
Technical University of Crete

School of Electrical and Computer Engineering

A Distributed Complex

Event Processing (CEP) System

Based on the Esper Engine

Konstantinos Kyriakopoulos

Thesis Committee:
Professor Antonios Deligiannakis (Supervisor)

Professor Vasilis Samoladas
Professor Minos Garofalakis

September 24th, 2018

Abstract

The evolution of Big Data in the recent years has been posing continuous chal-
lenges to the Data Science field. More specifically, the multiple sources of informa-
tion along with the continuous growth and fast transmission of data have raised the
need for real-time data analysis. In order to fill this need complex event processing
has emerged.

Complex event processing is a technique used for analyzing multiple streams of
data in a pattern-based manner. The concept behind complex event processing is
the establishment of relationships between events of information and the correlation
of the events for specific patterns. Events may derive from multiple streams so CEP
fulfills the need for distributed event detection.

In this thesis, a distributed complex event processing (CEP) system based on the
Esper engine is implemented. Esper is an open-source software suitable for complex
event processing and real time data analysis. The Esper engine lies on top of the
Ferari project which serves as a framework for distributed streaming processing and
utilizes the functionalities of various platforms such as the Apache Storm.The goal
of this work is to integrate the Esper engine into the Ferari project and conduct
experiments while taking advantage of Ferari’s services and components. These
experiments demonstrate Esper’s capabilities and its efficiency as a CEP engine.

I

Περίληψη

Η επανάσταση των μεγάλων δεδομένων τα τελευταία χρόνια διαρκώς θέτει προκλήσεις

στην επιστήμη των δεδομένων. Ειδικότερα, οι πολλαπλές πηγές πληροφοριών σε συν-

δυασμό με τη διαρκή ανάπτυξη και γρήγορη μετάδοση των δεδομένων, έχουν δημιουρ-

γήσει την ανάγκη για ανάλυση των δεδομένων σε πραγματικό χρόνο. Προκειμένου να

καλυφθεί αυτή η ανάγκη, ήρθε στο προσκήνιο η πολύπλοκη επεξεργασία δεδομένων.

Η πολύπλοκη επεξεργασία δεδομένων είναι μία τεχνική που χρησιμοποιείται για την

ανάλυση πολλαπλών ροών δεδομένων βασιζόμενη σε ανίχνευση μοτίβων. Η αντίληψη

πίσω από την πολύπλοκη επεξεργασία δεδομένων, είναι η εφαρμογή συσχετισμών με-

ταξύ γεγονότων πληροφοριών και η σύνδεση των γεγονότων για συγκεριμένα μοτίβα.

Τα γεγονότα πληροφοριών ενδεχομένως να προέρχονται από πολλαπλές πηγές πλη-

ροφορίας, οπότε η πολύπλοκη επεξεργασία δεδομένων εξυπηρετεί την κατανεμημένη

ανίχνευση γεγονότων.

Στην παρούσα διπλωματική, έχει υλοποιηθεί ένα κατανεμημένο σύστημα πολύπλο-

κης επεξεργασίας δεδομένων βασιζόμενο στη μηχανή Esper. Η συγκεκριμένη μηχανή
είναι ένα λογισμικό ανοικτού κώδικα, κατάλληλο για πολύπλοκη επεξεργασία δεδο-

μένων και ανάλυση σε πραγματικό χρόνο. Η μηχανή Esper έχει εγκατασταθεί πάνω
στην υποδομή του Ferari που λειτουργεί ως ένα σύστημα κατανεμημένης επεξεργασίας
ροών δεδομένων και το οποίο με τη σειρά του αξιοιοποιεί τις δυνατότητες διαφόρων

συστημάτων όπως το Apache Storm. Σκοπός αυτής της δουλειάς είναι η ενσωμάτωση
της μηχανής Esper στο σύστημα Ferari και η διεξαγωγή πειραμάτων αξιοποιώντας τις
υπηρεσίες και τις δυνατότητες των μηχανισμών του Ferari. Τα πειράματα αυτά αναδει-
κνύουν τις δυνατότητες της μηχανής Esper και την αποδοτικότητα της ως μια μηχανή
πολύπλοκης επεξεργασίας δεδομένων.

III

Acknowledgments

First and foremost, I would like to thank my family, my parents and my brother
for their contribution in the completion of my studies. Their unconditional support,
both emotional and material, has been the cornerstone of my academic develop-
ment. I dedicate this work to them because their love and faith in me all these
years, helped me try harder in any circumstances.

Of course, I would like to express my gratitude towards Professor Antonios Deli-
giannakis who supervised this thesis. It was his personality and his teaching method
that inspired me to get involved with the Data Science field. For the trust he showed
in me by assigning me this topic, his advices and mentorship, I will be forever grate-
ful.

Furthermore, I would like to thank Professor Minos Garofalakis and Professor
Vasileios Samoladas for the priceless knowledge they offered me through their courses
as well as for the time they spent reviewing this thesis.

Last but not least, i need to express my thanks towards Ioannis Flouris and
Vasiliki Manikaki for the assistance and the advices they provided me. I am grateful
for the time they spent, trying to help me overcome any obstacles that occured in
this work.

“What you get by achieving your goals

is not as important as what you become

by achieving your goals.”

Henry David Thoreau

V

Contents

1 Introduction 1
1.1 Thesis Contribution . 1
1.2 Thesis Outline . 2

2 Esper 3
2.1 Overview . 3
2.2 Event Representations . 3

2.2.1 Event Underlying Objects . 3
2.2.2 Event Properties . 4

2.3 Processing Model . 5
2.3.1 The Select Clause . 6
2.3.2 Windows . 7

2.4 Event Processing Language . 10
2.4.1 The EPL Syntax . 10
2.4.2 The On Select Clause . 11
2.4.3 The Where Clause . 11
2.4.4 The Group By Clause . 12
2.4.5 The Create Variable Clause 12
2.4.6 The Output Clause . 13
2.4.7 The Limit Clause . 13
2.4.8 The Having Clause . 14
2.4.9 Subqueries . 14

2.5 Tables . 15
2.5.1 The Create Table Clause . 15
2.5.2 Inserting Into Tables . 15
2.5.3 Select From Tables . 16

2.6 Functions . 16
2.6.1 Aggregation Functions . 16
2.6.2 User-Defined Functions . 17
2.6.3 Single Row Functions . 18

2.7 Patterns . 19
2.7.1 Pattern Syntax . 20
2.7.2 Pulling Data from Patterns 20
2.7.3 Pattern Expressions Priority 21

VII

3 Ferari 23
3.1 Storm . 23

3.1.1 Storm Architecture . 24
3.1.2 Storm Concepts . 25

3.2 The architecture of Ferari . 26
3.2.1 Communicator Bolt . 26
3.2.2 Communicator Spout . 27
3.2.3 Input Spout . 27
3.2.4 Time Machine . 28
3.2.5 GateKeeper bolt . 28
3.2.6 PushAndPull spout . 28
3.2.7 CEP-Engine Bolt . 28
3.2.8 Optimizer . 29

4 System Configuration 31
4.1 The MessageBean Class . 31
4.2 The prepare function . 32
4.3 The setup function . 33
4.4 Streams . 33
4.5 Event Types . 34
4.6 The execute function . 34

4.6.1 Setup Validation . 34
4.6.2 Statistics . 35
4.6.3 Queries - Push And Pull Mechanism 36
4.6.4 Primitive (Raw) Events . 38
4.6.5 Derived Events . 39

4.7 The update method . 40

5 Experimental Assessment 41

6 Conclusion 51
6.1 Future Work . 51

VIII

List of Figures

2.1 Functionality of the Select statement. 6
2.2 Legth Window . 7
2.3 Time Window . 8
2.4 Time Batch Window . 9
2.5 Equivalent Pattern Expressions. 21

3.1 Interaction of Nodes in Storm cluster 24
3.2 Storm Topology . 26
3.3 Site Architecture . 27
3.4 Optimizer Topology . 29

5.1 Network Graph . 41

IX

Chapter 1

Introduction

The rapid development of various IoT applications in the past years has altered the
concept behind data analysis. In the past years,before the explosion of Big Data, the
main method for handling information had been the storing and retrieval of static
data through the use of conventional databases. Today, various applications such as
applications in finance and business, monitoring applications and applications for
sensor networks require faster and more elegant techniques for data processing.

Complex event processing (CEP) is the term which refers to the conduction of
real-time data analysis and is used to describe the technique of detecting patterns
in streams of events. Important factors in applications such as the throughput, the
latency and the complexity in the detection patterns played an important role in
the development of this technique. For instance, these applications need to be able
to cope with high throughput which implies processing huge amounts of messages
per second. Also, they need to have low latency which indicates fast responses from
the applications. Complex detection patterns refer to the complex ways that the
information is combined. CEP engines are built to match these exact needs.

Esper is an engine suitable for complex event processing and streaming analytics.
The engine guarantees memory efficiency, low latency, in-memory computing and
high scalability. Also, Esper uses its own event processing language (EPL) which is
based on the SQL syntax. These characteristics have classified Esper as one of the
leading complex event processing engines.

1.1 Thesis Contribution

The objective of this work is to provide a solid, reliable and robust system archi-
tecture which supports complex event processing over distributed sites, supporting
the well known push-pull paradigm, and based on the Esper engine. The basis of
the system is the FERARI project which supports stream processing in distributed
network topologies. During the system initialization, in order for the FERARI’s
components to communicate effectively with Esper, a wide range of configurations

1

take place in the CEP engine.
Several features of the engine such as Event Representations, Data Windows, EPL
queries and others are presented during the experiments. The following chapters inl-
cude all the necessary, theoretical and practical, information about the functionality
of Esper and the required preferences for its integration into the Ferari project.

