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tually any topic without possessing a shred of information, which is how I got a good
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Dave Barry



ii

TECHNICAL UNIVERSITY OF CRETE

Abstract
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Electrical and Computer Engineering

Development of Supervised and Unsupervised Methods for Spectral
Estimation in Hyper-Spectral Imaging

by Fragkoulis Logothetis

Hyperspectral imaging (HSI) is an emerging technology that integrates conventional
imaging and spectroscopy to attain both spatial and spectral information from an ob-
ject. The spectral images collected in the spectral cube are tens of hundreds and the
information we receive from them is crucial for many applications, such as bio-medical
technology, remote sensing, microscopy etch. Nevertheless, the current state of the
art includes HSI systems which need long acquisition time, something that prevents
them from observing any dynamically developing phenomena. Also, are expensive and
sizeable, which makes them inaccessible for many important applications. To address
these limitations, a real-time snapshot spectral imaging system (SNI) that captures
only six spectral bands, and by using dimensionality expansion techniques provides
real time HIS was developed by us. To achieve that goal, a plenty of spectral esti-
mation methods were leveraged and compared in terms of minimizing the estimation
error of the uncaptured spectral images. Wiener, PCA, Random Forest Regression,
Linear Regression, Neural Networks, and Support vector Regression are some of the
methods that were applied to expand the dimensionality of the spectral domain. To
do this more accurately, we propose a new Adaptive Hybrid method that overperforms
the above spectral estimation models and achieves the lowest estimation error. The
novelty of the proposed method stems mainly both from the combination of Wiener
and PCA models and from the manner of the training sample selection. Looking
at the same problem from another perspective, in order to increase the performance
of the models, training procedure should be carried out using the most informative
and distinctive bands as features. On that account, a great amount of band selection
techniques, which are based either on geometric approaches or on similarity-based
formulas were analyzed and compared. The main shortcoming is that there is no
band extraction method specific for spectral estimation approaches. For that reason,
a new band selection method specific for the spectral dimensionality expansion was
devised by us. Experimental results show that the proposed method locate the most
featured bands, which decrease dramatically the root mean square error between the
reference and the estimated spectrum, compared with the well-known OSP method.
These findings were set the basis for the development of a powerful SNI.
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1

Figure 1.1: A Spectral Cube (source: Quantative BioImaging Labora-
tory,(QBIL) [1].)

Chapter 1

Introduction

1.1 Introduction to Hyper Spectral Imaging - Estima-
tion

Over the last two decades, the field of optical imaging has developed very rapidly
providing color imaging (CI) systems with very high resolution that nowadays allow
3D imaging as well as video capture with a very high frame rate. These systems try
to emulate human vision in order to reproduce a result (image) that resembles the
actual scene as it was perceived by a human eye. Usually these systems produce three-
dimensional data (RGB is more commonly used) where each of the three dimensions
represents the intensity and chrominance of light.

Although CI systems can provide an accurate representation of the scene at hand,
there is a great deal of information that cannot be perceived with these systems;
information that may be hidden in the visible spectrum or beyond it, i.e. UV or
Infrared regions of the spectrum. In the direction to obtain the hidden information,
spectral imaging systems are used.

Spectral Imaging (SI) is the application of reflectance spectroscopy to every pixel
in a spatial image. Every spatial image captured represents a different wavelength
within the electromagnetic spectrum and each pixel represents the spectral power
distribution of the scene at that point. The stack of images created from this system
is called Spectral Cube (Fig. (1.1)), and the data are represented in multidimensional,
spanning spatial and spectral dimensions (x, y, λ).

Spectroscopy can be used to detect individual absorption features due to specific
chemical bonds in a solid, liquid, or gas. Solids can be either crystalline (i.e. minerals)
or amorphous (such as glass). Every material is formed by chemical bonds and
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Figure 1.2: Light as an electromagnetic wave (source: Physicstuff
[2].)

has the potential for detection with spectroscopy. Actual detection is dependent on
the spectral coverage, spectral and spatial resolution, and signal-to-noise of the SI
system, the abundance of the material, and the strength of absorption features for
that material in the wavelength region measured.

SI systems are widely used nowadays in numerous fields such as medicine, astron-
omy, industry, military etc. and due to the continuous need to improve the preexisting
techniques and methods, many innovations and advances were developed.

The information provided by these systems, which is usually not discernible to
the human eye, allows useful facts and phenomena to be revealed. Unfortunately,
SI systems are expensive and sizable, which makes them inaccessible for many appli-
cations. The acquisition and computational time that is needed is very high, which
prevents the system from observing any dynamically developing phenomena.

To address these limitations, real-time snapshot spectral imaging systems need
to be developed that allow simultaneous Hyperspectral imaging (HSI) and has lower
cost and size. We have developed and proposed a novel real-time HSI system that
can simultaneously acquire six spectral bands and provide spectral information in any
desired wavelength within the visible and infrared spectrum.

1.2 Light as electromagnetic wave and also as particle -
Photoelectric Effect

Starting from the beginning of that science, it is important to be clarified that light
is one of the fundamental phenomena of electromagnetism that behaves as wave and
also as photon particle. It is characterized as wave when is emitted and propagated
and as particle when it is absorbed. As an electromagnetic wave, it has both electric
and magnetic field components, which oscillate in a fixed relationship to one another,
perpendicular to each other and perpendicular to the direction of the energy and
wave propagation as it is illustrated in Fig. (1.2). Each electromagnetic wave is char-
acterized by the frequency or wavelength of its wave. The electromagnetic spectrum,
in order of increasing frequency and decreasing wavelength, consists of radio waves,
microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma
rays. The eyes of various organisms sense a somewhat variable but relatively small
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Figure 1.3: Spectroscopy using a simple prism (source: Astronomy,
Cosmos [3]).

range of frequencies called the visible spectrum of the light. Higher frequencies corre-
spond to proportionately more energy carried by each photon; for instance, a single
gamma ray photon carries far more energy than a single photon of visible light. This
phenomenon was described first time by Einstein, who realized that the energy(E) of
any photon is given by the equation

E = h
c

λ

where h is the Plank constant, c is the speed of the light in vacuum and λ is the
photon’s wavelength.

In classical physics, electromagnetic radiation is considered to be produced when
charged particles are accelerated by forces acting on them. Electrons are responsi-
ble for emission of most electromagnetic radiation because they have low mass, and
therefore are easily accelerated by a variety of mechanisms. Rapidly moving elec-
trons are most sharply accelerated when they encounter a region of force, so they are
responsible for producing much of the highest frequency electromagnetic radiation
observed in nature. Quantum processes can also produce electromagnetic radiation,
such as when atomic nuclei undergo gamma decay, and processes such as neutral pion
decay.

As it mentioned before light behaves as particle when is absorbed. In other words,
that is exactly the reason of the photoelectric effect, in which “packets” of energy,
called photons increase the maximum kinetic energy of the photoelectrons emitted
from a given metal. Einstein got the Nobel Price in 1921 for his paper publication
advancing the hypothesis that light energy is carried in discrete quantized packets to
explain experimental data and the photoelectric effect. Photoelectric effect lead the
scientific community to implement image sensors, which could read those “packets”
of energy and produce a real digital image characterized by high color fidelity.

In this work, focusing in the duality of light is needed. The science of spectroscopy
could bring out interesting information about the interaction between radiation and
the chemical structure of the objects as a function of the wavelength λ.

1.3 Spectroscopy/ spectrometry
Spectroscopy was originally the study of the interaction between radiation and the
structure of matter as a function of the wavelength λ. In fact, historically, spec-
troscopy referred to the use of visible light dispersed according to its wavelength, e.g.
by a prism (Fig. (1.3)). Later, the concept was expanded greatly to comprise any
measurement of a quantity as function of either wavelength or frequency. Thus, it
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Figure 1.4: Principle of (remote sensing) imaging spectroscopy
(source: Markelowitz [4]).

can also refer to interactions with particle radiation or to a response to an alternating
field or varying frequency v. A further extension of the scope of the definition added
energy (E) as a variable, once the very close relationship

E = hv

for photons was realized as it mentioned in Section 1.2. Spectrometry is the spectro-
scopic technique used to assess the concentration or amount of a given species. In
those cases, the instrument that performs such measurements is a spectrometer or
spectrograph.

Spectroscopy/spectrometry is often used in physical and analytical chemistry for
the identification of substances through the spectrum emitted from or absorbed by
them. Spectroscopy/spectrometry is also heavily used in astronomy and remote sens-
ing. Most large telescopes have spectrometers, which are used either to measure the
chemical composition and physical properties of astronomical objects or to measure
their velocities from the Doppler shift of their spectral lines.

