
 1

Technical University of Crete

School of Electrical and Computer Engineering

Coordinated Coverage
in Sensor Networks

via Reinforcement Learning

Georgios Kotzampasakis

Thesis Committee

Associate Professor Michail G. Lagoudakis (ECE)

Associate Professor Georgios Chalkiadakis (ECE)

Associate Professor Antonios Deligiannakis (ECE)

Chania, September 2018

 2

 3

Πνιπηερλείν Κξήηεο

Σρνιή Ηιεθηξνιόγσλ Μεραληθώλ θαη Μεραληθώλ Υπνινγηζηώλ

Σσντονισμός Κάλσυης
σε Δίκτσα Αισθητήρφν

μέσφ Ενιστστικής Μάθησης

Γεώξγηνο Κνηδακπαζάθεο

Εξεταστική Επιτποπή

Αλαπιεξσηήο Καζεγεηήο Μηραήι Γ. Λαγνπδάθεο (ΗΜΜΥ)

Αλαπιεξσηήο Καζεγεηήο Γεώξγηνο Φαιθηαδάθεο (ΗΜΜΥ)

Αλαπιεξσηήο Καζεγεηήο Αληώληνο Γειεγηαλλάθεο (ΗΜΜΥ)

Φαληά, Σεπηέκβξηνο 2018

 4

 5

Abstract

 Machine Learning is a fast developing and ever growing field in computer

science. In addition to that, Sensor Networks are also a very promising field that has

significant impact on a variety of applications. Given these facts, a multi-agent system

(MAS) approach on wireless sensor networks (WSNs) comprising sensor-actuator

nodes is very promising, as it has the potential to tackle the resource constraints

inherent in these networks by efficiently coordinating the activities among the nodes.

Furthermore, a very common issue in the field of sensor networks is the sensing

coverage problem, which is the task of properly and sufficiently covering an area. In

this thesis, we consider the coordinated sensing coverage problem and study the

behavior and performance of the fully distributed Q-Learning algorithm for

reinforcement learning using linear value function approximation. We use the Tossim

platform to simulate our TinyOS application, which consists of different topologies of

sensor networks with parametric sizes. Subsequently, we present the results of our

simulation and display a number of graphs to visualize performance and learning

outcomes on three specific topologies. We consider issues, such as successful

convergence to optimal policies and maximization of local and global rewards. The

implementation results are quite promising, since our algorithms exhibit high

percentage of successful convergence to optimal policies.

 6

 7

Πεπίληψη

 Η κεραληθή κάζεζε είλαη έλα ηαρύηαηα θαη δηαξθώο αλαπηπζζόκελν πεδίν

ζηελ επηζηήκε ησλ ππνινγηζηώλ. Δθηόο από απηό, ηα δίθηπα αηζζεηήξσλ είλαη επίζεο

έλα πνιιά ππνζρόκελν πεδίν πνπ έρεη ζεκαληηθή επίδξαζε ζε κία πνηθηιία από

εθαξκνγέο. Βάζεη ησλ παξαπάλσ, κία πξνζέγγηζε πνιππξαθηνξηθνύ ζπζηήκαηνο

(MAS) ζε αζύξκαηα δίθηπα αηζζεηήξσλ (WSNs) πνπ πεξηιακβάλεη αηζζεηήξεο-

ελεξγνπνηεηέο θόκβνπο είλαη πνιιά ππνζρόκελε, θαζώο κπνξεί δπλεηηθά λα

αληηκεησπίζεη ηνπο πεξηνξηζκνύο ζε πόξνπο πνπ είλαη έκθπηνη ζε απηά ηα δίθηπα κε

ην λα ζπληνλίδεη απνδνηηθά ηηο δξαζηεξηόηεηεο κεηαμύ ησλ θόκβσλ. Δπηπιένλ, έλα

θνηλό ζέκα ζην πεδίν ησλ δηθηύσλ αηζζεηήξσλ είλαη ην πξόβιεκα ηεο ζπληνληζκέλεο

θάιπςεο, ζην νπνίν θαιείηαη θάπνηνο λα θαιύςεη θαηάιιεια θαη επαξθώο κία

πεξηνρή κε αηζζεηήξεο. Σε απηή ηε δηπισκαηηθή εξγαζία, εμεηάδνπκε ην πξόβιεκα

ηεο ζπληνληζκέλεο θάιπςεο ησλ αηζζεηήξσλ θαη κειεηάκε ηε ζπκπεξηθνξά θαη ηελ

απόδνζε ηνπ ηειείσο θαηαλεκεκέλνπ Q-Learning αιγνξίζκνπ εληζρπηηθήο κάζεζεο

ρξεζηκνπνηώληαο γξακκηθή πξνζέγγηζε ηεο ζπλάξηεζεο ρξεζηκόηεηαο.

Φξεζηκνπνηνύκε ηελ πιαηθόξκα Tossim γηα λα πξνζνκνηώζνπκε ηελ TinyOS

εθαξκνγή καο, ε νπνία απνηειείηαη από δηαθνξεηηθέο ηνπνινγίεο δηθηύνπ

αηζζεηήξσλ κε παξακεηξνπνηεκέλν κέγεζνο. Σηε ζπλέρεηα, παξνπζηάδνπκε ηα

απνηειέζκαηα ηεο πινπνίεζεο καο θαη δείρλνπκε έλαλ αξηζκό από γξαθήκαηα γηα λα

νπηηθνπνηήζνπκε ηηο εθβάζεηο ηεο απόδνζεο θαη ηεο κάζεζεο ζε ηξεηο ζπγθεθξηκέλεο

ηνπνινγίεο. Λακβάλνπκε ππ‟ όςηλ ζέκαηα, όπσο επηηπρή ζύγθιηζε ζε βέιηηζηεο

πνιηηηθέο θαη κεγηζηνπνίεζε ησλ ηνπηθώλ θαη θαζνιηθώλ αληακνηβώλ. Τα

απνηειέζκαηα ηεο πινπνίεζεο είλαη αξθεηά ελζαξξπληηθά από ηελ άπνςε ησλ

πςειώλ πνζνζηώλ επηηπρώλ ζπγθιίζεσλ ηνπ αιγνξίζκνπ καο ζε βέιηηζηεο πνιηηηθέο.

 8

 9

Acknowledgements

 This thesis would be impossible to complete without the positive

reinforcement from my advisor M. Lagoudakis, and his constant support.

I wish to thank him for his patience and his seemingly endless eagerness to help me

with any problem throughout this thesis. Furthermore, I want him to know that he has

my utmost respect and my everlasting gratitude.

 I would also like to thank my family and friends for their involvement in my

efforts to keep me motivated and productive during this thesis.