1.2 Thesis Outline

The thesis is organized in the following chapters:

Chapter 2 describes the concept behind the functionality of the Esper engine
and analyses many of its features.

Chapter 3 presents the architecture of the FERARI implementation,introduces
the frameworks used in the project and provides an insight into its various compo-
nents.

Chapter 4 contains the necessary configurations for Esper’s integration into the
Ferari project. It includes the system design and several experimental results.

Chapter 5 concludes the thesis.

2

Chapter 2

Esper

2.1 Overview

Esper is designed to operate in a continuous manner with the use of queries which
act as filters for the incoming data. Rather than stocking the information and run-
ning queries against static data, the engine stores queries and processes the data
through them. Event stream queries and event patterns are the two fundamental
techniques which are provided by the engine.

The event stream queries technique supports aggregation, joining, various func-
tions and windows which are useful for streaming analysis. This method uses the
EPL language which is based on the SQL syntax. However, the languages differ in
the use of views and tables as EPL is built to use views for data structuring. The
event pattern method utilizes the detection of specific patterns and sequences in the
processed data. Raw or combined events and the existence of patterns in the events
are exploited by the technique.

2.2 Event Representations

The term event type is used by Esper to describe the type information available for
an event representation. An event is an immutable record of a past occurrence of an
action or state change. Event properties capture the state information for an event.

2.2.1 Event Underlying Objects

An event can be represented by any of the following underlying Java objects:

• java.lang.Object

Any Java POJO (plain-old java object) with getter methods following Jav-
aBean conventions. Legacy Java classes which are not following JavaBean
conventions can also serve as events.

3

• java.util.Map

Map events are implementations of the java.util.Map interface where each map
entry is a propery value.

• Object[] (array of object)

Object-array events are arrays of objects (type Object[]) where each array
element is a property value.

• Application classes

Plug-in event representation via the extension API.

• org.w3c.dom.Node

XML document object model (DOM).

• org.apache.axiom.om.OMDocument or OMElement

XML - Streaming API for XML (StAX) - Apache Axiom (provided by EsperIO
package).

It is important to note that all event representations support nested, indexed and
mapped properties. In fact,the nesting level is unlimited. The representations allow
transposing the event itself and parts of all of its property graph into new events.
The term transposing refers to selecting the event itself or event properties that are
themselves nestable property graphs, and then querying the event’s properties or
nested property graphs in further statements.

All event representations provide event type metadata. Type metadata for nested
properties is also included. Supertypes are allowed by the Java object,Object-array
and Map representations.

2.2.2 Event Properties

The state information for an event are captured by Event Properties. These prop-
erties can be either simple or indexed or mapped or nested. The following table
depicts the various types of event properties and their syntax. A short description
of each type,its syntax and an example are inluded in the table. Queries against
Map events,XML structures and JavaBean object graphs can be executed with this
syntax.

4

Table 2.1: Event Properties

Type Description Syntax Example

Simple
A property that has a single value
that may be retrieved.

name itemId

Indexed

An indexed property stores an
ordered collection of objects (all
of the same type) that can be
individually accessed by an integervalued,
non-negative index (or
subscript).

name[index] item[0]

Mapped
A mapped property stores a keyed
collection of objects (all of the same
type).

name(’key’) item(’pen’)

Nested
A nested property is a property that
lives within another property of an
event.

name.nestedname item.price

Source: Reprinted from the Esper Reference Documentation.

2.3 Processing Model

The UpdateListener method is responsible for delivering the processed data from
the Esper engine to the listeners of a specific query. The results are encapsulated
in EventBean instances. Specific getter methods are used for the retrieval of the
results from the EventBean instance. These methods are the following:

• get(String propertyName):Object

The get method can be used to retrieve result columns by name.

• getUnderlying():Object

The getUnderlying method allows update listeners to obtain the underlying
event object.

• getEventType():EventType

The getEventType method provides metadata for the event.

5

2.3.1 The Select Clause

A basic statement which detects all events with a given name and processes them
to the listeners via the UpdateListener method is the Select statement:

Select * from Transactions

This statement singles out every incoming Transaction event without the use of
a window or a filter clause. Its functionality is depicted below:

Figure 2.1: Functionality of the Select statement.
Source: Reprinted from the Esper Reference Documentation.

6

2.3.2 Windows

The Windows concept is used to identify old and new events. Events which enter a
window are classified as new events whereas events leaving the window are labelled as
old events. Depending on the manner that events enter and leave the windows,there
are certain window categories:

Length Windows

Length windows are designed to maintain the last N events for a stream. The
following statement is used to determine a length window onto the Transactions
event stream:

select * from Transactions.win:length(5)

In the specific statement,the length of the window is defined as five. This implies
that five events will be maintained in the window. As long as the number of five
events is reached,the FIFO(First In,First Out) method is applied to the window.
The event that entered first will exit the window and labelled as old event. On the
contrary,the latest event will enter the window and categorised as new event.

Figure 2.2: Legth Window
Source: Reprinted from the Esper Reference Documentation.

7

Time Windows

Time windows are built to maintain events for specific time intervals. The following
statement is used to determine a time window onto the Transactions event stream:

select * from Transactions.win:time(4 sec)

According to the above statement,the time window will maintain all the Trans-
actions events which have been detected in the last four seconds. As time goes
by,events with a time span that exceeds the four second limit will be pushed out of
the window. A time window while processing events is illustrated in the following
diagram:

Figure 2.3: Time Window
Source: Reprinted from the Esper Reference Documentation.

8

Time Batch Windows

Time Batch windows combine the functionality of time and length windows. The
window collects all the selected events for a specific time interval and releases all
these events once the time period expires. A typical time batch window is presented
in the following statement:

select * from Transactions.win:time_batch(4 sec)

All the events which are detected during the first four seconds will be placed
inside the window. After the time interval of four seconds, the collected events will
be instantly released and the window will repeat the previous procedure for the spe-
cific time period. The functionality of the previously declared time batch window is
presented in the following figure:

Figure 2.4: Time Batch Window
Source: Reprinted from the Esper Reference Documentation.

9

2.4 Event Processing Language

Esper uses the Event Processing Language (EPL) which follows the rules of the SQL
syntax. It provides SQL-like clauses such as the FROM ,ORDER BY, HAVING, SE-
LECT and WHERE clauses. Combining and handling stream of events is supported
by the EPL language as it allows aggregation, filtering and joins.Also, clauses like
OUTPUT and PATTERN which are supported by EPL, promote a more elegant
approach to event processing.

A key element of the language is the INSERT INTO clause which is used to
dispatch events to other streams. Views,like tables in the SQL language, are used to
process all the available data and have various representations. They can symbolize
a window over a stream of events or depict a group of events or manage certain
property values. Further use of the same views is allowed between different EPL
statements for better performance.

2.4.1 The EPL Syntax

The structure of an EPL statement is the following:

[annotations]

[expression_declarations]

[context context_name]

[into table table_name]

[insert into insert_into_def]

select select_list

from stream_def [as name] [, stream_def [as name]] [,...]

[where search_conditions]

[group by grouping_expression_list]

[having grouping_search_conditions]

[output output_specification]

[order by order_by_expression_list]

[limit number_of_rows]

The expressions in brackets are optional which means that only the select and from
clauses are necessary for the declaration of an EPL statement. Annotations add
information to a query while the Expression Declarations is useful for declaring
expressions in the statement. Context declaration is used to bind an EPL statement
to a specific context name. The limit and output clauses are useful to determine the
number of the rows and the rate at which events are output.

10

2.4.2 The On Select Clause

The on select clause performs a one-time, non-continuous query on a named window
or table every time a triggering event arrives or a triggering pattern matches. The
query can consider all rows, or only rows that match certain criteria, or rows that
correlate with an arriving event or a pattern of arriving events. The syntax for the
on select clause is as follows:

on event_type[(filter_criteria)] [as stream_name]

[insert into insert_into_def]

select select_list

from window_or_table_name [as stream_name]

[where criteria_expression]

[group by grouping_expression_list]

[having grouping_search_conditions]

[order by order_by_expression_list]

2.4.3 The Where Clause

The where clause is an optional clause in EPL statements. Event streams can
be joined and correlated by utilising the where clause. Also,any expression can
be placed in the clause. Typically you would use comparison operators =, <,>
,>=, <=, ! =, <>,is null, is not null and logical combinations via and and or for
joining, correlating or comparing events. Sample queries with the where clause are
the following:

select iD from Items,orders where items.iD = orders.iD

and:

select * from Values where measurement > 100

11

2.4.4 The Group By Clause

The group by clause is optional in all EPL statements. The functionality of the
group by clause is to divide the output of a statement into groups. One or more
event property names, or the result of complex expressions can be used in the clause.
In the case of aggregate functions, the group by retrieves the calculations in each
subgroup. Aggregate functions can be avoided in the clause, although they may
result into complicated results.The syntax of the clause is presented below:

group by aggregate_free_expression [, aggregate_free_expression] [,

...]

and a typical example of the group by clause:

select symbol, sum(price)

from StockTickEvent.win:time(30 sec)

group by symbol

2.4.5 The Create Variable Clause

The create variable statement is used to declare a new variable by determining
the name and the type of the variable. It ts important to note that variables can
be declared during runtime. A variable can be of type from the following:string,
char, character, bool, boolean, byte, short, int, integer, long, double,
float, object.An example of creating a variable is the following statement:

create variable integer price = 5

Price is the name and integer is the type of the variable according to the above
statement. Also, although that this is optional, the variable is initialized to number
five.

The constant option allows the declaration of a constant type string as it is
shown in the following statement:

create constant variable string eventName = ’Transfers’

A constant variable with the name eventName, of type string and with value
Transfers is declared.

