100 kN 
was applied to the upper surface and the response of the structure in the frequency domain was taken. The 
response of the structure in case of a failure or damage can be obtained and studied. In the present investigation 
three different cases are considered, as described above. The results of the steady-state response for the three 
cases, i.e. for the healthy model and the models with the two cracks for the As Is formulation are shown in the 
following diagram. 

Figure 14 Steady-state response for the three cases (healthy, Crack_1, Crack_2) for the As Is model. 

It is shown that the two cracks play significant role to the deformation of the structure. At the first eigen-
mode, one can observe that the deformation can be almost doubled for the case with the Crack_1 in comparison 
with the healthy model, while at the third eigen-mode the case of the Crack_2 has four times higher deformation 
compared to the healthy case. It is notable that at other modes, i.e. at the fifth, the healthy case presents higher 
deformation compared to the two damaged cases. The results of the steady-state response for the three cases, i.e. 
for the healthy model and the models with the two cracks for the To Be formulation are shown below. 

Figure 15 Steady-state response for the three cases (healthy, Crack_1, Crack_2) for the To Be model. 

From the diagram above, one can clearly observe that the two cracks influence the deformation of the structure. 
More specifically, at the first eigen-mode, one can observe that the deformation can be almost doubled for the 
case with the Crack_1 in comparison with the healthy model, while at the third eigen-mode in the case of the 
Crack_2 has three times higher deformation compared to the healthy case. Moreover, it is also interesting that at 
other modes, i.e. at the fifth, the healthy case presents higher deformation compared to the two damaged cases. 
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5 CONCLUSIONS 

According to the design, as well as the static analyses which were carried out, it is clearly shown that the wind 
turbine blade has very good behavior and durability for the loading scenarios which were carried out for both 
cases (As is and To be models). The carbon model appears to be efficient in terms of durability, as well as to the 
displacements (almost 1/3 in contrast to the E-glass model for the same loadings). Moreover, it offers a much 
lighter structure (nearly 1000 kg less), however the cost increases dramatically. 

Based on the static analyses of the present study, a great concentration of stresses near the fixed end of the 
structure (tip of spar) is observed. According to the literature, this point is more vulnerable compared to others, 
as damages or failures appear frequently. As for the structural health monitoring of the structure, one can observe 
that the modification of the structural characteristics of the structure in both cases (As Is and To Be model) brings 
upon an alteration to the displacement field as shown from the diagrams in the frequency domain, under dynamic 
loadings. This practically means that in case of use of accelerometers, relative alterations to the frequency 
diagrams will indicate the existence of damages or failures. 

Future work could be the modification of the inner design of the structure using topology optimization tools, 
for the reduction of the weight and the improvement of the structural behavior, not only for the carbon, but for 
the E-glass as well, which in turn is much less expensive. Wireless sensors can eliminate wiring and its problems. 
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Abstract. Hybrid optimization schemes have been used in many engineering applications over the last decades. 

In particular, by combining two or more algorithms, the main aim of hybrid optimizers is to alleviate the 

drawbacks and maximize their efficiency and accuracy of standard approaches. In this manner, a substantial 

improvement of original algorithms performance is achieved (i.e., achievement of the global optimal solution 

and/or a faster convergence rate). Hence, to maximize the advantages of basic Cuckoo Search (CS) and Bird 

Swarm Algorithm (BSA), a hybrid approach, namely CS-BSA is formulated in the present study. More 

specifically, critical parameters of BSA are introduced into the CS algorithm to improve the convergence 

towards optimum solution. Four engineering benchmark problems are used to prove the efficiency of the 

proposed hybrid CS-BSA approach, which is compared with the original CS algorithm and two other popular 

nature-inspired optimizers: Particle Swarm Optimization (PSO) and Differential Evolution (DE). The obtained 

results illustrate that the hybrid CS-BSA optimization scheme is superior to the other algorithms regarding the 

convergence rate and the final solution. 

1 INTRODUCTION 

Generally, engineering optimization problems are related to the process of achieving the best possible 

solution with the available resources. A set of design variables and complex functions (objective(s) and 

constraints) consist the main features of these tasks. In particular, equality or inequality constraints can take the 

form of simple bounds and/or nonlinear expressions. Usually these functions are highly nonlinear. For this 

reason, advanced computational tools are used to analyze multiple designs rapidly and accurately. Typically, the 

mathematical interpretation of a single-objective constrained optimization problem can be described as follows: 

        

               
 

                              (1) 

                  

                      

where, s is the vector of design variables, li, ui, refer to the lower and upper bounds of the corresponding design 

variable, si; F(s) is the objective function to be minimized; gj(s) and hj(s) are the constraint functions (equalities 

and inequalities, respectively). 

During the recent years, metaheuristic optimization methods gained popularity compared to mathematical 

approaches due to their flexibility and gradient-free nature. In addition, these schemes are directly focused on 

input and output of each problem. Generally, metaheuristic algorithms imitate natural phenomena and biological 

processes. In other words, they follow the best characteristics observed in nature, thus, they have been proven 

extremely efficient [1]. They can be categorized into three main classes: evolution-based, physics-based, and 

swarm-based optimization methods [2, 3]. Τhe more popular evolutionary-based algorithms are: Genetic 
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Algorithms (GA) [4], Differential Evolution (DE) [5] and Evolution Strategies [6]. On the other hand, the 

optimization techniques that are included in the physics-based category are: Simulated Annealing (SA) [7], 

Gravitational Search Algorithm (GSA) [8], etc. 

For the purposes of this study the emphasis is given on the last class, namely swarm-based optimizers. The 

intelligence of swarms, herds or flocks is represented by these techniques. The main feature of swarm-based 

optimization is related to the collective behavior and the instinct of a group of bird species. Particle Swarm 

Optimization (PSO) [9], Cuckoo Search (CS) [10], Bat Algorithm (BA) [11], and Bird Swarm Algorithm (BSA) 

[12], are among the most well-known optimization algorithms that belong to this category. 

In general, evolutionary bio-inspired optimization methods present various deficiencies. More specifically, a 

convergence to the global optimum solution is not guaranteed. On the other hand, many optimization methods 

converge fast, but they are prone to be trapped in local optima. Additionally, their efficiency mainly depends on 

the selection of the initial design set and fine tuning of basic parameters.   

For this reason, hybrid optimization schemes have been used by combining two or more optimization 

algorithms. The aim of hybrid optimizers is to alleviate the drawbacks and maximize the advantages of standard 

schemes. In this manner, the improvement of original algorithms’ performance, i.e., the achievement of the 

global optimal solution and a faster convergence rate can be accomplished. 

In this work, a novel hybrid optimization approach that integrates two swarm-based techniques, namely CS 

and BSA algorithms, is presented. More specifically, critical parameters of BSA are introduced into CS 

algorithm to enhance its efficiency. For this reason, several modifications are made to the original CS code 

provided in MATLAB [13, 14]. Subsequently, the results of hybrid CS-BSA algorithm are tested against four 

popular benchmark examples considering both optimum solution and convergence rate. 

The rest of the paper is organized as follows. Section 2 presents the main characteristics of CS algorithm. 

Analogously, Section 3 illustrates the most important elements of BSA. The structure of hybrid CS-BSA is 

presented in Section 4. Subsequently, four benchmark examples that have been used in the present investigation 

are described in Section 5. The comparative results are provided in Section 6. Finally, Section 7 presents the 

conclusions of this study. 

2 CUCKOO SEARCH ALGORITHM 

CS is an optimization technique based on the brood parasitism of some cuckoo species and it is enhanced by 

Levy flights scheme [15]. For the sake of simplicity, three idealized rules will be used as follows [10, 16]: 

- Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest. 

- The best nests with high-quality eggs will be carried over to the next generation. 

- The number of available host nests is fixed, and the egg laid by a cuckoo is discovered by the host bird 

with a probability         . In this case, the host bird can either get rid of the egg or simply abandon 

the nest and build a completely new nest. 

The replacement of a fraction    of the n host nests with new nests (i.e., with new random solutions) can be 

applied as a further approximation [10, 16]. The value of the objective function is proportional to the quality or 

fitness of a solution in the case of a maximization problem. Regarding the implementation of the algorithm, the 

simple representation that each egg in a nest represents a solution and that each cuckoo can lay only one egg 

(thus representing one solution) can be applied. The objective is to use the new and probably better solutions 

(cuckoos) to replace a not so good solution in the nests. It is obvious that CS algorithm can be extended to more 

complicated cases, where each nest has multiple eggs that represent a set of solutions. Herein, the simple 

approach is followed, where each nest is associated to a single egg. 

A balanced combination of a local and a global explorative random walk is used by the CS algorithm, and is 

also controlled by a switching parameter   . The local random walk is represented through the following 

formula [16]: 

                       (2) 

where   
  and   

  are two different solutions selected randomly by arbitrary permutations,      is a Heaviside 

function,   is a random number drawn from a uniform distribution, and   is the step size. The entry-wise product 

of two vectors is represented by  . 

In contrast, Levy flights (see Figure 1) are used for the global random walk [16]: 
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                (3) 

where: 

       
         

  

 
 

 

 

    
(4) 

while     is the step size scaling factor, which should be associated to the scale of each problem at hand. 

Usually,          , where L is the characteristic scale of the examined problem. In some cases, using 

           can be more effective and avoid flying too far. Different   values can also be used for these 

updating equations, which lead to parameters    and   . For simplicity, these values are set equal, i.e.,       . 

Figure 1. A 2D example of Levy flights [17] 

Equation (2) is a stochastic uniform equation related to random walk. Generally, random walk is a Markov 

chain whose next location depends only on the current state and the transition probability. However, the far field 

randomization should generate a substantial fraction of the new solutions, and their locations should not be too 

close to current best solution. This is necessary for the validity of the hypothesis that the system will not be 

trapped in a local optimum [10, 13]. 

Considering implementation aspects, two steps are required for the generation of random numbers when 

implementing Levy flights: the generation of steps which fulfill the chosen Levy distribution and the selection of 

a random criterion [16]. A uniform distribution drives the generation of a direction, and the generation of steps is 

a tough part. The so-called Mantegna's algorithm for a symmetric Levy stable distribution is the most efficient 

way regarding the steps management. In this scheme, the step size   can be evaluated using two Gaussian 

distributions   and   through the following mathematical formulation [18]: 

  
 

      
 (5) 

where: 

                     

while          means that the samples are drawn from a Gaussian normal distribution with a zero mean and a 

variance of   . The variance is obtained as follows: 

    
      

           
 
         

         
   

(6) 

According to Mantegna [18], the random samples which follow the required distribution can be correctly 

produced by this algorithm.  

3 BIRD SWARM ALGORITHM 

The BSA algorithm [12] is a bio-inspired optimization algorithm based on the social behavior of bird 

swarms. More specifically, the behavior of birds can be divided into three main categories: flight behavior, 

vigilance behavior and foraging behavior. Due to social interactions, the birds can escape from the predators and 

forage for food. Therefore, in this way they have a high chance of survival. To simplify the aforementioned 

social behavior of bird swarms, five idealized rules are considered [12]: 

- Rule 1: The foraging behavior and the vigilance behavior can be switched by each bird. A stochastic 
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decision models the case whether the bird forages or keeps vigilance. 

- Rule 2: In the case of keeping vigilance, each bird would try to move towards the centre of the swarm. The 

interference caused by the competition among the swarm plays the key role to this behavior. The centre of 

the swarm would be more likely to be occupied by the birds having the higher reserves. In contrast, the 

birds with the lower reserves would be more likely to lie further from the centre of the swarm. 

- Rule 3: In the case of foraging behavior, each bird's and swarm's previous best experience regarding food 

patch is recorded and updated. This experience can also be used for food searching. In addition, social 

information is shared among the whole swarm. 

- Rule 4: Birds tend to fly to another site periodically. In this manner, birds’ behavior can switch between 

scrounging and producing. A producer is the bird that contains the highest reserves, while a scrounger is the 

bird with the lowest reserves, respectively. When birds contain reserves between the lowest and highest 

level, they would randomly choose whether to be a scrounger or a producer. 

- Rule 5: Scroungers would randomly follow a producer to search for food, while producers would actively 

search for food. 

3.1 Flight behavior 

The threat from possible predators, foraging and any other reasons cause birds to fly to another site, where 

they would continue to search for food. The species that forage for food are the producers, while other birds, 

namely scroungers, try to feed from the food reserves that are already gathered by the producers. Thus, Rule 4 

separates the producers and the scroungers from the bird swarm. The subsequent equations describe the behavior 

of the producers and the scroungers, respectively: 

    
                      (7) 

    
                                (8) 

where,            is a Gaussian distributed random number with mean 0 and standard deviation      
                                denotes that the scrounger would follow the producer to forage for food. 

3.3 Vigilance behavior 

With respect to Rule 3, birds would compete to each other when moving to the centre of the swarm. For this 

reason, each bird would move towards the centre of the swarm indirectly. The formulation of these motions is 

the following: 

    
                                                         (9) 

           
     

       
    (10) 

           
          

             
 

       

       
  (11) 

where,         is a positive integer, that is randomly chosen between 1 and  ,    and    are two positive 

constraints in [0,2],       is the ith bird's best fitness value and        denotes the sum of the swarms' best 

fitness value,   that is used to avoid zero-division error, represents the smallest constant in the computer. Finally, 

      is the jth element of the average position of the whole swarm. 

3.3 Foraging behavior 

According to Rule 2, each bird searches for food using its own experience as well as the experience of the 

whole swarm. The mathematical formulation of this rule is as follows: 

    
                                                     (12) 

where,            ,           are uniformly distributed numbers in (0,1),   and   are two positive numbers 

that can be used as cognitive and social accelerated coefficients,      is the best previous position of the ith bird 

and    is the best previous position within the swarm. 
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4 HYBRID CS-BSA ALGORITHM 

The formulation of the hybrid CS-BSA approach will be described in this section. As aforementioned, critical 

parameters of BSA are introduced into the CS algorithm to improve its convergence towards the global optimum 

solution. For this reason, the MATLAB platform [14] to implement both algorithms is used, thus, the equations 

below are transformed into the programming style. More specifically, the first improvement is related to the 

replacement of the fixed value for the probability of CS (pa=0.25), with the probability of foraging for food of 

BSA, plus a ratio of the probability divided by the calculation time:  

   
  

 
 

                      

 
(13) 

where,    is the probability of an alien egg to be found by the host bird, and   is the calculation time. 

In addition, the second modification of the proposed hybrid optimization technique is related to the 

replacement of Levy flights scheme of the standard CS algorithm, with the flight behavior of birds as scroungers. 

Therefore, the mathematical equation introduced into the formulation of the classic CS algorithm is the 

following: 

                                                             (14) 

where,    is a random initial solution,        is a random integer number,                 denotes that the 

scrounger would follow the producer to forage for food, and      represents the new solution. 

Subsequently, the MATLAB code of the hybrid CS-BSA approach is implemented and tested using popular 

constrained engineering examples to validate its efficiency compared to standard approaches. 

5 BENCHMARK PROBLEMS 

This section presents the main characteristics of some well-known engineering applications, namely the 

optimization of: tension/compression spring, speed reducer, pressure vessel and three-bar truss, which have been 

solved by all types of the well-known optimization techniques (GA, PSO, SA, etc) in many relevant studies. 

Certainly, more such benchmark examples can be found in the literature, however, only the aforementioned ones 

are presented herein due to space limitations. 

5.1 Tension/compression spring 

The minimization of the weight of a tension/compression spring was introduced by Belegundu [19] and 

Arora [20]. This optimization example is subjected to constraints on minimum deflection, maximum shear stress 

and geometrical bounds. In addition, three design variables: the length (L), the wire diameter (w), and the mean 

spring diameter (d) are included in the formulation: 

                          

subject to: 

     
   

          

     
       

   
   

   
      

 
     

   
       

            
 

 

           

with the corresponding bounds: 

                              . 

5.2 Speed reducer 

Optimization of a speed reducer is one of the most challenging optimum design problems [21], due to the fact 
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that seven design variables and eleven constraints are included in the formulation. The objective of this example 

is the minimization of weight. The constraints are related to the surface stress, the bending stress of gear teeth, 

the transverse deflections of hafts caused by the transmitted force, and the stresses in shafts. Subsequently, the 

design variables are: the face width (b), the module of teeth (m), the number of teeth on pinion (z), the length of 

shafts 1 and 2 between bearing (l1, l2), and the shaft diameters 1 and 2 (d1, d2). Therefore, the mathematical 

formulation is: 
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The bounds on the design variables are the following: 

                                                                          

5.3 Pressure vessel 

The scope of this problem is the minimization of the total cost (including single 60
o
C material welding and 

metal forming costs) of a cylindrical pressure vessel. The design variables are: the thickness (Ts), the thickness 

of the head (Th), the inner radius (R) and the length (L) of the cylindrical section of the vessel. Note that 

thickness design variables can take discrete integer values that are multiples (in the range of 1 to 99) of 0.0625 

inch. Therefore, the mathematical formulation of the optimization problem in this case study is as follows [23]: 

                                         
          

          
   

subject to: 
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where: R≥10 in and L≤ 200 in. 

5.4 Three-bar truss 

Despite its structural simplicity, the optimization of a three-bar truss [22] is a difficult problem due to its 

complex nonlinear constraints. In particular, the volume of a three-bar truss is to be minimized, subjected to 

stress constraints for all its members, with two continuous design variables, namely the cross sectional areas: A1 

and A2 (due to symmetry A3=A1). The mathematical interpretation of this optimum design engineering 

application is as follows [23]: 

                              

subject to: 

   
       

    
       

     

   
  

    
       

     

   
 

       
     

where: 

                     

6 RESULTS 

The results obtained by applying the different optimizers for the four case studies are briefly presented in this 

section. In particular, the results for each of the examined benchmark problems of the hybrid CS-BSA are 

compared with those derived from standard CS, PSO and DE. More specifically, except from the best optimal 

solutions, the final values of the design variables as well as the violation of the constraints allowable limits are 

also examined. Additionally, a separate analysis is provided that illustrates the convergence rate towards 

optimum solution for each optimization algorithm for all benchmark problems.  

6.1 Optimization calculations 

In Table 1 the optimization results for the tension/compression spring design problem are presented. 

Evidently, the hybrid CS-BSA algorithm provides the best optimum solution in combination with the fulfillment 

of constraint variables. It can be noticed that in standard CS and PSO some constraints are violated. In contrast, 

the DE algorithm produces the same results as the hybrid approach. 

Hybrid CS-BSA Standard CS PSO DE 

w 0.05168 0.056585 0.06004 0.0517 

d 0.3567 0.48624 0.593084 0.3567 

L 11.289 6.4022 4.47318 11.289 

g1 7.976e-9 0.9999
a
 0.99966

α
 -2.22e-16 

g2 -5.177e-10 -0.9999 -0.99270 0 

g3 -4.0538 -207.1801 -30.8506 -4.0538 

g4 -0.72773 0.191339
a
 -0.2675 -0.7273 

f(w,d,L) 0.012665 0.013081 0.0131022 0.012665 
a
 Violated sets 

Table 1. Optimization results for tension/compression spring problem 

Table 2 presents the results for the speed reducer design problem. As aforementioned, this constrained 

engineering design example is one of the most challenging problems due to the large number of design variables 

and constraints. Nonetheless, hybrid CS-BSA, CS and DE produced the same results with respect to the optimum 
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solution. On the other hand, the solution of PSO is slightly different, while a constraint violation is also observed 

in this case. 

Hybrid CS-BSA Standard CS PSO DE 

b 3.5 3.5 3.5325 3.5 

m 0.7 0.7 0.7462 0.7 

z 17 17 18.89 17 

l1 7.3 7.3 7.5733 7.3 

l2 7.71389 7.71389 8.0837 7.7139 

d1 3.34336 3.34336 3.3796 3.3434 

d2 5.28535 5.28535 5.3878 5.2854 

g1 -0.073915 -0.073915 -0.4026 -0.073915 

g2 -0.198 -0.198 -0.636 -0.198 

g3 -0.49505 -0.49505 -0.654 -0.49505 

g4 -0.9046 -0.9046 -0.9304 -0.9046 

g5 -5.107e-15 -8.312e-9 -0.0287 -4.3415e-9 

g6 -8.4377e-15 -2.5095-8 -0.0709 -7.9331e-8 

g7 -0.7025 -0.7025 -0.5604 -0.7025 

g8 -4.3299e-15 -2.961e-9 0.0297
α
 -1.482e-8 

g9 -0.58333 -0.58333 -0.5953 -0.58333 

g10 -0.0527333 -0.0527333 -0.0621 -0.0527333 

g11 -9.992e-16 3.945e-17 -0.038 -6.6321e-8 

f(b,m,z,l1,l2,d1,d2) 2333.4479 2333.4479 2399.248 2333.448 
a
 Violated sets 

Table 2. Optimization results for speed reducer problem 

The pressure vessel design problem is the next benchmark test used in this study. According to Table 3, 

hybrid CS-BSA, standard CS and DE led to the same results, in contrast to PSO algorithm which provides a 

local optimum. Finally, with respect to the last case study, Table 4 illustrates that all optimization algorithms 

provide the best optimum design for the three-bar truss, with identical results (except from PSO).  

Hybrid CS-BSA Standard CS PSO DE 

Ts 0.7781686 0.7781686 0.842 0.7782 

Th 0.3846492 0.3846492 0.4161 0.3846 

R 40.31962 40.31962 43.6443 40.3196 

L 200 200 158.3782 200 

g1 0 1.281e-12 0.00033 -3.8858e-15 

g2 2.77556e-16 -2.084e-11 0.00016 -1.5543e-15 

g3 4.6566e-10 -0.0001 0 -2.5145e-8 

g4 -40 -40 -81.6217 -40 

f(Ts,ThR,L) 5885.3328 5885.3328 6002.9301 5885.3328 

Table 3. Optimization results for pressure vessel problem 

Hybrid CS-BSA Standard CS PSO DE 

A1 0.78868 0.78868 0.78866 0.7887 

A2 0.40825 0.40825 0.40824 0.4082 

g1 2.22045e-16 1.287e-13 0 0 

g2 -0.267949 -0.267949 -0.2679 -0.267949 

g3 -28.9904 -28.9904 -28.99 -28.9904 

f(A1, A2) 263.8958 263.8958 263.8941 263.8958 

Table 4. Optimization results for three-bar truss problem 

Hence, concerning the performance of the hybrid CS-BSA towards optimum solution, it can be stated that in 

most of the examined benchmark problems it is better compared to the standard optimizers, since it combines 

finding the best optimum solution (i.e., by avoiding to get trapped in local optima), while achieving the best 

fulfillment of constraints. 
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6.2 Convergence histories 

Figure 2 depicts the convergence histories for all optimizers for every benchmark problem. More specifically, 

the graphs represent the best objective function value in each optimization cycle as well as the number of 

iterations needed by the algorithms to reach the optimum solution. It can be observed that in most cases the 

hybrid CS-BSA algorithm exhibits much faster convergence compared to standard CS, PSO and DE approaches. 

Thus, it is a strong indication that the hybrid CS-BSA formulation can be considered as a robust and 

computationally efficient optimizer for complex and challenging engineering problems. 

Figure 2. Comparison of optimizers’ convergence histories: (a) Tension/compression spring problem; (b) 

Speed reducer problem; (c) Pressure vessel problem; (d) Three -bar truss problem 

7 CONCLUSIONS 

In this paper a hybrid CS-BSA optimization algorithm has been proposed. Generally, both optimization 

techniques are based on nature-inspired, metaheuristic schemes that have been used in various engineering 

applications. In the presented hybrid scheme, certain critical parameters of the BSA algorithm were introduced 

into the CS algorithm to improve its convergence rate towards the optimal solution. Four popular engineering 

benchmark problems were examined in the present investigation to validate the efficiency of the hybrid 

approach. The optimization results in terms of the optimum solutions and convergence rate for each problem 

were presented and compared with those obtained using other bio-inspired optimizers (CS, PSO and DE).  

The following preliminary conclusions can be derived from this study: 

(a) Hybrid CS-BSA algorithm can be efficiently used in simple as well as complex engineering 

applications. 

(b) In the majority of the examined benchmark problems the hybrid CS-BSA algorithm achieved faster 

convergence than the standard CS, PSO and DE optimizers. 

(c) In addition, when the size of the problem is increased (i.e., speed reducer design), the hybrid CS-BSA 

approach was found to be more efficient. 

Certainly, further investigation regarding the effectiveness of the proposed scheme has to be performed, 

including its application in large-scale real life engineering problems, which is currently under development. 

(a) (b) 

(c) (d) 
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Abstract. Since sustainable energy production has become essential in order to confine the Greenhouse effect 

consequences, the number of wind farm installation will continue to rise. In addition, since the tower of on-shore 

wind power generators is about one third of the initial construction cost, there is additional investigation needed 

to optimize the tower configuration, aiming in eliminating the initial cost and the material used. To this end, and 

towards taking advantage of the higher energy potential in greater heights, the wind converters’ tower concept 

needs to be configured to be lighter and taller. Getting inspiration from telecommunication masts that are 

constructed as lattice towers and taking into account certain transportation restrictions of classic tubular wind 

tower subparts, the solution of lattice wind turbine towers is implemented aiming to achieve greater tower 

heights. The structural behavior of telecommunication masts has been investigated in the work of Tsitlakidou et 

al. and Efthymiou et al. , mainly concentrating on towers consisting of standard L shaped cross-sections 

fabricated in the factory and mounted on site. For wind converters, the scale of the lattice structure capable of 

supporting the weight and function of the nacelle is way outside the conventional industrial steel profiles. The 

lattice tower proposed to accommodate the wind converter has a form of a truncated cone with a square cross-

section. This type of tower is a statically determinate system, composed of a certain number of discrete structural 

sub-systems, each with a certain function and applicability. These sub-systems are: the legs, the bracing trusses 

on the faces, horizontal braces and secondary bracings arranged in the plane of the face bracing trusses and 

outside (hip braces). All the aforementioned structural sub-systems serve for a particular role in the load 

transfer mechanism of the lattice tower and since the whole structure is considered a structurally determinate 

system, the axial stresses of the members can be determined by closed form expressions. The present paper 

addresses the stability performance of a lattice steel wind turbine tower, examining alternative solutions of 

bracings. More specifically the tower has the same height of an equivalent tubular one and bears the same 

loading. An algorithm has been elaborated in Mathematica software   that uses an iterative procedure to design 

the tower members, the need of secondary and hip bracing and evaluates the total material used. The iterative 

procedures solves the material optimization problem and provides valuable feedback on the effect of secondary 

bracings on the economy of the material and the tower’s structural robustness. 

1 INTRODUCTION 
The fossil fuels shortage and the CO2 that are exacerbating the greenhouse effect have led to the expansion of 

renewable energy sources use for energy production. To this end, the European Commission has established the 
European Union Renewable energy directive accepted by all member States, setting a target of 20% final energy 
consumption produced by renewable sources by 2020 [1]. Wind energy has been proved as one of the most 
promising renewable energy sources due to its great potential and infinite nature. Hence its evolution the past ten 
years has been remarkable. Indicatively the power capacity of wind parks installed in Europe has tripled from 
about 50 GW in 2005 to over 150 GW in 2016 [2]. Since investments on onshore wind structures are becoming 
bigger in number, there has been a higher demand for minimizing design, material and construction costs. The 
tower constituting more than 25% of the initial wind turbine cost [3], needs to be investigated and optimized in 
terms of morphology and material use. In the present work, the structural configuration of onshore wind turbine 
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towers is investigated and analysed in terms of structural behaviour and material use. The aim of the investigation 
is to minimize the wind tower initial construction cost by means of limiting the material while maintaining its 
robustness. 

The tower configurations for horizontal axis onshore wind converters are: the tubular steel tower, the lattice 
tower and the hybrid tower; which combines a truss structure for the lower part and a tubular one for the upper 
part. The dominant structural configuration is the tubular steel tower due to its robust structural detailing, easier 
mounting and limited labour required on site. The tubular tower consists of subsequent tubular subparts, 
manufactured in the factory and mounted on site by means of bolted flanges with the use of pretensioned bolts 
[4]. The structural detailing optimization of tubular towers has been investigated by Stavridou et al ([5], [6]) 
aiming to minimize the total material used while preserving the tower’s robustness by inserting internal stiffeners 
at critical points and keeping the tower wall thickness in minimum levels. 

There is a constant increase observed in the height of contemporary wind energy structures and their energy 
production capacity since there is higher energy potential available at greater heights away from the earth’s 
surface. The tubular tower configuration functions as a simple cantilever structure; hence as the tower increases 
in height there is a parallel increase in the bottom diameter required. Certain transportation limitations (eg. 
Bridge span at highways etc.) prevent the towers from having greater diameters and longer subparts. In cases 
where transportation limitations apply, lattice towers appear as an appealing solution for wind turbine towers. 
These type of structures had been implemented on telecommunication masts and their structural performance has 
been investigated explicitly by Tsitlakidou et al.[7] and Efthymiou et al.[8]. The implementation of lattice towers 
on off-shore and on-shore wind turbines has just been investigated the past years by various research groups like: 
Zwick et al. [9]; Long et al. [10]; Long and Geir [11]; Gencturk et al. [12] and still their optimal design has not 
yet been studied. Therefore, there is room for development and optimization of such structures. 
Telecommunication masts are constructed mostly with the use of standard L shaped cross sections fabricated in 
the factory and mounted on site. The rotor of a wind converter though is of great weight and produces great loads 
due to the operation of the blades. This fact leads in the case of wind turbine towers, to cross sections that are 
well outside the range of standard industrial profiles. A lattice tower that is capable of accommodating the nacelle 
has the form of a truncated cone with a square cross-section. The tower is a statically determinate lattice structure 
composed of a number of discrete structural sub-systems; the legs, the bracing trusses on the faces, horizontal 
braces and secondary bracings arranged inside the plane of the face bracing trusses. These structural subsystems 
have a particular role in the load transfer mechanism that develops inside a lattice tower and since the tower is a 
statically determinate structure, the axial stresses of the legs and the bracings can be determined by closed form 
expressions. The present paper investigates the structural performance of a lattice wind turbine tower of a certain 
height and examines various alternative configurations in order to achieve structural robustness along with 
minimum tower weight.

2 TOWER OPTIMIZATION CONCEPT 

The lattice tower investigated in the present study and is capable of accommodating the nacelle at the top has 
the form of a truncated cone with a square base. The structure is statically determinate and composes of discrete 
structural sub-systems; the legs, the bracing trusses on the faces and the horizontal braces as they are presented in 
Figure 1. Each of the aforesaid structural sub-systems have distinct roles in the load transfer mechanism of the 
tower, therefore each sub-system is investigated and optimized separately.  

The legs transfer the axial load caused by the horizontal shear and top-moment imported to the lattice 
structure at it’s top by the nacelle. The face bracing truss undertakes the transfer of the horizontal shear and the 
horizontal braces take the out-of-plane buckling of the face bracing truss (FBT) elements. Being a structurally 
determinate system means that the axial stresses of the tower legs and the FBT elements can be determined by 
closed form expressions.  

The problem of the design of a cross section in a certain member calls for the choice of a cylindrical cross-
section that will result to a RdbN ,  equal to the design axial force EdN  according to Eurocode EN1993-1-1
[13]. The problem of determining the diameter (D) and the thickness (t) of the most economical cross section can 
be solved by keeping the D/t ratio to the limiting value of Class-III cross sections i.e. 90 ε2 where ε is given by 
Equation 1. 

 5.0)235 yf (1) 

The whole issue of structural optimization of the given problem is treated by developing a specialized script 
in Mathematica software [14], which finds the diameter of the tubular cross-section that fulfils the buckling 
resistance and minimizes the tower weight. 
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Figure 1. Tower subsystems. 

As stated above the different subsystems are optimized separately and certain geometrical parameters have to 
be taken into consideration for the design of the legs and face bracing trusses (FBTs). The form of the tower is 
like a truncated cone and among the most popular bracing geometries, the V shaped FBT appears more 
advantageous since it keeps the total length of the diagonals less than the X brace and the inverted V brace. In 
order to the determine the V brace angle that leads to the minimization of the total FBT weight, a special 
investigation is being conducted at the beginning of the script. The angle of the V braces that has been proved in 
all the cases the most favourable was the one of 45 degrees and this angle determines also the buckling length of 
the tower legs as this length is the length of the segments that the tower is split to by the braces. The normal force 
that develops in the legs of a tower with a square base is derived from closed form equations and the governing 
situation for the legs appears when the top shear acts in the direction of the diagonal of the tower. Hence, the 
axial force is given by Equation 2: 

)2/cos(

1

2)(

)(
)(45
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Where toptop FzHMzM  )()(  is the bending moment of a vertical cantilever acted upon by a

moment topM  and a horizontal force topF  at the tower’s top, and b(z) is given by equation 3:
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and d  is the angle of the leg to the horizontal plane and is given by equation 4:

topbase
d

BB

H




  2
tan 1 (4) 

Using as a reference case the one with constant leg cross-section from bottom to top and therefore constant 
axial force, there is a characteristic base width given by Equation 5 that keeps the axial force constant. 

top
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 (5) 

Where topB  is the top width, topM  is the moment at the top of the tower, H is the tower height and H
topF  is

the horizontal force acting at the top of the tower 
Taking all the above into account, the optimization problem of the lattice tower is confined to the search 

space defined by the two independent variables: topB  and μ. The variable μ is a non-dimensional parameter that
determines the deviation of the base width from the characteristic and is given by Equation 6.  

ch
base

base

B

B
 (6) 

The total weight of the tower is determined by the buckling checks described in Eurocode EN1993-1-1 [13]. 
Working on equation 5 does not guarantee that the result of the design will indeed be of minimal weight as the 
cross-section of the legs is determined by the buckling checks of Eurocode which is a highly non-linear 
procedure. In addition the result of the buckling check is up to a point controlled by the buckling length which is 
controlled by the introduction of secondary braces. Therefore the optimal weight does not come as a result of 
deriving equation 5, but needs an iterative procedure to take into account and counterbalance the two antagonistic 
factors that determine the optimal tower design; (a) the parallel increase of the leg axial force along with the 
reduction of the face bracing weight, when closing the distance between the legs and (b) the parallel reduction of 
the leg axial force along with the total length and slenderness increase of the V braces, when increasing the 
distance between the legs 

3 RESULTS 

As explained in the introduction, the tower subparts are designed and optimized separately. The optimal 
design of the legs and the braces separately is presented in figure 2 and figure 3 respectively. From all the cases 
investigated the optimum tower configuration is selected in order to minimize the total material used along with 
maintaining the tower load bearing capacity. The loads used for the lattice tower design are the same as a real 
constructed tubular structure of the same height. The total number of lattice tower configuration cases 
investigated in order to optimize tower weight, are 126. The total weight for the optimal lattice tower solution is 
77.47 tn and is given for base width equal to 800mm and μ parameter equal to 0.6.  

As the tower is symmetric and the wind load can come from any direction, in each tower subpart the same 
type of elements are selected to have the same cross-sections. In our case circular hollow cross-sections are used 
and the optimal tower design is presented in Table 1. It is observed from figure 4 that the tower weight for values 
of μ equal to 0.8 and lower, the lattice tower is lighter than the tubular one. When μ takes values greater than 0.8 
the total tower weight increases radically with the increase of the top width of the tower. 
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Figure 2. Tower leg weight in comparison to the top tower width and μ. 

Figure 3. Braces’ weight in comparison to the top tower width and μ. 

Diameter and thickness of tower cross-sections (mm) 
Legs P-1 P-2 P-3 P-4 P-5 
Diameter 411 371 352 340 286 
Thickness 8 8 7 7 5 

V-Brace 
Diagonals P-1 P-2 P-3 P-4 P-5 
Diameter 413 385 375 363 253 
Thickness 7 7 7 7 5 

V-Brace 
Horizontals P-1 P-2 P-3 P-4 P-5 
Diameter 342 282 240 216 214 
Thickness 6 5 5 4 4 

Table 1 : Example of how to set a table 

The tower is almost 30 % of the initial construction cost of a wind turbine. Therefore, the reduction of the 
material used is of great importance in the economical aspect. When using the lattice solution the total material 
used is reduced by almost 40 %. Taking also into account the fact that in terms of transportation and in-situ 
construction, the lattice solution is advantageous in regards to flexibility in transportation and easiness in 
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mounting, the lattice solution should be taken into consideration for the construction of contemporary wind 
turbines. 

Figure 4 : Total tower weight with regards to top width for given values of μ. 
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4 CONCLUSIONS 

The present study investigates the potential of using lattice wind turbine towers with the prospect of  minimizing 
the total structure weight while preserving its liability and robustness. When constructing taller structures, the 
minimization of the total material use is of great importance along with the transportation advantages that truss 
structures exhibit over the tubular ones. Lattice structures when using the appropriate cross-sections for 
construction of tall structures are proved to be able to sustain great loads with minimum initial material weight. 
An additional advantage that lattice structures offer is the lower bending moment transferred to the foundation, 
which facilitates the concrete foundation design and minimizes its construction cost. In the present investigation, 
a lattice wind turbine of 76.15 meters height has been optimized using a dedicated Mathematica code. The 
iterative procedure adopted, examines the alternatives of 126 cases and gives back the optimal lattice tower 
configuration, which minimizes the total tower weight while preserving the structural robustness. The design 
loads are taken from a real tubular structure and all the alternative lattice solutions are compared in terms of total 
weight to the tubular one. The optimal lattice tower is 40% lighter than the lattice one, minimizing by almost 
15% the total initial construction cost. The advantages that the lattice solution offers in terms of transportation 
and fabrication, along with the flexibility of its configuration may lead to great and advantageous changes in the 
configuration concept in wind turbine tower design. 
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Abstract. Landslides are among the most dangerous natural threats to human lives and property, especially in 

times of dramatic climate change effects on one hand, and urban sprawl and land consumption on the other. 

Usual landslide triggers are floods and high-yield rainfall, which was the case in the catastrophic cyclone 

Tamara episode that hit Serbia and surrounding countries in May 2014.  

Landslide reports (in analogue form) greatly underestimated the realistic number of landslides (concentrating 

more on urgent/acute cases), and was uneven because they were collected by different institutions, depending on 

the acute needs. 

In this respect, it is essential to produce unified large-scale reports of such events and use them for the state-of-

the-art hazard analysis and to develop an early-warning system. The actual state of affairs in this field in Serbia 

is presented in this paper. 

1. INTRODUCTION

Landslides comprise an area of land where the process of detachment and displacement of a stone mass across 

a stable bedding is active. They occur on the slopes and inclines, across a clearly visible area or sliding zone.  

Landslides belong to the greatest hazards for the population, material property and environment. As the 

population expands, both in terms of habitation and usage of areas, the risks of the emergence of landslides and 

considerable damage also increase.  

Figure 1. Landslides on the slopes and inclines 

181

mailto:protic.milan@ymail.com
mailto:zokibon@yahoo.com


Milan P. Protić, Zoran D. Bonić. 

The causes for sliding are: additional load of a slope (most often caused by a structure), cutting into a slope 

(change of slope geometry because of roads construction, or riverbed erosion), change of ground water regime 

(abrupt drop of ground water table, increase up the slope toe due to the river backwaters, heavy rainfall after a 

long drought, precipitation of water from sewers, water supply lines, canals...), dynamical impacts in an 

incoherent soil, clearing of forests on the slopes, freeze-thaw effects, etc.. 

The global data on the damage and casualties caused by landslide were provided by Lacasse and Nadim 

(2009.). According to them, there were more than 15 000 casualties caused by landslide in the period 1903-2004, 

without taking account the cases with less than 10 casualties [4]. 

The landslides in the territory of the Republic of Serbia are known in more than 70% of the cases and largely 

investigated. The landslides and rockslides are present in around 25% of the territory of the Republic of Serbia. 

Around 3.137 of active or potential landslides are known. A part of these landslides presents a hazard for the 

housing buildings in the populated settlements, while most of them puts the local main roads at risk. They are 

mostly present in the southeast part of the Pannonian plane and in the Danube riparian area between Belgrade 

and Smederevo [2]. 

Figure 2. Map of Serbia showing instable areas 

For the city of Belgrade and its surrounding area, there is a cadastre of landslides, while for the rest of Serbia, 

making of the cadastre by several institutions has been underway for number of years, and has not been 

completed yet.   

In order to minimize the risk of human casualties and material damage, it is necessary to have institutions 

which would react timely and efficiently. This comprises detecting of the signs of sliding, issuing warnings to the 

population and competent institutions, evacuation and eventually, mitigation of the damage. 

The paper analyses efficiency of the operation of the institutions in Serbia in cases of major disasters, and the 

characteristic example is the Tamara cyclone, which hit Serbia and surrounding countries in 2014. 
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2. TAMARA CYCLONE AND ITS IMPACTS

In the period from 13th to 18th May 2014 Tamara cyclone hit southeast and central Europe, causing floods and 

landslides. Serbia and Bosnia and Herzegovina sustained the greatest damage was, with the rainfall exceeding the 

historical records. Namely, in some localities, the amount of rainfall in three days of May (14th -16th of May) for 

more than 4 times exceeded the monthly average rainfall.  

In the area of western Serbia, the daily amount of rainfall of 15th of May exceeded the normal monthly rainfall 

of May (RHMSS 2014). The maximum rainfall for 48 hours hit Loznica, where the measured value exceeds the 

once-in-a-thousand-year rainfall, followed by Belgrade and Valjevo where the return period for rainfall was 400 

years and Niš with an 80-year return period [3].  

Until 20th of May, no less than 62 persons lost their lives. The rainfall set the torrential floods and rockslides 

into motion, and numerous rivers from the Sava and Morava basins flooded. Over 2000 landslides occurred. 

According to the official data, over 1.6 million people were affected in Serbia and Bosnia and Herzegovina. 

Figure 3. Satellite imagery of Tamara cyclone, and affected areas of Bosnia and Herzegovina and Serbia 

Figure 4. Flooded areas in Serbia 

Such a large amount of rainfall in the mentioned areas, in addition to floods, torrents and erosions, activated a 

large number of landslides, and rockslides of various sizes, mechanisms and motion dynamics. The areas most 

endangered by the landslides can be seen in Figure 5.  

Figure 5. Areas in which landslides occurred 
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Due to the activated landslides, rockslides and torrential aggradations, a large number of individual and 

household buildings were demolished, and a number of main and local roads were damaged as well as the bridges 

on them, and vast agricultural areas were devastated. Many industrial buildings were damaged, too, so the 

population in the affected area, apart from direct material losses, incurred by the collapse of housing buildings, 

was additionally affected by losing the jobs. According to some assessments, only the state roads of the 1st and 

2nd order sustained damage of over 50 million euro. For the purpose of keeping the roads operational, emergency 

remedial and prevention measure were undertaken on the state roads. Around 228 landslides and other 

instabilities on the state road network were fully or partially tackled. A total of 14 landslides and other 

instabilities on the local road network were repaired. 

Figure 6. Landslides caused by Tamara cyclone 

3. PREVENTIVE AND REMEDIAL MEASURES FOR LANDSLIDES

For the purpose of remediation of the existing and prevention of potential landslides, the following measures 

can be undertaken: 

 preventive measures, 

 emergency remedial measures and 

 remedial measures. 

The goal of the measures undertaken to deal with the landslides is mitigation of damage which would occur. 

The remedial measures are procedures bound to minimize the damage and restore the situation into its original 

condition. However, in order to minimize the damage, it is necessary to implement preventive measures in the 

most efficient way.  

The preventive measures include: 

 Mapping of the landslides into the existing maps. In the critical situations, it is necessary to predict what 

areas would be at the highest risk. There must exist a National Cadastre of landslides, which would be 

used as a basis for production of prediction maps.  
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 An Early Warning System. It is a method of geotechnical monitoring used for the assessment of stability 

of inclines and slopes. It includes various techniques of instrumental observation and monitoring in the 

real time. The system must be connected to the Emergency situation sector of the local self-governments 

and at the national level.  

 Education and capacity building. Training of the local emergency centers and wider public for reporting 

and recording of landslides in the territories of local self-governments is a significant step in the 

organized social action focused on mitigation of natural disaster effects. One of the best ways to inform 

the population of the importance of a systematic approach to the problems related to the landslides is to 

present the principle of good and bad practice and provide specific instructions and advice during the 

training. 

 Research of legislative powers. Observation of legal regulations in the area of spatial and town planning, 

research and remediation of structures and land are the foundations for reducing the hazard of landslides 

for the population, material and other property, both at the state level and the level of cities and 

municipalities. For that reason it is important to engage professionals and companies registered for 

landslide inspection and remediation.  

With adequate preventive measures, and with functioning of a global system and data bases, the onset of soil 

movement would be observed more easily and the system would react in time and warn the competent services. 

Starting from all this, it is necessary to form a contemporary data base about the processes and phenomena whose 

existence and effects can indirectly or directly endanger the stability and function of the building in time for the 

purposes of designing and construction new buildings, and maintenance of the existing structures, especially for 

the housing buildings and transport infrastructure. The basis should contain: an inventory of (registry) of 

phenomena, their history of development, maps of “hazards and risks”, data on investigation and success of 

remediation, quality and quantity assessment of the hazards for an area and structures in it, data on the 

monitoring during construction and operation, as well as prevention for timely discovery of instability 

phenomena and timely undertaking of adequate remedial measure [2]. 

In order to prevent and remedy the described events it is necessary that all the state bodies are well prepared 

for urgent reaction. Considering that in Serbia, the reaction units in emergency situations in Serbia are the crisis 

municipal centers, a number of municipalities proclaimed an emergency during Tamara cyclone. However, the 

lack of a appropriate sliding cadastre and prediction maps of landslide hazard for most of the Serbian territory, or 

at the level of large territorial units (municipalities/cities), made the operation of emergency centers difficult, 

when an urgent reaction in the affected areas was necessary. For that reason, a campaign of mapping and 

recording of landslides was conducted by the most eminent competent institutions dealing with this issue: 

Geological Institute of Serbia, Transport institute CIP, The Roads Institute, Jaroslav Černi Institute, Minin –

geological faculty, etc. Foreign expert teams and groups such as workgroups of the UN, EU and World Bank also 

took part in the project. 

Mapping of the landslides was organized at the level of municipalities and coordinated so that all the 

municipalities have even criteria and forms for registering of landslides and damage assessment. For every 

recorded landslide, the following data needed to be entered: exact location, type of phenomenon, dimensions of 

phenomenon, sketch of the predicted land cross section, motion mechanism, activation date and previous activity 

status, as well as the relative and quantitative assessment of hazard and damage level. Yet, given that the data on 

the landslides were collected by various institutions, the reports differed to a great degree, and considering that 

the field campaign was focused on the most critical locations, many small landslides remained unregistered. In 

that sense, it was necessary to produce uniform reports on such events and use them for the most contemporary 

hazard analysis and to develop an early warning system. For that reason, completion of the landslide cadastre in 

certain municipalities was organized in the framework of the BEWARE project [1]. 

4. BEWARE PROJECT

Regarding that landslides are a great hazard and that the competences of the governmental bodies and public 

institutions in the Republic of Serbia are divided, there is need to collect and integrate the data into a single 

system according to the standards and requirements of the EU, and to make them publicly accessible to 

mechanical search services. This is a systematic approach to the issue of control and remedy which provides a 

more quality spatial planning. 

For that purpose, in May 2015, conducting of the project “Harmonization of data on landslides and training of 

local self-governments for their monitoring” under the working title „BEWARE“ (BEyond landslide 

aWAREness) began.  
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It is a sub-project of the UNDP initiative for improvement of vitality and readiness for a response to 

emergency situation in the Republic of Serbia, financed by the Government of Japan, and coordinated through 

the UNDP Office in the Republic of Serbia for assistance and renovation of the flooded areas and the Ministry of 

Mining and Energy of the Republic of Serbia [1]. 

The goals of BEWARE project are: 

 Contribution to the methodology of acquiring, processing and production/completion of a data basis of 

landslides through harmonization and standardization of data; recording of landslides in target 

municipalities: production of the map of hazards and risks.  

 Strengthening of governmental bodies, primarily of the Ministry of Mining and Energy and the 

Geological institute, for regular landslide monitoring in agreement with the good practice in EU states. 

 Production of BEWARE (GIS) web protocol which represents a platform for inspection and reporting of 

landslides, and accompanying material including the hazard maps.  

 Building personnel and material-technical capacities of involved municipalities which can regularly 

monitor and register landslides in their territories, which is an active participation in completion of the 

national database of landslides. 

The project was realized in 27 target municipalities (according to Figure 7), which were the most affected by 

the landslides in 2014. 

A very important role in terms of sustainability of the project is given to the representatives of local self-

governments who are trained for registration of current and future emergence of instability in the territory of their 

municipalities and cities. For this purpose, appropriate equipment and material was provided and necessary 

training was conducted. 

The equipment of conducting of the Project consisted of one tablet device, one navigation device and a 

computer with appropriate software. The task of the user – representative of a local self-government is to record 

the emergence of a landslide by making a field visit, by locating and memorizing the landslide using tablet, and 

by filling in the accompanying form of the cadastre list and taking photographs of the location.  

For the purpose of obtaining as real data on a landslide as possible, it is recommended to visit and record the 

main scarp and toe of the landslide, and remarkable elements, deformations and ridges, holes and damage on the 

buildings and infrastructure.  

Figure 7. Municipalities in Serbia where BEWARE project was realized 
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Distribution of registered landslides by municipalities in which the BEWARE project was realized is 

displayed in Figure 8. 

Figure 8. Registered landslides by municipalities in which the BEWARE project was realized 

BEWARE project, allows, among other things, formation of a global database which can be continuously 

completed and updated by the trained personnel from the local self-governments. This provides timely 

information about the changes which could indicate the onset of danger, so as to react in a proper way and on 

time.  

Further field investigations and analyses are taken over by the appropriate state institutions such as the 

Geological Institute and other which make the prediction maps of hazards and risks. Hazard comprises 

probability of emergence of a dangerous event (landslide in this case) with specific characteristics, in a specific 

time and place. The risk is the measure of expected losses due to the hazard which took place in a specific area 

during a specific time interval. The expected losses refer to injuries and human casualties and material damage 

[4]. 

An example of the hazard map is given for the municipality of Krupanj, which sustained the most damage 

from landslides from all the mentioned municipalities. The map was made using the AHP  method (Analytic 

Hierarchy  Process) and it is displayed in Figure 9. 

Figure 9. Hazard map for Krupanj municipality 
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AHP  method is a procedure by which several chosen input parameters (digital land model,  exposition to sun, 

energy, relief, slope inclination, distance from the border of units with different hydrogeological function, 

distance from water courses, vegetative cover and geology) defines the definite land model (susceptibility to 

sliding). The mentioned factors affect the final model through their severity coefficients (points) whereby all the 

factors have been normalized (scaled to the same scale, in this case 0-100). Since their impact is simultaneously 

determined, they demand mutual evaluation, that is, quantification of each individual member in respect to any 

other. The described AHP method procedure facilitates reduction and control of subjectivity in assessment of 

input parameters. 

5. CONCLUSION

After May of 2014 when Tamara cyclone hit southeast and central Europe and especially Serbia, causing 

floods and landslides, a need arose to form integrated extensive reports of such events. On their basis, an analysis 

on a global level could be performed and a system could be developed that would prevent these events and would 

be capable of issuing a timely working and implementing emergency remedial measures..  

Preventive measures comprise permanent activity on recording and monitoring of instabilities. It is necessary 

to take these location into account when making town plans and designing structures.  

It is necessary to adhere to the regulations and whenever possible to avoid instable and potentially instable 

terrains for building construction, and it is most ration to plant forests on them. It is the most rational preventive 

approach in management of the land prone to sliding. 
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Abstract. One of important elements in natural hazards analysis is forecast of time series. It is necessary to 
prepare data before forecasting i.e. to spot and to separate the periodic component of the time series, because 
periodicity usually has large periods of oscillation, which can bring significant problems in interpreting 
obtained results. Smoothing technique which is based on removing a random component and uncovering a long-
term macro-periodicity can be used for solving this problem.  

This paper analyzes different smoothing techniques for precipitation time series in Serbia for the period 1946–
2015. Three smoothing methods were analyzed (moving average method, exponential smoothing and Holt-
Winters forecasting model) in order to investigate their applicability in analyzing of precipitation series. 

1 INTRODUCTION 

A time series can be defined as a sequence of observations indexed by time, ordered in equally spaced 
intervals. The main aim in the analysis of a time series is to determine the model which would describe the 
behavior of the observed dynamic system, and to foresee its behavior in the future, based on the behavior in the 
past and in the present. 

Precipitation is one of the main elements of the hydrological cycle, so understanding its behavior can be of 
great social and economic importance. Precipitation is a highly, spatially and temporally variable climatic 
parameter at different time scales (inter-annual and intra-annual). Forecasting precipitation may solve some of the 
complexities of the atmospheric system. The smoothing methods allow an analysis of the basic tendency of the 
time series, but they also have a wider application in forecasting the future values of the time series. 

Many authors have used different smoothing techniques for forecasting time series [10-14]. Ferbar Tratar and 
Strmčnik in [8] presented short- and long-term heat load forecasting approach for monthly, weekly and daily 
bases. The comparative analysis for forecasting was conducted between multiple regression and exponential 
smoothing methods. Results shown that multiple regression was the best forecasting method for daily and weekly 
short-term heat load forecasting and Holt-Winters method was the best for both long-term and monthly short-
term heat load forecasting. In order to evaluate forecast accuracy, simple exponential smoothing method was 
used on the data of primary production of electricity in Slovakia [11]. Smoothing constant with increments of 
0.01 was analyzed. Three forecasting accuracy techniques were used to select the most accurate forecast for one 
year ahead. Results shown that smoothing constant achieves the best accurate using values 0.26 and 0.29. 

In order to determine which smoothing technique is the most applicable to the precipitation time series in 
Serbia, this paper presents a comparative analysis of three smoothing techniques on the precipitation time series 
at five meteorological stations on the territory of Serbia for the period 1946–2015. 

2 STUDY AREA 

The climate in Serbia is temperate continental, with very hot summers and cold short winters. The average air 
temperature is 10.9 ºC. January is the coldest month, while July is the hottest. The average annual precipitation is 
896 mm. May and June are the months with the highest level of humidity, and February and October are months 
with the lowest level of humidity.  

The study area in this paper is the territory of Serbia, which is observed through five meteorological stations. 
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Table 1 gives an overview of the geographical characteristics of the observed stations. The precipitation data 
from 1946 to 2015, which was used in this paper, had been taken from the meteorological yearbooks issued by 
the Republic Hydrometeorological Service of Serbia (RHMSS).  

Station name Longitude (E) Latitude (N) Elevation (m a.s.l.) 
Nis 21º54’ 43º20’ 204 

Vranje 21º55’ 42º33’ 432 
Negotin 22º33’ 44º14’ 42 

Novi Sad 19º51’ 45º20’ 86 
Kragujevac 20º56’ 44º02’ 185 

Table 1: Geographical description of the meteorological stations used in this study 

Figure 1 shows the annual amount of precipitation for the five observed stations. The highest amount of 
precipitation was recorded at the Negotin station in 2014 (1237 mm), while the Novi Sad station had the lowest 
value of precipitation of 287 mm in 2000.  

Figure 1. Annual precipitation for meteorological stations 

The statistics of the time series for monthly precipitation at five stations during the period 1946-2015 are 
summarized in Table 2. It can be concluded that the Nis station has the lowest mean value of precipitation (48.69 
mm), while Negotin has the greatest one, with 54.03 mm during the observed period of 1946-2015. The skewness 
values show that there is strong skewness at all the observed time series.  

Time series 
statistics Nis Vranje Negotin Novi Sad Kragujevac 

Mean 48.69 50.57 54.03 51.64 52.96 
Standard 
deviation 31.52 32.87 40.63 35.91 35.07 

Coefficient of 
variation 64.74 % 64.95 % 75.21 % 69.54 % 66.21 % 

Skewness 1.08 1.01 1.45 1.30 1.42 

Table 2: Statistics of time series for the observed meteorological stations 

3 METHODOLOGY 

3.1 Moving Average 

The moving average (MA) method is based on calculating the average of the observations, and using that 
average as the predictor for the next period [1]. According to [2], the moving average method is highly dependent 
on n, the number of terms selected for constructing the average. The n-period moving average uses the actual 
value of the last n periods to forecast the next period value. Forecasting is more stable if the method includes a 
large number of recent actual values, but a small number of recent actual values makes forecasting more 
responsive. In this method, each value has the same importance in the calculation, regardless of whether it is 
recent or from a more distant past. The equation for calculation is [7]: 
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1 1 2 1+ − − − += + + + +t t t t t nF (Y Y Y Y ) / n  (1) 

where: 
Ft+1 = the forecast value for the next period, 
Yt = the actual value at period t, 
n = the number of terms in the moving average. 

3.2 Simple Exponential Smoothing 

The simple exponential smoothing (SES) method was developed by Brown and Holt in the 1950s [3, 4]. A 
weighted moving average of past data is used as a forecasting basis in this method. The SES gives the greatest 
weight to more recent observations and lower weight to observations in more distant past [5]. The method is 
calculated using the equation: 

1 11+ −= α + − αt t tF Y ( )F (2) 

where: 
Ft+1 = the new smoothed value or the forecast value, 
α = the smoothing constant, 
Yt = the new observation or actual value of the series in period t, 
Ft = the old smoothed value or forecast for period t. 

According to [5], the accuracy of this smoothing method depends on the value of α, whose values are 
between 0 and 1. α serves as the weighing factor, and when α is close to 1, this means that the new forecast will 
include a substantial adjustment for any error that occurs in the preceding forecast. On the other hand, when α is 
close to 0, the new forecast is very similar to the old forecast. The SES is the best suited for short-term 
forecasting, and it is not suitable for long-term forecasting. 

3.3 Holt-Winters 

The Holt-Winters (HW) method represents a smoothing technique which utilizes simple exponential 
smoothing to estimate the values of the level, trend and seasonality, which are the three basic components of a 
time series [6]. There are many variations of the Holt-Winters model, but additive and multiplicative methods are 
mostly used [8]. When the seasonal variations are roughly constant through the series, the use of the additive 
method is preferred. The multiplicative method is usually preferred when the seasonal variations are changing 
proportionally to the level of the series. According to the observed time series, the Holt-Winters additive seasonal 
technique was used in this paper. The equations for the determining of this method are:  

1 11− − −= α − + − α +t t t s t tL (Y S ) ( )( L b )  (3) 

1 11− −= β − + −βt t t tb (L L ) ( )b (4) 

1 −= γ − + − γt t t t sS (Y L ) ( )S (5) 

+ − += + +t m t t t s mF L b m S (6) 

where: 
Lt = smoothed estimate of the level at time t,    
bt = smoothed estimate of the change in the trend value at time t,     
St = smoothed estimate of the appropriate seasonal component at t,   
Ft+m = forecast for m period, 
α, β, γ = smoothing constants, 
m = number of forecast, 
Yt = the new observation or the actual value of the series in period t. 
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The values of the smoothing constants are between 0 and 1, and they should be set to minimize the 
discrepancies between the predictions and observed values. Dependence on historical data in the Holt-Winters 
method is low, and depends on all previous values, with the most weight given to the most recent values. This 
method is suitable for short-term and for long-term forecasting. 

3.4 Measuring Forecasting Error 

 In order to carry out the comparative analysis of proposed smoothing methods, four statistical tests were used 
(mean square error – MSE, root mean square error – RMSE, mean absolute percentage error – MAPE, mean 
absolute error - MAE). MSE represents the measure which is a generally accepted technique for evaluating 
smoothing methods. This technique is a measure of overall accuracy that gives an indication of the degree of 
spread of analyzed method. RMSE technique gives information on the short-term performance of the model. 
MAPE is the most useful measure to compare the accuracy of forecasts since it measures relative performance of 
methods. According to [9], MAPE is one measure of accuracy commonly used in quantitative methods of 
forecasting. MAE is also a measure of overall accuracy that gives an indication of the degree of spread, but in 
case when all errors are assigned equal weights. Equations for calculation of proposed errors are: 

2

1

1 n

t t
t

MSE (Y F )
n =

= −∑ (7) 
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t t
t

RMSE (Y F )
n =

= −∑ (8) 

 

1

1 n
t t

t t

Y F
MAPE

n Y=

−
= ∑ (9) 

1

1
=

= −∑
n

t t
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(10)

where: 
Yt = the actual value in time period t, 
Ft = the forecast value in time period t, 
n = the number of forecast observations in the estimation period t. 

4 RESULTS AND DISCUSSION 

The results of the four statistical tests for the analyzed smoothing techniques are shown in Table 3. The table 
shows that the MA and SES are the best smoothing methods for the precipitation data from the Nis, Vranje, 
Negotin and Kragujevac stations, and the MA method is especially good for the data from the Novi Sad station.   

According to the MSE test, the MA smoothing method has the greatest similarity with the observed 
precipitation for all the stations. The MAPE shows that the SES method has the greatest similarity with the 
observed precipitation, and the RMSE and MAE tests show the same results as the MSE. The overall overview of 
Table 3 shows that the best method (with the best fitting between the smoothed and the original series) for 
smoothing is the moving average smoothing method. 

Station Statistics Moving average 
(MA) 

Simple Exponential 
(SES) 

Holt-Winters 
(HW) 

Nis 

MSE 946.66 1007.46 1011.74 
RMSE 30.77 31.74 31.81 
MAPE 140.98 135.71 140.20 
MAE 23.77 24.10 24.22 

Vranje 
MSE 1030.85 1122.58 1128.84 

RMSE 32.11 33.50 33.60 
MAPE 141.45 141.16 144.61 
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MAE 25.17 25.91 26.06 

Negotin 

MSE 1576.80 1678.17 1694.15 
RMSE 39.71 40.97 41.16 
MAPE 233.79 230.91 237.55 
MAE 30.20 30.84 31.06 

Novi Sad 

MSE 1202.51 1295.74 1372.75 
RMSE 34.68 36.00 37.05 
MAPE 187.94 191.15 192.13 
MAE 26.42 27.16 28.21 

Kragujevac 

MSE 1175.54 1256.03 1271.06 
RMSE 34.29 35.44 35.65 
MAPE 117.51 116.86 121.36 
MAE 26.24 26.96 27.42 

Table 3: Results of statistical tests for three smoothing techniques 

5 CONCLUSION 

The paper presents the analysis of three smoothing techniques (the moving average, the simple exponential 
and the Holt-Winters method) on the monthly precipitation data from five meteorological stations in Serbia. The 
main aim of this analysis is to determine which smoothing technique is the most applicable for the used series.  

The analysis of statistical tests at the station level shows that the moving average and simple exponential 
smoothing methods are the most suitable for use. Statistical tests single out the moving average method as a 
method with the best fitting of the smoothed and the original precipitation series, while the Holt-Winters method 
has the worst fitting between the smoothed and the original series.  

Further studies will be oriented towards the analysis of robust smoothing techniques, and studies which apply 
more sophisticated forecasting techniques, such as Box Jenkins and neural networks. 
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Abstract: In this paper are presented the risk assessment and mapping of all rivers in Leposavic Municipality 
that have been flooding or have a potential for flooding of agriculture land, houses, roads, bridges and other 
objects.  For each river, those flooded or potentially flooded surfaces are presented by category of risk (high 
risk, medium risk and low risk) as well as the causes of the flooding and recommendations for short term and 
long term activity protection against floods. This risk assessment and mapping shows exact places where they 
are causing damage and proposes activities that need to be taken to eliminate these damages. By analyzing the 
locations and vicinity of the human activities, it sets the river priority for intervention. This is enabled by 
information presented through the Geographical Information System Elements (GIS) of the Water Framework 
Directive. Although the information presented by GIS depends on the availability of the spatial and field data, it 
is valuable tool in risk assessment in determining the cumulative sensitivity of the certain region to the floods.   

I.  INTRODUCTION   
An exceptionally mild winter with hardly any snow has triggered extremely heavy rainfalls during April 2014 

and 2015. The rains have caused floods leading to significant infrastructure damage to several communities in 
Kosovo*. According to the Hydrometeorological Institute  April 2014 was the wettest month in recorded 
history, with 19 days of heavy rainfalls causing flash floods in a number of areas throughout Kosovo*.  

As a result of the heavy rainfalls northern Kosovo*, especially the municipalities of Leposavić and Zvečan, 
was heavily affected by floods. Luckily, the floods did not cause human victims; however, dozens of agricultural 
plots were affected, thus hindering normal planting process. The infrastructure was seriously damaged, 
especially bridges and roads. Their state have been significantly worsen during floods.  
Scarce technical and financial resources only increased vulnerability of these municipalities. The municipal 
authorities undertook all efforts to provide assistance to the people in need, to ensure communication and traffic 
between banks of the Ibar River, and to clean, where possible, riverbeds of the Ibar and its tributaries. Further 
efforts of the municipalities and international organizations were aimed at restoring the infrastructure and taking 
measures to protect population and their property from floods in future.  
Flood is a recurrent emergency in northern Kosovo*, which takes place almost every year and more or less in 
the same time of the year. Nevertheless, neither municipal authorities nor landowners seem to have learnt any 
lessons of preventive behaviour. As an eloquent example, similarbreakdown of bridges of the same construction 
type [1],  happened as a result of floods in 2013, 2014 and 2015. Landslide in Zubin Potok, which luckily did 
not cause any human victims, although triggered by rainfalls, was eventually a result of human miscalculation, 
poor design and absence of protective measures.  It was evaluated that any consequences of floods could have 
been avoided if basic principles of safe behaviour had not been ignored. Recommendations on flood prevention 
mainly include necessary measures that should be taken to physically prevent devastating impact of floods. 
Necessary preventive measures should be taken also at legislative level and in legislation enforcement [2]. 
In this report are presented all rivers that have been flooded or have a potential that in the future may flood land, 
houses, roads, bridges and other objects.  The soil properties on the river banks are analyzed for their rock 
composition, as well as for their water contents and hydraulic heads. Each river that flooded surfaces is 
presented by category of risk (high risk, medium risk and low risk) as well as the causes of the flooding and 
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recommendations for activities how to eliminate flooding.  Rivers are ordered by priority. Priority is based on 
the damages that can be caused by a possible flooding. There was also introduced the map of anti-erosion 
activities that need to be taken in the river basins. This is enabled by information presented through the 
Geographical Information System Elements (GIS) [3] of the Water Framework Directive. Although the 
information presented by GIS depend on the availability of the spatial and field data, it is valuable tool in risk 
assessment in determining the cumulative sensitivity of the certain region to the floods [4].  

2. STUDY AREA AND METHODOLOGY

Leposavić municipality  
The municipality of Leposavić is the northest municipality in Kosovo. It covers an area of approximately 750 
km² and includes Leposavić town and 72 villages. According to the municipal administration the total 
population is estimated at 18 900 persons.  The whole territory of Leposavić municipality is predominantly 
mountainous, with most of the settlements lying along the Ibar River and its tributaries in the valley and on the 
lower slopes.  
The economy of Leposavić municipality is mainly based on agriculture and small trade businesses. There is no 
reliable data on the number of registered businesses and number of people employed in private sector. The 
terrain data are imported from WebGIS ina form of SRTM Digital Terrain Files, N42E020.hgt and N43E020.hgt 
with horizontal datum WGS84 and presented in Fig.1 a) and b)  

Fig.1. Leposavic Municipality area a) UTM location, b) Terrain data 

GIS is the most complete information system for modeling, analyzing spatial data and displaying community 
vulnerability. When we identify hazard locations with critical infrastructure, processed GIS Models can be 
useful for determination of event impact and necessary mitigation requirement. Preparedness is important when 
disastrous event occurs. On analysis of risk and hazards is beneficial in Emergency management program. 
 Disaster and emergency management in situational awareness is essential thing. GIS techniques plays vital role 
to provide location information of the event, that is, where is the event happened and what happening exactly in 
real time. Also by linking people, processes spatial information situational awareness established. GIS map 
interface important in handling emergency condition. 
To achievement of preparedness, gathering of information and its advance data storing is important. In GIS, 
integration of information from other sources is possible. GIS solution is a standards-based. Accurate cataloging 
of GIS data provide useful information during emergency conditions. 
GIS provides right information in the phases of disaster management: 
 Preparedness and planning of disasters
 Forecasting and early warning of disastrous event
 For relief management, rescue operations

GIS database with various themes is helpful to disaster managers in decision making process when catastrophic 
event occur. 
The  following information were taken from GIS database:  

1. Different satellite images OS for GIS data creation and preparation of hydro geomorphologic map,
slope map, terrain map, and DEM generation in GIS for disaster planning in Leposavic Municipality
area.

2. Macro and micro level maps used for identifying vulnerability and threat conditions.
3. Identification of safe locations and zones for rehabilitation
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4. Road and location maps used for finding alternate routes, shelters and locations
5. Planning of evacuation and operation
6. Management of Rehabilitation and post-disaster reconstruction.

3 RESULTS AND DISCUSSION 

3.1. Hydrology data 

For the purpose of this study there were a lot of data obtained in the location in consultation with residents of the 
district, with the responsible persons in the respective municipalities, in different maps, different studies and 
researches. Leposavić municipality is characterized with a very developed river network. Ibar river is the main 
river of the municipality. This river passes in the middle of the municipality and divides it nearly into to equal 
parts.  All rivers that belong to this municipality discharge into Ibar river. So, they are branches of this river.  All 
branches of this river have torrential characteristics, which mean that the imbalance between minimal and 
maximal quantity of water is big. These rivers are dangerous in the time when precipitations are big and last for 
a short time. Therefore, residents are not prepared and the damages are big, in humans, objects and agricultural 
lands. The information on rivers and the catchments are enabled by information presented through GIS, and 
presented in Table 1.  and Fig.2. 