 10

 11

Table of Contents

CHAPTER 1. Introduction .. 15

1.1 Thesis Introduction .. 15

1.2 Thesis Contribution ... 16

1.3 Thesis Outline .. 16

CHAPTER 2. Background .. 17

2.1 Machine Learning .. 17

2.2 Reinforcement Learning .. 17

2.3 Markov Decision Processes ... 18

Definition: ... 18

Markov Property: .. 18

Problem: .. 19

Value Functions: ... 19

2.4 Q-Learning Algorithm ... 20

Algorithm: ... 20

Explore vs Exploit ... 21

Discount Factor ... 21

Initial Conditions (Q0) ... 21

Q-Learning Properties .. 21

2.5 Sensors... 22

2.6 Wireless Sensor Networks ... 22

2.7 TinyOS and Tossim ... 23

CHAPTER 3. Problem Statement ... 25

3.1 Operating Environment ... 25

3.2 State-Action Spaces ... 25

Local agent states: ... 26

Local agent Actions: .. 26

Global state of the MAS: ... 27

Memory requirements of the algorithm: .. 27

3.3 Related Work ... 27

CHAPTER 4. Our Approach ... 29

4.1 Solving the simpler problem ... 29

4.2 Fully Distributed Q-Learning with Linear Approximation ... 29

Choosing Basis Functions φ:... 30

Arranging Basis Functions into Blocks: .. 33

4.3 Exploration Rate and Learning Rate ... 33

4.4 Reward Function ... 37

4.5 Initial States and Necessary Information ... 38

 12

4.6 Process of the Simulation .. 38

4.7 Moving to larger grids with more Motes and random Topology 39

CHAPTER 5. Results .. 41

CHAPTER 6. Conclusions .. 59

6.1 Discussion ... 59

6.2 Future Work .. 59

6.3 Lessons .. 60

Bibliography .. 61

 13

Table of Figures

Figure 1. 10 × 10 grid .. 25

Figure 2. Example of 10 × 10 grid .. 26

Figure 3. 6 × 10 grid .. 29

Figure 4. Example of 10 × 10 grid .. 32

Figure 5. Exploration rate using sigmoid function .. 34

Figure 6. Linear Learning Rate function ... 35

Figure 7. Sigmoid Learning Rate function .. 36

Figure 8. Exponential Learning Rate function .. 37

Figure 9. Snapshot of 20×20 grid .. 40

Figure 10. Optimal policy for 6 × 10 map ... 41

Figure 11. Global Reward over time (sigmoid learning rate) .. 42

Figure 12. L1 Norm for 6×10 with sigmoid learning rate ... 43

Figure 13. Global Reward over time (linear learning rate) ... 44

Figure 14. L1 Norm for 6×10 with linear learning rate ... 45

Figure 15. Global Reward over time (exponential learning rate) .. 46

Figure 16. L1 Norm for 6×10 with exponential learning rate ... 47

Figure 17. Optimal policy for 10 × 10 grid ... 48

Figure 18. Global Reward over time for 10×10 map (sigmoid learning rate) 49

Figure 19. L1 Norm for 10×10 map with sigmoid learning rate ... 50

Figure 20. Global reward over time for 10×10 map (linear learning rate) 51

Figure 21. L1 Norm for 10×10 map with linear learning rate ... 52

Figure 22. Global reward over time for 10×10 map (exponential learning rate)..................... 53

Figure 23. L1 Norm for 10 × 10 map with exponential learning rate 54

Figure 24. Highest global reward policy for 20×20 .. 55

Figure 25. Global reward over time for 20×20 map (sigmoid learning rate) 56

Figure 26 Global reward over time for 20×20 (linear learning rate) 57

Figure 27. Global reward over time for 20×20 (exponential learning rate) 58

 14

 15

CHAPTER 1. Introduction

1.1 Thesis Introduction

Consider a Multi-Agent System (MAS), which consists of a number of

autonomous agents, each of which has its own states and its own actions. Modern

sensor networks are examples of such MAS; each sensor is in fact an agent able to

sense and cover some area around it (states), whose size may be a function of the

energy consumed for sensing (action). These agents must cooperate with one another

in order to maximize the sensing coverage of a wide area while, at the same time,

minimizing the overall energy consumption. We are interested in studying the

effectiveness of the fully distributed Q-Learning algorithm for this task, which

includes also the ideas of reinforcement leaning we care to apply.

 From a given agent‟s point of view, the MAS case differs from the single

agent case, in the sense that the environment dynamics can be influenced by other

agents. In addition to the uncertainty or stochastic nature that may be inherent in the

environment, other agents can affect the environment in unpredictable ways due to

their actions.

 In a distributed learning and decision making system, the system behavior is

influenced by the whole team of simultaneously and independently acting agents.

Thus, the dynamics of the environment are likely to change more frequently than in

the single-agent case. [1] As a learning method that does not need any prior model of

the environment and can perform online learning, reinforcement learning (RL) is well

suited for cooperative MAS, where agents usually have little, or in many cases none at

all, information about each other. Reinforcement learning is also a robust and natural

method for agents to learn how to coordinate their action choices.

An important problem addressed in the Wireless Sensor Networks (WSN)

literature is the sensing coverage problem [2], [3], [4]. In this problem, the task of the

sensor network is to properly cover an area in order to make sure that all important

events which occur in that area can be accurately detected by at least one sensor.

A distributed approach to the sensing coverage problem is attractive for

several reasons. First, sensing entities are usually spatially distributed, thus forming

distributed systems using a decentralized approach is more natural. Second, sensor

networks can be very large, i.e. containing hundreds or thousands of nodes; hence a

distributed approach would always be more scalable than a centralized one. Finally, a

distributed approach is compatible with the resource-constrained nature of sensor

nodes. Many of the sensors are usually small devices with limited memory and

computational capabilities and are energy constrained, since there are battery-

powered. Therefore, a distributed approach to performing computation, i.e. using

distributed algorithms, and limiting the amount and distance of communication are

necessary design parameters in order to achieve an efficient, energy-aware and

scalable solution. Furthermore, the restricted communication bandwidth and range in

WSNs would exclude a centralized approach.

 Given the above observations, we consider a monitor application of a field

represented by an m × n grid. In fact, three different discrete grids are used for our

simulations in order to give substance to our problem. Then, we use the Tossim

 16

platform to simulate our TinyOS application in order to experiment on the

coordinated sensing coverage problem using RL, as mentioned earlier.

1.2 Thesis Contribution

 The way we tackle our problem involves the following steps. Firstly, we

focused on two small grids to initially simplify and understand our problem. We

applied a linear approximation of the value function in the Q-Learning algorithm to

overcome memory requirements restrictions of the problem‟s space state. After

concluding our simulations on the first two grids, we moved on to a larger grid in

order to test our algorithm in a harder and more sophisticated challenge.

 The results on the first and more trivial problem were, as ought to be, great.

The algorithm converged to the optimal policy every time. On the second grid, the

results were also nearly perfect, with very high successful convergence percentages to

the optimal policy. While in the last one, the upward trend of the global reward graph

showed encouraging results, when it came to larger and more difficult grids.

 All in all, introducing reinforcement learning in the field WSNs proves to be a

very promising and fertile idea for a plethora of applications and is definitely worth

the time and effort to continue experimenting and researching towards this aspect.

1.3 Thesis Outline

 In Chapter 2 we include all the theoretical background needed for this thesis.

We present an overview of the Machine Learning field, Markov Decision Processes

and Sensor Networks. Furthermore, we display basic information about the Q-

Learning algorithm. In Chapter 3 we state the problem and everything you need to

know about it. Continuing with Chapter 4, we present our approach of the problem

thoroughly and the core ideas behind it. In Chapter 5 we present the results of our

simulations and analyze the outcomes. Finally, Chapter 6 concludes our work and lists

ideas for future improvements.

 17

CHAPTER 2. Background

2.1 Machine Learning

Machine learning [5] is an application of Artificial Intelligence that provides

systems with the ability to automatically “learn” from and improve their performance

with experience without being explicitly programmed. Machine learning focuses on

the development of computer programs that can access data and use them to learn for

themselves.

The process of learning starts with observations or data with the purpose of

finding patterns in order to make better future decisions based on the information that

was initially given. The main goal is to allow computer systems to learn on their own,

without human intervention or assistance. Machine learning is applied on a variety of

computing tasks, where writing and programming explicit algorithms with high

performance is very difficult or, in many cases, infeasible; example applications

include email filtering, detection of network intruders, and computer vision.

Machine learning is closely related to computational statistics, which also

focuses on prediction-making through the use of computers. It has strong ties to

mathematical optimization, which delivers methods, theory and application domains

to the field. Machine learning is sometimes confused with data mining, where the

latter subfield focuses more on exploratory data analysis in order to discover structure

in the data and is widely known as “unsupervised learning”.

2.2 Reinforcement Learning

Reinforcement learning (RL) [6] is an area of machine learning that has to do

with how software agents learn to take actions in an environment in order to

maximize a reward that corresponds to a specific principle of acting. The problem,

because of the fact that it is quite generalized, is studied in many other concepts, such

as game theory, control theory, operations research, information theory, simulation-

based optimization, multi-agent systems and many more.