12

2.4.6 The Output Clause

The rate at which events are output and the suppression of output events are handled
by the output clause. While the EPL language provides several different ways to
control output rate, the clause is optional. Below, the syntax for the output clause
that specifies a rate in time interval or number of events:

output [after suppression_def]

[[all|irs |last|snapshot] every output_rate [seconds|events]]

[and when terminated]

For example, the following statement outputs, every 30 seconds, the average tem-
perature from sensor 1 in the 60 minute time window:

select avg(temperature) from SensorEvent.win:time(60 min)

where sensorID = "sensor_1"

output snapshot every 30 seconds

2.4.7 The Limit Clause

The limit clause is typically used together with the order by and output clause to
limit the query results to those that fall within a specified range. It can be used
either to receive a range of result rows or to receive the first given number of result
rows. The syntax is the following:

limit row_count [offset offset_count]

where the optional offset count parameter specifies the number of rows that should
be skipped at the beginning of the result set. An example:

select orderID, count(*) from OrderEvent

group by orderID

output snapshot every 1 minute

order by count(*) desc

limit 10

which outputs the top 10 counts per property ’orderID’ every 1 minute.

13

2.4.8 The Having Clause

The having clause is used in combination with the order by clause. It is used in
order to pass or reject events which are defined by the group by clause. The way
the where clause manipulates the select clause is identical to the way that the hav-
ing clause handles the order by clause. The only difference is the fact that having
supports aggregate functions while where doesn’t.

This statement is an example of a having clause utilizing an aggregate function.
It posts the total price per sensor for the last 10 seconds of flight events for only
those flights in which the total value exceeds 300. Also,all sensors where the total
price is equal or less then 300 are eliminated.

select flightID, sum(value)

from FlightsEvent.win:time(10 sec)

group by flightID

having sum(value) > 300

Furthermore, the having clause can combine the conditions with and, or or not.
The previous statement’s having clause is enhanced with an additional condition of
an average flight duration bigger than 6 hours:

select flightID, sum(value),avg(duration)

from FlightsEvent.win:time(10 sec)

group by flightID

having sum(value) > 300 and duration > 6

2.4.9 Subqueries

Esper includes the subquery functionality. A subquery is a select statement nested
into another select statement. Subqueries are suppported by the Esper engine in the
select, having , where, having clauses and in stream and pattern filter expressions.

Subqueries are a useful tool to avoid complicated joins in the case of complex
data processing. Also, compared to complex joins, subqueries promote simplicity
and robustness. Esper supports both correlated and simple subqueries. In a simple
subquery, the inner query is not correlated to the outer query. An example of a
simple subquery is presented below:

select ID, (select measurement from CollectedValues.std:lastevent())

as SensorValues from SensorEvent

14

2.5 Tables

Tables are used by Esper to provide extra functionality for data handling. They do
not replace the functionality of Windows in the processing model. Instead,tables
are useful for manipulating the data deriving from events and storing them in the
proper form in order to be later used in Queries, Subqueries and Fire-And-Forget
queries. It is important that there is no syntax to drop or remove a table. Only
when the application destroys the statement that creates the table and also destroys
all statements referring to the table, is the table removed. The structure supports
various SQL functionality such as the Select,Order By,Group By clauses, column
naming, aggregation functions and others.

2.5.1 The Create Table Clause

The create table statement creates a table. A new table starts up empty and it
must be explicitly aggregated-into using into table, or populated by an on-merge
statement, or populated by insert into. The syntax for creating a table provides the
table name, lists column names and types and designates primary key columns as
follows:

create table table_name [as] (column_name column_type [primary key]

[,column_name column_type [primary key] [,...]])

The primary key keyword can be added after each column type in order for the
column to be declared as a primary key of the table. Apart from the standard column
types like int, long, float and string, tables in Esper also support all aggregation
functions. For instance, [simpleCounter count(*)] is a valid column declaration.

2.5.2 Inserting Into Tables

The insert into clause inserts rows into a table while it is mandatory that the column
names and types of the processed event match the declared column names and types
of the declared table. An example of populating a table with data from an event:

insert into NewTable select column_1, column_2 from NewEvent

15

2.5.3 Select From Tables

Tables support the standard select from clause. However, it is important to note
that views and the combination of data from a join is not supported. A usual select
statementcan be:

select * from NewTable

while the statements:

select * from NewTable.win:time(30 sec)

and:

select * from IntrusionCountTable unidirectional, MyEvent

are invalid.

2.6 Functions

Esper includes the use of functions. More specifically, the CEP engine, supports
Single-Row, Aggregation and User-Defined functions.

2.6.1 Aggregation Functions

Aggregation functions take into consideration value points or sets of events. In order
for the result-set to be grouped by one or more columns, aggregation functions are
combined with the group by clause. The syntax and overview of some aggregation
functions are presented below:

• The count(*) function.

This function returns a value of long type which corresponds to the number
of events.

• The count([all— distinct] expression) function.

This function returns a value of long type which represents the number of the
(distinct) non-null values in the expression.

• The sum([all— distinct] expression) function.

This function returns the sum of the,distinct,values in the expression.

16

• The avedev([all— distinct] expression) function.

This function returns a value of double type,representing the mean deviation
of the (distinct) values in the expression.

• The avg([all— distinct] expression) function.

This function returns a value of double type,representing the average of the
(distinct) values in the expression.

• The max([all— distinct] expression) function.

This function calculates the highest (distinct) value in the expression, return-
ing a value of the same type as the expression itself returns.

• The min([all— distinct] expression) function.

This function calculates the lowest (distinct) value in the expression, returning
a value of the same type as the expression itself returns.

• The median([all— distinct] expression) function.

This function calculates the median (distinct) value in the expression, return-
ing a value of double type. Note that double Not-a-Number (NaN) values are
ignored during the computation.

• The stddev([all— distinct] expression) function.

This function calculates the standard deviation of the (distinct) values in the
expression, returning a value of double type.

2.6.2 User-Defined Functions

User-defined functions are a single-row function that can be called upon either within
an expression or as an expression itself. The function reference is determined at
statement creation time by the Esper engine and must be a public static (Java)
method. Note that Java class names have to be fully qualified (e.g. java.lang.Math).
However, Esper provides a mechanism for user-controlled imports of classes and
packages. The CEP engine auto-imports the following Java library packages:

17

• java.lang.*

• java.math.*

• java.text.*

• java.util.*

The user can import additional packages or libraries by specifying the configuration
files or through the API and adding them to the configuration. User-defined func-
tions may also be chained which implies that if a user-defined function returns an
object then the object can itself be the target of the next function call and so on.

2.6.3 Single Row Functions

Single-row functions return a single value. They are stateless functions and not
expected to aggregate rows like the aggregation functions. These functions can
appear in any expressions and any number of parameters may be passed into them.
In order to develop and use a custom single-row function with Esper the following
steps must be followed:

• Implement a class providing one or more public static methods accepting the
number and type of parameters as required.

• Register the single-row function class and method name with the engine by
supplying a function name, via the engine configuration file or the configura-
tion API.

A single-row function can’t override a built-in function. Instead, the single row
function must have a different name then any of the built-in functions. Single-row
function classes have no further requirement than provide a public static method.
The following sample single-row function calculates a percentage value based on two
number values.

public class SampleClass {

public static double calculatePercentage(double amount, double total) {

return amount / total * 100;

}

}

18

It is necessary, for the utilization of the function, that the function name, the
class name of the class and the method name of the new single-row function is added
to the engine configuration. This is feasible via the configuration API or the XML
configuration file. A configuration example through XML is the following.

<esper-configuration

<plugin-singlerow-function name="percent"

function-class="mycompany.MyUtilityClass"

function-method="computePercent" /

>

</esper-configuration>

It is important to mention that the function name and method name are not
necessarily the same. A statement exploiting the the new single-row function is
below:

select percent(fulfilled, total) from NewEvent

2.7 Patterns

Patterns apply in case of an event or multiple events occuring which match the
pattern’s definition then. Pattern atoms and pattern operators consist the pattern
expressions. The key factor in constructing blocks of patterns are the pattern atoms.
They can either be observers for time-based events or filter expressions or plug-
in custom observers that observe external events which lie outside of the engine.
Pattern operators handle expression cycle of life and combine atoms logically or
temporally. There are 4 types of pattern operators:

• Temporal operators that operate on event order: − > (followed-by)

• Logical operators: and, or, not

• Operators that control pattern sub-expression repetition: every, every-distinct,
[num] and until

• Guards are where-conditions that control the lifecycle of subexpressions. The
while expression and timer:within are examples. Custom plug-in guards are
also accepted.

19

2.7.1 Pattern Syntax

An EPL statement allows a pattern to appear anywhere in the query including
subqueries and joins. Clauses like the group by, having, where, insert into and
output clauses are completely compatible with patterns. Also, a data window view
can be declared onto a pattern. A data window declared onto a pattern solely aims
to store pattern matches. An example demonstrating a statement with pattern
matching:

select a.customerId, avg(a.value + b.value)

from pattern [every a=Order ->

b=Product(customerId = a.customerId)

where timer:within(1 min)].win:time(2 hour)

where a.name in (’Repair’, b.name)

group by a.customerId

having avg(a.value + b.value) > 100

The above statement presents the idea of selecting a total price per customer over
pairs of events (ServiceOrder followed by a ProductOrder event for the same cus-
tomer id within 1 minute), occurring in the last 2 hours, in which the sum of price
is greater than 100, and using a where clause to filter on name.

