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Abstract 

 

 Machine Learning is a fast developing and ever growing field in computer 

science. In addition to that, Sensor Networks are also a very promising field that has 

significant impact on a variety of applications. Given these facts, a multi-agent system 

(MAS) approach on wireless sensor networks (WSNs) comprising sensor-actuator 

nodes is very promising, as it has the potential to tackle the resource constraints 

inherent in these networks by efficiently coordinating the activities among the nodes. 

Furthermore, a very common issue in the field of sensor networks is the sensing 

coverage problem, which is the task of properly and sufficiently covering an area. In 

this thesis, we consider the coordinated sensing coverage problem and study the 

behavior and performance of the fully distributed Q-Learning algorithm for 

reinforcement learning using linear value function approximation. We use the Tossim 

platform to simulate our TinyOS application, which consists of different topologies of 

sensor networks with parametric sizes. Subsequently, we present the results of our 

simulation and display a number of graphs to visualize performance and learning 

outcomes on three specific topologies. We consider issues, such as successful 

convergence to optimal policies and maximization of local and global rewards. The 

implementation results are quite promising, since our algorithms exhibit high 

percentage of successful convergence to optimal policies. 
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Πεπίληψη 

 

 Η κεραληθή κάζεζε είλαη έλα ηαρύηαηα θαη δηαξθώο αλαπηπζζόκελν πεδίν 

ζηελ επηζηήκε ησλ ππνινγηζηώλ. Δθηόο από απηό, ηα δίθηπα αηζζεηήξσλ είλαη επίζεο 

έλα πνιιά ππνζρόκελν πεδίν πνπ έρεη ζεκαληηθή επίδξαζε ζε κία πνηθηιία από 

εθαξκνγέο. Βάζεη ησλ παξαπάλσ, κία πξνζέγγηζε πνιππξαθηνξηθνύ ζπζηήκαηνο 

(MAS) ζε αζύξκαηα δίθηπα αηζζεηήξσλ (WSNs) πνπ πεξηιακβάλεη αηζζεηήξεο-

ελεξγνπνηεηέο θόκβνπο είλαη πνιιά ππνζρόκελε, θαζώο κπνξεί δπλεηηθά λα 

αληηκεησπίζεη ηνπο πεξηνξηζκνύο ζε πόξνπο πνπ είλαη έκθπηνη ζε απηά ηα δίθηπα κε 

ην λα ζπληνλίδεη απνδνηηθά ηηο δξαζηεξηόηεηεο κεηαμύ ησλ θόκβσλ. Δπηπιένλ, έλα 

θνηλό ζέκα ζην πεδίν ησλ δηθηύσλ αηζζεηήξσλ είλαη ην πξόβιεκα ηεο ζπληνληζκέλεο 

θάιπςεο, ζην νπνίν θαιείηαη θάπνηνο λα θαιύςεη θαηάιιεια θαη επαξθώο κία 

πεξηνρή κε αηζζεηήξεο. Σε απηή ηε δηπισκαηηθή εξγαζία, εμεηάδνπκε ην πξόβιεκα 

ηεο ζπληνληζκέλεο θάιπςεο ησλ αηζζεηήξσλ θαη κειεηάκε ηε ζπκπεξηθνξά θαη ηελ 

απόδνζε ηνπ ηειείσο θαηαλεκεκέλνπ Q-Learning αιγνξίζκνπ εληζρπηηθήο κάζεζεο 

ρξεζηκνπνηώληαο γξακκηθή πξνζέγγηζε ηεο ζπλάξηεζεο ρξεζηκόηεηαο. 

Φξεζηκνπνηνύκε ηελ πιαηθόξκα Tossim γηα λα πξνζνκνηώζνπκε ηελ TinyOS 

εθαξκνγή καο, ε νπνία απνηειείηαη από δηαθνξεηηθέο ηνπνινγίεο δηθηύνπ 

αηζζεηήξσλ κε παξακεηξνπνηεκέλν κέγεζνο. Σηε ζπλέρεηα, παξνπζηάδνπκε ηα 

απνηειέζκαηα ηεο πινπνίεζεο καο θαη δείρλνπκε έλαλ αξηζκό από γξαθήκαηα γηα λα 

νπηηθνπνηήζνπκε ηηο εθβάζεηο ηεο απόδνζεο θαη ηεο κάζεζεο ζε ηξεηο ζπγθεθξηκέλεο 

ηνπνινγίεο. Λακβάλνπκε ππ‟ όςηλ ζέκαηα, όπσο επηηπρή ζύγθιηζε ζε βέιηηζηεο 

πνιηηηθέο θαη κεγηζηνπνίεζε ησλ ηνπηθώλ θαη θαζνιηθώλ αληακνηβώλ. Τα 

απνηειέζκαηα ηεο πινπνίεζεο είλαη αξθεηά ελζαξξπληηθά από ηελ άπνςε ησλ 

πςειώλ πνζνζηώλ επηηπρώλ ζπγθιίζεσλ ηνπ αιγνξίζκνπ καο ζε βέιηηζηεο πνιηηηθέο. 
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CHAPTER 1. Introduction 
 

 

1.1 Thesis Introduction 
 

Consider a Multi-Agent System (MAS), which consists of a number of 

autonomous agents, each of which has its own states and its own actions. Modern 

sensor networks are examples of such MAS; each sensor is in fact an agent able to 

sense and cover some area around it (states), whose size may be a function of the 

energy consumed for sensing (action). These agents must cooperate with one another 

in order to maximize the sensing coverage of a wide area while, at the same time, 

minimizing the overall energy consumption. We are interested in studying the 

effectiveness of the fully distributed Q-Learning algorithm for this task, which 

includes also the ideas of reinforcement leaning we care to apply. 

 From a given agent‟s point of view, the MAS case differs from the single 

agent case, in the sense that the environment dynamics can be influenced by other 

agents. In addition to the uncertainty or stochastic nature that may be inherent in the 

environment, other agents can affect the environment in unpredictable ways due to 

their actions. 

  In a distributed learning and decision making system, the system behavior is 

influenced by the whole team of simultaneously and independently acting agents. 

Thus, the dynamics of the environment are likely to change more frequently than in 

the single-agent case. [1] As a learning method that does not need any prior model of 

the environment and can perform online learning, reinforcement learning (RL) is well 

suited for cooperative MAS, where agents usually have little, or in many cases none at 

all, information about each other. Reinforcement learning is also a robust and natural 

method for agents to learn how to coordinate their action choices.  

An important problem addressed in the Wireless Sensor Networks (WSN) 

literature is the sensing coverage problem [2], [3], [4]. In this problem, the task of the 

sensor network is to properly cover an area in order to make sure that all important 

events which occur in that area can be accurately detected by at least one sensor. 

A distributed approach to the sensing coverage problem is attractive for 

several reasons. First, sensing entities are usually spatially distributed, thus forming 

distributed systems using a decentralized approach is more natural. Second, sensor 

networks can be very large, i.e. containing hundreds or thousands of nodes; hence a 

distributed approach would always be more scalable than a centralized one. Finally, a 

distributed approach is compatible with the resource-constrained nature of sensor 

nodes. Many of the sensors are usually small devices with limited memory and 

computational capabilities and are energy constrained, since there are battery-

powered. Therefore, a distributed approach to performing computation, i.e. using 

distributed algorithms, and limiting the amount and distance of communication are 

necessary design parameters in order to achieve an efficient, energy-aware and 

scalable solution. Furthermore, the restricted communication bandwidth and range in 

WSNs would exclude a centralized approach. 