1.4 Imaging spectroscopy
Imaging spectroscopy (also spectral imaging or chemical imaging) is the application of
reflectance spectroscopy to every pixel in a spatial image. In remote sensing situations
(Fig. (1.4)), the surface materials mapped must be exposed in the optical surface
(e.g., to map surface mineralogy it must not be covered with vegetation), and the
diagnostic absorption features must be in regions of the spectrum that are reasonably
transparent to the atmosphere. The optical surface is the same as what the geologist
sees in the field with his or her eyes. Spectroscopy can be used in laboratories on
hand samples, in the field with portable field spectrometers (spatial resolution in the
millimeter to several meter range), from aircraft, and in the future from satellites.
The aircraft systems can image large areas in short time (2 sq. km per second),
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Figure 1.5: Electromagnetic spectrum (source: Wikiversity [5]).

producing spectra for each pixel that can be analyzed for specific absorption bands and
thus specific materials. These measurements can then be used for the unambiguous
direct and indirect identification of surface materials and atmospheric trace gases,
the measurement of their relative concentrations, subsequently the assignment of the
proportional contribution of mixed pixel signals (e.g., the spectral unmixing problem),
the derivation of their spatial distribution (mapping problem), and finally their study
over time (multi-temporal analysis).

Imaging spectroscopy can be considered as the equivalent of color photography,
but each pixel needs to acquire many bands of light intensity data from the spec-
trum, instead of just the three bands of the RGB color model. More precisely, it is
the simultaneous acquisition of spatially co-registered images in many spectrally con-
tiguous bands. In order to improve the spectroscopy imaging the scientific community
turned into the HSI.

1.5 Hyperspectral Imaging
Hyperspectral Imaging collects and processes information from across the electromag-
netic spectrum. Unlike the human eye, which just sees visible light, HSI is more like
the eyes of the “mantis shrimp”, which can see visible light as well as from the ultra-
violet to infrared. Hyperspectral capabilities enable the “mantis shrimp” to recognize
different types of coral, prey, or predators, all which may appear as the same color to
the human eye.

Humans build sensors and processing systems to provide the same type of capa-
bility for application in agriculture, mineralogy, physics, and surveillance and other
fields of science. Hyperspectral sensors collect information as a set of “images”. Each
image represents a range of the electromagnetic spectrum (Fig. (1.5)), and is also
known as a spectral band. Hyperspectral sensors look at objects using a vast portion
of the electromagnetic spectrum. Certain objects leave unique “fingerprints” across
the electromagnetic spectrum. These “fingerprints” are known as spectral signatures
and enable identification of the materials. For example, having the spectral signature
for oil helps mineralogists find new oil fields.

The precision of these sensors is typically measured in spectral resolution, which
is the width of each band of the spectrum that is captured. If the scanner picks up
a large number of fairly small wavelengths, it is possible to identify objects even if
said objects are only captured in a handful of pixels. However, spatial resolution is
a factor in addition to spectral resolution. If the pixels are too large, then multiple
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Figure 1.6: Typical (hyper)spectral imaging approaches. (A) Point
scan. (B) Line scan (i.e. “pushbroom”). (C) Wavelength scan. (D)

snapshot (source: Wang, Yu and P. Reder [6]).

objects are captured in the same pixel and become difficult to identify. If the pixels
are too small, then the energy captured by each sensor-cell is low, and the decreased
signal-to-noise ratio reduces the reliability of measured features.

1.6 Single Exposure or Instantaneous Spectral Imagers
In order to record spectral images, we use tunable filtered-based spectral imaging
systems. Those systems record spectral images in a time-sequentially manner and
obtain the spectra from post hoc assembly of the time-sequential data. This reveals
a major disadvantage of these systems. When we have phenomena that are changing
on a time scale that is sorter that the duration required for recording the spectral
cube, the SI systems described cannot perform accurately. Furthermore, the scene
recorded from SI systems must be static. Otherwise problems will be created in the
co-registration of the spectral images, which is needed in order to provide accurate
spectra. There are numerous of applications (i.e biomedical and etch) that require
spectral imaging and analysis of transient moving scenes. This is why single shot or
instantaneous spectral imagers (Fig. (1.6)) need to be developed. Specifically, there
are four techniques to develop a spectral scanner. The most simple structure of a
HS imager is the point scan (Fig. (1.6.A)), where a line array detector acquires all
the spectral information. However, point scan technique is characterized by really
low speed. Furthermore, line scan and wavelength scan are often used, but it is more
profitable to use the snapshot idea in order to handle quick changing effects. Snapshot
imager systems have many advantages over SI systems such as fast acquisition of
accurately registered images, high device robustness and reliability, low cost etc. But,
there are many trade-offs in order to achieve all that. Due to current technological
limitations there is a trade-off between spatial and spectral resolution. Specifically,
a snapshot imager can capture either a small number of spectral images with high
resolution or a great number of spectral images with really low spatial resolution.
Therefore, in the case of stationary and invariant scenes the spectral imaging systems,
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Figure 1.7: RBG vs Spectral Cube (source: [7]).

described before, are utilized since the spatial and spectral resolutions are superior to
SNI systems. However, whether a spectral snapshot imager captures a small number
of predetermined bands, SE systems are preferred for all the advantages that described
above.

1.7 Color vs. Spectral Imaging
Color cameras emulate the human vision for color reproduction and are real-time
devices since they record three spectral bands simultaneously. The color imaging
devices that emulate human vision have three parameters. The Red, Green, and
Blue (RGB) parameters. These parameters can be interpreted easily since the model
familiar color perception processes. But, unfortunately the human vision has some
limitations that are shared by these devices. They allocate the incoming light into
the three RGB coordinates, thus missing the important spectral information. So,
objects with the same RGB values might have different spectral components. These
phenomenon is known as metamerism. So, due to this effect, the RGB imaging
systems don’t have the ability to distinguish material with the same color appearance
but different chemical composition. In the SI systems for each pixel a series of images
corresponding to many wavelengths are appeared. With these images a spectral cube
can be created, which contains the spectral information of the object. The nature of
the spectral cubes data is (x, y, λ) (spatial coordinates and wavelength, Fig. (1.7)).

1.8 Spectral Imaging Applications
As we mentioned before, there are numerous of application that the HSI can be used
due to the importance of the spectral information.

HS Imaging is nowadays commonly used in biomedicine. For instance, DYSIS[8]
is a new company, which found out a new colposcope with an advanced cervical
scan. The DYSIS colposcope is a high resolution digital tool with an adjunctive map.
The DYSIS spectral map is generated by a proprietary technology that measures the
aceto-whitening reaction and summarises it in the form of an intuitive map. The
DYSIS map is overlaid on the live image of the cervix to help with the identification
of the most relevant biopsy sites.
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Figure 1.8: Spectral and spatial domain

HS Imaging is also useful to detect the chemical composition of plants, which can
be used to detect the nutrient and water status of wheat in irrigated systems. On a
smaller scale, NIR HSI can be used to rapidly monitor the application of pesticides to
individual seeds for quality control of the optimum dose and homogeneous coverage.

In the food processing industry, HS imaging, combined with intelligent software,
enables digital sorters (also called optical sorters) to identify and remove defects and
foreign material (FM) that are invisible to traditional camera and laser sorters.By
improving the accuracy of defect and FM removal, the food processor’s objective is
to enhance product quality and increase yields.

In astronomy, HS imaging is used to determine a spatially-resolved spectral image.
Since a spectrum is an important diagnostic, having a spectrum for each pixel allows
more science cases to be addressed. In astronomy, this technique is commonly referred
to as integral field spectroscopy, and examples of this technique include FLAMES1

and SINFONI2 on the Very Large Telescope, but also the Advanced CCD Imaging
Spectrometer on Chandra X-ray Observatory uses this technique.

From all the above examples, the importance of HSI is undisputed.

1.9 What is Spectral Estimation
As we mentioned before the RGB imaging devices miss important spectral infor-
mation. Additionally, objects with different spectral information may have same
RGB values, which means that RGB devices cannot detect the chemical difference
(metamerism). Furthermore, as we studied in Section 1.6, snapshot imagers is a new
trend of technology, combined with a variety of advantages (e.g Speed of acquisi-
tion). Looking at the same problem from another perspective, it is more cheaper and
quicker to acquire a static number of images in specific wavelengths and estimate all
the other bands, using a spectral estimation algorithm. An important question is

1“FLAMES – Fibre Large Array Multi Element Spectrograph”.
2“SINFONI – Spectrograph for integral Field Observations in the Near Infrared”.
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why is better to estimate signals in spectral domain and not in spatial domain. The
spatial domain is characterized from features with high spatial frequency (i.e. edges)
that are those that change greatly in intensity over short image distances. These
big, non-periodic intensity variation is very hard to be estimated if we also consider
the fact that a natural scene is in most cases unique. There is no actual pattern
or collection of images that can describe these variations accurately because of the
randomness of natural scene characteristics (from objects to lighting conditions). On
the other hand, spectral domain signals in the UV-VIS-NIR (400nm to 1000nm) are
broad with a few peaks and valleys, as it is illustrated in figure 1.8. The absorption
in this spectral range, comes from the electronic transitions (according to the selec-
tion rules for each atom) that are happening in the complex molecular structures of
matter and the combination of them give these smooth characteristics to the signal.
Most approaches for building a real time HSI device have the already mentioned
trade-off between spectral and spatial resolution that stems by optoelectronic limi-
tations. As the spectral band number increases the spatial resolution decrease and
vice versa. The estimation of missing information (spectral or spatial) is a strategic
decision for designing these systems. Taking into consideration the above we choose
to preserve the spatial resolution and estimate the missing spectral information as it
is quite obvious that the estimation procedure is less demanding. Our goal is find
most appropriate algorithms in terms of minimizing the estimation error.
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Figure 1.9: Spectral Acquisition Chain of a Snapshot Spectral Im-
ager

1.9.1 Spectral Acquisition Chain of a Snapshot Spectral Imager

The figure 1.9 shows the procedure that take place in order to build a powerful spectral
snapshot imager.