2.7.2 Pulling Data from Patterns

It is important to mention that data can also be retrieved from pattern statements
through the safeIterator() and iterator() methods on EPStatement. This is available
only if the pattern had fired at least once and the @IterableUnbound annotation is
declared for the statement.If this condition is served, the last event for which the
iterator fired,will be returned. The hasNext() method can then be used to determine
if the pattern had fired. The methods mentioned:

if (myPattern.iterator().hasNext()) {

ServiceMeasurement event = (ServiceMeasurement)

view.iterator().next().get("price");

... // some more code here to process the event

}

else {

... // no matching events at this time

}

20

2.7.3 Pattern Expressions Priority

The following table demonstrates the precedence between operators and the corre-
lation between events and pattern operators:

Figure 2.5: Equivalent Pattern Expressions.
Source: Reprinted from the Esper Reference Documentation.

21

Chapter 3

Ferari

The FERARI (Flexible Event pRocessing for big dAta aRchItectures) project pro-
vides a large scale, distributed, streaming framework suitable for Big Data process-
ing. Complex event processing is supported by the architecture and the components
of the system. The Apache’s Storm computation system is the basis of the Ferari
project.

3.1 Storm

Storm is a distributed, fault-tolerant, efficient and reliable computation platform
suitable for handling and analyzing streams of data. It was built by Nathan Marz
and it is written in Java and Clojure. There are some certain characteristics which
make Storm quite special:

• It is rather simple and easy to use. The basic concept behind Storm’s func-
tionality and its components is rather simple to be perceived by the common
user.

• It is fault-tolerant. This means that it can handle failures by rescheduling
tasks.

• It supports all programming languages. Although it is easier to work with
a JVM-based language, Storm is compatible with many other languages.

• It is reliable. Storm posseses the mechanisms which guarantee that even if a
message is lost, it will be retransmitted, until it reaches its destination.

• It is easy to scale. If the user wants to expand the capabilities of Storm, all
that is needed is the machines to the cluster. Storm will handle the rest of the
process.

• It has low latency. Storm has mili-second latency.

23

3.1.1 Storm Architecture

In a Storm cluster,two kind of nodes exist:

• The Master node. A daemon named Nimbus is run by the Master node and is
accountable for the assignment of task to each worker node, failure monitoring
and code distribution around the cluster.

• The Worker node. A daemon named Supervisor is run by the Worker node
and is accountable for executing a certain topology part.

Due to the fact that all cluster states are kept either on local storage or in
Zookeper,possible failure of the daemons doesn’t afflict the system’s performance.

Figure 3.1: Interaction of Nodes in Storm cluster

24

3.1.2 Storm Concepts

Streams,bolts and spouts are Storm’s main concepts.

Streams

Streams is a term to describe the series of tuples which are channeled between the
Storm’s components, bolts and spouts. Tuples refer to data structures consisting
of multiple parts of information.In order for bolts to connect in an efficient and
productive manner with the streams, stream grouping is defined:

• Shuffle Grouping:It is the most popular stream grouping method as it de-
livers, randomly, an equal number of tuples to all subscribing bolts.

• Custom Grouping:Allows the user to choose which bolt(s) will collect each
tuple.

• Global Grouping:A specific task of the bolt, usually the one with the small-
est ID, is the target of the stream.

• Direct Grouping:In direct grouping, the source of the stream selects the
exact receiver (bolt) of the stream.

• Fields Grouping:Allows the user to determine which specific fields of the
tuple in the stream will be delivered to the bolt.

• All Grouping:This method is used to transmit the tuples of the stream to
all tasks.

• None Grouping:Currently, has identical functionality to the fields grouping
method.

Bolt

Storm’s Bolt is a unit which receives tuples and processes them. Once the tuple
is processed, it will be forwarded to other components of the Storm framework.
Processing includes several data manipulation techniques such as filtering, applying
functions, aggregations and others. Bolts are regarded as the factories of Storm.

Spout

The role of the Spout in the Storm ecosystem is the transmission of data to the bolts.
Spouts are supplied with data from external sources such as files, message brokers,
databases and others. They are able to deliver data to bolts through multiple
streams.

A storm topology,consisting of streams,bolts and spouts,is depicted in the fol-
lowing figure.

25

Figure 3.2: Storm Topology

3.2 The architecture of Ferari

The Ferari intra-site architecture consists of several components which collaborate
with each other in order to provide a flexible and efficient streaming analyzer plat-
form. Communication between sites is cost-effective and performed through Redis.

3.2.1 Communicator Bolt

Communications between the sites of the network is handled by the communicator
bolt. The bolt is responsible for interacting with the other bolts of the Storm
topology and other sites. The interaction with the the other sites of the network is
achieved through the Redis message broker.

The communicator bolt’s main tasks are the transmission of pull requests and
the handling of occuring violations.Once,the bolt receives a violation message from
the GateKeeper, it will inform the TimeMachine bolt to set its state accordingly.

26

Figure 3.3: Site Architecture

3.2.2 Communicator Spout

The Communicator spout can be compared to the antenna of the site. The bolt
is responsible for receiving all incoming messages of the site. Also,it handles mes-
sages which are processed directly from the communicator of the node. By the
time,the communicator bolt receives a message,it will forward it to the appropriate
components of the site.

3.2.3 Input Spout

The Input Spout is responsible for providing the framework with data. It can
be compared to the site’s gateway as all incoming data from external sources is
processed by this spout.Manipulating external data and emitting the tuples to the
CEP engine are its main workload.

27

3.2.4 Time Machine

Time Machine works like a buffer mechanism for the events processed by the CEP
engine. Depending on the push and pull requests,the events are accordingly manip-
ulated in order to be sent to the coordinator sites. The Time Machine bolt provides
statistics of the events and operates in a state manner. Ideally,it operates in Play
mode in which it assigns the requested events for forwarding to the coordinator site.
If a violation occurs, the Time Machine bolt is set to Pause mode until the violation
is fixed and then it returns to Play mode.

3.2.5 GateKeeper bolt

The GateKeeper bolt is responsible for observing and handling violations. It is
assigned with detecting anomalies in the monitoring function which oversees the
threshold of the value computed on event data. In case of a threshold violation, it
informs the coordinator to perform specific actions.

3.2.6 PushAndPull spout

The PushAndPull spout is the component in charge of receiving pushed events from
other sites and forwarding these events to the CEP engine for processing.

3.2.7 CEP-Engine Bolt

The CEP-Engine bolt is the bolt which contains the functionality of the CEP engine.
The Ferari project has been designed to use the Proton On Storm CEP engine. In
that implementation, the CEP-Engine consisted of three bolts. However, for the
purposes of this work, the Esper engine will be used to conduct complex event pro-
cessing. In this case, the CEP-Engine consists of a single bolt. The proper system
configurations in order to adapt the Esper engine into the Ferari computation plat-
form, will be presented in the following chapter.

28

3.2.8 Optimizer

The optimizer component is an autonomous Storm topology. Its tasks are the provi-
sion of network plans and queries to sites. More specifically, it assigns a specific role
to each site and provides the necessary plans in order for them to set up properly.
Also,it supplies the CEP engine with the queries based on which data analysis will
be conducted. The topology is composed of the optimizer spout and the optimizer
bolt. The spout receives the network parameters and the queries from external
sources and forwards them to the optimizer bolt. Network plans,according to the
parameters, are generated from the optimizer bolt and along with the queries are
transmitted to the sites and the the CEP engine respectively.

Figure 3.4: Optimizer Topology

29

30

Chapter 4

System Configuration

The integration of the Esper engine into the Ferari computation system requires a
series of configurations. An instance of the engine has to be placed inside a Storm
bolt, stream names and event types have to be declared and certain methods have
to be applied in order for the bolt to support the push and pull mechanism. Support
classes such as the MessageBean class are used to handle the input data.

4.1 The MessageBean Class

The incoming data are loaded from external files and are forwarded to the Esper
engine by the Input Spout in the form of tuples. In our experiments, the used data
can be classified as ”tidy” as each tuple contains comma separated variables and
their values. In order for the system,to be able to handle all kinds of data, the
MessageBean class has been built. The class works like a parser which scans the
tuple and extracts each variable and its value by using a regular expression pattern.
Getter and setter methods are supported by the class. Due to the fact that the
event processing language (EPL) language allows the import of Java functions, the
MessageBean class is used to create objects of the tuples which contain the variables
and their values.

MessageBean push_attributes_bean = MessageBean.parse(tuple

.getValueByField(STORMMetadataFacade.ATTRIBUTES_FIELD).toString());

MessageBean attributes_bean = MessageBean.parse(tuple

.getValueByField(STORMMetadataFacade.ATTRIBUTES_FIELD).toString());

The functionality of the MessageBean class is presented in the above sample code
and will be further demonstrated in the following sections.

31

4.2 The prepare function

The prepare function is used, during the initialization and before the bolt starts
processing tuples. In the Esper bolt, the prepare function is the following:

public void prepare(@SuppressWarnings("rawtypes") Map

conf,TopologyContext context,OutputCollector collector){

setup();

StormOutputWriter.Instance().setPath(path);

StormOutputWriter.Instance().setOut(NodeID);

this.collector = collector;

Configuration configuration = new Configuration();

setupEventTypes(context, configuration);

this.esperSink =

EPServiceProviderManager.getProvider(this.toString(),

configuration);

this.esperSink.initialize();

this.runtime = esperSink.getEPRuntime();

this.admin = esperSink.getEPAdministrator();

for (String stmt : statements) {

EPStatement statement = admin.createEPL(stmt);

statement.addListener(this);

}

}

As it can be seen,the setupEventTypes function is called inside the prepare function.
The OptimizerBolt has sent the statements to the EsperBolt and these are stored
in the statements list. All the declared statements are created inside the engine
and a Listener subscribes to them. Several extra configurations take place during
the configuration.