Table 1. Rivers in the research area of Leposavic and their catchment areas  

River_Name Length 
Discharge 
Elevation 

Highest 
Elevation Slope Kategory ID1 

Geometry_S
K 

Catchment_ 
Area_Km 

Vucanska r. 18534.589 m 458 1270 4.4% 
Secondary 
River 19 1blw: 28.8 

Josanicka r. 17594.882 m 447 1145 4% 
Secondary 
River 21 1blw: 57.1 

Trebicka r. 7439.812 m 435 880 6.0% 
Secondary 
River 23 1blw:/ 11.2 

Trifunski p. 3035.226 m 425 780 11.8% 
Secondary 
River 25 1blw:;f 3.9 

Kremenjack
i p. 2307.715 m 428 825 17.3% 

Secondary 
River 26 1blw: 6.3 

Lesanska r. 4051.466 m 432 900 11.7% 
Secondary 
River 27 1blw:0 6.8 

Ostracki p. 5201.819 m 430 930 9.6% 
Secondary 
River 28 1blw: 5.8 

Zigoljski p. 4803.892 m 431 1030 12.5% 
Secondary 
River 29 1blw:0 4.1 

Bistricka 
reka 12595.535 m 427 1440 8.0% 

Secondary 
River 30 1blw: 31.4 

Dobravska 
r. 14785.241 m 448 1480 6.9% 

Secondary 
River 42 1blw:> 28.4 

Tvrdjanska 
r. 16577.017 m 440 1320 5.3% 

Secondary 
River 44 1blw:> 41.7 

Based on the obtained data the hydrology situation in Leposavic is presented in Fig.2. 

Predrag. A. Stanojevic, Jelena V. Đokić, Bojana Živković,, Jelena D. Rajović 

Fig.2. River Ibar Catchment in Leposavic Municipality 
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In the territory of Leposavić municipality there are eight rivers of which flood or have the potential for flooding 
of land and buildings, as shown in the Table 1. However, in this paper there will be presented just two of them, 
Cerajska river and Socanicka river, influencing the total River Ibar Catchment, as presented in Fig. 5. 

River Cerajska reka, in the segment from the bridge in Kosovska Mitrovica-Leposavic road to discharge into 
Ibar and 200m above the bridge, very often floods lands and the road to Monastery. The road floods in length of 
25m. Floods happen because people that live nearby have reduced the transversal profile of the river, by planting 
trees in the riverbed and by filling it with soil and by throwing rubbish in the riverbed. The risk assessment is 
presented in Fig.3. 

Fig.3. Risk assessment of the Cerajska Reka 
In the region of Socanicka river, Floods happen because during the rainfall the river brings a lot of alluvium 
from the upper basin. This alluvium is deposited in the flat part of the river and creates a natural “dam” and the 
river comes out of its bed forming new route and floods lands. Another reason is also reduction of transversal 
profile because people are trying to protect their fields from floods, so they plant trees near the river and also 
throw rubbish in the river. 

Fig. 4. Risk assessment of Socanicka river 
These rivers are examples of the on-site situations along the river Ibar Catchment. The source and mechanism of 
flooding in a the river Ibar basin is different at different times in the year and in a different segments, depending 
on the terrain. Therefore different flood management responses may be required in different river basin 
segments or at different times of the year. This region is facing mainly to flush flooding in upland areas.  These 
floods pose great challenges to the national meteorological services, the emergency services and local 
communities, in the area of flood forecasting, warning, emergency preparedness and response.  
The recently published result of the Fourth Assessment Report under the Intergovernmental Panel on Climate 
Change (IPCC) indicates that Europe is likely to see more flash floods in future.  
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Flash floods are particularly hazardous to life and property because i) typically they develop in steep upland 
areas and reach their peak within a matter of hours, so there is limited time for warning, mitigation and 
evacuation ii) being in upland areas, the river channel gradients are steeper than normal and the river corridor is 
narrow, so the velocity and the depth of the flow are high, meaning they have high destructive potential. The 
risk assessment of the Ibar river basin segment in Leposavic municipality is presented in Fig.5. As shown in the 
fig.5. the endangered area is mainly agricultural, with roads and bridges along the river.  

High  1124061 m2 agriculture land, Bridges,  Roads 
Low 1512430m2 agriculture land,Bridges,  Roads
Medium 27562m2 agriculture land, Roads 

4. CONCLUSIONS

In order to mitigate the causes of flooding the following measures should be taken:  
1. Technical-construction Measures
- Placing of concrete or stone thresholds in certain places along the river or its branches;  
2. Technical flood-way measures
- Checking for the possibility of building a catchment (small reservoir) which could be used for other purposes 
(drinking water, recreation, electricity production, irrigation, etc.) ; 
3. Technical –forestry measures
- Stopping of cutting trees in the entire river basin and planting new seedlings;  
4. Educational and propaganda measures
- Awareness of residents through lectures at schools, promotion of documentary films, books and printing of 
different brochures;  
- Prohibition of disposal of garbage in the river bed;  
- Maintenance of the river basin and surrounding environment.  

The aforementioned activities are mainly related to defense planning from erosion that has been a major flood 
factor of the river in the above mentioned segment 
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Abstract. "Gornje polje” tailing waste deposit is situated close to the river Ibar, between Kosovska Mitrovica 

and Zvecan  municipalities. The tailing waste was deposited  since 1930. It occupies the surface of 50 ha with 

12,000,000 m
3
 of waste.. The tailing waste is dry, oxidized and mostly solid.  In order to estimate environmental 

risk, several studies were done. Based on the chemical composition it was concluded that the main risk 

originates from lead based particles. In the  climatic conditions on site during summer and winter periods (wind 

rate 3.3)  lead particles  concentrations in the air were measured, and compared with the concentration range 

calculated by using SCREENview, Screening Air Dispersion Model. Contamination with lead bearing particles 

exceeding maximum limits  was 2 km. Lead containing material was initially investigated by using multiple 

instrumental techniques, Scanning Electron Microscopy, X-Ray Diffraction and Granulometric testing, in order 

to determine diameter, shape and mineralogy of particles being dispersed by the wind. Emission rate of the 

particles was measured in the laboratory, where the initial values for modelling were tested. In the situation of 

extreme weather, the reports have recorded the maximum wind velocity of more than 10m/s, for three days in a 

roll, so that value for the wind speed was inserted into simulation. Air Dispersion model AERMOD has shown 

that in that case, the range of pollution exceeding maximum limits will cover the area of 11 km in diameter, and 

it will be directed to the south, endangering large populated area.  

1. INTRODUCTION
Air pollution by fine solid particles from mining, ore processing and metallurgy waste deposits are evident in

all regions where mining and metallurgy are in operation. The WHO guidelines provide interim targets for 

countries that still have very high levels of air pollution to encourage the gradual reduction of emissions [1]. In 

the Environment and Security Initiative Project: Mining in South East Europe [2], it was concluded that almost 

the full range of warning signals for environmentally damaging incidents of large scale consequence are present 

in the region. These include large (historical) milling and metallurgy plants with significant slag deposits, 

mountainous terrain; abandoned sites with little or no closure or control; lack of ongoing physical and/or 

biochemical monitoring of operational and/or abandoned sites; lack of ongoing maintenance, both proactive and 

reactive.  

Mining activities were very intensive in the Northern part of Kosovo in the last century. Since these activities 

were done by open pit exploitation, lead and Zinc ore was  removed from the mine and crushed and transported 

to milling and beneficiating plants for concentrating the ore, and smelting, and refining.  In Trepca, beneficiating 

was done by floatation method. Firstly, the lead and zinc ores milled which entails a crushing, grinding and 

filtration process in order to achieve uniform particles. Flotation is the use of a chemical reagent to make the 

minerals adhere to air bubbles. Lead and Zinc metal compounds are separated from the fine-grained ore with the 

help of a flotation process, where water, sulphur dioxide (SO
2
) calcium hydroxide (Ca(OH)

2
), copper sulphate 

pentahydrate, zinc sulfate, coal tar, sodium or calcium cyanide and an organic compound is added as agents, in 

order to promote flotation. The result is of the process is concentrating the minerals from the ore. The extraction 

and beneficiation of metals produce significant amounts of waste and byproducts, such as tailing waste. The 

tailing wastes in Trepca are dry, and there are no dams, but they are opened and exposed to erosion [3]. The 

flotation landfill at Gornje Polje (Fig. 1.) is located on the Ibar River bank, in the area between Kosovska 

Mitrovica and Zvečan town. In this landfill, flotation tailings from the Zvečan processing plant had been 

deposited here since operations started in 1930 and continued until it was closed in 1983. Galena, sphalerite, 

pyrite, arsenopyrite and pyrrhotite constitute the primary ore mineral assemblage that was processed in . 
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Commonly skarn minerals (ilvaite, hedenbergite, garnet) precede sulfide mineralization. The major gangue 

minerals are carbonates with variable cation composition (calcite, kuthnohorite, rodochrosite, siderite) and quartz 

[4]. It covers a surface of approximately 500,000 m
2
 and there lies deposits of around 12 million cubic meters of 

tailings. In the northern part of the landfill, tailings from the lead smelter have been disposed of for a long period 

of time, therefore the landfill has been created in form of a cone. Deposited flotation tailing is in general oxidized 

and solid [5].  

Fig.1. Location of the Gornje Polje Research Area 

The oldest tailing waste deposit in Trepca is Gornje polje, and being located inside a processing plant and in a 

close vicinity to the residential are, a lot of attention is put on its environmental impact. Different reports were 

made on the projects initiated by international organization, about the proposed activities for solving the 

environmental problems, and in those reports the tailing waste deposit Gornje polje was described to be some 50 

ha large surface area with12,000,000 tones of waste materials [6,7]. The published studies on this tailing [ 8-11] 

are analyzing the environmental impact of the Trepca’s tailings, by analyzing the top soil, waters and air 

surrounding the locations. The Gornje Polje tailing waste deposit is a resource to manage and a threat to control. 

By its location on the river bank, and constant risk from flooding and low level of slope stability, it presents an 

environmental disaster risk. On the other hand, by its heavy metal content, and occurrences of the rare metals, it 

can be treated as source of valuable components. In order to determine the level of environmental risk, in the 

changing climatic conditions, some proper materials characterization was conducted, and imported into 

simulation of the Natech situation where the extreme weather conditions were simulated. 

2. METHODS AND MATERIALS

As a large deposit with non-homogenous structure that was changing over time with equipment and

technology advancing, its precise composition could not be determined before. A homogenous sample was 

formed by taking a portion of the deposit originating from different ages of the deposit. 

2.1. Chemical analysis 

The chemical composition is determined by using x-Ray fluorescence (ARL86480). For the chemical 

analysis of the samples also the following techniques are used: Ca and Mg concentrations are analyzed by using 

Volumetry-EDTA, Si is analyzed by Gravimetry, HCL digestion, Al, Na, K, Pb, Zn, Cd, Cu, Sb by AAS, 

equipment AAnalysist 300, Perkin-Elmer. Volumetry method by oxi-reduction is used for Fe analysis.  

2.2 Microscopy and Mineralogy 

SEM investigation was carried out on Scanning Electron Microscopy instrument from JEOL (JSM6460), with 

Energy Dispersive Spectrometer, EDS by Oxford Instruments. XRD (X-Ray Diffractometry) analysis was used 

for mineralogical investigation. Samples were investigated using diffractometer Philips PW 1710 under following 

conditions: radiation from copper anticatode with CuKα =1.54178 Å and graphite monochromator, working 

voltage U=40 kV, current strength I=30 mA. Samples were investigated in the range of 5 – 70º 2θ (with step of 

0.02° and time 0.5 s).   
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2.3 Dusting experiment 

A fan type ABVE-3,5 apparatus was employed for measuring dust loading (mg/m
2
) in the laboratory, using a 

flow of 3600 m
3
/h and a vacuum of 200 Pa for airflow simulation, with a gravimetric sampler of the respiratory 

dust. The sample was set in a shallow metal plate, along with the measuring scale for the residual solid particles 

on the filter paper and a digital anemometer (DA-4000). The measurements were performed with the material set 

in the airflow direction from the fan and before the apparatus for polluted air vacuuming. The wind velocity was 

changed by the distance between the fan and the metal plate for each sample. The measurements were performed 

in wind velocities of 5, 7 and 10 m/s. A wind velocity larger than 10 m/s is outside the interval of wind velocities 

occurring in this region. The humidity in the laboratory was within the interval of 37–53 % and the dust 

concentration was 0 %.  

2.4. Modeling and Simulation 

The meteorological data for the wind speed, wind directions and frequency distribution were taken from 

the nearest meteorological station,  4 km from the site. The data was analyzed using the program Wind Rose Plot 

for Meteorological Data, Version 7.0. The obtained results are imported into the AIRxxx together with the PM10 

properties, terrain data, receptors grid and impact area for modeling and simulation.  

3. RESULTS AND DISCUSSION

The material characterization has shown that the waste is small grained, toxic mineral mixture.

3.1 Chemical composition 

Chemical composition of the waste is presented in the Table 1. 
Element Pb As Zn Cu Ni Fe Mn Cr Rb Sr Zr 

 mg/kg 2736 3867 1848 177.3 115.78 117786 8241.41 366.8 72.1 120.5 109.1 

 Table 1. Chemical composition of the tailing waste deposit Gornje Polje 

3.2. Mineralogy and grain size 

The scanning results for Veliko Rudare have pointed out that lead is found in different forms. By the results 

presented in Table 2. most of the iron is in a form of pyrite, it can be seen that most of the sulfur was 

compounded with iron., so lead, zinc, silver and antimony are largely in a form of oxides and sulfates, or 

carbonates, as the carbon content is not analyzed by SEM-EDS. Arsenic is coupled by either Iron and/or lead. 

The grains are shown in the Fig.2. Small grain particles, PM2.5 of lead and ferro-sulfates, and arsenic ferro 

sulfates are spread on the quartz and carbonate base.  

Jelena V. Đokić, Nebojša  B. Arsić and Srđan V. Jović 

Fig. 2. Scanning Electron Microscopy of the tailing waste sample. 
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Table 2. The composition of the surface of the sample Gornje Polje 

Spectrum In stats. O Al Si S Ca Fe Zn As Ag Cd Sb Hg Pb Total 

Spectrum 1 Yes 57.21 0.10 3.23 8.57 4.70 22.00 0.00 1.51 0.00 0.00 0.00 0.00 2.69 100.00 

Spectrum 2 Yes 57.05 0.33 5.66 3.06 8.01 23.57 0.00 2.15 0.17 0.00 0.00 0.00 0.00 100.00 

Spectrum 3 Yes 57.18 0.16 5.54 6.30 7.55 22.45 0.00 0.00 0.00 0.00 0.00 0.00 0.81 100.00 

Spectrum 4 Yes 26.46 0.25 6.24 1.30 21.95 43.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

3.3 Meteorological data 

As the measurements were performed at a relatively small distance and under the actual climate conditions for the 

defined period, it was necessary to define the approximate dusting under different climatic conditions. The initial 

conditions such as dust under laboratory conditions, waste characteristics, deposit dimensions and surrounding 

relief were inputted into the software Screenview and the obtained diagram showed reasonable agreement with 

the measured values. The calculated results are presented in Fig. 3. 

Figure 3. Calculated particles dispersion 

By analyzing the data for wind speeds, directions and frequencies, it can be concluded that the winds have 

changed their frequencies over the last 20 years. In 1999, the weather was mostly stable, and just 7.0 % of the 

winds had a speed of more than 3.6 m/s. Southern winds were the strongest and northeastern winds were the most 

frequent, i.e., 20 % of the winds came from this diection. Just 1 % of the winds were stronger than 8.8 m/s. In 

2010, 21.1 % was in the wind class 3.6–5.7 m/s, and 2.8 % of the winds had a wind speed of more than 5.7 m/s. 

Southern winds were the most frequent, but southwestern winds also increased in frequency and speed. This is 

usually the case in the summer, when strong hot winds blow from the Mediterranean area, with hot and dry 

weather (Fig.4) 

Jelena V. Đokić, Nebojša  B. Arsić and Srđan V. Jović 
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Fig.4. Wind Rose used for simulation 

In extreme weather conditions, the wind speed larger than 10 m/s is expected, and there are no data on pollution 

in these climatic conditions. The potentially unstable weateher was taken into consideration for modelling and 

simulation. The distance of 5000 m from the source of pollution was set for discrete distance calculations.  

Simulation was done by using Gaussian Plume Air Dispersion Model AERMOD. AERMOD incorporates, with a 

new simple approach, current concepts about flow and dispersion in complex terrain. In this case the plume is 

modeled and impacting and following the terrain. The first terrain layer for the research area is presented in Fig. 

5. 

Fig.5. The terrain information on Gornje Polje 

Surface characteristics in the form of albedo, surface roughness and Bowen ratio, plus standard meteorological 

observations (wind speed, wind direction, temperature, and cloud cover), are input to AERMET. AERMET then 

calculates the PBL parameters: friction velocity (u* ), Monin-Obukhov length (L), convective velocity 

scale (w*), temperature scale (* ), mixing height (z i), and surface heat flux (H) These parameters are then 

passed to the INTERFACE (which is within AERMOD) where similarity expressions (in conjunction with 

measurements) are used to calculate vertical profiles of wind speed (u), lateral and vertical turbulent 

fluctuations (v , w ), temperature gradient (d/dz), potential temperature ( ), and the horizontal Lagrangian time 

scale (TLy ). 

After the calculation the air dispersión model is presented in Fig.6. Red line shows the impact zone, and 

the pollution data are more than 20 times higher than allowed concentrations 

Jelena V. Đokić, Nebojša  B. Arsić and Srđan V. Jović 
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Fig.6. Calculated PM10 concentrations in wind speed 11.1 m/s 

. 

In order to observe separate situations and the difference in dispersion in stable and extreme weather, the 

simulation with daily average data was presented in Fig.7. 

4. CONCLUSIONS

The tailing waste deposit from lead and zinc ore processing was proven to have a great environmental impact, 

due to its form, fine grains of PM10, and TSP. Under stable weather conditions, the dusting is scattered by up to 

1400–2000 m around the waste deposit. With climate change, i.e., decreased relative humidity and the frequency 

of strong winds (3.6–5.7 m/s) reaching 21.9 %, with 1 % of the winds attaining a speed interval  8.8 m/s to 11.1 

m/s the impact range was wider, and more intense. Thus, a larger area, up to 5 km in diameter, is endangered but 

because of the topography of the area and surrounding hills, the area is not larger.  

Jelena V. Đokić, Nebojša  B. Arsić and Srđan V. Jović 

206



REFERENCES 

[1]  WHO Air quality and health, Fact sheet No. 313 (2008) 

[2]  Philip Peck ( 2004), Desk-assessment study for the Environment and Security Initiative Project UNEP 

Regional Office for Europe & UNEP Division of Technology, Industry and Economics 

[3]  S. Frese, R. Klitgaard, E. Kock Pedersen , Environmental Management in Kosovo, Heavy Metal 

emission from Trepca, TekSam, Institut for Miljo, Teknologi og Samfund, 2004 

[4] Strmić Palinkaš, S., Palinkaš, L., Lüders, V., Molnar, F., P-T-X conditions of mineralizing fluids from 

Pb-Zn-Ag hydrothermal-metasomatic deposit Stari Trg, Trepča, Kosovo, Architecture of collisional 

orogens / Franz Neubauer (ur.).Salzburg, 2007. pp. 71-72 

[5] Tošović, R.; Dašić, P.; Ristović, I. Sustainable Use of Metallic Mineral Resources of Serbia from An 

Environmental Perspective. Environmental Engineering and Management Journal 2016, Volume 15, 

pp. 2075-2084. 

[6] F.Riesbeck, Trepca Tailings and Trepca Mines – environmental problems an overview of solutions , 

International Conference Report, Taking Action Together: Industrial Waste Management for Trepca 

Enterprise, UNDP, Mitrovica, 19–20 September 2011,pp.10 

[7] Milentijević, G., Spalević, Ž., Bjelajac, Ž., Djokić, J., Nedeljković, B. Impact Analysis of Mining 

Company 'Trepca' to the Contamination of the River Ibar Water, National Vs. European Law 

Regulations. Metalurgia international 2013, Volume 18, pp. 283-288.  

[8] Milentijević, G., Nedeljković, B., Lekić, M., Nikić, Z., Ristović I., Djokić, J. Application of a Method 

for Intelligent Multi-Criteria Analysis of the Environmental Impact of Tailing Ponds in Northern 

Kosovo and Metohija. Energies 2016, Volume 9 (11), pp. 935-952, DOI: 10.3390/en9110935. 

[9] Đokić J., Milentijević G., Nedeljković B.: Exploring Possibilities for Tailing Waste Deposit 

Management Mitrovica Innovations Scientific International Conference – MISIC 2015: The Role of 

Business in Sustainable Development in the Western Balkans, 15-16 September, Pristina and Mitrovica, 

pp. 185-192, 2015 

[10] Nannoni F, Protano G, Riccobono F (2011) Fractionation and geochemical mobility of heavy elements 

in soils of a mining area in Northern Kosovo. Geoderma 161:63–73. 

doi:10.1016/j.geoderma.2010.12.008 

[11] Borgna L, Di Lella LA, Nannoni F, Pisani A, Pizzetti E, Protano G, Riccobono F, Rossi S (2009) The 

high contents of lead in soils of Northern Kosovo. J Geochem Explor 101:137–146. 

doi:10.1016/j.gexplo.2008.05.001 

[12] Barać, N., Škrivanj, S., Bukumirić, Z. et al. Environ Sci Pollut Res (2016) 23: 9000. 

https://doi.org/10.1007/s11356-016-6142-2 

Jelena V. Đokić, Nebojša  B. Arsić and Srđan V. Jović 

207

http://dx.doi.org/10.3390/en9110935
https://doi.org/10.1016/j.geoderma.2010.12.008
https://doi.org/10.1016/j.gexplo.2008.05.001
https://doi.org/10.1007/s11356-016-6142-2


A NEW BOUNDARY ELEMENT SOLUTION TO PLATES ON ELASTIC 
FOUNDATION VIA HELMHOLTZ’S POTENTIALS 

Maria S. Nerantzaki1 and John T. Katsikadelis2 

School of Civil Engineering 
National Technical University 

Athens, GR-17753, Greece 
1e-mail: majori@central.ntua.gr  

2e-mail: jkats@central.ntua.gr, web page: http://users.ntua.gr/jkats 

Keywords: Boundary Element Method; Plate on elastic foundation; Helmholtz’ potentials representation. 

Abstract. A new pure boundary element method is presented for the analysis of plates resting on elastic foundation 
described by the Winkler and Pasternak model. The solution is sought as the sum of the homogeneous and particular 
solution. The homogeneous solution is represented as a sum of two Helmholtz’s potentials, which are expressed by 
their integral representation. The integral representations of the Helmholtz’s potentials together with the boundary 
conditions provide the necessary boundary equations for the establishment of the unknown boundary quantities. Then 
the solution of the plate at any point is obtained from its integral representation, which is used as a mathematical 
formula. The example problems demonstrate the effectiveness and accuracy of the developed method. 

1. THE PLATE ON ELASTIC FOUNDATION AND THE SOLUTION PROCEDURE

The response of the plate resting on an elastic foundation is governed by the equation [1-4]
4 2 ( , )D w G w kw f x y     ,       ,x y    (1) 

( , )w x y  is the deflection surface, ( , )f x y  the transverse load, and ,G k  the subgrade parameters ( 0, 0G k   
Pasternak, 0, 0G k   Winkler elastic foundation). 

The BEM for the solution of (1) has been obtained using the fundamental of (1) [1-3]. This approach, besides the 
analytical difficulties in establishing the fundamental solution and the pertinent boundary integral equations, leads to 
boundary integral equations, whose numerical solution requires special care. The AEM has also been developed for 
plates on elastic foundation using the simple known fundamental solution of the biharmonic (plate) equation, 
alleviating the BEM from establishing the fundamental solution of the governing equation [4]. 

In This investigation, the solution is sought as the sum of the homogeneous solution 0w  and a particular solution 

pw

0 pw w w  (2a) 

4 2
0 0 0 0D w G w kw     (2b) 

4 2 ( , )p p pD w G w kw f x y      (2c) 

If 1 2,   are the squares of the roots of the characteristic polynomial 4 2 0D G k    , then we can write Eq. (2b) 
as 

4 2 2
0 0 2 1 0( )( ) 0D w kw D w          (3) 

The key to developing solution procedure is the following statement: 
Statement: 

If ( , )x y  and ( , )x y  are the solutions of the Helmholtz’s equations 
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 2
1( ) 0               and        2

2( ) 0    (4a,b) 

then the function  

 0( , ) ( , ) ( , )w x y x y x y    (5) 

gives the general solution of Eq. (3). 

Apparently, this statement is readily proved by direct substitution of 0( , )w x y  from Eq. (5) into Eq. (3). 

The particular solution ( , )pw x y  is evaluated analytically using a simple method developed by Katsikadelis [5]. 

The two Helmholtz’s potentials ( , )x y  and ( , )x y  are expressed by their integral representation in terms of their 
boundary values and their normal derivatives [6] 

1 1 1,( , )n nv v ds   


  ,        2 2 2,( , )n nv v ds   


  (6a,b) 

where 1v  and 2v  are the fundamental solution of Eqs. (4a,b) [7], and 1 2,   the free term coefficients. 

The plate is subjected to boundary conditions 

Clamped edge:  0, 0nw w  (7a) 

Simply supported edge: 20, [ ( 1)( )] 0n ss nw M D w w w          (7b) 

For free edges special care is required depending on subgrade model [8]. 

Table 1 Deflections and stress resultants in plates on elastic foundation for / 0,1,100k D    
under a uniform load q . Upper value: Computed; Lower value: Available from literature [10]. 

Plate geometry and BCs 0 4
0/ ( / )w f a D  1 2/ ( )nM qa  0 2/ ( )xM qa  

o

S

S

S

S

/2a

/2a

/2a /2a

1

0.00406 
0.00402 
0.00319 

0.0476 
0.0473 
0.0369 

0.00406 
0.00405 
0.00321 

0.0479 
0.0477 
0.0370 

o

C

C

C

C

/2a

/2a

/2a /2a

1

0.00127 
0.00127 
0.00119 

-0.0514 
-0.0508 
-0.0486 

0.0229 
0.0231 
0.0209 

0.00126 -0.0513 0.0231 

The boundary conditions together with the boundary integral equations (6a,b) provide a set of four boundary 
equations, which are solved numerically to give the boundary values of the Helmholtz potentials and their normal 
derivatives, i.e., , , , , ,n n    . Then the Helmholtz potentials are computed at any point from their integral 
representations (7a,b), which are used as mathematical formulae. Subsequently, these values are employed in Eq. (5) 
to compute 0( , )w x y  and then the plate solution ( , )w x y  from Eq. (2a). All types of plate boundary conditions are 
treated. Example plate problems are presented, which demonstrate the effectiveness and accuracy of the proposed 
method. Table 1 shows results obtained by this method for a square plate with different boundary conditions. 
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2. CONCLUSIONS

The search for a solution via Helmholtz’s potentials, motivated from the Almansi representation of the biharmonic
equation [9] paves the path to develop a pure BEM solution to the general poly-harmonic equation 

2 2( 1) 2
1 1 0 ( , )n n

n na w a w a w a w f x y
        (8) 

Eq (8) describes the response of several physical systems, such as microplates, poly-harmonic subgrade reaction 
models for plates on an elastic foundation e.g., Levinson-Bharatha [4]. The solution of such problems will be the 
subject of forthcoming publications. 
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Abstract. Modeling of large-scale reinforced concrete structures under monotonic and cyclic analysis requires

significant computational demand given that models can incorporate hundreds of thousands of embedded rebars. 

In order to discretize and simulate any reinforced concrete structure by the 3D detailed modeling approach, the 

embedded mesh has to be generated prior to the analysis, a procedure that is controlled by the hexahedral mesh 

that is used to discretize the concrete domain. Numerically managing the computational demands that rise from 

the embedded mesh generation procedure can be challenging and time-consuming, especially in the case where 

the numerical models foresee the use of more than half a million of embedded rebars. Parallel processing and the 

use of a simple but efficient algorithmic implementation are presented in this research work. The use of OpenMP 

API for Shared Memory Parallelization specifications is adopted herein so as to integrate the proposed embedded 

mesh generation algorithm with the ability to use multiple cores during the search and creation of embedded 

rebars within large-scale hexahedral meshes. In order to investigate the performance of the proposed algorithm, 

a reinforced concrete model of a Reactor Building was constructed that foresees the use of 181,076 concrete 

hexahedrons and 2,703,400 embedded rebar elements. 

1 INTRODUCTION 

The accurate assessment of reinforced concrete (RC) structures through the use of 3D detailed modeling (under 
monotonic and cyclic loading [1-3]), foresees the discretization of the concrete domain through the isoparametric 
hexahedral element (8-, -20 or 27-noded) that treats crack openings by deploying the smeared crack approach and 
models the reinforcement mesh by discretizing it with the embedded rod or beam finite elements. In order to 
allocate the embedded rebar elements that are found within each hexahedral element, a search procedure is 
performed to allocate the intersection of the macro-elements [4] with the hexahedral mesh (see Fig. 1), while the 
nodes of the embedded bar macro-elements are also checked whether they are located within a hexahedral element 
or lie on one of its surfaces. This procedure can be time consuming when the analysis foresees the solution of a 
large-scale model [4] that consists hundreds of thousands of embedded rebar elements.  

Figure 1 Embedded rebar macro-elements inside hexahedral finite elements [4]. 
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Figure 2. Flow chart of the updated embedded rebar element mesh generation method. [4] 

As it was presented in [4], the numerical method for allocating and generating the embedded rebars inside 
hexahedral elements was proposed by Barzegar and Maddipudi [5], which was an extension of the work of Elwi 
and Hrudey [6]. Their proposed mesh generation method [5] has the advantage of allowing arbitrary positioning 
of the rebars inside the concrete elements and a free geometry for each hexahedral element. The method was found 
to be hindered with additional computational demand [4] when dealing with a large number of rebars, given that 
the iterative solution procedure that was required during the search of intersection points was computationally 
demanding. The computational performance of this procedure was optimized by Markou [4], through the 
introduction of a geometric constraint (see Fig. 2) that was used to decrease unnecessary searches of intersection 
points between elements that were found in faraway parts of the mesh. Additionally, the method was also integrated 
with an algorithm that was able to determine whether a hexahedral element was symmetric, where the natural 
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coordinates of a virtual node were computed explicitly. This approach further increased the computational 
efficiency of the embedded rebar mesh generation procedure that was computationally efficient in handling meshes 
up to half a million embedded rebars.  

Nevertheless, the required computational time for generating the embedded rebar elements of a double deck 
RC bridge model required 6 hours as it was reported in [4], which constitutes a significant computational time 
duration. It is evident that, taking into advantage the ability of parallel processing is the next step to take so as to 
decrease the computational cost of the embedded rebar mesh generation procedure, thus be able to numerically 
handle even larger models that will consist billions of rebars. The objective of this research work, is to investigate 
the parallelization of the algorithm proposed in [4], by using the OpenMP API [7] for shared memory 
parallelization specifications. The performance of the proposed algorithm was numerically investigated through 
the use of a large-scale RC structure that foresaw the generation of 2,703,400 embedded rebar elements. 

2 EMBEDDED MESH GENERATION ALGORITHM 

Generating the embedded rebar mesh of any 3D detailed model requires the use of a pre-processing software 
to construct the hexahedral mesh and the embedded macro-elements (EMEs). For the needs of this research, Femap 
[8] commercial software is used to perform the mesh construction of the under study RC structure, which is then 
analyzed through the use of the research software Reconan FEA [9] that was recently integrated with the parallel 
embedded rebar mesh generation algorithm. Fig. 2 shows the serial algorithm that was proposed in [4], where the 
search of embedded rebar elements is performed by applying the geometric constraint approach and the short 
embedded rebar filter that was also first introduced in [4]. As it can be seen in Fig. 2, for each EME the hexahedral 
elements of the model are checked whether they have any intersections with the under study EME, given that the 
hexahedrons satisfy the corresponding geometrical constraint. The algorithmic structure of the embedded mesh 
generation procedure, as described in Fig. 2, offers the advantage of parallelizing the entire procedure without the 
need of applying any special parallel solution approaches. The next section will discuss the parallelization features 
of the proposed algorithm. 

3 PARALLEL ALGORITHM 

3.1 OpenMP 

As it was stated in [7], the OpenMP API specification provides a model for parallel programming that is 
portable across shared memory architectures. One of the main advantages of OpenMP is that numerous vendors 
support it, where different compilers can be used to build parallel applications. In addition to that, the use of 
OpenMP extends to different programming languages such as C, C++ and Fortran, while the specifications provide 
support for sharing and privatizing data [7]. Microsoft Visual Studio 2010 and later versions, support OpenMP, 
where the latest compilers integrated within the studio software have the option of activating and deactivating the 
ability of generating parallel code by using the OpenMP specifications. Additionally, the procedure of developing 
parallel algorithms with OpenMP is considered to be less demanding in comparison to other solutions such as 
MPI. 

When programming any parallel solution algorithm, the ability of debugging the under development code is 
not feasible thus the use of commands that are easy to implement and control during the programming procedure 
is of great importance in achieving an error free product with high performance characteristics and high scalability. 
For this reason OpenMP introduced commands that can automatically parallelize “do” (Fortran) or “for” (C, C++) 
loops, without the need of using a large number of additional command lines. Furthermore, the use of the parallel 
sections construct is available and it was also found in this work to be the most effective OpenMP command when 
parallelizing a double “do” loop. Therefore, for the needs of this research work, the sections construct (see Fig. 3) 
was adopted for distributing the computational load to the selected cores. 

 Subroutine SectionConstructExamble 
 Implicit None 
 !$OMP Parallel Sections 

 !$OMP Section ! Sec 1 
   Call DoWork_1 
 !$OMP Section ! Sec 2 

 Call DoWork_2 
. 
. 
. 

 !$OMP Section ! Sec i 
 Call DoWork_i 

   !$OMP End Parallel Sections   
    End Subroutine SectionConstructExamble 

Figure 3. OpenMP parallel section construct in Fortran language. 
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3.2 Proposed Parallel Algorithm 

As it was stated in the previous section, the serial algorithm found in Fig. 2 was restructured so as to be able 
to be solved in a parallel manner. In achieving this objective, the first step foresaw the allocation of the algorithmic 
parts that involved the main computational demand of the mesh generation procedure. Based on a numerical 
investigation, it was found that the double “do” loop was the algorithmic procedure that required most of the 
computational time during the mesh generation procedure, as shown in Fig. 2. The second step in developing the 
parallel algorithm was to develop the mechanism through which the computational load was to be distributed to 
the cores, where it was chosen to directly divide the number of EMEs into equal in number subdomains. Therefore, 
the EMEs were allocated during the preparatory stage of the proposed algorithm that foresaw the computation of 
their total number and then based on their ID numbering, they were accordingly divided into subdomains.   

It is important to note here that, the length of each EME determines the number of hexahedral elements that 
will be intersected thus controls the number of calculations and the corresponding computational demand required 
during the mesh generation procedure. The computational demand that immerses in each search loop was found 
to be proportional to the length of the EMEs and the corresponding sizes of the hexahedral finite elements. In this 
research work, the construction of the subdomains did not account for this factor, which will be a subject of future 
investigation. Fig. 4 shows the flowchart of the proposed parallel algorithm that was numerically investigated for 
the needs of this research work. 

Figure 4. Flow chart of the proposed parallel embedded rebar mesh generation procedure. 

4 NUMERICAL RESULTS AND DISCUSSION 

So as to investigate the numerical performance of the proposed algorithm, a RC reactor building was used to 
be discretized and analyzed by using the under study algorithmic parallel implementation. In section 4.1 the 
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model’s mesh that was used to assess the numerical performance of the proposed algorithm is presented, while the 
preliminary computational investigation that was performed when engaging the proposed parallel embedded rebar 
mesh generation algorithm for generating the mesh of the under study building, are presented in section 4.2. 

4.1 Reinforced Concrete Model 

Fig. 5 shows the 3D view the hexahedral mesh of a NUSCALE reactor building that has a total length of 75.25 
m and a width of 30 m. The maximum height of the RC structure is 39.55 m, where the 8-noded hexahedral 
isoparametric finite element was used to discretize the framing system of the building. The 177,504 EMEs that 
were used during the embedded rebar mesh generation procedure can be seen in Fig. 6, while the details of the 
constructed mesh can be depicted in Table 1. In order to decrease the mesh construction procedure, the option of 
using very long EMEs was adopted herein. The longest EMEs are found in the raft slab, the exterior walls and 
along the roof slab (see Fig. 6). 

Figure 5 Reactor Building. Hexahedral elements finite element mesh. 

Figure 6 Reactor Building. Embedded rod elements finite element mesh. 

Num. of Hexa 
Elements 

Num. of Embedded 
Macro-Elements 

Num. of Hexa 
Nodes 

Num. of Generated 
Embedded Rebar Elem. 

Num. of Short 
Embedded Rebar Elem. 

181,076 177,504 271,226 2,703,400 3,392 

Table 1 Finite element mesh details. 

4.2 Algorithmic Performance 

In order to investigate the algorithmic performance of the proposed parallel embedded rebar mesh generation 
algorithm, a standard 8-core CPU system was used, while the embedded rebar mesh generation was performed by 
using different numbers of cores per run. It must be noted here that, the Intel(R) Xeon processor that was used 
herein had a 3.70 GHz computing power per core. Fig. 7 shows the graph that derived from the 8 analyses that 
were performed in order to test the scalability of the proposed parallel algorithm. All 8 analyses were performed 
twice in order to reassure that the recorded computational times were objective and that the software was not 
affected by any other applications that were running simultaneously at the background. In addition to that, the 
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CPU that was used to perform the analyses was dedicated to this project and only the minimum required 
applications were running during the parametric investigation. 

As it can be observed in Fig. 7 and Table 2, the required computational time decreases proportionally to the 
number of cores increase, where the scalability of the problem is found to be optimum for the cases of 2, 3 and 4 
cores. This is attributed to the fact that the embedded mesh generation procedure foresees for each EME search to 
be independent thus no time is spent in order to perform reduction procedures or computations that need to use the 
same matrices or connectivity arrays (minimal communication demands). Moreover, Reconan FEA uses the latest 
Fortran attributes that allow for the use of the derived data type which is similar to C structures and has some 
similarities with C++ classes. Therefore, the data management does not require any additional treatment when the 
embedded mesh generation procedure was converted to parallel, whereas each core receives the variables and data 
that refer to the at hand subdomain with minimum communication demands. The overall performance of the 
proposed parallel algorithm demonstrated a maximum scalability when using up to 4 cores, while the performance 
of the code exhibited a lower scalability ratio when 5, 6, 7 and 8 cores were used (see Table 2).  

This numerical finding was attributed to the fact that the EMEs were constructed by using various lengths that 
varied between 0.7 and 75 meters long (based on the geometry of the RC structural members). Therefore, when 
the mesh was divided into subdomains of equal in number EMEs, their length was not accounted as a controlling 
factor during the subdivision procedure. Consequently, some subdomains incorporated EMEs that require a 
significantly larger number of calculations in comparison to others, affecting the overall scalability of the proposed 
algorithm, especially when 5 subdomains were used to divide the EMEs. This created a notable load imbalance 
ratio, regardless the fact that there was no significant communication volume during the analysis that would have 
added further computational demand during the parallel solution procedure. Nevertheless, the CPU parallel 
efficiency of the proposed algorithm was found to be satisfactory (see Table 2). It is significant to note at this point 
that, the last loop of the proposed algorithm (Fig. 4) is performed in a serial manner, where its computational time 
is also accounted within the provided computational time durations depicted in Table 2. Therefore, the 
computational time that is required to perform the serial part of the mesh generation procedure is note affected 
when more than one core is used, thus the computed average CPU parallel efficiency is negatively affected by this 
adopted algorithmic approach. This numerical issue will be further optimized and presented in an updated version 
of the proposed parallel algorithm. 

In addition to the above discussed load imbalance issue, a direct solution is to use a constant EME length 
throughout the mesh that will ensure similar computational demands for all virtual node searches, thus achieve an 
optimum scalability. Nonetheless, this mesh construction approach would create a restraint to the mesh 
development stage, thus a more general solution is deemed proper that would account for the length of each EME. 
By considering each EME’s length as a weight factor and by using it to determine the optimal subdomain division 
during the preparatory stage of the parallel algorithm (see Fig. 4) in achieving a minimum imbalance ratio, would 
provide with a comprehensive solution to the load imbalance ratio issue. This is currently a subject of future 
research work. 

Figure 7 Computational time vs number of cores. 

Based on the data provided in Table 2, it can be noted that the required average computational time for 
generating 2,703,400 embedded rebar elements (and discard 3,392 short embedded rebar elements) was 6.065 
hours when using the serial code, while the corresponding time was decreased to 1.25 hours when 8 cores were 
deployed (60.4% CPU parallel efficiency). This illustrates the ability of the proposed parallel algorithm to 
significantly decrease the computational time, even in the case where the subdomains were not optimally 
constructed so as to ensure an even computational load distribution, thus achieving a high CPU parallel efficiency. 
It is noteworthy to state here that, the under study model presented in this research work is currently the largest 
model found in the international literature in terms of the number of generated embedded rebar elements. 
Regardless the significantly large number of embedded rebar elements, the proposed parallel algorithm was found 
to be able to handle this numerically intensive task in a computationally efficient manner, providing with a 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 1 2 3 4 5 6 7 8 9

Ti
m

e 
in

 h
ou

rs

Number of Cores

Run 1
Run 2

216



George Markou 
satisfactory CPU parallel efficiency. Finally, the deformed shape of the embedded rebar elements and the von 
Mises strain contour of part of the roof’s hexahedral mesh are shown in Fig. 8, as they resulted from a static 
numerical analysis for the self-weight of the structure. 

Num. of 
Cores 

Comp. Time Run 1 
(h) 

Comp. Time Run 2 
(h) 

Average CPU Parallel 
Efficiency (%) 

1 6.07 6.06 Reference 
2 3.02 3.00 100.8 
3 1.93 1.90 105.6 
4 1.50 1.48 101.7 
5 1.52 1.50 80.3 
6 1.44 1.41 70.9 
7 1.36 1.35 63.8 
8 1.25 1.25 60.4 

Table 2 Computational time for generating the embedded rebar mesh for different number of cores. 

Figure 8 Deformed shape and solid von Mises stress  contour of the roof. 

5 CONCLUSIONS 

A simple and efficient parallel algorithm was proposed for the embedded rebar mesh generation of large-scale 
RC models that use hexahedral isoparametric finite elements to discretize the concrete domain and model the steel 
reinforcement as embedded rebar elements. The proposed parallel algorithm used the OpenMP specifications so 
as to distribute the computational work to the cores based on a proposed parallel algorithm presented herein. The 
computational performance of the proposed parallel algorithm was investigated by performing parallel analyses 
that foresaw the use of 2 to 8 cores during different parallel analyses. Based on the numerical findings it was 
concluded that the proposed parallel algorithm was able to decrease the computational time with a satisfactory 
CPU parallel efficiency when dealing with a mesh that incorporated more than 2.7 million embedded rebars. 
Furthermore, it was found that the various EME lengths found in the initial RC mesh affected the scalability of the 
developed algorithm. Having subdomains that consisted very long EMEs in comparison to other subdomains that 
had the same number of EMEs but with shorter lengths, a load imbalance ratio immersed that affected the CPU 
parallel performance of the proposed algorithm. Nevertheless, the overall scalability of the proposed first version 
parallel embedded rebar mesh generation algorithm was found to be satisfactory. 

A future objective of this research work is to investigate the development of a weight factor that will control 
the subdomain decomposition thus ensure a balanced computational load distribution according to each EME 
length. In addition to that, the solution of larger in size problems will be performed by using more cores in order 
to investigate the scalability of the propose algorithm when engaging more than 8 cores. Finally, the use of MPI 
will also be a subject of research in an attempt to compare the overall performance of the mesh generation 
procedure in parallel computing environments with shared memory. 
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Abstract. Analysis of historical aggregated masonry buildings is important to understand the way the structure 

behaves and to understand the cause and significance of the cracks, if they are visible. Only with a good 

comprehension of both aspects can the engineer or architect take decisions about the techniques of conservation 

which could be used. In parallel, the absence of data about the adjacent buildings, raises a lot of queries in the 

simulation. Many methods for the analysis of masonry structures and especially the vaults have been developed.  

The aim of this research is the static and dynamic analysis of the existing state (taking into account the 

structural pathology like cracks, weak material areas) of part of a monastic share studied by the finite element 

method in order to document the causes of its deterioration. There are two elongated vaulted spaces where the 

transverse wall has collapsed and there is a visible crack in the one vault. Different finite element models were 

analyzed for the simulation of each vaulted structure separated or connected, in order to study the dynamic 

behaviour of these buildings in continuity and to investigate the influence of boundary conditions to the dynamic 

behaviour. 

 

1 INTRODUCTION 

Aggregated buildings represent an important and typical peculiarity in many old town centers. They consist of 

buildings in continuity with common walls in between them, which lead to a structural dynamic behaviour as a 

group. The same structural system appears in old monastic and agricultural or arsenal complexes. The experience 

of earthquakes which affected old town centers with masonry aggregated buildings creates the need to analyze 

the behaviour of these systems, taking into account the specific geometric characteristic, structural materials and 

boundary conditions. Their dynamic response relates with the stiffness of each building separately as well as the 

stiffness of the overall complex.  

Different approaches has been used to investigation of masonry building compounds which were affected by 

L’Aquila earthquake and, more recently, the Emilia-Romagna one which demonstrated that aggregated buildings 

generally show a group behaviour which improves seismic performances of the component structural units, also 

when they are made of low quality masonry [1-2].  

From a work about the seismic vulnerability assessment of an old stone masonry building aggregate it was 

concluded that building aggregates result as a middle term scale class of buildings whose optimal assessment 

should embrace numerical analysis for a more detailed investigation, always depending on the objective of the 

project in hands. Numerical analysis shall be used as a complement of indirect techniques assessment, for a more 

detailed examination of the structure and its behaviour when subjected to a seismic action, contributing for the 

designing of more adequate and efficient retrofitting interventions [3]. 

Two main factors influenced the seismic response of historical masonry buildings: the constructive techniques 

of recent interventions and the state of conservation. Also the state of preservation played an important role 

particularly referring to damage caused to contiguous buildings; in fact, in many cases, buildings adjacent to 

abandoned constructions have been damaged due to the lack of the stabilizing contribution of neighboring cells 

[4]. 

From the study of complex historical buildings like the Palazzo La Sapienza in Pisa it was concluded that the 

analysis must be executed considering the construction not a single unit but a "structural aggregate", made up of 

different parts interconnected to each other in various ways and using different techniques since such 

complexities and structural heterogeneity usually result in widely disparate responses of different parts of the 

building to external actions, with widespread cracking phenomena and possible structural problems and failures 
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[5]. 

In order to simulate the three dimensional effects of the vault, the stabilization role of the spandrels and the 

existing condition, including the permanent deformations, an accurate geometry of the vault is necessary for the 

estimation of the structural strength and dynamic behaviour [6].  

The goal of the present study is the analysis, using the finite elements method (FEM), of the behaviour of the 

north-east part of a monastery complex in dynamic loading. Different finite element models were analyzed in 

order to simulate each vaulted structure separated or connected, in order to study the dynamic behaviour of these 

buildings in continuity and to investigate the influence of boundary conditions to the dynamic behaviour. The 

absence of symmetry of the construction, due to differences of the transverse walls, the differences to stiffness of 

the longitudinal walls and the different boundary conditions, led to necessity of three dimensional modeling of 

the structure. Because the study takes place at the macro level, it was assumed that the masonry walls are 

composed of homogeneous and isotropic continuum material with elastic-plastic behaviour in compression and 

low strength in tension. For this purpose, the study is structured in the following four sections: architectural 

documentation, analysis of the FEM model of the north vaulted part as an isolated entity in a theoretical model, 

study of the FEM model of the same volume combined with neighbor parallel vaults as they exist in reality and 

finally conclusions related to the comparison of the previous FEM models.  

2.  DESCRIPTION OF STRUCTURE 

2.1 Geometry – Pathology 

The studied building belongs to the Monastery of Ayia Triada Tsagarolon in the area of Akrotiri of Chania 

municipality. The building complex is located in the village of Sternes in the local area of Prinodasos. The first 

historical reference about the monastic share, goes up to the second decade of the 17
th

 century and therefore it 

can be considered as a historical monument of the Venetian occupation period in Crete. At the same period there 

are also references to a small church dedicated to St. Dimitrios in the northwest side of the same property (Fig. 1) 

[7-10].  

 
Figure 1. Map of Akrotiri  region where the monastic share of Ayia Triada Monastery  is indicated 

(orthophoto). The studied volume of the building complex is marked with red color. 

The building complex consists of two separate adjacent building volumes in L-shape formation  

encompassing  two internal yards. The two separate building volumes are surrounded by an external wall which 

is a common feature of Monasteries in Crete. The total constructed area of the monastic share including the small 

church reaches up to approximately 710,6m
2
, due to ruminant conservation status of several parts. The 

northeastern part, which is documented, has rectangular shape, general dimensions: 9.20m x 14m and total area 

of approximately 126.85 m
2 

because of the collapse of the eastern facade. The main entrance is located in the 

southern part and leads to an internal yard through which the main building is accessible and is surrounded by 

three ground floor building volumes. (Fig. 2). This study focuses on the north volume of the building complex 

which is split into two smaller longitudinal vaulted rooms. The southern part of the volume is an arcade with a 

view to the internal yard and allows the access to the north and east chambers. The northern part of the volume is 

also accessible by the external north enclosure of the building complex and has two windows facing the arcade. 

The north part of the building complex is selected because of its longitudinal vaulted geometry. It is studied 

separately in two cases: in the first one, the room [D] is studied as an isolated geometry and in the second one the 

same room is studied in contact with spaces [E] (an arcade of similar geometry) and space [F], (a smaller corridor 
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also vaulted). The room [D] is an elongated vaulted space with internal dimensions 14.65m x 3.9m with two 

windows and a door on its south masonry and one door on its northern masonry (Fig. 3).     

 
Figure 2. Floor-plan of eastern volume of the building complex where the studied volume is indicated with red 

color and presented in 3d model in the left part of the figure. 

The longitudinal external masonry that bares the vaults has a width of 1m while the width of the internal wall 

among the two spaces is 0.65m. Every room of the building complex is vaulted and has a covering of cement 

mortar without reinforcement (Fig. 4). The vertical baring masonry is constructed by rubble stone masonry, 

consisting of rough shaped bioclastic limestones of medium and small size. The carved stones of the vaults have 

similar dimensions. The bounding mortar is made of clay and small aggregates of limestone. The width of the 

vault is approximately 30-35cm and the width of its cement covering mortar, ranges between 5 and 10cm.  

 

 
Figure 3. Internal view of  the chamber [E] with the pillars (left). External view of the northeast corner of the chamber 

[D] and the collapsed façade (right). 

 

Figure 4. External view of the north masonry of [D] and the developed tree (left). Internal layer of eastern 

collapsed façade and cement mortar covering (middle). Alteration of stone surface of the pillars of [E] chamber 

and material loss (right). 

 

The eastern transverse facade has partially collapsed: it is entirely collapsed in the part in front of the rooms 

[D] and [F] while only the internal half of a three-layered masonry is preserved in front of rooms [G] and [H]. 

From the remaining foundation masonry, it is estimated that the initial wall width was 0.90m (Fig. 3). In the 

upper side of the northeast corner of the [D] room, a native (fig) tree is developed inside the masonry, causing 

severe disruption and local detachment of the masonry (Fig. 4). The three rooms [D-E-F] have small crackings at 

the covering cement mortar and the [D] room has a centrally located 3m long crack of small range, starting from 
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the eastern side where the front wall has collapsed. The intense humidity inside the building, has been measured 

during a time period of one week in March 2017, between 82,9 – 96,9 %. Humidity has caused severe 

disintegration of the bounding mortar at the areas where the coating is not preserved, as well as biological 

colonization on the surfaces of the stones. The areas’ environmental conditions combined with intense wind 

flows inside the room (E), have caused alteration in the stones of the arcade pillars such as differential erosion, 

detachment and partly material loss (Fig. 4). 

Figure 5 . Axonometric 3d section views of the studied volume, with picture references 

3. FINITE ELEMENT ANALYSIS

3.1 Mechanical properties of the masonry 

In terms of mechanical properties, masonry is considered to be a material that is strong in compression with 

acceptable shear strengths but weak in tensile forces. Several equations to determine the mechanical properties of 

masonry have been formulated. In this work however, the European Regulation (EC6) guidelines have been 

adopted. Based on the national Annex of EC6, the value of compressive strength of the masonry is: fwc = 

Kfbc
0,65

fmc
0,30

 (MPa), where K is the coefficient that depends on the type of the masonry with standard values

ranging from 0.40 to 0.60, fbc  is the compressive strength of the stone and fmc is the compressive strength of the 

bounding mortar.  

The tensile strength of the masonry is significantly lower than its compressive strength. Therefore, the 

regulations consider the tensile strength negligible. However, in the case of horizontally loaded wall (earthquake, 

wind) a bending tensile strength of the masonry is defined. A common way to determine the value of the shear 

strength of an unreinforced masonry (fvk)  is either by testing or by using experimental data related to the 

cohesion (fvko) (EN1052-3, 4) or by the proposed values of the EC6 Regulation. 

In the present study, the compressive strength of the stone is considered of a value of 60 Mpa in the analysis, 

while the compressive strength of the mortar equal to 2 Mpa. Therefore the typical strength of the masonry is fwc 

= 14.4 MPa.  The adopted values of the design strengths are provided by the following expression based on the 

characteristics values:  fd = fk/γm, where γm = 2.7 × 2/3 = 1.8, the security coefficient. In summary the selected 

mechanical properties are shown in Table 1.  

Considering the current preservation status of the masonry some areas of the models were assumed with lower 

strengths.  

Material Young's 

modulus 

Ε (GPa) 

Yield 

stress 

(MPa) 

Compressive 

strength, fcd

(MPa) 

Tensile 

strength, ftd 

(MPa) 

Shear 

strength, fvd

(MPa) 

Poisson 

ratio ν 

Mass 

Density 

ρ(t/m
3
) 

M1 8 8 8 0.4 0.5 0.25 1.8 

Table 1: Mechanical properties of masonry 

3.2 Description of the computational models 

Unilateral contact effects arise in masonry structures due to the absence of mortar or its low quality and many 

of the damages like cracks can be described by loss of contact, sliding or, rarely, compressive yield of masonry. 

Consequently, in this research nonlinear finite element models based on the principles of non-smooth mechanics 
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were adopted to represent the mechanical performance of the structure. Unilateral contact law governs the 

behaviour in the normal direction of the interface, indicating that no tension forces can be transmitted in that 

direction. The behaviour in the tangential direction takes into account that sliding may or may not occur. 

At every point of an interface the basic unilateral contact mechanism can be described by the following set of 

relations: the no-penetration inequality, the no-tension inequality and a complementarity either-or relation, which 

indicates that either, separation with zero contact force or compressive contact force with zero gap appear. For a 

discreted structure, the previous relations are written for every point of a unilateral boundary or interface by using 

appropriate vectors. The arising nonsmooth structural analysis problem has the form of a nonlinear 

complementarity problem. More details can be found, among others, in [11-13]. 

The behaviour in the tangential direction is ruled by the Coulomb friction model that exhibits a similar either-

or, variable structure, unilateral behaviour: no-slip is enforced, if the frictional force is within limits, and slip with 

constant friction force is allowed at the limits. As with the contact problem, a complementarity problem also 

arises for friction.  

The one-sided (unilateral) behaviour, due to contact, and the stick-slip mechanism of friction transforms the 

usual variational equality formulation of the mechanical problem into a variational inequality [11]. In this study, 

for the enforcement of the contact constraints, the penalty method has been chosen. The friction problem can, in 

principle, be approached by a similar method. Finally, the coupled problem has been solved by the Newton 

Raphson incremental iterative procedure. 

 

3.3 Finite element models for analysis 
The sub-section of the structure as mentioned above, communicates laterally with adjacent spaces and 

therefore some movement engagements are applied on the contact area at the directions of the lateral support. 

The value of stiffness provided from this support is not known in advance. The goal of the present study is to test 

the main vault of space (D) in two extreme scenarios: one with total rigid support and the second one with no 

support, and then compare the results with the existing geometry in the present status. For the evaluation of the 

mechanical behaviour of the core an appropriate FEM for simulation of monumental constructions was used, of 

special geometry, stiffness and mechanical behaviour that cannot be stimulated with simplified models, according 

to the existing research [14-16].   

During the analysis three models (M1-M2-M3) have been studied to observe the different results that arise 

from each one of the different side commitments. For the simulation of the model the architectural particularities 

are accurately designed and also the current pathology of masonry elements is considered as well as the vector 

and the mechanical material properties. The crack was modeled with unilateral contact along specific interface 

which was assumed at the place where the main crack exists, assuming that across these interface separation and 

friction effects are considered. 

The M1 and M2 models consist of 8 nodal and 5 nodal solid elements with 3 degrees of freedom at each 

node. The finite element mesh results from the attempt to achieve the appropriate simulation of the model. The 

M3 model, which presents the overall form of the buildings, was analyzed in the appropriate software for the 

FEM analysis (Marc-Mentat) as an isolated volume using the default parameters for the meshing procedure. 

The vaulted geometry and the current vector pathology lead to specific modelling requirements including a 

technique for bounding the individual parts of the masonry. The models were divided in individual bodies, with 

the ability of being separately deformed. The interaction between the attached bodies is determined by the 

boundary conditions, imposed on each one of them. Thus for the parts of the masonry, where no important 

cracking is observed, the boundary condition is set as “glued” state. In this setting the discrete elements are in 

constant contact with each other and consequently, relative velocity cannot be developed between them. 

Similarly, the surface of the main vault of [D] where there is a 3m long crack, is simulated with different bodies 

in contact with each other, where the friction is possible (friction coefficient = 0.9). In this case the considered 

boundary condition is set at “touching” state. The decay tense is defined at 400 KPa. The same friction 

coefficients were defined for every model and as a safety margin a friction stress limit 1 MPa was imposed. In the 

next paragraphs, a detailed description of the different model cases follows (Fig. 6):  

Case1 : The models M1 and M2 consist of 2647 three dimensional solid finite elements. In several areas of 

the vault (especially in the lower parts of its baring structure), a material property of a percentage 75% of the 

initial strength of the rest of the masonry, is defined, due to the damage caused by the descending moisture and 

the decaying of the bounding mortar. The material loss has been simulated in several parts of the masonry by the 

removal of finite elements. The difference between the models M1 and M2 is the following: the first one 

indicates the present conservation status, while the second one refers to a possible future situation in which, the 

vault is completely disorganized into two parts following the existing crack along the full length of the structure.  

Case2 : In the model M3, four separate deformable bodies were used for the analysis. The same boundary 

conditions and parameters of the masonry pathology of the previous case were used, in order to have comparable 

analysis results with the other models. Several parameters were tested before the final selection of the finite 
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elements’ mesh properties, to ensure the best possible accuracy of the simulation results of the real structure. 

 

 
Figure 6 . Axonometric views of the finite elements model (M3 – M1 – M2) 

 

 The material properties of the masonry are considered homogeneous and isotropic. The generalized 

Mohr-Coulomb Parabolic model, that was developed by Drucker and Prager, is used for the masonry, the 

material properties of which are characterized by elastic-plastic behaviour based on a yield surface that is 

exposed in  hydrostatic stress dependence. Such behaviour is observed in a wide variety of soil and rock-soil 

materials. As far as the boundary conditions are concerned, the whole structure supports its gravity loads, vertical 

loads on the top and the nodes of the base are considered to be fixed with the ground since no signs of slip or 

movement phenomena exist in the structure (zero displacements on the three axes).    

3.4 Non-linear analysis of the structure 

For the evaluation of the structural behaviour under seismic excitations, the accelerograms of three seismic 

events were selected and applied to the models, in the nonlinear dynamic analysis.  In order to display any failure 

of the vector, the nonlinear law of fracture (damage) was used. In terms of this law, the nonlinear law of stress-

strain for both tensile and compressive behaviour was adopted, according to previously mentioned information.  

The characteristics of earthquakes and the accelerograms that were selected are given in Table 2. In terms of 

the analysis, seismic excitation was applied in two directions (x, y) of the structure, considering that in the 

vertical direction the vibration is not significant for this structure. In x direction (vertical to the long side of the 

walls) the 100% of the ground motion was considered and a 30% of the ground motion was applied in y direction 

(parallel to the masonry axis). 

 

a/a Earthquake Εarthquake magnitude Peak ground acceleration (g) 

1 Aegio, Greece, 1995 6.40 0.54 

2 Irpinia, Italy, 1980 6.69 0.29 

3 Kobe, Japan, 1995 6.90 0.80 

Table 2: Characteristics of seismic events 

 

Additionally, the criterion of the failure maximum stress (MSC) was used, to indicate the areas of failure in 

the analysis. It is based on the calculation of nine failure indices F at each integration point. The nine failure 

indices are given by: 

              (1) 

             (2) 

            (3) 

 

Where: 

are the maximum allowable stresses in tension and compression. 

 are the stresses in tension, in x, y and z direction 

 are the stresses in compression,  in x, y and z direction 

 are the shear stresses in the 3 planes xy, yz and xz 

 is the maximum allowable shear stress. 

 

From the comparison of the two analyzed models for the Aegio earthquake, it is apparent that the distribution 

of stresses and areas of expected failure varies according to the different restriction settings of the theoretical 

models in comparison with the real geometry of the structure. During the analysis of the M1 model, at the partial 

step 693, the maximum stress ranges from -2.10MPa compressive to 3.25MPa tensile (Fig. 7). During the step 

354 of the analysis, (Fig. 8)  all the models are compared with the limit in stress values, that are developed in the 
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M1 model with no lateral restriction. In the case of absence of lateral restriction, the developed values are 

significantly lower than in the case of full restriction. The main regions where the stress values increase are 

located in the area of the crack along the vault - the lower baring area of the masonry and around the openings. 

 
Figure 7 . Axonometric north-east views of maximum principal stress at the 693 step of the analysis as a free 

model (left) and with lateral restriction (right). 
 

 
 

 
Figure 8 . The maximum principal stress at the 354 step of the analysis as a free model (left), with lateral 

restriction (middle) and as the existing geometry, for the Aegio earthquake (right). 

At the partial step 331 of the Aegio earthquake analysis, failures due to the excess of the tensile stresses along 

the z (vertical) axis are observed in the case of the lack of lateral bonding in the areas around the openings and in 

the inner part of the masonry of the vault (failure index 3 with a maximum ratio of 7 and values higher the 1 is 

shown in Figure 9). Additionally, in the case of rigid engagement, failures are observed at higher ratio values, 

which extend to the external longitudinal wall of the masonry, but also in the area of the crack, where strong 

detachment tendency of the vault is observed.  
 

 
Figure 9 . Axonometric north-east view of the 3

rd
 failure index at the 331 step of the analysis of the [D] vault, as a 

free model (left) and with lateral restriction (right). 

 

By setting a scale from 0-1 (non failure) at the Failure index 6 and 3 (as defined in Marc Mentat software 

settings) in partial steps 372 and 356 of the analysis, in the case of full side engagement, exceeded values are 

developed, and as a result failures are observed in almost the entire structure (Fig. 10-11). Unlikely the previous 

results of the model with no lateral restrictions (M1), the model M3 seems to reach the failure values, without 

exceeding them, at the lower area and the openings, while exceeding the limit value (value greater than one) in 

the area of the crack, indicating a tendency of its further opening. The restriction of the apex of the vault tends to 

maintain the southern part of the baring masonry, in a state of restraint of its movement, at and at the same time it 
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affects the distorted behaviour of the entire structure and contributes to the development of higher tension values 

resulting to further expansion of the crack.  

Figure 10 . The 6
th

 failure index at the 372 step of the analysis of the [D] vault, as the geometry exists (left), as a 

free model with no lateral restrictions (up-right) and with lateral restriction (bottom- right), studied for the Aegio 

earthquake. 

Figure 11 . The 3
rd

 failure index at the 356 step of the analysis of the [D] vault, as a free model (left), the existing 

geometry studied for the Aegio earthquake (middle) and with lateral restriction (right). 

Figure 12 . Axonometric south-east view of the [D] vault at the 624 step of the analysis with lateral restriction: 

maximum principal stress (left), the 2
nd

 failure index (middle) and the 5
th
 failure index (right). 

In the case study of full expansion of the vault crack where the two main parts of the masonry remain in 

contact only by friction forces (model M2), the existence of the lateral fully rigid support will result in a further 

increase of the intensive values both in the restrictment area but also in the region of the base of the south side. 

After the detachment, the south side will behave as a potential “cantilever beam”. The maximum stress values at 

the step 624 of the analysis, as well as the failure indexes 2 and 5, where the values exceed the limit value of 1.0 

and failures are expected, are shown in the Figure 12.  

Finally, during the analysis of imposed seismic base excitation of the Kobe earthquake in steps 146 and 148 

of the analysis, it is concluded that failure indexes 2 and 5 show the exceeded values of failure in a large part of 

M1, as opposed to M3 where the exceeded values are observed locally at the area of crack (the failure index 2 is 

shown in Figure 13). From the first steps of the analysis, it is obvious that the M1 model with the strong Kobe 

earthquake imposed, reaches the ductile area over a large part of its volume, while in the model  M3 the existence 
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of plastic deformations is limited locally to the crack area and particularly at the structural elements that have not 

been detached yet. 

Figure 13. The 2
nd

 failure index of the whole structure (left) and with lateral restriction (right) at the 146 step of 

the analysis studied for the Kobe earthquake. 

Section 3

Section 1

Section 2

Figure 14. Sections for the displacements presentation. 

Figure 15. Displacement U at Section 1 for Increments 137 and 145. 

Figure 16. Displacement U at Section 2 for the increment 155 and at section 3 for the increment 202. 

Diagrams of the displacements have been created at indicative section views for the Kobe earthquake (Fig. 

14-16). These models seem to have different initial displacements of certain nodes in some analysis steps because 

different modes of oscillation occur due to the seismic simulation. However, more important is the relative 

movement of the start and end nodes. It is obvious that the sharp increase or decrease of the displacements in the 

area of the crack opening is shown by the characteristic "step" in the diagrams. The influence of the crack on the 

model and the existence or not of lateral side restriction is more evident at this phase. 

4 CONCLUSIONS 

The goal of the present study was the finite element analysis of aggregated elongated vaulted structure in 

order to study the dynamic behaviour of these buildings in continuity and to investigate the influence of boundary 

conditions which are considered to the finite element model. Different models of the north-east part of a 
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monastery complex were used in order to simulate each vaulted structure as a free model with or without lateral 

restriction and the existing geometry. In parallel the existing failures like a main crack was considered to the 

models which were analyzed for different earthquakes.  

From the preceding analysis, it was concluded that the dynamic behaviour of the structure differs significantly 

between the two case studies, one with lateral restriction and a second with the real geometry of the building. The 

distribution of the stress values and the areas of exceedance of the allowed values are located in different 

positions in these two cases. Furthermore, for the same forced dynamic parameters, the developed stresses vary 

widely in the matter of values, where low numbers are observed in the case of the free model, intense values in 

case of the lateral restriction and between these two the case of the real geometry of the building is located. 

Therefore, every model that is being studied for the FEM analysis should simulate with the best possible 

accuracy, the real geometry and conservation status of the building, including also the accurate documentation of 

the neighbor volumes, in order to avoid over sizing phenomena and mistaken positions of the interventions, 

during the design of the restoration methods. The research continue to the estimation of the stiffness of neighbor 

structures and the way of modeling since in many cases there is no access to neighboring structures and real 

conditions mapping. 
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Abstract. In this study, the optimum design of reinforced concrete (RC) footings is investigated by using discrete 
and continuous variables. The optimization methodology employs metaheuristic algorithms in development of 
candidate solutions. The problem was evaluated by using Flower Pollination Algorithm (FPA), Teaching 
Learning based Optimization (TLBO), Jaya Algorithm (JA) and a hybrid algorithm (JA1SP). The optimization 
objective is the total material cost of the RC footing. The design variables include the dimension variables and 
the reinforcement design. For discrete variables, all algorithms have the same efficiency, but JA1SP is more 
effective than the others on finding the minimum cost of the design.  

1 INTRODUCTION 
Reinforced concrete (RC) spread footings are an important component of the structures which direct the 

structural loads to the ground. The optimum design of RC spread footings has been investigated in several 
studies, but the design of other RC member is generally developed more than spread footings. The main idea of 
the RC spread footings optimization studies is to find a low-cost design.  

Wang and Kulhawy investigated the optimum design of foundations considering the ultimate limit state, 
serviceability limit sate and economics [1]. Wang proposed a reliability-based economic design optimization of 
RC spread foundations [2]. Zhang et al. proposed an indirect method for reliability-based optimization of 
geotechnical systems such as spread footings and retaining walls [3]. A modified particle swarm optimization was 
employed by Khajehzadeh et al. in order to find designs of RC spread footings and retaining walls [4]. A 
gravitational search is used in the methodology optimizing shallow foundations by Khajehzadeh et al. [5]. 

In the present study, three new generation metaheuristic algorithms such as Flower Pollination Algorithm 
(FPA), Teaching Learning based Optimization (TLBO), Jaya Algorithm (JA) are presented. Also, a hybrid 
algorithm (JA1SP) combining the JA and the student phase of TLBO is proposed. The performance of the 
algorithms was tested on the cost optimization problem of RC footings by considering discrete and continuous 
design variables.   

2 METHODOLOGY 

The optimum sizing and reinforcement design of reinforced concrete (RC) footings is investigated by using 
several metaheuristic algorithms. The design methodology contains two state limits such as geotechnical and 
structural ones as design constraints and the codes of American Concrete Institute (ACI318) [6] are considered. 
The metaheuristic algorithms such as Flower Pollination Algorithm (FPA) [7], Teaching Learning based 
Optimization (TLBO) [8], Jaya Algorithm (JA) [9] and a hybrid algorithm (JA1SP) are employed.  