Reinforcement learning, in the context of artificial intelligence, is a type of

dynamic programming. Moreover, RL is an approach to machine learning that is

inspired by behavioral psychology. It looks a lot like the way a child is taught to

perform an activity. The main difference between RL and other machine learning

algorithms is that in RL the agent is not programmed in advance in order to perform a

task, but it is left with no supervision or human assistance in order to address the

problem on its own through trial and error.

In reinforcement learning, the environment is typically formulated as a

Markov Decision Process (MDP), as many RL algorithms for this context utilize

dynamic programming techniques. RL contrasts with the classical dynamic

programming methods in that RL does not require knowledge of an exact

mathematical model of the MDP and it targets large MDPs where exact methods

 18

become infeasible. RL differs from standard supervised learning in the aspect that

correct input/output pairs do not have to be displayed, and sub-optimal actions need

not be explicitly corrected. Instead the focus is on performance, which requires to find

a balance between exploration (of uncharted territory) and exploitation (of current

knowledge).

2.3 Markov Decision Processes

 A Markov Decision Process (MDP) [7] is a discrete time stochastic control

process. It provides a mathematical framework for modeling decision making in

situations, where outcomes are partly random and partly under the control of a

decision maker. MDPs are useful for studying optimization problems solved via

dynamic programming and reinforcement learning. MDPs are used in many fields,

including robotics, automatic control, economics and manufacturing.

At each time step, the process is in some state s, and then decision maker may

select any action a, which is available in state s. The process responds at the next step

by randomly moving into a new state s’, and giving the decision maker a

corresponding reward Ra(s, s’). The probability by which the process shifts into its

new state s’ is influenced by the selected action. Specifically, it is derived by the state

transition function Pa(s, s’). Thus, the next state s’ depends on the current state s and

then decision maker‟s action a. But given s and a, it is conditionally independent of

all previous states and actions; that means, the state transition of an MDP satisfies the

Markov property.

Definition:

A Markov Decision Process is a 5-tuple (S, A, Pa, Ra, γ), where

 S is a finite set of states

 A is a finite set of actions (alternatively, As is the set of actions available in s)

 Pa(s, s’) = Pr(st+1 = s’ | st = s, at = a) is the probability that action a in state s

at time t will lead to state s’ at time t+1

 Ra(s, s’) is the immediate reward (or expected immediate reward) received

after transition from state s to state s’, due to action a.

 γ ∉ [0, 1] is the discount factor, which represents the difference in importance

between future rewards and present rewards.

Markov Property:

 The next state is independent from past record

 The reward is independent from past record

 19

Problem:

The core problem of MDPs is to find a “policy” for the decision maker: a

function π that specifies the action π(s) that the decision maker will choose when in

state s. Once a Markov decision process is combined with a policy in this way, this

fixes the action for each state and subsequently resulting combination behaves like a

Markov chain (since the action chosen in state at is completely determined by π(s) and

Pr(st+1 = s’ | st = s, at = a) reduces to Pr(st+1 = s’ | st = s), a Markov transition matrix).

The primary aim is to choose a policy π that will maximize some cumulative

function of the random rewards, typically the expected discounted sum over a

potentially infinite horizon:

∑

where γ is the discount factor, satisfies 0 ≤ γ 1 and typically is close to 1.

Value Functions:

 State Value Function V

 ∑

From state s following policy π(s) we move to state s1 receiving reward r0.

From state s1 following policy π(s1) we move to state s2 receiving reward r1.

Inductively, we can see that from state sh-1 following policy π(sh-1) we move to state

sh receiving reward rh-1.

 State- Action Value Function Q

 ∑

 20

From state s taking action a we move to state s1 receiving reward r0.

From state s1 and following policy π thereafter, similarly to our previous example, we

can deduct that from state sh-1 we move to state sh receiving reward rh-1.

2.4 Q-Learning Algorithm

 Q-learning [8] is a RL algorithm used widely in machine learning. The

primary aim of Q-Learning is to conclude to a policy, which tells a given agent which

action to follow under what conditions. It does not need any prior model of the

environment and it can perform online learning. Furthermore, it can handle problems

with stochastic transitions and rewards, without requiring adaptations.

For any finite Markov Decision Process (FMDP), Q-learning finds a policy

that is optimal in the sense that it maximizes the expected value of the total reward

over all successive steps, starting from the current state. Q-learning can identify an

optimal action-selection policy for any given FMDP, given infinite exploration time

and a partly-random policy.

Algorithm:

The weight for a step from a state Δt steps into the future is calculated as γ
Δt

. γ

(the discount factor) is a number between 0 and 1 (0 ≤ γ 1) and has the property to

evaluate the rewards which are received earlier higher than those that are received

later. γ may also be interpreted as the probability to succeed at every step Δt. The

algorithm, therefore, has a function that calculates the quality of a state-action

combination:

Q: S x A R

Before learning starts, Q is initialized to a possibly arbitrary constant value

(selected by the programmer). Then, at each time t the agent chooses an action at,

receives a reward rt, enters a new state st+1 (that can possibly depend on both the

previous state st and the selected action at), and Q is updated. The core of the

algorithm is a simple value iteration update, using the weighted average of the old

value and the new information:

where rt is the reward observed for the current state st, and α is the learning rate

(0<α≤1). An episode of the algorithm ends when state st+1 is a final or terminal state.

However, Q-Learning can also learn in non-episodic tasks. If the discount factor is

lower than 1, the action values are finite, even if the problem can contain infinite

loops in the state space.

 21

For all final states sf, Q(sf, a) is never updated , but is set to reward value r observed

for state sf. In most cases Q(sf, a) can be taken equal to zero.

Explore vs Exploit

 The update of the Q-Values does not cater for actions that are never selected.

Exploitation selects the best known action, or in other words, the greedy actions at all

times. Exploration selects random actions every now and then, in order to improve the

estimates of all the Q values in the Q-array, so that better actions may be found. The

balance between exploitation and exploration is dependent on the accuracy of the Q-

value estimation and the level of stochastic behavior in the environment.

Discount Factor

 The discount factor γ determines the significance of future rewards. A factor

of 0 will make a given agent short-sighted by only concerning itself with current

rewards, while a factor approaching 1 will make it to work hard for a long-term high

reward. If the discount factor becomes equal to 1 or if it goes beyond 1, the values of

the action may deflect.

 For γ=1, without a final state, or if the agent never gets to one, all environment

records become infinitely long, and utilities with additive, undiscounted rewards

generally become infinite.

Initial Conditions (Q0)

 Since Q-learning is a repetitious algorithm, it implicitly requires a starting

condition, before the first update happens. High initial values, also referred to as

"optimistic initial conditions", can encourage exploration: no matter what action is

chosen, the update rule will cause it to have lower values than the other alternative,

thus increasing their selection probability. The first reward r can be used to reset the

initial conditions. According to this idea, the first time an action is selected the reward

is used to set the value of Q.

Q-Learning Properties

 Advantages
o It elaborates every sample directly
o It has minimum update cost per sample
o It sets no restrictions on the sample‟s collection (off policy)

 Disadvantages
o It requires a huge number of samples
o It requires cautious handling of the exploration rate
o The usage of each sample is minimum
o The order of the sample appearance affects the outcome
o It often displays unstableness with approximating representations

 22

2.5 Sensors

 A sensor is a device that detects and responds to some type of input from the

physical environment [9]. The specific input could be light, heat, motion, moisture,

pressure, or any one of a great number of other environmental measurements. The

output is generally a signal that is converted to human-readable display at the sensor

location or transmitted electronically over a network for reading or further processing.

A sensor is always used with other electronics, whether as simple as a light or as

complex as a computer. Sensors are employed in everyday objects, such as touch-

sensitive elevator buttons (tactile sensor) and lamps which dim or brighten by

touching the base, besides innumerable applications of which most people are never

aware. Applications include manufacturing and machinery, airplanes and aerospace,

cars, medicine, robotics and many other aspects of our day-to-day life. A sensor's

sensitivity indicates how much the sensor's output changes when the input quantity

being measured changes. Sensors are frequently designed to have a small effect on

what is measured. Making the sensor smaller usually improves this and could

introduce other advantages.