Firstly, the snapshot imager acquires a low number of spectral images, let this
number be equal to k. In this case, the spectral bands that are captured from the
snapshot system are Band1,Band2, . . . ,Bandk. The identity and the number of these
bands are investigated in this thesis.

Secondly, a pre-trained spectral estimation model which takes as input the k
bands and returns as output the bands Band1,Band2, . . . ,Bandp will be leveraged.
In order to achieve that goal, we should utilize the most informative training set and
we should extract the k more featured bands that force the model to minimize the
estimation error. All the above are described analytically at this thesis. In Chapter 2
the most well-known spectral estimation methods are reported and in Chapter 3 are
compared. Conclusions about the effectiveness of each are extracted. Also in Chapter
3 the training set, validation set, and detailed information about the experiments are
depicted. In Chapter 4 a great amount of feature selection techniques are represented
and analyzed in terms of capturing the most informative and distinctive bands.

To make it clear, at this thesis a complete spectral snapshot imager will be devel-
oped.
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Chapter 2

Spectral Estimation - Problem
Statement and Methods

2.1 Measures of Spectral Similarities
Before the analyzation of the spectral estimation methods, all mathematical models
that measure the similarity of the original reflactance and the estimated reflectance
should be token into consideration. The are plenty of spectral similarity measures but
we are going to focus on the most well-known. In the following metrics, ro is a p× 1
vector and will be the original spectrum. Furthermore, r is the estimated spectrum,
which has the same size as ro. Note that p is the number of the reflectance bands,
which were estimated.

2.1.1 Goodness of Fit Coefficient (GFC)

GFC is defined as the cosine of the angle between the recovered and original signal,
thus

GFC(ro, r) = rTo r
‖ro‖‖r‖

. (2.1)

2.1.2 Spectral Angle Mapper (SAM)

The spectral angle mapper (SAM) determines the spectral similarity between the
measured and the reference spectra. The spectra are treated as vectors in a space
with dimensionality equal to the number of bands, and the angle that is formed
between these vectors is used as a metric of the spectral similarity. Smaller angles
represent closer matches to the reference spectrum. SAM has also been used as
a feature selection method for selecting an optimal subset of spectral bands. The
angle (θ) between pixel vectors as a discrimination measure is given by the following
formula:

θ = SAM(ro, r) = arccos(GFC(ro, r)) = arccos
(

rTo r
‖ro‖‖r‖

)
where 0 ≤ θ ≤ π

2 .

(2.2)
SAM is independent of lighting. Also, it is independent to the multiplications of a
vector with a natural number since it only increases its length and doesn’t change
the angle. Hence, SAM is a non-prosthetic distance function.

2.1.3 Euclidean Distance (ED)

In mathematics, the Euclidean distance or Euclidean metric is the distance between
two points that one would measure with a ruler and is given by the Pythagorean
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Figure 2.1: Synopsis of the spectral model of the acquisition process
in a multispectral system (source: Alamin Mansouri [9]).

formula. By using this formula as distance, Euclidean space (or even any inner
product space) becomes a metric space. The associated norm is called the Euclidean
norm. Older literature refers to the metric as Pythagorean metric.

ED(ro, r) =‖ ro − r ‖=

√√√√ p∑
i=1

(roi − ri)2. (2.3)

2.1.4 Root Mean Square Error (RMSE)

In statistics, the mean square error or MSE of an estimator is one of many ways
to quantify the difference between an estimator and the true value of the quantity
being estimated. MSE is a risk function, corresponding to the expected value of the
squared error loss or quadratic loss. MSE measures the average of the square of the
error. The error is the amount by which the estimator differs from the quantity that
is estimated. The difference occurs because of randomness or because the estimator
doesn’t account for information that could produce a more accurate estimation.

RMSE(ro, r) = 1
√
p
ED(ro, r) =

√√√√√√
p∑
i=1

(roi − ri)2

p
. (2.4)

2.2 Problem Statement
The generally used spectral model of the acquisition chain in a multispectral system
is illustrated in Fig. (2.1), where I(λ) is the spectral radiance of the illuminant, r(λ)
is the spectral reflectance of the surface, o(λ) is the spectral transmittance of the
optical system, tk(λ) is the spectral transmittance related to the kth filter, c(λ) is
the spectral sensitivity of the camera, and nk represents the spectral noise for the
kth channel, k = [1, 2, . . . ,K]. The camera output dk, related to the channel k for a
single pixel of the image is given by

dk =
∫ λmax

λmin

I(λ)r(λ)o(λ)c(λ)tk(λ) dλ+ nk. (2.5)

If the noise is assumed to be removed by preprocessing, and assuming a linear opto-
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electronic transfer function, we can replace I(λ), c(λ), o(λ), and tk(λ) by the spectral
sensitivity sk(λ) of the kth channel. Then, Eq. (2.5) becomes

dk =
∫ λmax

λmin

sk(λ)r(λ) dλ ≈ dk = sTk r (2.6)

where sk = [sk(λ1), sk(λ2), . . . , sk(λp)]T is a column vector containing the spectral
sensitivity of the acquisition system related to the kth channel for a single pixel,
r = [r(λ1), r(λ2), . . . , r(λp)] is a column vector of the spectral reflectances of the
scene for a single pixel, and T is the transpose vector operator. Considering the
system with all channels, Eq. (2.6) can be written as

d = ST r (2.7)

where d is a column vector containing all k camera outputs [d1, d2, . . . , dk] for a
single pixel, and S = [s1, s2, . . . , sk] is the matrix containing the channels spectral
sensitivities. The final goal is to recover r from the camera output according to Eq.
(2.7). This is obtained by finding an operator Q that solves for the following equation:

r = Qd. (2.8)

Depending on how the matrix S is determined, three paradigms to assess the Q
matrix exist.
• If S is obtained by a direct physical system characterization (combination of

all spectral responses of the acquisition system components, that provided by the
manufacturer), then the operator Q is the inverse of S. However, because S is a not
usually a square matrix, its inverse does not exist. A choice could be the pseudo-
inverse Q = S−, where S− is the pseudo-inverse matrix of S, which is equal to
(STS)−1ST .

• If S is obtained indirectly by matching a set of J color patches for which the
theoretical reflectances are already known, we only have to capture an image of these
patches with the multispectral camera. Then we produce a set of corresponding pairs
(dj , roj) for j = 1, 2, . . . , J , where dj is a vector of dimension k containing the camera
responses and roj is a vector of dimension p representing the spectral reflectance of the
jth patch. The reflectances roj are gathered in the matrix R = [ro1, ro2, . . . , roJ ] and
the camera outputs for the J patches are gathered in the matrix D = [d1,d2, . . . ,dJ ],
in order that D = STR. The operator Q is straightforwardly assessed by any opti-
mization method (such methods will be described at the next sections).

• A third paradigm for spectral reflectance estimation consists of direct interpo-
lation of the camera outputs dk. In this case, S is a selection matrix and specifically
a submatrix of the identity matrix. Nevertheless, rigorous conditions about the spec-
tral shape of the filters as well as well-calibrated and normalized data are required
for this kind of reconstruction. The reconstruction can be performed by any interpo-
lation operator (linear, spline, etc.).

Ending up, the main subject of this problem is to find the optimal Q matrix that
both minimizes the error of estimation and expands the spectral dimension. There
is no simple way to calculate that matrix and we should be really careful during
choosing the most appropriate method. In the following section, a plenty of methods,
that are based on second paradigm will be analyzed and evaluated.
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2.3 Spectral Estimation Algorithms

2.3.1 Estimation of Spectral Reflectances Using Wiener Method

The purpose of the Wiener estimation (Stigell et al. [10]) is to make estimations
from low-dimensional data into high-dimensional data, for example, from three-filter
camera responses into reflectance spectra. The Wiener estimation is one of the con-
ventional estimation methods which provides accurate estimations. The purpose of
the Wiener model is to assess the matrix Q in terms to minimize the square error
(MSE) between reference ro reflection signal and the estimated r. Hence, the above
problem can be formulated as

QWiener = arg min
Q

E[‖ ro − r ‖2]. (2.9)

Let us assume that the data are centered. Then, the solution of the Eq. (2.9) is
denoted by

QWiener = RrodR
−1
dd = E[rodT ](E[ddT ])−1 ≈ 1

J2 RDT (DDT )−1 (2.10)

where E is the expected value. In Eq. (2.10), Rrod is the cross-correlation matrix of
vectors ro and d. Matrix Rdd is the auto-correlation matrix of the vector d.