 Given the above observations, we consider a monitor application of a field 

represented by an m × n grid. In fact, three different discrete grids are used for our 

simulations in order to give substance to our problem. Then, we use the Tossim 
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platform to simulate our TinyOS application in order to experiment on the 

coordinated sensing coverage problem using RL, as mentioned earlier. 

 

 

1.2 Thesis Contribution 
 

 The way we tackle our problem involves the following steps. Firstly, we 

focused on two small grids to initially simplify and understand our problem. We 

applied a linear approximation of the value function in the Q-Learning algorithm to 

overcome memory requirements restrictions of the problem‟s space state. After 

concluding our simulations on the first two grids, we moved on to a larger grid in 

order to test our algorithm in a harder and more sophisticated challenge. 

 The results on the first and more trivial problem were, as ought to be, great. 

The algorithm converged to the optimal policy every time. On the second grid, the 

results were also nearly perfect, with very high successful convergence percentages to 

the optimal policy. While in the last one, the upward trend of the global reward graph 

showed encouraging results, when it came to larger and more difficult grids. 

 All in all, introducing reinforcement learning in the field WSNs proves to be a 

very promising and fertile idea for a plethora of applications and is definitely worth 

the time and effort to continue experimenting and researching towards this aspect. 

 

 

1.3 Thesis Outline 
 

 In Chapter 2 we include all the theoretical background needed for this thesis. 

We present an overview of the Machine Learning field, Markov Decision Processes 

and Sensor Networks. Furthermore, we display basic information about the Q-

Learning algorithm. In Chapter 3 we state the problem and everything you need to 

know about it. Continuing with Chapter 4, we present our approach of the problem 

thoroughly and the core ideas behind it. In Chapter 5 we present the results of our 

simulations and analyze the outcomes. Finally, Chapter 6 concludes our work and lists 

ideas for future improvements. 
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CHAPTER 2. Background 
 

 

2.1 Machine Learning 
 

Machine learning [5] is an application of Artificial Intelligence that provides 

systems with the ability to automatically “learn” from and improve their performance 

with experience without being explicitly programmed. Machine learning focuses on 

the development of computer programs that can access data and use them to learn for 

themselves. 

The process of learning starts with observations or data with the purpose of 

finding patterns in order to make better future decisions based on the information that 

was initially given. The main goal is to allow computer systems to learn on their own, 

without human intervention or assistance. Machine learning is applied on a variety of 

computing tasks, where writing and programming explicit algorithms with high 

performance is very difficult or, in many cases, infeasible; example applications 

include email filtering, detection of network intruders, and computer vision. 

Machine learning is closely related to computational statistics, which also 

focuses on prediction-making through the use of computers. It has strong ties to 

mathematical optimization, which delivers methods, theory and application domains 

to the field. Machine learning is sometimes confused with data mining, where the 

latter subfield focuses more on exploratory data analysis in order to discover structure 

in the data and is widely known as “unsupervised learning”. 

 

 

2.2 Reinforcement Learning 
 

Reinforcement learning (RL) [6] is an area of machine learning that has to do 

with how software agents learn to take actions in an environment in order to 

maximize a reward that corresponds to a specific principle of acting. The problem, 

because of the fact that it is quite generalized, is studied in many other concepts, such 

as game theory, control theory, operations research, information theory, simulation-

based optimization, multi-agent systems and many more.  

Reinforcement learning, in the context of artificial intelligence, is a type of 

dynamic programming. Moreover, RL is an approach to machine learning that is 

inspired by behavioral psychology. It looks a lot like the way a child is taught to 

perform an activity. The main difference between RL and other machine learning 

algorithms is that in RL the agent is not programmed in advance in order to perform a 

task, but it is left with no supervision or human assistance in order to address the 

problem on its own through trial and error. 

In reinforcement learning, the environment is typically formulated as a 

Markov Decision Process (MDP), as many RL algorithms for this context utilize 

dynamic programming techniques. RL contrasts with the classical dynamic 

programming methods in that RL does not require knowledge of an exact 

mathematical model of the MDP and it targets large MDPs where exact methods 
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become infeasible. RL differs from standard supervised learning in the aspect that 

correct input/output pairs do not have to be displayed, and sub-optimal actions need 

not be explicitly corrected. Instead the focus is on performance, which requires to find 

a balance between exploration (of uncharted territory) and exploitation (of current 

knowledge).  

 

 

2.3 Markov Decision Processes 
 

 A Markov Decision Process (MDP) [7] is a discrete time stochastic control 

process. It provides a mathematical framework for modeling decision making in 

situations, where outcomes are partly random and partly under the control of a 

decision maker. MDPs are useful for studying optimization problems solved via 

dynamic programming and reinforcement learning. MDPs are used in many fields, 

including robotics, automatic control, economics and manufacturing. 

At each time step, the process is in some state s, and then decision maker may 

select any action a, which is available in state s. The process responds at the next step 

by randomly moving into a new state s’, and giving the decision maker a 

corresponding reward Ra(s, s’). The probability by which the process shifts into its 

new state s’ is influenced by the selected action. Specifically, it is derived by the state 

transition function Pa(s, s’). Thus, the next state s’ depends on the current state s and 

then decision maker‟s action a. But given s and a, it is conditionally independent of 

all previous states and actions; that means, the state transition of an MDP satisfies the 

Markov property. 

Definition: 
 

A Markov Decision Process is a 5-tuple (S, A, Pa, Ra, γ), where 

 

 S is a finite set of states 

 A is a finite set of actions (alternatively, As is the set of actions available in s) 

 Pa(s, s’) = Pr(st+1 = s’ | st = s, at = a) is the probability that action a in state s 

at time t will lead to state s’ at time t+1 

 Ra(s, s’) is the immediate reward (or expected immediate reward) received 

after transition from state s to state s’, due to action a. 

 γ ∉ [0, 1] is the discount factor, which represents the difference in importance 

between future rewards and present rewards.  

Markov Property: 
 

 The next state is independent from past record 

 The reward is independent from past record 
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Problem: 
 

The core problem of MDPs is to find a “policy” for the decision maker: a 

function π that specifies the action π(s) that the decision maker will choose when in 

state s. Once a Markov decision process is combined with a policy in this way, this 

fixes the action for each state and subsequently resulting combination behaves like a 

Markov chain (since the action chosen in state at is completely determined by π(s) and 

Pr(st+1 = s’ | st = s, at = a) reduces to Pr(st+1 = s’ | st = s), a Markov transition matrix). 

The primary aim is to choose a policy π that will maximize some cumulative 

function of the random rewards, typically the expected discounted sum over a 

potentially infinite horizon: 

 

∑  

 

   

   
          

 

where γ is the discount factor, satisfies 0 ≤ γ   1 and typically is close to 1. 

 

Value Functions: 
 

 State Value Function V 

 

                         ∑   
 

   
         

 

 

 

From state s following policy π(s) we move to state s1 receiving reward r0. 

From state s1 following policy π(s1) we move to state s2 receiving reward r1. 

Inductively, we can see that from state sh-1 following policy π(sh-1) we move to state 

sh  receiving reward rh-1. 

 

 State- Action Value Function Q 

 

                          ∑   
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From state s taking action a we move to state s1 receiving reward r0. 