JA1SP uses the single phase of JA and student phase of TLBO by considering a probability to choose a 
phase. In JA1SP, a single phase is employed in an iteration according to the defined probability like the switch 
probability in FPA.  

The total material cost of RC footing is the design objective (f(x)) and it is penalized with a big value (106 $) 
if the constraints provided by ACI-318 [6] are violated. The design variables of the RC footing is shown as 
Figure 1. In Figure 1, X1-X3 are dimensional design variables while X4 and X5 are the sizes of reinforcement 
bars and X6 and X7 are the distances between bars. The flowchart of the methodology is shown in Figure 2.  
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Figure 1. The optimization problem with design variables. 

2.1. The Jaya algorithm 

Jaya algorithm (JA) is a metaheuristic algorithm which is developed by Rao after the success of algorithm-
specific parameter-less algorithm called TLBO. Jaya algorithm is much easier than TLBO since a single phase is 
employed. In the single phase, the best and the worst solutions are used to generate solutions of the next iteration. 
The principle of the JA is to converge to the best solution while divergence to the worst solution is provided. 
Thus, the best solution is found and it is victorious. For that reason, the Sanskrit word; Jaya meaning victory is 
chosen as the name of the algorithm. 

Jaya algorithm is a parameter-free algorithm and it does not contain randomly chosen factors like teaching 
factor (TF) in TLBO. Only the population is a user defined control parameter. Differently from teaching factor, 
two random values (r1 and r2) are used as seen in Eq. (1) for an example with n population and m maximum 
iterations. The random values are linear distribution between 0 and 1. 

(1) 

x is the set of design variables and the subscripts, i represents the ith candidate solution, best represent the current 
best solution with the best objective function (f(x)) and the worst represents the current worst solution with the 
worst objective function. The upper scripts show the iteration number and the initial values are used if t=0. 

The population number seems as an important parameter for JA. If it is less than 3, for example 2; one of the 
two solution will be best while the other one is the worst solution. In that case, the updated solution will be the 
best or the worst one and only a single part (+ or –) of the Eq. (1) will work to find the optimum solution. For that 
reason, the population number may be effective on convergence of the algorithm and preventing to entrapping to 
a local solution.  

2.2. Teaching learning based optimization 

TLBO inspired from the education process of a classroom uses two phases which are used in order. The global 
phase called teacher phase is formulated as Eq.(2). 

(2) 

The best solution represents the teacher which may change in every iteration and it is the candidate solutions 
with the best knowledge in the class. Teaching Factor (TF) is a random integer number which can be 1 or 2. The 
mean of all candidate solutions is xmean for tth iteration.  
The local optimization of TLBO is done in student phase where two random candidate solutions (j and k) are 
used as seen in Eq. (3). 

(3) 
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Figure 2. The optimization flowchart. 

2.3. Flower Pollination Algorithm 

The flower pollination algorithm (FPA) developed by Yang uses the rules of reproduction of flowering plants via 
pollination. The main rule is the flower constancy and it is the tendency of pollinators to specific flower types. 
Global and local pollinations use the analogy of biotic (or cross) and abiotic (or self) pollinations, respectively. 
The formulation for global and local pollinations are given in Eq. (4) and Eq. (5), respectively and the control 
between the two types is done with a switch probability (p). 
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(4) 

(5) 

3 NUMERICAL EXAMPLE 

The design constants and ranges of the design variables with the numerical values are given as Table 1. The 
dimension design variables were selected as discrete and continuous in the numerical example. The design 
variables about reinforcement bars are always taken as discrete since constant sizes can be found in the market 
and placement of bars can be only done in fixed dimensions.  

In the optimization, the population number is 50 and the switch probability was taken as 0.5. The optimum 
results are presented in Table 2 for 30 independent run of the optimization process. Also, the number required 
analyses to reach the optimum values are also listed in Table 2. 

Definition Symbol Unit Value 

Yield strength of steel fy MPa 420 

Compressive strength of concrete f΄c MPa 25 

Concrete cover cc mm 100 

Max. aggregate diameter  Dmax mm 16 

Elasticity modulus of steel Es GPa 200 

Specific gravity of steel γs t/m3 7.86 

Specific gravity of concrete γc kN/m3 23.5 

Cost of concrete per m3 Cc $/m3 40 

Cost of steel per ton Cs $/t 400 

Internal friction angle of soil ϕ' ° 35 

Unit weight of base soil γB kN/m3 18.5 

Poisson ratio of soil ν - 0.3 

Modulus of elasticity of soil E MPa 50 

Maximum allowable settlement δ mm 25 

Factor of safety FS - 3.0 

Minimum footing thickness  hmin m 0.25 

Column breadth in two direction b/h mm/mm 500/500 

Dead axial loading  PG kN 750 

Live axial loading PQ kN 500 

Range of width of footing B m 2.0-5.0 

Range of length of footing L m 2.0-5.0 

Range of height of footing  H m 0.25-1.0 

Range of diameter of reinforcement bars of two direction ϕ mm 16-24 

Range of distance between reinforcement bars  s mm 5ϕ-250 

Table 1. Design constants and ranges of design variables. 
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Case for discrete variables Case for continuous variables 

FPA TLBO JA JA1SP FPA TLBO JA JA1SP 

L (X1) (m) 1.65 1.65 1.65 1.65 1.46 1.68 1.68 1.68 

B (X2) (m) 1.65 1.65 1.65 1.65 1.46 1.68 1.68 1.68 

H (X3) (m) 0.85 0.85 0.85 0.85 1.14 0.80 0.80 0.80 

ϕx (X4) (mm) 16 16 16 16 16 16 16 16 

Sx (X6) (mm) 250 250 250 250 250 250 250 250 

ϕy (X5) (mm) 16 16 16 16 16 16 16 16 

Sy (X7) (mm) 250 250 250 250 250 250 250 250 

Best Cost ($) 104.92 104.92 104.92 104.92 107.73 103.02 103.22 103.00 

Average Cost ($) 105.80 104.92 104.92 104.92 108.03 103.04 105.00 103.00 

Standard Deviation ($) 1.845 4.8×10-14 7.2×10-14 2.6×10-14 0.12 0.03 0.37 1.4×10-14 

Analyses number to each 
the  optimum result 2961 84 67 63 1267 2783 1284 400 

Table 2. The optimum results. 
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In discrete design variables, the dimension variables are the multiples of 0.05 m. The reinforcement sizes are 
always odd numbers for both cases. The distance between the bars are the multiples of 50 mm. For the discrete 
case using discrete variables, all algorithms are effective to find the best solutions which have 104.9 $ material 
cost. The major difference in this case is the average cost and standard deviation values of FPA. FPA using a 
Lévy distribution is the worst one comparing to other algorithms such as TLBO, JA and JA1SP. JA1SP is a little 
better comparing to other ones, but the it is not a significant advantage. 

For continuous design variables, more iterations are needed to find the best optimum values. The optimization 
was done for 1 million maximum analyses. In the case using continuous variables, the best optimum results are 
different for the algorithms. FPA fails to find an optimum value, because the best result is more expensive than 
the optimum values for discrete variables. Also, the classical form of JA cannot find an effective solution for 
continuous variables. These algorithms trap to local optimum values. TLBO is effective on optimization, but 
JA1SP is better in average cost, standard deviation and number of analyses.   

4. CONCLUSION

Since the possible sets of combinations of design variables are less in discrete optimization, all algorithms are
effective on finding the same results with a little computational effort and robustness (except FPA). The discrete 
case is a feasible solution in practice, but the essential comparison and performance evaluation can be done for 
continuous variables.  

All algorithms cannot find the best optimum solution. FPA and the classical form of JA trap to local 
optimums which lead to an expensive cost than the discrete case. The number of needed analyses is also more 
than the discrete variable case. In continuous optimization, the developed hybrid algorithm (JA1SP) has a 
significant contribution in finding the best result immediately and robustly. The student phase of TLBO is an 
effective formulation to produce possible design variables in the optimization problem.     
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Abstract. The well-known finite element method is not effective in case of continuously heterogeneous media, 

such as functionally graded solids. But single finite superelement [1] can represent an inhomogeneous region, 

dependently of superelement's basis power. 

In the paper, a numerical model of a functionally graded elastic medium by the finite superelement method is 

constructed. The superelement is developed by meshless method [2] and based on Bernstein polynomials [3]. 
A number of problems of the theory of elasticity are considered: doubly periodic media are constructed from one 

or two types of characteristic regions under external loadings. 

The first heterogeneous region is a central distributed inclusion; the second one is a central damaged area. 

Several doubly periodic combinations of these regions were considered. Stress-strain states are obtained. 

Introduction 

In the numerical calculation of problems of the theory of elasticity about periodic structures, the 

widely used finite element method (FEM) is ineffective. Since the characteristic element of the 

medium is an inhomogeneity, the required number of elements and the calculation time can be 

unacceptable. 

The article [4] considers a model of a finite superelement (finite element improvement) that allows 

describing a continuously-inhomogeneous elastic medium, for example, a functionally graded 

material. Several examples of functionally graded media were examined. In particular, samples with 

the central damage and with the central distributed inclusion were considered. 

In this paper, we present doubly-periodic media constructed from these superelements. The stress-

strain states are considered at uniform tension. 

Statement of problem 

In the first part, three superelements a, b, c are considered, describing three elastic regions of a square 

shape of the same size. The first region is homogeneous. The second and third ones contain distributed 

heterogeneities of different types. Their mechanical characteristics are considered. 

In the second part, two doubly-periodic media are considered, which are composed, respectively, of 

superelements b and c. The behavior of these media under conditions of uniform effective strain 

(linear strain is 0.1%) is considered; the distributions of the first principal stress and the von Mises 

stress are calculated. 

235

mailto:vmokryakov@mail.ru
http://www.ipmnet.ru/


Viacheslav V. Mokryakov 

In the third part, we consider three doubly-periodic media containing pairs of superelements a and b, a 

and c, b and c, respectively. The behavior of these media under conditions of uniform effective strain 

is considered too, and the stress distributions are calculated. 

Superelement a (homogeneous) 

The superelement a describes the square region of a homogeneous elastic medium. It is analogous to 

an ordinary finite element, except for a functional basis: like for other superelements, its basis 

functions are Bernstein polynomials. For the calculation, mechanical characteristics corresponding to 

epoxy resin elastic moduli are selected [5]: Young's modulus is Ee = 3.48 GPa; shear modulus is 

Ge = 1.27 GPa (hence the Poisson's ratio is  0.5 1 0.37e e eE G    ). 

Superelement b (distributed inclusion) 

The superelement b contains a distributed inclusion: quartz particles (Eq = 72.6 GPa, Gq = 31 GPa [6]) 

were added to the epoxy resin so that the volume fraction of particles gradually changed from 0% at 

the boundary of the region to 50% in the center. 

The rule of a mixture [7] allows approximately to estimate the effective elastic moduli: 
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For Δq = 50% we get Emix ≈ 6.64 GPa, Gmix ≈ 2.44 GPa. 

The Young's modulus and the shear modulus of this region are shown in Fig.1. 

Figure 1. The Young's modulus E [MPa] and the shear modulus G [MPa] of the superelement b. 
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Superelement c (damage region) 

The last considered superelement c contains the central region of damage. Similar regions occur, for 

example, in the process of steel casting (central porosity [8], fig. 2). The values of the elastic moduli E 

and G are halved in the center of the superelement (it is assumed that the Poisson's ratio is constant). 

Distributions of the elastic moduli of the superelement c are shown in Fig. 3.  

Figure 2. The central porosity at the cut of the ingot of steel. 

Figure 3. The Young's modulus E [MPa] and the shear modulus G [MPa] of the superelement c. 

Doubly-periodic problem with one type of superelements 

An infinite doubly-periodic medium is considered, its cell is a superelement of the type b or c, under 

conditions of uniform effective strain.  
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The following boundary conditions are set for calculating the stress-strain state. The angular 

displacements are set so that the conditions of uniform effective strain are realized (linear strain is 

0.1%). Displacements on opposite faces are equal, taking into account the cell size change. Loads on 

opposite faces have got opposite signs. Fig. 4 presents the calculated distribution of the first principal 

stress σmax and the von Mises stress σM to superelement b, fig. 5 presents the same fields for 

superelement c. 

Figure 4. The first principal stress σmax [MPa] and von Mises stress σM [MPa] 

(doubly periodic media containing superelements b). 

Figure 5. The first principal stress σmax [MPa] and von Mises stress σM [MPa] 

(doubly periodic media containing superelements c) 
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Doubly-periodic problem with two types of superelements 

An infinite doubly-periodic medium containing two types of superelements ([a, b], [a, c] or [b, c]) is 

considered. Superelements in the medium are staggered. The elastic moduli are shown in fig. 6, 8, 10. 

To calculate the stress-strain state, the boundary conditions are set as follows. The angular 

displacements are also set so that the conditions of the uniform effective strain are realized (linear 

strain is 0.1%).  

Figure 6. The Young's modulus E [MPa] and the shear modulus G [MPa] 

(doubly periodic media containing superelements a and b in staggered). 

Figure 7. The first principal stress [MPa] and von Mises stress [MPa]  

(doubly periodic media containing superelements a and b in staggered). 
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Displacements on one face of one superelement must be equal to the displacements on the opposite 

face of another superelement. The loads on one face of one superelement must be opposite in sign to 

the loads on the opposite face of another superelement. The calculated distributions of the first 

principal stress σmax and the von Mises stress σM of the two-element media are presented in fig. 7, 9, 

11. 

Figure 8. The Young's modulus E [MPa] and the shear modulus G [MPa] 

(doubly periodic media containing superelements a and c in staggered). 

Figure 9. The first principal stress [MPa] and von Mises stress [MPa]  

(doubly periodic media containing superelements a and c in staggered). 
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Figure 10. The Young's modulus E [MPa] and the shear modulus G [MPa] 

(doubly periodic media containing superelements b and c in staggered). 

Figure 11. The first principal stress [MPa] and von Mises stress [MPa]  

(doubly periodic media containing superelements b and c in staggered). 
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Conclusion 

A superelement solving the plane elasticity problem for a heterogeneous square region is considered. The 

distributions of the elastic moduli are described by the Bernstein polynomial. The boundary conditions (in terms 

of displacements or loads) must also be described by polynomial functions. A numerical algorithm for solving 

the assigned problem is developed. A computer program has also been developed that implements the proposed 

algorithm. 

A number of elasticity problems were solved using the proposed method. The constructed superelements 

describe a homogeneous medium, a medium with a central distributed inclusion, a medium with a central region 

of damage. With their help, a series of doubly-periodic media was constructed; their stress-strain states under 

conditions of uniform effective strain were calculated. 

The developed program can be used to simulate porous and other inhomogeneous media. The proposed 

numerical algorithm allows, if necessary, to modify the composition of the basic functions. The additional 

functions increase the accuracy and efficiency of calculating the stress-strain state taking into account the 

features of the given inhomogeneous medium. 
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Abstract. The prediction of vibration transmission in collapsed and fragmented reinforced-concrete buildings 

has the potential to inform decisions about the possibility to detect human survivors trapped in buildings after 

earthquakes by using structure-borne sound propagation. This paper focuses on the investigation of the support 

conditions between two stacked reinforced concrete beams using experimental modal analysis and finite element 

methods. Finite element models were developed in Abaqus of three different junctions of two beam with surface-

to-surface support conditions between the beams. These were validated against the results of experimental 

modal analysis, in terms of eigenfrequencies and modeshapes. It is shown that the contact between the two 

beams in each junction is elastic and that on average the value of the contact stiffness is independent of the 

shape of the junction.  

1 INTRODUCTION 
Earthquakes have the highest rate of mortality among all the natural disasters. From 1970 to 2009, 36% of 

fatalities that have occurred due to natural disasters are due to earthquakes [1]. When victims are trapped inside a 
collapsed building, the challenge is to detect and locate survivors within a period of time that will allow them to 
be rescued. The prediction of vibration transmission in collapsed and fragmented reinforced-concrete buildings 
has the potential to inform decisions about the possibility to detect trapped human survivors by using structure-
borne sound propagation. This research forms part of a funded project concerning an approach to search for 
human survivors using structure-borne sound propagation in collapsed and fragmented structures through the 
development, validation and use of theoretical models. 

Previous research indicated that the support condition between two reinforced concrete beams stacked on top 
of each other (i.e. without bonding material) is elastic and could be approximated in FEM using the normal 
contact stiffness [2]. The aim of this paper is to investigate the dependency of the normal contact stiffness on the 
shape of the junction and estimate its value using experimentally validated finite element models of three 
junctions of two beams with surface-to-surface support conditions. Experimental modal analysis is carried out in 
each junction and the results are used to model update the value of the contact stiffness in the frequency range 
between 700 and 3200 Hz.  

2 EXPERIMENTAL WORK 

2.1 Test specimens 
The experimental samples consist of two reinforced concrete beams (C25/30, S500) with the same 

dimensions (2.4 m length, 0.2 m width and 0.3 m depth). Beams 1 and 2 are reinforced with four and eight 
longitudinal steel bars of 16 mm diameter, respectively. The transverse reinforcement of both beams consists of 
8 mm diameter stirrups placed at 200 mm centres along the beams. 
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2.2 Test setups 
In test setup 1 (see Fig.2), square-section aluminum bars (25x25mm) supported beam 1 at each end to 

approximate simply supported conditions. Next, three beam junctions were formed after placing beam 2 on top of 
beam 1 (see Fig. 1 and Fig. 2). In setups 2 and 3, the angle between the beams is equal to 90 but the beams are 
in contact at a different position along the length. In setup 4 the two beams are at an angle of 41.   

Figure 1. Test setups - (from left to right) Setup 2, Setup 3 and Setup 4 

Figure 2. (Left) Test setup 1 showing the transducers and the aluminium sections that approximate the simply 
support condition for the beam 1, (Right) Test setup 3 showing the test equipment and the junction formed by 

beams 1 and 2  

2.3 Experimental modal analysis 
 Experimental modal analysis was carried out to identify the eigenfrequencies and mode shapes of the four 

setups. The beams were excited using an impact hammer (Brüel & Kjær Type 8200) and the out-of-plane 
response was measured using three accelerometers (Brüel & Kjær Type 4371). Brüel & Kjær Pulse Reflex 
software was used for signal processing and modal analysis. During the modal testing, the accelerometers 
remained at fixed positions whilst the impact hammer was moved along the excitation points. 

3 FINITE ELEMENT MODELLING 

FEM models of the four setups were developed in Abaqus v6.14 [3] and eigenfrequency analysis was carried 
out to identify their dynamic characteristics (eigenfrequencies and modeshapes). Solid element C3D20R (20 
nodes) and the beam element B32 (3 nodes) were selected from the element library of Abaqus to model the 
concrete and steel bars respectively. The mesh density provides at least six elements per wavelength in structural 
and vibroacoustic problems [4]. Table 1 shows the physical and mechanical properties of the materials used in 
the models. More information regarding the estimation of the material properties can be found in [5]. 
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Material Density, ρ [kg/m3] Young’s modulus, E 
[N/m2] 

Poisson’s ratio, ν 
[-] 

Concrete Beam 1 2328.7 36875E06 0.2 Beam 2 2245.2 32475E06 
Steel 7800 200E09 0.3 

Table 1: Material properties. 

The linear spring element, SPRING1 was selected from the Abaqus element library to approximate the elastic 
support provided by the square-section aluminium bars to the lower beam, beam 1. After model updating against 
the fundamental eigenfrequency of setup 1, the stiffness of the springs was estimated to be 4.1E05 N/m. 

The contact between the two beams was modelled using the general contact algorithm of Abaqus/Standard 
and was defined to have either only elastic normal behaviour (FEM model 1) or both elastic normal and rough 
tangential behaviour (FEM model 2). The latter was implemented assuming an infinite friction coefficient such 
that the common nodes of the contact area moved together in the horizontal plane. For every mode pair in setups 
2, 3 and 4, the value of the normal contact stiffness was optimized through model updating to give the closest 
agreement between measured and FEM eigenfrequencies. 

4 RESULTS 

4.1 Normal contact stiffness 

Table 2 shows the mean normal contact stiffness resulted from the model updating of FEM models 1 and 2. 
The mean normal contact stiffness in Table 2 was used in the FEM models for each setup. The inclusion of rough 
tangential behaviour in FEM model 2 results in a value that is, on average, 2.7 times lower than the normal 
contact stiffness of FEM model 1. This is likely to be due to the absence of the in-plane stiffness component in 
FEM model 1. Table 2 indicates that the mean normal contact stiffness is not dependent on the shape of the 
junction as similar values of contact stiffness were estimated for two and three setups with FEM models 1 and 2 
respectively, after model updating. The next sections allow an assessment of FEM models 1 and 2 against the 
experimental modal analysis results. 

FEM model Setup 
Mode pairs used 

in the model 
updating 

Contact area, A 
[m2] 

Mean contact stiffness, 
Kc,mean [N/m] 

1 
2 22 0.06 4.45E+08 
3 22 0.06 7.56E+08 
4 23 0.09 7.54E+08 

2 
2 25 0.06 2.44E+08 
3 23 0.06 2.04E+08 
4 24 0.09 2.66E+08 

Table 2 Mean normal contact stiffness of Setups 2, 3 and 4 for FEM models 1 and 2. 

4.2 Eigenfrequencies 

Figure 3 compares FEM models 1 and 2 against the experimental modal analysis results for setups 2, 3 and 4, 
in terms of eigenfrequencies.  

Both FEM models show close agreement with the experimental eigenfrequencies with differences less than 
5% for the majority of the mode pairs in the frequency range from 700 to 3200Hz. However, FEM model 2 
predicted a greater number of mode pairs than FEM model 1 as indicated in Table 2 and Fig.3. It is also shown 
that the three setups have similar eigenfrequencies. The reason for this is expected to be that the global 
eigenfrequencies of Setups 2, 3 and 4 will be partly determined by the eigenfrequencies of the individual isolated 
beams, and these beams are the same in the three setups. 
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Figure 3. Comparison of FEM models against experimental eigenfrequencies for setup 2, 3 and 4. (Left) FEM 
model 1, (Right) FEM model 2. 

4.3 Mode shapes 

Figures 4, 5 and 6 compare FEM and experimental results for setups 2, 3 and 4 respectively in terms of mode 
shapes using the Modal Assurance Criterion (MAC) [6]. Note that only bending and torsional modes were 
included in the validation procedure of the FEM models. 

Figure 4. Setup 2 - (Left) MAC values for FEM model 1, (Right) MAC values for FEM model 2 

Figure 5. Setup 3 - (Left) MAC values for FEM model 1, (Right) MAC values for FEM model 2 
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Figure 6. Setup 4 - (Left) MAC values for FEM model 1, (Right) MAC values for FEM model 2.

For FEM model 1, close agreement was achieved for the majority of mode pairs above the first five global 
modes (i.e. between 1000 and 3200 Hz); MAC values were greater than 0.8 for 19, 18 and 19 of the mode pairs 
for setups 2, 3 and 4 respectively. For the first five global modes (i.e. below 1000 Hz), there is less agreement for 
setups 3 and 4 with the exception of the first two modes which have MAC values greater than 0.8. For FEM 
model 2, close agreement with MAC values greater than 0.8 was achieved for the majority of mode pairs. 

The results of this validation indicate that both FEM models reasonably describe the dynamic behaviour of a 
beam junction formed by two reinforced concrete beams stacked on each other in the frequency range. However, 
the FEM model with the rough tangential behaviour (FEM model 2) is more appropriate for modelling the first 
five modes.  

5 CONCLUSIONS 

Experimental modal analysis was carried out to determine the dynamic characteristics (eigenfrequencies and 
mode shapes) of three beam junctions that consisted of two beams stacked on top of each other. It was found that 
the shape of the junction (relative position and angle of the beams) did not significantly affect the 
eigenfrequencies.  

Two FEM models were used: FEM model 1 with elastic normal behaviour and FEM model 2 with elastic 
normal and rough tangential behaviour. Model updating resulted in normal contact stiffness values which had a 
factor of 2.7 between FEM models 1 and 2 and were not strongly dependent on the shape of the junction. Both 
FEM models achieved close agreement with the measurements in terms of eigenfrequencies. In addition, the 
mode shapes from both FEM models were in close agreement with experimental modal analysis for the majority 
of modes but only FEM model 2 which incorporated rough tangential behaviour gave close agreement for the 
first five modes.  
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Abstract. The accidental situation of fire in steel members lead to changes their physical and mechanical 
properties when temperature is significantly increasing during time. According to Eurocode 3, the critical load 
of a steel member at uniform temperature increase is defined by using a reduction factor to the load bearing 
capacity properties. The effect of the thermal deformation resulting from thermal gradients across the cross-
section due to different insulating condition at each side could change the bearing capacity of the steel member. 
In order to determine the influence of this thermal deviation to the critical design load of a steel member an 
advanced calculation scheme is herein proposed. This scheme combines a transient thermal analysis of the steel 
section exposed to fire with a coupled field structural analysis of the respective critical steel member including 
different thermal load action across the cross-section. In the present paper a steel column in a certain fire 
compartment of a building is studied. The overall analysis of both models has been made by the ANSYS 
computer software. 

1 INTRODUCTION 
In the accidental situation of fire in steel buildings elevated temperatures product significant effects and 

reduction on both strength and strain resistance of the steel members. So the linear elastic response of the steel 
members becomes distinctly nonlinear and at the same time the temperature induced thermal elongations 
changes its buckling behavior. This change has a strong and interesting influence on the local and global 
stability behavior of the steel framed members. According to Eurocode 3, the critical load of a steel member at 
uniform temperature increase is defined by using a reduction factor to the load bearing capacity properties. The 
effect of the thermal deformation resulting from thermal gradients across the cross-section due to different 
insulating condition at each side changes the reduction on the strength and strain resistance as well as its 
buckling behavior. Taking into account that temperature changes in the materials lead to changes in their 
properties and in particular, in strength characteristics, a fact that becomes obvious when temperature is 
significantly increase, the only possibility to obtain a passive control of steel section strength in fire is to protect 
it from thermal expansion by an appropriately chosen insulating material or combination of materials applied to 
the envelope. In order to determine the influence of this thermal deviation to the critical design load [3], [4], [5], 
[9], of a steel member an advanced calculation scheme is used. This scheme combines a transient thermal 
analysis of the steel section at elevated temperatures with a coupled field nonlinear structural analysis of the 
respective critical steel member element including different thermal load action across the cross-section. 

According to Eurocode 1 - Part 1-2, §3.3.2, the temperature - time curve determines the temperature 
distribution due to fire as a function of time.  By this analysis is checked the performance of steel-framed 
elements due to standard fire curve defined in Eurocode 1 - Part 1-2 as well as due to the fire curve of an 
advanced FDS (Fire Dynamic Simulator), using a software simulation 
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Figure 1. Temperature distribution on a fire insulating steel cross section of a column in a transient thermal FEM 
model. 

2 THE HEAT TRANSFER SIMULATION PROBLEM IN FIRE CONDITIONS 

2.1 The heat transfer problem 

The transfer of flow heat from a high temperature object, called “heating”, to a lower temperature object 
changes the internal energy of both systems. A convenient definition of temperature is that it is a measure of the 
average translational kinetic energy associated with the disordered microscopic molecular motion into the body. 
Considering all net energy transfers to the system of a steel body as positive and all the net energy transfers from 
the system as negative, the conversation of energy can be descrived by the following form known as the first law 
of thermodynamics in quasistatic conditions: 

dVPQdU        (1) 

in this form dU denotes the change in internal energy of a body, Q denotes the infinitesimal amount of heat 
energy supplied to the system from its surroundings and WdVP  the work done on the system, whereas P  is 
the pressure change and dV is the volume change of the body. Moreover the term Q express the amount of 
energy added or removed to a body by conduction of heat or by thermal radiation. 
In the case of a steel element the system body is in contact equilibrium with several other systems including 
separate connections with subsystems through walls that are permeable to the transfer of internal energy as heat. 
Under these conditions the first law of thermodynamics can be described in terms of externally defined 
thermodynamic variables: 

).....1(0 midUdVPQdU i   (2) 

Where 0dU denotes the change of internal energy of the system, and 
idU the change of internal energy of the 

ith of the m surrounding subsystems that are in open contact with the system, due to transfer between the system 
and that ith  surrounding subsystem. Moreover Q  denotes the infinitesimal amount of internal energy 
transferred as heat from the heat sources of the surroundings to the system, and dVPW  denotes the work 
transferred from the system to the surrounding subsystems that are in adiabatic connection with it. In general the 
heat transfer from the fire to the surrounding bodies can occur with conduction, convection and radiation or a 
combination of these three mechanisms. 
The first mechanism of heat transfer by means of molecular agitation within a body without any motion of the 
body as a whole is called conduction. If one end of a steel element or one side of the cross section of the steel 
element is at a higher temperature, then energy will be transferred toward the colder end or sides because the 
higher speed particles will collide with the slower ones with the net transfer of energy to the slower ones. For 
heat transfer between plane surfaces, (a body and an insulation envelope), the rate of conduction, internal energy 
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rate per time Q/t, could be estimated by the form: 

dTTAtQ coldhot /)(/   (3) 

where  is the coefficient of thermal conductivity of the envelope, A is the area through which heat transfer 
takes place, T  is the temperature and d is the thickness of the envelope. 
The second mechanism of heat transfer is convection and is a linear function of the fire temperature. Convection 
above a hot surface occurs because hot air expands, becomes less dense and rises. 
The third mechanism of heat transfer is radiation caused by the emission of electromagnetic waves which carry 
energy away from the emitting body. The governing radiation problem from hot objects can be expressed by the 
form: 

)( 44
CTTAeQ   (4) 

where Q in the net radiated energy, A is the radiating area,  is a constant, e is the emissivity coefficient, T  is 
the temperature of radiator and 

CT  is the temperature of surroundings.  
A large number of scientists and engineers have been done theoretical and experimental research works on the 
influence of a wide range of different parameters on both the cross-sectional capacity and the buckling strength 
of centrically and eccentrically loaded steel columns at elevated temperatures. The analysis of the influence of 
the cross-sectional capacity on the overall load-carrying behavior of a column at elevated temperatures uses 
different steel sections with different cross-sectional slenderness ratios. In addition, the influence of high 
temperature thermal creep of steel on the ultimate load was investigated.  
Almeida et al. [1] made a thermo-structural analysis of an open section cold-formed steel beam in contact with a 
concrete slab and a masonry wall in fire situation. This type of beam is used in residential buildings for low-
income families in Brazil. Brazilian Standards allow the use of steel with no thermal protection in the case of 
buildings with a total area under 750 m2.  

The typical static structural continua problem in thermal conditions described by the following form, always 
contain a body load term:  

  
VV

T wdSFTdVEdV


 (5) 

Thermal loads may be considered body loads. Body temperatures are converted to structural body loads via the 
coefficient of thermal expansion,   (units: Temperature -1), where T  is the Thermal strain and TE   is 
the Thermal stress. In an element, the discrete form of the thermal condition becomes: 

 
eV

ee TdVEN  (6) 

It is thus characterized by a load vector obtained by integrating every element with a temperature other than the 
reference temperature. This load vector is then added to the global applied load vector. Thus T  is the 
difference between the temperature of the body and the reference temperature at which the coefficient of thermal 
expansion was measured. 

2.2 The fire simulation problem 

In the field of engineering Computational Fluid Dynamics is widely used to precisely predict the behaviors of 
fluid phenomena. This study proposes a series of data conversion techniques and a real-time processing 
framework to develop a fire training simulator on the basis of a precise Computational Fluid Dynamics 
simulation that is capable of calculating various invisible physical quantities such as toxic gases and heat as well 
as visible factors such as smoke and flame. It’s also proposed a real-time simulator framework that include a 
series of data handling processes such as data structure conversion, space partitioning/search, memory 
management, three-dimensional volume rendering, and training evaluation for the secured large-volume data. 
This fire simulator can undertake simple firefighting activities. The functions and real-time performance of the 
simulator were experimentally measured to verify the applicability of the problem. 
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Figure 2. Typical fire compartment plan in a steel-framed building. 

According to Eurocode 1 - Part 1-2, §3.3.2, the temperature - time curve determines the temperature 
distribution due to fire as a function of time.  By this analysis is checked the performance of steel-framed 
elements due to standard fire curve defined in Eurocode 1 - Part 1-2 as well as due to the fire curve of an 
advanced FDS (Fire Dynamic Simulator), using a software simulation. This fire simulation software for a certain 
fire compartment is a computational fluid mechanics program which forms a fluid flow model driven by fire. 
The computational model solves numerically a form of Navier-Stokes equations for low flow speeds [6], [7]. 
The fire model is obtained by the numerical solution of the partial differential equations giving, in all points of a 
compartment, the thermodynamical and aerodynamical variables. The thermal flow guidance is supplemented 
with data from smoke emissions and heat transfer due to the fire. The approximation involves the filtering out of 
acoustic waves while allowing for large variations in temperature and density in which the dissipative terms are 
computed directly. 

In order to implement a reliable fire simulation model is necessary to establish a common and representative 
fire compartment (see Fig. 2) with dimensions of 512X  meters of typical building model with residential use. 
This is a representative case of a compartment in a residential building where the selected room includes one 
side common with the external shell and thus corresponds to the resolution of an internal non-heated room [2], 
[8].  

Figure 3. Temperature-time fire distribution curves due to FDS simulation to the top and to the bottom of the fire 
compartment. 
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The performance analysis of curves according to the two fire models used here is different, but both are 

additively representative. The obtained results of the fire models combine the temperature distribution (vertical 
axis) versus time (horizontal axis) with values in Co and sec respectively to the top and the bottom of the fire 
compartment (see Fig. 3). 

3. FIRE PROTECTION CRITERIA FOR STEEL-FRAMED MEMBERS

3.1 Passive fire protection and sustainability  

Taking into account that temperature changes in the materials lead to changes in their properties and in 
particular, in strength characteristics, a fact that becomes obvious when temperature is significantly increase, the 
only possibility to obtain a passive control of steel section strength in fire is to protect it from thermal expansion 
by an appropriately chosen insulating material or combination of materials applied to the envelope (bricks, 
coatings etc.). More specifically, the passive fire protection of the building envelope configurations take into 
account the category of structural members, the type of the insulation materials, the varying thickness of 
insulation, the position of insulation, and the type/thickness of the assumed coatings. In addition, it is important 
during a fire event any passive protection system taken into account in the design of the envelope be adequately 
maintained.  

The sustainability indicators of a steel-framed structure exposed to fire can be grouped under three elements of 
sustainable development. The first indicator relates the safety and the resistance of the structure, the second 
relates the impact to the society and finally the third relates the passive fire protection design to the 
environmental protection including life-cycle aspects of used materials. The impact of the first indicator is 
mainly influenced by two different levels of reliability, 1) life safety and no-collapse requirement and 2) fire 
resistance of steel-framed structure and damage limitation. No-collapse requirement impact means that the 
structural performance is evaluated to avoid local or global failure and collapse. On the other hand fire 
resistance impact means that the structural resistance is taken into account damage limitation requirements. This 
is an evaluation in respect to the limitation of use and the costs that would be disproportionately high in 
comparison with the costs of the structure itself.  

3.2 Critical temperatures of steel elements exposed to fire 

For the purposes of Eurocodes, fire resistance is the ability of a structure to fulfill its required function for a 
specified load level, for a specified fire exposure and for a specified period of time. For a given (thermal due to 
fire) load level, the temperature at which failure is expected to occur in a structural steel element characterized 
as the critical temperature where an effective yield strength ,yf  is truncated to provide a yield plateau. The 
relationship between the effective yield strength ,yf  to the yield strength of the structural steel 

yf  and also of 
the slope of the linear elastic range ,aE  to the modulus of elasticity of the structural steel element for normal 

temperature design aE  is expressed by the reduction factors ,yk and ,Ek  respectively at elevated temperatures 
according to Eurocode 3.1. In the range CC o

a
o 40020   of elevated temperatures, the value of the reduction 

factor of the effective yield strength is constant 0,1, yk  and at the same time the effect of the reduction factor 
for the slope of the linear elastic range is not significant 7,00,1 ,  Ek . Therefore, a first secure limit to 
evaluate the fire resistance of the steel element is the time from the beginning of exposure to fire to a single 
compartment of the building, when the temperature on the steel element reaches Co

a 400 . During this period
of time the structural resistance of the steel-framed structure is still safe taking into account an analysis of 
structure in accidental design situations. A second limit under consideration is the time from the beginning of 
exposure to fire when the temperature on the steel element reaches Co

a 600 . At this time the reduction factor
of the effective yield strength is decreased continuously to the value of 47,0, yk  and therefore, the effective 
yield strength ,yf decreased to a 50% of the initial yield strength of the structural steel element

yf . Then the 
reduction factor for the slope of the linear elastic range takes a much lower value, 31,0, Ek  and the buckling 
resistance of the cross-section decreases.  In order to quantify the impact of the performance of the steel-framed 
elements in terms of temperature and time, two temperature limits could be taken into account. The first limit is 
that of Co

o 4001  , where under the time in thermal exposure of this limit both structural safety and resistance 
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with damage limitation are considered, and the second one is that of Co

o 6002  , where over the time in 
thermal exposure of this limit the structural failure and collapse is possible, respectively. 

4 FINITE ELEMENT ANALYSIS OF THE HEAT TRANSFER PROBLEM 

The fire curve of Eurocode EN1991-1-2 and advances fire dynamic simulation (FDS) curve are used here to 
investigate the heat transfer on external shell and especially to investigate the effect of increasing the temperature 
of the connected with the shell steel element.  

Figure 4. 3-D FEM model of a steel member (column), in connection with a typical layered envelope. 

Therefore, a certain part of a characteristic detail including shell in connection with a steel element and 
insulation fire and thermal layers is discretized and analyzed. This analysis can be done by the development of a 
3D Finite Element Model (see Fig. 4) with ANSYS computer program under a thermal solution scheme. Because 
of performing nonlinear transient structural analysis material and geometrical nonlinearities were considered, 
such as metal plasticity shown in Figure 5, as well as the variation of the stress-strain diagrams with temperature, 
according to Eurocode prescriptions. The variation of the resistance reducer with the time of fire exposure was 
also evaluated. 

Figure 5. Bilinear Isotropic Hardening 

For the first step of transient analysis, it is assumed that the column’s cross-section has an initial temperature of 
22°C. The temperature distribution is uniform at column’s cross-section and its values have been given in 
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30steps (totally 3600sec.). Because of the simple shape of the model and low level of complexity we chose a 
hard mesh in order to produce more accurate results. Also, we had to take into account that Young’s Modulus 
changes while the temperature increasing as shown in Figure 6.   

Figure 6. Isotropic Elasticity 

The input data in this multi-layer model include all the thermodynamic characteristics and properties of the 
materials. The geometry of each layer (envelope walls, insulation materials etc.) is made under a solid model 
simulation where the connection between separated layers is simulated by complex non-linear contact elements 
that specified all the conditions of connections between neighboring layers. Moreover, the thermal solution uses 
here as initial inputs the temperatures-time curve such as the curves described above. The analysis is parametric 
and easily can be change thickness of any layer the kind of materials and the configuration of the shell, even the 
fire protection layer of the steel element (see Fig. 7). 

Figure 7. Critical temperature distribution due to fire on a complex structural detail configuration using thermal 
transient FEM analysis. 

The temperature distribution on the shell layers at each time step are the expected results of this analysis. The 
evaluation of the results using the two limits of time for the fire resistance can be used to obtain the optimal site 
of the steel element. Whilst can be evaluate all those construction materials that are efficient under fire condition 
taking into account simultaneously their thermophysical, hydrothermal and environmental properties. By this 
analysis is obtained the distribution of the temperature and the heat transfer through the components of the shell 
and the influence of temperature to the steel elements (see Fig. 8). Results were delivered through tabulated data 
and are summarized in the following tables and figures. 
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Figure 8. Temperature distribution of a complex FEM model on the steel member (column). 

For example using a similar to the previously described FEM model for a building detail of the list, the 
thermal solution shows that the steel reaches a temperature of 400°C in the first 120 sec after the fire exposure 
and of 600°C to 1310 sec. The typical fire protection here is a rockwool layer and works effectively decreasing 
the temperature distribution on the steel element in comparison with the input temperature distribution of the fire 
simulation in the fire compartment (see Fig. 9).  

Figure 9. Temperature distribution on a steel element of a structural detail using FDS fire simulation versus EC 
fire. 

4 FINITE ELEMENT ANALYSIS OF THE STATIC STRUCTURAL PROBLEM IN FIRE 
CONDITIONS 

Nonlinear buckling analysis before and after fire conditions as well as transient structural analysis with thermal 
load has been done in a steel column of HEA450 section with height h=3.45m. First, the load was applied on the 
top of the column representing both axial and bending moment loads with the temperature field obtained from 
the transient thermal analysis. The first case under consideration in respect with the foregoing transient thermal 
analyses in that the steel member was not insulated against fire and the second case is that the steel member 
protected against fire by a thick layer of stonewool (5cm). As thermal load inserted the output of the transient 
thermal’s respective analysis which became by the above-mentioned ones. The steel column exposed to 3600sec 
heat transfer which was constant along the column's height while simultaneously insinuating by gravity loads on 
top. The steel column has remote displacements in top (fixed 3 rotations and 2 displacements along the 
longitudinal axis and the strong axis) and bottom (fixed only 3 displacements and all rotations are free). Because 
of performing nonlinear transient structural analysis we should take into account a non linear stress-strain 
relationship, such as metal plasticity shown in figures 5 and 6. 
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(a)   (b) 
Figure 10. Eigenvalue nonlinear buckling analysis (Mode-1) including initial deformations of a steel column  for 

(a) non fire insulated member and (b) for fire insulated member. 

In this parametric study, a number of application cases were compared about their nonlinear buckling behavior, 
such as the influence of a fire-insulated column or not (see Fig. 10). Corresponding analysis was made to 
compare the developing deformations in the column for frequent design situations with the eigenvalue modes of 
that of accidental-fire design situations (see Fig. 11). 

(a)   (b) 

Figure 11. Eigenvalue nonlinear buckling analysis (Mode-1) of a steel column under (a) frequent design 
situations and (b) after fire design situations. 

Several transient nonlinear structural analyses numerical tests with fire load was taken by inserting the 
temperature to time curve of EC fire or FDS fire. Because of the change in the modulus of elasticity at each 
solving step of this non-linear analysis, no valuation can be obtained at the field of stresses in the cross section 
of the column. Therefore critical parameter is the deformation of the steel member. This analysis includes in a 
first step an estimation of the deformations development on the column in frequent design situations. In a second 
step this analysis estimates the deformations development on the column in fire design situations. This last 
deformation image looks to be similar to that of an image of a real steel column after fire (see Fig. 12). 

On the other hand the comparison between the deformations development on the column for the two design 
situations under consideration is very interesting. In the range CC o

a
o 40020  of elevated temperatures on 

the steel member, the value of the reduction factor of the effective yield strength is constant and at the same time 
the effect of the reduction factor for the slope of the linear elastic range is not significant.  

In the range CC o
a

o 600400   of elevated temperatures on the steel member, the value of the reduction 
factor of the effective yield strength decreases and at the same time the effect of the reduction factor for the 
slope of the linear elastic range decreases too. The difference in the range of displacements across and along the 
steel column showed clearly in Figure 13.  
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(a)  (b) 

Figure 12. Comparison of the total deformation on a steel column of (a) real damaged steel member after fire 
and of (b) FEM model under nonlinear transient structural analysis after fire. 

The buckling behavior as well as the ultimate resistance of a steel member under frequent design situations is 
strongly affected by increasing temperature after fire and especially when the temperature on the steel member 
overcome the limit of Co

o 6002  .  

(a)  (b) 
Figure 13. Comparison of the total deformation on a steel FEM column model under nonlinear transient 

structural analysis on (a) frequent design situations  and on (b) fire design situations. 

5 CONCLUSIONS 

The design of steel-framed buildings with fire insulation layer as a part of the shell brick cladding is a 
practical, viable and efficient construction technique.  

Taking into consideration a critical evaluation of the structural details it is estimated that the case where the 
steel element is placed on the interior side of the shell includes several design advantages and could designed to 
be optimal.  

In the range CC o
a

o 40020  of elevated temperatures on the steel member, the value of the reduction 
factor of the effective yield strength is constant and at the same time the effect of the reduction factor for the 
slope of the linear elastic range is not significant. Therefore, a first secure limit to evaluate the fire resistance of 
the steel element is the time from the beginning of exposure to fire to a single compartment of the building, 
when the temperature on the steel member reaches Co

a 400 .
In the range CC o

a
o 600400   of elevated temperatures on the steel member, the value of the reduction 

factor of the effective yield strength decreases and at the same time the effect of the reduction factor for the 
slope of the linear elastic range decreases too. The total difference to the developed displacements under 
structural static loads including thermal fire loads in this range don’t overlaps known safety standards. But in 
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any case the question about the possibility to reuse this building after fire becomes critical because of the post-
buckling behavior of the column including initial deformations. 

The buckling behavior as well as the ultimate resistance of a steel member under frequent design situations is 
strongly affected by increasing temperature after fire and especially when the temperature on the steel member 
overcome the limit of Co

o 6002  .  
Finally, the results of this study can be used for the estimation of the maximum load capacity of a structural 

steel member in fire conditions and of the buckling behavior of it after fire event. 
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Abstract- The aim of this paper is to present a new fiber approach methodology to the large deflection analysis of 
initially straight Euler-Bernoulli beams by the Boundary Element Method (BEM). The beam undergoes large 
displacements with small strains and moderate rotations (intermediate nonlinear theory) under general boundary 
conditions which may be nonlinear. The formulation of the problem is in terms of the displacements whereas the two 
governing equations are coupled and nonlinear. Their solution is achieved by employing the Analog Equation Method 
(AEM) together with an iterative numerical process, using both longitudinal and section discretization. In order to 
validate the reliability and effectiveness of the proposed methodology, a representative example is studied and the 
obtained results are compared with those available in the literature. 

1 INTRODUCTION 
The historical research shows that beam elements have found applications in the process of structural modelling 

and analysis in a wide range of engineering disciplines, from civil (e.g. buildings, bridges) to mechanical (e.g. shafts, 
wind turbine rotors, nuclear reactor components) to aeronautical and aerospace (e.g. aircraft wings, spacecraft parts) 
[1], to name a few. For this reason, considerable research has been devoted towards accurately capturing the structural 
linear and nonlinear behavior of beams under static or dynamic loads. Generally, two common sources of nonlinearity 
may arise in the response of structural elements: material and geometrical [2]. Closed form solutions cannot be 
obtained when general boundary conditions are considered; therefore, recourse to numerical solutions is inevitable 
[3]. The most widely used numerical methods in Computational Mechanics are the Finite Difference Method (FDM), 
the Finite Element Method (FEM) and the Boundary Element Method (BEM) [4, 5]. 

To the problem at hand, the FEM has been employed by several researchers for the nonlinear analysis of beams 
with a constant cross-section having both geometrical and material nonlinearities. More specifically, Mondkar and 
Powell [6], applying the principle of virtual displacements, developed a general formulation of the incremental 
equations of motion for structures undergoing large displacement-finite strain deformation. Bathe and Bolourchi [7] 
presented an updated Lagrangian and a total Lagrangian formulation of a three-dimensional beam element for large 
displacement and large rotation analysis. Cai et al. [8] presented a simple finite element method, based on a Von 
Karman type nonlinear theory of deformation, for geometrically nonlinear large rotation analyses of space frames 
consisting of members of arbitrary cross-section. 

Furthermore, the BEM has also been employed for the linear and nonlinear analysis of beams. Its first application 
dates back to the work of Banerjee and Butterfield [9], who developed the BEM for the one-dimensional problem and 
applied it to the analysis of the Bernoulli-Euler beam under static loads. Providakis and Beskos [10] applied the BEM 
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to the dynamic problem of Bernoulli-Euler beams. The Analog Equation Method (AEM), a BEM-based method, has 
been presented by Katsikadelis and Tsiatas for the nonlinear static [3] and dynamic [11] flexural analysis of beams of 
cross-sections with variable stiffness taking into account the axial deformation also. 

In this paper, a fiber approach to the large deflection analysis of initially straight Euler-Bernoulli beams by the 
Boundary Element Method (BEM) is presented. The beam undergoes large displacements with small strains and 
moderate rotations (intermediate nonlinear theory) under the most general boundary conditions. The problem is 
formulated in terms of the displacements whereas the two resulting governing equations are coupled and nonlinear. 
The solution of the system is achieved by employing the Analog Equation Method (AEM) together with an iterative 
numerical process, using both longitudinal and section discretization. In order to validate the reliability and 
effectiveness of the proposed methodology, a representative example is studied and the obtained results are compared 
with those available in the literature. 

2 STATEMENT OF THE PROBLEM 

Consider an initially straight beam of length l  having variable axial stiffness EA  and bending stiffness EI . The 
x  axis coincides with the neutral axis of the beam, which is bent in its plane of symmetry xz  under the combined 
action of the distributed loads ( )x xp p x  and ( )z zp p x  in the x and z direction, respectively [3].  

2.1 Governing Equations of the Problem and Boundary Conditions 

In the context of the classical Euler-Bernoulli beam theory, by applying the principle of total minimum potential 
energy, for the stable equilibrium and the fundamental lemma of the calculus of variations, the governing equilibrium 
differential equations of the beam are obtained as 

 ,x xN p x  , (1) 

   , , ,x x x zQ Nw p x   , (2) 

, 0xM Q  , (3) 

which after the elimination of Q , using eqn (3), take the following form 

 ,x xN p x  , (4) 

   , , ,xx x x zM Nw p x   . (5) 

In general case of linearly elastic material, the stress-strain relation is known. Hence, analytical integration can be 
performed and the stress resultants in terms of displacements are written as [3] 

 21, ,
2x xN EA u w

    
,   ,xxM EIw  . (6), (7) 

Substituting eqs (6), and (7) into eqs (4) and (5), the governing equations in terms of displacements become 

   21
2, , ,x x x xEA u w p x     , (8) 

     21
2, , , , , ,xx xx x x x x zEIw EA u w w p x       . (9) 

The general boundary conditions of the problem are written as 

   1 2 30 0a u a N a  ,      1 2 3a u l a N l a  , (10), (11) 

   *
1 2 30 0w Q    ,      *

1 2 3w l Q l    , (12), (13) 

   1 2 3, 0 0xw M    ,      1 2 3,xw l M l    , (14), (15) 

where , , , , ,            ( 1, 2,3  ) are given constants, and * ,xQ Q Nw  . Equations (10)-(15) describe the 
most general boundary conditions of the problem and can include elastic support of the beam. 
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However, when the distribution of the normal stresses on the cross section is not a priori known or the stress-strain 

relation may not even be explicitly described by a mathematical function but by a set of experimental data, the fiber 
approach should be employed to obtain the stress resultants. 

2.2 The fiber/layer approach 

According to the fiber approach a number of monitoring cross-sections can be defined, which coincide with the 
discretized nodal points as well as the two beam ends. Each cross-section is decomposed into a number of fibers, i.e. 
triangular or quadrilateral cells. On each cell representative points are defined and the strain is expressed as a function 
of the nodal displacement values. Further, the stresses on each point can be computed and the stress resultants can be 
obtained by an appropriate integration scheme. In the case of doubly-symmetric cross-sections and without restricting 
the generality a layered model is adopted as shown in Fig. 1.  

layer

1i node 1i 
x

z

y

1

2

k

1k 

z

h

H

i

y node i

Figure 1. Discretization of the beam into monitoring cross-sections and cross-section layers 

Each cross-section is divided into an odd number of layers with the same height h . If k  is the total number of 
layers then the center of the beam’s cross-section is located at the middle of the  1 / 2k   layer. The z  coordinate 
of the center of the i -th layer is expressed as 

1
2i

k
z i h

    
 

. (16) 

The axial force iN  and bending moment iM  for each layer are computed as 

i
i xx iN S A  ,   i

i xx i iM S z A  , (17), (18) 

where ,i
xx iS A  are the stress component at the center of each layer and the area of each layer respectively. As a 

result, the stress resultants can be approximated as  

0

k
i
xx

i

N S A


  ,   
0

k
i
xx i i

i

M S z A


  . (19), (20) 

The nonlinear system of the governing differential equations in terms of the stress resultants, described by eqns 
(4) and (5), is solved iteratively employing the AEM in the context of fiber approach. According to the AEM, the two 
coupled nonlinear differential equations are replaced by two uncoupled linear ones pertaining to the axial and 
transverse deformation of a substitute beam with unit axial and bending stiffness, respectively, under fictitious load 
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distributions [3]. At each step of the iterative procedure, an initial guess is made for the fictitious loads and the 
displacements and their derivatives are computed at any cross-section of the beam using the respective integral 
representations. Subsequently, the stress resultants are evaluated for each layer using eqs (17), (18) and for the whole 
cross-section by applying eqs (19), (20). In the end, the governing equations (4) and (5) are checked for equilibrium. 
If the equilibrium is satisfied, the process is terminated. Otherwise, the fictitious load distributions are updated and 
the procedure starts over again. 

3 NUMERICAL EXAMPLE 

In order to exemplify the efficiency and accuracy of the proposed methodology, a uniform beam fixed at its both 
ends has been analyzed. The beam has a rectangular cross section b h  with length 0.508l m , and is subjected to 
a concentrated force at its midspan. Mondkar and Powell [6] and Katsikadelis and Tsiatas [3] have also studied this 
problem employing a FEM and a BEM formulation, respectively. The results are obtained for 51N   nodal points 
and 19k   layers. The load zP  versus deflection w  curve at the center of the beam is shown in Fig. 2. The nonlinear 
response is in excellent agreement with both FEM [6] and BEM [3] solutions. Moreover, the profiles of the deflection 
and the axial displacement for 3.11zP kN  are shown in Fig. 3 and Fig. 4, respectively, as compared with those 
presented in [3].  

Figure 2. Load versus deflection at the center of the beam 

Figure 3. Profile of the deflection 
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Figure 4. Profile of the axial displacement 

4 CONCLUSIONS 

In this paper, a fiber approach to the large deflection analysis of beams has been presented. The governing 
equations are derived through a variational approach, and their solution was achieved by employing the AEM together 
with an iterative numerical process, using both longitudinal and section discretization. From the presented analysis 
and the numerical results the following main conclusions can be drawn: (a) The numerical solution is efficient, exhibits 
stability and a small number of constant elements and layers are adequate to obtain accurate results for the 
displacements and the stress resultants; (b) The fiber approach has proven to be very competent and in conjunction 
with the AEM can solve difficult nonlinear coupled problems; (c) The solution of the nonlinear bending problem of 
beams with material and geometrical nonlinearity can be considered as a future application of the fiber approach 
methodology. 
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Abstract. The optimization of tuned mass dampers for structures is a stochastic problem because of existing of 
damping. In that case, heuristic algorithms are useful tools in that field for an objective function in frequency or 
time domain. In the present study, the robustness of optimum tuned mass damper (TMD) results obtained by the 
transfer function response minimization are verified. The numerical examples involve two shear buildings which 
are 10-story and 40-story structural models. According to the results, the optimum TMD is robust against the 
change of the mass or stiffness of the structure by ±50% difference.   

1 INTRODUCTION 
By adding mechanical components or motor driven systems, civil structures can be passively or actively 

controlled in order to reduce distributing and dangerous vibrations resulting from several sources like 
earthquakes, winds, traffic and human steps. The structural control systems have been included to several 
structures, but several drawbacks prevent the often use of these systems. These drawbacks are generally related 
with economy based problems, but safety issues like stability problems can also play a great role. In that case, the 
performance of these systems is depended to perfect tuning of design variables of implemented system according 
to the super-structure behavior and response. For that reason, optimization is a must in order to increase the 
influence and benefit of control systems. 

Tuned mass dampers (TMDs) are vibration absorber devices consisting of a mass attached to the main system 
by using stiffness members and dampers. The primitive form of the device without damping was invented and 
patented by Frahm [1]. Without damping, it is not possible to use the device on structures excited by vibrations 
with random frequency content. The damped and current idea of TMD was proposed by Ormondroyd and Den 
Hartog [2]. The design variables in the optimum tuning of TMDs are mass (md), stiffness (kd) and damping 
coefficients (cd). In the documented methods, the ratio of frequencies of TMD and superstructure (fopt), and the 
damping ratio of TMD (ξopt) have been proposed with close form expressions in terms of mass ratio of TMD and 
superstructure (μ) ([3, 4]). These expressions are for single degree of freedom systems, but the optimum values 
can be found by using a single vibration mode for multiple degree of freedom system. Also, Sadek et. al. [5] 
proposed formulations by including inherent damping of superstructure according to numerical analyses. The 
best tuning technique is to use numerical algorithm by considering all vibration modes of structures. Generally, 
heuristic based algorithms have been employed in the optimum tuning. Genetic algorithm (GA) is an evolutionary 
heuristic algorithm have been employed by Hadi and Arfiadi [6] for optimum stiffness and damping of TMD. 
Marano et al. [7] included the mass of TMD as a design variable by using an optimization methodology 
employing GA. GA based optimization methods have been also proposed for control of torsional irregularity by 
using TMDs ([8, 9]). Pourzeynali et al. [10] optimized active tuned mass dampers (ATMDs) by using GA and 
fuzzy logic. Another heuristic algorithms proposed for TMDs are particle swarm optimization ([11,12]), bionic 
algorithm ([13]), harmony search algorithm ([14-16]), ant colony ([17]), artificial bee colony ([18]), shuffled 
complex evaluation ([19]), flower pollination algorithm ([20]), teaching learning based optimization ([21]) and 
bat algorithm ([14]). 

In this study, the robustness of the optimum TMD parameters were evaluated by changing the mass and the 
stiffness of the structure by up to ±50% differences.    
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2 THE METHOD AND OPTIMIZATION 

In the present study, shear building models are investigated for an optimum TMD on the top of the structure. 
The equation of motion of the shear building with a TMD (Figure 1) is formulated as Eq. (1) domain. 

m1

c1

k1

y1

yg
..

mN

cN

kN

mi

ci ki

yi

yN

yd

mdcd

kd

Figure 1. The shear building model with a TMD 

{ } )ty)ty)ty)ty g (1M(K(C(M  −=++ (1) 

M, C and K (Eqs. 2-4) represent the mass, damping and stiffness matrix of shear building, respectively. )ty(
is the response of the structure against the ground acceleration ( )tyg ( ) in time domain. The dot (.) on the 

response represents the derivation of response with respect to time and )ty( , )ty( and )ty(  are the symbolic 
representations of acceleration, velocity and displacement vectors of the structure, respectively. The displacement 
vector contains all the values of stories (yi(t) for i=1, 2, 3, …, N if N is the number stories) and TMD (yd(t)) as 
seen in Eq. (5). 

M=diag[m1 m2 … mN md] (2) 
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In the matrices, m, c and k represent mass, damping and stiffness coefficient. The subscripts represent the 
story number or TMD for d. In that case, the TMD properties are md, cd and kd.  

The transfer function is the ratio of Laplace transformations of a structural response (acceleration in the 
present study) to the external excitation. The acceleration transfer function (TF(ω)) as a function of frequency (ω) 
is shown as Eq. (6). The TF(ω) vector contains the function for all stories (TF1, TF2, …, TFN) and TMD (TFd). 
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The objective of the methodology is to find the design variables (xi) minimizing the amplitude of the 
acceleration transfer function of the top story. The function fi(xi) is formulated in Eq. (7) for ith candidate 
solution. 

))(max(TFLog20)x(f N10ii ω= (7) 

The transfer function is unitless and contains real and imaginary parts. By taking the absolute value of transfer 
function, the amplitude is obtained. Then, base-10 logarithm of the amplitude is multiplied with 20 and decibel 
(dB) value of transfer function is found. The design variables are mass (md), period (Td) and damping ratio (ξd) 
of TMD as seen in Eq. (8). 
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The period (Td) and damping ratio (ξd) of TMD are the functions of the properties of TMD shown in Figure 
1 and the equations are given as Eq. (9) and Eq. (10).  
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The optimum design variables can be found by using metahueristic methods. In the present study, Jaya 
algorithm [22] developed by Rao was employed. JA is a single phase algorithm and it has no user-defined 
parameters. The aim of the algorithm is to generate possible design variables by using the existing worst and best 
solutions to minimize the objective function.  

3 NUMERICAL EXAMPLE 

The numerical examples involve two shear buildings which are 10-story and 40-story structural models. 
The 10-story shear building have the same story parameters (mi, ki and ci for the ith story) and the story 

parameters presented in Table 1 are taken form Singh et al. [23]. 

Story mi 
(t) 

ki 
(MN/m) 

ci 
(MNs/m) 

1 360 650 6.2 
2 360 650 6.2 
3 360 650 6.2 
4 360 650 6.2 
5 360 650 6.2 
6 360 650 6.2 
7 360 650 6.2 
8 360 650 6.2 
9 360 650 6.2 

10 360 650 6.2 

Table 1 : Properties of shear buildings 

The first natural frequency of the 10-story structure is 1 Hz. The maximum acceleration transfer function 
amplitude of 10-story structure at 1 Hz is 26.2091 dB for the case without TMD. The optimum TMD parameters 
are md=360t, Td=1.10864s and ξd=0.2596 (25.969%) for the 10-story shear building. By using the optimum 
TMD parameters, the minimum objective function (fmin) defined as the maximum amplitude of acceleration 
transfer function is reduced to 11.3316 dB. The percentage of the reduction is 56.76% for the optimum TMD 
parameters found by using JA.  

The plot of the acceleration transfer function of the top story of 10-story structure is shown as Fig. 2 with the 
comparison of the structure without TMD. As seen in the plot, the optimum TMD has also a minor effect on the 
second peak in frequency of the second mode. 
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The optimum results were also tested for a big structure with 40 stories. The properties taken from Liu et al. 
[24] are given as seen in Table 2. The optimum TMD parameters were found for two cases of maximum mass 
ratio. In Case 1 and 2, the maximum allowable mass ratio of the TMD is 10% and 2%, respectively. The 
optimum results are presented in Table 3. 

Story 
mi 
(t) 

ki 
(MN/m) 

ci 
(MNs/m) 

1 980 2130.00 42.60 
2 980 2100.97 42.02 
3 980 2071.95 41.44 
4 980 2042.92 40.86 
5 980 2013.90 40.28 
6 980 1984.87 39.70 
7 980 1955.85 39.12 
8 980 1926.82 38.54 
9 980 1897.79 37.96 
10 980 1868.77 37.38 
11 980 1839.74 36.79 
12 980 1810.72 36.21 
13 980 1781.69 35.63 
14 980 1752.67 35.05 
15 980 1723.64 34.47 
16 980 1694.62 33.89 
17 980 1665.59 33.31 
18 980 1636.56 32.73 
19 980 1607.54 32.15 
20 980 1578.51 31.57 
21 980 1549.49 30.99 
22 980 1520.46 30.41 
23 980 1491.44 29.83 
24 980 1462.41 29.25 
25 980 1433.38 28.67 
26 980 1404.36 28.09 
27 980 1375.33 27.51 
28 980 1346.31 26.93 
29 980 1317.28 26.35 
30 980 1288.26 25.77 
31 980 1259.23 25.18 
32 980 1230.21 24.60 
33 980 1201.18 24.02 
34 980 1172.15 23.44 
35 980 1143.13 22.86 
36 980 1114.10 22.28 
37 980 1085.08 21.70 
38 980 1056.05 21.12 
39 980 1027.03 20.54 
40 980 998.00 19.96 

Table 2 : The story parameters of 40-story structure 
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Case 1 

md (t) 3920 

Case 2 

md (t) 784 
Td (s) 4.358596 Td (s) 3.949575 
ξd 0.281294 ξd 0.131671 
fbest 11.72735 fbest 17.32852 
fave 11.72735 fave 17.32852 
σ 0 σ 3.65E-15 
cbest 1375 cbest 1300 

Table 3 : Optimum results of 40-story structure 

In Case 1, the optimum mass of TMD is bigger than the mass of a story of the structure. In that case, Case 2 
will be more realistic than Case 2 in practical application. The maximum amplitude seen for 0.25 Hz (4s period) 
is 26.68dB for the structure without TMD. The maximum amplitude is reduced to 11.7273dB and 17.3285dB for 
Case 1 and Case 2, respectively. The frequency plot for the top story acceleration transfer function is seen in Fig. 
3. 
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Fig. 3. TFN plot for 40-story structure 

Case 1 is also effective on the maximum responses the second and third natural frequency of the structure as 
seen in the plot. Case 2 is only effective at the first natural frequency, but it is an economical and feasible 
application.  

4 THE ROBUSTNESS OF THE OPTIMUM TMD AGAINST SENSIBILITY OF STRUCTURAL 
PARAMETERS  

In this section, the robustness of TMD is evaluated by changing the mass and stiffness of the structure. The change of these 
parameters may change the critical natural frequency and the optimum TMD may be detuned. Thus, the sensibility limit of 
structural parameters is investigated.  
Mass of the structures are not a constant value because of the existing of live-loads. Also, the stiffness of the stories may be 
different because of non-linear factors and several assumptions. The change of both values will affect the natural frequency 
of the structure, but the sensibility of mass and stiffness are both investigated.  
In the study, the mass or stiffness (rigidity) were changed by ±50%. The maximum possible change is taken as high in order 
to see if the optimum TMD is detuned or not. As seen from the results, a negative effect is only seen for the 40-story 
structure with an optimum TMD obtained by using the mass range of Case 2.  
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4.1 The robustness of the optimum TMD for 10-story structure 

In Table 4, the maximum amplitudes of top story acceleration transfer function values are presented for 10-story structure 
with -50%, -30%, -10%, 0% (predicted value), +10%, +30% and +50% change of the mass of all stories of structure. As 
seen from the results, the optimum TMD is effective in all mass cases.  

Mass -50% -30% -10% 0% +10% +30% +50% 
f (dB)
without TMD 23.4078 24.8671 25.9573 26.2091 26.6195 27.4263 28.1421

f (dB)  
with TMD 12.2668 12.1125 11.6199 11.3316 12.8959 15.7767 18.2759 

Table 4. Performance evaluation of optimum TMD for mass uncertainty of 10-story structure 

The shifting of the place of the peak amplitude of 10-story structure without TMD can be clearly seen in TFN plot given as 
Fig. 4. The straight lines shows the values of the TMD controlled structure, while the uncontrolled structure is shown with 
dotted line. The optimum TMD reduces all peak amplitudes effectively. Also, the TMD is robust against the change of the 
stiffness values of the structure. The maximum results are given as Table 5 and TFN plot is given as Fig. 5 for rigidity 
uncertainty.    
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Rigidity -50% -30% -10% 0% +10% +30% +50% 
f (dB)
without TMD 23.4078 24.8157 25.8414 26.2091 26.7032 27.3025 28.1421

f (dB)
without TMD 18.9435 16.0250 12.8140 11.3316 12.1856 13.7254 15.0625

Table 5. Performance evaluation of optimum TMD for rigidity uncertainty of 10-story structure 
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4.2 The robustness of the optimum TMD for 40-story structure 

The robustness evaluation of 40-story structure is more important than the 10-story structure since Case 2 has a small mass 
comparing to the total mass of the structure. In Table 6, the maximum amplitudes are presented for 40-story structure 
without TMD and with TMD (Case 1 and 2) for mass uncertainty. Also, the values for rigidity uncertainty can be seen in 
Table 7.  

Mass -50% -30% -10% 0% +10% +30% +50% 
f (dB)
without TMD 28.4611 27.6896 28.5573 26.6753 27.8215 26.3671 25.8331

f (dB)  
(Case 1) 12.7946 12.5759 11.9943 11.7274 13.2204 16.0236 18.3351 

f (dB)  
(Case 2) 22.9611 20.7366 18.8666 17.3286 19.1971 23.3579 27.9158 

Table 6. Performance evaluation of optimum TMD for mass uncertainty of 40-story structure 

Rigidity -50% -30% -10% 0% +10% +30% +50% 
f (dB)
without TMD 24.4572 27.6896 26.3926 26.6753 30.4101 29.9931 33.3609

f (dB)  
(Case 1) 20.4031 16.3936 12.9145 11.7274 12.6067 14.0525 15.2406 

f (dB)  
(Case 2) 26.3568 24.7697 19.0215 17.3286 19.5956 22.0111 24.2516 

Table 7. Performance evaluation of optimum TMD for rigidity uncertainty of 40-story structure 

As seen from the results, the optimum TMD using the ranges of Case 1 is always robust, but the robustness limit 
is 50% for Case 2. +50% mass change and -50% rigidity change are the cases where the effectiveness of TMD is 
lost for Case 2. The plots of TFN are given as Fig. 6 and Fig. 7 for mass and rigidity uncertainty, respectively.   

Sinan M. Nigdeli and Gebrail Bekdas

271



10
-1

10
0

10
1

-40

-30

-20

-10

0

10

20

30

frequency (Hz)

T
F N

 (
dB

)

 

-50% mass
-30% mass

-10% mass

+0% mass
+10% mass

+30% mass

+50% mass
-50% mass (Case 1)

-30% mass

-10% mass

+0% mass
+10% mass

+30% mass

+50% mass
-50% mass (Case 2)

-30% mass

-10% mass
+0% mass

+10% mass

+30% mass
+50% mass

Fig. 6. TFN plot of 40-story structure for mass uncertainty 

10
-1

10
0

10
1

-30

-20

-10

0

10

20

30

40

frequency (Hz)

T
F N

 (
dB

)

 

-50% rigidity
-30% rigidity

-10% rigidity

+0% rigidity
+10% rigidity

+30% rigidity

+50% rigidity
-50% rigidity (Case 1)

-30% rigidity

-10% rigidity

+0% rigidity
+10% rigidity

+30% rigidity

+50% rigidity
-50% rigidity (Case 2)

-30% rigidity

-10% rigidity
+0% rigidity

+10% rigidity

+30% rigidity
+50% rigidity

Fig. 7. TFN plot of 40-story structure for rigidity uncertainty 

5 DISCUSSION AND CONCLUSION 

The detuning of mass damper is an important problem because of the uncertainty of the main-structure 
properties. The optimum TMD is robust against the change of the mass or stiffness of the structure by ±50% 
difference. Only, the second case of 40-story structure is not robust when the 50% uncertainty is possible. This 
situation is resulted from small mass of TMD comparing to the total mass of 40-story structure. Whereas, Case 2 
may be more practical TMD comparing to Case 1.  
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Abstract. The optimization of tuned mass dampers for structures is a stochastic problem because of existing of 
damping. In that case, heuristic algorithms are useful tools in that field for an objective function in frequency or 
time domain. In the present study, the transfer function response of structures are minimized by using TMDs 
optimized by the developed methodology employing the newly developed Jaya algorithm which is a recently 
proposed simple but powerful algorithm. The numerical experiments on methodology are presented by using a 10 
story structure and a 40 story structure with comparison of other algorithms such as harmony search, flower 
pollination algorithm, teaching learning based optimization and a new version of Jaya algorithm combined with 
Lévy flights. The main purpose of TMD is to damp vibrations by reducing the maximum displacement and 
providing a rapid steady-state response. For that reason, the optimum results were tested by using several groups 
of earthquake data. 