2.6 Wireless Sensor Networks

 A Wireless Sensor Network (WSN) can be defined as a network of devices

that can communicate the information gathered from a monitored field through

wireless links. The data is forwarded through multiple nodes, and with a gateway, the

data is connected to other networks such as wireless Ethernet [10]. These are a lot like

wireless ad hoc networks in the aspect that they rely on wireless connectivity and

spontaneous formation of networks, so that sensor data can be transported wirelessly.

WSNs are spatially distributed autonomous sensors to monitor physical or

environmental conditions, such as temperature, sound, pressure, etc. and to

cooperatively pass their data through the network to a main location. The more

modern networks are bi-directional, also enabling control of sensor activity.

The WSN consists of "nodes", from a few to several hundreds or even

thousands, where each node is connected to one (or sometimes several) sensors. Each

such sensor network node has typically several parts: a radio transceiver with an

internal antenna or connection to an external antenna, a microcontroller, an electronic

circuit for interfacing with the sensors and an energy source, usually a battery or an

embedded form of energy harvesting.

There are many types of WSNs depending on the environment they are

deployed in. Some of them are terrestrial, underground, underwater, multimedia and

finally mobile WSNs.

The cost of sensor nodes is similarly variable, ranging from a few to hundreds

of dollars, depending on the complexity of the individual sensor nodes. Size and cost

constraints on sensor nodes result in corresponding constraints on resources such as

communications bandwidth, computational speed, energy, and memory. The topology

of WSNs may vary from a simple star network to an advanced multi-hop wireless

mesh network.

https://www.elprocus.com/what-is-ethernet-and-different-types-of-ethernet-networks/

 23

2.7 TinyOS and Tossim

 TinyOS and Tossim are the tools we used to write our implementation code

and simulate the sensor network environment we needed in order to test our

algorithms behavior and performance.

TinyOS [12] is an “operating system” designed for low-power wireless

embedded systems. Fundamentally, it is a work scheduler and a collection of drivers

for microcontrollers and other ICs commonly used in wireless embedded platforms.

TinyOS is written in nesC, a dialect of C.

Tossim [13] simulates entire TinyOS applications. It works by replacing

components with simulation implementations. Tossim is a library: you must write a

program that configures a simulation and runs it. Tossim supports two programming

interfaces: Python and C++. Python allows you to interact with a running simulation

dynamically, like a powerful debugger. However, since the interpretator can be a

performance bottleneck when obtaining results, Tossim also has a C++ interface.

Usually, transforming code from one to the other is very simple.

 24

 25

CHAPTER 3. Problem Statement

3.1 Operating Environment

We consider a monitoring application of a field represented by an N × M grid

containing a number of sensors. We present here the 10 × 10 grid shown in Figure 1,

containing five sensors as an example to depict our problem.

M0

M2

 M1

M3

M5

Figure 1. 10 × 10 grid

This field contains a group of agents on five motes with sensing capabilities

labeled from M0 to M5 that are randomly deployed (the motes are fixed thereafter).

The objective is for the agents to sense the maximum amount of area in an energy-

efficient way, i.e. achieve the best level of coverage while minimizing the energy

consumption resulting from the motes‟ sensing. We consider a deterministic

environment with deterministic state transitions and rewards.

3.2 State-Action Spaces

The sensing area of an agent i, denoted as Area
i
, refers to the 5 × 5 grid square

centered on the agent i.

 26

Local agent states:

Each mote i senses its area. We define the status of a cell as binary: {sensed, not

sensed by a mote}.However, for practical reasons sensed corresponds to the value of

+1, while not sensed corresponds to the value of –1. A cell is considered sensed, if it

is covered by at least one mote. The local state s
i
 of an agent is the concatenation of

the sensing status of the twenty-five (25) cells in its area. Therefore, there are 2
25

possible states for each agent.

Local agent Actions:

Each mote has the ability to take one of the following three actions in any state it

lands in. The action space A
i
 is:

 Action 0: Turn OFF its sensor, as shown by M0 and M1 in Figure 2 below.

 Action 1: Turn on its sensor in LOW mode. In this mode the sensor senses

nine (9) cells around itself, as shown by M2 and M3 in Figure 2 below.

 Action 2: Turn on its sensor in HIGH mode. In this mode the sensor senses

twenty-five (25) cells around itself, as shown by M4 in Figure 2 below.

Figure 2. Example of 10 × 10 grid

 27

In Figure 2 above you can see a snapshot of the 10 × 10 grid.

Yellow cells are centers of motes. You can also see their ID and their selected action.

Cells with grey color and the “–1” value are not sensed by any of the motes.

Cells with green color and the “+1” value are sensed by exactly one mote.

Global state of the MAS:

The global state seen by the five agent MAS, is the concatenation of the sensing status

of all the cells in the field. Thus, there are 2
100

 possible global states.

Memory requirements of the algorithm:

Expression: S
i
 × A

i
 , Actual Values: 2

25
 × 3 = 100,663,296 values

3.3 Related Work

There are several papers published that present the concept of using

reinforcement learning in the field of wireless sensor networks for a variety of

purposes, such as cooperative communication, coordinated coverage, routing and rate

control.

The whole idea of this thesis is based on a paper presented at the IEEE 14
th

International Conference in Singapore in 2006 [11]. As shown here, the concept was

to introduce reinforcement learning algorithms in sensor networks in order to achieve

better sensing coverage. A number of distributed value function algorithms were

presented and tested out in terms of policy convergence and energy consumption.

However, the focus remained only on the 10 × 10 grid.

Another paper, where one of the authors was also an author on the previous

paper mentioned, was presented at the 3
rd

 International Conference on Intelligent

Sensors held in Melbourne, Australia in 2007 [12]. The context of the paper was a lot

similar to the previous one. It presented two of the distributed value functions

included in the previous paper and it contained a newly developed algorithm. The

performance of these three algorithms was compared in terms of convergence and

energy consumption, in higher and lower sensor node densities.

Another example of reinforcement learning used in sensor networks many

years ago, is the paper of Michael Littman and Justin Boyan in 1993 [13] . The paper

introduced the idea of using reinforcement learning for better networking routing.

More specifically, they present a learning algorithm for routing packets efficiently in

an irregularly-connected communication network with unpredictable usage patterns.

Finally, a more recently published article in 2015 [14] provides an extensive

review on the application of reinforcement leaning to WNSs. Furthermore, it presents

how most schemes in wireless sensor networks have been approached using the

traditional and enhanced reinforcement learning models and algorithms. In addition to

that, it displays performance enhancements brought by RL algorithms and problems

still not addressed regarding the application of RL in WSNs.

 28

 29

CHAPTER 4. Our Approach

4.1 Solving the simpler problem

Our idea was not only to solve the 10 × 10 problem shown earlier as an

example, but to create a parameterized algorithm as well, which we could use later for

any random topology and a bigger number of nodes in order to find good or optimal

coordinated coverage policies. However, in order to do that, we thought we should

first take a step back, towards solving an even simpler problem, which would have an

obvious and definitely optimal solution. So we came up with the 6 × 10 map using

three motes, which is shown in Figure 3 below. It is basically the same layout as the

10 x 10 map shown before, without the last two motes. By solving, we mean

converging to an optimal policy as often as possible.

 M0 M2

 M1

Figure 3. 6 × 10 grid

In this scenario, the optimal solution would be for M0 and M2 to choose

action 2, which is to function on High mode and for M1 to choose action 0, which is

to turn off. This is obvious to see, since if M1 remains turned off, then M0 and M2

have each exactly twenty-five cells to sense. This setting returns the maximum of

reward for the given topology, which we will discuss about later.