From state s1 and following policy π thereafter, similarly to our previous example, we 

can deduct that from state sh-1 we move to state sh receiving reward rh-1. 

 

 

2.4 Q-Learning Algorithm 
 

 Q-learning [8] is a RL algorithm used widely in machine learning. The 

primary aim of Q-Learning is to conclude to a policy, which tells a given agent which 

action to follow under what conditions. It does not need any prior model of the 

environment and it can perform online learning. Furthermore, it can handle problems 

with stochastic transitions and rewards, without requiring adaptations. 

For any finite Markov Decision Process (FMDP), Q-learning finds a policy 

that is optimal in the sense that it maximizes the expected value of the total reward 

over all successive steps, starting from the current state. Q-learning can identify an 

optimal action-selection policy for any given FMDP, given infinite exploration time 

and a partly-random policy. 

Algorithm: 
 

The weight for a step from a state Δt steps into the future is calculated as γ
Δt

. γ 

(the discount factor) is a number between 0 and 1 (0 ≤  γ   1) and has the property to 

evaluate the rewards which are received earlier higher than those that are received 

later. γ may also be interpreted as the probability to succeed at every step Δt. The 

algorithm, therefore, has a function that calculates the quality of a state-action 

combination: 

 

Q: S x A   R 

 

Before learning starts, Q is initialized to a possibly arbitrary constant value 

(selected by the programmer). Then, at each time t the agent chooses an action at, 

receives a reward rt, enters a new state st+1 (that can possibly depend on both the 

previous state st and the selected action at), and Q is updated. The core of the 

algorithm is a simple value iteration update, using the weighted average of the old 

value and the new information: 

 

                                                     

 

where rt is the reward observed for the current state st, and α is the learning rate  

(0<α≤1). An episode of the algorithm ends when state st+1 is a final or terminal state. 

However, Q-Learning can also learn in non-episodic tasks. If the discount factor is 

lower than 1, the action values are finite, even if the problem can contain infinite 

loops in the state space. 
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For all final states sf, Q(sf, a) is never updated , but is set to reward value r observed 

for state sf. In most cases Q(sf, a) can be taken equal to zero. 

 

Explore vs Exploit 
 

 The update of the Q-Values does not cater for actions that are never selected. 

Exploitation selects the best known action, or in other words, the greedy actions at all 

times. Exploration selects random actions every now and then, in order to improve the 

estimates of all the Q values in the Q-array, so that better actions may be found. The 

balance between exploitation and exploration is dependent on the accuracy of the Q-

value estimation and the level of stochastic behavior in the environment.  

 

Discount Factor 
 

 The discount factor γ determines the significance of future rewards. A factor 

of 0 will make a given agent short-sighted by only concerning itself with current 

rewards, while a factor approaching 1 will make it to work hard for a long-term high 

reward. If the discount factor becomes equal to 1 or if it goes beyond 1, the values of 

the action may deflect. 

  For γ=1, without a final state, or if the agent never gets to one, all environment 

records become infinitely long, and utilities with additive, undiscounted rewards 

generally become infinite.  

 

Initial Conditions (Q0) 
 

 Since Q-learning is a repetitious algorithm, it implicitly requires a starting 

condition, before the first update happens. High initial values, also referred to as 

"optimistic initial conditions", can encourage exploration: no matter what action is 

chosen, the update rule will cause it to have lower values than the other alternative, 

thus increasing their selection probability. The first reward r can be used to reset the 

initial conditions. According to this idea, the first time an action is selected the reward 

is used to set the value of Q. 

 

Q-Learning Properties 

 Advantages 
o It elaborates every sample directly 
o It has minimum update cost per sample 
o It sets no restrictions on the sample‟s collection (off policy) 

 Disadvantages 
o It requires a huge number of samples 
o It requires cautious handling of the exploration rate 
o The usage of each sample is minimum 
o The order of the sample appearance affects the outcome 
o It often displays unstableness with approximating representations 
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2.5 Sensors 
 

 A sensor is a device that detects and responds to some type of input from the 

physical environment [9]. The specific input could be light, heat, motion, moisture, 

pressure, or any one of a great number of other environmental measurements. The 

output is generally a signal that is converted to human-readable display at the sensor 

location or transmitted electronically over a network for reading or further processing. 

A sensor is always used with other electronics, whether as simple as a light or as 

complex as a computer. Sensors are employed in everyday objects, such as touch-

sensitive elevator buttons (tactile sensor) and lamps which dim or brighten by 

touching the base, besides innumerable applications of which most people are never 

aware. Applications include manufacturing and machinery, airplanes and aerospace, 

cars, medicine, robotics and many other aspects of our day-to-day life. A sensor's 

sensitivity indicates how much the sensor's output changes when the input quantity 

being measured changes. Sensors are frequently designed to have a small effect on 

what is measured. Making the sensor smaller usually improves this and could 

introduce other advantages. 

 

 

2.6 Wireless Sensor Networks 
 

 A Wireless Sensor Network (WSN) can be defined as a network of devices 

that can communicate the information gathered from a monitored field through 

wireless links. The data is forwarded through multiple nodes, and with a gateway, the 

data is connected to other networks such as wireless Ethernet [10]. These are a lot like 

wireless ad hoc networks in the aspect that they rely on wireless connectivity and 

spontaneous formation of networks, so that sensor data can be transported wirelessly. 

WSNs are spatially distributed autonomous sensors to monitor physical or 

environmental conditions, such as temperature, sound, pressure, etc. and to 

cooperatively pass their data through the network to a main location. The more 

modern networks are bi-directional, also enabling control of sensor activity.  

The WSN consists of "nodes", from a few to several hundreds or even 

thousands, where each node is connected to one (or sometimes several) sensors. Each 

such sensor network node has typically several parts: a radio transceiver with an 

internal antenna or connection to an external antenna, a microcontroller, an electronic 

circuit for interfacing with the sensors and an energy source, usually a battery or an 

embedded form of energy harvesting. 

There are many types of WSNs depending on the environment they are 

deployed in. Some of them are terrestrial, underground, underwater, multimedia and 

finally mobile WSNs. 

The cost of sensor nodes is similarly variable, ranging from a few to hundreds 

of dollars, depending on the complexity of the individual sensor nodes. Size and cost 

constraints on sensor nodes result in corresponding constraints on resources such as 

communications bandwidth, computational speed, energy, and memory. The topology 

of WSNs may vary from a simple star network to an advanced multi-hop wireless 

mesh network. 

 

https://www.elprocus.com/what-is-ethernet-and-different-types-of-ethernet-networks/
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2.7 TinyOS and Tossim 
 

 TinyOS and Tossim are the tools we used to write our implementation code 

and simulate the sensor network environment we needed in order to test our 

algorithms behavior and performance.  

TinyOS [12] is an “operating system” designed for low-power wireless 

embedded systems. Fundamentally, it is a work scheduler and a collection of drivers 

for microcontrollers and other ICs commonly used in wireless embedded platforms. 

TinyOS is written in nesC, a dialect of C. 

Tossim [13] simulates entire TinyOS applications. It works by replacing 

components with simulation implementations. Tossim is a library: you must write a 

program that configures a simulation and runs it. Tossim supports two programming 

interfaces: Python and C++. Python allows you to interact with a running simulation 

dynamically, like a powerful debugger. However, since the interpretator can be a 

performance bottleneck when obtaining results, Tossim also has a C++ interface. 