1 INTRODUCTION 
Tuned mass dampers (TMDs) are vibration absorber devices which are used to absorb the vibration of 

mechanical systems including civil structures. The initial form of Frahm [1] was without damping and 
Ormondroyd and Den Hartog [2] proposed damping for vibrations with random frequency. For the optimization 
of design variables of TMD parameters such as mass (md), stiffness (kd) and damping coefficients (cd), the 
formulation of the ratio of frequencies of TMD and superstructure (fopt) and the damping ratio of TMD (ξopt) have 
been proposed according to the mass ratio of TMD and superstructure (μ) [3-5]. These expressions were derived 
for single degree of freedom systems. In order to consider all vibration modes, heuristic based algorithms have 
been employed [6-10]. In this study, the newly developed Jaya algorithm is employed for the TMD optimization 
problem in order to minimize the amplitude of the acceleration transfer function which is a control factor of 
frequency domain analyses of the structure. The classical form of the Jaya algorithm (JA) [11] was used and two 
newly developed variants of the Jaya algorithm are also employed in the proposed methodology. The results were 
also compared with other metaheuristics including harmony search (HS) [12], teaching learning based optimization 
(TLBO) [13] and flower pollination algorithm (FPA) [14]. The performances of the optimum TMDs were also 
tested for time-history analyses.    

2 THE METHOD AND OPTIMIZATION 

The objective of the problem is to find the design variables which are mass (md), period (Td) and damping 
ratio (ξd) minimizing the amplitude of the acceleration transfer function of the top story (f) formulated as Eq. (1). 
The absolute value of transfer function of the top story(TFN(ω)) is taken to find the amplitude and  is obtained. 
The base-10 logarithm of the amplitude multiplied with 20 is taken to find the value in decibel (dB). 

In optimization processes using metaheuristic methods, the operation starts with generating an initial solution 
matrix. This matrix contains randomly assigned design variables and these design variables are updated by using 
algorithm specific rules and considering the solution of the objective function.  

))(max(TFLog20f N10 ω= (1) 
Jaya algorithm (JA) is a recently developed metaheuristic algorithm and it has no algorithm-specific parameter 
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like TLBO, but JA use a single phase in an iteration. In the formulation of JA, two random values (r1 and r2) are 
used as seen in Eq. (2) for n population and m maximum iterations (t). x is the set of design variables and the 
subscripts; i, best and worst represent the ith candidate solution, the current best solution and the worst current 
solution, respectively.  

𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝑟𝑟1(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − |𝑥𝑥𝑖𝑖𝑡𝑡|) − 𝑟𝑟2(𝑥𝑥𝑤𝑤𝑤𝑤𝑤𝑤𝑏𝑏𝑡𝑡 − |𝑥𝑥𝑖𝑖𝑡𝑡|) 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛 𝑎𝑎𝑛𝑛𝑎𝑎 𝑡𝑡 = 1 𝑡𝑡𝑡𝑡 𝑚𝑚 (2)

2.1. The Jaya algorithm with Lévy flight (JALF) 

The usage of random variables with linear distribution may lead to convergence to local optimum results. Thus, 
the random numbers with linear distribution are changed with Lévy flight distributions (L1 and L2) as seen in Eq. 
(3) and a global optimization phase is generated. 

xit+1 = xit + L1(xbest-|xit|)-L2(xworst-|xit|) i = 1 to n and t = 1 to m  (3)

2.2. Two phase Jaya algorithm (2PJA) 

The global optimization formulation given as Eq. (3) may negatively influence the convergence of the 
algorithm. Thus, a two phase JA like TLBO is proposed using a global phase according to Eq. (3) and a local phase 
according to the classical form of JA defined in Eq. (2). These two phases are consequently done as same as TLBO. 
Thus, it is not necessary to use a control parameter to choose the type of the optimization. 

3 NUMERICAL EXAMPLE 

The numerical examples involve two shear buildings which are 10-story and 40-story structural models. The 
results of JA, JALF and JA2P are compared with HS, FPA and TLBO. The population number for the algorithms 
are chosen as 25. The HMCR and switch probability are 0.5, while PAR is 0.2 for the numerical examples. The 
mass of the TMD is limited in order to prevent the extreme increase of the axial loads of the structure. Also, the 
other design variables are searched in a solution range in order to find optimum results easily. The mass of the 
TMD (md) must be less than 10% of the total mass of the structures. The lower bound for md is 1%. The period 
of the TMD (Td) is between 0.8 and 1.2 times of the critical period of the structure. The damping ratio is between 
1% and 30%. The total mass of the 40-story structure may be too much, for that reason, the maximum mass ratio 
is taken as 2% for a second case. 

3.1. The optimum results for 10-story structure 

The 10-story shear building have the same story parameters (mass; mi=360 t, stiffness; ki=650 MN/m and 
damping coefficients; ci=6.2 MNs/m) [15]. As seen in Table 2, the algorithm such as FPA, TLBO, JA, JALF and 
2PJA are effective to find the optimum result. The optimum TMD parameters are md=360t, Td=1.10864s and 
ξd=0.2596 (25.969%) for the 10-story shear building. Also, the average values (fave) of 20 runs of these algorithms 
are the same except the minor changes of TLBO and JALF. In that case, the standard deviation (σ) values are 0 or 
nearly 0. The number of variable evaluations needed to reach the optimum results is shown with cbest. This value 
is the lowest for FPA. As seen from computational effort, the Lévy flight distribution has a negative effect on the 
convergence of the JA. The cbes t value for 2PJA is nearly double of JA while JALF needs the most computational 
effort. It is clearly seen that the classical JA and FPA outperform the other algorithms in means of computational 
effort. 

HS FPA TLBO JA JALF 2PJA 
md (t) 360 360 360 360 360 360 
Td (s) 1.109193 1.108639 1.108639 1.108639 1.108639 1.108639 
ξd 0.262109 0.25969 0.25969 0.25969 0.25969 0.25969 
fbest 11.33419 11.33157 11.33157 11.33157 11.33157 11.33157 
fave 11.33295 11.33157 11.33157 11.33157 11.33157 11.33157 
σ 0.000321 0 3.62E-13 0 2.50E-11 0 
cbest 7006 950 5750 1575 8125 2925 

Table 2 : The optimum result of 10-story structure 

3.2. The optimum results for 40-story structure 

The proposed methodology was also tested for a big structure with 40 stories. The properties taken from Lui 
et al. [16] and all story parameters are different (mass; mi=980 t, stiffness; ki=linearly change between 2130-998 
MN/m and damping coefficients; ci= linearly change between 42.6-19.96 MNs/m). 
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As mentioned before, the optimum TMD parameters were found for two cases of maximum mass ratio. In Case 
1 and 2, the maximum allowable mass ratio of the TMD is 10% and 2%, respectively. The optimum values for 40-
story structure is presented in Table 2. JA is the fastest algorithm in finding the optimum results of the TMD 
parameters of the 40-story structure. 

HS FPA TLBO JA JALF 2PJA 

Case 1 

md (t) 3920 3920 3920 3920 3920 3920 
Td (s) 4.35918 4.358596 4.358596 4.358596 4.358596 4.358596 
ξd 0.281695 0.281294 0.281294 0.281294 0.281294 0.281294 
fbest 11.72978 11.72735 11.72735 11.72735 11.72735 11.72735 
fave 11.72975 11.72866 11.72735 11.72735 11.72998 11.72998 
σ 0.000472 0.002619 0 0 0.003605 0.003605 
cbest 44349 1725 5150 1375 2425 1525 

Case 2 

md (t) 784 784 784 784 784 784 
Td (s) 3.94892 3.949575 3.949575 3.949575 3.949575 3.949575 
ξd 0.131255 0.131671 0.131671 0.131671 0.131671 0.131671 
fbest 17.33442 17.32852 17.32852 17.32852 17.32852 17.32852 
fave 17.33572 17.32852 17.32852 17.32852 17.32852 17.32852 
σ 0.002938 3.65E-15 3.65E-15 3.65E-15 3.65E-15 3.65E-15 
cbest 43186 1450 4800 1300 3525 1750 

Table 2 : Optimum result of 40-story structure 

Earthquake 
No. 

Earthquake 
Name  Recording Station Year Magnitude FN Component FP Component 

1 Northridge Beverly Hills - 
Mulhol 1994 6,7 NORTHR/MUL009 NORTHR/MUL279 

2 Northridge Canyon Country-
WLC 1994 6,7 NORTHR/LOS000 NORTHR/LOS270 

3 Duzce, Turkey Bolu 1999 7,1 DUZCE/BOL000 DUZCE/BOL090 
4 Hector Mine Hector 1999 7,1 HECTOR/HEC000 HECTOR/HEC090 

5 Imperial 
Valley Delta 1979 6,5 IMPVALL/H-DLT262 IMPVALL/H-DLT352 

6 Imperial 
Valley 

El Centro Array 
#11 1979 6,5 IMPVALL/H-E11140 IMPVALL/H-E11230 

7 Kobe, Japan Nishi-Akashi 1995 6,9 KOBE/NIS000 KOBE/NIS090 
8 Kobe, Japan Shin-Osaka 1995 6,9 KOBE/SHI000 KOBE/SHI090 

9 Kocaeli, 
Turkey Duzce 1999 7,5 KOCAELI/DZC180 KOCAELI/DZC270 

10 Kocaeli, 
Turkey Arcelik 1999 7,5 KOCAELI/ARC000 KOCAELI/ARC090 

11 Landers Yermo Fire 
Station 1992 7,3 LANDERS/YER270 LANDERS/YER360 

12 Landers Coolwater 1992 7,3 LANDERS/CLW-LN LANDERS/CLW-TR 
13 Loma Prieta Capitola 1989 6,9 LOMAP/CAP000 LOMAP/CAP090 
14 Loma Prieta Gilroy Array #3 1989 6,9 LOMAP/G03000 LOMAP/G03090 
15 Manjil, Iran Abbar 1990 7.4 MANJIL/ABBAR--L MANJIL/ABBAR--T 

16 Superstition 
Hills 

El Centro Imp. 
Co. 

1987 6.5 SUPERST/B-ICC000 SUPERST/B-ICC090 

17 Superstition 
Hills 

Poe Road (temp) 1987 6.5 SUPERST/B-POE270 SUPERST/B-POE360 

18 Cape 
Mendocino 

Rio Dell 
Overpass 

1992 7.0 CAPEMEND/RIO270 CAPEMEND/RIO360 

19 Chi-Chi, 
Taiwan 

CHY101 1999 7.6 CHICHI/CHY101-E CHICHI/CHY101-N 

20 Chi-Chi, 
Taiwan 

TCU045 1999 7.6 CHICHI/TCU045-E CHICHI/TCU045-N 

21 San Fernando LA - Hollywood 
Stor 

1971 6.6 SFERN/PEL090 SFERN/PEL180 

22 Friuli, Italy Tolmezzo 1976 6.5 FRIULI/A-TMZ000 FRIULI/A-TMZ270 

 Table 5. Far-field ground motions (FEMA, 2009) 

3.3. The performance of optimum TMDs on benchmark earthquakes 

It is clearly seen that the optimum TMDs are effective in the reduction of the acceleration transfer function at 
the points where the peak amplitude is seen. The main purpose of TMD is to damp vibrations by reducing the 
maximum displacement and providing a rapid steady-state response. For that reason, the optimum results were 
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tested by using several groups of earthquake data. These data are found in FEMA P-695: Quantification of Building 
Seismic Performance Factors (FEMA, 2009). The earthquake records in Table 5 represent the far-field ground 
motions.  

The optimum TMD parameters were also tested under the near-field ground motions including (Table 6) or not 
including (Table 7) significant impulsive pulses. The Tables 5-7 contain the information of the records including 
earthquake name, recording station, year, magnitude, fault normal (FN) and fault parallel (FP) components. 

Earthquake 
No. Earthquake Name  Recording 

Station 
Year Magnitude FN Component FP Component 

1 Imperial Valley-06 El Centro 
Array #6 1979 6.5 Impvall/H-E06_233 Impvall/H-E06_323 

2 Imperial Valley-06 El Centro 
Array #7 1979 6.5 Impvall/H-E07_233 Impvall/H-E07_323 

3 Irpinia, Italy-01 Sturno 1980 6.9 Italy/A-Stu_223 Italy/A-Stu_313 

4 Superstition Hills-
02 

Parachute 
Test Site 1987 6.5 Superst/B-Pts_037 Superst/B-Pts_127 

5 Loma Prieta Saratoga - 
Aloha 1989 6.9 Lomap/Stg_038 Lomap/Stg_128 

6 Erzican, Turkey Erzican 1992 6.7 Erzikan/Erz_032 Erzikan/Erz_122 
7 Cape Mendocino Petrolia 1992 7.0 Capemend/Pet_260 Capemend/Pet_350 
8 Landers Lucerne 1992 7.3 Landers/Lcn_239 Landers/Lcn_329 

9 Northridge-01 
01 Rinaldi 
Receiving 
Sta 

1994 6.7 Northr/Rrs_032 Northr/Rrs_122 

10 Northridge-01 01 Sylmar - 
Olive View 1994 6.7 Northr/Syl_032 Northr/Syl_122 

11 Kocaeli, Turkey Izmit 1999 7.5 Kocaeli/Izt_180 Kocaeli/Izt_270 
12 Chi-Chi, Taiwan TCU065 1999 7.6 Chichi/Tcu065_272 Chichi/Tcu065_002 
13 Chi-Chi, Taiwan TCU102 1999 7.6 Chichi/Tcu102_278 Chichi/Tcu102_008 
14 Duzce, Turkey Duzce 1999 7.1 Duzce/Dzc_172 Duzce/Dzc_262 

Table 6. Near-field ground motions with pulses (FEMA, 2009) 

 Earthquake 
No. 

Earthquake 
Name  Recording Station Year Magnitude FN Component FP Component 

1 Gazli, Ussr Karakyr 1976 6.8 Gazli/Gaz_177 Gazli/Gaz_267 

2 Imperial 
Valley-06 

El Centro Array 
#7 1979 6.5 Impvall/H-Bcr_233 Impvall/H-Bcr_323 

3 Imperial 
Valley-06 Sturno 1979 6.5 Impvall/H-Chi_233 Impvall/H-Chi_323 

4 Nahanni, 
Canada Site 1 1985 6.8 Nahanni/S1_070 Nahanni/S1_160 

5 Nahanni, 
Canada Site 2 1985 6.8 Nahanni/S2_070 Nahanni/S2_160 

6 Loma Prieta Bran 1989 6.9 Lomap/Brn_038 Lomap/Brn_128 
7 Loma Prieta Corralitos 1989 6.9 Lomap/Cls_038 Lomap/Cls_128 

8 Cape 
Mendocino Cape Mendocino 1992 7.0 Capemend/Cpm_260 Capemend/Cpm_350 

9 Northridge-01 La - Sepulveda Va 1994 6.7 Northr/0637_032 Northr/0637_122 

10 Northridge-01 Northridge - 
Saticoy 1994 6.7 Northr/Stc_032 Northr/Stc_122 

11 Kocaeli, 
Turkey Yarimca 1999 7.5 Kocaeli/Ypt_180 Kocaeli/Ypt_270 

12 Chi-Chi, 
Taiwan Tcu067 1999 7.6 Chichi/Tcu067_285 Chichi/Tcu067_015 

13 Chi-Chi, 
Taiwan Tcu084 1999 7.6 Chichi/Tcu084_271 Chichi/Tcu084_001 

14 Denali, Alaska Taps Pump Sta.
#10 2002 7.9 Denali/Ps10_199 Denali/Ps10_289 

Table 7. Near-field ground motions without pulses (FEMA, 2009) 

3.3.1 The results for 10-story structure 

The structural responses obtained from the 10-story structure without and with TMD are presented in Tables 8, 9 and 10 
for far-field records, the near-field records with pulses and without pulses, respectively. The maximum values given in the 
Tables 8-10 are the top story displacement (y10) and the total acceleration of the top story ( g10 yy  + ). The FP component
(DUZCE/BOL090) of Bolu record of the 1999 Düzce earthquake is the most critical excitation for the 10-story 
structure. The maximum displacement for the 10th story is 0.4101m and the optimum TMD is effective to reduce 
it to 0.2622 with 36.06% performance.  
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Earthquake Component y10 g10 yy  +
Without TMD With TMD Without TMD With TMD 

1 FN 0.3693 0.2382 15.8042 8.2525 
FP 0.3110 0.2713 12.9883 9.5841 

2 FN 0.1326 0.1086 6.3276 5.0632 
FP 0.2236 0.1461 9.2066 6.4152 

3 FN 0.2590 0.1569 12.7887 7.6020 
FP 0.4101 0.2622 19.2864 12.0021 

4 FN 0.1118 0.1070 5.0418 4.2105 
FP 0.1317 0.1391 5.4565 4.4950 

5 FN 0.1110 0.0652 5.3268 3.2047 
FP 0.1894 0.1082 7.8952 4.2661 

6 FN 0.0765 0.0670 4.5812 3.7041 
FP 0.0705 0.0888 4.3957 4.4892 

7 FN 0.1112 0.0999 5.9113 5.6091 
FP 0.1013 0.0882 5.1205 5.2906 

8 FN 0.1045 0.1310 4.9963 5.3914 
FP 0.0764 0.0806 3.2676 3.0263 

9 FN 0.1548 0.1150 8.4409 6.3647 
FP 0.2235 0.1903 9.8120 7.7423 

10 FN 0.0407 0.0280 2.0715 1.6708 
FP 0.0396 0.0373 1.9932 1.2496 

11 FN 0.1797 0.1371 7.4196 5.1637 
FP 0.1139 0.0815 4.9984 3.0643 

12 FN 0.0834 0.0636 6.0349 3.5787 
FP 0.1369 0.1390 6.1439 5.7271 

13 FN 0.1467 0.1539 8.9522 6.9083 
FP 0.0949 0.0950 5.0056 5.5921 

14 FN 0.1139 0.0724 6.6829 6.0693 
FP 0.1223 0.1293 6.0778 5.5444 

15 FN 0.1236 0.0919 6.0631 4.9267 
FP 0.1847 0.1375 9.9501 6.9884 

16 FN 0.0848 0.1501 5.5291 5.7908 
FP 0.0837 0.0815 3.3533 3.4759 

17 FN 0.1151 0.0925 5.1103 4.4676 
FP 0.1375 0.0811 6.2135 4.8139 

18 FN 0.1829 0.1426 8.5183 7.0506 
FP 0.1398 0.0946 7.7027 6.1423 

19 FN 0.1608 0.1088 7.6721 5.2595 
FP 0.3547 0.1922 13.8343 8.5836 

20 FN 0.1085 0.0704 6.6454 4.9365 
FP 0.1514 0.1169 7.1653 6.2917 

21 FN 0.0851 0.0639 4.5123 3.1191 
FP 0.0614 0.0314 2.8126 1.5212 

22 FN 0.0847 0.0606 5.3753 3.9533 
FP 0.1013 0.0756 5.2738 4.6214 

Table 8. The responses of 10-story structure under far-field records 

Fig. 4. Top story displacement of the 10-story structure (DUZCE/BOL090) 

The time-history plot for this excitation is also drawn in Fig. 4. The reduction of the maximum point and the 
effectiveness of the TMD on the damping of the vibrations are clearly seen. Also, the maximum top story 
acceleration is reduced to 12.0121m/s2 from 19.2864m/s2 for the same excitation. The maximum top story 
displacement under near-field records with pulses is 0.6457m and it is reduced to 0.5052m by using the optimum 
TMD (21.76% reduction). The critical excitation, which is the FN component (Northhr/Rrs-032) of 01 Rinaldi 
Receiving Sta. station of the 1994 Northridge earthquake, was used to obtain the top-story displacement time-
history plot given as Fig. 5.    
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Earthquake Component y10 g10 yy  +
Without TMD With TMD Without TMD With TMD 

1 FN 0.2159 0.1281 9.4237 5.3776 
FP 0.1509 0.1503 6.6648 5.8373 

2 FN 0.2254 0.1712 9.5061 7.4246 
FP 0.2302 0.2110 9.5597 8.2970 

3 FN 0.1045 0.1033 4.6150 3.5535 
FP 0.1546 0.1196 6.9255 4.2733 

4 FN 0.3562 0.2679 13.5591 8.8910 
FP 0.1702 0.1438 7.3747 6.3768 

5 FN 0.1538 0.1424 7.0769 5.8079 
FP 0.1281 0.0758 7.1845 4.6857 

6 FN 0.1957 0.1820 11.1409 8.1833 
FP 0.2837 0.2301 11.7546 8.7199 

7 FN 0.2135 0.1744 11.3048 9.3217 
FP 0.3367 0.2761 15.4409 12.0723 

8 FN 0.1372 0.1889 6.3171 6.8368 
FP 0.1086 0.0696 5.1209 3.8508 

9 FN 0.6457 0.5052 27.7301 17.4081 
FP 0.2700 0.2159 13.4820 9.2885 

10 FN 0.2137 0.2090 9.2710 7.3446 
FP 0.2716 0.2935 14.8096 13.4099 

11 FN 0.1105 0.0746 5.8749 2.8830 
FP 0.1141 0.0528 5.0043 1.9691 

12 FN 0.4373 0.2742 18.2119 12.2201 
FP 0.4048 0.2349 17.9800 9.6555 

13 FN 0.1912 0.1823 8.0242 5.8896 
FP 0.2293 0.1285 8.9202 4.4755 

14 FN 0.1925 0.1176 8.0411 6.1547 
FP 0.2878 0.1706 11.5440 7.4123 

Table 9. The responses of 10-story structure under near-field records with pulses 

Fig. 5. Top story displacement of the 10-story structure (Northhr/Rrs-032) 

Earthquake Component y10 g10 yy  +
Without TMD With TMD Without TMD With TMD 

1 FN 0.2725 0.1793 11.0867 6.8370 
FP 0.1759 0.1165 8.7232 5.6536 

2 FN 0.1551 0.1137 8.0885 6.3350 
FP 0.1668 0.1680 9.7206 9.3497 

3 FN 0.0997 0.0703 3.9616 2.8200 
FP 0.1684 0.0945 6.1314 3.9323 

4 FN 0.1485 0.1238 9.5579 7.9522 
FP 0.1907 0.0944 8.4289 5.5497 

5 FN 0.0437 0.0456 2.8066 2.7346 
FP 0.0972 0.0776 4.6745 3.7971 

6 FN 0.2075 0.1445 11.2136 7.9960 
FP 0.1304 0.1282 7.0685 6.6956 

7 FN 0.1323 0.1198 9.9175 7.6878 
FP 0.1981 0.1421 9.3531 6.7038 

8 FN 0.2499 0.2030 18.7204 15.8961 
FP 0.1048 0.1061 7.0698 6.4187 

9 FN 0.3936 0.3095 17.5241 12.7042 
FP 0.2374 0.1441 11.7440 10.8559 

10 FN 0.1150 0.1138 5.9471 4.6714 
FP 0.3162 0.2385 13.9212 9.1484 

11 FN 0.1307 0.1059 6.0181 4.1239 
FP 0.1228 0.1198 5.9340 4.6953 

12 FN 0.3129 0.2043 12.9713 8.0932 
FP 0.2153 0.1699 9.5389 5.8795 

13 FN 0.9920 0.5311 41.4756 20.8102 
FP 0.3063 0.1698 15.0598 7.6624 

14 FN 0.3218 0.2761 11.7795 8.5293 
FP 0.1886 0.1509 7.7362 4.7067 

Table 10. The responses of 10-story structure under near-field records without pulses 
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The critical excitation of near-field records without pulses is FN component (Chichi/Tcu084-271) of Tcu084 
record of 1999 Chi-Chi earthquake for the 10-story structure. As seen from the top-story displacement plot given 
in Fig. 6, the optimum TMD is effective in reducing of the peak value by 20.07% (from 0.9920m to 0.5311m).  

Fig. 6. Top story displacement of the 10-story structure (Chichi/Tcu084-271) 

3.3.2 The results for 40-story structure 

In the time domain, the maximum responses for 40-story structure are presented in Tables 11-13. In these tables, the 
maximum results are given for both cases of maximum mass ratio.  

Earthquake Component y10 gyy  +10
Without TMD Case 1 Case 2 Without TMD Case 1 Case 2 

1 FN 0.2922 0.2850 0.2769 4.8623 4.7520 4.8420 
FP 0.2727 0.2233 0.2648 4.9423 5.5232 4.8834 

2 FN 0.3287 0.2948 0.3210 3.3403 5.0772 3.2797 
FP 0.3486 0.2793 0.3291 3.1108 4.7877 3.0670 

3 FN 0.4901 0.3382 0.4052 3.6592 8.0792 3.5815 
FP 0.2931 0.2347 0.2985 6.2482 6.7095 6.1251 

4 FN 0.2378 0.2209 0.2160 2.0845 2.7074 2.0568 
FP 0.3234 0.2984 0.3022 3.0633 3.8086 3.0129 

5 FN 0.5701 0.3705 0.3490 1.8986 3.2737 1.7188 
FP 0.4188 0.3296 0.3689 2.8242 3.5652 2.6286 

6 FN 0.4795 0.3464 0.4319 2.2561 4.4601 2.1070 
FP 0.3469 0.2961 0.3254 2.4169 4.6619 2.3542 

7 FN 0.2543 0.2088 0.2305 2.5383 6.2970 2.5014 
FP 0.2403 0.2396 0.2122 2.2089 5.8867 2.1374 

8 FN 0.3128 0.2279 0.2910 3.1928 3.4189 3.0974 
FP 0.1981 0.1469 0.1832 1.9873 2.9447 1.9651 

9 FN 1.4433 0.7533 1.0769 4.8147 4.0122 3.9386 
FP 0.5285 0.3417 0.4180 3.9598 5.0122 3.9028 

10 FN 0.1658 0.1390 0.1601 0.8272 1.6813 0.8409 
FP 0.4850 0.5374 0.4486 1.5452 1.6854 1.4830 

11 FN 0.4879 0.5153 0.4809 3.4140 3.6909 3.4239 
FP 0.4117 0.3764 0.4138 2.1439 2.2846 2.2017 

12 FN 0.2436 0.2131 0.2367 1.7939 2.8637 1.8231 
FP 0.2219 0.2454 0.2386 4.3720 5.0739 4.2680 

13 FN 0.1943 0.1670 0.1957 3.9979 5.5859 3.9189 
FP 0.1924 0.1266 0.1527 2.6245 4.9397 2.6643 

14 FN 0.2853 0.2253 0.2514 2.0954 6.0325 2.0191 
FP 0.4002 0.3758 0.3963 2.8984 5.4905 2.8606 

15 FN 0.5659 0.3977 0.5061 3.4267 6.1291 3.2162 
FP 0.5621 0.4635 0.5536 2.6492 6.6539 2.6272 

16 FN 0.7282 0.2935 0.3850 3.5269 3.6304 3.5055 
FP 0.4586 0.3432 0.3600 1.9760 3.2566 1.9468 

17 FN 0.3750 0.2234 0.2624 2.8304 4.9268 2.7687 
FP 0.4061 0.3018 0.3248 2.3584 3.7651 1.8918 

18 FN 0.2185 0.2147 0.2212 3.4061 4.3505 3.3848 
FP 0.2076 0.1580 0.1982 2.5629 4.9132 2.5141 

19 FN 1.6377 1.0625 1.2877 5.0558 4.1746 4.1287 
FP 1.9278 1.6892 1.7826 6.1731 4.5408 5.3554 

20 FN 0.2429 0.2974 0.2406 2.6781 5.0635 2.6104 
FP 0.2295 0.1410 0.1490 2.9085 5.0203 2.8554 

21 FN 0.5883 0.3387 0.4751 2.4535 2.6689 2.3626 
FP 0.2370 0.1686 0.2077 0.9904 1.7330 0.8970 

22 FN 0.1024 0.0867 0.0917 1.3802 3.5177 1.3512 
FP 0.1448 0.1085 0.1332 2.2727 3.6330 2.2450 

Table 11. The responses of 40-story structure under far-field records 
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Earthquake Component y10 g10 yy  +
Without TMD Case 1 Case 2 Without TMD Case 1 Case 2 

1 FN 0.9555 0.8055 0.9165 4.3428 4.4556 4.1246 
FP 2.2888 1.5169 2.0299 6.8914 6.7629 6.0929 

2 FN 0.6599 0.5527 0.5456 3.4359 4.2673 3.4530 
FP 1.7659 1.2614 1.4549 6.2306 8.8257 6.1116 

3 FN 0.4391 0.2740 0.3896 2.4019 3.5059 2.3471 
FP 1.0167 0.8291 0.9613 3.7016 4.4648 3.5401 

4 FN 1.1657 1.1077 1.1677 7.6609 8.9766 7.5722 
FP 0.8347 0.4181 0.5809 4.0297 4.4268 4.0058 

5 FN 0.3623 0.3246 0.3532 3.0572 5.6333 2.9996 
FP 0.7790 0.6418 0.7443 3.0652 3.8672 2.8766 

6 FN 0.8675 0.5804 0.7257 4.5306 6.0259 4.4733 
FP 0.7798 0.7134 0.7649 6.4902 7.1655 6.3749 

7 FN 0.3352 0.2914 0.3121 4.1974 7.4609 4.1180 
FP 0.7505 0.6846 0.7344 6.4979 9.9769 6.3617 

8 FN 1.9216 1.4268 1.6975 6.8344 10.9192 6.5257 
FP 0.5554 0.3752 0.4861 2.3450 7.8364 2.1513 

9 FN 0.8639 0.6846 0.7921 11.6282 9.9869 11.5128 
FP 0.6187 0.5221 0.5758 5.1647 6.9083 5.0746 

10 FN 0.6237 0.4558 0.5736 5.0746 6.9267 4.8771 
FP 0.9390 0.7677 0.8926 7.0513 9.1464 6.9089 

11 FN 0.5183 0.3610 0.4722 2.3327 3.0393 2.2875 
FP 0.4472 0.2514 0.3094 1.4601 2.2604 1.4277 

12 FN 3.1361 2.0005 2.3028 12.1423 7.6718 8.6289 
FP 1.1577 0.9672 1.0853 6.7557 7.9618 6.4150 

13 FN 1.2386 1.2029 1.2214 6.1225 5.9385 5.1657 
FP 1.1097 1.1599 1.0408 4.1691 4.0931 3.1410 

14 FN 1.4232 0.8479 0.8584 3.9849 3.9349 3.8082 
FP 1.2290 1.0120 1.1217 5.5273 5.6801 5.2564 

Table 12. The responses of 40-story structure under near-field records with pulses 

Earthquake Component y10 gyy  +10
Without TMD Case 1 Case 2 Without TMD Case 1 Case 2 

1 FN 1.2436 0.7617 1.0809 5.9727 8.5253 5.3713 
FP 1.0734 0.7335 0.8328 5.0065 9.0017 4.6325 

2 FN 0.3417 0.2807 0.3242 3.3732 8.3351 3.2609 
FP 0.2496 0.2587 0.2150 3.8054 8.9856 3.8781 

3 FN 0.2163 0.2012 0.2310 2.1930 3.6929 2.1407 
FP 0.4396 0.2224 0.3066 2.6648 2.8891 2.6714 

4 FN 0.4329 0.2336 0.3209 2.7785 9.7955 2.4568 
FP 0.5405 0.3151 0.3910 2.4301 10.4285 2.3156 

5 FN 0.1445 0.1249 0.1400 1.5664 4.7302 1.5489 
FP 0.1456 0.1286 0.1420 2.1042 3.8375 2.0714 

6 FN 0.3740 0.2523 0.3354 3.9188 5.8252 3.7466 
FP 0.1864 0.1655 0.1824 3.3813 5.6537 3.3437 

7 FN 0.2390 0.1728 0.2222 3.4209 6.2938 3.3707 
FP 0.3442 0.2244 0.2941 4.6077 6.4762 4.5045 

8 FN 1.0199 0.7391 0.8844 5.7668 14.3103 5.6493 
FP 0.3606 0.3127 0.3409 2.7603 10.7399 2.7214 

9 FN 0.3659 0.2609 0.3373 7.4937 10.3620 7.4208 
FP 0.6782 0.4640 0.5951 4.8309 12.2230 4.4784 

10 FN 0.3083 0.2383 0.2536 3.5648 3.7057 3.4094 
FP 0.6040 0.4731 0.5051 4.6685 7.1175 4.6441 

11 FN 1.9469 1.2295 1.5422 6.8494 5.7939 5.3973 
FP 1.5798 1.0581 1.2584 6.5296 5.9817 5.7488 

12 FN 0.7826 0.7768 0.7425 4.7846 5.7389 4.7023 
FP 1.1129 0.5987 0.6873 4.0426 5.3779 3.9305 

13 FN 1.0034 0.8266 0.8666 10.7592 14.6794 11.3775 
FP 0.6722 0.4286 0.5607 4.0907 4.4096 4.0988 

14 FN 1.2876 1.1295 1.2428 6.3268 5.7601 6.0415 
FP 1.1516 0.7893 0.9258 4.4826 3.7376 3.8755 

Table 13. The responses of 40-story structure under near-field records without pulses 

In far-field records, the FP component (Chichi/Chy101-N) of CHY101 record of 1999 Chi-Chi earthquake is the 
critical one for the 40-story structure and the optimum TMD is effective to reduce the maximum displacement of 
40th story from 1.9278m to 1.6892m for Case 1 and 1.7826m for Case2. The response is plotted in Fig. 7 and the 
effectiveness of the optimum TMD on obtaining a rapid steady-state response is clearly seen and it is distinct in 
Case 1 which have a big optimum mass.    
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Fig. 7. Top story displacement of the 40-story structure (Chichi/Chy101-N) 

The history plot given in Fig.8 is the displacement of the 40th story of the structure under the FN component 
(Chichi/Tcu065-272) of Tcu065 record of 1999 Chi-Chi earthquake and it is the critical one of the near-field 
records with pulses. The optimum TMD provides 36.21% reduction in Case 1 and 26.59% reduction in Case 2.   
The maximum top story displacement of 40-story structure is 1.9469m for near-field records without pulses. This 
value belongs to the analyses under the FN component (Kocaeli/Ypt-180) of Yarımca record of the 1999 Kocaeli 
earthquake and it is plotted in Fig. 9. The maximum displacement which is 1.9469m, is reduced to 1.2295m and 
1.5422m for Cases 1 and 2, respectively.  

Fig. 8. Top story displacement of the 40-story structure (Chichi/Tcu065-272) 

Fig. 9. Top story displacement of the 40-story structure (Kocaeli/Ypt-180) 

4 DISCUSSION AND CONCLUSION 

All algorithms are effective in finding the optimum TMD parameters minimizing the maximum amplitude of 
the top story acceleration transfer function. The main factor of the comparison of the algorithms are the required 
computational effort which is the best for FPA and the classical JA. The variant of JA presented in this study is 
not effective on finding reduction of required number of evaluations. On the contrary, the variants such as JALF 
and JA2P are worse than the classical JA. For the 40- story structure, JA is better than FPA in computational effort. 

In the numerical examples, the optimum TMD is effective to reduce the objective function value by 56.76% 
for 10-story structure, while the optimum TMD has a minor effect on the peak value corresponding to the second 
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mode of the structure. Similarly, the optimum TMD is effective on the values of second and third mode for the 40-
story structure, but the case with a small TMD mass upper limit (Case 2) has only minor effects. For Case 1 of 40-
story structure, the reduction percentage of the objective function is 56.04%. In Case 2, which is a practical case 
because of a small mass, is also resulted with a significant reduction of objective function (35.05%). 

The essential purposes of TMDs are to damp vibrations and reduce the maximum responses of the structure. 
For that reason, the validation of optimum TMD parameters is needed by using benchmark earthquake records. 
The benchmark earthquake records are chosen according to several grouped historical records presented in FEMA 
P-695. According to the results, the optimum TMD is effective on the benchmark earthquakes which are recorded 
far or near of the fault rupture. Especially, the performance of obtaining a steady-state response by damping of 
vibrations is significant for the critical excitations which have the maximum effects on the example structures.  

The optimum TMD is both effective in the reduction of maximum top story displacements and total 
accelerations for both structures with 10 and 40 stories. The optimum TMD is effective to reduce the maximum 
top story displacement by 36.06% and 20.07% for the critical excitations for far-field and near field records, 
respectively. The reduction of maximum top story displacements of 40-story structure with TMD optimized with 
Case 1 are 12.38% and 35.82 for far-field and near field records, respectively. These percentages are respectively 
reduced to 7.53% and 20.79 in Case 2 for far-field and near field critical excitations.  

As the final conclusion, the metaheuristic based methods are effective in optimizing TMDs and the newly 
developed JA is one of the best algorithms because of simplification of using a single phase without algorithm-
specific parameters and randomly chosen parameters like Teaching Factor in TLBO. For the numerical examples, 
the problem of trapping to a local optimum is not seen for the single phase JA using linear random distribution. 
For that reason, the variants presented in the study (JALF and JA2P) is not necessary. These variants only extend 
the computational time for the optimization process. 
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Abstract. A general constitutive model for N−phase isotropic, incompressible, rate-independent elasto-plastic 

composite materials at finite strains is developed. The formulation is based on the non-linear homogenization 

variational (or modified secant) method which makes use of a linear comparison composite (LCC) material to 

estimate the effective flow stress of the non-linear composite material. The homogenization approach leads to an 

algebraic optimization problem, which for a two-phase material  2N   is solved analytically, whereas for

3N   the solution is obtained numerically. The model is validated by periodic three-dimensional unit cell 

calculations comprising a large number of spherical inclusions distributed randomly in a matrix phase. The 

homogenization technique provides accurate estimates not only for the effective flow stress but also for the 

average strains in the constituent phases. These estimates form the basis for the development of an approximate 

analytical model for the elastoplastic behavior of a composite with hardening phases. The predictions of the 

model are in excellent agreement with the results of detailed unit cell finite element calculations of a composite 

with hardening phases for different types of loadings, including uniaxial tension and finite shear. The 

homogenization theory is also used to develop a constitutive model for the mechanical behavior of TRIP 

(TRansformation Induced Plasticity) steels. TRIP steels are essentially composite materials with evolving 

volume fractions of the constituent phases. The calibration of the model is based on uniaxial tension tests on 

TRIP steels. The constitutive model is used for the calculation of “Forming Limit Diagrams” (FLDs) for sheets 

made of TRIP steels; it is found that the TRIP phenomenon increases the strain at which local necking results 

from a gradual localization of the strains at an initial thickness imperfection in the sheet. 

1 INTRODUCTION 

An analytical and numerical methodology for estimation of the effective response of N-phase isotropic elasto-

plastic metallic composites is developed. Special attention is given to particulate microstructures, i.e., composite 

materials with a distinct matrix phase and an isotropic distribution of spherical particles. The particles are 

assumed to be stiffer than the matrix, which is the case in most metallic materials of interest, such as TRIP steels. 

Such materials, usually contain second-phase particles (e.g., intermetallics, carbon particles) or just second and 

third phase variants (e.g., retained austenite, bainite, martensitic phases). In addition, these phases/particles tend 

to reinforce the yield strength of the composite while they usually have different strength and hardening behavior 

than the host matrix phase. 

In the literature of non-linear homogenization there exists a large number of studies for two-phase composite 

materials. Nonetheless, very few studies exist in the context of three- or N-phase composites. In view of this, the 

present work uses the non-linear variational homogenization method of Ponte Castañeda [1], which makes use of 

a linear comparison composite (LCC) material, to estimate the effective response of a N-phase non-linear 

composite material. Simple analytical expressions are given for the effective yield stress of a two-phase 

composite (see also Ponte Castañeda and deBotton [2]) while a simple semi-analytical expression (requiring the 

solution of a constrained optimization problem for 1N   scalar quantities) is given for the N  phase composite. 

Additional analytical expressions are also provided for the phase concentration tensors and average strains in 

each phase in terms of the aforementioned optimized scalar quantities. 
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2 THE HOMOGENIZATION METHOD 

We consider a composite material made of N isotropic, incompressible viscoplastic phases. The phases are 

distributed randomly and isotropically. The constitutive equations of each phase is of the form: 
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where D  is the deformation rate, σ  the stress tensor, / 3kkp   the hydrostatic stress, p s σ δ  the stress 

deviator, δ  being the second-order identity tensor, 
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:
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0  a reference strain rate, n  the creep exponent  1 n   , N  is a second order tensor that
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  D D  is the equivalent plastic strain rate that defines the magnitude of D . 

The constitutive equation of the isotropic non-linear composite is written in terms of the effective viscoplastic 

stress potential  U σ  so that
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where σ  and D  are respectively the macroscopic stress and deformation rate in the composite. Αn estimate for 

U  is obtained by using the variational methodology of Ponte Castañeda ([1], [3]): 
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where   is the effective viscosity of the “linear comparison composite” (LCC). One way to estimate   is to use 

the well-known Hashin-Shtrikman relationship for particulate composites [4]. 

An approximation for the deformation rate field in the non-linear composite may be obtained from the 

deformation rate field in the LCC evaluated at the optimal comparison moduli  ˆ r
  defined by the optimization 

problem in (3). In particular, the average deformation rate field in the phases  r
D  may be determined from the 

macroscopic deformation rate D  in terms of a “strain concentration tensor”  r
A
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 r
c  are the volume fractions of the phases and 0  a reference viscosity. Details of the derivation are given in 

Papadioti et al. [5]. 

2.1 Perfectly Plastic Phases 

We consider the case of perfectly plastic phases 
( )( )rn  . The optimization in (3) as 

( )( )rn   is carried 

out in three steps. In the first step, we consider the optimization over 
( )r

e . All creep exponents are set equal in 

the second step, i.e., we set 
(1) (2) ( )Nn n n n    . In the final third step we consider the limit 

( )rn  . 
Details of the derivation are given in Papadioti et al. [5]. 
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The resulting effective potential  eU   defines the effective flow stress 
0  of the composite: 
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(6) 

where      1
/

r r
y    and 

 1

0 0/y   . 

Calculation of the effective yield stress 
0  requires the solution of the constrained optimization problem in 

(6) for the values of  r
y , which define in turn the appropriate values of the viscosities  r

 . In the special case of 

a two-phase composite  2N   the solution of the optimization problem can be found analytically as described

in Section 2.2. The solution of more general cases  3N   is obtained by using the methodology of Kaufman et

al. [6] and the CONMAX software for the solution of the optimization problem in (6). 

The strain concentration values 
 r

a  defined in (5) can be written in the form 
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ˆ ˆ
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r s
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y c y
a

y y y y





 
     

 , (7) 

where  ˆ r
y  are the optimal values of  r

y  resulting from the optimization in (6). 

2.2 The two-phase perfectly plastic composite – An analytic estimate for the effective flow stress and the 

strain concentration factors 

We consider an isotropic two-phase composite    1 2
( 2, 1)N c c   . Each phase is perfectly plastic with 

flow stress (1)

0  and (2)

0 . The estimate for 
0  depends on the chosen value of the reference viscosity 

0 . 

Results for various choices of 
0  are reported in Papadioti [7]. Here we present in some detail the formulation 

based on a Hashin-Strikman lower bound with 
(1)

0    0   1y  ; this particular choice of 
0  shows the best 

agreement with detailed unit cell finite element calculations. 

For 
(1)

0  , the ratio /H F
 in (6) takes the value 
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The optimum value of  2
ŷ  to be used in (6) is calculated by using the condition 

(2)
0

H

y F

 







(9) 

together with the constraint (2) 0y  . After some lengthy, but straightforward, calculations we find the resulting 

optimal value  2
ŷ  to be 

   

 

(1) (2) (2) (2) (2)

cr cr(2) 2(2)

(2) (2)

cr cr

1 5 1
2 3 2 2 if 1 ,
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(10) 
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where 

2

(2)

cr cr
(2)

5 1 5
and 4 .

64 6
r c

rc

  
    

    

 (11) 

According to (10), for a given particle concentration (2)c , when the contrast ratio (2) (1)

0 0σ σ/r   is larger than a 

value 
crr , the comparison material for phase 2 is rigid   2ˆ 0y  . 

The corresponding estimate for the effective flow stress resulting from (6) is 
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 (12) 

The strain concentration values 
 r

a  given in (7) can be written in the form 

   

(2) (1) (2) (2)
(1) (2)

(2)(2)
0 0 00

ˆ ˆ1
, ,

ˆ2 3 2 3 2 3ˆ2 3

y c c y

y y
a

yy y
a

y
   

  
(13) 

and  2
ŷ  is defined in (10). 

3 UNIT CELL FINITE ELEMENT CALCULATIONS AND ASSESSMENT OF THE MODEL 

In this section we present the results of unit cell finite element calculations for a composite material made up 

of a statistically isotropic random distribution of isotropic, linearly-elastic perfectly-plastic spherical inclusions 

embedded in a continuous, isotropic, linearly-elastic perfectly-plastic matrix. The elastic Young modulus used in 

the finite element calculations for all phases is three orders of magnitude higher than the highest yield stress 

involved; this minimizes the effects of elasticity and the results are very close to those of rigid-perfectly-plastic 

materials. 

We study numerically two- and three-phase composites. The matrix is labelled as phase 1 and the reinforcing 

particles are spherical and have higher flow stresses     1

0 0 , 1
i

i   . The periodic unit cell is a cube with 

edge size L and is constructed using the method presented by Segurado and Llorca [8] and extended to 

polydisperse inclusion distributions by Lopez-Pamies et al. [9]. The virtual microstructure contains a dispersion 

of a sufficiently large number of non-overlapping spheres of uniform (monodisperse) or different (polydisperse) 

size. The inclusions are randomly located within the cell and are generated using the Random Sequential 

Adsorption Algorithm (RSA) [10]. 

3.1 The effective yield stress 

We determine numerically the effective yield stress by solving the problem of a unit cell loaded in uniaxial 

tension. Figure 1a shows the variation of the calculated effective flow stress from the unit cell finite element 

calculations with the contrast ratio 
   2 1

0 0/r    for various volume fractions, together with the predictions (6) of 

the homogenization model, based on the Hashin-Shtrikman lower bound   1

0  . For that data shown in Fig. 

1a, the maximum difference between the predictions (6) and the results of the unit cell finite element calculations 

is 3%. It is also interesting to mention that an increase of the flow stress 
 2

0  in the inclusions beyond 

(approximately) two times the flow stress of the matrix   1

02  does not change the effective flow stress of the 

composite for all volume fractions considered here. Figure 1b shows the variation of 
 1

0 0/   of a three-phase 

composite for different values of the volume fraction 
 3

c as determined from the unit cell finite element 

calculations and the predictions (6) of the homogenization model. The material data are typical for a TRIP steel 

with a ferritic matrix (phase 1) containing retained austenite (phase 2), which transforms gradually to martensite 
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(phase 3) as the TRIP steel deforms plastically. 

(a) (b) 

Figure 1. Variation of normalized effective flow stress 
 1

0 0/   (a) of a two-phase composite for various volume 

fractions (b) of a three-phase composite for different values of the volume fraction 
 3

c . 

3.2 The strain concentration tensors 

The unit cell finite element calculations discussed above were used also to determine the strain concentration 

factors defined in (7). Figure 2a shows the variation of the strain concentration factors 
 r

a  in a two-phase 

composite with the contrast ratio 
   2 1

0 0/r    for 
 2

0.30c   as determined from the unit cell finite element 

calculations and the homogenization theory. An important observation in the context of this figure is that at a 

contrast ratio of 2r  , a sharp transition is observed where the particles start behaving as being rigid, i.e., the 

average strain in the particle is almost zero. This is validated by both the model and the numerical results. A 

similar plot for a three-phase composite is shown in Fig. 2b. The predictions of homogenization theory agree well 

with the results of the unit cell finite element calculations. 

3.3 On the possible dependence of the effective flow stress on 3J

Suquet and Ponte Castañeda [11],[12] studied the effective mechanical behavior of weakly inhomogeneous 

composites and showed that, for the case of incompressible “power-law” phases, the effective potential of the 

composite may depend, to second order, on the third invariant of the applied strain. 

We carry out detailed unit cell finite element calculations in order to check for a possible dependence of the 

effective yield stress 0  on the third invariant 3J  of the stress deviator s  (   3

3 det 2 / 27 sin 3eJ    s , where 

 is the “Lode angle”). Angle   takes values in the range 30 30   , where, to within a given hydrostatic

stress, 30    corresponds to uniaxial tension, 0   to pure shear, and 30   to uniaxial compression. 

Figure 3 illustrates the variation of the normalized effective flow stress 
 1

0 0/   as determined from unit cell 

finite element calculations, with Lode angle   for particle volume fractions 
 2

0.10c  , 0.20  and 0.40 . It is 

shown that the effective flow stress of the composite is essentially independent of the third stress invariant 3J

which is in agreement with earlier results by Idiart [13] in the case of rigid particles. 

4 HARDENING PHASES 

In this section we present an approximate method for the prediction of the incremental elastoplastic behavior 

of macroscopically isotropic composites made of N  isotropic, rate-independent, elastic-plastic hardening phases. 

Let the flow stresses 
( )i

y  of each phase be known functions of the corresponding equivalent plastic strains 
( )ε i

( 1,2, , )i N  . 

It should be noted that the elastic and plastic response of the homogenized composite are treated 

independently, and combined later to obtain the full elastic-plastic response. The composite is assumed to behave 

as “incrementally perfectly plastic” with a flow stress 
0 , which is updated at every increment. The value of 

0  
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is calculated by the solution of the corresponding optimization problem (6) using the ( )

0

i  values at each 

increment. The solution of the optimization problem (6) defines also the optimal values  ˆ i
y , which determine the 

corresponding strain concentration factors  i
a  in (7) for the increment. Details on the numerical integration of 

constitutive equations are given in Papadioti [7]. 

(a) (b) 

Figure 2. Strain concentration factors 
 r

a  (a) for a two-phase composite and (b) for a three-phase composite. 

Figure 3. Variation of effective normalized flow stress 
 1

0 0/   with Lode angle   for particle volume fractions 

of 10, 20 and 40%. The results show almost no dependence on 3J . 

4.1 Unit cell calculations and assessment of the model with hardening phases 

In this section we present the results of unit cell finite element calculations for a composite material made up 

of a statistically isotropic random distribution of isotropic, linearly-elastic hardening-plastic spherical inclusions 

embedded in a continuous, isotropic, linearly-elastic hardening-plastic matrix. All analyses were carried out 

incrementally and accounted for geometry changes due to deformation (finite strain solutions). 

In all cases analyzed, the matrix material is identified as “phase 1” and the flow stress 
( )i

y  of “phase i ” is a 

function of the corresponding equivalent plastic strain 
( )ε i

: 
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where )

0

(i  is the yield stress of phase i , E  is the elastic Young's modulus, and the hardening exponents 
 i

take values in the region 
 

1
i

   , with the limiting case 
 i    corresponding to perfect plasticity. The 

values (1)

0917E   and 0.3   for Young's modulus E  and Poisson ratio   are used in the calculations. 

In addition, one-element finite element calculations were carried out, in which the element is subjected to the 

same deformation gradient as the unit cell and the corresponding uniform stress state in the element is calculated 

for the homogenized material. In particular, we consider a three-phase composite with 

(2) (3)
(1) (2) (3)0 0

(1) (1)

0 0

1.875, 5, 5, 3 2.5
σ

, .



 


      (15) 

The problems of uniaxial tension and finite shear deformation are solved. Figure 4 shows the deformed unit 

cells for uniaxial tension at 1.20   and finite shear 0.20   and Figure 5 shows the stress-strain curves in 

uniaxial tension and finite shear, for a three-phase composite with composition 
 1

0.60c  , 
 2

0.25c  , and 
 3

0.15c  . The predictions of the homogenization model agree well with the results of the unit cell finite 

element calculations. The model is capable of predicting sufficiently well both the initial yield strength of the 

three-phase composite as well the hardening evolution as a function of the applied strains both in uniaxial tension 

and shear loadings. 

Figure 4. Deformed configurations of unit cells of the three-phase composite in uniaxial tension and simple shear. 

Figure 5 Stress-strain curves of the three-phase composite in uniaxial tension and simple shear. 

5 APPLICATIONS TO TRIP STEELS 

The homogenization techniques for non-linear composites, described in the previous sections, are used to 
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determine the effective properties and overall behavior of TRIP steels. We consider four-phase TRIP steels that 

consist of a ferritic matrix with dispersed bainite and austenite, which transforms gradually into martensite as the 

material deforms plastically. The following labels are used for the constituent phases: (1) for ferrite, (2) for 

bainite, (3) or (a) for austenite and (4) or (m) for martensite. The constitutive equations are developed for the 

case of finite geometry changes.  

An important aspect of the martensitic transformation is the strain softening which occurs due to the strain 

associated with the transformation process. This strain softening is accounted for by introducing in the 

constitutive model an additional deformation rate that is proportional to the rate of increase of the volume 

fraction of martensite. The total deformation rate can be split into elastic, plastic and transformation parts: 

e p TRIP  D D D D . (16) 

Details on the constitutive formulation and the numerical integration of the resulting elastoplastic constitutive 

equations are given in Papadioti [7]. The model is then implemented into the ABAQUS. The calibration of the 

model is based on experimental data of uniaxial tension tests on TRIP. The constitutive model is also used to 

calculate “forming limit diagrams” for sheets made of TRIP steels. Calculations are also conducted for a non-

transforming steel for comparison purposes. 

5.1 Forming Limit Diagrams 

In this section, the constitutive model developed for the four-phase TRIP steel is used to calculate “forming 

limit diagrams” for sheets made of TRIP steels. Forming limit diagrams show the maximum deformation to 

which a sheet metal can be subjected before the material fails. In the present work, we concentrate on the 

formation of instabilities in a narrow straight band in metal sheets deformed under plane stress conditions. The 

predictions of the analytical model are compared to experimental data from the same TRIP steel which was used 

for the calibration. For comparison purposes, a separate set of calculations is conducted for a non-transforming 

TRIP steel with same initial values of the volume fractions of the phases. 

We consider a sheet made of TRIP steel that is deformed uniformly on its plane in a way that the in-plane 

principal strain increments increase proportionally. We study the possibility of the formation of an instability in 

the form of a narrow straight band and construct the corresponding ‘‘forming limit diagram’’. 

We follow the approach of Marciniak and Kuzynski [14], known as the ‘‘M–K’’ model, in which the sheet is 

assumed to contain a small initial inhomogeneity and necking results from a gradual localization of the strains at 

the inhomogeneity. The inhomogeneity is in the form of straight narrow band (neck) of reduced thickness 
bH H . Both inside and outside the band a state of uniform plane stress is assumed, and the analysis consists in 

determining the uniform state of deformation inside the band that is consistent kinematically and statically with 

the prescribed uniform state outside the band. Given the initial sheet thickness inside and outside the band and 

the imposed uniform deformation history outside the band, the equations of equilibrium are solved incrementally 

to obtain the deformation history inside the band. Localization is said to occur when the ratio of some scalar 

measure of the amount of incremental straining inside the band to the corresponding value outside the band 

becomes unbounded. 

The initial volume fractions of the four phases in the TRIP steel are assumed to be 
 1

0.50c  ,  2
0.38c  , 

 
0.103

a
c   and  

0.017
m

c  . The curves 
 

, 1, 4
r

y r   that define the variation of the flow stress of the phases 

are (in MPa): 

   

   

1 1

4.25 4.2
1

1

10.36 16.65
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y y

m
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(17) 

Figure 6 illustrates forming limit curves obtained for imposed proportional straining ρ for two different values 

of the initial thickness imperfection, namely 0.999bH H  and 0.99bH H  and for the case without 

imperfection i.e. 1bH H  . The three solid curves correspond to the TRIP steel, whereas the dashed curves are 

for the non-transforming steel. As we can see, the TRIP effect increases the necking localization strains. This 

result was also presented by Papatriantafillou et al. [15], who used a rate dependent constitutive model for TRIP 

steels (as opposed to the rate independent model used here). In details, for no imperfection and 0   (plane 
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strain), the critical strain 
11

cr  increases from 0.19228 for the non-transforming steel to 0.21203 for the TRIP 

steel; the corresponding values of 
11

cr  for 0.999bH H   and 0   are 0.17369 for the non-transforming steel 

and 0.19395 for the TRIP steel and for 0.99bH H   and 0   are 0.13775 for the non-transforming steel and 

0.15869 for the TRIP steel. 

The model predictions are also compared to available experimental data. The experimental data refer to the 

same TRIP steel which was used for the calibration of the model. Details on the experiments are given in 

Papatriantafillou et al. [15]. The model predictions fit the experimental data reasonably well. 

Figure 6 Forming limit curves for two different values of initial thickness inhomogeneities 0.999bH H   and 

0.99bH H  . The solid lines correspond to the TRIP steel, whereas the dashed lines are for a non-transforming 

steel. The dark triangles are experimental data. 
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Abstract. Pulsed power generators like Z- and X- Pinch devices produce hot and dense plasma. This type of 

plasma attracts the research interest due to the important emerging applications covering a wide range of 

disciplines like high energy density physics–HEDP, inertial confinement fusion, laboratory astrophysics and 

point projection radiography. In order to study such a multiphysics problem, the development of advanced 

computational models and simulation schemes is required, to offer insights to the experimental results. In our 

preliminary computational study, the astrophysical magnetohydrodynamics-MHD code PLUTO is partially 

modified to simulate the dynamics of plasma evolution. New algorithms for the PLUTO modules that extend the 

code applicability to laboratory plasmas are developed and tested, summarized to the: i. modified PVTE 

Equation of state-EOS using tabulated data by SESAME Database ii. electric resistivity according to the Spitzer 

formulation iii. radiative losses from an optically thin plasma using FLYCHK code tabulated data iv. modified 

radiation transfer model updated to include metal materials v. determination of plasma density, where effective 

ionization charge state, tabulated values by the FLYCHK code.  These PLUTO modifications provide the ability 

of studying the formation of minidiodes, constrictions and also micro explosions of the hot points, on Z- type 

loads. 

1 INTRODUCTION 

Pulsed power plasma generators, Z-pinch, X-pinch or multi-wire configurations, offer a unique plasma 

environment for the investigation of plasma characteristics and specifically the plasma instabilities generation, 

plasma jet formation and their dynamic behavior. This is a research topic of continuous interest due to the 

important emerging applications which cover a wide range of disciplines. Pulsed power generators deliver a few 

tens of kA on the Z- or X- wire loads within some nanoseconds and produce hot and dense plasma, offering 

research capabilities for point projection X-ray radiography, high energy density plasma dynamics and 

astrophysical plasma jets. One of the major limitations of the pulsed powered produced plasmas, is the 

development of instabilities, such as the well investigated over the years Magneto-Hydro-Dynamic (MHD) and 

Rayleigh–Taylor (RT) instabilities. The initialization of the instabilities and their growth rate are of significant 

research interest, especially when are correlated to the initial physical parameters of the target load [1-3], the 
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phase changes of the target from solid to melting, vaporization and finally plasma, or the so called “cold start” in 

the simulations.  

The study of plasma generation and evolution is a complex multiphysics problem. That kind of problems 

demand the development of advanced computational models and simulation schemes to provide insights to the 

experiments. In this computational study, the originally astrophysical MHD code PLUTO [4,5], is partially 

modified to simulate the dynamics of laboratory plasmas. The open source code of PLUTO is modular built 

using C and C++ offering a flexible programming environment. In this environment: i. the PVTE (Pressure-

Volume-Temperature-Energy) Equations of state – EOS are modified using tabulated data by SESAME 

Database [6] ii. the electrical resistivity has been updated according to the formulation of Spitzer (1962) iii. the 

radiative losses are taken into account from an optically thin plasma using tabulated data by the help of the 

FLYCHK code [7] iv. the modified radiation transfer model is updated to include metal materials v. plasma 

density is determined using the effective ionization charge state, by the help of tabulated values that FLYCHK 

code provides. These five new approaches are adopted to simulate the material models of the problem: the Z-

load wire of tungsten and the surrounding low mass density region of air (vacuum). The modeling of the 

interface region is based on four approximations and two different PLUTO solvers are used for the simulation 

resulting to eight simulation cases.  The simulations are repeated with the Temperature of vacuum constrained. 

The comparisons of the simulations to experimental results provide insights for the influence of the developed 

physical quantities such as density, magnetic field and energy. 

2 PLUTO MHD CODE – ALGORITHMIC MODIFICATIONS 

PLUTO a finite volume/finite difference, shock-capturing code designed to integrate a system of 

conservation laws of the form:  

𝜕𝑼

𝜕𝑡
= −∇ ∙ 𝐓(𝑼) + 𝑺(𝑼) (1) 

where U represents a set of conservative quantities, T(U) is the flux tensor and S(U) defines the source terms. An 

equivalent set of primitive variables V is more conveniently used for assigning initial and boundary conditions. 

The sets of conservative and primitive variables U and V are given by 

where, ρ is the material density, m is the momentum density, with m=ρu, E is the total energy density, B is the 

magnetic field and a factor of 1/√4𝜋 has been absorbed, p is the thermal pressure and u the bulk velocity. 

Resistivity, thermal conductivity, viscosity and other dissipative effects can be enabled through the appropriate 

switches. The MHD module deals with the Equations of classical ideal or resistive MHD. The resistive MHD 

module is used and is modified to follow the transport of radiation as presented in the following Equations: 

where arad the acceleration from the radiation pressure that is defined in Equation 11 by the help of radiative flux 

F. The system of the Equations 3-6 is defined by the set of Equations given in Equation 7: 

𝑼 = (𝜌, 𝒎, 𝛦, 𝜝 )𝛵, 𝑽 = (𝜌, 𝒖, 𝑝, 𝜝 )𝛵  (2) 

 𝜕𝜌

𝜕𝑡
+ 𝛁 ∙ (ρu) = 0 (3) 

𝜕(𝒎)

𝜕𝑡
+ 𝛁 ∙ [𝒎u + (𝑝 +

1

2
𝐵2) 𝐈 − 𝑩𝑩] = 𝜌𝒂𝒓𝒂𝒅 (4) 

𝜕𝛦

𝜕𝑡
+ 𝛁 ∙ [(𝐸 + 𝑝 +

1

2
𝐵2) u + (u ∙ 𝑩)𝑩] = − 𝛁 ∙ [(n ∙ J)×𝑩] + 𝜌u ∙ 𝒂𝒓𝒂𝒅 (5) 

𝝏𝑩

𝝏𝒕
+ 𝜵 ∙ (u𝑩-𝑩u) = − 𝜵 × (n ∙ J)   (6) 

𝐸 =
1

2
𝜌u2 + 𝜌𝑒 +

1

2
𝐵2

  𝑱 ≡ 𝛁 × 𝐁 

𝑛 = (
𝑐

4𝜋

2
) 𝑛𝑟 , n≡diag(𝑛𝑥1, 𝑛𝑥2, 𝑛𝑥3)

(7) 
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where E is the total energy density, e is the specific internal energy, J the current density, n is the diffusivity 

having a diagonal form and being expressed as a function of the resistive tensor nr (subscripts denote the three 

coordinate directions).  

Spitzer's conductivity formula: 

is used for the determination of nr and Te (eV) is the electron temperature and Zeff is the effective ionization 

charge state and lnΛ is the Coulomb’s logarithm.  

The evolution of the radiation energy density Erad is given by the following Equation [8]: 

where Εrad is the radiation energy density, kp is the Planck mean opacity, αR is the radiation constant and T the 

gas temperature. The radiative flux is denoted by F and and is a function of λ, the flux limiter and kR, the 

Rosseland mean opacity. The flux limiter used is based on the work of Kley [8]. Equation 9 is solved with the 

corresponding heating-cooling term in the internal energy of the fluid, given by Equation 10:  

The determination of F may let as define arad as: 

The above system of Equations is closed by the PVTE EOS that is calculated via curvilinear mapping of the 

thermal pressure table data p= p (ρ,T) and of the internal energy density table data ρe= ρe (ρ,T). These 

logarithmic curves are tabulated data of the SESAME EOS [6]. These data have a range of 10
-4

 to 10
4
 gr/cm

3
 

approximately for the density and for lower density values an extrapolation algorithm is used.  

Time-dependent optically thin radiative losses are taken into account by: 

where Λ(T,ρ) is the radiative cooling coefficient that is calculated by tabulated data from the FLYCHK code, 

with 𝑁𝑖 = 𝜌𝑚𝑖
−1 the ion density, mi the ion mass and for the determination of the electron plasma density it holds

that: 

where 𝑍𝑒𝑓𝑓  is the effective ionization charge state that is calculated through tabulated data from the FLYCHK

code. 

The Rosseland and Planck mean opacities are implemented for the dry air in the code from the tabular data of 

TOPS Opacities webpage [9,10]. The two opacities for the tungsten are calculated using an exponential fit as 

presented at Equation 14, with T in keV [11].  

All of the physical quantities are in CGS units. 

3 MHD MATERIAL MODELING 

The PLUTO MHD code is able to model the solution domain consisted of different materials by the help of 

user defined functions. In this study the existence of two materials in the solution domain is modeled by four 

approximations: i. approximation mat, where the solution domain consists of the tungsten material. ii. 

σ =
8.7 × 1013Te1.5

ZefflnΛ
(8) 

∂ 𝐸𝑟𝑎𝑑

∂t
+ 𝛁 ∙ 𝑭 = kP𝜌𝑐(𝑎𝑅𝑇4 − 𝐸𝑟𝑎𝑑) (9) 

𝜕𝜌𝑒

𝜕𝑡
= −𝑘𝑃𝜌𝑐(𝑎𝑅𝑇4 − 𝐸𝑟𝑎𝑑) (10) 

𝒂𝒓𝒂𝒅 =
𝑘𝑅

𝑐
𝑭 (11) 

𝜕(𝜌𝑒)

𝜕𝑡
= −𝛬(𝜌, 𝛵)𝛮𝑒𝑁𝑖 (12) 

𝑁𝑒 = 𝑍𝑒𝑓𝑓(𝜌, 𝑇)𝑁𝑖 (13) 

𝑘𝑃 = 646.4
𝜌0.199

𝛵1.225
 , 𝑘𝑅 = 244.12

𝜌0.005

𝛵1.119
(14) 
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approximation vac, where two individual material regions of tungsten and vacuum are considered. The materials 

surface interface is defined by the six orders lower value ρlim of density compared to the density of the solid 

tungsten. iii and iv. approximations lin and exp are implemented. A new density threshold ρvac=ρlim/2 in 

conjunction with ρlim is used to create three regions for the connection of the pure vacuum, Region I, with the 

dense tungsten, Region III and the Region II is their transition region. In approximation lin, the linear mixing 

function Q for the pressure, internal energy, temperature and radiative cooling coefficient is defined by:  

where logQ(w) and logQ(air) are the logarithmic data from the SESAME tables for tungsten and air respectively 

and fw is a weighted function. Likewise, for the forth approximation exp, an exponential function is used: 

The weighted function for the approximations iii. lin and iv. exp, is expressed as: 

The effective ionization charge state, is calculated by linear interpolation using the weighted function of 

Equation 17.  

4 COMPUTATIONAL RESULTS 

The physical Z-pinch experiment, studied in this work, has a load of a single cylindrical tungsten wire with a 

diameter of 5 μm. Based on the quarter symmetry of the model only the first quarter of the domain is modeled, 

and the 3D solution domain has the size of 5000 x 5000 x 80 μm. The numerical results are presented on the XY 

plane cross section of the model at the midpoint of the wire and are spatially focused on the region of interest 

having a size of 200 x 200 μm. Symmetric boundary conditions are used on the symmetry planes while outflow 

is set for the outer XZ and YZ boundary planes and periodic for the top and bottom XY planes of the domain [4]. 

The size of the solution domain was determined by sensitivity analysis. In relation to the solution time of the 

model these dimensions prevent the reflections of the shock waves on the XZ and YZ outer boundaries.  

The initial distributions of material density ρ, thermal pressure p, the magnitude of the magnetic field Bmag, 

temperature T (eV), the electron density Ne and radiation energy density Erad. The material density and thermal 

pressure have a Gaussian spatial distribution profile, in order to provide a smooth transition from the core of the 

wire to the rest of the domain. The amplitudes and widths of these Gaussian distributions are selected in 

accordance to the experimental observations and represent the physical conditions at the initial timesteps of the 

plasma generation. As may be observed in Figure 1, the maximum value of the material density approaches the 

value of 0.53 gr/cm
3
, being 40 times smaller than tungsten’s solid density and asymptotically approaches the 

value of ρvac. The maximum value of thermal pressure approaches the value of 1.7×10
6
 dyn/cm

2
 and

asymptotically approaches the pressure of the chamber of the experiment. The temperature distribution is related 

to the physical quantities of the EOS follows the distribution of pressure and density, while at the coronal plasma 

a thermal shock wave is observed and is in accordance to the experimental findings. The temperature at the core 

of the wire approaches the melting temperature of tungsten and asymptotically approximates the environmental 

temperature. The component of the magnetic field that is taken into account is the azimuthal one and is 

computed based on the assumption of existence of current density only on the Z direction and the skin effect is 

also included. The magnetic field increases proportionally to the radial distance to a maximum value. For a 

radius of 20 μm, where the core and coronal plasma meet, the magnetic field decreases and expands to the 

domain following the 1/radius law. The temporal evolution of the magnetic field follows the form of the current 

with a peak of 160 kA and a rise time (10%–90%) of 65 ns [12]. The radiation energy density is computed using 

the Stefan–Boltzmann law (black-body radiation). It may be observed that the radiation energy density follows 

the distribution of temperature. The electron density occurs from the contributions of the physical quantities of 

the EOS and the effective ionization charge state following a shifted Gaussian distribution having a maximum 

value where core and coronal plasma meet. In the sub-figure of electron density, the discretization of the finite 

volume scheme is presented, having a size of 700 x 700 x 8 cells for the solution domain with a unit length of 10 

μm for all axes.     