4.2 Fully Distributed Q-Learning with Linear Approximation

Given the problem's memory requirements in order to store the Q-values,

using an approximation to depict the problem seemed like the only way to go, since as

it was displayed earlier, the total number of Q-values amounts to more than 10
8
. Thus,

we decided to use Q-Learning with Value Function Approximation and a Linear

Approximation Architecture. Below, the two main equations that describe the idea of

the algorithm are shown:

 30

 ∑

Update:

θi : are basis functions which give an approximation/abstraction of the state

wi: are weight values for the corresponding basis functions

r: is the reward received

α: is the learning rate

γ: is the discount factor

Choosing Basis Functions φ:

A critical part for a linear approximation, in order to be successful, is choosing

accurate enough basis functions. However, this is no trivial task, because you can't

know in advance which functions are better than others or if some functions are good

enough until you actually test them out. Following this concept, we also performed a

lot of experimenting and testing until we came up with our final set of basis functions.

Basically, our course towards finding the best set of basis functions can be divided

into three stages.

In the first stage, our set of basis functions was the following. We used a set

that was consisted of eight basis functions. The first three correspond to the

percentage of the sensed cells in the 1 × 1, 3 × 3, and 5 × 5 outer rings of the agent‟s

area accordingly. The next four represented the percentage of sensed cells in every

3×3 quartile of the agent‟s 5 × 5 area. The last one is a constant that always has the

value of „1‟. It is needed as a convenient numerical trick for an additive constant (the

corresponding weight), just in case we want to shift the entire curve of the

approximated function up or down. In order to make it easier to grasp:

 θ0= value of „0‟ in case mote i is turned OFF or value of „1‟ if mote i is ON

 θ1= percentage of sensed cells in the 3 × 3 perimeter of agent‟s i 5×5 area

 θ2= percentage of sensed cells in the 5 × 5 perimeter of agent‟s i 5×5 area

 θ3 = percentage of sensed cells in the upper left quartile of agent‟s i 5×5 area

 θ4= percentage of sensed cells in the upper right quartile of agent‟s i 5×5 area

 θ5= percentage of sensed cells in the bottom left quartile of agent‟s i 5×5 area

 θ6= percentage of sensed cells in the bottom right quartile of agent‟s i 5×5 area

 θ7= „1‟

 31

However, the results were not that good in terms of percentages of convergence to the

optimal policy. As, we later found out the approximation of the agent‟s state was not

accurate enough using this set of seven basis functions.

In the second stage, we tried the following set of basis functions. The value of

each cell of the twenty-five cells that compose the 5 × 5 area, which constitutes the

state of agent i, corresponds to one basis function θ. By value, we refer to the sensed

and non-sensed status of the cell (+1, –1). That means we have a set of 25 basis

functions, which of course is different for every agent considering its own state.

Again, we used an extra basis function that was constant as mentioned previously.

And in order to make it more vivid and easier to visualize:

 θ0 = value of (0,0) element of agent‟s i 5×5 sensing area

 θ2 = value of (0,1) element of agent‟s i 5×5 sensing area

 θ3 = value of (0,2) element of agent‟s i 5×5 sensing area

 .

 .

 .

 θ23 = value of (4,3) element of agent‟s i 5×5 sensing area

 θ24 = value of (4,4) element of agent‟s i 5×5 sensing area

 θ25 = „1‟

Once again, the results were not good enough in terms of percentages convergence to

the optimal policy.

In the third and final stage, we simply combined the previous sets of basis

functions to a total of 33 (only one constant is needed) and then our results were

finally the desired ones. Of course, this combination naturally made a lot of sense,

since in general, the more basis functions one uses, the more accurate the

approximation of the state becomes, hence the results are better, as long as these basis

functions are not linearly dependent with each other.

 32

Figure 4. Example of 10 × 10 grid

Let‟s consider the snapshot of 10 × 10 grid shown in Figure 4 above. Firstly,

we should mention that the cells in purple color are cells that are sensed by more than

two motes. There other two colors that have already been explained. Now, if we focus

on Mote 0, which is the upper right mote with id 0, and take a look at the 5 × 5 area

which is his current state, then the values of the corresponding basis function‟s vector

would be the following:

θ0 -1 θ17 1

θ1 -1 θ18 1

θ2 -1 θ19 1

θ3 -1 θ20 -1

θ4 -1 θ21 -1

θ5 -1 θ22 -1

θ6 1 θ23 1

θ7 1 θ24 1

θ8 1 θ25 1/1

θ9 1 θ26 8/8

θ10 -1 θ27 5/16

θ11 1 θ28 4/9

θ12 1 θ29 6/9

θ13 1 θ30 4/9

θ14 1 θ31 8/9

θ15 -1 θ32 1

θ16 1

 33

θ0-θ24 : correspond to those of the state

θ25-θ27 : correspond to the rings

θ28-θ31 : correspond to the quartiles

θ32 : corresponds to the constant

Arranging Basis Functions into Blocks:

 We have seen where our basis functions are taking their values from.

However, these basis functions values are solely dependent on the state of each agent

so far. As we saw earlier in the equations of Q-learning, the Q-values must also be

dependent on the action agent i chooses. So, we also have to build a dependency from

the action. We made that possible by shifting the basis functions into different blocks

depending on the action value. More specifically, we used a bigger vector than the

basic ones (state-dependent) just shown above, that had the size of the total number of

state basis functions times 3 (one block/copy of basis functions for each of the three

actions) plus one for our constant basis function.

To elaborate more, if the action of the agent i is 0, then the state basis

functions would be stored in the first 32 slots of the array (positions 0-31) and the rest

would be filled with zeros (except from the one that holds the value of our constant

basis function). Respectively, if the agent i chooses action 1, then the state basis

functions would be stored in slots 32-63 and then again the rest would be filled with

zeros, except the constant. Finally, if the agent i chooses action 2, then the state basis

functions are stored in slots 64-96.

So to sum up, in the first stage, where we had 8 basis functions (7+1 for the

constant), the total size of the vector was 7×3+1 = 22. In the second state, where we

had 26 basis functions (25+1 for the constant) the total size of the vector was

25×3+1=76. While, in our last stage, where the basis functions took their final 32+1

form, the total size of the vector was 32×3+1 = 97.

4.3 Exploration Rate and Learning Rate

 Another issue that needs to be addressed regarding a simulation of

reinforcement learning is how to go about setting the Exploration and Learning Rates.

In our implementation, we use a sigmoid function for exploration, simply because it

suited our needs better, the smoothness of it. In Figure 5, below you can see the

sigmoid function that the exploration rate follows. On the upper right of the graph,

you can see the expression of the function for the 10000 iterations. On the x axis are

the iterations and on the y axis is the value of the exploration rate.

 34

Figure 5. Exploration rate using sigmoid function

 This means that in the earlier stages of the simulation our agents are more

likely to choose an action randomly. This aids our cause, since there isn‟t yet enough

information for a proper selection of action. So, the encouragement of exploring more

options makes a lot of sense. Now, the more we get close to the end of the simulation

(10000 iterations), the less we want our agents to choose randomly. So, as seen from

the graph above, at around 8000 iterations the probability of choosing randomly tends

to zero. At that point, in most of our simulations our agents have already converged

towards a policy.

 Regarding the learning rate, which is also included in the update equation

shown before, its accurate and cautious selection is very important in order to have

good results. Therefore, we experimented a lot with before concluding to a decision.

The learning rate determines to what extent newly acquired information overrides old

information in the Q-function. A value of zero allows the agent to learn nothing,

exclusively exploiting prior knowledge, while a value of one forces the agent to

concern itself only with the most recent information (ignoring prior knowledge to

explore possibilities). Similarly to exploration rate, at first we want the learning rate

to take a bigger value, so that the agent “learns” faster and gradually lower it. In any

case, the extreme values of 0 and 1 are avoided.

We considered three different functions for learning rate (one at a time), a

linear, a sigmoid and an exponential. The three graphs follow:

 35

Figure 6. Linear Learning Rate function

In Figure 6 above you can see the linear function that the learning rate follows.

On the upper right corner you can see the expression for the 10000 iterations. On the

x axis lie the iterations and on the y axis the value of the learning rate.