32

4.3 The setup function

The initiliaze function is used to initialize the necessary data structures and variables
which will be used in the EsperBolt:

public void setup() {

allstatistics = new HashMap<String, List<Statistics>>();

statistics = new HashMap<String, Statistics>();

hasPullEvens = new HashMap<String, Boolean>();

eventsToPull = new HashMap<String, List<String>>();

AllEvents = new HashMap<String, IEventType>();

pushModeEvents = new HashMap<String, List<String>>();

AlleventsToPull = new ArrayList<String>();

DashboardEvents = new ArrayList<String>();

pushEvents_ = new ArrayList<String>();

event_map = new HashMap<String, Object>();

all_event_map = new HashMap<String, Object>();

firstEvent = true;

}

4.4 Streams

In order for the Esper Bolt to communicate with other bolts, certain stream names
have to be declared. The following code demonstrates this process:

public void declareOutputFields(OutputFieldsDeclarer declarer)

{

declarer.declareStream("Event", new

Fields("type","Name","timestamp","attributes","value"));

declarer.declareStream("Statistics", new Fields("type",

"statistics"));

declarer.declareStream("PushModeEvent", new Fields("type",

"eventName", "nodeIDs"));

declarer.declareStream("Pull", new Fields("type", "pullEvents",

"startTime", "endTime", "nodeID"));

}

33

4.5 Event Types

The function setupEventTypes is used to declare specific Event Types which will be
used by the Esper engine:

private void setupEventTypes(TopologyContext context, Configuration

configuration){

Set<GlobalStreamId> sourceIds = context.getThisSources().keySet();

for (GlobalStreamId id : sourceIds) {

String eventTypeName = getEventTypeName(id.get_componentId(),

id.get_streamId());

updatedFieldDef.put("data", MessageBean.class);

configuration.addEventType("UpdatedFieldType", updatedFieldDef);

Map<String, Object> accountUpdateDef = new HashMap<String,

Object>();

accountUpdateDef.put("Name", String.class);

accountUpdateDef.put("fields", updatedFieldDef);

configuration.addEventType(eventTypeName, accountUpdateDef);

}

}

4.6 The execute function

The execute method is called once per tuple received and is responsible for handling
and processing the incoming tuples. In our design,this specific function is of great
importance as it validates the initialization of the EsperBolt, processes the tuples
based on the fact that the tuple can either be a primitive event or a pushed one,
calculates statistics for each event and emits them to the TimeMachineBolt. The
following subsections will demonstrate the functionality of the execute method.

4.6.1 Setup Validation

During the initialization of the system,the EsperBolt will receive configurations from
the OptimizerBolt. Continous checks are perfomed by the EsperBolt to determine
if these configurations are set, in order to start processing tuples. The tuple which
contains the information will be delivered from the Optimizer topology to the Es-
perBolt through the CommunicatorSpout which lies in the EsperBolt’s topology.
Variables are assigned with certain values of the tuple and are used to support the
functionality of the EsperBolt.

34

if(!isPropertiesSet){

if(tuple.getSourceStreamId().equals("CommSpout_to_esper_properties")){

List<String> properties = (List<String>)tuple.getValue(0);

pull = Boolean.valueOf(properties.get(8));

statisticsClass = properties.get(9);

epoch = Integer.valueOf(properties.get(10));

eType = properties.get(11);

jarLocation = properties.get(12);

isPropertiesSet = true;

return;

}

}

Note that the epoch parameter is of great importance for experimental phase as it de-
termines the number of events after which the Statistics structure will be delivered to
the TimeMachine for further processing.For instance, epoch = 1 means that Statis-
tics will be updated in the TimeMachine Bolt after each detected event. The eType
variable is set to events, while the StatisticsClass is set to statistics.CountStatistics.

4.6.2 Statistics

The execute function checks if the pull variable has been set to true though the
configurations sent by the OptimizerBolt and whether the incoming tuple is labeled
as an event or not.Once these conditions are met, the updateStatistics function is
called with the Name of the event as an argument.

if(pull && tuple.getSourceStreamId().equals("Event")) {

updateStatistics(tuple, tuple.getStringByField("Name"));

}

In the above if condition, the updateStatistics function is responsible for updating
the statistics of the event and delivering these statistics to the TimeMachine. Pre-
senting the updateStatistics function is skipped as it is rather a part of the FERARI
implementation than a part of the Esper configuration.

35

4.6.3 Queries - Push And Pull Mechanism

The FERARI project supports the push and pull mechanism. This technique in-
volves the dispatch of events from the peripheral nodes to the coordinator and the
request of events to be pulled by the coordinator.In order for this functionality to
be integrated into the EsperBolt, the execute method is responsible for handling the
events which will either be in pull or push mode.

if(!isJsonSet) {

if(tuple.getSourceStreamId().equals("metadatatoEsper")) {

jsonString = (String)tuple.getValue(1);

stmts = (String)tuple.getValue(2);

addStatements(stmts);

prepare();

setPullStructures();

isJsonSet = true;

for(IEventType Event: AllEvents.values()){

for(TypeAttribute atr :Event.getTypeAttributes()){

String EventType = Event.getName();

if(atr.getName().equals("PushToCoordinators")){

String nodeId_s = (String) atr.getDefaultValue();

pushEvents_.add(EventType);

List<Object> pullmsg = new ArrayList<Object>();

pullmsg.add("PushModeEvent");

pullmsg.add(EventType);

pullmsg.add(nodeId_s);

collector.emit("PushModeEvent", pullmsg);

System.out.println(NodeID + " set event: " + EventType +"

in pushMode for sites: "+ nodeId_s);

StormOutputWriter.Instance().print(NodeID, NodeID + " set

event: " + EventType +" in pushMode for sites: "+

nodeId_s + "
", "black");

break;

}

}

}

}

}

36

The Optimizer Bolt has built and delivered to the sites, specific plans which con-
tain all the necessary information about the events, the push/pull mechanism and
the queries which will be used by the EsperBolt. These plans are exploited by the
execute function which monitors the isJsonSet boolean flag. The flag is set to false
by default so once an tuple with the plans and the queries from the Optimizer Bolt
arrive, the mechanism is established.

First, the JSON file which contains the plans is loaded into a variable. However,
the code about the JSON manipulation is skipped for sake of reference. Then, the
statements which stand for the queries,are assigned to a variable and this variable is
passed into the function addStatements. The addStatements funtion separates the
statements that are loaded in a single string and add them to a list named statements.

private void addStatements(String queries)

{

\\Manipulating the queries string depending on whether the

statements inside the string are separated by commas, spaces,

tab or other symbols.The code is skipped as it depends on the

form of the tuple.The result will be a list containing the queries.

for (String query : queries_list) {

statements.add(query)

}

}

The statements is an ArrayList which is declared in the EsperBolt class. Afterwards,
the prepare function is called because it is the method which will add a listener to
each statement as presented in page 32. The step that follows is setting up the push
and pull mechanism.

In order for the mechanism to be established, the setPullStructures function is
called. As its name implies, this function builds the structure for the pull concept.
Since it is mainly a FERARI’s functionality, the demonstration of its code will be
skipped. Afterwards, the execute function iterates the AllEvents list. Once an event
has an attribute with the name PushToCoordinators, a tuple is built. This tuple
contains the name of the event to be pushed, a PushMode flag and the name of the
coordinator site where all these events from the peripheral nodes will be delivered.
Every tuple is, then, emitted to the Communicator Bolt of the site which will, in
turn, inform the other sites about the Events in PushMode.

37

4.6.4 Primitive (Raw) Events

Events which are delivered to the EsperBolt by the the InputSpout that lies in the
same site topology, are called Raw Events. All the data from external sources are
handled by the InputSpout which imports and forwards the data to the EsperBolt.
So the term Raw Events corresponds to these events imported by external sources
through the InputSpout anh have not been pre-processed. The execute function
performs a check on the source of the incoming tuple and once the tuple is delivered
from the InputSpout, it assigns the proper label to the tuple and imports it to the
inner architecture of the Esper CEP engine. The following code demonstrates this
procedure:

if(tuple.getSourceStreamId().equals("frs_to_esper_primitiveEvents")) {

String eventType = getEventTypeName(tuple.getSourceComponent(),

tuple.getSourceStreamId());

Fields fields = tuple.getFields();

int numFields = fields.size();

Map<String, Object> attributes = null;

attributes = (Map<String,Object>)tuple.

getValueByField(STORMMetadataFacade.ATTRIBUTES_FIELD);

try {

MessageBean attributes_bean = MessageBean.

parse(tuple.getValueByField(STORMMetadataFacade.

ATTRIBUTES_FIELD).toString());

event_map.put("event", attributes_bean);

} catch (UnsupportedEncodingException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

all_events_map.put("Name", "Raw");

all_events_map.put("fields", event_map);

runtime.sendEvent(all_events_map, eventType);

collector.ack(tuple);

}

38

4.6.5 Derived Events

Apart from the raw events, there may be incoming tuples from other topologies
depending on the push/pull functionality. These events which are either pushed to
or pulled by the EsperBolt are labelled as Derived Events. The execute method needs
to handle these tuples accordingly so it performs a check on the source of the tuple.
The FERARI’s project architecture defines that all tuples delivered from other sites
are received by the PushAndPullSpout and the processed to the EsperBolt of the
same site. Once the source of the tuple is the PushAndPullSpout, the execute
function processes the data of the tuple in the event mechanism of the Esper engine.
The code responsible for handling derived events:

if(tuple.getSourceStreamId().equals("PushAndPullSpout_to_esper_push")) {

String eventType = getEventTypeName(tuple.getSourceComponent(),

tuple.getSourceStreamId());

try {

MessageBean push_attributes_bean = MessageBean.parse(tuple

.getValueByField(STORMMetadataFacade.ATTRIBUTES_FIELD)

.toString());

event_map.put("event", push_attributes_bean);

} catch (UnsupportedEncodingException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

all_events_map.put("Name", "PushPullEvent");

all_events_map.put("fields", event_map);

runtime.sendEvent(all_events_map, eventType);

collector.ack(tuple);

}

It is important to note that, apart from the derived events which are delivered
from other sites though the push/pull mechanism, there are other events which
are produced in the EsperBolt by the raw events and are also labelled as derived
events. However, these events are not forwarded to the Esper engine. Instead,
they are handled internally by the CEP engine, so there is no need for the execute
method to perform any actions.