Usually, transforming code from one to the other is very simple. 
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CHAPTER 3. Problem Statement 

 

 

3.1 Operating Environment 
 

We consider a monitoring application of a field represented by an N × M grid 

containing a number of sensors. We present here the 10 × 10 grid shown in Figure 1, 

containing five sensors as an example to depict our problem. 

 

 

          

          

  
M0 

    
M2 

  

     M1     

          

          

          

  
M3 

    
M5 

  

          

          

Figure 1. 10 × 10 grid 

 

This field contains a group of agents on five motes with sensing capabilities 

labeled from M0 to M5 that are randomly deployed (the motes are fixed thereafter). 

The objective is for the agents to sense the maximum amount of area in an energy-

efficient way, i.e. achieve the best level of coverage while minimizing the energy 

consumption resulting from the motes‟ sensing. We consider a deterministic 

environment with deterministic state transitions and rewards. 

 

 

3.2 State-Action Spaces 
 

The sensing area of an agent i, denoted as Area
i
, refers to the 5 × 5 grid square 

centered on the agent i. 

 

 



 26 

 

Local agent states: 
 

Each mote i senses its area. We define the status of a cell as binary: {sensed, not 

sensed by a mote}.However, for practical reasons sensed corresponds to the value of 

+1, while not sensed corresponds to the value of –1.  A cell is considered sensed, if it 

is covered by at least one mote. The local state s
i
 of an agent is the concatenation of 

the sensing status of the twenty-five (25) cells in its area. Therefore, there are 2
25

 

possible states for each agent. 

 

Local agent Actions: 
 

Each mote has the ability to take one of the following three actions in any state it 

lands in. The action space A
i
 is: 

 

 Action 0: Turn OFF its sensor, as shown by M0 and M1 in Figure 2 below. 

 Action 1: Turn on its sensor in LOW mode. In this mode the sensor senses 

nine (9) cells around itself, as shown by M2 and M3 in Figure 2 below. 

 Action 2: Turn on its sensor in HIGH mode.  In this mode the sensor senses 

twenty-five (25) cells around itself, as shown by M4 in Figure 2 below. 

 

 

 

Figure 2. Example of 10 × 10 grid 
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In Figure 2 above you can see a snapshot of the 10 × 10 grid. 

Yellow cells are centers of motes. You can also see their ID and their selected action. 

Cells with grey color and the “–1” value are not sensed by any of the motes. 

Cells with green color and the “+1” value are sensed by exactly one mote. 

 

Global state of the MAS: 
 

The global state seen by the five agent MAS, is the concatenation of the sensing status 

of all the cells in the field. Thus, there are 2
100

 possible global states. 

 

Memory requirements of the algorithm: 
 

Expression: S
i
 × A

i
   , Actual Values:  2

25
 × 3 = 100,663,296 values 

 

3.3 Related Work 
 

There are several papers published that present the concept of using 

reinforcement learning in the field of wireless sensor networks for a variety of 

purposes, such as cooperative communication, coordinated coverage, routing and rate 

control. 

The whole idea of this thesis is based on a paper presented at the IEEE 14
th

 

International Conference in Singapore in 2006 [11]. As shown here, the concept was 

to introduce reinforcement learning algorithms in sensor networks in order to achieve 

better sensing coverage. A number of distributed value function algorithms were 

presented and tested out in terms of policy convergence and energy consumption. 

However, the focus remained only on the 10 × 10 grid. 

Another paper, where one of the authors was also an author on the previous 

paper mentioned, was presented at the 3
rd

 International Conference on Intelligent 

Sensors held in Melbourne, Australia in 2007 [12]. The context of the paper was a lot 

similar to the previous one. It presented two of the distributed value functions 

included in the previous paper and it contained a newly developed algorithm. The 

performance of these three algorithms was compared in terms of convergence and 

energy consumption, in higher and lower sensor node densities. 

Another example of reinforcement learning used in sensor networks many 

years ago, is the paper of Michael Littman and Justin Boyan in 1993 [13] . The paper 

introduced the idea of using reinforcement learning for better networking routing. 

More specifically, they present a learning algorithm for routing packets efficiently in 

an irregularly-connected communication network with unpredictable usage patterns. 

Finally, a more recently published article in 2015 [14] provides an extensive 

review on the application of reinforcement leaning to WNSs. Furthermore, it presents 

how most schemes in wireless sensor networks have been approached using the 

traditional and enhanced reinforcement learning models and algorithms. In addition to 

that, it displays performance enhancements brought by RL algorithms and problems 

still not addressed regarding the application of RL in WSNs.  
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CHAPTER 4. Our Approach 
 

 

4.1 Solving the simpler problem  
 

Our idea was not only to solve the 10 × 10 problem shown earlier as an 

example, but to create a parameterized algorithm as well, which we could use later for 

any random topology and a bigger number of nodes in order to find good or optimal 

coordinated coverage policies. However, in order to do that, we thought we should 

first take a step back, towards solving an even simpler problem, which would have an 

obvious and definitely optimal solution. So we came up with the 6 × 10 map using 

three motes, which is shown in Figure 3 below. It is basically the same layout as the 

10 x 10 map shown before, without the last two motes. By solving, we mean 

converging to an optimal policy as often as possible. 

 

          

          

  M0     M2   

     M1     

          

          

Figure 3. 6 × 10 grid 

 

In this scenario, the optimal solution would be for M0 and M2 to choose 

action 2, which is to function on High mode and for M1 to choose action 0, which is 

to turn off. This is obvious to see, since if M1 remains turned off, then M0 and M2 

have each exactly twenty-five cells to sense. This setting returns the maximum of 

reward for the given topology, which we will discuss about later. 

 

 

4.2 Fully Distributed Q-Learning with Linear Approximation 
 

Given the problem's memory requirements in order to store the Q-values, 

using an approximation to depict the problem seemed like the only way to go, since as 

it was displayed earlier, the total number of Q-values amounts to more than 10
8
. Thus, 

we decided to use Q-Learning with Value Function Approximation and a Linear 

Approximation Architecture. Below, the two main equations that describe the idea of 

the algorithm are shown: 
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         ∑    

 

   

               

Update: 

 

                                              

 

 

θi :  are basis functions which give an approximation/abstraction of the state 

wi: are weight values for the corresponding basis functions 

r: is the reward received 

α: is the learning rate 

γ: is the discount factor 

 

Choosing Basis Functions φ: 
 

A critical part for a linear approximation, in order to be successful, is choosing 

accurate enough basis functions. However, this is no trivial task, because you can't 

know in advance which functions are better than others or if some functions are good 

enough until you actually test them out. Following this concept, we also performed a 

lot of experimenting and testing until we came up with our final set of basis functions. 

Basically, our course towards finding the best set of basis functions can be divided 

into three stages. 