The complexity of Wiener algorithm is O(pk). The training phase costs a constant
number of multiplications due to the fact that takes place only one time.

2.3.2 Estimation of Spectral Reflectances Using Projection on PCA

Principal component analysis (PCA) was invented in 1901 by Karl Pearson et al.
[11] and is a technique extensively used for dimensionality reduction in a data set.
It consists of finding an orthogonal basis composed of vectors called principal com-
ponents. Each component is associated with an energy that indicates the statistical
relevance of the vector in the data. Technically speaking, PCA is an orthogonal linear
transformation that transforms the data to a new coordinate system such that the
greatest variance by any projection of the data lies on the first coordinate (called the
first principal component), the second greatest variance on the second coordinate,
and so on. In the field of multispectral imaging, PCA has been largely used for data
compression but also in spectral reflectance reconstruction. The main difference from
Wiener estimation is that we approaching r by using the basis matrix B and the
weight vector a such that each reflectance r could be written as

r = Ba. (2.11)

Let us assume that data are centered. Then the p × p covariance matrix C of ro is
given by

C = E[rorTo ] ≈ 1
J

J∑
i=1

rojrToj = 1
J

RRT . (2.12)

It is a symmetric matrix and, therefore, it can be diagonalized. Hence, C of ro can
be rewritten as

C = VLVT (2.13)

where V is a matrix of eigenvectors (each column is an eigenvector) and L is a diagonal
matrix with eigenvalues λi in the decreasing order on the diagonal. The eigenvectors
are called principal axes or principal directions of the data. Projections of the data on
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the principal axes are called principal components. Note that the eigenvectors could
be also calculated using singular value decomposition. We define the p×m matrix B
as

B = m first column vectors of matrix V. (2.14)

The basis functions are themselves functions of wavelength but free of constraints
such as being positive or constrains to be limited to the range [0− 1]. Eq. (2.7) can
be written as

d = STBa (2.15)

where a is a m× 1 vector that holds the weights that define the particular spectrum
which we are trying to reconstruct. Furthermore, ST is a k × p matrix which it is
assessed using one of the paradigms that are described in Section 2.2. An approximate
solution of Eq. (2.15) is

a = (STB)−d. (2.16)

Totally,
QPCA = B(STB)−. (2.17)

The complexity of PCA spectral estimation algorithm is O(pk). The training
phase costs a constant number of multiplications due to the fact takes place only one
time.

Notice that a mean function is subtracted from the training set before deriving
the basis and this mean function should be added when using the basis for the recon-
struction. Mansouri et al. [12] studied the performance of PCA spectral estimation,
alongside with Fourier (Section 2.3.3), and Wavelets analysis (Section 2.3.4).

2.3.3 Estimation of Spectral Reflectances Using Fourier Analysis

To perform a Fourier analysis, we use the Fourier transform [12]. This is based on
the assumption that it is possible to take any periodic function of time (wavelength)
and write it as equivalent to an infinite summation of cosine and sine waves with
frequencies being integer multiples of a base frequency f , f = 1

T (where T is the period
of the function). We use Fourier transform implemented by the FFT (Fast Fourier
Transform), which decomposes a signal into its phase and frequency components. We
consider a given reflectance function, and decompose this function into a sum of basis
function written as:

B(λ) = cos(2πfλ+ ϕ) (2.18)

where the function B is entirely determined by its frequency f and its phase ϕ. In this
way, the Fourier transform is a linear operator that maps functions to other functions.
In a certain way, the Fourier transform decomposes a function into a continuous
spectrum of its frequency components and the inverse transform synthesizes a function
from its spectrum of frequency components. Then, using the function of Eq. (2.17),
the spectral estimation goal is achieved.

2.3.4 Estimation of Spectral Reflectances Using Wavelets Analysis

To extract information not readily available from the time (wavelength) domain rep-
resentation, it is useful to project the function onto a set of basis functions [12]. The
basis functions are building blocks and the transform determines how those blocks are
combined to build the function. The Fourier transform provides tools for studying
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global function properties that are constant throughout the function, that is, prop-
erties that are stationary. To study local or transient function characteristics, Gabor
et al. [13] formulated a windowed Fourier transform which correlates a function with
time-frequency atoms. But wavelets transforms often give a better signal representa-
tion using multiresolution analysis. Wavelet analysis refers to the representation of
a function in terms of scaled and translated copies (known as daughter wavelets) of
a finite length or fast decaying oscillating waveform (known as the mother wavelet).
So, a given reflectance spectra r could be decomposed into a wavelet basis Ψ(λ−αb )
and Φ(λ−αb ), where Ψ is the wavelets function at the scale 0 and φ is the scaled as-
sociated function. b and a are respectively scale and translation factors. Then, using
the function of Eq. (2.17), the spectral estimation goal is achieved.

2.3.5 Estimation of Spectral Reflectances Using Hybrid Method

Hybrid is an innovate finite-dimensional algorithm conducted by us in order to achieve
better estimations with the minimum error. This algorithm is based on the combi-
nation of Wiener (Stigell et al. [10]) and PCA (Mansouri et al. [12]). Specifically, we
have already known from Eq. (2.10) that Wiener Estimation is given by

r = RrodR
−1
ddd (2.19)

additionally, from Eq. (2.11)
r = Ba. (2.20)

As a result, a least squares approximation of a is

RrodR
−1
ddd = Ba′ =⇒ a′ = B−RrodR

−1
ddd. (2.21)

Note that B is a orthogonal matrix, therefore, BTB = I where I is the identity matrix
and B− = BT . Ending up, the Eq. (2.20) can be rewritten as

r = BBTRrodR
−1
ddd. (2.22)

In order to achieve the contribution of the two above methods, we linearly merge Eq.
(2.19) and Eq. (2.22), therefore, we can express the Hybrid model as

r′′ = wRrodR
−1
ddd + (1− w)BBTRrodR

−1
ddd (2.23)

where w ∈ [0.1 0.9] is scaling factors between Wiener and PCA model that were
presented in Eq. (2.22). Hence, QHybrid it can be written as

QHybrid = wRrodR
−1
dd + (1−w)BBTRrodR

−1
dd = [wI+ (1−w)BBT ]RrodR

−1
dd. (2.24)

Moreover, the Gradient Multipliers technique will be utilized to find the value of
w. Hence, finding w could be described as a linear programming problem.

min
w

E ‖ ro − r′′ ‖2

subject to 0.1 6 w 6 0.9.
(2.25)

When w = 0 the Hybrid model becomes PCA model and when w = 1 becomes
Wiener model as it is illustrated in Fig. (2.2). The first constraint ensures that the
weightings of the two techniques summarize to 1, while the second constraint forces
positive contribution (> 0.1) of each technique. The objective functions together
with the constraints can be solved using linear or quadratic programming. Note
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Figure 2.2: Hybrid model with different values of w.

that the weightings that are assessed from the objective functions are suboptimal
due to the fact that linear or quadratic programming methods may not return the
optimal solution of the mathematical problem. Nevertheless, experimental results
will show that this strategy can lead to spectral estimation improvement. Hybrid is
supported to be more efficient and robustness due to the fact that reduces the noise
levels included either in the training set or in the captures image. It keeps only the
m more informative non-noisy features (Eq. (2.22)) in contrast with Wiener that
needs apriori knowledge about the white noise of the camera in order to eliminate
it. Thus, our spectral estimation is seems to be weighted up both by the most
informative data of the training set using the PCA technique, and by second order
statistics using the Wiener model. Furthermore, the number of the m basis function
are critical for the preciseness of the Hybrid model. Often, a wondering about the
number of the most informative principal components (i.e four, five or six) exists. This
question does not have a specific answer as it depends on the spectral application.
On that account, a powerful spectral estimation model should automatically adjust
the difference between the possible inclusion of the important ith eigenvector and the
ommitance of the important ith eigenvector. Hence, the weights (w1, w2) are included
between Wiener and new PCA model in order to calibrate the PCA contribution on
the estimation result. The complexity of Hybrid algorithm is O(pk). The training
phase costs a constant number of multiplications due to the fact that takes place only
one time.