39

4.7 The update method

This method is the one responsible for handling the events which have been de-
tected by Esper. Every time a pattern is fired in Esper, an EventBean is generated.
The properties of each EventBean contain the underlying events that provoked the
pattern to fire.The update function:

public void update(EventBean[] newEvents, EventBean[] oldEvents)

{

if (newEvents != null) {

for (EventBean newEvent : newEvents) {

EventTypeDescriptor eventType =

getEventType(newEvent.getEventType().getName());

if (eventType == null) {

eventType = getEventType(null);

}

if (eventType != null) {

collector.emit(eventType.getStreamId(),

toTuple(newEvent, eventType.getFields(),

eventType.getName()));

}

}

}

}

The array of the EventBean is iterated and new events along with their properties
and values are extracted. Then, every event is emitted to the TimeMachine Bolt
after it has been processed with the toTuple function. The toTuple function is a
simple method which determines the format of the tuple in order to be emitted.

40

Chapter 5

Experimental Assessment

In order to evaluate both the capabilities of the Esper engine and its integration into
the Ferari project, we conducted various experiments. These experiments demon-
strate specific functionalities of the Esper engine such as windows, aggregation and
user-defined functions, having and where clauses and others. Also, they exhibit
the collaboration of Esper with the Apache Storm stream processing computation
framework. This collaboration is evidenced in the experiments through the use of
the Ferari’s mechanisms.

The basis for the experiments has been the Mobile Fraud example of the Ferari
project. In the tests we run, the network of the sites is defined in the network
parameters which are provided by the Optimizer. More specifically, our implemen-
tation consists of 4 peripheral sites and one central site which is categorized as the
coordinator. The network graph is demonstrated below:

Figure 5.1: Network Graph

41

Each node detects the events which is assigned for and if it is a peripheral node,
he is obliged to push the events which are in push mode to the coordinator. In turn,
the coordinator, detects not only the events which are created in his topology but
also the events which are delivered from other sites.

In the following section we demonstrate the event detection in the coordinator
site. It allows us to monitor the process of receiving and detecting raw and derived
events as well as confirm the accuracy of the results.

• cent1

cent1 received CallPOPDWH, generated at 1456938480000
cent1 detected CallPOPDWH at 1536531960445
cent1 detected halfFrequentLongCalls at 1536531960450
cent1 detected halfExpensiveCalls at 1536531960452
cent1 received CallPOPDWH, generated at 1456938484000
cent1 detected CallPOPDWH at 1536531960500
cent1 received CallPOPDWH, generated at 1456938485000
cent1 detected CallPOPDWH at 1536531960555
cent1 detected halfFrequentLongCalls at 1536531960555
cent1 detected halfExpensiveCalls at 1536531960556
cent1 detected halfFrequentEachLongCall at 1536531960557
cent1 detected LongCallAtNight at 1536531960557
cent1 received CallPOPDWH, generated at 1456938492000
cent1 detected CallPOPDWH at 1536531960612
cent1 detected halfFrequentLongCalls at 1536531960613
cent1 detected halfExpensiveCalls at 1536531960614
cent1 detected halfFrequentEachLongCall at 1536531960615
cent1 detected LongCallAtNight at 1536531960616
cent1 received CallPOPDWH, generated at 1456938494000
cent1 detected CallPOPDWH at 1536531960668
cent1 detected halfFrequentLongCalls at 1536531960669
cent1 detected halfExpensiveCalls at 1536531960670
cent1 detected halfFrequentEachLongCall at 1536531960671
cent1 detected LongCallAtNight at 1536531960672
cent1 detected FrequentLongCallsAtNight at 1536531960673
cent1 received CallPOPDWH, generated at 1456938495000
cent1 detected CallPOPDWH at 1536531960724
cent1 detected halfFrequentLongCalls at 1536531960725
cent1 detected halfExpensiveCalls at 1536531960726
cent1 detected LongCallAtNight at 1536531960727
cent1 received CallPOPDWH, generated at 1456938507000
cent1 detected CallPOPDWH at 1536531960780
cent1 detected halfFrequentLongCalls at 1536531960781
cent1 detected halfExpensiveCalls at 1536531960782

42

cent1 detected halfFrequentEachLongCall at 1536531960783
cent1 detected LongCallAtNight at 1536531960785
cent1 received CallPOPDWH, generated at 1456938510000
cent1 detected CallPOPDWH at 1536531961098
cent1 received CallPOPDWH, generated at 1456938523000
cent1 detected CallPOPDWH at 1536531961156
cent1 received CallPOPDWH, generated at 1456938534000
cent1 detected CallPOPDWH at 1536531961215
cent1 received CallPOPDWH, generated at 1456938545000
cent1 detected CallPOPDWH at 1536531961269
cent1 detected halfFrequentLongCalls at 1536531961271
cent1 detected halfExpensiveCalls at 1536531961272
cent1 detected halfFrequentEachLongCall at 1536531961272
cent1 detected LongCallAtNight at 1536531961274
cent1 received CallPOPDWH, generated at 1456938546000
cent1 detected CallPOPDWH at 1536531961325
cent1 detected halfFrequentLongCalls at 1536531961327
cent1 detected halfExpensiveCalls at 1536531961328
cent1 detected halfFrequentEachLongCall at 1536531961329
cent1 detected LongCallAtNight at 1536531961330
cent1 received CallPOPDWH, generated at 1456938547000
cent1 detected CallPOPDWH at 1536531961382
cent1 received CallPOPDWH, generated at 1456938555000
cent1 detected CallPOPDWH at 1536531961436
cent1 received halfFrequentLongCalls, generated at 1536531960432
cent1 received CallPOPDWH, generated at 1456938565000
cent1 received halfExpensiveCalls, generated at 1536531960433
cent1 received halfFrequentEachLongCall, generated at 1536531960434
cent1 detected halfFrequentLongCalls at 1536531961488
cent1 detected halfExpensiveCalls at 1536531961491
cent1 detected halfFrequentEachLongCall at 1536531961493
cent1 detected CallPOPDWH at 1536531961498
cent1 received LongCallAtNight, generated at 1536531960435
cent1 detected halfFrequentLongCalls at 1536531961499
cent1 received halfFrequentLongCalls, generated at 1536531960543
cent1 detected halfExpensiveCalls at 1536531961501
cent1 detected halfFrequentEachLongCall at 1536531961507
cent1 received halfExpensiveCalls, generated at 1536531960544
cent1 detected LongCallAtNight at 1536531961513
cent1 detected LongCallAtNight at 1536531961514
cent1 detected halfFrequentLongCalls at 1536531961515
cent1 detected halfExpensiveCalls at 1536531961516
cent1 received halfFrequentEachLongCall, generated at 1536531960545
cent1 detected halfFrequentEachLongCall at 1536531961518

43

cent1 received LongCallAtNight, generated at 1536531960546
cent1 detected LongCallAtNight at 1536531961523
cent1 received halfFrequentLongCalls, generated at 1536531960710
cent1 detected halfFrequentLongCalls at 1536531961525
cent1 received halfExpensiveCalls, generated at 1536531960711
cent1 detected halfExpensiveCalls at 1536531961529
cent1 received halfFrequentEachLongCall, generated at 1536531960712
cent1 detected halfFrequentEachLongCall at 1536531961532
cent1 received CallPOPDWH, generated at 1456938573000
cent1 received halfFrequentLongCalls, generated at 1536531960507
cent1 detected halfFrequentLongCalls at 1536531961545
cent1 detected CallPOPDWH at 1536531961546
cent1 received LongCallAtNight, generated at 1536531960713
cent1 detected LongCallAtNight at 1536531961549
cent1 received halfExpensiveCalls, generated at 1536531960508
cent1 detected halfExpensiveCalls at 1536531961552
cent1 received LongCallAtNight, generated at 1536531960509
cent1 detected LongCallAtNight at 1536531961556
cent1 received halfFrequentLongCalls, generated at 1536531960676
cent1 received halfExpensiveCalls, generated at 1536531960677
cent1 detected halfFrequentLongCalls at 1536531961558
cent1 received halfFrequentLongCalls, generated at 1536531960731
cent1 detected halfExpensiveCalls at 1536531961559
cent1 received halfExpensiveCalls, generated at 1536531960732
cent1 detected halfFrequentLongCalls at 1536531961560
cent1 detected halfExpensiveCalls at 1536531961561
cent1 received halfFrequentEachLongCall, generated at 1536531960733
cent1 received halfFrequentLongCalls, generated at 1536531961158
cent1 received LongCallAtNight, generated at 1536531960733
cent1 detected halfFrequentEachLongCall at 1536531961563
cent1 received halfExpensiveCalls, generated at 1536531961161
cent1 detected halfFrequentLongCalls at 1536531961564
cent1 detected LongCallAtNight at 1536531961565
cent1 detected halfExpensiveCalls at 1536531961566
cent1 received halfFrequentEachLongCall, generated at 1536531961162
cent1 detected halfFrequentEachLongCall at 1536531961567
cent1 received LongCallAtNight, generated at 1536531961164
cent1 detected LongCallAtNight at 1536531961571
cent1 received halfFrequentLongCalls, generated at 1536531961213
cent1 detected halfFrequentLongCalls at 1536531961574
cent1 received halfExpensiveCalls, generated at 1536531961214
cent1 detected halfExpensiveCalls at 1536531961578
cent1 received CallPOPDWH, generated at 1456938576000
cent1 detected CallPOPDWH at 1536531961601