In the first stage, our set of basis functions was the following. We used a set 

that was consisted of eight basis functions. The first three correspond to the 

percentage of the sensed cells in the 1 × 1, 3 × 3, and 5 × 5 outer rings of the agent‟s 

area accordingly. The next four represented the percentage of sensed cells in every 

3×3 quartile of the agent‟s 5 × 5 area. The last one is a constant that always has the 

value of „1‟. It is needed as a convenient numerical trick for an additive constant (the 

corresponding weight), just in case we want to shift the entire curve of the 

approximated function up or down. In order to make it easier to grasp: 

 

 θ0= value of „0‟ in case mote i is turned OFF or value of „1‟ if mote i is ON 

 θ1= percentage of sensed cells in the 3 × 3 perimeter of agent‟s i 5×5 area 

 θ2= percentage of sensed cells in the 5 × 5 perimeter of agent‟s i 5×5 area 

 θ3 = percentage of sensed cells in the upper left quartile of agent‟s i 5×5 area 

 θ4= percentage of sensed cells in the upper right quartile of agent‟s i 5×5 area 

 θ5= percentage of sensed cells in the bottom left quartile of agent‟s i 5×5 area 

 θ6= percentage of sensed cells in the bottom right quartile of agent‟s i 5×5 area 

 θ7=  „1‟ 
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However, the results were not that good in terms of percentages of convergence to the 

optimal policy. As, we later found out the approximation of the agent‟s state was not 

accurate enough using this set of seven basis functions. 

 

In the second stage, we tried the following set of basis functions. The value of 

each cell of the twenty-five cells that compose the 5 × 5 area, which constitutes the 

state of agent i, corresponds to one basis function θ. By value, we refer to the sensed 

and non-sensed status of the cell (+1, –1). That means we have a set of 25 basis 

functions, which of course is different for every agent considering its own state. 

Again, we used an extra basis function that was constant as mentioned previously. 

And in order to make it more vivid and easier to visualize: 

 

 θ0 = value of (0,0) element of agent‟s i 5×5 sensing area 

 θ2 = value of (0,1) element of agent‟s i 5×5 sensing area 

 θ3 = value of (0,2) element of agent‟s i 5×5 sensing area 

 . 

 . 

 . 

 θ23 = value of (4,3) element of agent‟s i 5×5 sensing area 

 θ24 = value of (4,4) element of agent‟s i 5×5 sensing area 

 θ25 = „1‟ 

 

Once again, the results were not good enough in terms of percentages convergence to 

the optimal policy.  

 

In the third and final stage, we simply combined the previous sets of basis 

functions to a total of 33 (only one constant is needed) and then our results were 

finally the desired ones. Of course, this combination naturally made a lot of sense, 

since in general, the more basis functions one uses, the more accurate the 

approximation of the state becomes, hence the results are better, as long as these basis 

functions are not linearly dependent with each other.  
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Figure 4. Example of 10 × 10 grid 

 

Let‟s consider the snapshot of 10 × 10 grid shown in Figure 4 above. Firstly, 

we should mention that the cells in purple color are cells that are sensed by more than 

two motes. There other two colors that have already been explained. Now, if we focus 

on Mote 0, which is the upper right mote with id 0, and take a look at the 5 × 5 area 

which is his current state, then the values of the corresponding basis function‟s vector 

would be the following: 

 

θ0 -1  θ17 1 

θ1 -1  θ18 1 

θ2 -1  θ19 1 

θ3 -1  θ20 -1 

θ4 -1  θ21 -1 

θ5 -1  θ22 -1 

θ6 1  θ23 1 

θ7 1  θ24 1 

θ8 1  θ25 1/1 

θ9 1  θ26 8/8 

θ10 -1  θ27 5/16 

θ11 1  θ28 4/9 

θ12 1  θ29 6/9 

θ13 1  θ30 4/9 

θ14 1  θ31 8/9 

θ15 -1  θ32 1 

θ16 1    
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θ0-θ24 : correspond to those of the state 

θ25-θ27 : correspond to the rings 

θ28-θ31 : correspond to the quartiles 

θ32 : corresponds to the constant 

 

Arranging Basis Functions into Blocks: 
 

 We have seen where our basis functions are taking their values from. 

However, these basis functions values are solely dependent on the state of each agent 

so far. As we saw earlier in the equations of Q-learning, the Q-values must also be 

dependent on the action agent i chooses. So, we also have to build a dependency from 

the action. We made that possible by shifting the basis functions into different blocks 

depending on the action value. More specifically, we used a bigger vector than the 

basic ones (state-dependent) just shown above, that had the size of the total number of 

state basis functions times 3 (one block/copy of basis functions for each of the three 

actions) plus one for our constant basis function.  

To elaborate more, if the action of the agent i is 0, then the state basis 

functions would be stored in the first 32 slots of the array (positions 0-31) and the rest 

would be filled with zeros (except from the one that holds the value of our constant 

basis function). Respectively, if the agent i chooses action 1, then the state basis 

functions would be stored in slots 32-63 and then again the rest would be filled with 

zeros, except the constant. Finally, if the agent i chooses action 2, then the state basis 

functions are stored in slots 64-96. 

So to sum up, in the first stage, where we had 8 basis functions (7+1 for the 

constant), the total size of the vector was 7×3+1 = 22. In the second state, where we 

had 26 basis functions (25+1 for the constant) the total size of the vector was 

25×3+1=76. While, in our last stage, where the basis functions took their final 32+1 

form, the total size of the vector was 32×3+1 = 97. 

 

 

4.3 Exploration Rate and Learning Rate 
 

 Another issue that needs to be addressed regarding a simulation of 

reinforcement learning is how to go about setting the Exploration and Learning Rates. 

In our implementation, we use a sigmoid function for exploration, simply because it 

suited our needs better, the smoothness of it. In Figure 5, below you can see the 

sigmoid function that the exploration rate follows. On the upper right of the graph, 

you can see the expression of the function for the 10000 iterations. On the x axis are 

the iterations and on the y axis is the value of the exploration rate. 
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Figure 5. Exploration rate using sigmoid function 

 

 This means that in the earlier stages of the simulation our agents are more 

likely to choose an action randomly. This aids our cause, since there isn‟t yet enough 

information for a proper selection of action. So, the encouragement of exploring more 

options makes a lot of sense. Now, the more we get close to the end of the simulation 

(10000 iterations), the less we want our agents to choose randomly.  So, as seen from 

the graph above, at around 8000 iterations the probability of choosing randomly tends 

to zero. At that point, in most of our simulations our agents have already converged 

towards a policy. 

 Regarding the learning rate, which is also included in the update equation 

shown before, its accurate and cautious selection is very important in order to have 

good results. Therefore, we experimented a lot with before concluding to a decision. 

The learning rate determines to what extent newly acquired information overrides old 

information in the Q-function. A value of zero allows the agent to learn nothing, 

exclusively exploiting prior knowledge, while a value of one forces the agent to 

concern itself only with the most recent information (ignoring prior knowledge to 

explore possibilities). Similarly to exploration rate, at first we want the learning rate 

to take a bigger value, so that the agent “learns” faster and gradually lower it. In any 

case, the extreme values of 0 and 1 are avoided. 

We considered three different functions for learning rate (one at a time), a 

linear, a sigmoid and an exponential. The three graphs follow:  
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Figure 6. Linear Learning Rate function 

 

In Figure 6 above you can see the linear function that the learning rate follows. 

On the upper right corner you can see the expression for the 10000 iterations. On the 

x axis lie the iterations and on the y axis the value of the learning rate. 
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Figure 7. Sigmoid Learning Rate function 

 

In Figure 7 above you can see the linear function that the learning rate follows. 

On the upper right corner you can see the expression for the 10000 iterations. On the 

x axis lie the iterations and on the y axis the value of the learning rate. You can notice 

as well, that the inclination of this sigmoid function compared to the one shown 

previously for the exploration rate, is less steep. This is because we want the learning 

rate to decrease more slowly compared to the exploration rate. 