 36

Figure 7. Sigmoid Learning Rate function

In Figure 7 above you can see the linear function that the learning rate follows.

On the upper right corner you can see the expression for the 10000 iterations. On the

x axis lie the iterations and on the y axis the value of the learning rate. You can notice

as well, that the inclination of this sigmoid function compared to the one shown

previously for the exploration rate, is less steep. This is because we want the learning

rate to decrease more slowly compared to the exploration rate.

 37

Figure 8. Exponential Learning Rate function

In Figure 8 above you can see the exponential function that the learning rate

follows. On the upper right corner you can see the expression for the 10000 iterations.

On the x axis lie the iterations and on the y axis the value of the learning rate.

You will notice that in all three graphs shown above the starting value of the

learning rate is 0.02. This value has been accrued after extensive experimentation and

is the maximum that can take as an initial value, otherwise the weight values, and

therefore the Q-values, become unstably large and diverge. For similar reasons, when

using the exponential function the value of learning rate isn‟t allowed to drop below

0.01, because the agent practically learns nothing. We will also discuss the impact of

each different function in the results section.

4.4 Reward Function

The agents use only information that is locally available to them to choose an

action. The reward for agent i, denoted as r
i
, is a function of its state s

i
 and is based

solely in our problem: covering the largest area while minimizing the energy

consumption. It can be defined by:

 () ()

 38

Where:

 corresponds to the gain of covering the cells in the area of agent i.

This gain is a linear function of the number of cells that illustrates the concept

that the more cells are covered, the better the solution is :

 = number_of_cells_covered(Area
i
) × GAIN

 represents a cost (energy consumption) resulting from the previous action

of agent i. We used :

 0, if action=0;

 = { COST_LOW, if action=1;

 COST_HIGH, if action=2;

Where COST_LOW < COST_HIGH, since the low sensing mode consumes less

energy than the high mode. In our simulations GAIN is fixed at 0.2, COST_LOW at

0.8, and COST_HIGH at 3.0, following the choices in the literature. By changing the

COST_LOW and COST_HIGH settings we can change the equilibria of the problem,

however, we did not experiment towards that direction.

Moreover, we can extend this logic to the global map of the simulation and in

the same way we can compute a global reward for the policy of the agents which

allows us to quantify the global value of the policy. This is the main way for us to

compare policies, as we will see in the results.

4.5 Initial States and Necessary Information

 Before referring to the actual process of the simulation and how it progresses,

we should first mention the starting conditions and some of the information we

require to have prior to the beginning of the simulation.

Firstly, we need to know the topology of the map and the number of the motes

taking part. We also assume we know the centers of the motes‟ position. And lastly,

we need the dimensions of the grid. These parameters can be easily changed.

However, they are set at the beginning of the simulation and are held fixed throughout

each simulation. The initial state of the simulation, regardless of the map topology or

the number of nodes, is for all motes to be turned off.

It is also worth mentioning that the discount factor γ is fixed at 0.99 and the

weight factors of the basis functions are initialized to 1.

4.6 Process of the Simulation

 At first, there is the initialization of the radio and the motes. Then, the routing

phase follows which is a way for the motes to synchronize their active time. More

 39

specifically, a timer is called for every mote which determines when a given mote will

wake up to sense and to take a new action.

Our simulation, as mentioned before, is consisted of 10000 repetitions per

mote. This practically means that each mote chooses 10000 actions totally until the

end of the simulation. However, each of these cycles is divided into two separate

rounds.

In the first round, every mote chooses an action based on the current state. As

we said before, this action can either be random, following the exploration rate

function, or is selected greedily as the best action, corresponding to the maximum Q-

Value. However, the same condition applies to all motes, meaning that they either all

choose random or they all choose greedy. Then, the global state changes depending

on the actions chosen. Each mote receives its own reward, signaling the end of the

first round.

In the second round, the learning update takes place. Every node computes the

necessary values, such as the maximum Q-Value of the next state, which is now the

current state since the global state has already changed, and updates the weight factors

of the basis functions. This concludes the second round.

The simulation continues in the same way, following these two rounds in an

alternating manner thereafter.

4.7 Moving to larger grids with more Motes and random Topology

 As stated before, after solving the 10×10 map problem with five motes, the

idea was to try the fully distributed Q-Learning algorithm on larger grids with more

motes. However, in more complicated topologies with a larger number of nodes, it is

not possible to know the optimal policy beforehand (if there is, in fact, one) and there

is also no guarantee that convergence will lead to optimal policies. Nevertheless, we

can compare the global reward of the resulting policies to the initial policies to figure

out that learning indeed improves performance.

In our third and larger map, we chose a 20×20 map with twenty motes and we

spread them randomly around the grid. Figure 9 shows a snapshot of the map and

provides a general idea of the topology.

 40

Figure 9. Snapshot of 20×20 grid

 41

CHAPTER 5. Results

 As done in the previous chapter, we will begin with the results of the small

topologies first and gradually move towards the large one. Table 1 holds the results of

the percentages of convergence to optimal policies for the grids 6 × 10 and 10 × 10,

when using our algorithm with the different sizes of the basis functions vector and the

different learning rate schedules.

 6 × 10 10 × 10

Basis F : 22 Linear 76 % 69 %

Basis F : 22 Sigmoid 28 % 33 %

Basis F : 22 Exponential 15 % 15 %

Basis F : 76 Linear 76% 75 %

Basis F : 76 Sigmoid 20 % 17 %

Basis F : 76 Exponential 51 % 35 %

Basis F : 97 Linear 100 % 98 %

Basis F : 97 Sigmoid 74 % 67%

Basis F : 97 Exponential 100 % 96%

Table 1. Percentages of successful convergence to optimal policies

As one can see in the table above, the use of the set of 97 basis functions produces

significantly better results than the reduced ones. Moreover, you can notice that

generally the linear and exponential learning rate schedules are performing a lot better

than the sigmoid one, with the exception of the first case, where the sigmoid schedule

is slightly better than the exponential one.

Subsequently, we will present some graphs from the results of our simulations using

the complete set of basis functions, namely the set of 97 basis functions. Regarding,

our smallest grid, the 6 × 10 grid, we present results on global reward performance

and convergence of the learned weights. The optimal policy for the 6 × 10 map, as

mentioned before, is 2-0-2, which you can see in Figure 10 shown below.

Figure 10. Optimal policy for 6 × 10 map

 42

Using sigmoid learning rate for 6×10 grid

Our algorithm converges to the optimal policy 74% of the time, as shown already in

Table 1. The graph of the global reward over time applying the sigmoid learning rate

is shown in Figure 11 below.

Figure 11. Global Reward over time (sigmoid learning rate)

On the y axis is the value of the global reward and on the x axis are the

iterations parts. As you can see, the maximum global reward achievable is 4. This

graph corresponds to a total of 10000 iterations. However, it has been smoothed by

taking the average value per 100 iterations for the whole run, thus 100 values, because

the initial graph using all the values was too spiky. You can notice the upward trend

of the graph as the number of iterations increases and the agents choose more and

more greedily having gathered more information.

We also computed the L1 norm of the weight factors for every node, in order

to check for convergence of the weights to specific values. The L1 norm is the

summation of the absolute values of the weight factors. In Figure 12 below you can

see the combined graph of the L1 norm for the three nodes.

 43

Figure 12. L1 Norm for 6×10 with sigmoid learning rate

On the y axis lies the value of L1 norm, while on the x axis are the iterations.

The purple graph corresponds to Mote with id 0, the green graph corresponds to Mote

with id 1 and the light blue graph corresponds to Mote with id 2. You can notice that

Mote 0 and Mote 2 are practically converging to the same value, which makes a lot of

sense, since the conditions of their positions are a lot alike.

Using linear learning rate for 6×10 grid

Our algorithm converges to the optimal policy 100% of the times in this case, as

shown already in Table 1. The graph of the global reward over time applying linear

learning rate schedule is shown in Figure 13.