𝑄 = 𝑓𝑤10𝑙𝑜𝑔𝑄(𝑤) +(1-𝑓𝑤)10𝑙𝑜𝑔𝑄(𝑎𝑖𝑟) (15) 

𝑄 = 10𝑓𝑤𝑙𝑜𝑔𝑄(𝑤)+(1−𝑓𝑤)𝑙𝑜𝑔𝑄(𝑎𝑖𝑟) (16) 

𝑓𝑤 = {

 𝑹𝒆𝒈𝒊𝒐𝒏 𝑰𝑫
𝐼
𝐼𝐼
𝐼𝐼𝐼

 𝑹𝒂𝒏𝒈𝒆
𝜌 ≤ 𝜌𝑣𝑎𝑐

𝜌𝑣𝑎𝑐 ≤ 𝜌 ≤ 𝜌𝑙𝑖𝑚

 𝜌𝑙𝑖𝑚 ≤ 𝜌

𝒍𝒊𝒏 𝒐𝒓 𝒆𝒙𝒑
0

(𝜌 − 𝜌𝑣𝑎𝑐)/(𝜌𝑙𝑖𝑚 − 𝜌𝑣𝑎𝑐)
1

(17) 
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Figure 1. Initial distributions of: material density ρ, thermal pressure p, magnitude of magnetic field Bmag, 

temperature T (eV), electron density Ne and radiation energy density Erad over XY plane cross section  

Two different Riemann solvers [4,5] are tested, the Ηllc solver and the Τvdlf solver for the flux computation. 

The prevention of the diffusion of the magnetic field in the vacuum region is obtained by preserving the 

resistivity value at a high level. This is achieved by setting the vacuum temperature at a constant low value, e.g. 

50 meV for this study and for densities having values lower than the ρlim. Therefore, the approximations lin, exp, 

mat, vac solved by two solvers and constant const temp or varying var temp, vacuum temperature, result to 16 

different test cases. With regard to the expected results the cylindrical symmetry of the model should prescribe a 

correspondent evolution of the physical phenomena without any azimuthal variations. In Figures 2-4 three 

representative physical quantities of the electron density, the magnetic field and the temperature, respectively, 

are selected to demonstrate the performance of the 16 model cases for a problem temporal time of t=22 ns. Two 

test cases, the vac approximation with constant vacuum temperature and the mat approximation with varying 

vacuum temperature and for the Hllc solver had an early termination time at 17 and 21 ns respectively. 

In Figure 2, for the majority of the investigated test cases, the computed electron density is in very good 

agreement with the experimental results measured in [12] where the corona plasma expands to a radius of 65 μm 

for an electron density of about 3×10
18

 cm
-3

 in 22 ns from the current start. In more particular, the majority of the 

investigated test cases present slight deviations from the ideal cylindrical symmetry, while large deviations are 

presented for the exp and mat approximations using the Hllc solver and for varying vacuum temperature. For all 

the approximations with constant temperature a shock wave appears in the corona regime. 

In Figure 3, for all the test cases, the diffusion of the magnetic field is apparent since the maximum value of 

the magnetic field is located in a radius of 80±20 μm, in relation to the initial radius. The form of the diffusion of 

the magnetic field is not realistic for the approximations lin and vac using the two solvers and for varying 

temperature. The exp approximation using the Hllc solver and for varying vacuum temperature presents 

azimuthal variations in the magnetic field.  

In Figure 4, the test cases with constant vacuum temperature provide a more realistic approximation of the 

temperature distribution. A temperature range of 1-20 eV is apparent in the corona regime, while the core 

temperature increases to about 0.9 eV.  
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Figure 2. Electron density for the 16 different test cases 
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Figure 3. Magnitude of magnetic field for the 16 different test cases 
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Figure 4. Temperature distribution for the 16 test cases 

In Figure 5 is presented the influence of the radiation transport model on the plasma evolution for a 

representative test case. Results of electron density, thermal pressure, plasma temperature, material density and 

radiation energy density are depicted for the lin approximation using the Tvdlf solver and for constant 

temperature of the vacuum. It is observed that the radiation transport terms remove energy from the plasma and 

provide better expansion and cooling results. The model with no radiation presents: i. deviations from the 

cylindrical symmetry for both electron and material density, ii. the expansion of the thermal pressure is very 

large and iii. the plasma temperature of ~200 eV is not physical in the corona regime. The core and corona 

expansion for the model with radiation is located in a radius of 30 μm and 75 μm respectively. Furthermore, 

regarding the energy radiation density, the maximum value appears near the outer limit of the corona region.  
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Figure 5. Influence of the radiation transport model. The results including the radiation transport are depicted 

on the top row. 

5 CONCLUSIONS 

The inclusion of the radiation transport is very crucial so that the computed quantities of electron density, 

pressure and temperature are consistent with literature values. The majority of the investigated test cases 

simulate the plasma expansion with small variations from the experimental reference measurements. Regarding 

the necessary preservation of the expected cylindrical shape of the computed physical quantities, qualitative 

results are obtained using the approximations with constant vacuum temperature. Tvdlf solver provides smoother 

but more diffusive results. For further extension of the present study the effects of thermal conductivity and 

viscosity will also be taken into account in order to approximate with more accuracy the real physical problem. 
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Abstract. Laser-assisted machining- LAM is a method capable of increasing the machinability of hard-to-cut

materials, by decreasing the values of the cutting forces and extending the tool life. During LAM, the workpiece 

is heated directly by a laser beam ahead of the cutting tool, that leads to the yield strength and hardness reduction 

of the workpiece material. LAM method combines all the classic cut parameters, such as cutting speed, feed rate, 

depth of cut with the laser parameters, like the laser power, the spot radius and the beam profile. The current 

research focuses on the finite element simulation of the machinability of AISI H-13 steel parts, with conventional 

and laser-assisted machining. Thermal-structural numerical modeling and simulations of the conventional 

orthogonal cutting of AISI H-13 steel and laser-assisted orthogonal cutting are performed. Parametric simulations 

are carried out for constant laser beam diameter and laser heat flux. These two machining methods are compared 

according to the obtained numerical results for the cutting forces, temperature distributions, plastic strains and 

Von Mises stresses and valuable conclusions are drawn for the contribution of the aforementioned parameters to 

the models’ dynamic behavior.  

1 INTRODUCTION 
One of the most common industrial manufacturing process is metal cutting. It is a complex contact process 

where parameters such as: the geometry of the cutting tool (angles and tip radius), the material properties for the 
workpiece and the tool, the friction conditions, the cutting velocity, the feed rate and the depth of cut determine 
the conventional machining process [1]. Nowadays for hard-to-cut materials Laser-assisted machining-LAM is an 
advanced promising hybrid method capable of increasing the machinability of the material by decreasing the values 
of the cutting forces. 

LAM uses the laser beam as a heat source to ensure sufficient local heating of the workpiece at a certain 
distance from the cutting tool, while the conventional cutting occurs. The principle of the process is the reduction 
of the cutting forces during material machining via increasing the temperature to the point where the strength of 
the material is reduced. The reduction of the material yield strength through the localized heating, without melting 
or sublimation, leads to: reduced cutting forces and tool wear, improved surface finish and higher material removal 
rate [2-4]. Thanks to the rapid development of laser technology, LAM has emerged as a major viable industrial 
choice for cutting. 

A major feature of the LAM process is the number of parameters that must be controlled during the cutting 
operation. In addition to the aforementioned conventional cutting parameters there are the laser parameters such 
as the laser power, the wavelength and the diameter of the laser spot and also interaction parameters such as the 
position of the laser beam relative to the tool and the incidence angle of the laser beam in relation to the workpiece 
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[2-4]. One can understand that the correct selection of all the cutting parameters, synthesizes a multi-parametric 
system that requires the use of computational methods and simulations to facilitate the application of both LAM 
and conventional experimental machining processes. 

The application of numerical simulations, able to guide the experimental machining processes, can improve 
significantly the machinability and the final quality of the workpiece. Explicit numerical FEM, finite element 
method, is commonly applied to metal machining. It is based on the Lagrangian approach, where the FE mesh is 
attached to the workpiece and both deform. Moreover, the Lagrangian formulation has the advantage to model the 
evolution of the chip from the incipient stage to a steady form [5]. The chip formation occurs through the plastic 
deformation of the elements based on erosion criteria and the chip shape is developed as a function of the physical 
deformation process, machining parameters and material properties. 

The current research focuses on the finite element simulation of the machinability of AISI H-13 steel parts, 
with conventional and laser-assisted machining. Thermal-structural numerical simulations of the conventional and 
laser-assisted orthogonal cutting of AISI H-13 steel are performed, while the conventional cutting simulations 
were recently validated with experimental literature results [1]. The cutting tool is modeled as a rigid FEM body 
that incrementally penetrates the flexible deformable workpiece. The laser beam is modeled as a Gaussian moving 
heat source. The dynamic elastoplastic behavior of the workpiece material is investigated by taking into account 
the Johnson-Cook constitutive strength material model. Parametric simulations are carried out for constant laser 
beam diameter and laser heat flux. These two machining methods are compared according to the obtained 
numerical results for the cutting forces, temperature distributions, plastic strains and Von Mises stresses. The 
influence of the laser assistance is discussed, and valuable conclusions are drawn for the contribution and 
effectiveness of the aforementioned parameters to the models’ dynamic behavior. 

2 FINITE ELEMENT MODELING 

LS-DYNA FEM software [6] is used to model the conventional and LAM turning process of AISI H13 steel 
and investigate the effects of different laser parameters on the machining forces, temperature distributions, plastic 
strains and Von Mises stresses. 3D transient thermal-structural simulations are performed. Moreover, the 
workpiece is defined as a deformable body and the tool is modeled as a rigid body, while the laser beam is modeled 
as a Gaussian moving heat source. 

2.1 Governing equations 
The 3D transient heat conduction equation for the thermal problem is given by: 

𝜌𝑐𝑝(
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𝜕𝑧
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where ρ, cp, Vx, k, and �̇� are the density, specific heat, laser scanning speed along the x-direction, thermal 
conductivity, and the rate of volumetric heat generation respectively.   

The mechanical equation of momentum is given by: 

𝜌
𝜕𝑣𝑖

𝜕𝑡
= ∇𝜎𝑖𝑗 + 𝜌𝑏𝑖  (2) 

where vi is the material velocity, σι,j  is the stress tensor and bi is the body force. 

2.2 Modeling of laser heat source 
The Gaussian distribution of the q(r) absorbed laser heat flux or laser power intensity is given by [7]: 

𝑞(𝑥, 𝑧) =
2𝑃𝑡𝑜𝑡

𝜋𝑟𝑏
2 𝑒

−(
2((𝑥−𝑡𝑉𝑥)2+𝑧2)

𝑟𝑏
2 )

(3) 

where Ptot is the total absorbed power and rb is the laser beam radius. It also holds that: 

𝑃𝑡𝑜𝑡 = 𝜂𝑃𝑖𝑛𝑐  (4)

where Pinc is the incident laser power, η is the average absorptivity of the workpiece material and t is the time. 

The laser heat flux is applied to the top surface of the workpiece. The boundary condition on the top laser 
irradiated surface takes into account the heat flux, convection and radiation and it holds: 
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−𝑘
𝜕𝑇

𝜕𝑦
= 𝑞(𝑥, 𝑧) − ℎ(𝑇 − 𝑇0) − 𝜎𝜀(𝛵4 − 𝛵0

4)   (5)

where h is the convective heat transfer coefficient, T0 is the ambient temperature, σ is the Stefan–Boltzmann 
constant (5.67 108W/m2K4) and ε is emmisivity. Heat flux is considered to be normal to the laser irradiated surface, 
while the motion of the laser beam is considered along the X-direction. 

2.3 Modeling of orthogonal cutting 
The cutting insert has a rake angle of −5°, a clearance angle of 5° and a fillet of 0.02 mm radius, while the 

workpiece dimensions are 3.0 x 0.5 x 0.5 mm. The cutting rigid tool is modeled with approximately 35,000 
hexahedron solid elements and the workpiece with approximately 115,000 solid elements. The tool is placed to a 
vertical distance, denoted as f-feed from the top surface of the workpiece, according to the depth-of-cut that is 
defined at each simulation. The mesh of the cutting tool and workpiece are shown in Figure 1. 

Figure 1. Mesh of the orthogonal cutting 

For the determination of the optimal mesh size, given the provided dimensions of the solution domain, a mesh 
sensitivity analysis is carried out. In addition, for the elimination of the possibility of mesh distortions and 
hourglass nonphysical, zero-energy modes of deformation, an effective algorithm is used for the FE models. This 
is achieved by the Hourglass control, where viscosity is added to hexahedral solid elements that use reduced 
integration. Moreover, the FEM approximation obeys to a failure criterion, developed for use with Lagrangian 
solid hexahedral elements, that allows element erosion (element deletion) and therefore for the workpiece-tool 
interaction an eroding node to surface contact algorithm is used, that allows the contact surface to be updated as 
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exterior elements are deleted [6]. 
Regarding the initial and boundary conditions, the motion of the tool is imposed along the X-direction. All 

translations and rotations of the bottom and the left side of the workpiece are fully constrained and Z translations 
at its front and back side are also constrained. The ambient temperature is assumed to be 20 0C. 

2.4 Material models 
The adoption of a suitable material-constitutive model for the workpiece is critical for the accuracy of metal 

cutting simulations. Τhe material model selected in our study is the Johnson-Cook (J-C), a purely empirical one 
that takes into account the effect of plastic strain, strain rate and temperature. The flow stress is expressed as: 

𝜎𝑦 = (𝐴 + 𝐵𝜀𝑛)(1 + 𝐶𝑙𝑛
�̇�

�̇�0
)(1 −

𝛵−𝛵𝑟

𝛵𝑚−𝛵𝑟
)𝑚 (6) 

where ε is the equivalent plastic strain, 𝜀̇/𝜀0̇ is the dimensionless plastic strain rate, 𝜀0̇=1s-1 is a reference strain 
rate used to normalize the strain rate, A is the yield stress, B is the hardening constant, C is the strain rate sensitivity, 
n is the hardening exponent, m is the thermal softening exponent, Tm is the melting temperature of the workpiece 
and Tr the room temperature. The material constants A, B, C, n, m are determined from experimental results [8]. 

The J-C material model includes also a fracture model that takes into account the nucleation, growth and 
coalescence of voids in a ductile material at high strain rates. It defines the equivalent plastic strain at the onset of 
damage as: 

𝜀𝑓 = ([𝐷1 + 𝐷2𝑒𝑥𝑝𝐷3
𝑝

𝜎𝑉𝑀
] [1 + 𝐷4𝑙𝑛

�̇�

𝜀0̇
] [1 + 𝐷5

𝑇−𝑇𝑟

𝑇𝑚−𝑇𝑟
]) (7) 

where D1, D2, D3, D4 and D5 are the failure parameters and σVM the Von Mises stress [8]. The material fracture 
occurs when the damage parameter D reaches the value of 1: 

𝐷 = ∑
𝛥𝜀

𝜀𝑓
    (8) 

3 RESULTS 

The physical properties of the AISI H-13 steel workpiece and the polycrystalline cubic boron nitride (PCBN) 
tool, chosen for our test cases, are listed in Table 1 for room temperature. The J-C material model and failure 
parameters of the workpiece are listed in Table 2. Moreover, temperature-dependent of thermal conductivity, 
specific heat and thermal expansion are taken into account for the workpiece [9]. 

Property Workpiece Tool 
Density [kg/m3] 7800 3399 
Elastic modulus [GPa] 211 652 
Poisson’s ratio [-] 0.28 0.128 
Specific heat [J/kg K] 560 960 
Thermal conductivity [W/m K] 37 100 
Thermal expansion [10-6C] 10.4 - 
Melting Point [K] 1700 - 

Table 1: Mechanical and physical properties of AISI H-13 and PCBN [1] in room temperature 

Material model 
Parameters 

A [MPa] B [MPa] n [-] C [-] m [-] 

Values 674.8 239.2 0.28 0.027 1.3 
Failure 

Parameters 
D1 [-] D2 [-] D3 [-] D4 [-] D5 [-] 

Values -0.8 2.1 -0.5 0.0002 2.7 

Table 2: Johnson-Cook material model and failure parameters of AISI H-13 [1] 

Furthermore, a mean value of absorptivity η=0.5 and a mean value of emmisivity ε=0.4 are considered based 
on the work of Singh et al [7]. For the convectional heat transfer to the surrounding air, a heat transfer coefficient 
of h=5 W/m2K is also considered [7]. The same laser scanning speed and cutting speed of 150 m/min and a feed 
rate of 0.15 mm/rev are considered for the simulations of the developed models, while the tool is placed 1 mm 
away from the laser spot. Moreover, the Coulomb static and dynamic friction coefficients for the tool-workpiece 
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interaction are set to 0.3 [1]. Models with the same cutting speed and feed rate values were previously validated 
with experimental literature data [1].  

3.1 Effects of constant laser heat flux 

For a large number of materials a significant reduction in the tensile strength or hardness occurs between 500 
and 600 oC. The cutting tool must operate in the zone where the temperature remains higher than this value [10]. 
Furthermore, the distance between the tool and the laser spot must be sufficient to prevent degradation of the tool 
due to the high temperature, therefore as aforementioned this distance is selected to be 1 mm in this study.  

In order to investigate the influence of the constant laser heat flux via varying the laser power and beam radius 
such that the ratio of Ptot/rb

2 remains stable, a parametric analysis is carried out. In Table 3 are presented the laser 
different parameters and the maximum computed temperature, which is always higher than 600 oC in order to 
achieve a significant reduction of the material tensile strength.  

Heat flux (kW/mm2) Laser power (W) Laser beam diameter (μm) Maximum Temperature 
(oC) 

2 62.8 200 630 
2 98.2 250 750 
2 141.4 300 850 

Table 3: Laser parameters and maximum computed temperature 

In Figure 2 are presented the results of the parametric analysis for constant laser heat flux. The results of cutting 
and thrust forces for the LAM models are compared to the conventional corresponding ones. 

Figure 2. Effect of the constant laser flux on the forces results and comparison with conventional cutting 

Regarding the forces for the LAM model with beam diameter 300 μm, a maximum reduction of about 6.2% 
for the cutting force and 14.3% for the thrust force is observed in relation to conventional machining forces. 

3.2 Effects of constant laser beam diameter 

In order to investigate the influence of the constant laser beam diameter d via varying the laser power and 
hence the laser heat flux, a parametric analysis is carried out. In Table 4 are presented the laser different parameters 
and the maximum computed temperature, which is always higher than 600 oC in order to achieve a significant 
reduction of the material tensile strength.  
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Heat flux (kW/mm2) Laser power (W) Laser beam diameter (μm) Maximum Temperature 
(oC) 

2 98.2 250 750 
2.22 109.0 250 830 
2.44 119.8 250 900 

Table 4: Laser parameters and maximum computed temperature 

In Figure 3 are presented the results of the parametric analysis for constant laser beam diameter. The results of 
cutting and thrust forces for the LAM models are compared to the conventional corresponding ones. 

Figure 3. Effect of the constant laser beam radius on the forces results and comparison with conventional 
cutting 

Regarding the forces for the LAM model with laser power 119.8 W, a maximum reduction of about 7.7% for 
the cutting force and 14% for the thrust force is observed in relation to conventional machining forces.  

3.3 Temperature, Von Mises and plastic strain distribution 

In Figure 4 are presented representative simulation results for the conventional cutting model and for the two 
LAM models where the lower cutting forces are computed, for 0.4 ms after the cutting tool initiation. In Figure 
4(A)-(C) are presented the temperature, Von Mises stress and plastic strain distribution for the model of 
Conventional cutting, respectively. In Figure 4(D)-(F) are presented the temperature, Von Mises stress and plastic 
strain distribution for the LAM model with laser beam diameter 250 μm and laser power 119.8 W, respectively 
and in Figure 4(G)-(I) the temperature, Von Mises stress and plastic strain distribution for the LAM model with 
laser heat flux 2 kW/mm2 and laser beam diameter 300 μm, respectively. 
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Figure 4. Temperature, Von Mises stress and plastic strain distribution for model i) of Conventional cutting 
from (A)-(C) ii) of LAM for laser beam diameter 250 μm and laser power 119.8 W from (D)-(F), iii) of LAM for 

laser heat flux 2 kW/mm2 and laser beam diameter 300 μm from (G)-(I) 

For the LAM model with laser heat flux 2 kW/mm2 and laser beam diameter 300 μm the maximum developed 
Von Mises stresses and the plastic strains are about 6% lower than the corresponding ones due to conventional 
cutting. For the LAM model with laser beam diameter 250 μm and laser power 119.8 W, compared to conventional 
cutting, this reduction is approximately 5%. 

4 CONCLUSIONS 

In this preliminary study for the simulation of Laser Assisted Machining – LAM, a validated FEM model for 
the conventional cutting of the AISI H13 steel is updated to include the assistance of a laser to the cutting process. 
A parametric analysis is carried out regarding the effects of constant laser heat flux and constant laser beam 
diameter on the cutting and thrust forces, stresses and strains and valuable conclusions are drawn. For future 
development these LAM simulation results will be compared to experimental measurements regarding forces, 
temperature and stress distributions, while difficult-to-cut materials such as Ti6AL4V will be tested. The reduction 
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of the yield strength of the material through the localized heating by the laser beam, leads to reduced cutting forces 
and higher material removal rates while tool life is increased. 
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Abstract. The insertion loss of a sound barrier was calculated via Finite Element Method (FEM) and compared

with Ray Tracing techniques. FEM was used to model the Helmholtz equation with a sound source and 

diffraction effects of a sound barrier in the frequency domain. For mesh creation the rule of thumb λ/h=5 was 

applied where λ and h respectively denote wavelength of upper limit frequency and the maximum nodal distance. 

The open pressure acoustic domain was modeled with the use of a Perfectly Matched Layer.  Two models were 

created: for the first one the sound pressure at the receiver point was calculated with the presence of a sound 

barrier and for the second one without a sound barrier for the same source position. Results compared with 

Kurze-Anderson and Tatge equations indicate that there is a difference less than 1 dB and less than 0.3 dB 

respectively for all frequencies calculated. Implications of the findings suggest that FEM can be used effectively 

for the modeling of insertion loss of sound barriers.

1 INTRODUCTION 

Sound barriers are an important aspect of fighting noise pollution caused by major infrastructure projects such 
as roads and railways. Accurate modeling of the acoustic behavior of barriers can lead to effective designs which 
in turn can improve the living conditions of populations in areas with excessive sound levels. The main 
phenomenon characterizing the acoustic performance of a sound barrier is diffraction, while absorption and 
transmission are also important. The performance of a sound barrier is measured by insertion loss which is 
defined as the difference in sound level at a receiver location with and without the presence of a noise barrier, 
assuming no change in the sound level of the source.  

Ray tracing techniques have been used to establish the acoustic performance of a barrier and still remain the 
basis of most of the practical methods for calculating barrier performance. Originally, the theory of diffraction 
was developed for optics, and was later applied in the field of acoustics. Simple analytic expressions were 
proposed for the calculation of insertion loss due to diffraction of sound rays around a barrier emanating from a 
point source in the case of a semi-infinite plane screen in a free field [1-4]. This analysis takes into account 
oblique sound incidence at the barrier and also includes the transition region from the bright zone to the shadow 
zone behind the barrier. A review of commonly used analytical and empirical formulae for predicting sound 
diffracted by a thin screen can be found in Li [5]. In the case of a finite length sound barrier, an analytical 
solution for the insertion loss was proposed by Lam [6]. 

Numerical methods have been applied in many fields of acoustics. Most numerical studies modeling the 
acoustic behavior of sound barriers have focused on Boundary Element Method (BEM) [7, 8] while also Finite 
Difference Method have been applied [9]. FEM is a powerful numerical technique that can be utilized for the 
modeling of wave phenomena and can simultaneously incorporate effects of diffraction, absorption and 
transmission both in frequency and time domain. In the literature there are not many studies on the utilization of 
FEM [10, 11] for the modeling of sound barriers.  Scope of this study is the calculation of insertion loss of sound 
barriers via FEM and comparison of the results with Ray Tracing techniques. 
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In this study FEM was used to model the Helmholtz equation with a sound source and the effects of 
diffraction of a sound barrier in the frequency domain. Appropriate mesh creation was applied and the open 
pressure acoustic domain was modeled with the use of a Perfectly Matched Layer.  Insertion loss was calculated 
and compared for the same source and receiver positions for FEM and Ray Tracing techniques. Results indicate 
that there is a good agreement between FEM and Ray Tracing techniques. 
     To the best of our knowledge there is no similar research in the literature regarding the calculation of insertion 
loss of a sound barrier via FEM. Implications of the findings suggest that FEM can be used effectively for the 
modeling of insertion loss of sound barriers. Application of the method can be extended in 3d space to predict the 
behavior of sound barriers with various shapes and also with a profile which absorbs or disperses sound. 
Optimization and active noise control can also be utilized with the use of FEM. 
     Section 2 introduces the setup of the FEM calculations while the section 3 presents the calculations via Ray 
Tracing methods. Results and discussion section follows. Finally, in Section 6, concluding remarks are presented. 

2 FINITE ELEMENT METHOD SETUP 

In this study the FEM was used to model the Helmholtz equation with a sound source and the effects of 
diffraction of a sound barrier in the frequency domain. Two models were created: for the first one the sound 
pressure at the receiver point was calculated with the presence of a sound barrier and for the second one without 
a sound barrier for the same source position. Insertion loss was calculated as the difference in sound level at 
receiver location with and without the presence of a noise barrier. The point source and receiver positions in 
relation to the sound barrier are presented in Fig.1. 

3m 3m

4m
5m

Point Source Receiver Position

5m

Figure 1. Source and Receiver positions 

For mesh creation the rule of thumb λ/h=5 was applied where λ and h respectively denote wavelength of 
upper limit frequency and the maximum nodal distance. Five elements per wavelength are typical [12] for 
acoustic modeling in the frequency domain, while different considerations apply for modeling in the time domain 
[13]. The mesh created is presented in Fig.2. 

Figure 2. Mesh for FEM model with sound barrier 
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The open pressure acoustic domain was modeled with the use of a Perfectly Matched Layer (PML).  The 
PML is an approximation methodology originally developed by Jean- Pierre Berenger [14] for use with Finite 
Difference method for electromagnetic modeling calculations. It was later developed for acoustic waves [15] and 
applied in the field of acoustics. The key property of a PML that distinguishes it from an ordinary absorbing 
material is that it is designed so that waves incident upon the PML from a non-PML medium do not reflect at the 
interface. The FEM model with the PML is presented in Fig.3. 

Figure 3. FEM model with sound barrier and Perfectly Matched Layer (Blue color) 

3 RAY TRACING TECHNIQUES 

By origin, the theory of diffraction was developed in the field of optics. It was later applied in acoustics and 
for sound barriers. By applying Kirchhoff's diffraction theory [16], which embodies the basic idea of the 
Huygens-Fresnel principle, to the semi-infinite screen, the sound attenuation by the screen after some 
approximations can be calculated. It is desirable, for most cases of practical noise control, that the diffraction 
problems are treated by a simplified and approximate method. Simple analytic expressions are proposed for the 
calculation of the excess attenuation due to diffraction around a barrier of sound rays emanating from a point 
source. 

If we assume that the sound is emitted by a point source and the barrier can be considered to be thin and 
infinitely long, then the insertion loss can be calculated by the following equation proposed by Kurze-Anderson 
[2]: 

 
dB

N

N
IL 5

2tanh
2log20 




(1) 

N is the Freshnel number which is given by 2(D-R)/λ. R is the length of the travel path for the diffracted 
acoustic ray, D is the length of the travel path for the incident ray when there is no obstacle, and λ is the 
wavelength in meters. 

A similar equation is provided by Tatge [3] for N > -0.1: 

 NIL 203log10    (2) 
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4 RESULTS - DISCUSSION 

The insertion loss between the results obtained with the FEM and Ray Tracing techniques was assessed. 
Acoustic pressures and sound pressures were calculated from 20Hz to 60Hz. In Fig.4 and Fig.5 the acoustic 
pressure is presented for the frequencies of 20Hz and 60Hz respectively with and without the presence of a sound 
barrier. The effect of diffraction is evident. Fig.6 presents the sound pressures with a sound barrier for the 
frequencies of 20Hz and 60Hz. 

Figure 4. Acoustic pressure without (left) and with (right) a sound barrier (20 Hz) 

Figure 5. Acoustic pressure without (left) and with (right) a sound barrier (60 Hz) 

Figure 6. Sound pressure with a sound barrier for 20 Hz (left) and for 60 Hz (right) 

Insertion loss for the FEM method was calculated as the difference in sound pressure level at a receiver 
location with and without the presence of a noise barrier. Results compared with Kurze-Anderson and Tatge 
equations indicate that there is a difference less than 1 dB and less than 0.3 dB respectively for all frequencies 
calculated as can be seen in Fig.7. 

The results are encouraging and support the idea of the applicability of FEM for the calculation of insertion 
loss of sound barriers. The results of the Ray Tracing methods are consistent with experimental results [1] which 
indicate that FEM results could also be consistent with experimental results.  

Given that our findings are based on a single source and receiver position, the results from our analyses 
should be treated with caution. Future research will concentrate in the acoustic behavior of sound barriers in 
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multiple positions inside and outside of the shadow zone of a sound barrier. 

Figure 7. Comparison of Insertion Loss between FEM and Ray Tracing techniques 

Another important finding was the importance of correct implementation of PML. Fig. 8 presents an incorrect 
implementation of the PML that was applied in the beginning of the study. The sound barrier does not extend 
inside the PML as in the correct implementation presented in Fig.3. Fig.9 depicts the acoustic pressure for the 
frequency of 60 Hz. It can be seen that diffraction occurs inside the PML in the lower edge of the sound barrier. 
A direct comparison between Fig.9 and Fig.5 (right) depicts the difference in the acoustic pressure because of the 
implementation of PML. Fig.10 presents the difference in the calculation of insertion loss with and without the 
correct implementation of PML. The deviation of insertion loss is due to wave interference from acoustic waves 
from the lower edge of the sound barrier. 

Figure 8. Incorrect implementation of PML Figure 9. Effects of incorrect implementation of 
PML on acoustic pressure (60 Hz) 

Figure 1. Comparison of Insertion Loss with and without correct implementation of PML 
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As mentioned in the literature review Ray Tracing techniques are the established methods that are applied in 
practical applications for predicting the acoustic behavior of sound barriers. However, there are certain 
drawbacks associated with the use of these techniques. The wave nature of sound is neglected and therefore wave 
phenomena such as standing waves and wave interference cannot be calculated directly. The basic advantage of a 
wave based methods such as FEM are that all wave phenomena are included in the theoretical background and 
thus can be predicted with correct implementation of the method.   

We believe that the application of FEM in the field of sound barriers will assist researchers to design and 
implement new and better designs. The advantages of FEM far outweigh the disadvantages which are mainly 
computational cost and the long duration for calculation of the results. With the rapid progress of computer 
technology FEM will become even more applicable for conducting acoustical investigations and carrying out 
design processes even in the 3d domain. FEM is the computational basis of many computer-assisted design and 
modeling programs, hence the integration of sound barrier design and modeling can be easily implemented, 
reduce application cost and spread the usage. 

5 CONCLUSION 

The accuracy and applicability of FEM have been investigated for the calculation of insertion loss of sound 
barriers. Results obtained with FEM and Ray Tracing techniques were assessed and the findings support the idea 
that FEM can be used effectively for accurate modeling of insertion loss. Insights for the correct implementations 
of PML for sound barriers were also presented.  

In our view this study constitutes an excellent step toward further utilization of FEM for the accurate 
modeling of sound barriers. We have obtained accurate results demonstrating that FEM is a viable alternative to 
the established methods that are applied in practical applications for predicting the acoustic behavior of sound 
barriers without certain drawbacks. In the light of our findings, we believe that our analysis may assist 
researchers to design and implement new and better designs.  

Since the present study has only investigated the application of FEM for the calculation of insertion loss of 
sound barriers in 2d domain we believe our work could be a starting point for further research in a variety of 
areas. In terms of directions for future work, FEM could be applied for the prediction of the behavior of sound 
barriers with various shapes and with a profile which absorbs or disperses sound. A fruitful area for further work 
could be the implementation of optimization and active noise control which can also be modeled with the use of 
FEM. Finally there is abundant room for further progress in the applicability of FEM for determining the acoustic 
behavior of sound barriers in 3d space which could lead to effective designs and also custom made designs for 
specific cases.  
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Abstract: This preliminary study addresses the mechanical behavior of unburied steel pipelines crossing active 

tectonic normal-slip faults. The investigation aims to determine the stresses developed on the steel pipes at fault 

crossings based on parametric numerical simulation of the nonlinear response of a 3D simplified model. The 

study is based on finite element analysis that takes into account large strains and displacements and inelastic 

material behavior. Steel pipes with diameter to thickness ratio and material grade typical for oil and gas 

pipelines are considered. The analysis is conducted through an incremental application of fault displacement 

and determines strains developed on the tension and compression sides in the pipe. Appropriate performance 

criteria of the steel pipeline are defined and monitored throughout the analysis. The results from the present 
study can be used for the development of performance-based design methodologies for unburied steel pipelines.  

1. INTRODUCTION

There is a steadily growing dependence of the global energy demand on natural gas which is reflected in

numbers: one quarter of the total energy demand in the US and Europe is currently satisfied by natural gas 

delivery [1] while it is projected that by 2040 nearly one quarter of the global electricity will be generated by 

natural gas [2]. The increasing demand for energy in European countries will require the safe transfer of 

hydrocarbons from East Mediterranean in the following decades. 

Due to the need to transport hydrocarbons from offshore oil & gas fields to onshore treating and export 

facilities and country markets, offshore pipelines are crossing wide areas with geomorphological and geological 

conditions that may present a variety of geohazards such as active seismic faults, earthquake-induced 

liquefaction or slope instability regions.  Geohazards impose substantial ground deformations to the pipelines 

and potentially threaten their integrity. Permanent ground-induced actions due to earthquakes are applied on the 
pipeline in a quasi-static manner, and are not necessarily associated with severe seismic shaking, but may cause 

serious plastic deformation to the pipeline, leading to pipe wall fracture and loss of containment [3]. Potential 

damages and disruptions of a subsea pipeline caused by geohazards may affect the service life and lead to 

significant financial losses due to service interruptions, explosions and environmental contamination. In the past, 

extensive damages to pipelines due to surface faulting have been observed during earthquakes, which revealed 

the fact that the strain demand on pipes crossing active faults can be quite extreme [4].  

In Eastern Mediterranean, which is an area characterized by intense seismicity, the risk is high and may lead 

to pipeline damages or failures, unless appropriate pipeline route is selected based on seismic design. After a 

literature review, it is concluded that the experience in seismic design of offshore pipelines is rather limited due 

to the fact that most pipelines are crossing non-seismic or low seismicity regions (e.g. North Sea, West Australia, 

Gulf of Mexico etc.) and have been constructed without taking into account the seismic hazards. Moreover, there 
is a lack of sufficient standards and norms worldwide for offshore pipelines crossing active seismic faults. In 

particular, ISO (2004) and API (2009) do not include specific guidelines for seismic design of offshore pipelines. 
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In the offshore standard DNV (2012), it is mentioned that additional geohazard studies are required where there 

is an area with significant historic seismic events or increased geological activity. On the other hand, there are 

simplistic provisions in the seismic design standards or norms regarding onshore pipelines. 

In East Mediterranean there are large areas with active submarine seismicity, faults and tectonic movements 

that cause large permanent ground displacements. These mechanisms load the pipelines with additional stresses 

that may cause rapture or buckling resulting in loss of structural integrity. More specifically, the damage 

mechanisms that may hit the pipeline system include: crossing of the subduction zone and surface faulting, slope 

instability and settlements, and lateral movements due to soil liquefaction. Surface faulting is an important 

consideration for pipelines and a major hazard in East Mediterranean, which is characterized by an active 

subduction zone constituting the boundary between the African and Eurasian tectonic plates.  

The evaluation of pipeline response to faulting requires numerical analyses that account for non-linear soil 
and pipeline behaviour. In this study, 3D nonlinear numerical analysis of a soil-pipe system is carried out using 

the finite element method.  The response of the nonlinear soil-pipe interaction to incrementally applied fault 

displacements is calculated and the structural behavior of continuous unburied steel pipeline crossing normal-slip 

fault is examined. 

2. STEEL PIPELINES AT FAULT CROSSINGS

Fault crossing is one of the major hazards to offshore pipelines, whether buried or unburied. Numerous

investigations have been carried out for different types of ground movements. The pipeline's ability to deform in 

the plastic range under tension helps prevent rupture at fault crossings. If compression of the pipeline in a fault 

crossing is unavoidable, the compressive strain should be limited to within the local buckling criteria [5]. The 

type of faulting and the estimate of soil displacements are the main factors for designing pipelines to resist 

permanent ground deformation at fault crossings. 
Fig.1 shows schematically the different types of surface faulting. The strike-slip fault is associated with 

horizontal movement of the blocks, whereas normal and reverse faulting is associated with downward and 

upward block movements. 

Fig. 1. Classification of surface fault movement [5] 

The fault displacement can be estimated using empirical formulas, such as those proposed by Wells and 

Coppersmith [6]. The median estimate of maximum co-seismic total displacement at the seabed, D (in meters) is 
given by the expression: 

 𝐷 = 10𝑎+𝑏𝑀   (1) 

where M is the earthquake moment magnitude and a and b are fitting coefficients that depend on the fault type. 

Indicative values of fault-induced ground displacement for two earthquake magnitudes (6.0 and 7.0) are given by 

Kershenbaum et al. [7]. The fault movements are given as input into the FEA model as a static displacement, as 

these deformations are considered to be quasi-static, which means that any inertial effects due to rupture 

propagation in the bedrock may be ignored. 
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Ground fault type 
Coefficients: Ground displacement D (m) for : 

a b M=6 M=7 

Strike-slip -6.32 0.90 0.120 0.955 

Normal slip -4.45 0.63 0.214 0.912 

Longitudinal component 0.152 0.647 

Vertical component 0.152 0.647 

Reverse-slip -0.74 0.08 0.550 0.661 

Longitudinal component 0.390 0.469 

Vertical component 0.390 0.469 

Table 1. Indicative values of fault displacement D for major earthquakes [7] 

Two seminal analytical methods were proposed under certain assumptions for the fault crossing analysis of 

pipelines by Newmark and Hall [8] and Kennedy et al. [9]. Kennedy et al. extended the ideas of Newmark and 

Hall and incorporated improvements in the method for evaluating the maximum axial strain, considering the 

effects of lateral interaction and the influence of large axial strains on the pipe's bending stiffness. Liu and 

O'Rourke [10] reported that the Kennedy et al. model for strike slip faulting, which results in axial tension, 

provides the best match to finite element results, based on an independent comparison of the available analytical 

approaches. 

The axial strains induced to the pipeline at active fault crossing may become fairly large and lead to rupture 

due to tension or buckling. The nonlinear behaviour of the pipeline steel, the soil-pipe interaction and the second 

order effects induced by large deformations, make the analyses complicated and demanding. A finite element 

analysis (FEA) is the most general and versatile tool that allows for a rigorous solution and accurate 

determination of pipeline stresses and strains at various locations along the pipeline route with a wide range of 
parameters [5].  

3. NUMERICAL MODELING

The structural response of a steel pipeline under normal faulting for earthquake moment magnitude M= 6 and

M=7 (Table 1) is examined numerically using the general-purpose finite element program ABAQUS [11]. The 

nonlinear material behaviour of the steel pipeline and soil, the interaction between them, as well as the distortion 

of the pipeline are modelled in a rigorous manner and the pipeline performance criteria are evaluated with a 

high-level of accuracy. 

The model that is considered herein is a typical offshore high pressure pipeline with an external diameter (d) 

of 0.61 m (24 in). Analyses are performed for two different wall thicknesses values, 0.025m (d/t=24) and 0.015m 

(d/t=41). The total length of the modelled pipe is 60m, intersecting a fault in the middle of its length. The 

pipeline model is made of steel API-X70 type, which corresponds to European pipes marked L485. The 
nonlinear behaviour of the steel pipeline is described by the Ramberg-Osgood model. The yield stress of the 

steel is equal to 485 MPa and the Young’s modulus 210 GPa. Moreover, the parameter of the hardening 

exponent n is assumed to be equal to 5. The mechanical behaviour of the soil material is described through an 

elastic-perfectly plastic Mohr-Coulomb material.The unburied pipeline is laying on a clay seabed soil behaving 

under undrained conditions, with cohesion (undrained shear strength) c=60kPa, friction angle φ=00, dilation 

angle ψ=00, Young’s modulus E=25 MPa and Poisson’s ratio v=0.5. The FE model length is 60m, the width 10m 

and the depth 5m in order to minimize any boundary effects (Fig. 2).  

The unburied pipeline is slightly embedded in the soil prism (Fig. 2b). Pipeline embedment is calculated 

equal to 0.21 m (34% of d) regarding Verley and Lund method [12]. For the modelling of the cylindrical pipeline 

segment, the four-node reduced-integration shell elements (type S4R) are employed, while for the soil the eight-

node reduced-integration “brick” elements (type C3D8R) are used. The pipeline and the soil interact through a 

frictional surface-to-surface contact, with the pipe being the slave surface and the upper surface of the soil being 
the master surface. For the interaction properties between the surfaces the penalty friction contact is assumed. 

The behaviour in the normal direction is set to allow separation with zero resistance.  

The Coulomb friction model is the classic and simplest method to describe the pipe-soil interaction along the 

soil surface [5]. The friction coefficient which is a material constant related to the soil properties and pipe 

roughness and in situ conditions, and as such it is not easy to quantify precisely. In this study, different values of 

the friction coefficient μ will be examined in order to investigate the effect of this parameter to the numerical 

results. 
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The numerical analysis consists of two steps, the gravity loading is applied first and then a static analysis step 

imposes the fault movement at the boundaries of  half  of the model, using a displacement-controlled scheme, 

which increases linearly the applied fault displacement D. The fault plane divides the bottom boundary in two 

parts of equal size. In non-moving half of the model, the bottom boundary is fixed in all directions. In the other 

half, an incremental fault displacement parallel to the assumed fault plane is gradually applied to the bottom 

boundary and the vertical boundary perpendicular to the fault axis [13]. The nodes of the rest of the lateral 

boundaries of the soil prism are fixed in the normal direction. Regarding the boundary conditions of the pipeline, 

two cases are considered. In both cases, the end nodes of the pipeline are set to be fixed along the axial direction 

in the non-moving block. In the moving block, the end nodes of the pipeline are released in all directions in the 

first case, and in the second case the end nodes of the pipeline are set follow the applied movement of the block 

in the z-direction (axial).  

The angle β between the fault plane and the horizontal plane is assumed to be equal to 60o. 

4. NUMERICAL RESULTS

In order to examine the influence of key parameters to the distress of pipelines subjected to fault rupture, a

numerical parametric is conducted. The main parameters that are examined are the 

 Magnitude of fault displacement D (0.214 m for M=6 and D=0.912 m for M=7)

 Friction coefficient μ between steel pipeline and the soil  (0.1, 0.2, 0.3 ,0.8, 3.0)

 Pipe wall thickness t (1.5cm and 2.5cm)

Case a (free end) 

In this case, the end nodes of the pipeline on the block that the fault displacement is applied are released in all 

directions.  Fig. 3 shows the (exaggerated) deformed shape of the pipeline-soil system after the application of 

fault displacement for an earthquake of magnitude M=6. Figs. 4 and 5 show the von Mises stress for M=6 and 

M=7, respectively. Stresses in Fig. 4 are lower (12.6% of the steel yield strength) than those in Fig. 5 (23.4% of 

the steel yield strength), as expected, since the applied fault displacement is smaller.   

60m

5m

10m

0.61m

(a)

(b)

Fig. 2. Finite element mesh a) 3D view b) vertical cross-section. 
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Fig. 4. Von Mises stress for pipe deformation for M=6. 

Fig. 5. Von Mises stress for pipe deformation for M=7. 

Fig. 3.Deformation of the pipeline-soil system after fault displacement; contours depict the von Mises stress. 
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A series of analyses are conducted to assess the effect of the friction coefficient μ for each case of earthquake 

moment magnitude, M=6 & 7. The value of the friction coefficient has a rather small effect (differences lower 

than 11%) on the numerical results (Fig. 6), with the von Mises stresses in pipeline for each earthquake moment 

magnitude remaining lower than the yield stress of the X70 pipeline, which is 485 MPa. That leads to the 

conjecture that the case of normal fault does not produce a significant amplification of the stresses. 

Fig. 6. Maximum von Mises stresses in pipeline for different values of μ. 

Two pipe thicknesses are investigated for the high strength steel pipe properties X70, namely 0.025 m 

(d/t=24) and 0.015 m (d/t=41) were chosen to examine each case for earthquake moment magnitudes (M=6 & 7). 

The friction coefficient is set equal to μ=0.3. Higher stresses are developed in the pipeline with a high d/t making 

them more vulnerable than the pipelines with a low d/t (Fig.7). Furthermore, for the high d/t ratio, deformations 

and distortion of the pipeline starts at smaller fault movements.  

Fig. 7. Maximum von Mises stresses in pipeline for two different d/t ratios 

Case b (fixed end) 

In case b, the end nodes of the pipeline follow the movement of the moving block in z-direction whereas on 

the other end the nodes are fixed.  Fig. 8 shows the deformed model of pipeline-soil system. Figs. 9 and 10 show 

the von Mises stress in the pipeline after a fault displacement generated by an earthquake of magnitude M=6 and 

M=7, respectively. Stresses in Fig. 9 are almost 50% lower (74.2% the steel yield stress) than in Fig. 10 since the 

applied fault displacement is smaller. However, unlike case a, the von Mises stress for M=7 exceeds the yield 

strength of the X70 steel of 485 MPa (126.9% of the steel yield stress). Hence, case b suggests that normal 

faulting can produce a significant amplification of the pipeline stress. 
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Fig. 8. Deformation of the pipeline-soil system after application of fault displacement; finite element results 

depict the von Mises stress 

Fig.9. Determined von Mises stress pipe deformation for M=6. 

Fig. 10.  Determined von Mises stress pipe deformation for M=7. 
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Similarly to case a, the parameter μ has a negligible effect on the numerical results (Fig. 11). 

Fig. 11. Maximum stresses von Mises in pipeline for different values of friction coefficient μ. 

Again, two thicknesses 0.025 m (d/t=24) and 0.015 m (d/t=41) are examined for each case of earthquake 
moment magnitude M=6 and 7. The friction coefficient between the surface of the steel pipeline and the soil 

surface is maintained equal to μ=0.3.  Fig. 12 shows the maximum von Mises stress in pipeline for the two 

different d/t ratios. The results, for the boundary condition of case b, show that the pipeline thickness does not 

have any influence on the developed von Mises stress. It has to be pointed out that in this study the initial (before 

fault rupture) pipeline stresses due to the difference in internal and external pressures are ignored.  

Fig. 2. Maximum von Mises stress in pipeline for two different pipe diameter to thickness ratios. 

5. CONCLUSIONS

The development of advanced numerical methods over the last decades and their application to geotechnical

engineering problems, such as the soil-pipeline interaction, provide offshore engineers with an extremely 

powerful analysis tools. Using an advanced finite element simulation tool, the stress and deformation response of 
unburied steel pipelines crossing normal faults with a dip angle of 600 was examined. A detailed 3D nonlinear 

static pipe-soil interaction model, which takes into account the inelastic soil and pipeline material behaviour, was 

used.  The pipeline material behaviour is assumed to be independent of the slip rate and the temperature, and the 

internal and external pipe pressures are currently ignored.  The main objective of this study is the investigation of 

the combined effects of the earthquake moment magnitude, the friction coefficient between steel pipe and soil, 

and the pipe-wall thickness. The following preliminary conclusions can be made: 

 The applied boundary condition at the pipeline end that lies in the moving block can affect significantly

the obtained results. Two extreme cases have been examined (fully free and fully fixed end) and the real

conditions of the pipeline are expected to lie between these two bounds.

 A strong influence of the pipeline diameter-to-thickness ratio d/t was found for the case of a free

moving pipeline boundary.

 Variation of the friction coefficient μ value has a small to negligible effect on the numerical results in

both cases.
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 Higher stresses develop with increasing fault movement, but these remain far below the yield stress of

the high strength steel in the case of a free moving pipeline boundary. However, in the case of a fixed

boundary for an earthquake of magnitude M=7, the stresses overcome the yield stress of the steel

pipeline. This leads to the conclusion that a proper boundary condition for the pipeline needs further

investigation.
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Abstract. Natural gas is undoubtedly one of the main energy sources of our era with increasing demand and 

continuous exploitation of new onshore and offshore deposits. The transportation of natural gas to the urban 

and industrial centers is frequently accomplished via large-scale pipeline networks. These networks often consist 

of offshore parts, placed on the seabed in big depths, extending for hundreds of kilometers. Such pipelines are 

very important infrastructures, since any possible damage may cause serious problems and devastating 

consequences on the environment and the economy. Geohazards, such as strong ground motion, active faults, 

offshore landslides and debris flows, tsunamis, etc, consist the most crucial threats that an offshore pipeline has 

to overcome. The purpose of this work is to study numerically, utilizing the finite element method and realistic 

data from the offshore part of the Trans Adriatic Pipeline (TAP), the kinematic distress of offshore natural gas 

pipelines due to submarine landslides. Firstly, numerical models are developed and compared with available 

analytical and numerical solutions. Subsequently, the use of efficient mitigation measures, such as anchor 

points, in different positions along the pipeline route is examined in order to reduce its vulnerability in an 

optimal techno-economical manner. 

1 INTRODUCTION 

Hydrocarbons, such as oil and natural gas, have been used as an energy source since the first industrial 

revolution in the 19
th

 century and to date thousands of kilometers of onshore and offshore pipelines have been 

constructed for their transfer. The fact that onshore pipelines have been constructed several decades earlier than 

offshore pipelines, has prompt several researchers to investigate their response under geohazards and other 

hazards, which has led to national and international standards and guidelines for their efficient design. For 

instance, American Lifeline Alliance (ALA), Eurocode 8, and ISO 19900–19906 are the outcome of this 

research. On the other hand, offshore pipelines are far from that level, since there is no similar experience yet 

and deep water soil conditions are highly adverse and difficult to determine.  

Offshore pipelines may extend for hundreds of kilometers, from shallow to deep water. While shallow water 

pipelines are usually buried, deep water pipelines are often placed directly on the seabed. This makes them more 

vulnerable to geohazards that a buried pipeline may easily overcome, such as soil liquefaction, offshore 

landslides and debris flows. In the wider South-Eastern region of Europe there is an increasing activity regarding 

offshore pipelines with several large-scale projects being constructed or planed, such as Blue Stream, Turkish 

Stream and East Med projects. Trans Adriatic Pipeline (TAP) is an under construction project of a 878 km long 

pipeline connecting Greece, Albania and Italy. The offshore part of the pipeline is 105 km, reaching the depth of 

820 m in the Adriatic Sea. According to the TAP project [1, 2], the deep water offshore part of the pipeline is 

considered for depths greater than 200 m, where the pipeline is directly laid on the seabed. 

328

mailto:chatzidakis_d@hotmail.com
mailto:jt@science.tuc.gr
mailto:prod@central.ntua.gr


Dionysios Chatzidakis, Yiannis Tsompanakis and Prodromos N. Psarropoulos 

The investigation of offshore pipelines under kinematic distress due to geohazards can be separated into three 

parts: the pipe-soil interaction determination, the impact force assessment and the pipeline response assessment 

utilizing experimental, analytical and numerical models. The international recommended practice guidelines 

DNV GL [3] (Det Norske Veritas – Germanischer Lloyd) consist a first attempt to summarize the gained 

experience by introducing a coherent proposal of pipe-soil interaction modeling for various soil conditions, such 

as fine or coarse grained soils, drained or undrained response, etc. Other noteworthy works are the studies by 

Bruton et al. [4] and White and Cheuk [5], which investigate the axial and lateral pipe-soil interaction based on 

experimental results, while Randolph et al. [6] and Wang and Yang [7] deal with the axial pipe-soil interaction.  

Considering the impact force assessment, Zakeri et al. [8, 9]-taking into account experimental data- derived 

analytical expressions for calculating the drug force on offshore pipelines depending on parameters such as soil 

conditions, slope and intersection angles, etc. Subsequently, Randolph & White [10] and Liu et al. [11] improved 

initial flaws of the analytical formulas taking into account additional parameters. 

The investigation of kinematic distress due to geohazards necessitates the accurate response assessment of 

pipelines through experimental, analytical and numerical models. Nonetheless, only a limited number of 

numerical and analytical approaches can be found in the recent literature. Parker et al. [12] presented an 

analytical model that investigates the case of landslide impact vertical to the pipeline axis. Subsequently, 

Randolph et al. [13] and Yuan et al. [14] presented both analytical and numerical models for the same problem. 

The objective of the current work is to investigate numerically the kinematic distress of the deepest offshore 

part of TAP pipeline subjected to lateral landslide impact. The pipeline and soil properties used are realistic as 

they are derived from the TAP project description and geotechnical survey [1, 2]. The pipe-soil interaction 

simulation is considered according to the DNV GL [3] using the soil properties of the investigated area. Firstly, 

the proposed numerical model is compared with the results of the aforementioned analytical and numerical 

models. Subsequently, various landslide widths and forces are applied, while the use of anchor points in different 

positions along the pipeline route is examined in order to reduce the vulnerability of the pipeline. 

2 PROBLEM AND MODEL DEFINITION 

Geohazards like offshore landslides and debris flows are frequent phenomena on the seabed, even for small 

slope angles (e.g., 1
o
-5

o
), due to the presence of fine-grained saturated soils. Earthquakes or underwater currents 

are the two main causes that can trigger such phenomena. The numerical simulation of a deepwater offshore 

pipeline subjected to a lateral landslide and based on realistic data is described in the sequence. 

2.1 Problem description 

Figure 1 depicts the investigated case of a surface laid pipeline under lateral loading due to a landslide or a 

debris flow. It is noted that common practice suggests offshore pipelines when crossing a landslide prone area 

should be placed either vertical or parallel to the anticipated soil movement. The pipeline is considered to be 

straight and “free” along both sides adjacent to the landslide area, i.e., no anchors, wellheads, or curvatures. 

Additionally, the seabed is considered to have constant bottom depth and soil characteristics along the 

investigated area.  

The above situation is not an idealization, but it can represent real conditions, as it will be discussed in the 

sequence. The upper and side view of the selected case are illustrated in Figure 1, in which FL is the lateral and 

FA the axial pipe-soil interaction forces per unit length, while the vertical pipe-soil interaction is not taken into 

account. QL is the lateral load due to the kinematic distress, which is parallel to the seabed bottom. The pipeline 

is considered to be embedded on the seabed in a depth, z, due to its own weight and the laying process. The slope 

angle, φ, is considered to be almost zero, thus, the vertical force, V, is equal to the pipe weight. 

Figure 1. Upper and side view of the pipeline configuration 
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2.2 Soil and pipeline characteristics 

In order to examine a realistic case, the deepest part of the Trans Adriatic Pipeline (TAP) is selected. As 

illustrated in Figure 2, the pipeline crosses an area of several kilometers on a straight line in the middle of the 

Adriatic Sea. The seabed terrain is flat (inclination φ ≈ 0.1
o
), with constant bottom depth about 800 m, and the 

seabed consists of a 6 m depth soft clay layer. According to TAP report [1], the characteristic soil parameter 

values for the aforementioned part are the unit weight, γ = 14.5 kN/m
3
, the internal soil friction angle, φ = 25

o
 

and the undrained shear strength, su = 1 + 1.17 z (kPa), for 0.0 < z < 6.0 m, where z is the soil depth. 

Figure 2. The examined offshore area of the Trans Adriatic Pipeline [2] 

The above soil parameter values where used in order to calculate the lateral and axial soil resistance forces 

according to DNV GL [3]. It is worth mentioned that DNV GL recommendations idealize the axial resistance 

using both tri-linear and bi-linear models and the lateral soil resistance using always a tri-linear model, as 

depicted in Figure 3. Axial reaction depends on the level of drainage, while lateral reaction takes under 

consideration the embedment of the pipeline. As shown in Figure 3, FA is the axial soil resistance force per unit 

length, FL is the lateral resistance force per unit length, while x and y denote the axial and lateral relative 

displacements. Subscripts “brk”, “res” and “mob” correspond to breakout, residual and mobilization resistance 

forces and displacements, respectively. Only the tri-linear formulation for both axial and lateral directions is 

examined herein. The soil resistance forces and corresponding displacements, as calculated using DNV GL [3], 

are depicted in Table 1. 

The pipeline characteristics were taken from TAP report [2] for the deep water part of the pipeline, i.e., over 

200 m depth. The pipeline has an outer diameter, D = 945 mm, a wall thickness, t = 37 mm and the steel grade is 

API 5L X65 (Young’s modulus, E = 210 GPa, Poisson’s ratio, v = 0.3, yield strength fy = 448 MPa, ultimate 

strength fu = 531 MPa and maximum elongation 18%). The pipeline has a protection of an anti-corrosive coating 

of polyethylene with a thickness of tcoating = 3 mm. The internal pressure of the pipe is 7.5 MPa and the external 

pressure is approximately 8 MPa due to the 800 m sea depth. 

Figure 3. Axial (left) and lateral (right) pipe-soil interaction idealization 
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Force (kN/m) Displacement (mm) 

FA,brk  = 0.8 xbrk  = 5 

FA,res  = 0.75 xres  = 30 

FL,brk  = 1.7 ybrk  = 93 

FL,res  = 0.8 yres  = 1427 

Table 1. Soil resistance forces and corresponding displacements 

2.3 Numerical model configuration 

The problem is modeled numerically utilizing the finite element method (FEM), using ABAQUS software 

[15]. Taking into consideration that the problem is symmetrical and plane, half of the pipeline in 2-D conditions 

is simulated, as shown in Figure 4, in order to reduce the computational cost. The left end of the model 

corresponds to the middle of the landslide and an x-symmetrical boundary condition is implemented (fixed in 

XX’ direction, fixed rotation and free movement in YY’ direction), while the right end of the pipe is fixed. The 

drag force due to the landslide is considered uniform along the landslide length B. The pipeline finite element 

length is equal to 0.5 m along the whole length of the pipeline for small models, i.e., up to 3 - 4 km long. For 

bigger models, a gradually increasing element length, from 0.5 m to 4 m, was implemented along the expansion 

length of the pipeline, Lexp, in order to minimize the computational cost. Both axial and lateral resistances are 

taken into account in all three parts, while vertical soil resistance is neglected everywhere. 

The pipeline is modeled with Timoshenko beam elements, utilizing the pipeline element PIPE21 of 

ABAQUS [15]. As shown in Figure 5, these elements have one integration point on the axial direction and four 

along the cross section. This pipeline configuration enables the implementation of both internal and external 

pressures in order to represent the gas and hydrostatic pressure, respectively. Considering the soil resistance, 

pipe-soil interaction elements (PSI24) were used to represent both lateral and axial soil resistances. These are 

four-noded plain elements with two nodes attached to the pipe and two representing the far field conditions, 

which are considered as fixed in this study. The direction of both axial and lateral reaction forces is adjusted 

according to the pipeline movement. Large displacements, nonlinear plastic strains and geometrical nonlinear 

response are taken into account in a computationally efficient manner. 

Figure 4. Numerical model configuration 

Figure 5. PIPE21 element (left) and PSI24 element (right) with their integration points [15] 
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3 VALIDATION AND COMPARISON 

In order to validate the numerical methodology developed herein, its results are compared with those 

obtained from the analytical approaches of Randolph et al. [13] and Yuan et al. [14] and also with the numerical 

results of the later study. In both analytical approaches the landslide impact is simulated as a linear drag force, 

while the pipeline non-linear response is not taken into account and the elastic beam theory of Euler-Bernoulli is 

adopted for the simulation of the pipeline. In addition, it is noted that axial friction is neglected in both models in 

the segments where the lateral soil resistance is non-zero and has a constant value thereafter. Regarding the 

differences between the two studies, Randolph et al. [13] consider a rigid-plastic model for the lateral soil 

resistance, which results in constant lateral soil resistance until the lateral displacement of the pipe is almost 

zero. On the other hand, Yuan et al. [14] consider that the lateral soil resistance exhibits an elastic-plastic bi-

linear behavior. Moreover, Randolph et al. [13] assume the axial tension constant until the zero lateral 

displacement point, while Yuan et al. [14] consider the horizontal component of the axial tension constant, which 

takes into account the effect of lateral soil resistance. Finally, the model of Randolph et al. [13] has a 

discontinuity in the bending moment at the zero lateral displacement point, while this is not the case for the 

model of Yuan et al. [14]. 

The numerical approach of Yuan et al. [14] is based on a vector form intrinsic finite-element method 

(VFIFE) implementation, introduced by Ting et al. [16]. The pipeline is discretized into a series of nodes and 

elements, with the mass of the pipeline concentrated on the nodes. The pipeline movement is discretized into a 

small time steps with small deformations and constant material properties and pipe dimensions in each step. 

Initially, in order to compare the results of the proposed numerical approach with the aforementioned 

analytical and numerical models, the pipeline properties and loading conditions of Yuan et al. [14] models were 

implemented. More specifically, the values of pipeline outer diameter and thickness were taken equal to, D = 

600 mm and t = 25 mm, respectively. The drag force was considered equal to QL = 6 kN/m along a landslide 

width of B = 120 m. The maximum lateral and axial soil resistance forces were considered equal to p0 = 3 kN/m 

and f0 = 0.5 kNm, respectively. Finally, the elastic modulus and the Poisson’s ratio were take equal to E = 210 

GPa and v = 0.3, respectively. It is noted that the proposed model was examined for six different element 

lengths, from 0.25 m to 4 m, with small differences among them regarding both lateral displacement and axial 

force. The element length of 0.5 m was chosen in order to maximize the accuracy of the computations. 

Figures 6 and 7 illustrate the normalized pipeline displacements and the normalized axial forces obtained by 

the analytical approaches of Randolph et al. [13] and Yuan et al. [14], the numerical approach of the later study 

and the proposed numerical model. As shown in Figure 6, all models have similar response considering both the 

maximum pipeline displacement and the displacement pattern along the pipeline. However, the analytical model 

of Yuan et al. [14] presents a slightly higher lateral displacement and the analytical model of Randolph et al. [13] 

presents considerable response differences along the pipeline route. 

Figure 6. Comparison of normalized pipeline displacements 

Considering the axial tension shown in Figure 7, the two numerical models present similar response after the 

landslide area (x/B > 0.5), while they have significant discrepancies within the landslide region. The proposed 

model presents maximum axial tension in the middle of the pipe and decreases thereafter, while the numerical 

model of Yuan et al. [14] presents maximum axial tension at distance x/B = 0.17. The discrepancies are justified 

due to the fact that the proposed model takes into consideration geometrical nonlinearities. Yuan et al. [14] 

analytical approach underestimates the axial tension in the landslide area, while it overestimates the axial tension 

in the remaining part of the pipeline. Furthermore, the maximum axial tension point is located approximately at 

the end of the landslide (x/B = 0.5) in contrast to the numerical models. This is observed because the axial soil 

resistance is omitted. In the analytical model of Randolph et al. [13] the axial tension remains constant along the 
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pipeline up to a distance of x/B = 1 and is significantly smaller compared to the other three approaches. This is 

attributed to the fact that the axial soil resistance is not taken into account and the axial tension is considered 

constant. 

Figure 7. Comparison of normalized pipeline axial forces 

4 PARAMETRIC STUDY 

After the verification of the numerical approach, a detailed parametric investigation has been conducted in 

order to investigate the influence of different landslide forces and landslide lengths on the pipeline response. As 

aforementioned, the pipeline and soil characteristics used in this parametric study are taken from the TAP 

project, as described in details in Section 2. Due to space limitations, indicative results and discussions are 

presented in the sequence. 

4.1 Landslide drag force 

Considering the landslide force influence, four different drag forces were implemented: QL = 5, 10, 20 and 20 

kN/m. The landslide length for all the above cases is constant and equal to B = 300 m. As illustrated in Figure 8, 

larger drag force results in larger lateral normalized displacements, y/D, while a longer part of the pipe is moving 

laterally. The maximum absolute lateral movement of the pipe in every case is 38.13, 88.31, 187.83 and 287.41 

m for 5, 10, 20 and 30 kN/m drag force, respectively. It is noted that, the values of 5 and 10 kN/m correspond to 

more realistic scenarios, while the higher values of 20 and 30 kN/m are less probable to occur. 

Figure 8. Comparison of normalized pipeline displacements for different drag forces 

Natural gas pipelines are usually constructed using industrial steel material with definite response, failure 

mode, etc. Therefore, common practice for determining the pipeline failure is through strain limits, due to the 

fact that strain can be directly measured by setting, e.g., strain gauges at the critical areas. As shown in Figure 8, 

the pipe is expected to develop axial and bending strains. Therefore, the axial strain, ε11, on both the upstream 

and downstream points, according to the landslide direction, was calculated and defined hereafter as ‘top’ and 

‘bottom’ strains, respectively (see Figure 9).  
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As shown in Figure 10, the bottom line strains receive maximum values near the middle of the pipe (x/B =0) 

and minimum after the landslide area (x/B = 0.5), while the top line strains display the reverse pattern. It is noted 

that, in Figure 10, only tensile strains are noticed, so only tensile plastic failure is expected. Both bottom and top 

axial strains receive the same values at distance where the second curvature occurs in Figure 8. This distance 

increases as the drag force increases. After the above point, axial stains have a constantly decreasing value. 

Figure 9. Pipeline cross section points for axial strain calculations 

Figure 10. Comparison of axial strains for different drag forces 

4.2 Landslide width 

Considering the impact of landslide width, five different widths were used: B = 100, 200, 300, 400 and 500 

m. The landslide drag force for all the above cases is constant and equal to QL= 10 kN/m. As illustrated in the

left part of Figure 11, larger landslide width results in larger lateral displacements, y, while a longer part of the 

pipeline is moving laterally. The absolute maximum lateral movement of the pipeline is large in every case, and 

more specifically 21.87, 53.45, 88.31, 126.28 and 164.9 m for 100, 200, 300, 400 and 500 m landslide width, 

respectively. However, as illustrated in the right part of Figure 10, it is noticed that the part of the pipeline that 

moves laterally is constant when normalized to the landslide width, B, and has a value of x/B ≈ 5 m. The 

normalized displacement, y/D, is increasing with the landslide width. 

Figure 11. Comparison of absolute pipeline displacements and length (left) and normalized pipeline 

displacements and length (right) for different landslide widths 

In Figure 12, the bottom and top line strain of the pipe cross section for the different landslide widths are 
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depicted. Bottom line strains present maximum values near the middle of the pipe (x/B = 0) and minimum after 

the landslide area (x/B = 0.5), while the top line strains display the reverse pattern. Both bottom and top axial 

strains present the same values at a normalized distance of x/B ≈ 5 m, which is in agreement with the lateral 

movement pattern of Figure 11. In contrast to the findings of the investigation related to drag force, compressive 

strains occur within the landslide area for the case of a landslide width equal to B = 100 m at the top line of the 

cross section. Therefore, the part of the pipeline within the landslide region is vulnerable to the occurrence of 

critical local buckling phenomena. 

Figure 12. Comparison of axial strains for different landslide widths 

5 IMPLEMENTATION OF MITIGATION MEASURES 

Offshore pipelines are technical works of high importance, constructed in an adverse environment with 

various hazards and uncertainties. Offshore landslides can occur even for slope angles equal to 0.5 – 1
o
, while 

debris flows can intersect with an offshore pipeline even at a flat terrain, as a result of a nearby landslide or soil 

liquefaction. So far the relevant studies considered the response of offshore pipelines to be within the elastic 

region [12-14]. Consequently, the critical strain limit considered herein is the presence of plastic strains 

anywhere along the pipeline. The pipeline and soil characteristics used in this parametric study are taken from 

the offshore section of TAP pipeline, as described in details in Section 2. 

A common, economical and relatively easily applicable mitigation measure for offshore pipelines is the 

construction of anchor points along their route. In this work, the isolation of the pipeline inside a critical 

landslide area, through the installation of two anchor points on both sides of the critical area is investigated. The 

landslide or debris flow direction is considered to be vertical to the pipeline axis (Figure 1). The numerical 

model used is the one presented in Section 2 and Figure 4, for various expansion lengths, Lexp, and landslide 

widths, B. The minimum and maximum expansion lengths used for the parametric study are presented in Table 

2, in which L is the total length of the model, as shown in Figure 4. The minimum expansion length for all cases 

was chosen as L/B = 2, since it is not easy to specify the exact ends of the landslide region, while the anchor 

point was chosen to be always outside the landslide region.  