44

cent1 received halfFrequentLongCalls, generated at 1536531960597
cent1 detected halfFrequentLongCalls at 1536531961626
cent1 received halfExpensiveCalls, generated at 1536531960598
cent1 received halfFrequentEachLongCall, generated at 1536531960599
cent1 detected halfExpensiveCalls at 1536531961629
cent1 detected halfFrequentEachLongCall at 1536531961630
cent1 received LongCallAtNight, generated at 1536531960600
cent1 detected LongCallAtNight at 1536531961633
cent1 received halfFrequentLongCalls, generated at 1536531960653
cent1 detected halfFrequentLongCalls at 1536531961635
cent1 received halfExpensiveCalls, generated at 1536531960654
cent1 detected halfExpensiveCalls at 1536531961638
cent1 received halfFrequentLongCalls, generated at 1536531960766
cent1 detected halfFrequentLongCalls at 1536531961642
cent1 received halfFrequentLongCalls, generated at 1536531960621
cent1 detected halfFrequentLongCalls at 1536531961644
cent1 received halfExpensiveCalls, generated at 1536531960622
cent1 detected halfExpensiveCalls at 1536531961646
cent1 received halfExpensiveCalls, generated at 1536531960767
cent1 detected halfExpensiveCalls at 1536531961648
cent1 received halfFrequentEachLongCall, generated at 1536531960622
cent1 detected halfFrequentEachLongCall at 1536531961650
cent1 received halfFrequentEachLongCall, generated at 1536531960768
cent1 detected halfFrequentEachLongCall at 1536531961654
cent1 received LongCallAtNight, generated at 1536531960624
cent1 received halfFrequentLongCalls, generated at 1536531961101
cent1 detected LongCallAtNight at 1536531961656
cent1 detected halfFrequentLongCalls at 1536531961657
cent1 received LongCallAtNight, generated at 1536531960769
cent1 detected LongCallAtNight at 1536531961658
cent1 received halfExpensiveCalls, generated at 1536531961101
cent1 detected halfExpensiveCalls at 1536531961660
cent1 received halfFrequentLongCalls, generated at 1536531961490
cent1 detected halfFrequentLongCalls at 1536531961661
cent1 received halfFrequentLongCalls, generated at 1536531961158
cent1 detected halfFrequentLongCalls at 1536531961664
cent1 received halfExpensiveCalls, generated at 1536531961492
cent1 detected halfExpensiveCalls at 1536531961665
cent1 received halfExpensiveCalls, generated at 1536531961162
cent1 detected halfExpensiveCalls at 1536531961667
cent1 received halfFrequentLongCalls, generated at 1536531961596
cent1 detected halfFrequentLongCalls at 1536531961670
cent1 received halfExpensiveCalls, generated at 1536531961597
cent1 detected halfExpensiveCalls at 1536531961671

45

cent1 received halfFrequentEachLongCall, generated at 1536531961597
cent1 detected halfFrequentEachLongCall at 1536531961672
cent1 received LongCallAtNight, generated at 1536531961598
cent1 detected LongCallAtNight at 1536531961674
cent1 received halfFrequentLongCalls, generated at 1536531961650
cent1 detected halfFrequentLongCalls at 1536531961675
cent1 received halfExpensiveCalls, generated at 1536531961651
cent1 detected halfExpensiveCalls at 1536531961677
cent1 received halfFrequentEachLongCall, generated at 1536531961651
cent1 detected halfFrequentEachLongCall at 1536531961679
cent1 received LongCallAtNight, generated at 1536531961652
cent1 detected LongCallAtNight at 1536531961681
cent1 received LongCallAtNight, generated at 1536531961876
cent1 detected LongCallAtNight at 1536531961891
****** cent1halfFrequentLongCalls generated at 1536531960787, received with

delay: 0.113 sec
cent1 detected halfFrequentLongCalls at 1536531961937
****** cent1halfExpensiveCalls generated at 1536531960788, received with de-

lay: 0.119 sec
cent1 detected halfExpensiveCalls at 1536531961938
****** cent1halfFrequentLongCalls generated at 1536531961218, received with

delay: 0.127 sec
cent1 detected halfFrequentLongCalls at 1536531961941
****** cent1halfExpensiveCalls generated at 1536531961219, received with de-

lay: 0.095 sec
cent1 detected halfExpensiveCalls at 1536531961942
****** cent1halfFrequentLongCalls generated at 1536531961326, received with

delay: 0.129 sec cent1 detected halfFrequentLongCalls at 1536531961944
cent1 detected FrequentLongCalls at 1536531961944
****** cent1halfExpensiveCalls generated at 1536531961327, received with de-

lay: 0.131 sec
cent1 detected halfExpensiveCalls at 1536531961946
****** cent1halfFrequentLongCalls generated at 1536531961494, received with

delay: 0.137 sec
cent1 detected halfFrequentLongCalls at 1536531961949
****** cent1halfExpensiveCalls generated at 1536531961495, received with de-

lay: 0.133 sec
cent1 detected halfExpensiveCalls at 1536531961951
****** cent1halfFrequentEachLongCall generated at 1536531961496, received

with delay: 0.111 sec
cent1 detected halfFrequentEachLongCall at 1536531961953
****** cent1LongCallAtNight generated at 1536531961497, received with delay:

0.114 sec
cent1 detected LongCallAtNight at 1536531961955

46

****** cent1halfFrequentLongCalls generated at 1536531961818, received with
delay: 0.100 sec

cent1 detected halfFrequentLongCalls at 1536531961958
****** cent1halfExpensiveCalls generated at 1536531961819, received with de-

lay: 0.105 sec
cent1 detected halfExpensiveCalls at 1536531961959
****** cent1halfFrequentEachLongCall generated at 1536531961820, received

with delay: 0.140 sec
cent1 detected halfFrequentEachLongCall at 1536531961961
****** cent1LongCallAtNight generated at 1536531961820, received with delay:

0.98 sec
cent1 detected LongCallAtNight at 1536531961963
****** cent1halfFrequentLongCalls generated at 1536531961874, received with

delay: 0.118 sec
****** cent1halfExpensiveCalls generated at 1536531961875, received with de-

lay: 0.123 sec
cent1 detected halfFrequentLongCalls at 1536531961966
cent1 detected halfExpensiveCalls at 1536531961967
****** cent1halfFrequentEachLongCall generated at 1536531961876, received

with delay: 0.137 sec
cent1 detected halfFrequentEachLongCall at 1536531961969
cent1 received halfFrequentLongCalls, generated at 1536531961929
cent1 detected halfFrequentLongCalls at 1536531961970
cent1 received halfExpensiveCalls, generated at 1536531961930
cent1 detected halfExpensiveCalls at 1536531961971
cent1 received halfFrequentEachLongCall, generated at 1536531961930
cent1 detected halfFrequentEachLongCall at 1536531961973
cent1 received LongCallAtNight, generated at 1536531961931
cent1 detected LongCallAtNight at 1536531961975
cent1 detected FrequentLongCallsAtNight at 1536531961976
cent1 received halfFrequentLongCalls, generated at 1536531961983
cent1 detected halfFrequentLongCalls at 1536531961988
cent1 received halfExpensiveCalls, generated at 1536531961984
cent1 detected halfExpensiveCalls at 1536531961990
cent1 received halfFrequentEachLongCall, generated at 1536531961985
cent1 detected ExpensiveCalls at 1536531961991
cent1 detected halfFrequentEachLongCall at 1536531961992
cent1 received LongCallAtNight, generated at 1536531961985
cent1 detected LongCallAtNight at 1536531961993
cent1 detected FrequentLongCallsAtNight at 1536531961994
cent1 received halfFrequentLongCalls, generated at 1536531962039
cent1 detected halfFrequentLongCalls at 1536531962045
cent1 received halfExpensiveCalls, generated at 1536531962039
cent1 detected halfExpensiveCalls at 1536531962047

47

cent1 received halfFrequentEachLongCall, generated at 1536531962040
cent1 detected ExpensiveCalls at 1536531962048
cent1 received LongCallAtNight, generated at 1536531962041
cent1 detected halfFrequentEachLongCall at 1536531962050
cent1 detected LongCallAtNight at 1536531962051
cent1 detected FrequentLongCallsAtNight at 1536531962052
cent1 received halfFrequentLongCalls, generated at 1536531962095
cent1 detected halfFrequentLongCalls at 1536531962103
cent1 received halfExpensiveCalls, generated at 1536531962096
cent1 received halfFrequentEachLongCall, generated at 1536531962097
cent1 detected halfExpensiveCalls at 1536531962105
cent1 detected ExpensiveCalls at 1536531962106
cent1 detected halfFrequentEachLongCall at 1536531962107
cent1 received LongCallAtNight, generated at 1536531962098
cent1 detected LongCallAtNight at 1536531962112
cent1 detected FrequentLongCallsAtNight at 1536531962113
cent1 received halfFrequentLongCalls, generated at 1536531962205
cent1 received halfExpensiveCalls, generated at 1536531962206
cent1 detected halfFrequentLongCalls at 1536531962215
cent1 detected halfExpensiveCalls at 1536531962218
cent1 detected ExpensiveCalls at 1536531962220
cent1 received halfFrequentEachLongCall, generated at 1536531962207
cent1 detected halfFrequentEachLongCall at 1536531962224
cent1 received LongCallAtNight, generated at 1536531962208
cent1 detected LongCallAtNight at 1536531962225
cent1 detected FrequentLongCallsAtNight at 1536531962226
cent1 received halfFrequentLongCalls, generated at 1536531962317
cent1 detected halfFrequentLongCalls at 1536531962328
cent1 received halfExpensiveCalls, generated at 1536531962318
cent1 detected halfExpensiveCalls at 1536531962332
cent1 received halfFrequentEachLongCall, generated at 1536531962319
cent1 detected ExpensiveCalls at 1536531962335
cent1 received LongCallAtNight, generated at 1536531962320
cent1 detected halfFrequentEachLongCall at 1536531962337
cent1 detected LongCallAtNight at 1536531962338
cent1 detected FrequentLongCallsAtNight at 1536531962339
cent1 received halfFrequentLongCalls, generated at 1536531962372
cent1 received halfExpensiveCalls, generated at 1536531962373
cent1 detected halfFrequentLongCalls at 1536531962385
cent1 detected halfExpensiveCalls at 1536531962387
cent1 received halfFrequentEachLongCall, generated at 1536531962375
cent1 detected ExpensiveCalls at 1536531962388
cent1 detected halfFrequentEachLongCall at 1536531962390
cent1 received LongCallAtNight, generated at 1536531962376