2.3.6 Estimation of Spectral Reflectances Using Adaptive-Wiener
Method

Shen et al. [14] proposed a method to reconstruct spectral reflectance by using
a modified Wiener estimation method, without a prior knowledge of the spectral
characteristics of the samples being imaged. Shen investigated whether the accuracy
of reflectance estimation can be improved if the training samples for calculating the
reflectance characteristics are adaptively selected and appropriately weighted. The
novelty of the proposed method is mainly in the manner of training sample selection
and autocorrelation matrix construction. Suppose that the response of the spectral
camera is d, and then its corresponding reflectance r can be calculated according
to the traditional Wiener estimation using Eq. (2.10). The training samples with
reflectance roi can then be selected according to their spectral similarity to r. In the
calculation of spectral similarity, the reflectance is normalized so that its summation
is equal to 1. The reason for normalization is that statistical information of the
reflectance is mainly decided by its shape, not magnitude. The spectral similarity
consists of two terms, i.e., mean spectral distance and maximum spectral distance

disti = α
1
p

∥∥∥∥∥ roi
‖roi‖∞

− r
‖r‖∞

∥∥∥∥∥
1

+ (1− α)
∥∥∥∥∥ roi
‖roi‖∞

− r
‖r‖∞

∥∥∥∥∥
∞

(2.26)
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Figure 2.3: Two typical examples of the training sets for the given
candidate samples. Channel number C=6-Adaptive Wiener (source:

Hui-Liang Shen [14]).

where α is a scaling factor, 1
p ‖ x ‖1 is the mean value of x, and the ‖ x ‖∞ is the

maximum value of x. For two reflectances with similar shapes both of the mean and
maximum distances should not be large. When r is very similar to roi, disti is close
to 0. We select L training samples according to their spectral similarities and sort
the similarity measurements in ascending order, or more specifically, dist1 6 dist2 6
. . . 6 distL. Among the selected L training samples it is reasonable to assume that the
spectral characteristic of the more similar roi (1 6 i 6 L) should be more close to that
of the candidate sample. Then the recalculation of the Wiener model is needed using
the new adapted training set. It is noted that Wiener need to be calculated per pixel
in a multispectral image and thus the proposed method is computationally expensive
than the traditional Wiener estimation. This is actually the common shortcoming
for almost all adaptive methods. Nevertheless, it is worthwhile to adopt the adaptive
method when the spectral estimation accuracy is very important.

Figure 2.3 shows the selected training sets for the given candidates. As expected,
the shapes of the training samples are similar to those of the candidate samples.
The performance of the proposed adaptive Wiener estimation is investigated for the
different channel numbers. Experimental results of Shen, indicate that the proposed
method is significantly better than the Wiener estimation when the channel number is
not large (for example, 6 or 7), while is slightly better than or close to the traditional
Wiener estimation when channel number 11 or more.

As it mentioned before, adaptive methods are really computationally expensive.
The complexity of Adaptive-Wiener algorithm is Θ(pixels×(2pk+J log J)), where pk
is a constant number describes the number of multiplications need to be done to calcu-
late two times the vector r (one for similarity check and one for spectral estimation),
pixels is the number of pixels of the image, and J log J is the complexity of sorting a
J-element similarity matrix. Furthermore, in order to implement adaptive methods
we need a really large training set to guarantee the adaptation of different surfaces
and colors. In other words, adaptive methods can product decent spectral estimation
given that there are similar reflectances in the database. Therefore, somebody must
be really careful while using an adaptive method.
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2.3.7 Estimation of Spectral Reflectances Using Adaptive Hybrid
Method

Working on the same way as adaptive Wiener we can adopt the adaptation method for
the Hybrid algorithm. The only difference is that instead of using Wiener estimation,
we should use the Hybrid algorithm. Generally, adaptation method could be inherited
by any spectral estimation method.

2.3.8 Estimation of Spectral Reflectances Using Multivariate Linear
Regression Method

In spectral estimation, Linear Regression(LR) called also pseudo-inverse method [15].
In statistics, linear regression is a linear approach to modeling the relationship be-
tween a scalar response (or dependent variable) and one or more explanatory variables
(or independent variables). The case of one explanatory variable is called simple lin-
ear regression. For more than one explanatory variable, the process is called multiple
linear regression. This term is distinct from multivariate linear regression, where
multiple correlated dependent variables are predicted, rather than a single scalar
variable. In linear regression, the relationships are modeled using linear predictor
functions whose unknown model parameters are estimated from the data. Such mod-
els are called linear models. Most commonly, the conditional mean of the response
given the values of the explanatory variables (or predictors) is assumed to be an
affine function of those values; less commonly, the conditional median or some other
quantile is used. Like all forms of regression analysis, linear regression focuses on the
conditional probability distribution of the response given the values of the predictors,
rather than on the joint probability distribution of all of these variables, which is
the domain of multivariate analysis. Linear regression models are often fitted using
the least squares approach, but they may also be fitted in other ways, such as by
minimizing the “lack of fit” in some other norm (as with least absolute deviations
regression), or by minimizing a penalized version of the least squares cost function as
in ridge regression (L2-norm penalty) and lasso (L1-norm penalty). Conversely, the
least squares approach can be used to fit models that are not linear models. Thus,
although the terms “least squares” and “linear model” are closely linked, they are
not synonymous. In spectral estimation approach our goal is to find the best linear
estimation (regression). So, r is given by

r = Qd + b =⇒ r = [Q b]
[
d
1

]
(2.27)

where Q is a p × k matrix and b is a p × 1 vector. Note that Shen et al. [15]
expresses the same equation but without interception part (b). For that reason, the
experiments in [15] showed that the pseudo-inverse method has approximately the
same performance as Wiener. So the criterion is to minimize the sum of squared
error. To achieve that we set

Q′ = [Q b] (2.28)

where Q′ is a p × (k + 1) matrix. Additionally, we define d? = [d 1]T which is a
(k + 1)× 1 vector. Due to this fact, the training set pairs will be (roi,d?i ). A choice
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Figure 2.4: Flow Chart of Decision Tree Regression Algorithm.

to estimate the Q′ matrix is to minimize the sum of square errors. Therefore,

J(Q′) =
J∑
i=1

(roi −Q′d?i )
2
. (2.29)

The formulation of the problem its the same as Wiener, hence the only difference is
that d should be replaced by d?. Then, we use Eq. (2.27) to calculate r. Conclusively,
LR seems to be an efficient tool to estimate reflectances due to the fact that spectral
estimation is a linear problem according to Eq. (2.7).
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Figure 2.5: Example of partitions of decision trees.

Figure 2.6: Example of random forest regression (source: Asiign-
mentpoint.com) [16]).

2.3.9 Estimation of Spectral Reflectances Using Random Forest
Regression

All regression techniques contain a single output (response) variable and one or more
input (predictor) variables. The output variable is numerical. The general regression
tree building methodology allows input variables to be a mixture of continuous and
categorical variables. A decision tree is generated when each decision node in the tree
contains a test on some input variables value. The terminal nodes of the tree contain
the predicted output variable values.

A regression tree is built through a process known as binary recursive partitioning,
which is an iterative process that splits the data into partitions or branches, and then
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continues splitting each partition into smaller groups as the method moves up each
branch (Fig. (2.5)).

Initially, all records in the training set are grouped into the same partition. The
algorithm then begins allocating the data into the first two partitions or branches
using every possible binary split on every field. The algorithm selects the split that
minimizes the sum of the squared deviations from the mean in the two separate
partitions (θ1,θ2). This splitting rule is then applied to each of the new branches.
This process continues until each node reaches a user-specified minimum node size
and becomes a terminal node. If the sum of squared deviations from the mean in a
node is zero, then that node is considered a terminal node even if it has not reached
the minimum size. The above algorithm is described in the following flowchart (Fig.
(2.4)).

Random forest is a really flexible algorithm that produces even without hyper-
parameter tuning a great result most of the times. It is also one of the most used algo-
rithms, because it can be used for both classification and regression tasks. Specifically,
random forest builds multiple decision-regression trees and merges them together to
get a more accurate and stable prediction. We can see it from its name which is
to create a forest by some way and make it random. There is a direct relationship
between the number of trees in the forest and the results it can get; the larger the
number of trees, the more accurate the result. There are two stages in random forest
algorithm, one is random forest creation, the other is to make a prediction from the
random forest trees created in the first stage. The algorithm selects randomly t fea-
tures from total k features, where t < k. Among the t features, it calculates the node
x using the best split point. Then, it splits the node into daughter nodes using a split
criterion. Then, by repeating the steps for n times, n number of trees are created.
Simplify the above, random forest build n decision-regression trees and it use them
to make predictions. The final prediction in the case of random forest prediction it
comes from averaging the regression values of the n trees (Fig. (2.6)).

Jason Deglint et al. [17] leverage the random forest modeling to construct the
function Q using a comprehensive set consisting of 10.000 reflectance spectra and
their corresponding sensor measurements based on the numerical forward model for
the characterized image sensor. Random forest regression models the complex re-
lationships between reflectance spectra and sensor measurements without imposing
strong assumptions about the nature of the relationship.
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Figure 2.7: Model of a biological neuron (source: Wikipedia).
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Figure 2.8: The Neural Network for the spectral estimation problem.

2.3.10 Estimation of Spectral Reflectances Using Artificial Neural
Networks

A. Mansouri et al. [18] proposed Artificial Neural Networks as a way for spectral
estimation. Inspired by biological nervous systems, artificial neural networks (ANNs)
aim at reaching their versatility through learning. ANNs are commonly employed
in artificial intelligence, machine learning and pattern recognition. There has been
substantial research into how the human brains structure achieves such a high level of
versatility. This research has provided some important insights, however the conclu-
sions are far from completely explaining the complex functioning of the brain. Even
though we have not been able to replicate the brain so far, the field of artificial intelli-
gence offers very effective solutions to many problems by simulating the observations
of biological research of various nervous systems. It is estimated, that the average
human brain contains 86 billion neurons. Together they form a huge network. Even
if we knew the detailed inner structure of the human brain, we would still not be
able to simulate it with current technology because of its robustness. Our efforts
are therefore rather different. We want to build a neural network with a good ratio
between its size and its effectiveness.
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Figure 2.9: Model of a biological neuron (source: Wikipedia).