Landslide width 

B (m) 

Expansion length, Lexp (m) 
min L/B max L/B 

min max 

100 150 2950 2 30 

200 300 4700 2 24 

300 450 5850 2 20 

400 600 7000 2 18 

500 750 7750 2 16 

Table 2. Parametric study for the anchor point implementation 

The results are depicted in Figure 13, in which QL,cr is the critical lateral load when plasticity occurs and L/B 

the normalized total length. The dashed black line corresponds to the break point change, i.e., the critical ratio of 

L/B for which plasticity inside the landslide occurs for all the examined cases. More specifically, plasticity 

occurs at a distance x = 21.5, 52.5, 103, 156 and 207 m from the middle of the landslide for the respective 

landslide widths B = 100, 200, 300, 400 and 500 m. For smaller L/B ratios, plasticity occurs at the anchor point, 

while for bigger ratios plasticity occurs within the landslide region. In all cases examined, the critical load 
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follows a bi-linear response with constant increase as the expansion length increases until the break point chance 

and thereafter the critical load increases with a smaller ratio. As expected, the critical load decreases as the 

landslide width increases. However, smaller landslide widths (i.e., between B = 100 and 200 m) present greater 

decrease than bigger landslide widths (i.e., between B = 400 and 500 m). Moreover, the break point change line 

seems to reveal a linear correlation between the critical load and the L/B ratio that plasticity begins to occur 

within the landslide area. It is also noted that when plasticity occurs the total strain is approximately 0.2% for all 

cases and failure modes. Finally, it is mentioned that, except from the cases in which the anchor points were 

placed very close to the landslide area, failure occurs for extreme drag forces values, i.e., higher than 20 kN/m. 

Figure 13. Critical load and break point change for different expansion lengths and landslide widths 

5 CONCLUSIONS 

The aim of the current work is to investigate the response of offshore pipelines subjected to lateral landslides. 

For this purpose, realistic data from Trans Adriatic Pipeline (TAP) are used together with the international 

recommended practice guidelines DNV GL. A computationally efficient numerical model has been developed 

and compared with available numerical and analytical approaches. Additionally, a parametric investigation of 

various loading conditions and mitigation measures was conducted. 

The main conclusions can be summarized as follows: 

- The fact that different numerical and analytical approaches result in similar pipeline response is 

promising. The discrepancies between the numerical models are attributed to the fact that the proposed 

model takes into account geometrical nonlinearities. 

- Regarding the pipeline lateral displacement, the parametric study indicates that larger drag force and 

landslide width result in greater displacements. 

- With reference to the part of the pipeline that moves laterally, the parametric study indicates that larger 

drag force and landslide width result in longer part of the pipeline to be exposed to lateral movement. 

However, for constant drag force and increasing landslide width, the laterally dislocated part of the 

pipeline with respect to the landslide width is constant. 

- Regarding the axial strains, it is concluded that bottom and top line strains display the exact reverse 

pattern. Nonetheless, in almost every case only tensile strain occurs, which is considered beneficial since 

the thin pipeline is much more vulnerable to compressive strains. Compressive strains appear only for 

small landslide widths; hence, it is recommended to avoid regions with potential small landslide widths. 

- Failure occurs within the landslide area, unless anchor points are installed on both sides adjacent to the 

landslide zone. In this case, failure happens at the anchor points, which is beneficial for monitoring and 

maintenance, since failure within the landslide area is subjected to several uncertainties. 

- In the examined cases, when the anchor points are placed quite far from the landslide zone, failure 

occurs for rather extreme drag force values. 

- There is a linear correlation between the critical drag force and the location of the anchor points. 

Furthermore, the distance that mitigation measures cease to influence the pipeline failure seems to have a 

linear correlation with the critical drag force and the landslide width. 

Certainly, the validation of the numerical models with real pipe response or experimental results would be 

extremely useful, but currently not possible due to lack of relevant data. Further parametric investigation of the 

336



Dionysios Chatzidakis, Yiannis Tsompanakis and Prodromos N. Psarropoulos 

examined problem is required. Other parameters, such as the bottom slope angles, internal and external 

pressures, pipeline material properties, and cross section geometries, as well as non-symmetrical configurations 

should be investigated. Furthermore, DNV GL guidelines should be implemented on a variety of soils (sands, 

clays, silts, organic soils, etc) so that a more realistic representation could be obtained considering the variation 

of soil response. Finally, the use of alternative mitigation measures and cases of non-symmetrical configurations 

should also be studied for the worst case scenarios, in order to ensure the safety and functionality of offshore 

pipelines in such adverse conditions. 
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Abstract. The Soil-Structure Interaction (SSI) has a significant effect on the overall structural behavior of

reinforced concrete buildings, especially under cyclic loading conditions. Considering the SSI effects within 

experimental setups comprise cumbersome procedures that are usually very difficult to control and monitor. 

Furthermore, when the foundation type of the structure foresees the use of pilecaps connected to piles, accounting 

for the SSI effect becomes further complicated to investigate. Consequently, most SSI experiments involve very 

simple geometry configurations for specimens under monotonic loading conditions. The need for developing new 

numerical methods that will enable realistic capturing of this phenomenon, is deemed to be of great importance. 

This research work aims to study the SSI effect for the case of a 6-storey building with a pile foundation undergoing 

cyclic loads. The numerical model foresees the study of the main shear wall of the structure that is connected to 

six reinforced concrete slabs and is resting on a pilecap that is connected to three piles found within a soil class 

E, according to ASCE7-10. By using the hexahedral isoparametric finite element, the structure is discretized in 

3D, where the adopted concrete material model is integrated with the smeared crack approach and the steel bars 

are modelled by using embedded rebar elements. Both soil and concrete foundation are discretized with 

hexahedral elements, while monotonic and cyclic analyses are performed in order to study the mechanical 

behavior of the fixed-base structure and the corresponding SSI counterpart structure that is founded on the flexible 

soil. 

1 INTRODUCTION 

The Soil Structure Interaction (SSI) phenomenon can be of great importance when assessing the capacity of a 

structure founded on a soil with low mechanical properties [1]. The flexible soil combined with large superstructure 

loads can cause the foundation system to deform substantially, posing significant effects on the overall structural 

response. The effect of the SSI on the overall mechanical behavior of structures can vary based on the adopted 

foundation type [2]. The local stress and strain are redistributed when the foundation is free to deform, affecting 

the response of the structure. This is of great importance, especially when a reinforced concrete (RC) framing 

system is designed to undertake seismic excitations which generate high lateral forces.  

Accounting for SSI effects may be necessary when the dynamic response of a structure, its foundation and its 

soil collectively contribute to the overall seismic response [3]. Researchers face major difficulties in conducting 

experimental tests to understand the complicated SSI mechanisms, which develop during seismic excitation. As a 

result, the majority of experimental tests in existing literature are limited to simple specimens under monotonic 

loading.  The study of the SSI mechanisms is further complicated by the complexity of their geotechnical aspects 

and prediction of soil mechanical behavior. 

Modeling the SSI phenomenon through numerical models has been frequently implemented by researchers 

over the last two decades [1-10]. It is worth noting that the commercial software used to perform SSI analysis have 

evolved substantially over the years [11-17]. The main challenges associated with nonlinear finite element 

modeling of full-scale structures founded on soil are attributed to computational inefficiency. The need to account 

for material nonlinearities of both soil and concrete domains adds further complications. Therefore, modeling the 

soil domain through springs is the most popular simulation approach given its numerical simplicity. Nevertheless, 

this approach is found to be impractical and inaccurate when dealing with foundations that have complicated 
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geometries (i.e. pile foundation). Thus, capturing complicated SSI mechanisms that develop due to the 3D 

deformation of the foundation system is not feasible through this numerical method. Hence, the use of hexahedral 

elements was proposed to discretize the soil and concrete mediums [1, 2]. This FE method helps in achieving an 

accurate representation of the structural system as well as the soil.  

When the structure and soil are discretized with 8-noded hexahedral elements, an exact representation of the 

geometry is achieved [1]. Furthermore, performing static pushover analysis to study the SSI effect in terms of 

capacity, deformation, energy dissipation and damage can be investigated at a material level. The 3D modeling 

approach allows for special considerations at the concrete-soil interface, which also affects the overall mechanical 

response of the SSI system. A previously published work [1] examined the structure with an isolated foundation 

resting on class E soil, based on ASCE7-10 [18]. The structure was tested under monotonic and cyclic loading, at 

which the effect of the SSI on the structural response was studied. The same approach is adopted herein, to 

investigate the mechanical response of a structure supported by deep foundation consisting of three piles. The 

effects of the SSI phenomenon will be examined and presented through this numerical investigation. 

The SSI effects play a paramount role in seismic response, especially for nonlinear dynamic analysis and 

inelastic response assessment where realistic damage estimates are needed for RC structures of various types. All 

reported findings in such research investigations [19-31] are expected to require re-assessments.  

2 NUMERICAL MODEL 

2.1 Material Models 
The 3D detailed discretization that was adopted in this work follows the concept proposed in “Nonlinear FEA 

of Soil-Structure-Interaction Effects on RC Shear Wall Structures” [1], which demonstrated the use of 8-noded 

hexahedral finite elements to discretize the structure and the soil domains. The steel reinforcement was modeled 

by the embedded rebar element. In addition, the model used in this research work demonstrates the use of springs 

positioned at the pile cap-soil interfaces, to simulate the phenomenon of soil detachment when the interface 

undergoes tension. Furthermore, the interface of the piles and the soil is modeled through hexahedral elements that 

were numerically calibrated to account for the friction stresses, but not transfer tension to the soil domain. The 

pile-soil interface elements are modeled to resist a maximum shear stress after a certain allowable settlement, 

which was taken as 0.6% of the pile diameter to comply with conditions for numerical analysis described in section 

3. 

The concrete material model, which is integrated within the 8-noded hexahedral elements is based on the 

proposed algorithmic implementation presented in [2]. The model is based on the concrete material model 

proposed by Mourlas et al. [32], which was integrated with a flexible crack closure criterion. The criterion was 

found to induce numerical stability for problems that tackle nonlinear analysis of RC structures under ultimate 

limit state cyclic loading conditions [32]. To capture the numerical effects of cracking during monotonic and cyclic 

analyses, the smeared crack approach is adopted [33]. When a crack opens at a given Gauss point (shown in Fig. 

1), the constitutive material matrix is modified accordingly to account for the material’s damage [32].  

Fig. 1: Local axes for the case of two cracks at a specific Gauss point. [32] 

According to the concrete model adopted in this numerical investigation, when the 3D stresses at a given Gauss 

point exceed the concrete’s strength envelope, a crack occurs along the plane perpendicular to the maximum 

principal tensile stress. The concrete’s strength envelope is computed by Eq. 1, which is based on the Willam and 

Warkne [34] formulae.  
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where, θ defines the rotational variable of the deviatory stress orientation on the octahedral plane. The terms τ0e

(θ=0°) and τ0c (θ=60°) correspond to the states of σ1=σ2>σ3 and σ1>σ2=σ3, respectively. 

The Menegotto Pinto [35] steel model incorporating the Bauschinger effect (shown in Fig. 2) is used to model 
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the embedded rebar elements within the concrete hexahedral mesh in the steel model adopted in this paper. 

Fig. 2: Menegotto – Pinto steel model. [35] 

The stress-strain corresponding to the steel model is presented below: 
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It must be noted that the SSI model, which uses the 8-noded hexahedral elements to discretize the soil domain, 

is integrated with a von Mises material model. This material model helps in capturing the nonlinear behavior of 

the soil domain in the case where the ultimate compressive strength of its material is exceeded. 

2.2 Finite Element Model 
The investigation of a 6-storey RC building was performed in this work through two finite element models; 

the first was the fixed-base (FX) model (illustrated in Fig. 3a) and the second involved discretizing the soil domain 

with hexahedral elements to account for the SSI effect (illustrated in Fig. 3b). The foundation type that was 

designed and discretized accordingly consisted of three piles with a diameter of 1.2m connected to a pile cap of 

size 2.5x9.5x1.6m. The 24m tall shear wall had a section of 400x4500cm and was reinforced based on the design 

presented in [19-22]. Furthermore, the foundation system was designed based on the ACI 318 provisions [36] and 

the resulting reinforcement was modeled in 3D as shown in Fig. 4. 

(a) (b) (c) 

Fig. 3: Hexahedral finite element mesh of the (a) fixed-base and (b) SSI models. (c) SSI model’s hexahedral 
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mesh without the soil elements. 

Fig. 4: Embedded rebar finite element mesh of the SSI model. 

Model 
Num. of Concrete 

Hexa Elements 

Num. of Soil 

Hexa Elements 

Num. of Steel Embedded 

Rebar Elements 

FX 4,824 - 56,803 

SSI 5,400 5,228 62,405 

Table 1: Mesh details 

Soil Parameter E v qu

Value 65.7 MPa 0.3 964 kPa 

Table 2: Soil Properties (Class E) 

It is noteworthy to state here that the tributary areas of the six slabs connected to the discretized shear wall 

were also included in the numerical model. This modelling approach was applied to optimize the number of 

computations and the execution time of the heavy computational demand imposed by the numerical analysis of a 

full-scale structure. 

Table 1 shows the number of hexahedral elements and embedded rebar elements used to construct the two 

aforementioned 3D models. It may be observed that the SSI model consists of a larger number of finite elements, 

given that the pile foundation and the soil domain are discretized and included within the 3D model. The material 

properties used to define the soil domain, which are characteristic of an ASCE7-10 Class E soil [18], are 

summarized in Table 2.The soil domain within the SSI mesh was divided into four different layers, with a total 

depth of 30m (shown in Fig. 3b). The soil material properties were modified based on the depth of each layer. 

Thus, the deeper the soil layer, the larger the Young modulus and the larger the corresponding uniaxial compressive 

strength. Furthermore, each pile had a total length of 20m and the concrete material exhibited an ultimate uniaxial 

compressive strength of 38 MPa. The steel rebars had a yielding stress of 420 MPa. 

The tributary areas of the slabs, which have a thickness of 20cm, are based on the design of the 6-storey RC 

building presented in previously published work [19-22]. The slabs were subjected to dead loads and live loads 

are consistent with previously published work. The slab edges were restrained in order to capture the mechanical 

behaviour of a continuous slab, which is expected to develop bending moments and shear. Therefore, the edges 

were assumed to displace along the x-axis (the direction of the imposed displacements) but not displace along the 

z-axis. Finally, the displacement-control nonlinear analysis performed in this work demonstrates the application 

of imposed displacements at the nodes located at the perimeter of each slab. 
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3 NUMERICAL RESULTS AND DISCUSSION 

Pushover analysis was performed in order to compare the mechanical response of the structure with and without 

SSI considerations. The analysis was implemented to numerically assess the mechanical behavior of the two 

models under static push over analysis. The horizontal monotonic displacements at each slab were computed based 

on Eq. 3. 

𝛿𝑓𝑙𝑜𝑜𝑟 = (𝑥 𝐿⁄ )
𝑘

(3) 

where, x is the ground to slab height, L is the total height of the structure and k is a constant, which was set to be 

equal to 1.2, based on the parametric investigation performed in [1].  

3.1 Push-Over Analysis 

Fig. 5 shows the base shear force vs horizontal displacement curves obtained numerically through quasi-static 

push-over analysis. As observed, the SSI model derived a more flexible behavior in comparison to the FX model. 

This may be attributed to the flexible behavior of the foundation system, which undertakes the superstructure loads 

as shown in Fig. 6. Based on the numerical findings, it is evident that the deformation of the soil and the foundation 

system (comprised of the pile cap and piles) affects the overall mechanical behavior of the structure, which was 

found to be more flexible by 52% in terms of initial stiffness. The stiffness decrease is attributed to the relatively 

flexible soil and the fact that the soil-pile interface elements reach their friction capacity at an early stage of the 

analysis. Thus, the piles are mainly transferring the vertical superstructure loads to the soil through the head bearing 

mechanism. Additionally, the corresponding ultimate base shear of the SSI model was found to be 29.58% smaller 

compared to the FX model as depicted in Fig. 5. This decrease is attributed to the flexibility induced by the soil 

domain, which deforms accordingly as the imposed displacements increase. 

It is also evident that, the SSI model derived a different nonlinear mechanical behavior when the imposed 

displacements were larger than 150 mm. When the imposed horizontal deformation was 150 mm, the FX model 

exhibited a sudden drop in terms of capacity, attributed to the longitudinal reinforcement yielding and concrete 

cracking, a mechanical phenomenon that was noted in a lower degree in the corresponding SSI model. As it was 

found from the numerical investigation, the fixed-base assumption within the FX model forced the shear wall to 

develop higher deformations at the ground floor level, where the rebar yielding occurred due to the large bending 

moment developed at the base of the structure. Furthermore, as it can be seen in Fig. 5, the corresponding capacity 

drop shifted significantly when the SSI effect is accounted for. This is once more attributed to the overall flexible 

behavior of the pile foundation when compared to the mechanical behavior of the fixed-base assumption that does 

not allow any deformation to occur at the foundation level. It must be noted at this point that, the numerical results 

from the parametric investigation that foresee the analysis of the structure under cyclic loads was also performed 

but will be presented in a future publication. 

Fig. 5: Base shear force vs horizontal displacement curves from push-over analysis. 

3.2 Pile Foundation Mechanical Response 

Fig. 6 shows the deformed shape and the corresponding strain contour of the pile cap and the three piles 

resulting from the push over analysis. The two deformed shapes given in this figure correspond to the results 

obtained for the displacement increments corresponding to a 12mm and 60mm horizontal displacement at the roof 

slab, respectively. To emphasize the deformed shapes, a deformation scale factor of 500x was used. Thus, it can 

be easily observed that the pile cap develops a shear deformation due to the large bending moment developed at 
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the base of the RC shear wall. The piles were found to develop a bending deformation since the pile cap displaces 

along the x-axis (direction of the imposed displacements), forcing the pile heads to displace horizontally as well.  

The complexity of the under study problem is evident in the complicated 3D deformed shapes, which 

incorporate several SSI resistance mechanisms. Therefore, even for cases of simple loading such as the push-over, 

delivering a realistic representation of the behavior of SSI systems requires advanced numerical tools. This also 

explains why the simplistic spring model approach cannot be used in this type of analysis without compromising 

numerical accuracy. 

In addition to the above findings, the numerical investigation also revealed that the damages due to strain 

concentration agreed with the findings in [1]. According to the numerical analysis presented in this paper, the 

ground floor shear wall exhibited increased cracks in the FX model, whereas the SSI model exhibited lower strain 

concentration due to the foundation’s ability to deform. Moreover, the upper floors of the SSI model were found 

to generate larger deformations due to the flexibility of the soil, which causes redistribution of the internal stresses 

and in return alters the structure’s deformed shape. 

Fig. 6: Deformed shape and von Mises strain contour of the pile foundation for a horizontal roof displacement of 

(Left) δ = 12 mm and (Right) δ = 60 mm. Deformation scale factor: 500x. 

4 CONCLUSIONS 

In this work, the SSI effect was numerically investigated by studying a 6-storey RC structure resting on a pile 

foundation system. The pile foundation was supported by a soil of class E as per the ASCE 7-10 provisions. The 

superstructure was modeled with 8-noded hexahedral elements, which analyze cracks through the smeared crack 

approach. The reinforcement bars were modeled as embedded rebar elements. The soil domain was also discretized 

with 8-noded isoparametric hexahedral elements. Special considerations were accommodated for modeling the 

friction and potential soil detachments at the concrete-soil interfaces. The SSI effect was modeled and studied 

numerically, and the obtained results were compared to those of an equivalent fixed base model. 

Upon successful completion of the parametric investigation presented in section 3.1 (Push-Over Analysis), it 

was concluded that the SSI model demonstrated a more flexible behavior. The ability of the foundation system to 

deform causes the soil to develop settlements proportional to the superstructure loads. Based on the numerical 

findings, the SSI model’s initial stiffness decreased by 52%. In addition, the computed maximum base shear was 

29.58% smaller than that obtained from the equivalent FX model. Furthermore, in the SSI system, the shear wall 

was found to behave in a more flexible manner, yielding lower strain concentrations at the ground floor. Moreover, 

the deformed shape of the foundation system confirmed the shortcomings of the simplistic spring model in 

representing the SSI mechanisms. 

The research presented in this paper is part of a future project to extend the obtained numerical results to further 

cases of structures with various geometries and reinforcement arrangements. The objective of this project would 

be to investigate the relationship between superstructure characteristics and the extent to which the SSI effects 

influence overall structural response, e.g. stress/strain concentration regions, excessive cracking, etc. 
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Abstract. Atherosclerosis is a leading cause of mortality in the all developed countries. This disease begins with 

endothelial dysfunction, which favors lipid and cell elements crossing inside blood vessel wall. Interaction 

between the blood and the plaque can lead to plaque rupture. An important hemodynamic parameter in 

interaction between fluid and vessel wall is the wall shear stress (WSS), which is the mechanical force imposed 

on the endothelium by the flowing blood. The objective of this study is to examine influence of wall shear stress 

on the atherosclerosis development. Using computational fluid dynamics (CFD) in right coronary arteries, 

previously obtained using DICOM images, numerical simulation was performed. Also, plaque concentration in 

the arterial wall was calculated. The three-dimensional blood flow was described using Navier–Stokes equation 

and the continuity equation. Mass transfer within the blood lumen and through the arterial wall is coupled with 

the blood flow and is modeled by a convection–diffusion equation. Kedem–Katchalsky equations were used for 

transports the low-density lipoproteins (LDL) in the lumen and throw the vessel tissue. The inflammatory 

process is modeled using three additional reaction–diffusion partial differential equations. The results for 

plaque concentration for the right coronary arteries are presented in this paper. 

1 INTRODUCTION 

Atherosclerosis is a disorder in the function of the membrane (endothelium) of the first layer of the blood 

vessel that leads to accumulation of lipids in the intima layer of the blood vessel. Atherosclerosis starts with 

endothelial dysfunction and after that comes to accumulations of lipid, cholesterol, calcium and cell elements 

inside blood vessel wall (fig 1). Many studies confirmed different risk factor which contributes development of 

the atherosclerosis; the most common are higher blood pressure, increased blood sugar values, age, cigarette 

consumption, etc. Great contribution to atherosclerosis development gives mechanical quantities such as low 

shear stress areas which lead to dysfunction of the first layer of the vessel wall [1]. 

Figure 1. Normal and partially blocked blood vessels 

The purpose of this paper was to determine hemodynamic parameters such as mass flow and wall shear stress 
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with computational fluid dynamics in the right coronary artery using patient-specific data obtained from 

computed tomography. Also, plaque concentration in the arterial wall was calculated. Finite element method, 

used in this work, is for many years the dominant numerical methods for solving fields of physical quantities. 

Many researchers have studied influence of the wall shear stress on the development of plaque progression, 

determining the relationship between the location of the plaque and the value of the wall shear stress [2], [3]. 

Two time periods were analyzed: baseline (0 months) and follow-up (after 8 months). Plaque progression was 

performed using numerical approach. Mass transport of low density lipoprotein through the arterial wall was 

firstly described. Fluid motion in the lumen domain is described with Navier–Stokes equations, the fluid filtration 

with the Darcy law, while the Kedem–Katchalsky equations used for the solute flow between the lumen domain, 

endothelium and the first layer of the vessel wall–intima. 

2 MATERIALS AND METHODS 

2.1 Computer model 

The fundamental equations for the low density lipoprotein transport through the lumen and solid domain and 

for plaque development are given within this section. Navier–Stokes equation eqn (1), and continuity equation 

eqn (2) of incompressible fluid was used for 3D blood flow: 

 2 0l l l lu u u p      
(1) 

0lu   (2) 

where ul is blood velocity, pl is pressure, μ is blood dynamic viscosity and ρ is density [4], [5]. Darcy`s Law for 

Newtonian fluids was used to model mass transfer across the wall of the blood vessel: 

0w w

p

k
u p



 
   

  (3) 

0wu  (4) 

where uw is transmural velocity, k is the Darcian permeability coefficient of the arterial wall,  pw pressure in the 

vessel wall and μp is viscosity of blood plasma. Mass transfer in the lumen domain was modeled using convective 

diffusion equations eqn (5): 

  0l l l lD c c u      (5) 

where Dl is diffusion coefficient of the lumen while the cl represents blood concentration. Convective diffusion 

reactive equations eqn (6) were used for modeling mass transfer in the wall which was related to transmural flow: 

 w w w w w wD c Kc u r c    
(6) 

where Dw is diffusive coefficient of solution in the wall, cw is solute concentration, K is solute lag coefficient and 

rw is consumption rate constant. 

Low density lipoprotein transport in the lumen of the vessel was coupled with Kedem-Katchalsky equations eqn 

(7), eqn (8): 

 v p dJ L p     
 

(7) 

 1s f vJ P c J c   
(8) 

where Lp is the hydraulic conductivity of the endothelium, Δp is the pressure drop across the endothelium, Δπ is 

the oncotic pressure difference across the endothelium, Δc is the solute concentration difference across the 

endothelium, σd is the osmotic reflection coefficient, σf is the solvent reflection coefficient, P is the solute 

endothelial permeability, and c  is the mean endothelial concentration [6], [7].  

347



Igor Saveljic, Velibor Isailovic, Zarko Milosevic, Dalibor Nikolic, Milica Nikolic, Bojana Cirkovic-Andjelkovic, Exarchos Themis, Dimitris 

Fotiadis, Gualtiero Pelosi, Oberdan Parodi  and Nenad Filipovic 

Three additional partial differential equations were used for solving the inflammatory process [8], [9]: 

2 1

1 1

3 1

( ) / (1 )

( )

t

t w

thr

t

Ox d Ox k Ox M

M div v M d M k Ox M S S

S d S S k Ox M Ox Ox 

    

       

       

(9) 

where Ox represent oxidized lipoprotein transport or cw – the solute concentration in the wall, M is concentration 

in the intima of macrophages, S is concentration in the intima of cytokines, d1, d2, d3 are the corresponding 

diffusion coefficients, λ and γ are degradation and lipoprotein transport oxidized detection coefficients, and vw is 

the inflammatory velocity of plaque growth. 

2.2 Boundary conditions 

Computer finite element model used here for performing simulations were generated using medical images 

(CT). There are 516 DICOM images for this model. 

Figure 2. Application of segmentation algorithm and representation of 3D model 

Figure 2 represents the process of obtaining a three-dimensional model using an automatic segmentation 

algorithm within the Materialize Mimics 10.01 software. Blood flow through the right coronary artery (RCA) was 

simulated using PAK solver [10]. Blood was considered as a Newtonian fluid with a dynamic viscosity of 

μ=0.00365 Pas and incompressible with a density of ρ=1050 kg/m
3
. Pulsatile coronary inlet velocity waveform 

was used (fig 3). A three-dimensional mesh consists of 230687 nodes and 184236 elements. 

Figure 3. Pulsatile coronary inlet velocity waveform [11] 

3 RESULTS 

A three-dimensional simulation of blood flow through lumen and plaque progression in vessel wall was 

simulated. The bio molecular parameters such as LDL, HDL and triglycerides are used for the computer 

simulation (tab 1). 
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Patient No. LDL HDL Triglycerides 

baseline follow-up baseline follow-up baseline follow-up 

#01 16 96.4 46 40 182 113 

#02 107 104.6 59 55 178 157 

#03 164 164 74 75 110 108 

Table 1.  The bio molecular parameters and adhesion molecules 

Patient #01 is 67 years old male, which of cardiovascular risks has past smoking and dyslipidemia. From the 

current therapy receives the Statins. Statins, also known as HMG-CoA reductase inhibitors, are a class of lipid-

lowering medications. Statins have been found to reduce cardiovascular disease (CVD) and mortality in those 

who are at high risk of cardiovascular disease. The evidence is strong that statins are effective for treating CVD 

in the early stages of the disease (secondary prevention) and in those at elevated risk but without CVD (primary 

prevention). Figure 4 shows results of shear stress distribution and plaque concentration for patient #01.  

a) b) 

Figure 4. Shear stress distribution and plaque concentration for patient #01: a) baseline, b) follow up 

At a length of 5 to 11 mm, from the inlet of the coronary artery, a low values of wall shear stress was 

observed. Average values range from 0.32 to 0.43 Pa, measured at cross sections, at a distance of 0.5 mm. Also, 

at 21.1 mm from the inlet of the artery, a low value of the wall shear stress was noticed. Low shear stress values 

are associated with increased plaque concentration, as shown in the fig 4a (right; red color). The highest values of 

plaque concentration in these zones are 1.32e-03 mg/ml. The second time moment, follow up (fig 4b), shows 

higher values of wall shear stress in the observed zone, and higher plaque concentration values that indicating 

there has been further plaque progression. 

Patient #02 is 69 years old female, which of cardiovascular risks has hypertension. From the current therapy 

receives the ACE-Inhibitors and Aspirin. An angiotensin-converting enzyme inhibitor (ACE inhibitor) is a 

pharmaceutical drug used primarily for the treatment of hypertension (elevated blood pressure) and congestive 

heart failure. This group of drugs causes relaxation of blood vessels as well as a decrease in the volume of blood, 

which leads to lower blood pressure and reduced demand from the heart. Aspirin, also known as acetylsalicylic 

acid (ASA), is a nonsteroidal anti-inflammatory drug (NSAID) and works similar to other NSAIDs but also 

suppresses the normal functioning of platelets. Results of shear stress distribution and plaque concentration for 

patient #02 are shown on fig 5. 
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a) b) 

Figure 5. Shear stress distribution and plaque concentration for patient #02: a) baseline, b) follow-up 

As can be seen from Figure 5, at the inlet of the coronary artery, from 5 mm to 37 mm, there is a low values 

of wall shear stress. Average values range from 0.21 to 0.27 Pa, measured at cross sections, at a distance of 0.5 

mm. At the same time, on the mentioned part of the coronary artery, an increased plaque concentration with a 

maximum value of 2.5e-03 mg/ml was observed. The second time moment, follow-up (fig 5b), shows lower 

values of wall shear stress in the observed zone, and lower plaque concentration values indicating that the applied 

therapy gave results. 

Patient #03 is 47 years old male, which of cardiovascular risks has dyslipidemia. From the current therapy 

receives the Aspirin. Results of shear stress distribution and plaque concentration for patient #03 are shown on 

fig 6. 

a) b) 

Figure 6. Shear stress distribution and plaque concentration for patient #03: a) baseline, b) follow up 

At 19mm, viewed from above, from the artery entrance, a low value of wall shear stress and a potentially site 

of plaque concentration was observed. The mean value is 0.22 Pa. At the observed site of the artery, the 

concentration of plaque of 1.06e-03 mg/ml was measured. Observing another time moment, follow up, it can be 

noticed that there is a mild drop in wall shear stress value and plaque concentrations at that location. So, it can be 

concluded that there has been stabilization and prevention of further progression of the disease. 

4 CONCLUSIONS 

Cardiovascular disease is responsible for an increasing number of mortality in all developed countries. Great 

attention is focused on studying this disease in order to reduce the mortality rate. In this study three-dimensional 

simulations were investigated in order to determine hemodynamic parameter such as wall shear stress with 

computational fluid dynamics in the coronary artery using patient-specific data from computed tomography. 

Also, plaque concentration in the arterial wall was calculated. Two time moments were observed: baseline (0 

months) and follow-up 1 (after 8 months). The results of the performed analyzes have shown that sites with lower 

shear stress values were correlated with the sites of plaque accumulation measurements.  
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By knowing bio-molecular parameters such as LDL, HDL and triglycerides, it is possible to predict the sites 

of plaque occurrence as well as concentration in certain places of the artery using computer simulation. 

ACKNOWLEDGMENTS 

This study was funded by the grants from the Serbian Ministry of Education, Science and Technological 

Development III41007, ON174028 and EC HORIZON2020 689068 SMARTool project. 

REFERENCES 

[1] Filipovic, N., Rosic, M., Tanaskovic, I., Milosevic, Z., D Nikolic, Zdravkovic, N, Peulic, A., Kojic, M., 

Fotiadis, D., Parodi, O. (2011), “ARTreat project: Three-dimensional Numerical Simulation of Plaque Formation 

and Development in the Arteries,” Information Technology inBioMedicine, Vol. 16, pp. 272-278. 

[2] Caro, C.G., Fitz-Gerald, J.M., Schroter, R.C. (1971), “Atheroma and arterial wall shear observation, 

correlation and proposal of a shear-dependent mass transfer Mechanism for Atherogenesis,” Proc Roy Soc, Vol. 

177, pp. 109–159. 

[3] Giannogolou, G.D., Soulis, J.V., Farmakis, T.M., Farmakis, D.M., Louridas, G.E. (2002), “Haemodynamic 

factors and the important role of local low static pressure in coronary wall thickening,” International journal of 

Cardiology, Vol. 86, pp. 27–40. 

[4] Filipovic, N., Kojic, M., Ivanovic, M., Stojanovic, B., Otasevic, L., Rankovic, V. (2006), MedCFD, 

Specialized CFD software for simulation of blood flow through arteries, University of Kragujevac, Serbia. 

[5] Kojic, M., Filipovic, N., Stojanovic, B., Kojic, N. (2008), Computer Modeling in Bioengineering: 

Thеoretical Background, Examples and Software, John Wiley and Sons, Chichester, England. 

[6] Kedem, O., Katchalsky, A. (1961), “A physical interpretation of the phenomenological coefficients of 

membrane permeability,” J General Physiol, Vol. 45, pp. 143–79. 

[7] Kedem, O., Katchalsky, A. (1958), “Thermodynamic analysis of the permeability of biological membranes to 

non-electrolytes,” Biochim Biophys, Vol. 27, pp. 229–46. 

[8] Calvez, V., Ebde, A., N. Meunier, A. Raoult, “Mathematical modelling of the atherosclerotic plaque 

formation”, ESAIM Proceedings, 28, 2008, pp. 1-12. 

[9] Boynard, M., Calvez, V., Hamraoui, A., Meunier, N., Raoult, A. (2009), “Mathematical modelling of earliest 

stage of atherosclerosis,” COMPDYN 2009 – SEECCM 2009, 22 - 24 June 2009, Island of Rhodes, Greece. 

[11] Kojic, M., Filipovic, N., Stojanovic, B., Kojic, N. (2008), Computer Modeling in Bioengineering – 

Theoretical Background, Examples and Software, John Wiley and Sons, England. 

[12] Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrick, D. (2005), “Non-Newtonian blood flow in human 

right coronary arteries: Transient simulations,” J Biomech., Vol. 39, pp. 1116–1128. 

351



9th GRACM International Congress on Computational Mechanics 

Chania, 4-6  June 2018 

A SPECTRAL COLLOCATION METHOD FOR VIBRATION 
SUPPRESSION OF SMART ELASTIC PLATES 

Aliki D. Muradova1, Georgios E. Stavroulakis2 and Georgios K. Tairidis3

School of Production Engineering and Management  

Technical University of Crete 

Chania, GR-73100, Greece 

e-mail: 1aliki@mred.tuc.gr,  2gestavr@dpem.tuc.gr ,  3 tairidis@gmail.com 

web page: 1,2,3http://www.comeco.tuc.gr/Personnel.html   

Keywords: Smart Plate Model, Fourier Expansions, Collocation Method, Fuzzy Control, Computational

Algorithm. 

Abstract. A dynamic control model for vibration suppression of a smart elastic plate with piezoelectric materials

is considered. The plate is subjected to external transversal disturbances and generalized control forces, produced 

by the electromechanical coupling effects. Various boundary conditions are considered. A spectral collocation 

method is proposed in order to spatially discretize the model. Mamdani type fuzzy inference system is used in order 

to compose the controller. The external loading and control forces are located at the discrete collocation points 

on the plate domain. Numerical results are presented. 

1 INTRODUCTION 
Classical mathematical theories of control work well on linear systems. However, their effectiveness depends 

on many restrictions. On the other hand nonlinear controllers, based on fuzzy logic with built in smart 

computational methods can give a good description of a behaviour of nonlinear structures and provide a nonlinear 

feedback. 

An active vibration control of smart elastic plates has been considered by many authors. Different methods 

have been proposed [4, 6, 10, 11, 12, 16, 18] etc.   The control systems are classified on three groups, control 

systems with Mamdani fuzzy controllers, control systems with Takagi-Sugeno fuzzy controllers, and adaptive and 

predictive control systems.  

Here a vibration suppression of a smart piezoelectric plate is performed by the algorithm, based on spatial 

discretization by means of a spectral collocation method. The obtained system of ordinary differential equations is 

solved with the use of Newmark method [14] and an application Mamdani type fuzzy inference system. The 

collocation method gives possibilities to locate control forces at discrete points of the plate. Usually, for solving 

partial differential equations spline and Chebyshev collocation methods are developed (e.g., [5, 15]). In the paper 

[5] a pseudo-spectral Chebyshev-collocation technique for solving the nonlinear problem for a plate is applied. 

Here we propose an effective combination of spectral and collocation methods which possess a high accuracy 

order at collocation points, convenient and the same time simple in applications to control problems. The proposed 

numerical algorithm is intended for a control of Fourier coefficients in the Fourier double series expansions for 

the solution. After computing the coefficients we can easily calculate the displacement, velocity and Airy’s 

function at each point of the plate. 

Active fuzzy control is a suitable tool for the systematic development of nonlinear control strategies and can 

be fine-tuned if no experience exists in the behaviour of considered body (structure) or if one designs more 

complicated control schemes. In some cases the fine tuning of fuzzy parameters can be optimized by using 

optimization methods ([7, 8, 13, 19] etc.). 

The present paper is organized as follows. Section 2 focuses on the formulation of the mechanical models, 

along with the set up of the initial and of the boundary conditions. In Section 3 the model is spatially discretized 

with the use of the collocation method, while in Section 4 Newmark-β is considered for solving the system of 

equations. In the following two Sections 5 and 6 are given the piezoelectric constitutive equations and the details 

of the fuzzy controller respectivley. Finally, numerical results are given in Section 7 and the main conclusions are 

reported in Section 8. 

2 FORMULATION OF THE PROBLEM 
A mathematical model describing vibrations of an isotropic, homogeneous elastic plate with piezoelectric 
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materials in the presence of active control, and allowance for the rotational inertia of the plate elements and viscous 

damping, is written as  

𝐿(𝑤) ≡ 𝜌ℎ𝑤𝑡𝑡 − 𝜌
ℎ3

12
Δ𝑤𝑡𝑡 + ℎ𝑐𝑤𝑡 + 𝐷Δ2𝑤 = [𝑄] + [𝑍],  (1) 

 in the linear case (Kirchhoff ‘s plate small deformations, e.g. [1, 17]).

And in general for the nonlinear case (von Kármán’s plate model for large deflections ([1, 2, 3] etc.) 

𝐿1(𝑤, 𝜓) ≡ 𝐿(𝑤) − ℎ[𝑤, 𝜓] = [𝑄] + [𝑍],  (2) 

𝐿2(𝑤, 𝜓) ≡  Δ2𝜓 −
𝐸

2
[𝑤, 𝑤] = 0,     (𝑡, 𝑥, 𝑦) ∈ Ω,          (3) 

where the following notations are used: 

o [𝑤, 𝜓] = 𝜕11𝑤𝜕22𝜓 +  𝜕11𝜓𝜕22𝑤 − 2𝜕12𝑤𝜕12𝜓  (Monge-Ampére’s form).

o 𝑤 is the deflection (displacement) of the plate.

o 𝜓(𝑡, 𝑥, 𝑦) is the Airy stress potential describing internal stresses, which appear due to the deformation of the

plate.

o Ω = (0, 𝑇] × 𝐺, where 𝑇 is the final time and 𝐺 = (0, 𝑙1) × (0, 𝑙2) is the shape of the plate (𝑙1 and 𝑙2 are the

lengths of the sides of the plate).

o 𝜌 is the density of the material.

o ℎ is the thickness of the plate.

o 𝑐 is the viscous damping coefficient.

o 𝐷 is the flexural rigidity of the plate.

o [𝑄] are the external transversal loading forces.

o [𝑍] are the control forces.

For the collocation method it is required that 𝑤, 𝜓 ∈ 𝐶2(0, 𝑇; 𝐶2(𝐺)) ∪ 𝐶(0, 𝑇; 𝐶4(𝐺)). Regarding the loading

forces we consider [𝑄] as a function of (𝑡, 𝑥, 𝑦) or as a discrete function only of 𝑡, defined at some collocation 

points of the plate. The suppression of vibrations is done through the control of the Fourier coefficients. We 

consider a time-discrete type of control force [𝑍], located at some discrete-collocation points of the plate, which 

may be different from the points where external forces are applied.  

For the displacement and velocity at the initial time we assume 

𝑤(0, 𝑥, 𝑦) = 𝑢(𝑥, 𝑦),    𝑤𝑡(0, 𝑥, 𝑦) = 𝜈(𝑥, 𝑦) in 𝐺,

where the functions 𝑢, 𝜈 ∈ 𝐶(𝐺).  

Regarding the boundary conditions we consider simply supported, partially and totally clamped plates (see 

[9]). 

3 DISCRETIZATION WITH THE USE OF THE COLLOCATION METHOD 
An approximate analytical solution of (2), (3) in the form of partial sums of double Fourier's series with the 

time-dependent coefficients ([9, 10, 11]) reads 

𝑊𝑁(𝑡, 𝑥, 𝑦) = ∑ 𝑤𝑁
𝑖𝑗(𝑡)

𝑁

𝑖,𝑗=1

ω𝑖𝑗(x, y), 𝑊𝑡,𝑁(𝑡, 𝑥, 𝑦) = ∑ 𝑤𝑡,𝑁
𝑖𝑗 (𝑡)

𝑁

𝑖,𝑗=1

ω𝑖𝑗(x, y),  (4) 

𝛹𝑁(𝑡, 𝑥, 𝑦) = ∑ 𝜓𝑁
𝑖𝑗(𝑡)

𝑁

𝑖,𝑗=1

𝜑𝑖𝑗(x, y), (𝑡 > 0),  (5) 

where the global basis functions 𝜔𝑖𝑗 , 𝜑𝑖𝑗  are chosen to match the boundary conditions. For the initial conditions

we have 

𝑊𝑁(0, 𝑥, 𝑦) = 𝑢𝑁(𝑥, 𝑦) = ∑ 𝑤𝑁
𝑖𝑗(0)

𝑁

𝑖,𝑗=1

φij(x, y),  (6) 

𝑊𝑡,𝑁(0, 𝑥, 𝑦) = 𝑣𝑁(𝑥, 𝑦) = ∑ 𝑤𝑡,𝑁
𝑖𝑗 (0)

𝑁

𝑖,𝑗=1

σij(x, y),  (7) 

where 𝜑𝑖𝑗  and 𝜎𝑖𝑗 are the bases. It is assumed 𝜑𝑖𝑗 = 𝜎𝑖𝑗 = 𝜔𝑖𝑗 .

Let us now consider the collocation points (𝑥𝑚 , 𝑦𝑛), {(𝑥𝑚, 𝑦𝑛), 0 < 𝑥𝑚 < 𝑙1, 0 < 𝑦𝑛 < 𝑙2, 𝑚, 𝑛 =
1,2, . . . , 𝑁} on the spatial domain G for the equation (1) and for the system (2), (3). Suppose, that [𝑄] is the function 

of time defined at some or all collocation points. Similarly, let the control forces [𝑍] be put at some collocation 

points, which may coincide with the points of application of the loading pressure. We find the solution of (2), (3) 

in the form (4), (5) when 𝑊𝑁 and 𝛹𝑁   satisfy the equations (2), (3) at the collocation points, i.e.
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𝐿1(𝑊𝑁 , 𝛹𝑁)|(𝑥=𝑥𝑚,𝑦=𝑦𝑛 ) ≡ 𝐿(𝑊𝑁)|(𝑥=𝑥𝑚 ,𝑦=𝑦𝑛 ) − ℎ[𝑊𝑁 , 𝛹𝑁]|(𝑥=𝑥𝑚,𝑦=𝑦𝑛 )  (8) 

= [𝑄]|(𝑥=𝑥𝑚,𝑦=𝑦𝑛 ) + [𝑍]|(𝑥=𝑥𝑚 ,𝑦=𝑦𝑛 ),

𝐿2(𝑊𝑁 , 𝛹𝑁)|(𝑥=𝑥𝑚 ,𝑦=𝑦𝑛 ) = 0,      𝑚, 𝑛 = 1,2, … , 𝑁.  (9) 

Supposing that control forces are located at every or some collocation points, from (8) and (9) we obtain a system 

of nonlinear ordinary differential equations of motion with respect to 𝑤𝑁
𝑚𝑛  and 𝜓𝑁

𝑚𝑛

(𝐌�̈�𝑁)𝑚𝑛 + (𝐂�̇�𝑁)𝑚𝑛 + (𝐊1𝐰𝑁)𝑚𝑛 = (𝐀1,𝑁(𝐰𝑁 , 𝛙𝑁))𝑚𝑛 + 𝑞𝑚𝑛 + 𝒛𝒎𝒏,     (𝐊2𝛙𝑁)𝑚𝑛 = 𝐀2,𝑁(𝐰𝑁 , 𝐰𝑁)𝑚𝑛

or 

(𝐌�̈�𝑵)𝑚𝑛 + (𝐂�̇�𝑁)𝑚𝑛 + (𝐊1𝐰𝑁)𝑚𝑛 = (𝐀1,𝑁 (𝐰𝑁 , 𝐊2
−1𝐀2,𝑁(𝐰𝑵, 𝐰𝑁)))𝑚𝑛 + 𝑞𝑚𝑛 + 𝒛𝒎𝒏, (10) 

where 

(𝐌�̈�𝑁)𝑚𝑛 = ∑ 𝑤𝑡𝑡
𝑖𝑗(𝑡)

𝑁

𝑖,𝑗=1

(ℎ − 𝜌
ℎ3

12
Δ) 𝜔𝑖𝑗(𝑥𝑚 , 𝑦𝑛),

(𝐂�̇�𝑁)𝑚𝑛 = ℎ𝑐 ∑ 𝑤 𝑡
𝑖𝑗(𝑡)𝜔𝑖𝑗(𝑥𝑚 , 𝑦𝑛)

𝑁

𝑖,𝑗=1

, 

(𝐊𝟏𝑤𝑁)𝑚𝑛 = 𝐷 ∑ Δ2𝑤𝑖𝑗(𝑡)

𝑁

𝑖,𝑗=1

𝜔𝑖𝑗(𝑥𝑚 , 𝑦𝑛),

(𝐊𝟐𝝍𝑵)𝑚𝑛 = ∑ Δ2𝜓𝑖𝑗(𝑡)

𝑁

𝑖,𝑗=1

𝜑𝑖𝑗  (𝑥𝑚, 𝑦𝑛),

𝐀𝟏,𝑁 (𝒘𝑁 , 𝜓𝑁) = ℎ (𝐀𝑁 (𝒘𝑁 , 𝜓𝑁))𝑚𝑛 ,

𝐀𝟐,𝑁 (𝒘𝑁 , 𝜓𝑁) =
𝐸

2
 (𝐀𝑁 (𝒘𝑁 , 𝜓𝑁))𝑚𝑛 ,

(𝐀𝑁 (𝒘𝑁 , 𝜓𝑁))𝑚𝑛 = ∑ ∑ 𝑤𝑖𝑗(𝑡)𝑤𝑘𝑙(𝑡)(

𝑁

𝑘,𝑙=1

𝑁

𝑖,𝑗=1

𝜕11𝜔𝑖𝑗(𝑥𝑚, 𝑦𝑛)𝜕22𝜑𝑘𝑙(𝑥𝑚 , 𝑦𝑛)

+𝜑𝑖𝑗(𝑥𝑚 , 𝑦𝑛)𝜕22𝜔𝑘𝑙(𝑥𝑚, 𝑦𝑛) − 2𝜕12𝜔𝑖𝑗(𝑥𝑚, 𝑦𝑛)𝜕12𝜑𝑘𝑙(𝑥𝑚 , 𝑦𝑛).

Obviously, for the linear model (1) the nonlinear part in the right-hand side of (10), 

𝐀1,𝑁 (𝐰𝑁 , 𝐊2
−1𝐀2,𝑁(𝐰𝑁 , 𝐰𝑁)) does not present. Furthermore,  𝑞𝑚𝑛 are the values of the time-discrete forces at

some collocation points (𝑥𝑚 , 𝑦𝑛), 𝑚, 𝑛 = 𝑁1, 𝑁1 + 1, . . . , 𝑁2 and 𝑧𝑚𝑛are the values of the control forces at some

collocation points (𝑥𝑚 , 𝑦𝑛), 𝑚, 𝑛 = 𝑀1, 𝑀1 + 1, . . . , 𝑀2. The collocation points where the external loading forces

are applied are called loading points and the points where we put/locate the control are called control points. In 

case 𝑁1 ≡  𝑀1 ≤  𝑁 and 𝑁2 ≡  𝑀2 ≤  𝑁 the loading points coincide with the control points. Obviously, we can

also deal with free collocation points, where the external and control forces are absent. At these points the values 

of the external and control forces are supposed to be zero. 

The advantage of the collocation method over the Galerkin's projections is that we do not need to take the inner 

products, and we can consider external loading disturbances at the discrete points and locate the control forces of 

(all or some) collocation points in the proper way. Inversely, the collocation points can be considered at the best 

positions for the control, i.e. the collocation points are chosen in order to provide optimal suppressions of vibrations 

of the plate. 

However, the collocation method may be not so accurate in the area domain between the collocation points,

and the obtained mass, damping and stiffness matrices are not so sparse as in case of Galerkin's projections. 

For the initial conditions from (6), (7) we have 

∑ 𝑤𝑁
𝑖𝑗

𝑁

𝑖,𝑗=1

(0)𝜔𝑖𝑗(𝑥𝑚, 𝑦𝑛) = 𝑢𝑁(𝑥𝑚 , 𝑦𝑛), ∑ 𝑤𝑡,𝑁
𝑖𝑗

𝑁

𝑖,𝑗=1

(0)𝜔𝑖𝑗(𝑥𝑚, 𝑦𝑛) = 𝑣𝑁(𝑥𝑚 , 𝑦𝑛),   𝑚, 𝑛 = 1,2, … , 𝑁.

4 NEWMARK--𝜷 FORMULAS FOR THE SYSTEM (10) 
For solving the system of equations (10) the Newmark-𝛽 method, [14] is applied. According to the method the 

following formulas for the displacement, velocity and acceleration hold 

𝐰𝑘 = 𝐠𝑘,0 + 𝛽Δ𝑡2�̈�𝑘+1, 1

�̇�𝑘 = 𝐠𝑘,1 + 𝛾Δt�̈�𝑘+1,
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where 

𝐠𝑘,0 = 𝐰𝑘 + Δ𝑡�̇�𝑘 + Δ𝑡2(0.5 − 𝛽)�̈�𝑘+1, 𝐠𝑘,1 = �̇�𝑘 + Δ𝑡(1 − 𝛾)�̈�𝑘+1,

𝐰𝑘 = 𝐰(𝑡𝑘),   𝑡𝑘 = 𝑘Δ𝑡,   𝑘 = 0,1, … , 𝐾𝑇 , Δ𝑡 =
𝑇

𝐾𝑇
 . 

Here and below the index 𝑁 is omitted for the convenience. 

For the integration constants we take 𝛽 = 0.25, 𝛾 = 0.5 that corresponds to the case of unconditionally stable 

constant average acceleration method. 

5 PIEZOELECTRIC EQUATIONS 
For the application of the fuzzy control mechanism, piezoelectric elements which provide the smart behavior 

are considered across the structure. The formulation of the piezoelectric equations takes into account some 

assumptions. For example, the mechanical and the electrical forces are balanced at a certain time, due to the 

existence of vibrations and thus, the piezoelectric equations can be decoupled. Moreover, the temperature variation 

is neglected. Under these assumptions, the linear piezoelectric equations of the coupling between the elastic and 

the electric field can be written in matrix form as 

{𝐷} = [𝑒]{𝜀} + [𝜉]{𝐸} 

{𝜎} = [𝑐]{𝜀} − [𝑒]𝑇{𝐸} 

where {D} is the electric displacement, [e] is the piezoelectric stress, {ε} is the strain, [ξ] is the dielectric constant, 

{E} is the electric field, {σ} is the stress and [c] is the plane-stress ([20]). 

In the case where the piezoelectric patch acts as a sensor, the sensor equation can be derived from the equation 

of the electro-elastic relation of a piezoelectric material which reads 

31 33z x zD e E = +  

Note that only strains produced by the host structure, act on the piezoelectric patch, thus the output charge from 

the sensor is given by 

( )
2 2

1

2
ef ef

p

z z

S Sh hz z h

q t D dS D dS

= = +

     
   = + 
        

   
 

where Sef  is the effective surface electrode of the patch. The effective surface electrode of the patch is the 

portion of the patch that is covered by electrodes on both sides. The electric charge generated due to the external 

mechanical disturbance will be detected only if the charge is collected through the effective surface electrode. In 

this work, it is assumed that the entire piezoelectric patch serves as effective surface electrode. According to the 

direct piezoelectric phenomenon and taking into account that no electric field applied to the sensor layer, we get 

( ) 31 31
2

ef ef

p

x

S S

h h
q t e dS e dS

x




+  
= =  

 
 

The current on the surface of the patch can be calculated by differentiating the charge with respect to time. 

( ) ( )dq t
i t

dt
=

The current is converted into voltage output by 

( ) ( )SV t G i t=

where GS is the gain of the current amplifier. 

6 COMPUTATIONAL PROCEDURE WITH THE USE OF FUZZY INFERENCE CONTROLLER 
Similarly with the techniques, described in [10, 11] a nonlinear fuzzy controller is constructed by using the 

Fuzzy Toolbox of MatLab. The Mamdani-type FIS with two inputs and one output is used. Giving ``mappings'' of 

input variables into membership functions and truth values, the controller makes decisions for what action to take 

based on a set of ``rules''. The system receives as inputs the coefficient 𝑤𝑖𝑗 for the displacement and velocity 𝑤𝑡
𝑖𝑗

,

and gives as output the control force 𝑧 at a given point of the structure. The controller system uses 15 rules. All 

rules have weight equal to 1 and use the AND-type logical operator. The rules are presented in Table 1.  
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Vel\Disp FarUp CloseUp Equil CloseDn FarDn 

Up Max Med+ Low+ Null Low- 

Null Med+ Low+ Null Low- Med- 

Down Low+ Null Low- Med- Min 

Table 1. The fuzzy inference rules (e.g. if the displacement is ``FarUp'' and the velocity is ``UP'' then the control 

force is ``Max''). 

Triangular and trapezoidal shape membership functions have been chosen both for the inputs and for the output. 

The implication method has been set to minimum (min), while the aggregation method has been set to maximum 

(max). The defuzzifield output value has been created by using the MOM (Mean of Maximum) defuzzification 

method. 

We start from a prediction of deflection of the plate and calculate the range of expected displacements and 

velocities, which can be done from practical calculations, and evaluation of the external loading forces, we design 

the FIS. We construct the control rules, state the membership functions (fuzzy sets) for input and output, and tune 

the parameters.  

7 NUMERICAL RESULTS 
In this section we present numerical results for solving (1) with the simply supported boundary conditions. A 

dynamic, sinusoidal periodic loading is used, 𝑄(𝑡, 𝑥, 𝑦) = sin 𝜔𝑡, 𝜔 = 5𝜋, 𝑞11(𝑡) = 𝑄(𝑡, 𝑥1, 𝑦1),   𝑞13(𝑡) =
𝑄(𝑡, 𝑥1, 𝑦3),   𝑞31(𝑡) = 𝑄(𝑡, 𝑥3, 𝑦1),   𝑞33(𝑡) = 𝑄(𝑡, 𝑥3, 𝑦3),  and 𝑞𝑚𝑛 = 0 at the other collocation points. The

collocation points are defined as 𝑥𝑚 = 𝑚ℎ1, 𝑦𝑛 = 𝑛ℎ2, 𝑚, 𝑛 = 1, 2, … , 𝑁, ℎ1 = 𝑙1/(𝑁 + 1), ℎ2 = 𝑙2/(𝑁 + 1). 
The purpose of the fuzzy controller is to reduce the oscillation. The collocated controller takes as input the 

displacement and the velocity at discrete points of the plate and gives back the control forces to be applied at the 

same point. The physical parameters take the following values: 𝑙1 = 𝑙2 = 1, 𝐸 = 2, ℎ = 0.5, 𝜌 = 1000, 𝑐 = 0,
𝐷 = 1. The computations have been done with 𝑇 = 50, 𝑁 = 3 and 𝐾 = 500. On Figures 1, 2 and 3 the 

membership functions for the inputs (displacement and velocity) and output (control) are shown.  

Figure 1. Membership functions for the input (displacement) of the fuzzy inference system. 
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Figure 2. Membership functions for the input (velocity) of the fuzzy inference system. 

Figure 3. Membership functions for the output (control) of the fuzzy inference system. 
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Figure 4. Displacement at the collocation point (𝑥1, 𝑦1) of the plate before and after the fuzzy.

Figure 5. Velocity at the collocation point (𝑥1, 𝑦1) of the plate before and after the fuzzy.
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Figure 6. External forces and control forces after the fuzzy at the collocation point (𝑥1, 𝑦1) of the plate.

The obtained results, the displacement and velocity are show in Figures 3, 4. The external loading and  control 

forces after using the fuzzy inference controller are plotted in Figures 5, 6. 

8 CONCLUSIONS 
A vibration suppression of an elastic plate with the use of a spectral-collocation method and a fuzzy inference 

controller has been presented. First, the mechanical model has been spatially discretized and then the obtained 

system has been solved by means of the Newmark method. On each time step of the simulation the discrete values 

of control have been included in the system of ordinary differential equations. A numerical example has been 

illustrated. 
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Abstract. Shunt piezoelectric systems are very popular in structural damping applications. The main 

characteristic of such systems is that they can absorb vibrations and destroy the kinetic energy, by consuming it 

in an electric circuit which consists of resistors, inductors and capacitors. The aim of the present paper is to 

investigate the optimal placement of the piezoelectric patches on a shunted piezoelectric beam which consists of 

an elastic part and a pair of piezoelectric elements which are connected to the shunt circuits. The investigation 

is carried out using the tools of modal analysis for the evaluation of the different positions of the patches. 

1 INTRODUCTION 

Smart structures with embedded sensors, actuators, or even control systems have the ability to respond and/or 

suppress excitations which, in turn, are caused by external and/or unknown reasons. Various smart materials such 

as piezoelectrics, piezoceramics, electrostrictive materials, magnetostrictive materials, etc. can be used to provide 

flexible structures with smart characteristics. It is noteworthy that the combination of both functions, i.e. sensing 

and actuation, is possible, due to the nature of the piezoelectric effect. Thus, an increasing interest in passive 

control of vibrations by shunted piezoelectric transducers with electrical impedances is observed during the last 

years. Shunt damping, which is implemented through the adequate placement of piezoelectric patches is a widely 

used method for the vibration suppression of smart flexible structures [1], [2]. In addition, in the case of a smart 

controlled structure with some, even small, energy demands, energy harvesting can be added to a structure with 

shunt circuits in order to provide the small amount of energy which is required for the controller. 

The shunt piezoelectric systems are capable of suppressing mechanical vibrations and/or noise of smart 

composite flexible structures, which can be critical for several applications, e.g. on wind energy turbine systems. 

Thus, the optimization of such systems, e.g. in the direction of the optimal placement of piezoelectric patches can 

be very helpful. 

2 THE BEAM MODEL 

For the investigations of the present paper, a smart piezoelectric beam with shunt characteristics is considered 

as seen in figure 1. One can observe that the beam is divided in three areas. The area 2 is the position of the 

piezoelectric patch, while the other two areas of the beam consist only of the elastic part of the structure. Note 

that area 2 can be discretized by several elements, for example in our application with 5 finite elements. The form 

and the layout of the piezoelectric elemets, depends on the desired result in terms of vibration suppression, as 

well as the structural geometry and/or the involved materials [3]. Similar models can be used in various 

applications including, among others, the design of smart piezocomposite structures [4], [5], in structural control 

as can be found in review articles [6], [7] or energy harvesting applications as considered, among others, in [8], 

[9], [10].  
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Figure 1: A smart beam model 

2.1 Equations of motion for the beam and calculation of system response 

The equations of motion for the beam with surface bonded piezoelectric patches, are derived by the 

Hamilton’s principle: 

( )
0

0
T

dtT U W   =− +  
(1) 

The total strain energy U and the kinetic energy T are calculated using the expressions: 

 
0

1

2

L

x x xz xz z z

A

U E D dAdx   = + −  ,
2 2

0

1

2

L

x z

A

T u u dAdx  = +   (2) 

where dA is the area of cross-section of the beam. 

If the only loading consists of moments induced by piezoelectric actuators and since the structure has no 

bending-twisting couple, then δW is given as: 

0

L

AW b M dx
x


 

 
=  

 
 (3) 

where MA is the moment per unit length induced by the actuator and expressed as: 

2 2

11 31

2 2A A

h h

A A A

x z

h hh h

M z dz zQ d E dz

− −

− − − −

= =  (4) 

and 

z

A A

A

V
E

h
=

(5) 

where VA is the applied voltage across the direction of the thickness of the piezoelectric patch and hA is the 

thickness of the piezoelectric transducer. 

The calculation of the eigen modes is necessary in order to find the system’s response. The eigen frequencies 

ωi and eigen vector Φi depend only on the mechanical properties of the system and can be found by calculating 

the N eigen values of the following problem: 

(6) 

The displacement field can be described as: 

(7) 

2.2 The shunt circuits 

With the term passive shunt circuit, one implies the connection of an electric impedance (e.g. a resistance, an 

inductance, etc.) to a piezoelectric element which in turn is attached to a smart composite structure, with basic 

U(𝑡) = ∑ Φiqi(𝑡)

𝑁

𝑖=1
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aim of the technique the vibration suppression of the host structure at several frequencies. The connection of a 

shunt system with impedance equals to Z(ω) to a piezoelectric patch leads to a relation between the voltage V 

and the charge q which has as follows: 

(8) 

A system based on shunt circuits can be modeled using only the pure mechanical systems and analogous 

electric systems. The optimum values of the electric components can be derived from the minimization of the 

controlled displacement fields. The amount of the maximum current which flows within the system can be used in 

the design of the electric components of the system. More information on shunt piezoelectric systems can be 

found in [1], [2], [11]. 

3 NUMERICAL INVESTIGATION 

In the present investigation, the optimum position of the piezoelectric patch for shunt damping is sought. For 

this reason, the piezoelectric patch was placed at different positions of the beam and namely at elements 2-6, 12-

16, 22-26 and 32-36, occupying five finite elements each time. 

Firstly, the case of placement at the elements 2-6, i.e. near the fixed end of the structure is considered. The 

system response for the first four eigen frequencies is shown in the following figures. With blue color is denoted 

the initial system and with red color is shown a suitably defined resonant shunt system. From the results one can 

observe that this position is excellent, as satisfactory suppression is achieved for each one from the first four 

modes.  

Figure 2: The response in the area of the first four eigen frequencies of the structure when piezoelectric patch is 

placed at elements 2-6 

During the second test, the piezoelectric patch was placed on the finite elements 12-16. The results, which are 

shown in figure 3 below, indicate that the suppression is not adequate for the examined modes. 

When the piezoelectric patch is placed on the elements 22-26, it is obvious from the system response that the 

reduction is less compared to the previous cases. One may have expected this, as this area is near a vibration 

bond. The results of this test are shown in figure 4. 

V = -Z(ω)q
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Figure 3: The response for the first four eigen frequencies when piezoelectric patch is placed at elements 12-16 

Figure 4: The response for the first four eigen frequencies of the structure when piezoelectric patch is placed at 

elements 22-26 
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Finally, the piezoelectric element was placed near the free end, on elements 32-36. In this case one can 

observe that the system is not working for the first eigen mode. This result was rather expected, as it is known 

from dynamics that near this area there is no information about this mode. The results are shown schematically in 

the figure 5 below. 

Figure 5: The response in the area of the first four eigen frequencies when the patch is placed at elements 32-36 

From the above results, one can conclude that the best position for the piezoelectric element is near the fixed 

end, i.e. at the finite elements 2-6. 

4 CONCLUSIONS 

Shunt piezoelectric systems have the ability to add the necessary damping to smart structures in order to 

overtake vibrations which are due to external causes. It is known that the more the piezoelectric material in one 

smart structure, the more the coupling, as the total stiffness is affected. However, if the modification of the values 

of inductance and/or the resistance is possible, then a single patch, or a symmetrically placed pair of patches is 

sufficient in order to obtain the desired properties. In the present paper, several different positions of the 

piezoelectric patch on a smart beam were investigated. The selection of the possible positions was based on 

intuition. The results have shown that the best position of the patch is near the fixed end, as the system can 

suppress more modes. To extend this work, one may consider using a global optimization method, e.g. a genetic 

algorithm, which may provide better results. 
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Abstract. This study presents a new formulation of the dynamics of systems involving a single frictional contact. 
An analytical dynamics framework is employed, together with some fundamental tools of differential geometry. 
This provides a foundation for applying Newton’s law of motion to systems possessing configuration manifolds 
with boundary. It is shown that the contact phase takes place inside a thin boundary layer, where the dominant 
dynamics is described by a set of three ordinary differential equations. The study includes a selected set of 
examples, with emphasis put οn investigating phenomena arising during central or eccentric collision of bodies. 

1 INTRODUCTION 
Dynamics of systems possessing mechanical components that come in contact during their motion is a 

classical subject of Mechanics (e.g., [1-6]). This is due to both its large practical significance and the challenging 
theoretical issues arising in the effort to predict and understand the various phenomena observed and related to 
contact events. Previous studies have demonstrated that friction effects are responsible for the appearance of a 
plethora of new phenomena during contact. Based on the type of approach adopted, these studies can roughly be 
divided in two general categories. In the first category, the contact event is assumed to take place in an 
instantaneous manner. This leads to the appearance of a discontinuity in the velocities, accompanied by 
unbounded contact forces in order to avoid interpenetration. This, in turn, leads to the necessity of employing 
techniques of the so-called Nonsmooth Mechanics (e.g., [1-5]). In essence, these approaches lead to prediction of 
the post-impact velocities through an algebraic process, making use of the pre-impact velocities and appropriate 
restitution coefficients. On the other hand, the second category of previous studies on systems with unilateral 
constraints is based on the Darboux-Keller approach (e.g., [6-10]). Their common characteristic is that they 
consider the normal impulse as an independent time-like variable and lead to a set of equations of motion during 
the contact phase in the form of ordinary differential equations (ODEs). 

The present study is a continuation of earlier work of the authors [11,12] and applies to a class of constrained 
mechanical systems, involving a single contact event with friction. The approach taken is novel compared to 
previous studies on the subject. In particular, the analysis applied is carried out within the classical framework of 
analytical dynamics and can handle systems with general properties, including rigid and deformable bodies. The 
formulation is based on a proper application of Newton’s law of motion during the contact phase. The final 
outcome is a completely continuous formulation, in contrast to the approaches based on non-smooth techniques. 
This is achieved through the use of some key ideas and concepts of b-geometry, which provide a natural and 
strong setting for studying mechanical systems subject to a unilateral constraint [13]. After defining the boundary 
of the configuration manifold and determining the essential geometric properties needed for the application of the 
law of motion inside a thin layer starting at this boundary, it is shown that the dominant dynamics during a single 
frictional collision is described by a set of three coupled ODEs. These equations describe action in a three 
dimensional distribution of the configuration manifold, which is related directly to the action in the physical 
space, where the contact event examined takes place. Using time as an independent variable presents an 
advantage over the Darboux-Keller approaches, since it provides a valuable time scale for investigating the part 
of the motion inside the boundary layer. Μoreover, the general spirit of the new approach is completely different. 
Instead of modeling the contact with stiff springs, which demands to give up the rigidity assumption in case of a 
rigid body contact, application of the theory for a manifold with boundary reveals that the associated contact 
action is modeled by a large change in the inertia properties [13], in combination with the appearance of a strong 
repulsive force. More specifically, the components of the metric and the connection employed along the normal 
to its boundary vary in a quite rapid fashion in the vicinity of the boundary in the configuration space. This 

367



Sotirios Natsiavas and Elias Paraskevopoulos. 

causes a fast deceleration of the figurative particle modeling the motion of the mechanical system in the 
configuration manifold, as it approaches the boundary. Also, once this particle enters the boundary layer, it is 
pushed away from it by a strong repulsive force, which is exerted on it until its exit from the boundary [12]. 

Ιn the second part of this study, the attention is shifted on applying the new analysis to investigating collision 
of a particle with a rigid wall and continues with examination of central and eccentric collisions of solid bodies. 
Τhe more accurate modeling provides a strong basis and leads to a better understanding of the phenomena 
involved. Finally, the analysis is presented in a way that permits its extension to more complex problems, 
involving situations with multiple contacts [14]. 

The organization of this paper is as follows. First, the general theoretical setting is presented in the following 
section. Then, the essential geometric properties are presented in Section 3. This information is employed in 
Section 4, where the equations governing the motion during the contact phase are derived. Next, several 
characteristic examples are examined in Section 5. Finally, the new findings are briefly summarized in Section 6. 

2 MANIFOLDS WITH BOUNDARY AND MECHANICAL SYSTEMS WITH CONTACT 

This study is a continuation of recent work of the authors on the dynamics of mechanical systems subject to 
unilateral constraints [12]. The new ingredient is that the contact involves frictional effects. Adopting the general 
framework of Analytical Dynamics, the spatial configuration of the system is described by a finite set of 
generalized coordinates, 1( , , )  nq q q , selected to be minimal. These are related to a fictitious point p , 

moving as a function of time t  on an n -dimensional manifold M , the configuration manifold of the 
unconstrained system [15]. Then, the presence of a contact event is signaled by an inequality condition 

( ) 0 p ,      (1) 

assuring no interpenetration. The equality in this condition defines a hypersurface in M  and the motion of point 
p  occurs on one side of this hypersurface only. In this way, the function   acts as a boundary defining function 

on manifold M  and gives rise to a new manifold 
{ : ( ) 0}  X p M p , 

with dimension n  [13]. This manifold possesses a boundary X  and an interior \ oX X X . Then, the new 
manifold is represented by the disjoint union 

 oX X X ,
while the motion of the class of systems examined is represented by a curve on the constrained manifold X . The 
tangent vector to such a curve at a point p  belongs to an n -dimensional vector space pT X , the tangent space at 

p . Therefore, if 1{ } Be ne e  is a basis of pT X , then any of its elements can be put in the form 
1

1
I i

I iu u e u e u e   , 

with the summation conventions 

1
 nI I

I II
u e u e    and  

2
 ni i

i ii
u e u e , 

so that a capital Latin index ranges from 1 to n  and a lower case Latin index runs from 2 to n . 