 44

Figure 13. Global Reward over time (linear learning rate)

On the y axis is the value of the global reward and on the x axis are the

iterations parts. As you can see the maximum global reward achievable is 4. Similarly

to the sigmoid one, this graph corresponds to a total of 10000 iterations. However, it

has been smoothed by taking the average value per 100 iterations for the whole run,

thus 100 values, because the initial graph using all the values was too spiky. You can

notice the upward trend of the graph as the number of iterations increases and the

agents choose more and more greedily having gathered more information.

We also computed the L1 norm of the weight factors for every node, in order

to see whether or not we had convergence. In Figure 14 below you can see the

combined graph of the L1 norm for the three nodes.

 45

Figure 14. L1 Norm for 6×10 with linear learning rate

On the y axis lies the value of L1 norm, while on x axis are the iterations. The

purple graph corresponds to Mote with id 0, the green graph corresponds to Mote with

id 1 and the light blue graph corresponds to Mote with id 2. Similarly to the sigmoid

graph for L1 norm, you can notice that Mote 0 and Mote 2 are practically converging

towards the same value, which makes a lot of sense, since their conditions are a lot

alike.

Using exponential learning rate for 6×10 grid

Our algorithm converges to the optimal policy 100% of the time, as we saw

already in the Table 1 above. The graph of the global reward over time using the

exponential learning rate schedule is shown in Figure 15 below.

 46

Figure 15. Global Reward over time (exponential learning rate)

On the y axis is the value of the global reward and on the x axis are the

iterations parts. As you can see the maximum global reward achievable is 4. Similarly

to the sigmoid one, this graph corresponds to a total of 10000 iterations. However, it

has been smoothed once again by taking the average value per 100 iterations for the

whole run, thus 100 values, because the initial graph using all the values was too

spiky. You can notice the upward trend of the graph as the number of iterations

increases and the agents choose more and more greedily having gathered more

information.

We also computed the L1 norm of the weight factors for every node, in order

to check for convergence of the weights to specific values. In Figure 14 below you

can see the combined graph of the L1 norm for the three nodes.

 47

Figure 16. L1 Norm for 6×10 with exponential learning rate

On the y axis lies the value of L1 norm, while on x axis are the iterations. The

purple graph corresponds to Mote with id 0, the green graph corresponds to Mote with

id 1 and the light blue graph corresponds to Mote with id 2. Similarly to the sigmoid

graph for the L1 norm, you can notice that Mote 0 and Mote 2 are practically

converging towards the same value, which makes a lot of sense, since their conditions

are a lot alike. Moreover, you can see that the values of the L1 norm are quite higher

than in the previous graphs. This is because of the exponential nature of the function.

The weights in the first stages of the simulations, where the learning rate is higher, are

taking high values and thus the L1 norm is also higher as a result.

Moving on to the 10x10 map the results are the following. The optimal policy

for this map is 2-0-2-2-2. This means everyone, but Mote 1, which is turned off, is

operating on High mode, as you can see in Figure 17. This policy returns the

maximum global reward which is 8.

 48

Figure 17. Optimal policy for 10 × 10 grid

As you can see with this policy, every cell is sensed exactly by one mote.

Mote 1 is not needed at all, since every cell can be covered by the other motes and

therefore is turned OFF.

Using sigmoid learning rate for 10×10 grid

Our algorithm converges to the optimal policy 67% of the times. The graph of

the global reward over time is shown in Figure 18 below.

 49

Figure 18. Global Reward over time for 10×10 map (sigmoid learning rate)

On the y axis is the value of the global reward and on the x axis are the

iterations parts. As you can see the maximum global reward available is 8 and is

achieved at the end of the iterations. Similarly to the sigmoid one, this graph

corresponds to a total of 10000 iterations. However, it has been smoothed once again

by taking the average value per 100 iterations for the whole run, thus 100 values,

because the initial graph using all the values was too spiky. You can notice the

upward trend of the graph as the number of iterations increases and the agents choose

more and more greedily having gathered more information.

We also computed the L1 norm of the weight factors for every node, in order

to check for convergence of the weights to specific values. In Figure 19 below you

can see the combined graph of the L1 norm for the five nodes.

 50

Figure 19. L1 Norm for 10×10 map with sigmoid learning rate

On the y axis lies the value of L1 norm, while on the x axis are the iterations.

The purple graph corresponds to Mote with id 0, the green graph corresponds to Mote

with id 1, the light blue graph corresponds to Mote with id 2, the orange graph

corresponds to Mote with id 3 and the yellow graph corresponds to Mote with id 4.

You will also notice that the weight factor‟s behavior for Mote 1 is a lot different than

the rest of the motes, which converge towards the same range of values due to the

symmetry of their positions.

Using linear learning rate for 10×10 grid

Our algorithm converges to the optimal policy 98% of the times, as shown

already in Table 1. The graph of the global reward over time is shown in Figure 20.

 51

Figure 20. Global reward over time for 10×10 map (linear learning rate)

On the y axis is the value of the global reward and on the x axis are the

iterations parts. As you can see the maximum global reward available is 8 and is

achieved by the end of the iterations. Similarly to the previous graphs, this graph as

well corresponds to a total of 10000 iterations. However, it has been smoothed once

again by taking the average value per 100 iterations for the whole run, thus 100

values, because the initial graph using all the values was too spiky. You can clearly

see the upward trend of the graph as the number of iterations increases and the agents

choose more and more greedily having gathered more information.

We also computed the L1 norm as done previously so far. In Figure 19 below

you can see the combined graph of the L1 norm for the five nodes.

 52

Figure 21. L1 Norm for 10×10 map with linear learning rate

On the y axis lies the value of L1 norm, while on x axis are the iterations. The

purple graph corresponds to Mote with id 0, the green graph corresponds to Mote with

id 1, the light blue graph corresponds to Mote with id 2, the orange graph corresponds

to Mote with id 3 and the yellow graph corresponds to Mote with id 4. You will also

notice that the weight factor‟s behavior for Mote 1 is a lot different than the rest of the

motes, which converge towards the same range of values due to the symmetry of their

positions.

Using exponential learning rate for 10×10 grid

Our algorithm converges to the optimal policy 96% of the times, as mentioned

in Table 1. The graph of the global reward over time is shown in Figure 22 below.

 53

Figure 22. Global reward over time for 10×10 map (exponential learning rate)

On the y axis is the value of the global reward and on the x axis are the

iterations parts. As you can see the maximum global reward available is 8 and is

achieved by the end of the iterations. Similarly to the previous graphs, this graph as

well corresponds to a total of 10000 iterations. However, it has been smoothed once

again by taking the average value per 100 iterations for the whole run, thus 100

values, because the initial graph using all the values was too spiky. You can clearly

see the upward trend of the graph as the number of iterations increases and the agents

choose more and more greedily having gathered more information.

We also computed the L1 norm as done previously so far. In Figure 23 below

you can see the combined graph of the L1 norm for the five nodes.

 54

Figure 23. L1 Norm for 10 × 10 map with exponential learning rate

On the y axis lies the value of L1 norm, while on x axis are the iterations. The

purple graph corresponds to Mote with id 0, the green graph corresponds to Mote with

id 1, the light blue graph corresponds to Mote with id 2, the orange graph corresponds

to Mote with id 3 and the yellow graph corresponds to Mote with id 4. You will also

notice that the weight factor‟s behavior for Mote 1 is a lot different than the rest of the

motes, which converge towards the same range of values due to the symmetry of their

positions.

Moving on to the final map, the 20×20 grid, we have the following results.

Firstly, a typical policy convergence for all three learning rate schedules is the one

depicted in Figure 24 below, achieving a global reward of 22.4. As we came to

understand from the simulations we ran on this grid, there are several different

policies that have very similar global reward.

 55

Figure 24. Highest global reward policy for 20×20

As mentioned earlier, we can‟t know the optimal policy for this grid, but we present the one

policy our algorithm converged to most of the time, with one of the highest global reward

accumulated. We display the global reward results for the three learning rate schedules.