Generally, ANNs consist of a set of artificial neurons. Formally, an artificial neuron
has k inputs represented as a vector d. Inputs in an artificial neuron correspond to
the dendrites in a biological neuron, while a single output of an artificial neuron
corresponds to the axon in a biological neuron, which is depicted in figure 2.7. Each
input i, 1 ≤ i ≤ k, has an assigned weight w1, . . . , wk. Weighted input values are
combined and run through an activation function producing some output r, as shown
in figure 2.9. The network is formed by connecting the neuron output with the input
of a different neuron. ANN is therefore effectively described as an oriented graph as
shown in figure 2.8, where vertices represent the neurons, and oriented edges represent
the output-input connections between them. A set of input neurons consists of the
neurons which are the first ones in any complete path in the graph. All input neurons
have exactly one input, and all inputs together represent an instance of the problem
to be solved by the ANN. A set of output neurons consists of the neurons which are
the last ones in any complete path in the graph. All output neurons have exactly
one output, and all outputs together represent a possible solution to the problem to
be solved by the ANN. A set of hidden neurons consists of the neurons which are
not input, nor output neurons. Their number and organization into layers may vary
even for the same problem, but is a key feature of the network vastly influencing its
performance. An ANN works by feeding the data into the input neurons. The data
flows in the direction of oriented edges and ends when the output neurons are hit.
The result is interpreted from the values obtained in the output neurons. Formally,
an ANN is a 6-tuple M = (N, C, k, p, w, t), where
• N is a finite non-empty set of neurons,
• C ⊆ N ×N is a non-empty set of oriented edges between the neurons.
• k ⊂ N is a non-empty set of neurons in the input layer.
• p ⊂ N is a non-empty set of neurons in the output layer.
• w : C 7−→ R is a weighting function.
• t : N 7−→ R is a function for network bias
Let us consider neuron j with its input d(j) = (d(j)

1 , . . . , d
(j)
k ), weights w(j)

1 , . . . , w
(j)
k )

and bias θ(j). Then the potential of the neuron is computed

ξ(j) =
k∑
i=1

w
(j)
i d

(j)
i + θ(j). (2.30)

Consider the following activation function:

f(ξ) = 1
1 + exp(−ξ(j))

. (2.31)
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Then the output ri of the neuron j is computed:

r(j) = f(ξ(j)) = f(
k∑
i=1

w
(j)
i d

(j)
i + θ(j)). (2.32)

Considering ANN containing p such neurons in the output layer, we obtain the output
of the network as (r1, . . . , rp). During the learning process, ANNs may change their
weights, bias, or in some networks even the number of neurons and their setup. In
contrast, our definition does not allow such modifications and M does not change in
the process of learning. The Multilayer perceptron (MLP) is a feed-forward neural
network consisting of multiple mutually interconnected layers of neurons. The layers
are stacked one onto each other. Every neuron in one layer is connected to every
neuron in the following layer. The motivation behind designing multilayer networks is
to be able to solve more complex tasks The unit step function is usually not a suitable
activation function to be used with the perceptrons. Because of continuity and greater
flexibility, the sigmoid function is most commonly used instead. When choosing the
most suitable activation function, we want it to be differentiable at every point of its
domain, and to be non-linear. Non-linearity is important, because in general we want
the output to be non-linearly dependent on the given input. Perceptrons are arranged
into k > 2 layers. Let us consider a network M with z layers. The set of neurons C
is split into mutually distinct subsets called layers L1, . . . , Lz. More formally it holds
∀i, j : 1 ≤ i, j ≤ z, (Li 6= � ∧ Li

⋂
Lj 6= �) =⇒ i = j. The network layers are stacked

one onto each other, L1 being the input layer, L2, . . . , Lz−1 being the hidden layers
and Lz being the output layer. As shown in figure 2.8, the edges are all oriented in
the direction from the input layer L1 towards the output layer Lz. Each neuron in
layer Li is connected to every neuron in layer Li+1. In other words all neighboring
layers form complete bipartite graphs.

The output of the network is computed sequentially, layer by layer. The neu-
ral network is trained using the Backpropagation algorithm. The purpose of the
back-propagation algorithm is to adjust the synaptic weights of neurons, so that the
network produces the desired output. The algorithm describes the process of training
(also called learning). The result of this algorithm is a neural network configured
to minimize the error when solving given problem. Training must be performed on
labeled data (di 7→ roi) and therefore is supervised.

Considering the spectral estimation problem, the ANN should not be deep (Fig.
(2.8)) due to the fact that the different spectra in nature are countable and their
features are not many. Ending up, given that our training sets are small, we should
be more than careful, during tuning the hyper-parameters of the ANN model (i.e
learning rate).

2.3.11 Estimation of Spectral Reflectances Using Support Vector
Regression

Wei-Feng Zhang et al. [19] proposes a novel estimating approach based on the sup-
port vector regression method. Due the fact that in most of the cases SVR has
a single output, the training set becomes (xi = [d1, d2, . . . , dk] 7−→ yi = roij , ∀i =
[1, 2, . . . , J ], j = [1, 2, . . . , p]). As a result of this transformation, the training set in-
creases by a factor of p. For instance, if we want to recover 31 bands and have the
24 patches of the Macbeth ColorChecker chart, the composite training set contains
744 training samples. Therefore, that SVR can estimate only a band, due to this
fact we need to train p − 1 more SVR’s. A large set increases the complexity of the
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computation, but also offers an opportunity for a sparse representation in terms of
SVs. In ε− SV regression [20], our goal is to find a function f(x) that has at most ε
deviation from the actually obtained targets yi for all the training data, and at the
same time is as flat as possible. In other words, we do not care about errors as long
as they are less than ε, but will not accept any deviation larger than this. This may
be important if you want to be sure not to lose more than ε money when dealing
with exchange rates, for instance. Firstly, we describing the case of linear functions
f, taking the form

f(x) =< w,x > +b (2.33)

where < ·, · > denotes the dot product in x. Flatness in the case of (2.33) means that
one seeks a small w. One way to ensure this is to minimize the norm, ( i.e. ‖ w ‖2).
We can write this problem as a convex optimization problem so that

min
w

0.5 ‖ w ‖2

subject to yi− < w,xi > −b ≤ ε
< w,xi > +b− yi ≤ ε.

(2.34)

The tacit assumption in (2.34) was that such a function f actually exists that approxi-
mates all pairs (xi, yi) with ε precision, or in other words, that the convex optimization
problem is feasible. Sometimes, however, this may not be the case, or we also may
want to allow for some errors. Analogously to the “soft margin” loss function (Ben-
nett and Mangasarian et al. [21]) which was adapted to SV machines by Cortes and
Vapnik [20], one can introduce slack variables ξi, ξi? to cope with otherwise infeasible
constraints of the optimization problem (2.34). Hence, we arrive at the formulation
stated in [20]

min
w

0.5 ‖ w ‖2 +C
l∑

i=1
ξi + ξi

?

subject to yi− < w,xi > −b ≤ ε+ ξi
< w,xi > +b− yi ≤ ε+ ξi

?

ξi, ξi
? ≥ 0.

(2.35)

The constant C > 0 determines the trade-off between the flatness of f and the amount
up to which deviations larger than ε are tolerated. This corresponds to dealing with
a so called ε–insensitive loss function |ξ|ε described by

|ξ|ε :=

0, if |ξ| ≤ ε.
|ξ| − ε, otherwise.

. (2.36)

Fig. (2.10) depicts the situation graphically. Only the points outside the shaded re-
gion contribute to the cost insofar, as the deviations are penalized in a linear fashion.
It turns out that in most cases the optimization problem can be solved more easily
in its dual formulation. Moreover, as we will see, the dual formulation provides the
key for extending SV machine to nonlinear functions. Hence we will use a standard
dualization method utilizing Lagrange multipliers, as described in e.g.[22]. The key
idea is to construct a Lagrange function from the objective function (it will be called
the primal objective function in the rest of this Section) and the corresponding con-
straints, by introducing a dual set of variables. It can be shown that this function
has a saddle point with respect to the primal and dual variables at the solution. We
proceed as follows:
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Figure 2.10: The soft margin loss setting for a linear SVM (source:
Wei-Feng Zhang [19]).

L := 0.5 ‖ w ‖2 +C
l∑

i=1
(ξi + ξi

?)−
l∑

i=1
(ηiξi + ηi

?ξi
?)

−
l∑

i=1
αi(ε+ ξi − yi+ < w,xi > +b)−

l∑
i=1

αi
?(ε+ ξi

? − yi+ < w,xi > +b). (2.37)

Here L is the Lagrangian and ηi, ηi?, αi, αi? are Lagrange multipliers. Hence, the dual
variables in (2.37) have to satisfy positivity constraints, i.e.