48

cent1 detected LongCallAtNight at 1536531962392
cent1 detected FrequentLongCallsAtNight at 1536531962392
cent1 received halfFrequentLongCalls, generated at 1536531962427
cent1 detected halfFrequentLongCalls at 1536531962433
cent1 received halfExpensiveCalls, generated at 1536531962427
cent1 detected halfExpensiveCalls at 1536531962436
cent1 detected ExpensiveCalls at 1536531962438
cent1 received halfFrequentEachLongCall, generated at 1536531962429
cent1 received LongCallAtNight, generated at 1536531962430
cent1 detected halfFrequentEachLongCall at 1536531962444
cent1 detected FrequentEachLongCall at 1536531962445
cent1 detected LongCallAtNight at 1536531962446
cent1 detected FrequentLongCallsAtNight at 1536531962448
cent1 received halfFrequentLongCalls, generated at 1536531962540
cent1 detected halfFrequentLongCalls at 1536531962545
cent1 received halfExpensiveCalls, generated at 1536531962540
cent1 detected halfExpensiveCalls at 1536531962548
cent1 received halfFrequentLongCalls, generated at 1536531962647
cent1 detected halfFrequentLongCalls at 1536531962655
cent1 received halfExpensiveCalls, generated at 1536531962648
cent1 detected halfExpensiveCalls at 1536531962659
cent1 received halfFrequentLongCalls, generated at 1536531962758
cent1 detected halfFrequentLongCalls at 1536531962763
cent1 received halfExpensiveCalls, generated at 1536531962758
cent1 detected halfExpensiveCalls at 1536531962764
cent1 received LongCallAtNight, generated at 1536531962759
cent1 detected LongCallAtNight at 1536531962766

The above section allowed us to oversee the functionality of the Esper engine in
the coordinator site. In fact, after reviewing the experimental data that we provided
to the sites as input data, we concluded that that our system design accurately de-
tected the events and successfully supported the push/pull mechanism. The relevant
section from the other sites has been skipped for sake of bravity.

Also, it is important that the results were confirmed by the statistics which were
generated in the TimeMachine Bolt of the coordinator topology. The statistics are
shown below:

49

TimeMachine Statistics: cent1

halfFrequentLongCalls −− > count: 43
FrequentEachLongCall −− > count: 1
halfExpensiveCalls −− > count: 43
halfFrequentEachLongCall −− > count: 28
FrequentLongCallsAtNight −− > count: 9
ExpensiveCalls −− > count: 7
CallPOPDWH −− > count: 17
LongCallAtNight −− > count: 31
FrequentLongCalls −− > count: 1

Note that apart from the above experiment and its various forms, we tested the
pull mechanism through the Synthetic Data experiment. Although that in this case
the queries were rather simple, the experiment allowed us confirm the efficiency of
the Esper engine to support the pull mechanism.

Moreover, we applied stress testing to determine the robustness of the Esper
CEP engine. Since the initial tuple transmission of the InputSpout was 50 ms,
we decided to increase the size of our input data to 10000 times the size of the
initial input data, in the Mobile Fraud experiment, and gradually increase the tuple
transmission rate. Starting from 50 ms, we gradually lowered the delay between
tuple transmission down to 0.5 ms. The results showed no tuple loss and confirmed
that Esper is capable of handling large throughput with high incoming rate.

Last but not least, we practiced the stress testing described previously, while
increasing the parallelism of the EsperBolt. Starting from the default parallelism
value of 1, we increased the parallelism each time by 1 until we reached parallelism
5 and run the previous stress test with the InputSpout. Also in this case, the results
were accurate and Esper supported its reliability.

50

Chapter 6

Conclusion

In this work, the main idea behind complex event processing and the concept upon
which Esper is built is demonstrated. Windows, clauses, tables, functions and the
EPL language are some of the Esper’s aspects that were presented in the thesis.

Furthermore, a reliable and efficient a complex event processing system using the
Esper engine was designed and tested. In order for this system to be implemented,
the resources of the Ferari project were exploited. Esper was integrated into the
Storm architecture which supports the Ferari project after certain configurations in
the bolt hosting the CEP engine,took place. Consequently, the components and the
functionality of each Ferari’s module was described and analyzed. All the neces-
sary modifications in terms of Java code about the Ferari-Esper sustainability, are
available in this work. Also, Esper proved its efficiency to support the push/pull
mechanism since it possesses all the necessary tools to face any challenge. Finally,
through the experiments which are described and presented in the thesis, the ro-
bustness, reliability and scalability of the Esper engine is evidenced.

6.1 Future Work

Due to Esper’s extended capabilities, there is definitely space for expansion of the
current work. More specifically, in this work we focused on Time Windows which
means that there can be relevant work with Length and Time Batch Windows in
terms of experimental evaluation. Moreover, our implementation can be expanded
by the use of tables which in combination with Fire-And- Forget queries, will provide
extra functionality. Of course, patterns offer great effectiveness in match recognition,
so there is room for future development in queries. Finally, since Esper supports
user-defined functions, there is room for personal intervention in the overall Esper
functionality.

51

52

References

[1] Ioannis Flouris, Vasiliki Manikaki, Nikos Giatrakos, Antonios Deligiannakis, Mi-
nos N. Garofalakis, Michael Mock, Sebastian Bothe et al. ”FERARI: A Prototype
for Complex Event Processing over Streaming Multi-cloud Platforms.” In Pro-
ceedings of the ACM SIGMOD/PODS Conference (2093-2096) San Francisco,
June 2016

[2] Ioannis Flouris, Vasiliki Manikaki, Nikos Giatrakos, Antonios Deligiannakis, Mi-
nos N. Garofalakis, Michael Mock, Sebastian Bothe et al. ”Complex event pro-
cessing over streaming multi-cloud platforms: the FERARI approach” In Pro-
ceedings of the 10th ACM International Conference on Distributed and Event-
based Systems (DEBS 2016: 348-349) Irvine, CA

[3] Sebastian Bothe, Vasiliki Manikaki, Antonios Deligiannakis and Michael Mock.
”Towards Flexible Event Processing in Distributed Data Streams.” In Pro-
ceedings of the Event Processing, Forecasting and Decision-Making in the Big
Data Era (EPForDM) Workshop held in conjunction with EDBT/ICDT(111-
117) Brussels, Belgium, March 2015

[4] Ioannis Flouris, Nikos Giatrakos, Minos N. Garofalakis and Antonios Deligian-
nakis. ”Issues in Complex Event Processing Systems.” Journal of Systems and
Software 127: 217-236 , 2017

[5] Vasiliki Manikaki. ”Architecture and Implementation of a Distributed Complex
Event Processing System.” Master Thesis, Technical University of Crete, Cha-
nia, April 2017

[6] Esper Reference Documentation.

[7] http://www.espertech.com.

[8] Getting Started With Storm. Jonathan Leibiusky, Gabriel Eisbruch, Dario Si-
monassi.

[9] Storm Real-Time Processing Cookbook. Quinton Anderson.

[10] Stream Data Processing: A Quality of Service Perspective: Modelling, Schedul-
ing, Load Shedding and Complex Event Processing Sharma Chakravarthy,
Qingchun Jiang.

53

[11] Event Processing in Action. Opher Etzion, Peter Niblett.

54

55

	Introduction
	Thesis Contribution
	Thesis Outline

	Esper
	Overview
	Event Representations
	Event Underlying Objects
	Event Properties

	Processing Model
	The Select Clause
	Windows

	Event Processing Language
	The EPL Syntax
	The On Select Clause
	The Where Clause
	The Group By Clause
	The Create Variable Clause
	The Output Clause
	The Limit Clause
	The Having Clause
	Subqueries

	Tables
	The Create Table Clause
	Inserting Into Tables
	Select From Tables

	Functions
	Aggregation Functions
	User-Defined Functions
	Single Row Functions

	Patterns
	Pattern Syntax
	Pulling Data from Patterns
	Pattern Expressions Priority

	Ferari
	Storm
	Storm Architecture
	Storm Concepts

	The architecture of Ferari
	Communicator Bolt
	Communicator Spout
	Input Spout
	Time Machine
	GateKeeper bolt
	PushAndPull spout
	CEP-Engine Bolt
	Optimizer

	System Configuration
	The MessageBean Class
	The prepare function
	The setup function
	Streams
	Event Types
	The execute function
	Setup Validation
	Statistics
	Queries - Push And Pull Mechanism
	Primitive (Raw) Events
	Derived Events

	The update method

	Experimental Assessment
	Conclusion
	Future Work