Using sigmoid learning rate for 20×20 grid

The graph of the global reward over time is shown in Figure 25 below.

 56

Figure 25. Global reward over time for 20×20 map (sigmoid learning rate)

On the y axis is the value of the global reward and on the x axis are the

iterations parts. As you can see the global reward achieved by the end of the

simulation is 22.4. Similarly to the previous graphs, this graph as well corresponds to

a total of 10000 iterations. However, it has been smoothed once again by taking the

average value per 100 iterations for the whole run, thus 100 values, because the initial

graph using all the values was too spiky. You can clearly see the upward trend of the

graph as the number of iterations increases and the agents choose more and more

greedy having gathered more information.

Using linear learning rate for 20×20 grid

The graph of the global reward over time is shown in Figure 26 below.

 57

Figure 26 Global reward over time for 20×20 (linear learning rate)

On the y axis is the value of the global reward and on the x axis are the

iterations parts. As you can see the global reward achieved by the end of the

simulation is 22.4. However, due to the smoothening, mentioned before for the other

graphs as well, the final global reward drops to 22. You can clearly see the upward

trend of the graph as the number of iterations increases and the agents choose more

and more greedily having gathered more information.

Using exponential learning rate for 20×20 grid

The graph of the global reward over time is shown in Figure 27 below.

 58

Figure 27. Global reward over time for 20×20 (exponential learning rate)

On the y axis is the value of the global reward and on the x axis are the

iterations parts. You can clearly notice the upward trend of the graph as the number of

iterations increases and the agents choose more and more greedily having gathered

more information. As you can notice, the global reward schemas for the three

functions are quite similar. However, as with the previous grids in this one as well,

exponential and linear learning rate present a better solution for our algorithm. In

other words, using exponential or linear learning rate we have higher probability of

reaching a policy with higher global reward.

Using our algorithm, as shown in the graphs above, the global reward value

achieved for this grid is a value between 22 and 23. If we used a naïve policy, for the

purpose of comparison, the global reward value would be around eight. The naïve

policy we mentioned is the one in which all the sensors choose action 2 regardless of

their conditions, in order to maximize the number of cells covered.

Finally, I would like to point out that all of the succession converging

percentages came from a lot of repetitions of the experiment in order to have a well-

tested and as accurate as possible outcome. More specifically, for the two first grids

we had 100 repetitions of the simulation for each of the cases. In the last grid, we had

40 repetitions of the simulation for each of the learning rates, due to fact that it was a

lot more time consuming than in the previous smaller grids.

 59

CHAPTER 6. Conclusions

6.1 Discussion

Our algorithm implemented for usage in our problem statement delivered a

reasonable outcome. In the first two grids, we achieved convergence to the optimal

policy in the vast majority of the simulation repetitions. In the last and largest grid, we

managed to have a more than decent policy with an upward global rate function, that

produced a quite higher global reward, when compared to the naïve policy.

Moreover, given the fact that our agents do not communicate throughout the

simulation phase, the fact that the energy consumption for computation cost is small,

and the fact that the memory requirements are restricted by using an approximation of

the state, our algorithm is viable to be used on actual motes with the known

limitations.

In fact, the whole idea of introducing reinforcement learning in the field of

sensor networks proves to be very smart, especially for certain problems where the

requisite outcome is not known in advance. In addition to that, reinforcement learning

can work wonders in situations where the environment is altering or often

unpredictable. Such a situation can often be found in sensor network applications.

However, it needs to be stated that every RL application or every sensor

network application is very problem dependent. That means that its solution or its

configuration would most of the times be very unique and specific, in order to address

exactly the conditions and limitations of the problem.

6.2 Future Work

 In our implementation of the algorithm the agents are not communicating with

each other. Even though this does not hinder the results of the simulation, and in fact

aids the cause of keeping energy consumption levels down, in bigger and more

difficult problems this will prove unrealistic. To be honest, we had tried another

algorithm in which the agents communicated with each other exchanging valuable

information in order to cooperate for a better total outcome. However, the results were

not as good, despite the fact that the agents were exchanging local information and

thus they were consuming more energy.

It would be interesting to perceive the problem as a multi-agent system where

agents communicate with each other and exchange important information and reshape

this algorithm in order to receive better results, but still keep energy consumption to a

viable level.

Moreover, there are still plenty of learning algorithms that could also be

applied to our problem statement and it could prove very intriguing to test these out

too.

Finally, the difficulty of the problem at hand can always be increased in order

to evaluate smarter and more sophisticated learning algorithms were they applied.

 60

6.3 Lessons

 The amount of work needed to complete this thesis made it possible to

understand the kinds of problems involved in large project management. First of all,

there was a deeper understanding of how important it is to have proper organization

and code infrastructure when working on a big project. Furthermore, in order to

overcome this level of complexity you need to come up with a good plan and reserve

yourself with a lot of patience.

Secondly, error correction provided me with a good idea of how debugging

features work and an overall insight into what kinds of problem can be caused by

what kind of errors.

Moreover, I acquired more experience on working with C++ and enriched my

cognitive understanding about this language. In addition to that, I got in touch with

Python for the first time and had the chance to appreciate the simplicity and power of

the language.

What is often said in programming is that there has to be a flow of ideas that

can be easily translated into code. This project helped me practice exactly this

behavior, where an understanding of the problem caused a flurry of ideas to come

forth and be translated into code.

 All in all, it was a character molding experience that helped me build

confidence in solving any kind of problem given the necessary concentration and

effort.

 61

Bibliography

[1]. P. Stone and M. M. Veloso, "Multiagent systems: A survey from a

machine learning perspective," Autonomous Robots, vol. 8, no. 3, pp.

345-383, 2000 (Placeholder1)

[2]. S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava,

 "Coverage problems in wireless ad-hoc sensor networks," in INFOCOM,

 2001, pp. 1380-1387.

[3]. M. Cardei and J. Wu, Handbook of Sensor Networks: Compact Wireless

and Wired Sensing Systems. CRC Press, 2004, ch. 19, Coverage in

wireless sensor networks.

[4] H. Zhang and J. C. Hou, "Maintaining sensing coverage and connectivity

 in large sensor networks," Wireless Ad Hoc and Sensor Networks: An

 International Journal, vol. 1, no. 1-2, pp. 89-123, January 2005.

[5]. https://en.wikipedia.org/wiki/Machine_learning

[6] https://en.wikipedia.org/wiki/Reinforcement_learning

[7] . https://en.wikipedia.org/wiki/Markov_decision_process

[8]. https://en.wikipedia.org/wiki/Q-learning

[9]. https://en.wikipedia.org/wiki/Sensor

[10] https://en.wikipedia.org/wiki/Wireless_sensor_network

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Q-learning
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Wireless_sensor_network

 62

[11] Renaud J.C, Tham C. K Coordinated sensing coverage in sensor networks

using distributed reinforcement learning

https://doi.org/10.1109/ICON.2006.302580

[12] M. W. M. Seah, C. Tham, V. Srinivasan and A. Xin, "Achieving Coverage

through Distributed Reinforcement Learning in Wireless Sensor

Networks," 2007 3rd International Conference on Intelligent Sensors, Sensor

Networks and Information, Melbourne, Qld., 2007,

[13] Michael Littman and Justin Boyan. 1993. A Distributed Reinforcement

Learning Scheme for Network Routing. Technical Report. Carnegie Mellon

Univ., Pittsburgh, PA, USA

[14] Yau, KL.A., Goh, H.G., Chieng, D. et al. Computing (2015) 97: 1045.

https://doi.org/10.1007/s00607-014-0438-1

[15] https://en.wikipedia.org/wiki/TinyOS

[16] http://tinyos.stanford.edu/tinyos-wiki/index.php/TOSSIM

https://doi.org/10.1109/ICON.2006.302580
https://doi.org/10.1007/s00607-014-0438-1
https://en.wikipedia.org/wiki/TinyOS
http://tinyos.stanford.edu/tinyos-wiki/index.php/TOSSIM