 37 

 

 

 

Figure 8. Exponential Learning Rate function 

 

In Figure 8 above you can see the exponential function that the learning rate 

follows. On the upper right corner you can see the expression for the 10000 iterations. 

On the x axis lie the iterations and on the y axis the value of the learning rate. 

You will notice that in all three graphs shown above the starting value of the 

learning rate is 0.02. This value has been accrued after extensive experimentation and 

is the maximum that can take as an initial value, otherwise the weight values, and 

therefore the Q-values, become unstably large and diverge. For similar reasons, when 

using the exponential function the value of learning rate isn‟t allowed to drop below 

0.01, because the agent practically learns nothing. We will also discuss the impact of 

each different function in the results section.  

 

 

4.4 Reward Function 
 

The agents use only information that is locally available to them to choose an 

action. The reward for agent i, denoted as r
i
, is a function of its state s

i
 and is based 

solely in our problem: covering the largest area while minimizing the energy 

consumption. It can be defined by: 

 

  (   )    (  )     
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Where: 

         corresponds to the gain of covering the cells in the area of agent i. 

This gain is a linear function of the number of cells that illustrates the concept 

that the more cells are covered, the better the solution is : 

      = number_of_cells_covered(Area
i
) × GAIN 

    represents a cost (energy consumption) resulting from the previous action 

of agent i. We used : 

 

               0,                    if action=0; 

      = {     COST_LOW,    if action=1; 

                  COST_HIGH,     if action=2; 

 

Where COST_LOW < COST_HIGH, since the low sensing mode consumes less 

energy than the high mode. In our simulations GAIN is fixed at 0.2, COST_LOW at 

0.8, and COST_HIGH at 3.0, following the choices in the literature. By changing the 

COST_LOW and COST_HIGH settings we can change the equilibria of the problem, 

however, we did not experiment towards that direction. 

Moreover, we can extend this logic to the global map of the simulation and in 

the same way we can compute a global reward for the policy of the agents which 

allows us to quantify the global value of the policy. This is the main way for us to 

compare policies, as we will see in the results. 

 

 

4.5 Initial States and Necessary Information 
 

 Before referring to the actual process of the simulation and how it progresses, 

we should first mention the starting conditions and some of the information we 

require to have prior to the beginning of the simulation. 

Firstly, we need to know the topology of the map and the number of the motes 

taking part. We also assume we know the centers of the motes‟ position. And lastly, 

we need the dimensions of the grid. These parameters can be easily changed. 

However, they are set at the beginning of the simulation and are held fixed throughout 

each simulation. The initial state of the simulation, regardless of the map topology or 

the number of nodes, is for all motes to be turned off. 

It is also worth mentioning that the discount factor γ is fixed at 0.99 and the 

weight factors of the basis functions are initialized to 1. 

 

 

4.6 Process of the Simulation 
 

 At first, there is the initialization of the radio and the motes.  Then, the routing 

phase follows which is a way for the motes to synchronize their active time. More 
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specifically, a timer is called for every mote which determines when a given mote will 

wake up to sense and to take a new action. 

Our simulation, as mentioned before, is consisted of 10000 repetitions per 

mote. This practically means that each mote chooses 10000 actions totally until the 

end of the simulation. However, each of these cycles is divided into two separate 

rounds. 

In the first round, every mote chooses an action based on the current state. As 

we said before, this action can either be random, following the exploration rate 

function, or is selected greedily as the best action, corresponding to the maximum Q-

Value. However, the same condition applies to all motes, meaning that they either all 

choose random or they all choose greedy. Then, the global state changes depending 

on the actions chosen. Each mote receives its own reward, signaling the end of the 

first round. 

In the second round, the learning update takes place. Every node computes the 

necessary values, such as the maximum Q-Value of the next state, which is now the 

current state since the global state has already changed, and updates the weight factors 

of the basis functions. This concludes the second round.  

The simulation continues in the same way, following these two rounds in an 

alternating manner thereafter. 

 

 

4.7 Moving to larger grids with more Motes and random Topology 
 

 As stated before, after solving the 10×10 map problem with five motes, the 

idea was to try the fully distributed Q-Learning algorithm on larger grids with more 

motes. However, in more complicated topologies with a larger number of nodes, it is 

not possible to know the optimal policy beforehand (if there is, in fact, one) and there 

is also no guarantee that convergence will lead to optimal policies. Nevertheless, we 

can compare the global reward of the resulting policies to the initial policies to figure 

out that learning indeed improves performance. 

In our third and larger map, we chose a 20×20 map with twenty motes and we 

spread them randomly around the grid. Figure 9 shows a snapshot of the map and 

provides a general idea of the topology. 
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Figure 9. Snapshot of 20×20 grid 
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CHAPTER 5. Results 
 

 As done in the previous chapter, we will begin with the results of the small 

topologies first and gradually move towards the large one. Table 1 holds the results of 

the percentages of convergence to optimal policies for the grids 6 × 10 and 10 × 10, 

when using our algorithm with the different sizes of the basis functions vector and the 

different learning rate schedules.  

 

 6 × 10 10 × 10 

Basis F : 22 Linear 76 % 69 % 

Basis F : 22 Sigmoid 28 % 33 % 

Basis F : 22 Exponential 15 % 15 % 

Basis F : 76 Linear 76% 75 % 

Basis F : 76 Sigmoid 20 % 17 % 

Basis F : 76 Exponential 51 % 35 % 

Basis F : 97 Linear 100 % 98 % 

Basis F : 97 Sigmoid 74 % 67% 

Basis F : 97 Exponential 100 % 96% 

Table 1. Percentages of successful convergence to optimal policies 

 

As one can see in the table above, the use of the set of 97 basis functions produces 

significantly better results than the reduced ones. Moreover, you can notice that 

generally the linear and exponential learning rate schedules are performing a lot better 

than the sigmoid one, with the exception of the first case, where the sigmoid schedule 

is slightly better than the exponential one.  

Subsequently, we will present some graphs from the results of our simulations using 

the complete set of basis functions, namely the set of 97 basis functions. Regarding, 

our smallest grid, the 6 × 10 grid, we present results on global reward performance 

and convergence of the learned weights. The optimal policy for the 6 × 10 map, as 

mentioned before, is 2-0-2, which you can see in Figure 10 shown below. 

 

 

Figure 10. Optimal policy for 6 × 10 map 
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Using sigmoid learning rate for 6×10 grid 

 

Our algorithm converges to the optimal policy 74% of the time, as shown already in 

Table 1. The graph of the global reward over time applying the sigmoid learning rate 

is shown in Figure 11 below. 

 

 

Figure 11. Global Reward over time (sigmoid learning rate) 

 

On the y axis is the value of the global reward and on the x axis are the 

iterations parts. As you can see, the maximum global reward achievable is 4. This 

graph corresponds to a total of 10000 iterations. However, it has been smoothed by 

taking the average value per 100 iterations for the whole run, thus 100 values, because 

the initial graph using all the values was too spiky. You can notice the upward trend 

of the graph as the number of iterations increases and the agents choose more and 

more greedily having gathered more information. 

We also computed the L1 norm of the weight factors for every node, in order 

to check for convergence of the weights to specific values. The L1 norm is the 

summation of the absolute values of the weight factors. In Figure 12 below you can 

see the combined graph of the L1 norm for the three nodes. 
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Figure 12. L1 Norm for 6×10 with sigmoid learning rate 

 

On the y axis lies the value of L1 norm, while on the x axis are the iterations. 