αi
(?), ηi

(?) ≥ 0. (2.38)

Note that by αi(?) , we refer to αi and αi?. It follows from the saddle point condition
that the partial derivatives of L with respect to the primal variables (w, b, ξi, ξi?) have
to vanish for optimality

dbL =
l∑

i=1
(αi? − αi) = 0 (2.39)

dwL = w−
l∑

i=1
(αi − αi?)xi = 0 (2.40)

dξi
?C − αi(?) − ηi(?) = 0. (2.41)

Substituting (2.37), (2.40), and (2.41) into (2.39) yields the dual optimization prob-
lem.

maximize −0.5
l∑

i=1
(αi − αi?)(αj − αj?) < xi,xj > and − ε

l∑
i=1

(αi − αi?) +
l∑

i=1
yi(αi − αi?)

subject to
l∑

i=1
(αi − αi?)xi and

ai − ai? ∈ [0, C].
(2.42)
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Figure 2.11: Architecture of a regression machine constructed by
the SV algorithm (source: Wei-Feng Zhang[19]).

In deriving (2.42) we already eliminated the dual variables ηi, ηi?. Eq. (2.40) can be
rewritten as follows

w =
l∑

i=1
(αi − αi?)xi thus f(x) =

l∑
i=1

(αi − αi?) < xi,x > +b. (2.43)

Clearly this approach is not feasible and we have to find a computationally cheaper
way. Kernel tricks is a more efficient way to compute f(x), as the latter depends on
dot products between patterns xi. That allow as to restate the SV optimization.

w =
l∑

i=1
(αi − αi?) φ(xi) thus f(x) =

l∑
i=1

(αi − αi?) k < xi,x > +b (2.44)

where k < xi,x >:=< φ(xi), φ(x) >.
The difference to the linear case is that w is no longer given explicitly. Also note

that in the nonlinear setting, the optimization problem corresponds to finding the
flattest function in feature space, not in input space. The entire algorithm is given
in Fig. (2.11).
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Chapter 3

Spectral Estimation -
Experiments

3.1 Training Sets and Target Surfaces

Figure 3.1: Macbeth Color Checker (source: phononet.com [23]).

3.1.1 Macbeth Color Checker

Specifically designed to meet the needs of digital photographers, the Digital Macbeth
ColorChecker SG target includes the highest quality color reference standards avail-
able. Each of the 140 patches was chosen for its location in color space to expand the
color gamut, so we can create profiles that capture the full capabilities of any camera
and spectral scanner.

The ColorChecker Digital SG target includes the colors from the standard Col-
orChecker target, many of which represent natural objects, such as human skin tone,
foliage and blue sky. Additional skin-tone reference colors deliver greater accuracy
and consistency over a wide variety of skin tones, and gray scale steps provide ac-
curate control of camera balance to maintain a neutral aspect, regardless of light
source. Macbeth ColorChecker SG can also be used to create a white balance with
your digital camera to guarantee precise, uniform, neutral white under any lighting
condition.
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Figure 3.2: Munsell Mate Color Spectra Data.

3.1.2 Munsell Mate Color Spectra Data

This data set was obtained from the University of Joensuu Color Group [24]. This
database contains in ASCII format the reflectance values of 1269 spectra in one file.
Every single entry includes spectral information from 421 channels, between 380 nm
and 800 nm with one nanometer step. In order to visualize the color which each spec-
tra represents, we designed a artificial pallet of colors like Macbeth ColorChecker.
Figure 3.2 depicts the new artificial Munshell ColorChecker and will be used as train-
ing and validation set in our experiments.

3.2 Hardware of the experiments
MuSES-9 HS is a powerful Hyperspectral imager for Spectroscopy and Spectrometry
in a wide spectral range from 360 nm (UV) to 1000 nm (Near Infrared). Spectral
resolution ranges from 7 nm (for visible or NIR) to 18 nm (for both visible and NIR).
More than 110 spectral bands can be acquired in less than 1 min. From the collected
images, millions of spectra can be obtained and per-point spectral and color analy-
sis can be performed through a graphical user interface. MuSES-9 HS (Fig. (3.3)),
technical features are:
• Wavelength tuning range: 360-1000nm (extendable)
• Bandwidth (FWHM): 7-18nm
• Sensor-type: CMOS
• Resolution: 6.4 Mega Pixels 3096× 2080
• Exposure Range: 32µs− 1000s
• Shutter speed (integration time): 1/100.000 s – 2.0 s
• Sensor Size 7.4mm× 5mm
• Sensor Size 7.4mm× 5mm
• Imaging Spectroscopy: Automatic spectral scanning, sequential spectral image stor-
ing (spectral cube) and calculation of a full spectrum per image pixel
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Figure 3.3: MUSES-9 HS (source: spectricon.com [25]).

• Imaging modes: Spectral imaging and spectroscopy in both reflectance and fluores-
cence modes

The main difference we have between the MuSES-9 HS and the simple Spectrome-
ter is that MuSES-9 has an acquisition integral of 10nm in contrast with Spectrometer,
which has lower than 1nm. This affects our data in the following way: if we want
to use the data from MuSES-9 we must first make a smoothing process. Also when
using Spectrometer we need to fit the data in order to remove all kinds of noise the
Spectrometer might have. Finally, one of the main reasons we wanted to use the
MuSES-9 HS camera was that we would have all the devices needed in one camera.
Therefore, we didn’t have to make different calibration for each device or have a
fault in aligning the second device in the same spot as the first. So, to keep it sort,
MuSES-9 HS makes our work easier.

3.3 Evaluation of each Spectral Estimation Method

3.3.1 Evaluation Thresholds of Spectral Estimation Algorithms

In this Section we will discuss the accuracy of each method by taking into advantage
the error measurements. Since, we are interested purely in spectra, thresholds that
can indicate the quality of the estimation should be determined. Thus, the following
thresholds according to the RMSE between the reference and the estimated spectra
were used.

RMSE value Quality of Estimation

RMSE ≤ 1.32% Perfect Estimation
RMSE ≤ 2.10% Very Good Estimation
RMSE ≤ 2.81% Good Estimation
RMSE > 2.81% Bad Estimation

Table 3.1: Evaluation Thresholds of Spectral Estimation Algorithms.
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Figure 3.4: Macbeth Color Checker (96 isolated patches).

We utilized RMSE, as it focuses in the magnitude difference between the estimated
and the reference spectra and not in the angle difference (GFC, SAM). There is no
doubt that those thresholds are really strict by cause of the perfect estimation is given
only whether the root mean square difference is 1.32%, something that is undeniably
“a perfect fit”.

3.3.2 Scoring the algorithms

In order to turn out which is the most appropriate method for spectral estimation, all
the methods are compared and scored according to their performance. Each algorithm
take points whether it gives more perfect estimations than good or bad estimations.
On that account, we marking the methods using the criteria that are depicted in the
following table.

Percentage on Score. Number of Patches that achieved:

40% Perfect Estimation (PE)
35% Very Good Estimation (VGE)
24% Good Estimation (GE)
1% Bad Estimation (BE)

Table 3.2: Scoring Algorithms.

Scorei = 0.4 PE + 0.35 VGE + 0.24 GE + 0.01 BE. (3.1)

Using the 3.1 formula we calculate the score for each ith spectral estimation
method and we normalize to the highest score. Finally, all the methods have Total score ∈
[0 1].

3.3.3 Information about the experiments

Firstly, we acquired the spectral cube of Macbeth using MuSES-HS in wavelengths
between 400nm and 730nm (Visible spectrum). Then, we divided our experiments
into two parts. In both parts, we validated each algorithm according to its estimation
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Figure 3.5: Software for experiments using Matlab Tools.

accuracy. In the first part, Munsell’s patches were the training set and Macbeth
Color Checker the validation set. In the second part, we swapped the training and
the validation set and we analyzed again the estimation preciseness. It is important
to mention that we didn’t use all the Macbeth’s patches for training, but we isolated
only 96; the most informative and the non-dark ones that are included into the red
grid (Fig. (3.4)). These 96 patches were contained in the training set in the first part
of experiments and were the target surface in the second part of experiments.

It is crucial for our research not only to evaluate the efficiency of the dimension-
alaty expansion methods, but to extend our work in a real new spectral snapshot
imager. On that account, we decided to keep the spatial resolution in high levels
and capture only six spectral bands. Due to the fact that each spectrum has a few
features, peaks and valleys, six spectral bands are almost enough to estimate the
missing spectum. After a market research, we found that the bands [450 nm, 460
nm, 470 nm , 480 nm, 520 nm, 530nm, 550nm, 580 nm, 610 nm, 620 nm, 690nm]
are already available in the market and being sold by optical manufacturers. In our
experiments we used [460 nm, 480 nm, 530nm, 580 nm, 610 nm, 690nm] as sampled
spectral bands.