The tangent space at each point of X  is accompanied by a cotangent space, denoted by *
pT X . In fact, to each 

vector u  of pT X  there corresponds a covector *


u  of *

pT X . In dynamics, it is convenient to establish this 

correspondence by using the following dual product 
* ( ) ,  

u w u w ,     pw T X ,  (2) 

where ,   represents the inner product of the vector space pT X . In this way, for any basis Be  of pT X , a dual 

basis * 1{ } 
 

B n
e e e can be obtained for *

pT X , by employing the conditions ( ) 


I I
J Je e , where 

, 1, , I J n  and the symbol in the right hand side denotes a Kronecker’s delta [15]. Finally, definition of the

vector spaces pT X  and *
pT X  at each point of manifold X  is essential in creating two other spaces, by 


  p

p X
T X T X    and  * *


  p

p X
T X T X , 

known as the tangent and cotangent vector bundles over X , respectively [16]. 
If ( )V X  denotes the space of all smooth vector fields on X , the integration of its elements to obtain the 

corresponding flows is not closed on X . To fix this problem, the theory of manifolds with boundary, or b-
manifolds [13], is employed. In particular, these vector fields are elements of the space 

( ) { ( ) : is tangent to }  bV X V V X V X . 
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This means that if the local coordinates 1( , , )  nx x x  are introduced at a point p  of the boundary X , so that 
1 0  x , then any element of a vector field belonging to ( )bV X  can be put in the form 

 1
1 b i

iv x g a g ,   (3) 

over a holonomic basis 1 2{ , , , } Bg ng g g , where    I
Ig x  are tangent vectors to the coordinate lines 

starting at p  [15]. Therefore, the special set Bb g = 1
1 2{ , , , } nx g g g  forms a basis for ( )bV X  at each point near 

the boundary. The first element of this set vanishes at points on the boundary, but it can be shown that there 
exists a new vector bundle over X , denoted by bT X , where the component vector space b

pT X  is n -

dimensional even at points of the boundary X  [13]. A companion b-cotangent bundle *bT X  can also be 

defined in a similar manner. Then, at a point p  of X , a typical element of *bT X  can be expressed in the form 
1

*
1

 


b i
i

dx
v b dx

x
,  (4) 

with 


I Idx g . This demonstrates that the set *Bb g = 1 1 2{ , , , } ndx x dx dx  represents a basis of *b
pT X  near the 

boundary. Finally, both the b-tangent bundle bT X  and the b-cotangent bundle *bT X  coincide with the ordinary 

bundles T X  and *T X , respectively, away from the boundary (for more details, see [13] and [12]). 

3 ESSENTIAL GEOMETRIC PROPERTIES OF A MANIFOLD WITH BOUNDARY 

 In determining the geometric properties of manifold X , it is convenient to employ two special bases in 
b

pT X . The first corresponds to a local x -coordinate system, as defined in the previous section, while the second 

is related to the original q -coordinate system, denoted by 1{ } Be ne e and 1{ }  Be ne e , 

respectively. Then, any element of b
pT X  can be expressed in the following two alternative forms 


  b I I

I Iv x e q e . 

By considering the corresponding transformation between Be  and Be , expressed in the form

  I
I I Ie A e   or   

 I
I I Ie B e ,    (5) 

for , 1, ,  I I n  [15], the components of a b-vector in those bases are related by 


 I I I
Ix A q    and     I I I

Iq B x ,    (6) 

where matrix [ ] I
IA A  is the inverse of matrix [ ] I

IB B . 

Within this setting, the components of the b-metric tensor can now be obtained. This tensor has components 
,   IJ J I I Jg g e e  with respect to a basis of the x -coordinate system. This metric is virtually unaffected by the 

presence of the boundary at points away from the boundary X , i.e., 

IJ IJg g  over oX ,  (7) 

with [ ] IJG g . Near the boundary, the b-metric is affected in a significant way [13]. In particular, one can 

always find a special x -coordinate system, where the metric matrix can be put in the block diagonal form 

 11 0
[ ]

0

T

IJ

T

g
G g

G

 
   

 
,   (8) 

with 
ˆ IJ IJ IJg g g .    (9) 

The term ˆ IJg  is solely due to the presence of the boundary and appears in the explicit form 
1 2

11 11ˆ ( ) 
g g x    and 1 1ˆ ˆ ˆ 0  i j i jg g g .  (10) 

By employing the basis transformation expressed by Eq. (5), the metric components in the x -coordinate 
system can be related to the components of the metric with respect to the q -coordinate system [15], through 

 
  I J

IJ I J I Jg B B g  and     I J
I J I J IJg A A g .  (11) 

Then, using Eq. (9), it is easily obtained that near the boundary 
ˆ      I J I J I Jg g g ,  (12) 

which is similar in form to Eq. (9). Moreover, taking into account Eq. (10), the last term is obtained through 
1 1

11ˆ ˆ   I J I Jg A A g . 
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Clearly, only the first line of matrix [ ] I
IA A  needs to be specified for determining ˆ  I Jg , which is evaluated by 

1 1( ) ,     
I I IA e e e , (13) 

so that the gradient vector   is normal to the boundary hypersurface defined by ( ) 0 q . 

Next, in analogy to Eq. (9), the b-affinities are also decomposed in the form 
     K K K

IJ IJ IJ ,     (14) 

with respect to a basis of the x -coordinate system. The terms K
IJ  coincide with the affinities of the ordinary 

vector bundle T X , defined over the extension manifold M , while K
IJ  are terms arising from the presence of 

the boundary. The latter terms are negligible away from X , so that 

  K K
IJ IJ    over oX .    (15) 

Moreover, the correction terms K
IJ  in Eq. (14) are in fact components of a tensor [12]. Αlso, 

   
         K K K

I J I J I J ,   (16) 

which has a similar structure to Eq. (14). It can be shown that the component 1
11  has the following form 

1 1 1 1 1
11 11 11 11 1        x .  (17) 

This term contributes to all the b-affinities of the q -coordinate system through 
1 1 1

1 11
 
     K K

I J I JA A B , 

which involves only terms of the form 1
IA  and 1

IB  [12]. The first of them are determined by Eq. (13). In 

addition, using Eqs (5) and (11) together with the identity   
  I J I

J K Kg g , it can be shown that 
  

I I J J
I J JIB g A g . 

Therefore, 
1

1 11
  

I I J
JB g A g , 

which implies that 1
IB  can be evaluated by knowledge of the known components 1

IA  only. Moreover, the 

affinities K
IJ  are transformed back to the basis of the q -coordinate system by 

,
  
        K I J K K K K

I J I J K IJ K J IA A B B A . 

4 EQUATIONS OF MOTION FOR THE PROBLEM OF SINGLE CONTACT WITH FRICTION 

The true path of the figurative particle representing the motion on the configuration manifold is determined by 
application of Newton’s law [11,16]. On a manifold without boundary, this law is expressed in the form 

   
 

v p f ,    (18) 

where   represents an affine connection on the manifold, so that the left hand represents the covariant 

differential of the generalized momentum *


p  along a path on the manifold with tangent vector v  [17], so that 

( )  


L J I
v I JI Lp p p v e , 

with components of the generalized momentum given by 
 J

I IJp g v . (19) 

In addition, *


f  represents the generalized applied forces. On manifold X , this law appears in the form 

  
 

b
v p f ,    (20) 

since the appropriate quantities live in the b-tangent space b
pT X  and the b-cotangent space *b

pT X , respectively. 

According to the material presented in the previous section, both the metric components and the affinities 
involved in Newton’s law are affected in a significant manner by the presence of the boundary. However, this 
occurs only within a layer starting at the boundary X  of X , with a relatively small width b , introduced by the 
unilateral constraint examined. On the other hand, it is clear that the laws of motion expressed by Eqs (18) and 
(20) are identical within the interior oX  of manifold X . This picture is illustrated by Fig. 1. First, in Fig. 1a is 
depicted the original configuration manifold M , including the constrained configuration manifold X , which 
results by imposing condition (1). Then, in Fig. 1b is shown a magnified picture of the boundary layer area 
surrounding the neighborhood of a point p  on X . Apart from the special x -coordinate system, originating at 
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p  and having axis 1x  normal to the boundary, two curves (   and  ) belonging to the special b-vector field 

( )bV X , passing tangentially through point p  with a different curvature, are also shown. 

Figure 1. (a) Original configuration manifold M  and constrained manifold X , for a system subject to a 
unilateral constraint. (b) Magnification around a boundary point p . 

The focus of the present study is now shifted to the interior of the boundary layer. As a first step, this 
necessitates an appropriate scaling of the terms involved in the equations of motion [18]. This task is most 
conveniently performed in a local x -coordinate system. Then, using the above analysis and keeping only the 
dominant terms, it can be shown that for points near the boundary Eq. (20) is replaced by 

1 1
1 11 1 1̂ˆ ˆ 0p p v f   .  (21) 

and 

0j
i j i ip p v f  

 ,   (22) 

for 2, , i n . For a frictionless contact, all terms in the last equation are (1)O , while those in Eq. (21) are
1(1 )O x . For this reason, the repulsive forcing arising within the boundary layer is chosen by the expression 

1
1 1 11 1

1 1 1 2
ˆ ˆ( , ) [ ] ( ; , )

( )

k c x
f x x s x a b

x x
 

 .  (23) 

The first term in the right side models the effect of a force generated by a gravity type potential. It represents a 
strong force pushing the figurative point away from the boundary. On the other hand, the second term is 
associated with the dissipation of energy taking place during the motion within the boundary layer. Since this 
force must vanish in the outer region, a smooth function 1ˆ( ; , )s x a b  is also included in Eq. (23) in order to 

guarantee a smooth transition of the boundary force from the inner to the outer region of the boundary layer [12]. 
The generality of the geometric approach employed makes possible the consideration of contact events 

arising from the interaction between any combination of particles, rigid bodies and deformable bodies. In 
accordance to the general setting of Analytical Mechanics, the behavior of these bodies in the physical space, 
denoted by 3E , is determined and analyzed in the configuration space X  of the mechanical system examined. 
Apart from determining the corresponding geometric properties, this requires a set up of mappings between the 
physical space and the configuration space. For instance, starting from the kinematics, the relative velocity V  at 

the contact point of the two bodies that come in touch in the physical space is related to the generalized velocities 
through a general linear mapping 

 V D q .       (24)

The column vectors 
V V n  and 

  I
Iq q e , with 1, 2,3   and 1, ,  I n , are expressed with respect to the

bases 1 2 3{ }n n n  and 1{ }  ne e  in the tangent space of the physical and the configuration manifold, 

respectively. This implies that the dual mapping between the corresponding momenta (covectors) is expressed by 
* 


p P D , (25) 

where *


p  and 


P  are row vectors in the cotangent space of the configuration manifold and the physical space. 

If ( )    Iq  are the coordinates of a point in the physical space with respect to that special coordinate 

system, the differential of the boundary defining function in the configuration space can be evaluated from 
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ˆ
ˆ

   


 
   
 

d D d d D
q

, (26) 

with ˆ ( ( ))   q  and   D q . Consequently, if 1 2 3{ }
  
n n n  is a special basis of the cotangent physical 

space, selected so that the representative of the base covector 1n , as defined by Eq. (2), is normal to the local 

plane of contact, Eq. (26) in conjunction with Eq. (25), yields 
 1 1
 
e n D .  (27) 

Based on this, a new basis * 1{ } 
  

 
B n

e e e  is constructed in the cotangent space *b
pT X , defined by 

   
, 1,2,3

, 4, ,


  

  


     
  


I
I I I

I I I
I

n D I
e A e

e I n
 (28) 

Consequently, in order to create a basis for the x -coordinate system, these components a partial Gram-Schmidt 
orthogonalization scheme is applied in the form 

   
  

I I I J
Je e e    for   1,..., I I n    and   1,2,3J ,  (29) 

with 
, 0  

 
I Je e    for   1, 2,3I or J  and   I J . 

In this way, combination of Eqs (28) and (29) yields the first three basis vectors in the form 


 
J Je D    for   1,2,3J , 

with 
1 1 


n ,   2 2 2 1

1   
 
n n    and  3 3 3 2 3 2 3 1

2 2 1 1( )          
  
n n n . 

Next, the components of the generalized force in the configuration space is evaluated in the form 
2 3

1 1 1 2 1 3
ˆ     f F F F , 3

2 2 2 3
ˆ   f F F    and 3 3

ˆ f F .  (30) 

The relation between the normal component 1F  and the two tangential components 2F  and 3F  of the contact 

force 

F  is established through an appropriate constitutive law, describing the friction action. For instance, the

Amontons-Coulomb law is the most frequently adopted law for calculations in the physical space [2-6]. 
Based on the above, it becomes obvious that the presence of friction causes two important effects in the 

formulation established so far in the configuration space. First, taking into account Eq. (30), it appears that the 

forcing terms 2̂f  and 3̂f  should be comparable to 1̂f , which means that they should all be of the same order,
1(1 )O x , so that the friction can cause tangible effects. Therefore, since the terms 


j

j i p v  and  j
i jg v  of Eq. (22) 

remain (1)O  even inside the boundary layer, the only possible way to balance the aforementioned forcing terms 

is to assume that the terms 2v  and 3v , representing a velocity change, vary rapidly, i.e., they are 1(1 )O x  within

the boundary layer. This implies that the first two relations in Eq. (22) separate from the rest (i.e., those with 
4,...,i n ) and appear in the form 

2
22 2̂ 0g v f     and 3

33 3̂ 0g v f  ,  (31) 

where the forcing terms 2̂f  and 3̂f  are determined by Eq. (30). Moreover, friction affects the amplitude of the

forcing in the normal direction. Specifically, the equation of motion along the normal direction to the manifold 

boundary is expressed by Eq. (21), again, but now with 1̂f  given by Eq. (30), where 1 1
1( , ) F  appears in a

form similar to that in Eq. (23), with 1x  and 1x  replaced by 1  and 1 , respectively, while 2F  and 3F  are 

determined by the friction law employed.  
Finally, if a holonomic set of coordinates is employed, represented by the quantity 1( )  n Tq q q , Eqs 

(21) and (31) give rise to a set of equations of motion, which can be put in the matrix form 
( ) ( , , ) 0  M q q h q q t ,      (32)

even during the contact phase. This form is coincident with the second order ODE form obtained by classical 
formulations for systems with no constraints. If non-holonomic coordinates are also involved, then the set of 
equations of motion is expressed in terms of a set of quasi-velocities in place of q  [15].

5 EXAMPLES 

In the first example, dynamics of a single particle colliding with a rigid wall is examined, while the second 
example refers to impact between a rigid body and a half-space. 
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5.1 Collision of a particle with a rigid wall 

A single particle with mass m  hits a rigid wall. During free motion, its position is determined by three 

Cartesian coordinates 1 , 2  and 3  in the physical space 3E . If the q -coordinates are identical to them, the 

original configuration space is 3 M . Then, if these coordinates are selected so that the wall is at 1 0  ,
1( ) q q . 

Based on Eq. (26), this implies that 3D I , where 3I  is the 3 3  identity matrix, while Eq. (13) yields 
1 1(1 0 0) 
 
A n . 

Also, the x -coordinate system can be chosen to coincide with the q -coordinate system. Therefore, 

3[ ] IJG g mI    and   K
IJ =0,   ( , , 1,2,3I J K ).

Next, a selected set of numerical results is presented. First, in Fig. 2a is shown the history of the normal force 

1̂f  exerted from the boundary to the particle. The results illustrate the effect of the boundary force parameter k ,

for 0c . The time is normalized by the total duration of the contact phase, ft . The results of Fig. 2a indicate 

that the distribution of the normal force 1f̂  is symmetric with respect to the line 2 ft t . Also, this force reaches 

a plateau around the middle of the contact phase for relatively small values of k . This symmetry is broken by the 
presence of the boundary force dissipation parameter c , as shown in Fig. 2b, for 10k . In fact, a gradual 
increase in the value of this parameter causes a reduction in the time interval where this force is impulsive. 

Figure 2: History of the boundary generated normal force 1f̂  on the particle: (a) effect of parameter k , for

0c ; (b) effect of parameter c , for 10k . 

Likewise, to demonstrate the effects of the friction coefficient  , in Fig. 3 is presented the history of the 

tangential velocity of the particle for several values of   and 0c . Specifically, the results in Fig. 3a and 3b 

were obtained for 1k  and 10k , respectively. In both cases, sufficiently small values of   lead to conditions 

of gross slip, while larger values lead to slip-stick. Moreover, an increase in k  favors the development of gross 
slip. A similar effect is also caused by increasing the magnitude of the dissipation parameter c . 

Figure 3. History of the tangential velocity of the particle for several values of the friction coefficient   and 

0c : (a) 1k  and (b) 10k . 
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5.2 Collision of a rigid body with a rough half-space 

In the second example, dynamics of a rigid body colliding with a plane rigid wall in the presence of friction is 
studied. In general, the configuration space of a free rigid body is represented by a six dimensional product space 

3 (3) M M  [19]. The position of the body with respect to an inertial Cartesian reference frame   in the

physical space 3E  is represented by a point on manifold M  with generalized coordinates ( )q t  split in two parts, 

Cq  and Rq . The former specifies the position of the center of mass C of the body, while the latter describes the 

orientation of the body in the physical space. Consequently, the velocity vector is also split in the form 
( ) ( ) T T T

C Rv t v v , where ( ) C Cv q t  and the rotational part is expressed in terms of quasi-coordinates  , with 

1 2 3( )     T
Rv and   ( )  R RT q q , 

where ( )RT q  is the tangent operator at Rq  [20]. Then, based on the kinetic energy of the body, the metric on 

space M  can be selected in the following block diagonal form 

3 0
[ ]

0 

 
   

 
q I J

C

mI
G g

J
, 

where m  is the mass and CJ  is the mass moment of inertia matrix of the body with respect to an orthonormal 

frame fixed in the body, with origin at its center of mass C. Moreover, the only non-zero affinities 
 K

I J  are 
4 4 5 5 6 6
5 6 6 5 6 4 4 6 3 5 5 3 1     
                       . 

Figure 4. (a) A spheroid and (b) a bar, hitting a rough half-space. 

5.2.1 Collision of a rigid spheroid with a rigid half-space 

First, consider a homogeneous rigid spheroid (i.e., an ellipsoid of revolution), with mass m  and radii r , r  
and r , aligned with the axes of a Cartesian coordinate system in the physical space when hitting a rigid wall, as 
shown in Fig. 4a. The contact point P lies on the intersection of its circular equator with the 1 -axis.  

The set of results presented in Fig. 5a are hodographs obtained for 10k , 0c  and three values of the ratio 

11 33J J , corresponding to an oblate spheroid, a sphere and a prolate spheroid. In all cases, the spheroid hits the 

ground with an initial normal velocity 1(0) 1 V  and zero angular velocity with respect to the wall. Also, the 

initial components of the velocities in the plane of the wall are 2 (0) 1V  and 3 (0) 1V , as indicated by the 

coordinates of point A. For relatively small values of  , the spheroid undergoes gross slip. For instance, points 

B, C and D on the three hodographs examined indicate the end of the contact phase for  =0.1. Also, the 

hodographs selected end up at point (0,0) for the limiting values  =0.18, 0.20 and 0.28, corresponding to 

11 33J J =8/5, 1 and 2/5, respectively. Then, a final stick state is reached for larger values of  . Clearly, the 

sliding direction varies during the motion for the case of the oblate or prolate spheroid. In the case of a sphere, 
where 11 33J J =1, the hodograph is an isocline [8,9]. 

Finally, in Fig. 5b are presented the histories of the two tangential components of the velocity of the contact 
point for 11 33J J =2/5 and two characteristic values of  . First, results are shown for  =0.16, which is smaller 

than the critical value leading to final stick. Clearly, this leads to conditions of gross slip. Similar results are also 
presented for  =0.20, which is a bit larger than the critical value. The results verify that the contact event 

finishes now with a stick phase. 
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Figure 5. Collision of a spheroid with a plane: (a) hodographs starting at ( 2V , 3V )=(1,1); (b) tangential velocity 
components of the contact point for 11 33J J =2/5 and  =0.16 or 0.20. 

5.2.2 Oblique collision of a rigid rod with a rigid half-space 

The last set of results refers to collision of a homogeneous rigid cylinder with mass m , length 2   and radius

r  with a rough half-space, as shown in Fig. 4b. The longitudinal axis of the cylinder lies in the plane 1 2 O  and 

makes an angle   with the axis 1O . First, in Fig. 6a are presented hodographs, originating from the same point 

of the plane ( 2 3,V V ), for 10k , 0c  and several values of  . The value of angle   is selected to be equal to 

1.10 rad, so that two critical friction parameter values are determined as  =0.7499 and * =0.5721 [6,9]. For 

*  , conditions of gross slip are observed, while the shape of the hodographs demonstrate that the sliding 

direction varies continuously during the motion. At the critical value *  , the hodograph becomes an almost 

straight line (isocline). In addition, following a temporary stick, the sliding direction changes but remains 
constant and parallel to the 2 -axis throughout the subsequent motion. For *    , the tangential velocity 

becomes zero at some instance but continuous slipping immediately afterwards. Finally, for   , once the 

stick state appears it persists until the end of the contact phase. Finally, in Fig. 6b are presented hodographs 
obtained for three different values of parameter k . The results verify that as the value of k  is increased 

gradually, leads to the appearance of an isocline on plane ( 2 3,V V ). 

Figure 6. Hodographs for collision of a bar with a rough half-space, for different values of: (a)   and (b) k . 

6 SYNOPSIS AND EXTENSIONS 

Ιn the first part of this study, an analysis was presented on the dynamics of general single point frictional 
collision between two mechanical bodies. This analysis was performed within the framework of analytical 
dynamics, by employing some key concepts of differential geometry. First, a boundary was constructed for the 
original configuration manifold by using the condition of no impenetrability. Then, the essential geometric 
properties of the constrained manifold were determined. This provided the foundation for applying Newton’s law 
of motion and led to an elegant geometric picture. Specifically, the motion during the contact phase was found to 
be governed by a set of three ODEs, when expressed in a special coordinate system in the close vicinity of the 
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configuration boundary, having one axis normal to the boundary and the remaining axes tangent to the boundary. 
The inertia of the figurative particle representing the motion of the system was found to increase rapidly as it 
approaches the boundary along this axis. At the same time, a strong repulsive force arises pushing this particle 
away from the boundary. In addition, friction was found to activate action along two special tangential directions 
only, determined by a mapping with the physical space. Finally, the equations of motion in the original 
coordinate system were simply obtained by a proper projection of these three ODEs. In the second part, the study 
focused on investigating several phenomena arising during frictional contact, by using selected examples. 

The new formulation was developed in a systematic way, which provides a firm basis for attacking more 
challenging problems, like those involving multiple contacts. For this, there already exists a sound theoretical 
background, based on the theory of manifolds with corners [21,22]. In addition, the enhanced understanding 
provided by the geometric interpretation of the collision phenomenon studied is expected to lead to development 
of more accurate and efficient numerical techniques for determining the dynamics of the class of systems 
examined. This is closely related to development and application of suitable contact detection methods and will 
also help in developing more effective and robust optimization and control algorithms. 
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Abstract. Some new theoretical and numerical results are presented for a class of multibody systems subjected to 
equality motion constraints. The formulation is based on a new set of equations of motion, represented by a system 
of second order ordinary differential equations. First, after introducing an appropriate set of penalty terms, these 
equations are put in an augmented Lagrangian form. Also, the position, velocity and momentum type quantities 
are assumed to be independent, leading to a three field set of equations. This set is then used for producing a new 
time integration scheme. The validity and efficiency of this scheme is verified by applying it to example systems. 

1 INTRODUCTION 

Research on the dynamics of mechanical systems subject to motion constraints is a traditional and favorable 
topic among researchers with different backgrounds (e.g., [1-4]). This is in part due to the fact that this area of 
Analytical Mechanics is still challenging and several theoretical aspects related to it remain unexplored and are 
amenable to improvement. Another driving factor is that a better understanding of the fundamentals in this area 
provides a stronger foundation and offers substantial help in the efforts to solve difficult engineering problems by 
deriving and employing new, more advanced, accurate and robust numerical techniques [5,6]. This in turn leads 
to useful design gains in many areas, including mechanisms, robotics, machinery, biomechanics, automotive and 
aerospace structures. 

Typically, the equations of motion for this class of systems are derived and cast in the form of a set of 
differential-algebraic equations (DAEs) of high index. However, both the theoretical and the numerical treatment 
of DAEs is a delicate and difficult task [7]. For this reason, many attempts have been performed in the past in an 
effort to cure the problems related to a DAE modeling. Over the years, it has become apparent that many of the 
theoretical questions in the area of Analytical Dynamics can be answered in an illustrative and complete way by 
employing fundamental concepts of differential geometry [8,9]. Based on this observation, the main objective of 
this work is to use such concepts in order to provide a better theoretical foundation and to develop an appropriate 
numerical scheme for treating a class of constrained mechanical systems. 

The new approach assigns appropriate inertia, damping and stiffness properties to the constraints. As a result, 
the equations of motion are second order ordinary differential equations (ODEs) in both the generalized 
coordinates and the Lagrange multipliers, related to the constraint action [10,11]. This, in turn, leads to elimination 
of the singularities associated with DAE or penalty formulations. As a consequence, there is no need to introduce 
artificial parameters for scaling and stabilization. In addition, the geometrical properties of the original manifold 
are kept unchanged by the additional constraints. This preserves the properties of the special curves of the manifold 
employed in the numerical discretization and leads to major advantages compared to previous work in the field of 
computational Multibody Dynamics [5,6]. By introducing appropriate penalty terms, these equations are first put 
in a convenient Augmented Lagrangian form. Moreover, the position, velocity and momentum type quantities are 
assumed to be independent, forming a three field set of equations [12,13]. In particular, the weak velocities and 
the strong time derivatives of all the coordinates involved in the formulation are related through a new set of 
Lagrange multipliers, which represent momentum type variables. Next, the formulation developed is employed as 
a basis for producing a suitable time integration scheme for the class of systems examined. The validity and 
efficiency of this scheme was tested and illustrated by applying it to a number of characteristic example mechanical 
systems. Among other things, the results obtained verify that the scheme developed passes successfully all the 
tests related to a special set of challenging benchmark problems, chosen by the multibody dynamics community 
[14]. In addition, the same scheme was also applied successfully to a number of large scale industrial applications. 
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The organization of this paper is as follows. First, the set of equations of motion governing the dynamics of an 
unconstrained discrete mechanical system is presented briefly in the following section. Then, similar equations 
arising in the presence of bilateral constraints are also presented in the third section. These equations are easily put 
in an Augmented Lagrangian form, by just adding suitable penalty terms. Based on this form, a temporal 
discretization scheme was developed and numerical results were obtained for several mechanical examples. Some 
characteristic numerical results are presented in the fourth section. 

2 APPLICATION OF NEWTON’S LAW TO SYSTEMS WITH NO MOTION CONSTRAINTS 

This work examines a class of mechanical systems whose position is determined by a finite number of 

generalized coordinates 1( , , )nq q q  , at any time instance t  [1,9]. The motion of such a system can be

represented by the motion of a fictitious point, say p , along a curve ( )t   in an n -dimensional manifold M , 

the configuration space of the system. Moreover, the tangent vector v d dt  to this curve belongs to an n -

dimensional vector space, the tangent space of the manifold at p , denoted by pT M  [4]. By construction, for any 

point p  of M , a coordinate map   can be defined by ( )q p , acting from a neighborhood of p  on M  to the 

Euclidean space n . Then, by adopting the usual summation convention on repeated indices, each tangent vector
at point p , representing a generalized velocity, can be expressed in the form 

( ) ( )i
iv t v t e , (1) 

where 1{ }e ne e B  is a basis for space pT M . Likewise, one can define the dual space to pT M , denoted by 

pT M , with elements known as covectors. In dynamics, a covector represents a generalized momentum. Also, the 

correspondence between a covector u


 and a vector u  is established through the dual product

( ) , , pu w u w w T M     


, (2) 

where ,   denotes the inner product of vector space pT M  [8]. In this way, to each basis { }ie  (with 1, ,i n  )

of pT M , a dual basis { }ie


 can be established for pT M  by employing the condition ( )i i
j je e 


. Then, 

determination of the true path of motion on a manifold is based on application of Newton’s second law in the form 
* *

v M Mp f 
 

, (3) 

where v  is the tangent vector of the natural trajectory ( )t , while * i
M if f e


 represents the applied force [1,9].

Then, if i
iv v e  and * i

M ip p e


, application of Eq. (2) leads to

j
i i jp g v ,  (4) 

where the quantities ,i j i jg e e    represent the components of the metric tensor at point p . These quantities are 

selected to coincide with the elements of the mass matrix of the system, defined through the kinetic energy. Finally, 
the covariant differential of the covector field * ( )p t


 on M  along a vector v  of pT M  is evaluated by 

*( ) ( )m j i
v i j i mp t p p v e  


. (5) 

where   is the affine connection of the manifold. The components k
i j  of the connection   in the basis of pT M

are known as affinities [2,9]. 

Through the definition of a class of special covectors (called Newton covectors, see [11]) by 
* *
M v M Mh p f   
  

(6) 

the equations of motion (3) at any point on a configuration manifold M  can be put in the form 
* 0Mh 
 

. (7) 

Therefore, when there exist no motion constraints, it should be true that 

* ( ) 0Mh w  


2

1

* ( ) 0,
t

M pt
h w dt w T M   

 (8) 

along a natural trajectory on the manifold and within any time interval 1 2[ , ]t t . Manipulation of the last integral 

requires application of integration by parts of the covariant derivative appearing in Eq. (6). This is achieved by 
employing the identity 
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* * *( ( )) ( )( ) ( )v M v M M vp w p w p w    

  
, 

which can be interpreted as a Leibniz rule on differentiation. Then, the following expression is obtained 
2

1

* * *[ ( ( )) ( ) ( )] 0
t

v M M v Mt
p w p w f w dt       

, 

which, after an integration by parts of the first term inside the integral, becomes 

2 2

11

* * *[ ( )] [ ( ) ( )] 0
t t

M M v Mtt
p w p w f w dt     

. (9) 

This equation represents the so called weak form of the equations of motion [15]. In essence, it constitutes an 
alternative way to determine the true history of the coordinates (i.e., position) and velocities of a mechanical system 
satisfying the law of motion, as expressed by Eq. (3) originally. 

Further manipulation of the weak form given by Eq. (9) involves differentiation along the vectors v  and w . 

This requires the construction of two smooth vector fields on M . The first of these can be constructed by 
considering the tangent vector v  at each point of the natural trajectory ( )t . The second vector field can then be 

created by introducing another vector w  of the tangent space at each point of the same trajectory, which can be 

arbitrary. Therefore, a variation of any scalar function f  is defined as the derivative of f  along vector w , by 

,( ) i
if w f f w   . 

Then, i iw q  for holonomic coordinates. Moreover, after defining the objective function 

 
2*1

2M Mh


F ,   (10) 

it is straightforward to show that 
* ( ) 0,M M ph w w T M    


F , 

which leads to Eq. (8). 

3 A NUMERICAL SCHEME FOR SYSTEMS WITH BILATERAL CONSTRAINTS 

Next, consider systems subject to an additional set of k  scleronomic constraints, which can be put in the form 

( , ) ( ) 0q v A q v   , (11) 

where v  is a vector in pT M  and [ ]R
iA a  is a known k n  matrix. In the special case where a constraint is 

holonomic, its equation can be integrated and written in the algebraic form 

( ) 0R q  . (12) 

Based on the above, the equations of motion of the class of systems examined can now be cast in the form 
* * * 0M Ch h h  

  
(13) 

on the original manifold M [11], with 

 * [( ) ]i j m j i
M i i j i m j ih h e g v g v v f e    

  
  and   *

1

k R i
C R iR

h h a e


 
 , (14) 

where 

( )R R R
R RR RR RR Rh m c k f       .  (15) 

In the last relation, the convention on repeated indices does not apply to index R . Moreover, the coefficients 

 i j
RR R i j Rm c g c , ( , , )ii j

RR R Rj

f
c c q v t c

v


 


, , ( , , )i j

RR R i j Rk c f q v t c  ,  ( , , )i
R R if c f q v t  (16) 

represent an equivalent mass, damping, stiffness and forcing quantity, respectively, obtained through a projection 
along a special direction Rc  on pT M  [11]. Specifically, the components of the n -vector Rc  are selected to satisfy 

1R i
i Ra c  . (17) 

If generalized (true) coordinates are used, which means that i iv q  , Eq. (13) represents a set of n  second order

coupled ODEs in the n k  unknowns iq  and R . The additional information needed for a complete mathematical 

formulation is obtained by incorporating the k  equations of the constraints. In particular, for each holonomic or 
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non-holonomic constraint, a second order ODE is obtained, with form 

( ) 0R R R
R RR RR RRg m c k          οr   ( ) 0R R

R RR RRg m c     , (18) 

respectively. 

Next, in analogy to Eq. (10) and taking into account the motion constraints, define the function 

 
2 2* *1 1

2 2A h h 
 

F ,   (19) 

which is augmented by the norm of the covector 

 *

1

k R i
R R iR

h g a e 


 
,    (20) 

including the penalty factors R . Then, it is easy to show that the above definitions lead to 

* *( )( ) 0,A ph h w w T M     
 

F , 

and eventually to 
2 2

1 1

* * *( )( ) ( ) 0,
t t

M C pt t
h h w dt h w dt w T M       

. (21) 

Τhe last form is also complemented by the following terms 
2

1

0
t R

Rt
g dt  ,  (22) 

for each motion constraint and arbitrary multipliers R . 

In a weak formulation, it is advantageous to consider the position, velocity and momentum variables as 
independent [15]. For this, a new velocity field v̂  is introduced on manifold M , which should eventually be 

forced to become identical to the true velocity field v  through the action of an arbitrary covector with components 

ˆ ip . A similar action can be taken for the velocity components R R   , by introducing another vector field with

components ˆ R  and a new set of multipliers, ˆR . Likewise, one can relate the variations in the strong time

derivatives iv  and R  of the position type variables to those of the weak velocities, ˆiv  and ˆ R , through two new 

sets of Lagrange multipliers, denoted by ˆ ip  and ˆR , respectively. To achieve these tasks, the weak form expressed

by Eqs (21) and (22) should be augmented by the terms 
2

1

ˆ ˆ ˆ ˆ[ ( ) ( )]
t i i i i

i it
p v v p v v dt        and

2

1

ˆ ˆ ˆ ˆ[ ( ) ( )]
t R R R R

R Rt
dt        .    (23) 

Finally, by adding up all these terms and performing appropriate mathematical operations, including the usual 
integration by parts step, it yields eventually the following three field set of equations 

 

2 2 2

11 1

2 2

1 1

1 1 1

1 1 1

ˆ ˆ ˆ ˆ( ) [ ( ) ( )]

ˆ ˆ ˆ ˆ ˆ ˆ[( ) ( ) ] ( )

{ [( )

t t tk k kR R i R R i i R R
i i RR RR i RR R Rtt t

t tk k kR R i R R i R
i i RR i R RR i RR R Rt t

R R R
i RR RR R i RR

p a m w m p v v dt

p a m p v m dt p v dt

f c k f a m

      

       

  

  

  

     

       

    

  

   





2 2

1 1
1 1

]} ( ) 0,
R
i

t tk kDaR i R R R
RR RRDtR Rt t

w dt c k dt  
 

     

  (24) 

where the variations iw , R , ˆiv , ˆ R , ˆ ip  and ˆR  are independent for all 1, ,i n   and 1, ,R k  , while

ˆ
R
iDa R R j

i jiDt a a v  
 , ˆR R R

R         and ˆR R R
R     .

Equation (24) is the final weak form obtained for the class of constrained mechanical systems examined. This 
form is convenient for performing an appropriate numerical discretization, leading to improvements over existing 
numerical schemes based on advanced analytical tools. For the purposes of the present work, this form was also 
put within the framework of an augmented Lagrangian formulation [16-18]. More specifically, this method is 
appropriate for performing a geometrically exact discretization. In brief, after assuming consistent polynomial 
expansions, a set of nonlinear algebraic equations is obtained for the unknowns of the problem, which consist of

iq , R , ˆiv , ˆ R , ˆ ip  and ˆR . This set is solved by a block-type iterative technique within each time step, according

to the following scheme. First, assume that the values of all the unknowns but ˆiv  are fixed. After solving for the 

new values of the velocities ˆiv  the subsystem resulting by the terms in the weak form multiplied by iq  (for 

holonomic coordinates) and R , an appropriate augmentation is performed leading to the new values of ˆ R . 
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Then, the values of the coordinate variables iq  and R  are determined through a direct update, resulting by the 

terms of the weak form multiplied by ˆ ip  and ˆR . Finally, the updated values of the momentum variables ˆ ip

and ˆR  can be obtained by using the subsystem resulting by the terms of the weak form multiplied by ˆiv  and

ˆ R . This scheme leads to a full exploration of the major advantages of the theoretical method applied, in a quite 

natural manner. It is especially useful when the configuration space of the system possesses group properties 
[19,20]. The success of this formulation was demonstrated by the accurate solution obtained for a number of 
challenging problems. Some characteristic results are presented next for several typical examples. The first ones 
have a relatively simple geometry and are of academic interest, while the last example was taken from an industrial 
application. 

4 NUMERICAL RESULTS 

4.1 Plane Pendulum 

The first set of numerical results refers to a planar pendulum, composed of a particle with mass 1m kg , 

attached to one end of a massless rigid rod with length 1L m . The other end of the rod is connected to the ground 

through a revolute joint so that the system motion is limited in the x-y plane. This system is released from rest, 
from an initial position, shown in Fig. 1a. Consequently, it undergoes large amplitude oscillations, due to the action 
of gravity along the negative Y direction. 

In Figs 1b-1d are presented and compared numerical results obtained by the new solver (labeled by LMD) with 
results obtained from a state of the art code, employing a BDF solver [21]. In both cases, an effort was made to 
keep the same time step and accuracy level in the numerical calculations. In particular, an accuracy level of 0.01 
was required in all runs, using either code. 

First, in Fig. 1b is shown the mechanical energy of the system as a function of time, assuming a zero potential 
energy at the position shown in Fig. 1a. Clearly, the commercial code exhibits a gradual and substantial mechanical 
energy loss. This is probably related to the high level of artificial damping induced in the BDF scheme employed. 
The consequences of this effect are demonstrated in Figs 1c and 1d, presenting the time history of the vertical 
component of the displacement of the particle at the beginning and at a later time interval of the oscillation. The 
results indicate a drift and a reduction in the amplitude of oscillation obtained by the BDF method. It is important 
to note that a similar behavior with [21] was also observed by employing another state of the art code in multibody 
dynamics, which uses also a BDF scheme [22]. 

Figure 1. Numerical results for a planar pendulum: (a) mechanical model, (b) mechanical energy error, (c)/(d) 
history of the particle vertical displacement.  

The good performance of the new code is due to the fact that the new set of equations of motion employed 

a 
b 

c 

d 
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includes suitable terms, avoiding a growth in the constraint violation error in an automatic manner. For instance, 
in Fig. 2a are shown results obtained by the new code, by taking into account the critical term RRm , evaluated by 

Eq. (16), or setting it to a different value in the calculations, i.e., 10RRm , 100RRm  or 0. As it is obvious from 

Eqs (14) and (15), this term assures the presence of the constraint inertia term R  in the equations of motion.
Obviously, an incorrect choice or elimination of this term leads to a dramatic reduction of the time step, causing a 
sudden termination of the numerical calculations. In all cases, the initial penalty values were chosen to be equal to 
100. In Fig. 2b are shown the changes in the values of the penalty factors leading to convergence in the case with 

10RRm . Obviously, the penalty factors change with time and are different for each constraint. For the correct 

value of RRm , the step size was found to remain constant in all cases examined for the specific example, as shown 

in Fig. 2c. Likewise, the penalty values were also kept constant, as is shown in Fig. 2d, while the violation of the 
constraint was also limited to very low levels, as indicated by the results of Fig. 2e. Finally, Fig. 2f shows results 
for three cases, corresponding to 10RRm , where the penalty factors are kept constant. For the larger penalty value 

the correct solution is obtained without a reduction in the time step. For the intermediate penalty value a solution 
is reached, after an order of magnitude reduction of the time step. The smallest penalty value leads to a drastic 
reduction of the time step and termination of the solution process. These results are expected to worsen in more 
complicated examples, where the values of the RRm  are not constant. 

Figure 2. Numerical results for a planar pendulum: (a) time step as a function of time for different fraction values 
of RRm  (all initial penalty values are equal to 100), (b) changes in the values of the penalty factors leading to 

convergence in case with 10RRm , (c) step size for the correct value of RRm , (d) penalty values for the correct 
value of RRm , (e) violation of the constraint for the correct value of RRm , (f) step size for constant penalty factors 

and 10RRm . 
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4.2 Double Four Bar Mechanism 

Next, in Fig. 3 are compared results obtained by applying the new method with similar results obtained for a 
typical benchmark problem [14]. In brief, the double four bar mechanism examined is a representative of a 
multibody system passing from a singular configuration. All the rods have equal length and uniformly distributed 
mass. Specifically, when the bars reach the horizontal position, the number of degrees of freedom increases 
instantaneously from one to three. In the set of calculations presented next, the mechanism starts from rest from 
the position shown in Fig. 3a and executes oscillations due to the action of gravity along the –y direction. Again, 
the results of the new method are labeled by LMD.  

First, the results of Fig. 3b verify the closeness of the results obtained by the two methods, within the time 
interval considered. However, the results presented in Fig. 3c demonstrate a difference in the error in the 
mechanical energy (taking as a reference configuration the one shown in Fig. 3a). The new method predicts a 
constant value close to zero, which is the exact value. In addition, the results shown in Figs 3d, 3e and 3f show 
three different types of failure in the response obtained by using the same BDF solver as in the previous example 
[21]. More specifically, the simulation stops suddenly (Fig. 3d), the solver finds a wrong solution (Fig. 3e) or it 
predicts a breaking of the connections leading to a disassembling of its members (Fig. 3f), as the mechanism passes 
from the singular position. 

Figure 3. Numerical results for a double four bar mechanism: (a) mechanical model, (b) history of position and 
velocity of point 1P  of the mechanism, (c) mechanical energy error, ADAMS results (using a BDF method) 

where (d) simulation stops, (e) solver finds a wrong solution and (f) the mechanism breaks. 

4.3 Rectangular Bricard Mechanism 

The next set of results refers to a six-bar rectangular Bricard mechanism, shown in Fig. 4a. All the rods are 
connected with revolute joints, have equal length and uniformly distributed mass. Again, this system moves due 
to gravity acting along the negative y -axis. The mechanism examined represents a mechanical system which is 

a 

f 
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redundantly constrained throughout its motion and, due to this property, it also belongs to a special set of 
benchmark problems [14]. 

First, in Fig. 4b are shown the time histories of the x , y  and z  coordinates of point 2P , while in Fig. 4c is 

depicted the mechanical energy of the system. Finally, in Figs 4d and 4e are presented the corresponding histories 
of the constraint violations in the position and velocity levels during the same time interval, represented by the 
norm of the array of the constraints at each level. 

Direct comparison of the results in Fig. 4 illustrates that the present method is accurate and passes successfully 
the benchmark tests. It also presents an improved numerical performance. For instance, the mechanical energy 
computed by the present method remains virtually constant (Fig. 4c). In addition, the errors in both the 
displacement and velocity constraint violations are bounded and stay at the same level, throughout the time interval 
examined (Figs 4d and 4e). 

Figure 4. (a) Mechanical model of a Bricard mechanism, (b) history of the x , y  and z  coordinates of point 
2P , (c) mechanical energy, (d) violation of position and (e) violation of velocity constraints. 

4.4 Complex Model of a Ground Vehicle 

In the last example, a quite complex model of a ground vehicle is examined, shown in Fig. 5a. This model is 
composed of a basic powertrain system, a complex steering system, together with involved front and rear 
suspension systems with jounce and rebound bumpers. Also, the tires were modeled using the well-known Pacejka 
tire model [23]. In total, the model consists of 53 rigid bodies, interconnected with 49 kinematical constraints, 29 
bushings, 9 spring-damper systems and 9 action-reaction force elements. As a consequence, the total number of 
degrees of freedom of the final model is 134. In the examples examined, the vehicle is subjected to two classical 
road handling tests. For this, an appropriate driving torque and steering angle is applied at the car’s differential 
and wheel during the motion, as shown in Figs 5b and 5c. In the first test, the vehicle is running over a straight 

b

a 

c
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path with a constant longitudinal velocity 60 /XV Km h   before it starts performing a typical double lane change

(DLC). In Figs 5d and 5f are presented selected results obtained for tire forces and velocity components by 
applying the new numerical method (labeled by LMD). Moreover, these results are compared with results obtained 
for the same model by two state of the art numerical codes [21,22]. These codes set up the equations of motion 
and solve them numerically as a system of DAEs. In the second test, a swept steering maneuver is performed. 
Typical results for tire forces and velocity components are shown and compared in Figs 5e and 5g. The difference 
between the results obtained by the new method and one of the codes [22] is most probably due to differences in 
the tire models employed. 

Figure 5. Numerical results for a car model: (a) vehicle model, (b)/(c) driving torque and steering angle input 
curves, (d)/(f) front right tire lateral force and vehicle lateral velocity for the DLC analysis, (e)/(g) front right tire 

lateral force and vehicle lateral velocity for the swept test analysis. 
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Abstract. The paper examines the seismic response of rocking frames with both rigid and flexible columns using 

simplified Finite Element modeling. Rocking frames are found in both ancient and modern structures. In ancient 

structures free-standing columns are capped with a freely supported rigid beam (architrave) forming a rocking 

frame. Today rocking frames are becoming popular in various systems, especially bridges, due to their 

remarkable resistance to earthquakes despite the apparent lack of a lateral load carrying mechanism. Makris 

and his coworkers have shown that the seismic behavior of rocking frames can be modeled as an equivalent 

rocking block for frames with rigid structural members. In this work, initially we solve the rocking frame as an 

equivalent block with the aid of a simple single-degree-of-freedom rocking oscillator which neglects sliding and 

uplift. We show that the rocking frame can be modeled using beam elements connected with rotational springs 

with their base and their deck/epistyle. The springs have a negative stiffness moment-rotation relationship. A 

second, detailed modeling, using beam elements is also presented. We show that modeling with beam finite 

elements allows to solve rocking frames which are either rigid or flexible. FEM modeling also offers stable 

solutions for rocking frames with vertically restrained columns with an elastic tendon that passes through its 

centerline. The proposed solution scheme can be easily implement in Finite Element codes which are widely 

available and engineers are comfortable with, offering accurate results and avoiding complicated and 

specifically-tailored analytical solutions. 

1 INTRODUCTION 
The rocking response of a solitary rigid block that rests on a rigid base has been studied for more than a 

century following the work of Milne [1]. As a result, the idea of allowing columns to uplift and then pivot during 

a seismic excitation in not new [2] and can be found in a large number of ancient monuments (e.g. free-standing 

columns that support free-standing epistyles) that have survived strong earthquakes over many centuries thanks 

to their rocking behavior. This observation has led bridge engineers on a “damage avoidance design” [3] of 

modern structures allowing the columns to some partial/controlled rocking motion. Such examples are the 

Rangitikei Railway Bridge and the Deadman’s Point Bridge at Cromwell in New Zealand [4,5]. Rocking 

provides a form of seismic isolation, while self-centering systems eliminate the residual displacements and 

reduce transient deformations and damage in the columns [6].  

In 1963 Housner [7] proposed the equation of motion of a solitary free-standing column which was the basis 

for many following studies on the rigid block problem. Following observations on the dynamics of the free-

standing block, many researchers, including Makris and Vassiliou [8], DeJong and Dimitrakopoulos [9] and 

Dimitrakopoulos and Giouvanidis [2] more extended the problem to the rocking response and the stability 

assessment of the planar rocking frame. Throughout their studies they expressed the equation of motion of a 

simple frame using principles of analytical dynamics. Moreover, the rocking problem of blocks was extended to 

blocks with post-tensioned tendons [10] and more recently with vertical restrainers [11,12] which are useful for 

the modeling of precast bridges. 

Our interest on the seismic response of rocking frames is motivated by the need to have simplified Finite 
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Element models, equivalent simple solutions and robust algorithms for both simple and more complicated frame 

structures. Such tools provide credible models for designing new rocking bridges and in general offer solutions 

that can be easily computed in widely available open-source [13] or commercially available software [14]. 

Initially, we simulate a rocking frame with an equivalent oscillator [15] that has either an equivalent size 

parameter R, or an equivalent moment of inertia Io, both obtained modifying the equation of motion of the 

rocking frame. Subsequently, we examine a simplified approach using beam-column elements for the rigid 

rocking columns and the deck. The columns and the deck are connected with zero-length, non-linear rotational 

springs. We also show that flexibility complicates further the dynamic response of a solitary block (e.g. [16, 17, 

18]) or of the rocking frame with flexible columns. Finally, we study the dynamic response of a frame with pre-

stressed elastic rocking columns. In all analyses, energy is dissipated introducing an “event-based” damping 

scheme [15]. The accuracy and the robustness of the proposed modeling is demonstrated using both far-fault and 

pulse-like ground motion records [19]. 

2 THEORETICAL BACKGROUND 

We consider the free-standing rectangular rigid block with height 2h and width 2b shown in Figure 1a. We 

assume that the coefficient of friction between the block and the rigid base is always infinite and prevents 

sliding. The seismic response of a block with size parameter 𝑅 = √𝑏2 + ℎ2 and slenderness 𝛼 = 𝑡𝑎𝑛−1(𝑏/ℎ),

subjected to a horizontal seismic excitation �̈�𝑔(𝑡) is given by the equation of motion:

   2
( )

( ) sin sgn( ( )) ( ) cos sgn( ( )) ( )
gu t

t p t t t t
g

      
 

     
 

  (1) 

The block will start rocking around the pivot point O (or O΄), only when the ground acceleration exceeds a 

threshold value, i.e. when �̈�𝑔 = 𝑔𝑡𝑎𝑛α. Furthermore, 𝑝2 = 3𝑔/4𝑅 is the frequency parameter of the block while

another significant parameter is the moment of inertia Io. For rectangular blocks it is given by the expression 

𝐼𝑜 = (4/3)𝑚𝑅2.

(a) (b) 

Figure 1. (a) rocking block. (b) rocking frame. 

The frame of Figure 1b is another rocking system that consists of two free standing rocking columns and a 

rigid beam. The parameter that affects the seismic response of the rocking frame is γ=mb/2mc, the ratio of the 

mass of the deck/epistyle, mb, over the mass of the two rocking columns, mc. Similarly to the equation of motion 

of a free standing block (Eq. 1), Makris and Vassiliou [8] have shown that the equation of motion of a rocking 

frame can be written in a compact form: 

   2
( )1 2
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The frame’s equation (Eq. 2) is similar to that of the rigid block (Eq. 1), if the latter is multiplied with 

(1+2γ)/(1+3γ). We can thus solve Eq. 2, assuming an equivalent rigid block with �̂� = 𝑝√(1 + 2𝛾)/(1 + 3𝛾), the 

same slenderness 𝛼 = 𝑡𝑎𝑛−1(𝑏/ℎ) with that of the rocking block, while the minimum uplift acceleration is again

equal to gtanα. Furthermore, the rigid block and the plane rocking frame dissipate energy when an impact occurs 

and the rotation θ(t) alternates sign. According to Makris and Vassiliou [8] and taking into account Housner’s [7] 
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coefficient of restitution for a rocking block, 𝜂 = √𝑟 = 1 − 1.5𝑠𝑖𝑛2𝑎, the angular velocity after the impact is √𝑟
times the velocity before the impact. It is proved that the ratio of kinetic energy before and after the impact of a 

rocking frame is a function of the slenderness α and the mass ratio γ [2, 8] and simplifies to: 

2

22
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3
1 sin 3 cos2

2

1 3
framer

  


 

 
   

    
   

 

 (3) 

3 MODELING THE ROCKING FRAME AS AN EQUIVALENT ROCKING BLOCK 

We present an equivalent simple single-degree-of-freedom oscillator using beam-column elements that is 

able to accurately model the seismic response of a rocking frame. More specifically, we first propose two 

formulations that are based on solving the rocking frame as an equivalent rocking block [8]. Using the models, 

first proposed by Diamantopoulos and Fragiadakis [15], we can simulate a solitary rocking block with an 

equivalent oscillator using a beam-column element and a non-linear rotational spring (Figure 2a). The oscillator 

of Figure 2a has height h, width b, size parameter R, frequency parameter p, slenderness α, mass mc and 

rotational moment of inertia equal to 𝐼𝐴 = (1/3)𝑚𝑐𝑅2 + 𝑚𝑐𝑏2. The non-linear moment-rotation relationship of

the spring is shown in Figure 2b and is given by the expression 𝑀(𝜃) = 𝑚𝑐𝑔𝑅𝑠𝑖𝑛(𝛼𝑠𝑔𝑛𝜃 − 𝜃). Since this

modeling can accurately solve the rigid block problem, it can be also applied for solving the rocking frame as an 

equivalent block provided that either a block with modified size parameter �̂� or modified moment of inertia 𝐼′ is 

adopted. 

(a) (b) 

Figure 2. (a) The equivalent oscillator of a rocking block, (b) moment-rotation relationship of the single-degree-

of-freedom oscillator. 

3.1 Equivalent rocking block with modified size parameter �̂� 

As shown by Makris and Vassiliou [8], the rocking frame of Figure 1b can be solved as an equivalent rocking 

block with frequency parameter �̂� = 𝑝√(1 + 2𝛾)/(1 + 3𝛾), size parameter �̂� = (1 + 3𝛾)/(1 + 2𝛾)𝑅 and, 

therefore, rotational moment of inertia with respect to point O equal to 𝐼𝑜 = (4/3)𝑚𝑐�̂�2. The equation of motion

(Eq. 2) of a rocking frame can be rewritten as follows [8]: 

   ˆ ˆ ˆ( ) sin sgn( ( )) ( ) ( ) cos sgn( ( )) ( )o c c gI t m gR t t m u t R t t           (4) 

The above equation is similar to Eq. 1 and that proves that a rocking frame can be solved as a rocking block with 

modified characteristics. Extending the equivalent block concept, we can solve the rocking frame with an 

equivalent SDOF oscillator (Figure 2a) assuming that the block has dimensions ℎ̂ = �̂�𝑐𝑜𝑠𝑎, �̂� = �̂�𝑠𝑖𝑛𝑎 and 

slenderness α. For the SDOF oscillator we assume that the rotational moment of inertia with respect to point A is 

𝐼𝐴 = (1/3)𝑚𝑐�̂�2 + 𝑚𝑐�̂�2.

Furthermore, the moment-rotation relationship (Figure 2b) of the rotational spring describes the self-

centering capacity of the frame and is 𝛭(𝜃) = 𝑚𝑐𝑔�̂�𝑠𝑖𝑛(𝛼𝑠𝑔𝑛𝜃 − 𝜃). This expression indicates that the

rocking motion will start when the overturning moment is equal to the maximum restoring moment 𝛭0 =
𝑚𝑐𝑔�̂�𝑠𝑖𝑛𝛼. Furthermore, we introduce an event-based form of damping. Energy is dissipated at every impact
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and is function of the coefficient of restitution  𝜂𝑓𝑟𝑎𝑚𝑒 = √𝑟𝑓𝑟𝑎𝑚𝑒 . As originally proposed in reference [15] we

are introducing damping, in all the models proposed, by pausing the analysis when an impact is detected and 

setting the post-impact angular velocity equal to the product of the pre-impact velocity of every degree of 

freedom with the restitution factor ηframe. 

3.2 Equivalent rocking block with modified moment of inertia I΄ 

Instead of modifying the size parameter R we can use an equivalent oscillator with modified rotational 

moment of inertia IΑ. The equation of motion (Eq. 2) of a rocking frame can be written as [8]: 

   
1 3

( ) sin sgn( ( )) ( ) ( ) cos sgn( ( )) ( )
1 2

o c c gI t m gR t t m u t R t t


      



    


(5) 

Instead of assuming an equivalent size parameter, we may assume an equivalent moment of inertia equal to 𝐼𝐴
′ , 

while the remaining of the model is kept the same, i.e. the equivalent block has frequency parameter p, size R, 

height h, width b, slenderness α. From the above equation, the equivalent rotational moment of inertia with 

respect to the pivot point is described by the following equation: 

2 21 3 4 4
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Having calculated the rotational moment of inertia with respect to the pivot point, its value with respect to the 

center of mass A will be equal to: 𝐼𝐴
′ = (1/3)𝑚𝑐𝑅2 + 𝑚𝑐𝑏2 + (4/3)[𝛾/(2𝛾 + 1)]𝑚𝑐𝑅2. Moreover, the block

will again have mass mc and its M-θ relationship is obtained from the properties of the rocking columns 

consisted. Table 1 summarizes the properties of the proposed SDOF oscillators for the seismic response 

assessment of a rigid block and a rocking frame when considered as an equivalent block. 

Table1: Properties of the SDOF oscillators. 

Rigid block 

[15] 
h b R   cm 0 ( )

oI AI

Rigid frame 

(modified R) ĥ b̂ R̂   cm ˆ
cm gRsin  ˆ

cm gRsin sgn   ˆ
oI

ˆ
AI

Rigid frame 

(modified IA) 
h b R   cm cm gRsin  cm gRsin sgn   'oI 'AI

(a) (b) 

Figure 3. (a) near-fault excitation (Imperial Valley (1999), Aeropuerto Mexicali), 

and (b) far-fault excitation (Northridge (1994) earthquake MUL279 component). 

3.3 Validation 

We consider a near-fault and a far-fault ground motion record, both shown in Figure 3,with PGA=0.36g and 
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PGA=0.52g, respectively. In Figure 4 and Figure 5 we show the seismic response of two rocking frames. The 

first rocking frame system corresponds to an ancient monument and has properties: 2h=5m, 2b=0.75m, γ=1, 

while the second frame has the dimensional of a contemporary rocking bridge and properties 2h=8.4m, 

2b=1.4m, γ=5. For both frames, the slenderness values were selected as typical values of columns that are not 

stocky, since Housner’s [7] rocking energy dissipation is not valid in this case. Furthermore, note that in bridges 

the mass ratio γ is usually larger than 4 while in the case of monuments this ratio is much lower, e.g. γ=1. 

According to Figure 4 and Figure 5, perfect agreement is observed for both frames with rigid rocking columns, 

either using the modified size parameter �̂�, or the modified moment of inertia 𝐼′ model. 

(a) (b) 
Figure 4. Rocking response history of two rocking frames, modeled with the modified size parameter �̂� model, 

when subjected to the seismic excitations of Figure 3. 

(a) (b) 
Figure 5. Rocking response history of two rocking frames, modeled with the modified moment of inertia 𝐼′ 

model, when subjected to the seismic excitations of Figure 3. 

4 DETAILED MODELLING OF THE ROCKING FRAME WITH BEAM ELEMENTS 

Instead of equivalent blocks, rocking frames can be modeled with more detailed models, as shown in Figure 

6. We assume that the mass of the rectangular rocking columns, mc, is concentrated at their center of gravity and

that the mass of the deck/architrave, mb, is lumped at its two ends denoted D1 and D2 in Figure 6. The nonlinear 

springs at the base and the top of the columns fully describe the rocking of the system under the condition that 

there is no sliding. Moreover, if the deck’s mass is lumped at the pivot point of the top of the columns and its 

distance from the pivot point of the base is 2R we assume that the rotational moment of inertia at the center of 

gravity of each column is  𝐼𝑐1
= 𝐼𝑐2

= (1/3)𝑚𝑐𝑅2+𝑚𝑐𝑏2 + (𝑚𝑏/2)(2𝑏)2. The rotational moment of inertia

with respect to the point O (or 𝛰′) is 𝐼𝑜 = (4/3)(3𝛾 + 1)𝑚𝑐𝑅2. The M-θ relationship of each of the four similar

springs is obtained from the restoring moment, assuming that it is equally distributed at the bottom and the top: 

       
1 1

( ) sin sgn / 2 2 sin sgn
2 2

c bM m gR m g R          (7) 
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Furthermore, assuming that the initial uplift of the columns is not negligible and that the mass ratio is 

γ=mb/2mc, the restoring moment of each spring is obtained from Eq. 7 setting θ=0 and therefore  𝑀0 =
(1/2)(2𝛾 + 1)𝑚𝑐𝑔𝑅𝑠𝑖𝑛𝛼. Figure 7 and Figure 8 compare the response history between the analytical solution

using the Eq. 2 and the proposed “detailed” model when subjected to the ground motions of Figure 3. Excellent 

agreement is obtained for all cases shown. 

Figure 6. “Detailed” modeling of a rocking frame with rigid columns. 

(a) (b) 
Figure 7. Comparison of the response history of a rocking frame with 2h=5m, 2b=0.75m, γ=1 

(rocking columns and an architrave). 

(a) (b) 
Figure 8. Comparison of the response history of a rocking frame with 2h=8.4m, 2b=1.4m, γ=5 

(rocking bridge). 
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5 PRESTRESSED AND FLEXIBLE ROCKING FRAMES 

The detailed model of section 4 can be easily extended to the case of a rocking frame with restrained 

columns, if the M-θ relationship of each spring is appropriately modified. The equivalent equation of motion of a 

rocking frame with vertical restrainers (Eq. 8) has been already demonstrated by Makris and Vassiliou [11] and 

is: 
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1 2
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1 3
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(a) (b) 
Figure 9. (a) “Detailed” modeling of a rocking frame with rigid pre-stressed columns. (b) The moment-rotation 

(M-θ) relationship of each spring of the simplified approach for modeling rigid pre-stressed rocking frames. 

According to Eq. (8), the minimum acceleration necessary for the initial uplift is  �̈�𝑔 = 𝑔𝑡𝑎𝑛𝛼[1 +
[2/(2𝛾 + 1)]𝑃0/𝑚𝑐𝑔]. We used the detailed model that presented previously and we considered that the

rotational moment of inertia of each column is  𝐼𝑐1
= 𝐼𝑐2

= (1/3)𝑚𝑐𝑅2+𝑚𝑐𝑏2 + (𝑚𝑏/2)(2𝑏)2, equal to a

rocking frame without tendons. The M-θ relationship (Figure 9b) describes the self-centering restoring moment 

and modifies the equation of motion of the rocking frame. In the case of restrained blocks, the restoring moment 

M(θ) is function of the tendon’s elasticity EA and the initial pre-stressing force Po. The influence of the tendons 

to the restoring moment of each spring of a frame is described by the Eq. 9, while at θ=0 the moment is equal to 

𝑀0 = (1/2)(2𝛾 + 1)𝑚𝑐𝑔𝑅𝑠𝑖𝑛𝛼 + 𝑃0𝑅𝑠𝑖𝑛𝛼.
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From Figure 9b and Eq. 9, it is clear that the restoring moment M(θ) may be stiffening or softening, depending 

on the stiffness EA of the restrainers. Therefore, manipulating Eq. 9, we determine that the minimum tendon’s 

stiffness necessary for positive stiffness of the moment-rotation M-θ relationship of Figure 9b is: 
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The proposed model is verified for a typical rocking bridge (2h=8.4m, tanα=1/6, γ=5) subjected to a ground 

motion record for negative (EA/mcg=80), zero (EA/mcg=200.8) and positive (EA/mcg=250) stiffness of the 

springs moment-rotation relationship assuming Po/mcg=0.5. As shown in Figure 10, perfect agreement is 

obtained for all three EA/mcg cases for the frame considered solving it either analytically (Eq. 8) with the 

appropriate ODE23s solver [14] or using the proposed modeling. 

 (a) (b)

(c)

Figure 10. Comparison of the response obtained for the semi analytical solution of the equation of motion of pre-

stressed rocking columns and the proposed modeling subjected to Northridge (1994) earthquake for (a) negative, 

(b) zero and (c) positive stiffness of the springs, respectively. 

The detailed modeling with beam elements can be also applied to rocking frames with flexible columns. 

Especially for frames with slender columns, the response may be sensitive to the bending flexibility EI of the 

columns. The model assumes that the column’s mass is distributed along its height, as shown in Figure 11, while 

the rotational moment of inertia of each column is equal to the moment of inertia of a linear elastic cantilever 

column with height ℎ = 𝑅𝑐𝑜𝑠𝛼 and with a pivot point at its base, i.e. 𝐼𝑜 = (4/3)𝑚𝑐𝑅2𝑐𝑜𝑠2𝛼. Since the model’s

moment of inertia differs from the moment of inertia of a block, we distribute the additional rotational inertia 

𝛥𝐼𝑜 = (4/3)𝑚𝑐𝑅2𝑠𝑖𝑛2𝛼 + (𝑚𝑏/2)(2𝑏)2 = (1 + 3𝛾)(4/3)𝑚𝑐𝑅2𝑠𝑖𝑛2𝛼
 

 among the rotational degrees of

freedom of the nodes, thus adding rotational mass equal to 𝛥𝐼𝑜/(𝑛 − 1) to the rotational degree of freedom of

each node (n is the number of nodes). The moment-rotation relationship of each spring is described by Eq. 7 and 

its stiffness is always negative. 

We assume a frame with two symmetric columns with 2h=15m and 2b=1.5m and mass ratio γ=5 (Figure 12). 

Initially, we solve the problem considering rigid columns and subsequently a flexible frame with concrete 

columns and properties i.e. E=30GPa and ρ=2.5Mg/m3. For the problem at hand the flexibility is important, 

while clearly there are cases of seismic excitations (e.g. Figure 12) where the assumption of rigid columns may 

not be on the safe side. 
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Figure 11. Modeling rocking frames with flexible columns. 

(a) (b) 

Figure 12. Seismic response comparison of a slender rocking column either considering as rigid or flexible with 

E=30GPa and ρ=2.5Mg/m3 under (a) a far-fault seismic excitation (Kocaeli (1999)/DZC270 component, Turkey 

earthquake) and (b) a near-fault ground motion record (Whittier Narrows (1987) LB-Orange Ave). 

6 CONCLUSIONS 

The paper investigates the rocking response and the seismic stability of rocking frames under natural ground 

motion records. More specifically, we discuss the use of Finite Element modeling for assessing the response of 

this complicated, nonlinear problem. The remarkable resistance of rocking frames, apparent from the stability of 

ancient monuments has been also verified in our study. We first examined two equivalent models that assume 

that the rocking frame problem can be solved as an equivalent rocking block with modified parameters. 

Furthermore, we propose a simplified model with beam-column elements that describe the rocking bodies and 

rotational-springs, whose moment-rotation relationship describes the capacity of the structure. We extend the 

proposed modeling concept to the case of frames with flexible columns and we also examine frames with pre-

stressed columns. The last two extensions aim to bridge engineers and such models are easily implemented in a 

structural analysis software offering robust and accurate solutions to more complicated rocking problems. 
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Abstract. Three buildings of different height, regular and irregular as per their plan layout, are designed 

according to AISC [1] and ASCE7 [2]. These structures were considered to be located in regions with different 

seismic activity with the purpose of observing their dynamic response under seven load-column-removal 

scenarios by using non-linear static and dynamic analyses. Non-linear dynamic analyses examine the effect of 

columns removal on adjacent columns, including node-displacement configurations whilst non-linear static 

analyses focus on the push-over curve and yield load factor. The results indicate that irregular structures 

designed in site class C seismic zone do collapse in most of the column removal scenarios. It is also 

demonstrated that higher level of redundancy showed by the 5-storey with respect to the 2-storey building plays 

an important role in the prediction of progressive collapse. The collected data lead to various reflections 

related to regular and irregular building performance under seismic load and the importance of prioritising 

redundancy and robustness in the context of ultimate limit strength design approaches.  

1 INTRODUCTION 

Over the past years, the incidence of blast load in and around buildings and the subsequent progressive collapse 

have accounted for significant human casualties and structural damage (American Society of Civil 

Engineers[ASCE]) [3]. Risks and unusual loads potentially causing failure include plane crash, incorrect design 

or construction, gas explosion, fire, occasional overload, vehicle impact and explosions (National Institute of 

Standard and Technology[NIST]) [4]. Yet, as the risk relating to such occurrences is not high, buildings are not 

designed to resist the unusual overload, and neither is the influence of such loads on structures thoroughly 

examined; thus, structures remain vulnerable to different degrees of damage. Nonetheless, measures exist to 

mitigate effect of progressive collapse. Such measures are proposed by Facilities Criteria (UFC) and the General 

Services Administration (GSA) [5,6], both of which address the Alternative Path Method (APM), which remains 

the most widely practiced measure in fighting progressive collapse.  

The proper parameterisation of the procedure is, nevertheless, still being examined. Powel [7], for instance, made 

a comparison of linear static, non-linear static and non-linear dynamic analyses, finding that using a load factor 

of 2 in static analyses, we can produce significantly conservative results. Ruth, Marchand, and Williamson [8], 

likewise, analysed 2D and 3D steel frames so as to demonstrate that a load factor of 2 in non-linear static analyses 

could be conservative. A factor of ~1.5 was then found to be more accurate in capturing dynamic impact obtained 

from quasi-static analyses, and a load factor of 2 was found to be more suitable for high-ductility structures, on 

condition that the materials’ behaviour is not elastic-perfectly plastic and that the materials harden over a wide 

range of strains after yielding. Thus, the authors of the present study recommended using load factors of 2 and 1.5 

for ductile structures and others, respectively.  