The purple graph corresponds to Mote with id 0, the green graph corresponds to Mote 

with id 1 and the light blue graph corresponds to Mote with id 2. You can notice that 

Mote 0 and Mote 2 are practically converging to the same value, which makes a lot of 

sense, since the conditions of their positions are a lot alike. 

 

Using linear learning rate for 6×10 grid 

 

Our algorithm converges to the optimal policy 100% of the times in this case, as 

shown already in Table 1. The graph of the global reward over time applying linear 

learning rate schedule is shown in Figure 13. 
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Figure 13. Global Reward over time (linear learning rate) 

 

On the y axis is the value of the global reward and on the x axis are the 

iterations parts. As you can see the maximum global reward achievable is 4. Similarly 

to the sigmoid one, this graph corresponds to a total of 10000 iterations. However, it 

has been smoothed by taking the average value per 100 iterations for the whole run, 

thus 100 values, because the initial graph using all the values was too spiky. You can 

notice the upward trend of the graph as the number of iterations increases and the 

agents choose more and more greedily having gathered more information. 

We also computed the L1 norm of the weight factors for every node, in order 

to see whether or not we had convergence. In Figure 14 below you can see the 

combined graph of the L1 norm for the three nodes. 
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Figure 14. L1 Norm for 6×10 with linear learning rate 

 

On the y axis lies the value of L1 norm, while on x axis are the iterations. The 

purple graph corresponds to Mote with id 0, the green graph corresponds to Mote with 

id 1 and the light blue graph corresponds to Mote with id 2. Similarly to the sigmoid 

graph for L1 norm, you can notice that Mote 0 and Mote 2 are practically converging 

towards the same value, which makes a lot of sense, since their conditions are a lot 

alike. 

 

Using exponential learning rate for 6×10 grid 

 

Our algorithm converges to the optimal policy 100% of the time, as we saw 

already in the Table 1 above. The graph of the global reward over time using the 

exponential learning rate schedule is shown in Figure 15 below. 
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Figure 15. Global Reward over time (exponential learning rate) 

 

On the y axis is the value of the global reward and on the x axis are the 

iterations parts. As you can see the maximum global reward achievable is 4. Similarly 

to the sigmoid one, this graph corresponds to a total of 10000 iterations. However, it 

has been smoothed once again by taking the average value per 100 iterations for the 

whole run, thus 100 values, because the initial graph using all the values was too 

spiky. You can notice the upward trend of the graph as the number of iterations 

increases and the agents choose more and more greedily having gathered more 

information. 

We also computed the L1 norm of the weight factors for every node, in order 

to check for convergence of the weights to specific values. In Figure 14 below you 

can see the combined graph of the L1 norm for the three nodes. 
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Figure 16. L1 Norm for 6×10 with exponential learning rate 

 

On the y axis lies the value of L1 norm, while on x axis are the iterations. The 

purple graph corresponds to Mote with id 0, the green graph corresponds to Mote with 

id 1 and the light blue graph corresponds to Mote with id 2. Similarly to the sigmoid 

graph for the L1 norm, you can notice that Mote 0 and Mote 2 are practically 

converging towards the same value, which makes a lot of sense, since their conditions 

are a lot alike. Moreover, you can see that the values of the L1 norm are quite higher 

than in the previous graphs. This is because of the exponential nature of the function. 

The weights in the first stages of the simulations, where the learning rate is higher, are 

taking high values and thus the L1 norm is also higher as a result. 

 

Moving on to the 10x10 map the results are the following. The optimal policy 

for this map is 2-0-2-2-2. This means everyone, but Mote 1, which is turned off, is 

operating on High mode, as you can see in Figure 17. This policy returns the 

maximum global reward which is 8. 
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Figure 17. Optimal policy for 10 × 10 grid 

 

As you can see with this policy, every cell is sensed exactly by one mote. 

Mote 1 is not needed at all, since every cell can be covered by the other motes and 

therefore is turned OFF. 

 

 

Using sigmoid learning rate for 10×10 grid 

 

Our algorithm converges to the optimal policy 67% of the times. The graph of 

the global reward over time is shown in Figure 18 below. 
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Figure 18. Global Reward over time for 10×10 map (sigmoid learning rate) 

 

On the y axis is the value of the global reward and on the x axis are the 

iterations parts. As you can see the maximum global reward available is 8 and is 

achieved at the end of the iterations. Similarly to the sigmoid one, this graph 

corresponds to a total of 10000 iterations. However, it has been smoothed once again 

by taking the average value per 100 iterations for the whole run, thus 100 values, 

because the initial graph using all the values was too spiky. You can notice the 

upward trend of the graph as the number of iterations increases and the agents choose 

more and more greedily having gathered more information. 

We also computed the L1 norm of the weight factors for every node, in order 

to check for convergence of the weights to specific values. In Figure 19 below you 

can see the combined graph of the L1 norm for the five nodes. 
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Figure 19. L1 Norm for 10×10 map with sigmoid learning rate 

 

On the y axis lies the value of L1 norm, while on the x axis are the iterations. 

The purple graph corresponds to Mote with id 0, the green graph corresponds to Mote 

with id 1, the light blue graph corresponds to Mote with id 2, the orange graph 

corresponds to Mote with id 3 and the yellow graph corresponds to Mote with id 4. 

You will also notice that the weight factor‟s behavior for Mote 1 is a lot different than 

the rest of the motes, which converge towards the same range of values due to the 

symmetry of their positions. 

 

Using linear learning rate for 10×10 grid 

 

Our algorithm converges to the optimal policy 98% of the times, as shown 

already in Table 1. The graph of the global reward over time is shown in Figure 20. 
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Figure 20. Global reward over time for 10×10 map (linear learning rate) 

 

On the y axis is the value of the global reward and on the x axis are the 

iterations parts. As you can see the maximum global reward available is 8 and is 

achieved by the end of the iterations. Similarly to the previous graphs, this graph as 

well corresponds to a total of 10000 iterations. However, it has been smoothed once 

again by taking the average value per 100 iterations for the whole run, thus 100 

values, because the initial graph using all the values was too spiky. You can clearly 

see the upward trend of the graph as the number of iterations increases and the agents 

choose more and more greedily having gathered more information. 

We also computed the L1 norm as done previously so far. In Figure 19 below 

you can see the combined graph of the L1 norm for the five nodes. 
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Figure 21. L1 Norm for 10×10 map with linear learning rate 

 

On the y axis lies the value of L1 norm, while on x axis are the iterations. The 

purple graph corresponds to Mote with id 0, the green graph corresponds to Mote with 

id 1, the light blue graph corresponds to Mote with id 2, the orange graph corresponds 

to Mote with id 3 and the yellow graph corresponds to Mote with id 4. You will also 

notice that the weight factor‟s behavior for Mote 1 is a lot different than the rest of the 

motes, which converge towards the same range of values due to the symmetry of their 

positions. 

 

Using exponential learning rate for 10×10 grid 

 

Our algorithm converges to the optimal policy 96% of the times, as mentioned 

in Table 1. The graph of the global reward over time is shown in Figure 22 below. 
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Figure 22. Global reward over time for 10×10 map (exponential learning rate) 

 

On the y axis is the value of the global reward and on the x axis are the 

iterations parts. As you can see the maximum global reward available is 8 and is 

achieved by the end of the iterations. Similarly to the previous graphs, this graph as 

well corresponds to a total of 10000 iterations. However, it has been smoothed once 

again by taking the average value per 100 iterations for the whole run, thus 100 

values, because the initial graph using all the values was too spiky. You can clearly 

see the upward trend of the graph as the number of iterations increases and the agents 

choose more and more greedily having gathered more information. 