The last decades have also seen wide research into the assessment of the sensitivity, or the lack thereof, to local 

damage. Gerasimidis and Baniotopoulos [9], studied the disproportionate collapse in steel moment frames and 

made a comparison of the APM with a numerical approximation, which was based upon β-Newmark and linear 

Hilbert-Hughes-Taylor procedures. Gerasimidis, Bisbos, and Baniotopoulos [10], reported a parametric study, in 

which irregular steel frames subject to vertical geometric irregularity had been examined; meanwhile, 

Gerasimidis, Bisbos, and Baniotopoulos [11], considered structural sensitivity to local damage and introduced the 

idea of partial damage to structural elements. 

Khandelwal, El-Tawil, and Sadek [12], studied the lateral stability of structures by analysing the progressive 

collapse of steel-braced frames designed seismically, using explicit transient dynamic simulations. In this study, 
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the APM on previously designed 10-storey prototype buildings was used, which demonstrated that concentrically 

braced frames are far more susceptible to progressive collapse than are their eccentrically braced counterparts. 

Chen, Peng, Ma, and He [13], studied the effectiveness of horizontal bracing on a steel moment resisting frame, 

and found that rotation angles and displacements in the model with bracings were nowhere as large as those in the 

absence of bracing. Kim and Park [14], investigated the progressive collapse-resisting capacity of special truss 

moment frames in various arbitrary column-removal scenarios. Structures designed according to the AISC seismic 

provision, it was noted, collapsed, upon the sudden removal of a column, as a result of plastic hinge formation at 

highly stressed regions. Gerasimidis and Baniotopoulos [15], too, investigated the effect of different strengthening 

techniques to mitigate progressive collapse in 2D steel moment frames, while Gerasimidis, Deodatis, Kontoroupi, 

and Ettouney [16], in accordance with the APM, analysed the progressive collapse of a tall steel frame upon the 

removal of a corner column. Homaioon Ebrahimi, Martinez-Vazquez, and Baniotopoulos [17], investigated the 

effect of plan irregularities on the progressive collapse of four steel structures located in regions with different 

seismic activity, and when comparing regular and irregular structures designed in site class E seismic zone, the 

demand force to capacity ratio (D/C) of the columns in the irregular structures is on average between 1.5 and 2 

times that of the regular ones. In addition, Homaioon Ebrahimim, Martinez-Vazquez, and Baniotopoulos [18], 

analysed the effect of plan irregularities on the progressive collapse of braced and un-braced steel structures 

located in regions with different seismic activity.The present paper builds on previous research and focus on the 

impact of three buildings of different height, regular and irregular as per their plan layout, and structural stability 

evaluated at two distinct seismic regions, C and E, which creates risk scenarios that have not received adequate 

attention from scholars. Consequently, the spread of damage induced by various column-removal scenarios on 

three building regular and irregular prototypes is examined and discussed throughout.  

2 MODEL STRUCTURES 

Three 2, 3 and 5-storey steel structures with regular and irregular plan were selected for the present investigation. 

Intermediate Steel Moment Frames were pre-designed with ETABS software according to the AISC (2010) and 

ASCE (2010) to study progressive collapse scenarios in structures. Each of the 6 structures has 3 m height and 6 

bays of 4 m wide each, and plan of structures for regular and irregular buildings shown in Figure 1.  All structures 

are assumed to be located in site class C and E seismic zones. The buildings were loaded with 192 kg/m2 and 520 

kg/m2 dead- and live-load respectively. Further details of the six structures are provided in Table 1 whilst sections 

of structural members for the regular and irregular structures are given in Tables 2,3,4, and 5 respectively. 

 Figure 1: Regular and irregular structures plan 

Structure Seismic zone Type of Soil Regularity Number 

of storeysStructure 1 C very dense soil and soft rock Irregular 2,3,5 

Structure 2 E soft clay soil Irregular 2,3,5 

Structure 3 C very dense soil and soft rock Regular 2,3,5 

Structure 4 E soft clay soil Regular 2,3,5 

 Table 1. Analysis model structures 
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Regular-Seismic 

region C 

Regular-Seismic 

region E 

Irregular-Seismic 

region C 

Irregular-Seismic 

region E 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 

Column 

(Box) 

b 200,180 180 200,180 180 200,180 180 200 180 

t 10,8 8 10 8 12,10 8 12,10 10 

Beam 

bf 150 140 150 140 150 140 150 150 

tf 8 8 8 8 8 8 8 8 

bw 250 250 250 250 250 250 250 250 

tw 8 6 8 6 8 6 8 8 

 Table 2. Detail of sections used in 2- story structures 

Regular-Seismic 

region C 

Regular-Seismic 

region E 

Irregular-Seismic 

region C 

Irregular-Seismic 

region E 

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

Column 

(Box) 

b 200 180 180 200 180 180 200 200 180 200 200 200 

t 12, 10 8 8 12,10 10 8 12 10 8 15,12 12 10 

Beam 

bf 150 140 140 150 140 140 150 150 140 150 150 150 

tf 8 8 8 10,8 8 8 8 8 8 12,10 8 8 

b

w

250 250 250 250 250 250 250 250 250 250 250 250 

t

w

8 6 6 8 6 6 8 8 6 8 8 8 

   Table 3. Detail of sections used in 3- story structures 

Regular-Seismic 

region C 

Regular-Seismic 

region E 

1st 2nd 3rd 4th 5rd 1st 2nd 3rd 4th 5rd 

Column 

(Box) 

b 200 200 200 200 200 200 200 200 200 200 

t 12,10 10 10 10 10 15,12,10 15,10 12,10 10 10 

Beam 

bf 150 150 150 150 150 150 150 150 150 150 

tf 8 8 8 8 8 12,10 12,10 10,8 8 8 

bw 250 250 250 250 250 250 250 250 250 250 

tw 8 8 8 8 8 8 8 8 8 8 

  Table 4. Detail of sections used in 5- story structures 

Irregular-Seismic 

region C 

Irregular-Seismic 

region E 
1st 2nd 3rd 4th 5rd 1st 2nd 3rd 4th 5rd 

Column 

(Box) 

b 200 200 200 200 200 200 200 200 200 200 

t 12 10 10 10 10 20,15 15 12 10 10 

Beam 

bf 150 150 150 150 150 150 150 150 150 150 

tf 8 8 8 8 8 15,12,10 15,12,10 12,10,8 8 8 

bw 250 250 250 250 250 250 250 250 250 250 

tw 8 8 8 8 8 8 8 8 8 8 

 Table 5. Detail of sections used in 5- story structures 

3 NUMERICAL MODELING 

The 3D model structures were numerically analysed with OpenSees software. Non-linear analyses were run 

considering a simple bi-linear material model with post-yield stiffness of 2% of the initial stiffness. Non-linear 

beam-column elements were used for modelling the cross-sectional areas as precisely as possible. The 

plastification over element length and cross-sections were also considered, whereas large displacements effects 

were also accounted for by the employment of the co-rotational transformation of the geometric stiffness matrix. 

The dynamic behaviour caused by sudden column removal was not a factor in the load reversal because, in 

structures subjected to earthquake loads, using a complicated hysteretic model is unnecessary. The fraction of 

damping was assumed to be 5% which is usually the case for structures with large deformations. 
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4   ANALYSIS METHOD FOR PROGRESSIVE COLLAPSE  

Following the GSA (2013) guidelines, load combinations including 120% of dead load plus 50% of the total live 

load were gradually applied within a time frame of 5 s. Then, and in order to account for non-linear dynamic 

effects, the load was maintained steady for the following 2 s. After the 7 s sequence, when gravity load effects are 

considered to be fully transferred to the structure, a pre-selected column was suddenly removed from the model 

and the structural response was examined.  

In parallel, non-linear static analyses were performed, following the GSA (2003, 2013) recommendation for using 

a dynamic amplification factor of ~2. That, in order to reflect a ratio of 2 between the load that is applied to the 

spans that are adjacent to the removed column with respect to that applied on other spans. In this case, vertical 

loading is applied by following a step-wise increase until the maximum amplified loads are attained or the 

structure collapses. This vertical pushover analysis procedure, which is often called the 'pushdown analysis 

method', accounts for non-linear effects which approximate the non-linear dynamic response whilst providing a 

reliable estimation of the elastic and failure limits of the subject structure. 

Derived from the non-linear static analyses, the effective imposed load plotted against the node displacement of 

the removed column indicates the capacity of a structure against progressive collapse. If the load value is divided 

by the standard gravity load, the vertical axes of the pushdown capacity curve are converted into dimensionless 

load factors, as in Eqn. (1). This standardises the load ratio and makes it easier to establish generic observations. 

The load factor calculated in this way have thus been used herein as a criterion for assessing structural collapse. 

Namely, if the load factor corresponding to the displacement causing material yield is higher than 1, the structure 

can withstand the removal of a column, otherwise the structure will collapse. 

𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝐿𝑜𝑎𝑑

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑙𝑜𝑎𝑑
(1) 

5   ANALYSIS RESULTS 

As outlined above, in this investigation, the potential collapse of the structures listed in Table 1 is studied under 

the scenarios set out in Table 6 and Figure 2. In all cases, the column removed correspond those located in the 

ground floor, as that induced the most critical conditions concerning structural stability. Additionally, a range of 

column-removal scenarios have been identified in order to induce meaningful configurations of potential failure. 

In each of these scenarios, a column is suddenly removed and the response of the structure is examined through 

non-linear dynamic and static analyses, as described above. The columns selected for removal are shown in Figure 

3. 

 Figure 2: Location of the columns removed for each of the six structures 

Location of removal column 

Number Storey Frame Pier Scenario notation 

1 1 1 A S1F1PA 

2 1 1 B S1F1PB 

3 1 1 D S1F1PD 

4 1 4 A S1F4PA 

5 1 4 D S1F4PD 

6 1 4 F S1F4PF 

7 1 7 A S1F7PA 

 Table 6. Column-removal scenarios for each of the six structures. 
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5.1    Nonlinear static analysis results 

5.1.1 Two-storey moment-resisting frame steel structure results 

Considering the six regular and irregular structures analysed in this study using nonlinear static analysis. In Fig. 

3, a comparison has been conducted between load factors in different column removal scenarios for 2-storey 

structure.  

  Figure 3: Load factors for all the structures and scenarios in 2-storey 

Considering Fig. 3, it may be understood that under all column removal states, the two irregular structures (1 and 

2) are not able to bear the force imposed by column removal in two C and E seismic regions, respectively. The

most critical state is related to a state when the corner columns on “A” axis are removed. Under various column 

removal scenarios, both regular structures (3 and 4) managed to bear the load imposed to adjacent columns. 

5.1.2   Three-storey moment-resisting frame steel structure results 

In Fig. 4, the load factor for regular and irregular structures in 3-storey structure has been shown. As it may be 

seen, like 2-storey, also here removal of corner column represents maximum damages and minimum structural 

endurance against progressive collapse are resulted.  

  Figure 4: Load factors for all the structures and scenarios in 3-storey 

Both regular structures (3 & 4) managed to resist against progressive collapse under various column removal 

scenarios. Also in these structures, corner (S1F1PA) and internal (S1F4PD) columns removal imposes maximum 

and minimum damages to the structures, respectively. On the other hand, it is seen that upon increasing structure 

height from 2 to 3 stories, the structure capacity against progressive collapse also increases. Comparing the load 

factor in 2- and 3-storey structures with similar status the same issue may be instated. The load factor in structure 

1 with scenario 3 is equal to 0.545, while for 3-storey the same is equal to 0.581. In other words, a rough increase 

of 7% has been observed in the structure capacity.  

5.1.3   Five-storey moment-resisting frame steel structure results 

Considering Fig. 5, as expected, by increasing the height, and in case of removing S1F4PD Column, the structure 

may bear the load caused by vertical loading at the removed column. This issue has been expressed using a 1.18 

load factor for Structure 2 situated in E seismic region. However, still irregular Structure 1 may not bear the force 

caused by vertical loading at the removed column and force distribution amongst its adjacent members.  
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A comparison between the 5-storey structure with those 2- and 3-storey ones demonstrates that under all states 

the capacity and load factor have increased upon increasing the structure height and developing more stiffness 

along the structure height.  

 Figure 5: Load factors for all the structures and scenarios in 5-storey 

In Fig. 6, the load factor changes in terms of height have been given for all structures (1 through 4). Regarding 

forces in height ratio changes it may have expressed that the relation between force and height for regular 

structures is almost linear, while the same is nonlinear for irregular ones.  

 Structure 1  Structure 2 

 Structure 3                                                                           Structure 4 

 Figure 6: Yield load factors vs. Height for all the structures and scenarios 

5.2    Nonlinear dynamic analysis results 

Non-linear dynamic analyses were used to calculate the peak displacement of the node above a removed column. 

Figure 7, 8 and 9 shows the results obtained for scenarios 1 and 3 across all structures, respectively. As it can be 
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inferred from the results, node displacements in structures 1 and 2 represent structural collapse of the region 

around the removed column. In contrast, the node displacement remains constant after 7 s from the removal in all 

structures 3 and 4 for scenarios 3 which reveals a robust structural performance following the potential failure of 

the target column. 

a) Scenario 1 b) Scenario 3

Figure 7: Vertical displacement of removal point of 2-storey structures, a) Scenario 1, b) Scenario 3 

a) Scenario 1 b) Scenario 3

 Figure 8: Vertical displacement of removal point of 3-storey structures, a) Scenario 1, b) Scenario 3 

a) Scenario 1 b) Scenario 3

Figure 9: Vertical displacement of removal point of 5-storey structures, a) Scenario 1, b) Scenario 3 

Another key aspect for assessing structural performance under progressive collapse is the force taken by columns 

that are adjacent to the removed column. In Figure 10 the demand to capacity (D/C) ratio of the columns adjacent 

to the corner columns in scenario 1 across all the structures is given. It can be seen in this figure that the D/C ratio 

associated to adjacent columns is around 1 in scenario 1 related to structures 3 and 4. This suggests that columns 

adjacent to the target-removal one may not be exposed to total damage as alternative load paths do not seem to 

directly redistribute to those spans. 
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a) 2-storey structures b) 3-storey structures

c) 5-storey structures

 Figure 10: The demand force to capacity ratio (D/C) of the adjacent columns in Scenario 1 

a) 2-storey structures, b) 3-storey structures, c)   5-storey structures

According to the structures 3 and 4 in five storey structures exhibit D/C of 0.6 and 0.73 for scenario 3, respectively. 

Therefore, these columns are not exposed to collapse under that column-removal scenario, but they would be 

damaged if belonging to structures 1, 2 and also in these structures the required force for both adjacent columns 

in the progressive collapse analysis is between 1.2 and 1.8 times the column capacity, which indicates that these 

columns would have been damaged after the collapse of the target column. 

On the other hand, it can be seen the D/C ratio associated to adjacent columns for both two and three storey 

structures is greater than 1 in scenario 3 related to structures 1,2, and 3 which indicates that these columns would 

have been damaged after the collapse of the target column. In Table 7, 8, and 9 node displacement and maximum 

D/C ratio of adjacent columns is given for all the scenarios and structures.  

Structure 4 Structure 3 Structure 2 Structure 1 Scenario 

D/C Node 

Displacement 

(mm)

D/C Node 

Displacement 

(mm)

D/C 
Node 

Displacement 

(mm)

D/C 
Node 

Displacement 

(mm) 1.01 78 1.16 Fail 1.55 Fail 1.89 Fail S1F1PA 

0.66 27 0.79 64 1.12 Fail 1.42 Fail S1F1PB 

0.72 30 1.82 71.1 1.32 Fail 1.75 Fail S1F1PD 

0.67 27.1 0.78 63.4 1.09 97 1.33 Fail S1F4PA 

0.66 27 0.79 64.2 1.07 95.5 1.2 Fail S1F4PD 

0.67 28 0.82 71 1.15 Fail 1.47 Fail S1F4PF 

1.01 78 1.16 Fail 1.52 Fail 1.87 Fail S1F7PA 
 Table 7: Node displacment and maximum D/C ratio of adjacent columns for 2-storey structures 
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Structure 4 Structure 3 Structure 2 Structure 1 Scenario 

D/C 
Node 

Displacement 

(mm) 

D/C 
Node 

Displacement 

(mm) 

D/C 

Node 

Displacement 

(mm) 

D/C 

Node 

Displacement 

(mm) 

0.99 75 1.13 Fail 1.51 Fail 1.85 Fail S1F1PA 

0.62 24.1 0.77 62 1.07 95 1.36 Fail S1F1PB 

0.68 26 1.79 68.2 1.29 Fail 1.68 Fail S1F1PD 

0.61 24.2 0.77 61.5 1.04 93 1.27 Fail S1F4PA 

0.57 24 0.75 61 1.03 92 1.16 Fail S1F4PD 

0.63 25 0.77 68 1.09 96.5 1.41 Fail S1F4PF 

0.99 75 1.14 Fail 1.45 Fail 1.8 Fail S1F7PA 

 Table 8: Node displacment and maximum D/C ratio of adjacent columns for 3-storey structures 

Structure 4 Structure 3 Structure 2 Structure 1 Scenario 

D/C 

Node 

Displacement 

(mm) 

D/C 

Node 

Displacement 

(mm) 

D/C 

Node 

Displacement 

(mm) 

D/C 

Node 

Displacement 

(mm) 

0.96 42.4 1.06 Fail 1.44 Fail 1.77 Fail S1F1PA 

0.48 21.4 0.68 64.61 0.92 86 1.29 Fail S1F1PB 

0.96  42.4 1.06 Fail 1.23 Fail 1.5 Fail S1F1PD 

0.41 16.3 0.61 76.3 0.87 84.9 1.15 Fail S1F4PA 

0.39 14.1 0.52 65.7 0.83 84 1.05 91 S1F4PD 

0.42 18.2 0.62 57.6 0.94 87.8 1.31 Fail S1F4PF 

0.91 40.1 1.03 Fail 1.38 Fail 1.67 Fail S1F7PA 

 Table 9: Node displacment and maximum D/C ratio of adjacent columns for 5-storey structures 

6   CONCLUSION 

In this study, three ,2, 3 and 5-storey irregular and regular steel structures with moment-resisting frame were 

designed in site class C and E according to the AISC (2010) and ASCE7 (2010). The effect of plan irregularities 

and type of seismic regionalisation on progressive collapse have been analysed under various column removal 

scenarios. The results of the analyses reveal that in cases where the structural plans were similar, the structure 

designed in a region in site class E seismic risk has less collapse potential. Moreover, the potential for progressive 

collapse was identified to be higher for buildings with plan irregularities and or in site class C. It was also seen 

that the displacement of the node above the removed column and the D/C ratio of the columns adjacent to the one 

removed could provide a fair indication of the risk of overall collapse of structures. 

The results showed that upon increasing structure height from 2 to 3 stories, the structure capacity against 

progressive collapse also increases. Comparing the yield load factor in two 2- and 3-storey structures with similar 

status the same issue may be instated. The yield load factor in structure 1 with scenario 3 was equal to 0.545, 

whilst for 3-storey the same was equal to 0.581. In other words, a rough increase of 7% has been observed in the 

structure capacity. Generally, a comparison between the 5-storey structure with those 2- and 3-storey ones 

demonstrated that under all states the capacity and yield load factor have increased upon increasing the structure 

height. 
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Abstract. The main aim of this work is to investigate the seismic vulnerability of traditional masonry buildings, 

taking into account the impact of dynamic soil-structure interaction (SSI). More specifically, the dynamic response 

of a typical unreinforced masonry (URM) building constructed over a silty sand layer is examined. The main 

novelty of the present study is that it considers time-varying soil mechanical properties, i.e., depending on the soil 

saturation level, which usually varies with time. In addition, a new structural assessment approach, which aims 

to accurately assess the performance levels (Limit States) of historic buildings and monuments after performing 

certain seismic rehabilitation measures has been applied. Under this perspective, a quite simple and efficient -in 

terms of time, cost and effectiveness- intervention was considered, in which blocks of expanded polystyrene (EPS) 

geofoam are placed at the perimeter of the foundation of theURM building in order to improve its dynamic 

response and reduce its seismic vulnerability under the examined circumstances. Subsequently, the calculation of 

building’s nominal life is performed in a realistic manner by taking into account the annual changes in the soil 

saturation level. 

1 INTRODUCTION 
Modern regulations for the evaluation of existing structures [1-3] are based on performance-based assessment, 

which aims to implement a number of limit states in relation to predetermined seismic actions scenarios [4]. On 

the other hand, the challenge of balancing safety versus maintenance of the architectural and artistic features of 

historic structures remains a crucial issue to address, usually on a case-by-case basis. Τhere is a lack of a unified 

approach for the assessment of seismic risk of monuments and historic structures. Ensuring the monumental 

buildings’ integrity in long terms is an issue that needs further attention and improvements. The most important 

difficulty, in creating a holistic methodology for assessing the seismic hazard of cultural heritage structures, is the 

limitations that are imposed on structural interventions. The constraints on the implementation of interventions in 

cultural heritage buildings are arising from the internationally accepted guidelines and the conceptual differences 

compared to design of new structures [5]. The best retrofitting practice in monumental structures is considered the 

application of reversible interventions in order to limit their vulnerability in a less intrusive manner. 

Performance through Limited Duration Rehabilitation Interventions (LDRI) is a new methodology, which aims 

to assess the seismic risk of monumental structures [6, 7]. This methodology attempts to provide a framework that 

quantifies the “safe” duration (i.e., the nominal life) of an intervention that upgrades structural integrity in a 

specified manner. The nominal life of an intervention is defined as the period for which this action ensures that 

the structure fulfills selected performance level(s) for a certain seismic scenario (e.g., probability of exceedance 

10% and 20% in 50 years, respectively for Significant Damage and Damage Limitation Levels). 

A typical two-storey URM building, recently presented by the authors [8], was selected as a case study to 

perform the LDRI methodology, introducing also a new retrofitting scheme as it will be presented in the sequence. 

In the previous work [8], the impact of silty sand soil saturation level on the dynamic response of a typical masonry 

building was presented. Additionally, a slight retrofitting scheme was also examined, in which reinforced concrete 

(RC) friezes were placed at the floor levels and wooden lintels were replaced with RC lintels. The results indicated 

that the examined building presented higher drifts when the structure was constructed on relatively dry soil, while 

the slight strengthening with RC elements substantially improved its response and also reduced the impact of 

saturation conditions.  
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As an extension, the present study proposes the application of a new mitigation method capable of also 

improving the dynamic structural response, depending on the soil saturation level. More specifically, a layer of 

expanded polystyrene (EPS) geofoam is placed between the surrounding silty sand layer and the external side at 

the perimeter of building’s foundation, acting as a compressible “shield”. EPS blocks are commonly used as a 

lightweight filling material in many civil engineering applications, e.g., embankments, retaining walls, pipelines, 

ground vibration isolations, etc. This simple, economic and fast intervention, which does not cause any structural 

or functional disturbance, aims to isolate the structure from ground shaking and absorb most of the seismic energy. 

In addition, this paper attempts to determine the nominal life of the URM building after this slight intervention 

considering either constant or annually varying soil saturation conditions. 

2 THEORETICAL BACKGROUND 

2.1 Performance-based design/assessment 
As already mentioned, modern seismic design norms/guidelines for the seismic design of new structures and 

for the assessment of interventions in existing buildings have included state-of-the-art methodologies for assessing 

the structural response based on performance-based assessment for certain limit states (design levels). 

2.1.1. Greek Code for Structural Interventions 

The Greek norm for structural interventions for existing reinforced concrete structures (Greek Code for 

Structural Interventions (CSI) [9]) has adopted two seismic hazard levels: 

- Seismic excitation with exceedance probability 50% in 50 years. 

- Seismic excitation with exceedance probability 10% in 50 years. 

In addition, CSI defines three performance levels, namely: Damage Limitation, Significant Damage, and Near 

Collapse, for structures with a conventional lifetime of TL=50 years. 

Accepting that the cultural heritage structures belong to importance classes III and IV, CSI defines three 

performance levels: 

- A1: Limited damage for seismic excitation with exceedance probability 10% in 50 years. 

- A2: Limited damage for seismic excitation with exceedance probability 50% in 50 years. 

- B1: Important damage for seismic excitation with exceedance probability 10% in 50 years. 

It is noteworthy that CSI does not consider the performance level "Near Collapse" as acceptable for important 

monumental structures. 

Greek Earthquake Planning and Protection Organization (EPPO) has more recently released a draft regulation: 

Code for the Assessment and Interventions of Masonry Structures (CASIM) aiming to establish criteria for the 

assessment of the bearing capacity of existing masonry structures [10], and a draft with specialized guidelines for 

monuments [11]. In general, CASIM follows the same principles and performance levels as CSI. 

2.1.2. Eurocode EC8 

Eurocode 8 -Part 1 [12] and Part 3 [2]- follows similar principles as CSI, while it provides an additional seismic 

hazard level: 

- Seismic excitation with exceedance probability 20% in 50 years. 

- Seismic excitation with exceedance probability 50% in 50 years. 

- Seismic excitation with exceedance probability 10% in 50 years. 

The target performance level results from the combination of acceptable damage level and seismic risk scenario, 

as well as the importance class of the structure. 

It has to be noted that EC8 does not refer with specific guidelines for the cases of high historical or artistic 

value monumental structures [7]. However, its principles can be followed for structural assessment and retrofitting 

in such cases as well. 

2.1.3. FEMA 349 

According to US guidelines FEMA 349, the following four performance levels are defined for masonry 

structures [4]: 

- Slight Damage State. 

- Moderate Damage State. 

- Extensive Damage State. 

- Complete Collapse.  

Similarly, to EC8, FEMA 349 adopts three seismic hazard levels [4]: 
- Seismic excitation with exceedance probability of 50% in 50 years. 

408



Alexandros Liratzakis and Yiannis Tsompanakis 

- Seismic excitation with exceedance probability of 10% in 50 years. 

- Seismic excitation with exceedance probability of 2% in 50 years. 

In addition, FEMA 349 [4] proposes limit drift values for each performance level. The proposed values in 

Table 1 change according to the construction materials and the norm under which the structure was designed. Note 

that for historic structures, the limit values of the URM buildings correspond to design level "Low-Code”. 

Performance Level 

Average Inter-Story Drift Ratio 
Capacity Curve 
Control Points 

Structural Damage State Thresholds 
 (Fragility Medians) 

Yield Plastic Slight Moderate Extensive Complete 
Special High - Code 0.0057 0.1371 0.005 0.015 0.05 0.125 

High – Code 0.0038 0.0913 0.004 0.012 0.04 0.1 

Moderate – Code 0.0029 0.0514 0.004 0.0099 0.0306 0.75 

Low – Code 0.0019 0.0343 0.004 0.0099 0.0306 0.75 

Pre – Code 0.0019 0.0343 0.0032 0.0079 0.0245 0.06 

Table 1 :  Structural Damage State thresholds per Performance Level [4] 

2.2 Limited Duration Rehabilitation Interventions 
Improvement of dynamic structural response by applying the so-called “Limited Duration Rehabilitation 

Interventions” (LDRI) [6, 7] aims to implement mitigation measures for a specified period and for a predefined 

limit state, after which a re-assessment of the building must be performed and depending on the results to revise 

the mitigation measures. According to this conceptual methodology, the time for which the operation ensures a 

predetermined performance level is defined as the nominal life of an intervention (ΤΔ). 

This methodology uses the following Equations for each of the three seismic hazard zones in Greece (Z1, Z2, 

Z3) for the calculation of the return period (TRL) with respect to reference peak ground acceleration (agR): 

logagR ≈  0.277logTRL + 1.579 (1) 

logagR ≈  0.264logTRL + 1.739 (2) 

logagR ≈  0.240logTRL + 2.015 (3) 

The code-imposed acceleration values agRL for of the three Greek seismic hazard zones are 0.16g, 0.24g and 

0.36g, respectively [13]. The return period TRL related to the corresponding agR is calculated using the proper 

attenuation relationship among (1) - (3), for which a 20% reduction, i.e., agR = 0.8agRL, is also considered [7]. 

Adopting a Poissonian distribution for the occurrence of seismic events, TΔ is related to the return period TRL 

and to the probability of occurrence PR as follows: 

ΤRL = −
TΔ

ln(1 − PR)

(4) 

If the seismic action is defined in terms of the reference peak ground acceleration agR, the value of the 

importance factor γI multiplying the reference seismic action to achieve the same probability of exceedance in TΔ 

years as in the TΔR years for which the reference seismic action is defined, can be computed by: 

where exponential parameter k is in the order of 3 [12] and relates nominal life of the examined intervention with 

the importance class [7]. 

3 CASE STUDY 

Details for the examined URM building can be found in [8, 14], herein due to space limitations only a brief 

description is given. The mechanical characteristics of masonry walls were calculated according to EC6 [15], while 

the parabolic Drucker-Prager yield criterion [16] was used for the description of the inelastic behavior of the 

masonry walls. The structure is constructed on unsaturated silty sand, the mechanical properties of which with 

respect to the degree of saturation are taken from the study of Byun et al. [17]. Regarding the inelastic behavior of 

the soil, the Cam-Clay yield criterion according to the Critical State theory for unsaturated soils was used [18]. 

𝛾𝐼 = (
TΔ𝑅

TΔ
)−1/𝑘 (5) 
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Numerical analyses were performed utilizing general purpose finite element software MSC Marc [19]. For the 

dynamic nonlinear analyses, the multiple-stripe dynamic analysis (MSDA) procedure was repeated for eight 

different soil saturation conditions (8%, 12%, 16%, 20%, 32%, 54%, 63% and 80%) and ten seismic intensity 

levels [8]. The twenty seismic records (Table 2) which have been used in this study were selected from PEER 

database [20] and were scaled utilizing EC8 [12] guidelines as implemented in ISSARS software [21]. 

Νο Region Station name Magnitude Epicentral 
distance (km) 

PGA 
(g) 

1 

Imperial Valley 

Bonds Corner 

6.53 

6.2 0.686 

2 El Centro Array #5 27.8 0.448 

3 El Centro Array #7 27.64 0.42 

4 El Centro Array #8 28.09 0.538 

5 Mammoth Lakes Convict Creek 6.06 1.43 0.419 

6 Coalinga Pleasant Valley P.P 6.36 9.98 0.571 

7 
N. Palm Springs 

North Palm Springs 
6.06 

10.57 0.59 

8 Whitewater Trout Farm 4.24 0.602 

9 Chalfant Valley Zack Brothers 6.19 14.33 0.425 

10 
Loma Prieta 

Capitola 
6.93 

9.78 0.48 

11 Gilroy Array #3 31.4 0.462 

12 Cape Mendocino Rio Dell Overpass 7.01 22.64 0.424 

13 Big Bear Big Bear Lake - Civic 6.46 10.15 0.503 

14 

Northridge 

Beverly Hills 

6.69 

13.39 0.459 

15 Canyon Country 26.49 0.436 

16 LA Obregon Park 39.39 0.467 

17 Newhall - Fire Sta 20.27 0.698 

18 Pardee – SCE 25.65 0.505 

19 Rinaldi Receiving 10.91 0.634 

20 S. Monica City Hall 22.45 0.591 

Table 2 : Characteristics of the ground motion records 

Figure 1. a) Model in its initial state; b) Retrofitted model with EPS geofoam 

As a continuation of the previous study [8], the original building was slightly retrofitted with EPS blocks, with 

height equal to 1m and width 0.50m (Figure 1), which are placed at the exterior of the foundation, aiming to 

improve the seismic response of the building and to minimize the impact of soil saturation conditions. This cost-

effective intervention can enhance the dynamic behavior of the building, as this EPS layer acts as a damper (due 

to its high compressibility), absorbing most of the dynamic distress, thus, protecting the structure, especially for 

lower Sr(<32%) values. This is evident by examining Figure 2, which depicts the total drift MSDA curves for the 

retrofitted building, by comparing median curves of initial and retrofitted models, i.e., bold continuous vs. dashed 

curves, respectively.  

a)       b) 
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Figure 2. Total drift MSDA curves for the retrofitted building model, while bold dashed curves correspond to 

median values, while the bold continuous curves present median values for the initial building 

4 BUILDING’S NOMINAL LIFE FOR CONSTANT SOIL SATURATION LEVEL 

As aforementioned, the MSDA curves of the retrofitted model were used to assess its performance following 

the LDRI principles. For this purpose, two performance levels: Slight and Moderate Damage States, as defined in 

FEMA 356 [1] were used. Accordingly, the values for URM buildings and Performance level "Low-Code" were 

taken from Table 1. Firstly, the calculation of the nominal life was performed considering that the building is based 

on soil with constant saturation level, i.e., not varying with time. Figure 3 depicts the average dynamic resistance 
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curve and the limits (vertical lines) of the two performance levels for the examined building for eight different 

saturation conditions (Sr= 8%, 12%, 16%, 20%, 32%, 54%, 63% and 80%). 
In the comparative plot of Figure 3, there is a clear trend that the selected retrofitting intervention in most cases 

leads to a substantial improvement of the structural response. However, it has to be noticed that during the first 

scaling steps the MSDA curves of the original and the retrofitted building are identical. In other words, for low 

seismic intensity levels the soil saturation conditions do not play a crucial role. Furthermore, for higher saturation 

levels (Sr>32%) the response of the structure is not improved in the first steps of record scaling. On the other hand, 

for higher seismic intensity levels, in all cases the application of this retrofitting scheme drastically improves the 

response of the structure, depending on the saturation level. In particular, the improvement of the response of the 

retrofitted structure is even more pronounced at lower saturation levels. 

In addition, the results of the original building seem to be grouped, i.e., to have slight variations for low (Sr=8% 

to 20%) and high (Sr=32% to 80%) saturation levels. This is due to the variation of soil stiffness for these soil 

conditions, since according to the experimental data [17], the impact of saturation level substantially affects the 

basic mechanical parameters of the soil in this specific manner. In contrast, the application of EPS geofoam at 

foundation level alleviates this scattering and groups the curves in a more uniform way irrespective of the 

saturation conditions. 

Figure 3. Comparison of initial and retrofitted model’s IDA curves. 

Regarding the calculations of nominal life of the retrofitted and initial models utilizing LDRI approach, it is 

assumed that the building is located at seismic zone Z2, thus, TRL return period is calculated via Equation (2). The 

nominal life for all examined models is calculated using Equation (4) and the results are presented in Table 3. As 

a consequence of the building’s response variation according to the degree of saturation, the nominal life of the 

structure varies considerably depending on the soil conditions.  

Τhe response of the initial building has proven to be directly dependent on the degree of soil saturation. More 

specifically, it was observed that the increase of soil saturation (Sr >32%) contributes to the increase of the 

building’s nominal life. When the building is founded on soil with a Sr<32%, the nominal life of the building 

varies from 7 to 14 years for A2 design level and from 11 to 16 years for B1 design level. Conversely, when the 

building is founded on soil with higher Sr, the nominal life increases significantly, reaching between 39 and 48 

years for A2 design level and from 58 to 62 years for B1 design level. The nominal life of the original building is 

extremely small for low soil saturation levels. Moreover, the nominal life varies considerably depending on the 

degree of subsoil saturation. In particular, the nominal life is altered between 9 and 49 years for A2 design level 

and from 11 to 62 years for B1 design level. Therefore, it is obvious that a reliable prediction of the initial 

building’s nominal life is not a straightforward task. 

Since the scattering of the initial structure’s nominal life is quite high, retrofitting of the structure was deemed 

necessary from this viewpoint as well. Nonetheless, even after the selected retrofitting with EPS blocks at the 

foundation, the nominal life of the structure varies depending on the degree of soil saturation. However, the 

variation is obviously less compared to the structure in its initial state. As it is presented in Table 3, when the 

building is founded on soil with Sr<32%, the nominal life of the building is significant higher than the original 

building for both A2 and B1 performance levels. On the other hand, when the building is founded on soil with a 
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Sr>32%, a decrease of the nominal life is observed, especially for the lower (i.e., A2) performance level. 

Design Level A2 B1 

Soil 
Saturation 

Original 
Building 

EPS 
Retrofitted 

Building 

Original 
Building 

EPS 
Retrofitted 

Building 
Sr=8% 14 38 16 67 

Sr=12% 12 30 12 84 
Sr=16% 9 22 13 65 
Sr=20% 7 38 11 63 
Sr=32% 39 30 61 88 
Sr=54% 44 16 58 58 
Sr=63% 48 19 62 53 

Sr=80% 46 16 59 44 

Table 3 : Nominal Life (in years) for each model for A2 and B1 design levels. 

5 BUILDING’S NOMINAL LIFE FOR VARRYING SOIL SATURATION LEVEL 

In the preceding section, the calculation of nominal life performed separately for each soil saturation level. In 

other words, it was assumed that the degree of soil saturation remains constant. In reality, the degree of saturation 

varies within each year, i.e., usually it is higher in winter than in summer months. Thus, the response of the building 

is different, which should be considered in the calculation of building’s nominal life. 

The accurate calculation of the nominal life as a function of the soil saturation variation requires data 

representing the annual change of Sr. Unfortunately, there are no accurate related measurements (which strongly 

depend on the location and the climate), thus, an assumption is made that the annual change of Sr follows a 

sinusoidal curve and the degree of saturation takes values between the two extreme values of the selected Sr 

bounds, namely 8% and 80%. The minimum and maximum values correspond to the summer and winter months, 

as shown in Figure 4. Based on this simplifying assumption, it is considered that during a year the change in the 

soil saturation level is given by: 

𝑆𝑟 = 44 + 36 cos
𝜋𝛵

6

(6) 

where: T denotes month’s number (January=1, February=2,.., December=12). 

Figure 4. Change of soil saturation level during one year. 

The change of peak ground acceleration to achieve A2 and B1 performance levels as a function of Sr are shown 

in Figure 5a for the initial and the retrofitted buildings. The curves for the two models were constructed based on 

agR values according to the MSDA curves shown in Figure 3. Firstly, the degree of saturation for each month was 

calculated according to Equation (6). Subsequently, the peak ground acceleration for each month was calculated 
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by linear interpolation and the results are displayed in Figure 5b. 

Figure 5. a) Change of peak ground acceleration for various saturation levels; b) Peak ground acceleration’s 

annual variation 

Month Sr (%) 

Initial Building EPS Retrofitted Building 

Design level A2 Design level B1 Design level A2 Design level B1 

TΔr 

(years) 

Pa (%) 

in 11 

years 

TΔr 

(years) 

Pa (%) 

in 13 

years 

TΔr 

(years) 

Pa (%) 

in 16 

years 

TΔr 

(years) 

Pa (%) 

in 44 

years 

1 75.2 46 15.14 60 2.25 17 47.71 46 9.55 

2 62 47 14.94 62 2.19 19 43.98 53 8.31 

3 44 42 16.65 60 2.28 22 39.50 70 6.37 

4 26 18 34.01 28 4.71 34 27.77 75 6.03 

5 12.8 11 50.00 13 10.00 29 32.20 80 5.62 

6 8 14 42.87 16 8.28 38 25.56 67 6.73 

7 12.8 11 50.00 13 10.00 29 32.20 80 5.62 

8 26 18 34.01 28 4.71 34 27.77 75 6.03 

9 44 42 16.65 60 2.28 22 39.50 70 6.37 

10 62 47 14.94 62 2.19 19 43.98 53 8.31 

11 75.2 46 15.14 60 2.25 17 47.71 46 9.55 

12 80 46 15.26 59 2.29 16 50.00 44 10.00 

Table 4 : ΤΔ and Pa calculations per month for each design level 

Table 4 presents on a monthly basis the values of the degree of saturation and peak ground acceleration. 

Considering that each month agr remains constant all years throughout the life of the structure, the relevant nominal 

life (TΔr) is determined. Under this perspective, twelve different nominal lives are obtained (one per month) and 

the most critical equivalent nominal life (TΔcr) is defined. For instance, initial building’s critical equivalent nominal 

life is presented at fifth and seventh month when the building is founded on soil with Sr=12.8%. The critical 

equivalent nominal life is equal to 11 and 13 years for performance levels A2 and B1, respectively. On the other 

hand, when the building is slightly retrofitted, TΔcr is calculated for the twelfth month (December), when the 

building is founded on soil with 80% degree of saturation. The retrofitted model’s critical equivalent nominal life 

is equal to 16 and 44 years, for performance levels A2 and B1, respectively.  

Subsequently, the probability (Pa) to exceed the drift limits of the chosen performance levels is determined 

within the specific TΔcr for all months (e.g., TΔcr=11 years for A2 performance level for the initial building, as 

shown in the 4th column of Table 4). The average probability during TΔcr and the final nominal life of the initial 
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and the retrofitted buildings for performance levels A2 and B1 are calculated (considering that the probability of 

an earthquake during the year is the same for all months) using the following formula: 

TΔ =
PaTΔcr

P𝑎𝑣

(6) 

Model Design Level Pa ΤΔcr Pav ΤΔ 
Original 
Building 

A2 50 11 26.63 20 
B1 10 13 4.45 29 

EPS 
Retrofitted 

Building 

A2 50 16 38.16 21 

B1 10 44 7.37 60 

Table 5 : Calculation of final nominal life (in years) 

According to the results of the adopted procedure, by taking into account in a realistic manner the annual 

changes in the soil saturation level the nominal life is increased when retrofitting the foundation with EPS blocks. 

As it is presented in Table 5, the nominal life notably increases from 29 to 60 years for performance level B1 when 

the building is slightly retrofitted with EPS geofoam. In contrast, the nominal life for design level A2 is only 

slightly increased from 20 to 21 years. In any case, since the nominal life is increased for the more crucial design 

level B1, the use of EPS blocks improves the overall behavior of the building. 

6 CONCLUSIONS 

The main aim of this work is to investigate the seismic vulnerability of masonry buildings taking into account 

the impact of dynamic soil-structure interaction (SSI). More specifically, this paper examines the dynamic 

response of a typical unreinforced masonry (URM) building constructed over a silty sand layer. The main novelty 

of the present study is that it considers time-varying soil mechanical properties, since they are taken as dependant 

on the soil saturation level, which changes annually (in a cyclic manner during the four seasons).  
The dynamic response of the coupled model (URM building and its foundation layer) is numerically examined 

via repeated incremental dynamic analyses, considering the impact of SSI along with the nonlinear behavior of the 

soil and the structure. A suite of twenty input motions -recorded in similar soil conditions- was selected to obtain 

a reliable assessment of the dispersion of engineering demand parameters of the examined masonry building, while 

eight different saturation levels were considered, covering a wide range of soil conditions to elaborately investigate 

the problem at hand. 

In addition, a new structural assessment approach, the so-called “Performance through Limited Duration 

Rehabilitation Interventions” [6, 7], which aims to identify the performance levels of historic buildings after 

performing certain seismic rehabilitation measures was applied. This methodology attempts to provide a 

framework that quantifies the “safe” duration (i.e., nominal life) of an intervention that upgrades the structural 

integrity in a specified manner. The nominal life of an intervention is defined as the period for which this action 

ensures that the structure fulfills selected performance level(s) for a certain probability of exceedance.  

Under this perspective, a simple and efficient -in terms of time, cost and effectiveness due to its minimum 

functional and structural disturbance- intervention with EPS blocks at the exterior of the UMR building foundation 

was applied in order to improve its dynamic response and reduce its vulnerability under the examined 

circumstances. Firstly, the nominal life of each coupled structural model (initial and retrofitted) with constant soil 

saturation conditions is calculated. Subsequently, the calculation of nominal life is performed in a more realistic 

manner, by taking into account the annual changes in the soil saturation level. This light intervention scheme 

increased the nominal life of the building and limited the scattering of the results due to varying soil saturation 

conditions, especially for B1 performance level. Certainly, alternative retrofitting approaches, either as single or 

combined schemes, e.g. by applying EPS blocks at the foundation together with RC structural elements, should be 

investigated in order to examine their effectiveness in similar soil conditions. Additionally, a more accurate 

representation of the variation of soil saturation for specific local climate conditions would consist a further 

improvement of the process. 
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Abstract. The vibrational characteristics of the traditional percussion music instrument Bendir are studied in this

paper. Time-averaged laser Electronic Speckle Pattern Interferometry – ESPI is experimentally performed on the 

Bendir for the determination of its eigenmodes and respective eigenfrequencies. A structural finite element - FE 

model is developed and validated by experiments. The eigenmodes of the FE model and the respective 

eigenfrequencies are also numerically identified by the modal finite element analysis performed. Furthermore, the 

initial physical and mechanical parameters of this percussion instrument are modified. The membrane of Bendir 

is being pre-stressed and its temperature is controllable increased. The effects of these changes to the eigenmodes 

and eigenfrequencies of the instruments are again experimentally measured. The FE model is appropriately 

updated in order to include the characteristics of the real physical problem. The new eigenmode simulation results 

are compared to the experimental results and are found to be in a very good agreement. This combination of FEM 

with the ESPI is providing a new methodology able to certify and clarify the manufacturing and performance of 

percussion instruments. 

1 INTRODUCTION 
The percussion instruments are the oldest musical instruments and their acoustic properties are extensively 

studied worldwide [1], but it is a fact that only a few and non-systematic studies have been performed for the 

traditional percussion instruments in Southeastern Mediterranean region. These percussion instruments mainly 

consist of a cylindrical frame on which a membrane, of an animal skin or of a plastic film, is stretched. The normal 

ways of oscillating this membrane play an important role to the characteristics of the finally broadcasted sound 

from the instrument.  

In this paper, we study experimentally the characteristic eigenfrequencies and the corresponding modes of the 

membrane of Bendir, a percussion instrument that originates from North Africa. The structural dimensions of 

Bendir that is analyzed in this paper may vary, but the most common values of the diameter of this cylindrical 

instrument are in the range of 35 to 45 centimeters. It is commonly manufactured by the assembling of a cylindrical 

wooden frame to the natural leather or synthetic membrane and during play it is held in a vertical position and is 

supported by the thumb of the left hand in special holes on its frame [2]. The instrument was examined using a 

532nm Nd:YAG laser source in a specially developed Electronic Speckle Pattern Interferometry (ESPI) setup [3]. 

Important mechanical characteristics of the instrument, like the winding tensions and the membranes material 

properties, that affect its acoustic behavior, are modified and their influence on the modes is monitored and 

recorded. The experimental results are compared to numerical results based on a Finite Element Analysis (FEA) 

performed for the instrument Computer Aided Design (CAD) model.  
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2 THE PHYSICAL MODEL 
In order to study the vibrating properties of Bendir, we mainly focus on the circular membrane of the 

instrument. A membrane may vibrate by an infinite number of ways, depending on the shape of the membrane at 

an initial time and the transverse velocity of its points. The resulting vibrations are given by the solutions of the 

two-dimensional wave equation with Dirichlet boundary conditions. These boundary conditions represent the 

constraints provided by the circular ring frame of the instrument where the membrane is assembled and tuned. 

Regarding the analysis of the membranes, simple or complex vibrations may be decomposed into a series of the 

normal modes of the membrane. Since Bendir’s membrane has a circular geometry we may use polar coordinates 

(r, θ, t) to write the governing wave equation of the physical problem in the form of equation 1: 

𝜕2𝑢

𝜕𝑡2
= 𝑐2 (

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
+

1

𝑟2

𝜕2𝑢

𝜕𝜃
) , 0 ≤ 𝑟 < 𝑟0, −0 ≤ 𝜃 ≤ 2𝜋 (1) 

where r0 is the radius of the membrane. We assume a solution in separated variables, u(r, θ, t) = R (r) Θ(θ) e
jωt 

and from the wave equation we get a differential equation of the form: 

𝑑2𝑅

𝑑𝑟2
+

𝑑𝑅

𝑑𝑟
+ (

ω

𝑐2
−

𝑚2

𝑟2
) 𝑅 = 0 (2) 

By substituting y = R και x = kr=ωr/c equation 2 results to equation 3: 

𝑑2𝑦

𝑑𝑥2
+

1

𝑥

𝑑𝑥

𝑑𝑦
+ (1 −

𝑚2

𝑥2
) 𝑦 = 0 (3) 

that is a Bessel’s equation having a solution of the form: 

R(r)=Jm (kmn r), m=0, 1, … and n=1, 2, … (4) 

where 𝑘𝑚𝑛 =
𝑎𝑚𝑛

𝑟0
, αmn is the nth positive root of Jm. The resulting equation of the displacements of the circular 

membrane has the final form presented in equation 5: 

umn(r,θ,t)=Jm (kmn r)(Acosmθ + Βsinmθ) e
jωt

, m=0, 1, … and n=1, 2, … (5) 

The nth root of Jm (kmn r) provides the frequency of the vibration f(m,n) with m nodal diameters and n nodal circles 

[4].  

The cylindrical frame of Bendir may be vibrated in two ways, according to the vibrations produced by the 

membrane. When the point of excitation of membrane is far from the center and close to the frame, the frame is 

angularly stressed and bending forces dependent on ~cosnφ are broadcasting sounds. In the case of the excitation 

of the circular center of the membrane the produced displacement is of the form of cos(knz+β)cosmφ, with z,φ, 

being the axial and the angular coordinates, respectively.  

The air cavity of the instrument has a significant effect on the sound and the tone of the instrument. A basic 

precondition for generating sound is the vibrations that arise due to the elasticity of the enclosed air at this cavity. 

In the case where a membrane is placed on the support frame, the resonance frequency can be calculated either as 

a Helmholtz resonator or as an open-closed tube system. An important parameter affecting the produced sound 

and its tone from the instrument is the temperature. The temperature may affect the properties of the materials of 

the instrument, if it changes in high ranges and basically for the materials that have high thermal conductivity and 

expansion property values. Moreover, the temperature changes influence the density of the air and the speed of 

sound in the material.  

3 EXPERIMENTAL SET-UP AND MEASUREMENTS 

In our Bendir study a natural organic membrane of caw leather is investigated. The frame of the instrument has 

a diameter of 45 centimeters. The ESPI experimental set-up that is used is presented in Figure 1.  
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Figure 1. ESPI experimental setup. BS – Beam splitters, NDF – Variable Neutral Density Filter, M – Mirrors, 

BE – Beam Expender, CCD – CCD Camera, FREQ GEN – Frequency Generator and LS – Loudspeaker. 

The experimental setup consists of an Nd:YAG solid state CW laser source with a wavelength of λ=532nm 

and maximum power of 150 mW [2,3]. The laser beam is divided by means of the first Beam splitter (BS1) into 

bendir lighting beam and a reference beam in 80:20 percentage respectively. The bendir lighting part is expanded 

through a negative lens (f= -50mm). The reference beam passes through a Variable Neutral Density Filter (NDF) 

in order to compensate the intensity of the reflected to the camera bendir illumination. The beam passes through 

mirrors (M1 & M2) and is further directed to pass through a Beam Expander (BE) which expands the beam 20 

times to fulfill the area of the 2/3” CCD sensor. The CCD camera, Basler A102f offers a 1392 x 1040 effective 

pixel count with 6.45×6.45µm pixel size and it is specially amended to fit a 50:50 beam splitter. The reflected light 

from the bendir is collected by means of an objective lens attached to the camera. Both beams (bendir reflection 

and reference beam) are combined to the CCD sensor to produce the speckle interferogram which is then recorded 

to the computer (PC) using a firewire connection and an in house developed recording software. 

Figure 2. ESPI experimental setup image. 
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A Genelec - 8030apm speaker, connected to a special frequency generator and to an oscilloscope, is used for 

the excitation of the instrument. The frequency ranges from 50 to 2100 Hz and the amplitude of the excitation 

voltage to 2.5V due to the speaker specifications. The speaker is placed at a distance of 1 m far from the instrument, 

in order to avoid the near field of the speaker and to achieve the smallest irradiation angle. The instrument is 

supported on a base of Sorbothane material that isolates the vibrations transferred from the support, and in a way 

that represents the support of the organ player during the execution. The audio transmission spectrum was 

determined through recordings based on a special protocol [3], at the specially designed room of the digital 

recording studio of the Department of Music Engineering Technology & Acoustics of TEI of Crete. For the study 

of the dependence of vibrational characteristics to small temperature changes, a controlled heating system that 

consists of a heating lamp and a custom digital thermometer was used [2]. 

4 FEM MODELING 

The Finite Element Method – FEM has been extensively used for the study and the vibration analysis of 

percussion instruments [5-8]. The free vibration analysis procedure is very similar to performing a linear static 

analysis. The solution domain is defined by the CAD geometry of the solid, surface or line body that is studied 

and the material properties are assigned to each part of the geometry. Young’s Modulus, Poisson’s Ratio, and 

Density are required. If the CAD geometry is an assembly that consists of more than one parts, then the contact 

regions of the parts must be identified. The inclusion of supports is the final step before solving the computational 

modal problem.   

For a free vibration analysis, the natural circular frequencies ωi and mode shapes φi are calculated from 

equation: 

([𝐾] − 𝜔𝑖
2[𝑀]){𝜑𝑖} = 0 (6) 

It is assumed that the stiffness matrix [K] and the mass matrix [M] are constant?, and the materials retain their 

elastic behavior during the study. Moreover, the small deflection theory is used, without the presence of 

nonlinearities, external forces or damping. The resulting mode shapes {φ} are relative values, not absolute. The 

stress state of structural body under static loading affects its natural frequencies. This prestressing in acoustics is 

associated with the static loads applied when e.g. a music instrument is tuned.  In the case that prestress effects are 

considered when a free vibration analysis is performed, equation 6 has to be updated in order to include the stress 

stiffness matrix [S] and results to equation (7). 

([𝐾 + 𝑆] − 𝜔𝑖
2[𝑀]){𝜑𝑖} = 0 (7) 

The numerical identification of the stress stiffness matrix is based on the solution of a linear static model where 

constant loads are applied on the solution domain of the structure. The linear static analysis is based on the solution 

of equation (8) that provides the resulting stresses [σ0] that gives [S]: 

[𝐾]{𝑥0} = {𝐹} (8) 

For the modeling and simulation of Bendir, a CAD model is initially developed, representing the geometric 

characteristics of Bendir. The circular domain of the membrane is assembled to a cylindrical wooden frame to 

support uniformly its edges, having a bonded contact with it. An elastic ring is also modeled for the tuning. The 

constraints and loads of the model will be further applied to this frame for the performance of the static and modal 

analysis. 

 5 EXPERIMENTAL AND SIMULATION RESULTS 

The ESPI experiments in the bendir with cow leather were first performed with a low tensioned membrane 

(low tuning). The ESPI experimental process described in section 3 provided the experimental results presented in 

Figure 3. Having these experimental mode shapes and their correspondent frequency as a reference, the developed 

FEM model is used to approximate them. An initial free vibration analysis is performed on the assembly of the 

membrane with the cylindrical frame support and the first eigenmode of the model is identified at a very low 

frequency, as expected. The thickness of the leather used at the model is 0.13 mm, while bibliographic values 

were assigned to the density, the modulus of elasticity and the Poisson ratio that is 850 kg/m3, 7×108 Pa and 0.45 

respectively. 

Considering that in the real problem of the percussion instrument the membrane is already pre-stressed, even 

at low tuning, pressure is applied to the inner surface of the elastic ring of the cylindrical supporting frame in the 

FEM model, in order to approximate the real supporting and loading conditions of the Bendir. The assembled 

geometry is fixed at the bottom edges of the frame and for this approximation, elastic material properties are 
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assigned to it. The linear static model is set and solved to provide the structural results and basically the stress 

stiffness matrix [S] needed for the pre-stressed modal analysis. The static analysis results are given as an input for 

the modal analysis. After the identification of the first computed mode shape at a frequency close to 100 Hz, as 

measured by the experiment, the computational model may further provide the number of the eigenmodes needed 

at their correspondent eigenfrequencies. The comparison of the experimental to the simulation results, for a 

pressure load of 40 kPa is presented in Figure 3. 

Figure 3. Experimental results using ESPI and simulated results for the bendir in low tension pressure (low 

tuning). 

After the first set of ESPI measurements, the instrument is further medium and then highly tuned. The uniform 

pressure load is further raised to 70 and 100 kPa to simulate the intermediate and finally the high tuning, 

respectively. In Figure 4 and 5 are presented the results for medium and high tuning, respectively, where a 

satisfactory agreement between experiment and simulation is observed regarding the eigenmodes and the 

eigenfrequencies that they appear.   
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Figure 4. Experimental results using ESPI and simulated results for the bendir in medium tension pressure 

(medium tuning). 

Figure 5. Experimental results using ESPI and simulated results for the bendir in high tension pressure (high 

tuning). 
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6 CONCLUSIONS 

The vibrational characteristics of the traditional percussion music instrument Bendir are studied using a time-

average ESPI experimental method. The instrument is studied in different conditions, e.g. regarding its tuning as 

a result of the tension applied to it. Analysis of the experimental results allowed for the determination of its 

eigenmodes and respective eigenfrequencies. A structural FE model is initially developed based on the actual 

parameters of the experiments and is validated by the experimental results, in terms of the eigenmodes and the 

respective eigenfrequencies of the instrument that are also numerically identified by the modal finite element 

analysis performed. The experimental and numerical results are in satisfactory agreement, thus the combination of 

these provides a solid methodology able to certify and clarify the manufacturing and performance of percussion 

instruments. 
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Abstract. This paper presents a proposal of a Geo-Information System (GIS) extension tool capable of 

performing flood prediction and visualization. The GIS tool we present is custom developed and capable of 

providing support for diverse data types, data conversion, visualization and analysis. Also, we present flood 

prediction algorithm implemented within this tool. This algorithm is based on the usage of ground-level 

precipitation data generated by analyzing the attenuation of microwave signals of cellular networks. For a 

selected area covered with microwave links, our algorithm calculates overall rainfall amount, combines it with 

digital elevation model of the observed area and performs flood fill algorithm starting from the point with lowest 

altitude. As output, this tool visualizes geographic area potentially endangered by estimated rainfall. 

1 INTRODUCTION 

We are witnessing intense climate change worldwide. As a result, world is in a constant demand for 

mechanisms capable of predicting destructive disasters resulting from climate change. The overall noble goal is 

to prevent fatalities and prevent any kind of damage, as much as possible. Flooding is one of the destructive 

disasters with increased intensity in the past decade [1, 2, 3, 4, 5]. Although floods are more likely to happen in 

areas surrounding river basins, they can also appear in larger regions due to increased intense precipitation [13, 

14]. Various studies coming from different parts of the world indicate there is increased flood risk. For example, 

study presented in [6] examines 28-year span and reports over 3,000 floods, 3 billion endangered persons and 

enormous financial loss. Authors of [14, 15] report 0.8 billion people will be exposed to a 1-in-100-years river 

flood disasters. Also, study presented in [17], as well as [16], indicates increased economic activities on coastal 

plains resulting from socioeconomic growth. Due to this, coastal floods are expected to endanger 40 million 

people and may cause $3 trillion damage.  

Floods can be of different types and scales. Thus, different strategies, models and data source should be 

combined to estimate flood risks and impacts. This gives us a variety in the architecture and implementation of 

flood prediction systems. For example, the type of landscape itself can result in a number of different flooding 

behaviors [18]. Since the number of factors influencing flood risk estimation is significant, a part of 

implementations of  flood risks estimation and visualization systems authors decide to use advantages offered by 

Geo-Information Systems (GIS). As stated in [24], "A geographic information system (GIS) is a special type of 

computer-based information system tailored to store, process and manipulate geospatial data". Aside from 

being capable of analyzing geospatial data, GIS is a very powerful tool when it comes to visualizing the results of 

a geospatial data analysis. GIS solutions offer mature and stable architecture that can be easily upgraded for 

various purposes, and flood prediction and visualization is one of them. In this paper, we present a GIS extension 

tool capable of using rainfall information to perform visualization and simulation of flood risks.  

The usage of GIS tool for these purposes is a proposal on top of existing previous research in this field of 

science. Previously, research community has successfully used rainfall data as a mean for detecting possible 

flooding. The approach we embed into our solution uses numerical processes for precipitation detection on the 

basis of the received signal level (RSL) of commercial microwave links. Numerical methods that we rely on are a 

form of a preprocessing phase since they implement complex calculations that may require a lot of time. Thus, 

implementation of these methods can expose some limitations for real-time information systems. One possible 

substitute for numerical methods would be to use machine learning methods for precipitation detection based on 
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the received signal level of microwave links. The usage of machine learning methods would significantly increase 

the efficiency of the information system since they have the ability to reduce the time required to process the data 

obtained at the link. Either way, the output is a precipitation data estimation which can be combined with soil and 

elevation models for predicting flood risks. Since DEM and raster images naturally belong to GIS solutions, it is 

our opinion that the combining process and the final estimation should be delegated to GIS extension tool. 

2 RELATED WORK 

The intensity and frequency of flood incidents and other natural disasters has risen permanently worldwide 

over the past decades. Since, flood incidents significantly affects environment, causing extensive damage, this led 

to the development of many flood estimation and alerting systems.  

Accurate simulation of flooding and estimation of flood risks is often based on rainfall data, although this 

approach is not a novelty in research community. In order to accomplish precise flooding estimation, information 

systems should be capable of using complex models (like one-dimensional Saint-Venant equation) in real-time. 

Expected output should be accompanied with spatial information [7], [8]. Since the proposed models are 

numerically very extensive, they can hardly be used in near real-time information systems. Therefore, many less 

complex computational models have been proposed [9], [10], [11], resulting eventually in development of 

several global flood alerting and weather forecasting systems. 

GloFAS is the global system provides information regarding flood alerts. GloFAS uses global forecast and 

ERA-Interim precipitation dataset as inputs and HTESSEL and Lisflood for flood forecasting. HTESSEL 

computes the land surface response to atmospheric forcing and estimates the surface water and energy fluxes and 

the temporal evolution of soil temperature, moisture content and snowpack conditions. Lisflood is a GIS-based 

spatially distributed hydrological model, which includes a one-dimensional channel routing model. 

The most popular system for extreme weather forecasting and alerting in Europe is Meteoalarm. It uses 

information from meteorological services from European countries and calculates four risk levels for 

corresponding countries and regions. System SCHAPI coordinates flood forecasting in France. The forecast is 

based on observation collected from 500 real time rain gauges, 24 meteorological radars and 1500 real time 

water level stations, soil properties and various types of hydrological models. 

The usage of GIS provides reliable platforms for the development of flood forecasting systems worldwide. 

GIS can also be integrated with remote sensing techniques for early warning systems [19]. Nowadays, there are a 

significant number of flood forecasting and warning solutions using GIS components for visualization and 

decision-making support. For instance, in [20], GIS is used for flood prediction in Malaysia. It is shown that 

combination of hydrological models and water balance model in GIS is very suitable as a tool to obtain 

preliminary flood possibility information.  

The usage of GIS with the aim to develop decision support system for flood prediction and monitoring is 

presented in [21].This solution, based on integration of GIS and hydrological modeling with additional bridge 

sensors and users’ observation, provides water level prediction for the next 24 to 48 hours. The results are 

displayed via dynamic web pages. The water level prediction is overlaid with maps of the transportation 

networks, property boundaries,  municipal  infrastructure   and   water   depth   contour   lines. Authors of [21] 

claim they can provide good flood prediction and strong support to the public evacuation in the case of flooding. 

GIS-based forecasting and early warning system is proposed in [22]. This system provides near-real time access 

to all available hydrometeorological data in the Amur River basin of Russia (data from weather and gaging 

stations, data from hydrological forecasts, and, satellite data) and supports timely decision-making for flood risk 

reduction. Another mobile GIS based flood warning and information system is described in [23]. 

3 FLOOD PREDICTION VISUALIZATION PROCESS 

Nowadays, there is a vast amount of technical equipment installed into fields and open spaces that can be 

used for measuring rainfall. The reasons for deploying various kinds of equipment are different commercial 

activities. Since this equipment already has a different commercial purpose, its side effects can be used as a cheap 

sources of ground level rainfall measurements. For example, the attenuation of microwave signals of cellular 

networks has already proven to be a reliable source for determining and acquiring quantified spatial and temporal 

distributions of ground-level precipitation [12]. Microwave links form a network capable of covering large areas. 

They provide acceptable spatial and temporal resolution and can be used as sensor substitute for the areas not 

covered by other types of meteorological sensors. 

If the flooding estimation process uses rainfall as its basic input, it is necessary to perform rainfall prediction. 

Rainfall rate is in most cases acquired from ground level gauges specially installed for these purposes. In order to 

perform estimations of the rainfall across the area that is assessed, this type of input is the best choice. However, 

this approach has its commercial disadvantages that cannot be omitted. Gauging stations have to cover the hover 

area and have to be regularly maintained and monitored. These activities can prove to be rather expensive. 

Further, there has to a centralized data collection point in a form of a internet-accessible service capable of 
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gathering measurements in order to provide accurate estimations of the possible flooding danger. 

Instead of rain gauges, we consider microwave links to be a reliable and acceptable source for determining 

rainfall rate. Such approach has already been developed and initial algorithms relating to the attenuation rate of 

cellular network signals to rainfall intensity along signal lines were previously provided as a result of the 

“Regional Precipitation Observation by Cellular Network Microwave Attenuation and Application to Water 

Resources Management” (PROCEMA) project [12]. In this project, rain detection and rainfall rate estimation 

was performed due to the fact that commercial cell stations can provide signal attenuation data in near real time. 

Thus, it was possible to calculate rainfall rate for a line in area between two mobile cell stations whose signal 

attenuation is measured. Although much cheaper, approach based on microwave link usage does not have the 

ability to cover exact locations that are most appropriate for rainfall measuring. Approaches based on gauges 

usage provide very precise rainfall in distinct locations. The approach we used on the other hand provides 

increased coverage of the observed area and can provide rainfall rates along the lines between pairs of stations. 

Figure 1. Rainfall prediction 
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The first goal of our research while developing GIS extension tool was to estimate if microwave link 

attenuation data within Serbia can be used for rainfall estimation, once the data is provided by the Serbian 

telecom operators. In order to do so, we have used ground level rainfall rate data are obtained in North Western 

Bavaria in Germany. This data was to be combined with already existing Digital Elevation Model (DEM) data 

and GIS flood estimation modules developed for Serbia. In order to make initial research proof of concept, we 

had to simulate cell stations in Serbia but in a proper way so that the data coming from Germany can be coupled 

with imaginary stations. We achieved this by translating locations of base stations from Germany to cover the 

area in Serbia and treating translated base stations from Germany as imaginary ones in Serbia. Once translation 

was performed, the overall rainfall prediction process, shown in Figure 1, was conducted. 

In order to be able to calculated ground level precipitation for the whole observed area, it is necessary to 

perform spatial interpolation of the available data. The first step in this process is sampling distinct points along 

the lines of microwave links. Microwave link line length varies between each two base station. Therefore, it was 

necessary to choose sampling that will produce a number of points along lines according to line length. We have 

chosen equal distance sampling which generates a dot along the sampled line on each kilometer of the link 

length. If we have chosen to sample using predefined constant number of dots along lines,  shorter lines would be 

having higher influence on the spatial interpolation because of the higher points density. 

Once all link lines have been sampled and a set of points is generated, it is necessary to perform spatial 

interpolation of the whole area starting from the generated scattered set of points. For these purposes, we have 

developed a separate module named Kriging module. Kriging module uses kriging.js library, a JavaScript library 

that is capable of calculating the spatially interpolated model from a distinct set of spatial locations with rainfall 

rate values. As its name says, this module acquires scattered set of points and performs kriging - an advanced 

geostatistical procedure. As output, this procedure generates surface consisting of estimated precipitation points. 

Generated surface covers the whole space under analysis and represents kriging model. Once it is generated, 

kriging model is used to gather precipitation value for each point in the observed area.  

Kriging model is used for two more purposes during the process. Precipitation estimation heatmap is 

generated out of the kriging model and visualized within the GIS tool. Since each point within kriging model is 

georeferenced, heatmap is visualized at the location of the area being observed and represents the expected 

precipitation levels. Most important, it is also possible to calculate the volume of the rainfall for the given 

timeframe on the given area. 

Figure 2. Example of flood prediction output 
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Calculate volume of the rainfall is the core of flood prediction visualization process. Visualization is 

performed within the extension GIS tool which is a part of our GIS-based technical platform. Our GIS platform is 

a custom developed GIS solution designed to provide support for diverse data types, data conversion, 

visualization and analysis. It incorporates open source libraries for a part of functionalities and has custom 

developed functionalities of its own. We have added GIS extension tool for visualization of flood risk estimation 

as a plug-in module to this platform. The extension tool needs overall rainfall amount for flood analysis to be 

possible. This information is obtained from Kriging module and the process continues using DEM model of the 

observed area. DEM model is used to determine the point with lowest elevation in observed area. 

In this usage scenario, we have chosen an area with no river basins so we expect all rainfall to interflow 

towards the point with lowest altitude. Therefore, GIS extension tool will use this point as a starting point for 

flood estimation visualization. Starting from the point with lowest elevation, GIS extension tool performs flood 

fill algorithm. Our tool simulates flooding in iterations. Each iteration increases the reached water level at the 

point with lowest elevation. The rest of the area is filled according to chosen algorithm. Once an iteration is 

finished, GIS tool calculates the amount of water used for filling the area so far. This value is compared to the 

total amount of rainfall estimated by kriging algorithm. Once the two values become the same, filling algorithm is 

over and GIS tool visualizes the area expected to be flooded. An example of area expected to be flooded is 

shown in Figure 2. 

4 CONCLUSION AND FUTURE WORK 

A GIS extension tool capable of using rainfall information to perform visualization and simulation of flood 

risks is presented in this paper. The solution is based on the usage of rainfall prediction performed in multiple 

subsequent steps. Quantified ground-level precipitation can be obtained based on the measured signal level on 

the existing commercial microwave links. GIS solution uses this data for precipitation prediction through spatial 

interpolation methods. Estimated total amount of rainfall is further used for flood fill algorithm which starts at the 

lowest elevation point of the area of interest.  

In the future research, the proposed system will be upgraded by including the impact of soil structure upon 

predicted total amount of rainfall. Also, we plan to investigate appropriateness of the presented methodology in 

cases of river basins intersecting the area of interest. The comparison of the interpolated values obtained by the 

system to actual measurements in the areas covered with real time rain gauges will also be done. 
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