We also computed the L1 norm as done previously so far. In Figure 23 below 

you can see the combined graph of the L1 norm for the five nodes. 
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Figure 23. L1 Norm for 10 × 10 map with exponential learning rate 

 

On the y axis lies the value of L1 norm, while on x axis are the iterations. The 

purple graph corresponds to Mote with id 0, the green graph corresponds to Mote with 

id 1, the light blue graph corresponds to Mote with id 2, the orange graph corresponds 

to Mote with id 3 and the yellow graph corresponds to Mote with id 4. You will also 

notice that the weight factor‟s behavior for Mote 1 is a lot different than the rest of the 

motes, which converge towards the same range of values due to the symmetry of their 

positions. 

 

Moving on to the final map, the 20×20 grid, we have the following results. 

Firstly, a typical policy convergence for all three learning rate schedules is the one 

depicted in Figure 24 below, achieving a global reward of 22.4. As we came to 

understand from the simulations we ran on this grid, there are several different 

policies that have very similar global reward. 
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Figure 24. Highest global reward policy for 20×20 

 

As mentioned earlier, we can‟t know the optimal policy for this grid, but we present the one 

policy our algorithm converged to most of the time, with one of the highest global reward 

accumulated. We display the global reward results for the three learning rate schedules.  

 

Using sigmoid learning rate for 20×20 grid 

 

The graph of the global reward over time is shown in Figure 25 below. 
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Figure 25. Global reward over time for 20×20 map (sigmoid learning rate) 

 

On the y axis is the value of the global reward and on the x axis are the 

iterations parts. As you can see the global reward achieved by the end of the 

simulation is 22.4. Similarly to the previous graphs, this graph as well corresponds to 

a total of 10000 iterations. However, it has been smoothed once again by taking the 

average value per 100 iterations for the whole run, thus 100 values, because the initial 

graph using all the values was too spiky. You can clearly see the upward trend of the 

graph as the number of iterations increases and the agents choose more and more 

greedy having gathered more information. 

 

Using linear learning rate for 20×20 grid 

 

The graph of the global reward over time is shown in Figure 26 below. 
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Figure 26 Global reward over time for 20×20 (linear learning rate) 

 

On the y axis is the value of the global reward and on the x axis are the 

iterations parts. As you can see the global reward achieved by the end of the 

simulation is 22.4. However, due to the smoothening, mentioned before for the other 

graphs as well, the final global reward drops to 22. You can clearly see the upward 

trend of the graph as the number of iterations increases and the agents choose more 

and more greedily having gathered more information. 

 

Using exponential learning rate for 20×20 grid 

 

The graph of the global reward over time is shown in Figure 27 below. 
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Figure 27. Global reward over time for 20×20 (exponential learning rate) 

 

On the y axis is the value of the global reward and on the x axis are the 

iterations parts. You can clearly notice the upward trend of the graph as the number of 

iterations increases and the agents choose more and more greedily having gathered 

more information. As you can notice, the global reward schemas for the three 

functions are quite similar. However, as with the previous grids in this one as well, 

exponential and linear learning rate present a better solution for our algorithm. In 

other words, using exponential or linear learning rate we have higher probability of 

reaching a policy with higher global reward. 

Using our algorithm, as shown in the graphs above, the global reward value 

achieved for this grid is a value between 22 and 23.  If we used a naïve policy, for the 

purpose of comparison, the global reward value would be around eight. The naïve 

policy we mentioned is the one in which all the sensors choose action 2 regardless of 

their conditions, in order to maximize the number of cells covered. 

Finally, I would like to point out that all of the succession converging 

percentages came from a lot of repetitions of the experiment in order to have a well-

tested and as accurate as possible outcome. More specifically, for the two first grids 

we had 100 repetitions of the simulation for each of the cases. In the last grid, we had 

40 repetitions of the simulation for each of the learning rates, due to fact that it was a 

lot more time consuming than in the previous smaller grids. 
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CHAPTER 6. Conclusions 
 

6.1 Discussion  
 

Our algorithm implemented for usage in our problem statement delivered a 

reasonable outcome. In the first two grids, we achieved convergence to the optimal 

policy in the vast majority of the simulation repetitions. In the last and largest grid, we 

managed to have a more than decent policy with an upward global rate function, that 

produced a quite higher global reward, when compared to the naïve policy. 

Moreover, given the fact that our agents do not communicate throughout the 

simulation phase, the fact that the energy consumption for computation cost is small, 

and the fact that the memory requirements are restricted by using an approximation of 

the state, our algorithm is viable to be used on actual motes with the known 

limitations. 

In fact, the whole idea of introducing reinforcement learning in the field of 

sensor networks proves to be very smart, especially for certain problems where the 

requisite outcome is not known in advance. In addition to that, reinforcement learning 

can work wonders in situations where the environment is altering or often 

unpredictable. Such a situation can often be found in sensor network applications. 

However, it needs to be stated that every RL application or every sensor 

network application is very problem dependent. That means that its solution or its 

configuration would most of the times be very unique and specific, in order to address 

exactly the conditions and limitations of the problem. 

 

6.2 Future Work 
 

 In our implementation of the algorithm the agents are not communicating with 

each other. Even though this does not hinder the results of the simulation, and in fact 

aids the cause of keeping energy consumption levels down, in bigger and more 

difficult problems this will prove unrealistic. To be honest, we had tried another 

algorithm in which the agents communicated with each other exchanging valuable 

information in order to cooperate for a better total outcome. However, the results were 

not as good, despite the fact that the agents were exchanging local information and 

thus they were consuming more energy. 

It would be interesting to perceive the problem as a multi-agent system where 

agents communicate with each other and exchange important information and reshape 

this algorithm in order to receive better results, but still keep energy consumption to a 

viable level. 

Moreover, there are still plenty of learning algorithms that could also be 

applied to our problem statement and it could prove very intriguing to test these out 

too. 

Finally, the difficulty of the problem at hand can always be increased in order 

to evaluate smarter and more sophisticated learning algorithms were they applied. 
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6.3 Lessons 
 

 The amount of work needed to complete this thesis made it possible to 

understand the kinds of problems involved in large project management. First of all, 

there was a deeper understanding of how important it is to have proper organization 

and code infrastructure when working on a big project. Furthermore, in order to 

overcome this level of complexity you need to come up with a good plan and reserve 

yourself with a lot of patience. 

Secondly, error correction provided me with a good idea of how debugging 

features work and an overall insight into what kinds of problem can be caused by 

what kind of errors. 

Moreover, I acquired more experience on working with C++ and enriched my 

cognitive understanding about this language. In addition to that, I got in touch with 

Python for the first time and had the chance to appreciate the simplicity and power of 

the language. 

What is often said in programming is that there has to be a flow of ideas that 

can be easily translated into code. This project helped me practice exactly this 

behavior, where an understanding of the problem caused a flurry of ideas to come 

forth and be translated into code. 

 All in all, it was a character molding experience that helped me build 

confidence in solving any kind of problem given the necessary concentration and 

effort. 
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