To compare the preciseness of each spectral estimation algorithm, we used both
the scoring metric in 3.1 and a appropriate software specific for our experiments. On
that account, two machines were implemented by us; the first using Matlab tools
(Fig. (3.5)) and the second using Qt cross-platform SDK (Fig. (3.6)). Both software
tools are available online1 and provide:
• Load and read a spectral cube

• Extract a spectral cube using a specific estimation method
• Choosing dynamically the training set and the surface target
• Real time visualization of spectral estimation
• Real time visualization of error metrics

1www.github.com\flogothetis
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Figure 3.6: Software for experiments using Qt cross-platform SDK.

PCA score image1 PCA score image2 PCA score image3

PCA score image4 PCA score image5 PCA score image6

Figure 3.7: PCA score images of Macbeth.

• Real time spectral estimation on a specific pixel by hovering the mouse
• Dynamic selecting of sampled bands
• Dynamic selection of spectral estimation algorithm
• Zoom In-Zoom Out over the spectral cube to select a region of interest
• Compare the estimation accuracy of different spectral estimation methods.
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Figure 3.8: Example of a Color-Map.

Moreover, machine learning algorithms (Neural Nets, SVR, Random Forest) were
implemented using the Tensor-Flow Tool. Additionally, the hyper-parameters of the
models were investigated and are presented in this paragraph. Wiener method has no
hyper parameters that need to be tuned. On the other hand, PCA’s accuracy based
on the number of the m eigenvectors. To find the most informative principal compo-
nents, we extracted all the PCA scores as images of Macbeth, which are illustrated in
Fig. (3.7). The first five score images are the most informative. The sixth pca score
image is almost black due to the fact that there is no useful information in the sixth
eigenvector. Hence, m was set equal to 5. Furthermore, QPCA matrix was obtained
using the training set pairs, thus Q = RD−. The above considerations are also ex-
tended to Hybrid method, therefore, m is equal to 5 eigenvectors and w1,w2 were
calculated equal to 0.5 respectively. Adaptive Wiener and Adaptive Hybrid achieve
better estimation by setting a equal to 0.5 and L equal to 31 for small training sets (i.e
Macbeth), but 100 for larger training sets (i.e Munsell). Random Forest Regression
needs on average 8000 different decision trees and maximum depth equal to 90-100.
Last but not least, the Neural Network that we built it is not deep. It is turned out
that deep networks are not the optimal solution for the spectral estimation problem,
due to the fact that spectrum has a low amount of features. On the contrary, a small
neural network with one hidden layer that contains 10-15 neurons is a really efficient
predictor. Furthermore, we used the Momentum optimizer and the Elu as activation
function. SVR model was fitted with the following parameters; penalty C equal to
1.0, epsilon equal to 0.1. Radial basis function is the kernel type that was selected,
which is based on the squared Euclidean distance between the two feature vectors
k(x, x′) = exp(−γ ‖ x − x′ ‖2), where gamma is equal to 1

number of features . In this
study, the number of features are equal to the number of captured bands. Ending
up, all the data had been regularized before the training phase.
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Figure 3.9: First-Series of Experiments. Training/Validation set
contains only the patches into the green grid.

3.4 First Series of the Experiments
As it mentioned before, the experiments at this section were carried out using the
Munsell database as training set and Macbeth SG Color Checker as validation set.
The bands that we used for sampling are [460 nm, 480 nm, 530nm, 580 nm, 610 nm,
690nm] and we reconstructed the entire spectrum from 400nm - 730nm, totally 36
bands. For each method a table will be demonstrated, which includes the error metrics
between estimated and reference spectrum. Moreover, a color-map that includes
round points is depicted, in order to visualize the quality of estimation on each patch.
For instance, a sample color map is depicted in Fig. (3.8). The relation between the
color of the points and the quality of estimation is given in Table (3.3).

Color Quality of Estimation

Green Perfect Estimation
Blue Very Good Estimation

Magenta Good Estimation
Red Bad Estimation

Table 3.3: Color-Map and the quality of estimation.

Furthermore, a bar chart will be depticted, in order to count the number of patches
that were estimated perfectly, goodly, and badly etch. More than that, we illustrate
the estimated spectra of the patches 2M-9M that are in the green grid (Fig. (3.9)).
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3.4.1 Wiener Method

Figure 3.10: First Experiments - Wiener Color Map.
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Figure 3.11: First Experiments - Wiener Performance.
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Figure 3.12: First Experiments - Wiener, Patch 2M-Patch 8M.
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3.4.2 PCA Method

Figure 3.13: First Experiments - PCA Color Map.
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Figure 3.14: First Experiments - PCA Performance.
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Figure 3.15: First Experiments - PCA, Patch 2M-Patch 8M.
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3.4.3 Hybrid Method

Figure 3.16: First Experiments - Hybrid Color Map.
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Figure 3.17: First Experiments - Hybrid Performance.
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Figure 3.18: First Experiments - Hybrid, Patch 2M-Patch 8M.
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3.4.4 Adaptive Wiener Method

Figure 3.19: First Experiments - Adaptive Wiener Color Map.
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Figure 3.20: First Experiments - Adaptive Wiener Performance.
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Figure 3.21: First Experiments - Adaptive Wiener, Patch 2M-Patch
8M.
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3.4.5 Adaptive Hybrid Method

Figure 3.22: First Experiments - Adaptive Hybrid Color Map.
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Figure 3.23: First Experiments - Adaptive Hybrid Performance.
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Figure 3.24: First Experiments - Adaptive Hybrid, Patch 2M-Patch
8M.
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3.4.6 Linear Regression Method

Figure 3.25: First Experiments - Linear Regression Color Map.
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Figure 3.26: First Experiments - Linear Regression Performance.
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Figure 3.27: First Experiments - Linear Regression, Patch 2M-Patch
8M.
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3.4.7 Random Forest Method

Figure 3.28: First Experiments - Random Forest Color Map.
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Figure 3.29: First Experiments - Random Forest Performance.
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Figure 3.30: First Experiments - Random Forest, Patch 2M-Patch
8M.
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3.4.8 Neural Network Method

Figure 3.31: First Experiments - Neural Network Color Map.

Perfect
Estimation

Very Good
Estimation

Good Estimation Bad Estimation

Neural Network 50 29 13 4

0

10

20

30

40

50

60

N
u

m
b

er
 o

f 
P

at
ch

es

Neural Network

Figure 3.32: First Experiments - Neural Network Performance.
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Figure 3.33: First Experiments - Neural Network, Patch 2M-Patch
8M.
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3.4.9 SVR method

Figure 3.34: First Experiments - SVR Color Map.
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Figure 3.35: First Experiments - SVR Performance.
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Figure 3.36: First Experiments - SVR, Patch 2M-Patch 8M.
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3.4.10 First Comparison of the Methods
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Figure 3.37: First Comparison of the Methods.
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Figure 3.38: First ranking of the Methods.
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Method MEAN RMSE(%) MAX RMSE(%) MIN RMSE(%) MEAN GFC

Wiener 1.6224 3.4977 0.2919 0.9964
PCA 1.6224 3.4977 0.2919 0.9964
Hybrid 1.5447 4.0273 0.2623 0.9965

Adaptive Wiener 1.3504 3.4608 0.3399 0.9970
Adaptive Hybrid 1.2611 3.0715 0.2770 0.9974
Linear Regression 1.4156 3.0680 0.3974 0.9963
Neural Network 1.4344 3.1105 0.4054 0.9963
Random Forest 2.4 5.669 0.2904 0.9863

SVR 5.517 8.1642 2.5079 0.9652

Table 3.4: Metrics of Error for the First Series of Experiments.

The conduction of the above comparisons led to important conclusions about the
spectral estimation methods. Figure 3.37 illustrates the performance of the algo-
rithms and specifically the number of patches that were estimated perfectly, very
goodly, goodly, and badly. Alongside, Table 3.4 indicates analytically the mean,
max, min RMSE, and the mean GFC of each method according to the corresponding
experiment.

Overall, it is clear from Fig. (3.38) and Table 3.4 that Linear Regression and
Adaptive Hybrid algorithms are the two main methods that achieve the most con-
siderable estimations. In the opposite direction, SVR and Random Forest are the
algorithms that did not estimate accurately the spectrum from 400nm to 730nm.

It can be seen in the first bar chart (Fig. (3.37)), that Wiener method comes with
only 38 perfectly estimated patches in contrast with Hybrid, which comes with 44
perfectly estimated patches. On that account, Hybrid seems to perform better than
the classic Wiener, as it gives less bad estimations and statistical less mean RMSE.
The performance of the Adaptive Wiener is too close to Linear Regression as the
Adaptive Wiener gives 51 perfect patches and 2 bad and Linear Regression gives 49
and 3 respectively. That observation is more than useful and very encouraging, for the
reason that a HS system could achieve approximately the same estimation accuracy
with constant time complexity, compare to the Adaptive Wiener model which due
to the adaptation of the training set it’s time expensive. The estimation accuracy is
risen by using the Adaptive Hybrid, which accounted for the largest amount of patches
that were estimated perfectly with mean GFC equal to 0.9970. Neural network seems
to be close to both Linear Regression and Adaptive Wiener according to its score.
Conversely, SVR and Random Forest Regression got the two lowest scores. Random
Forest is considered to be a robust tool, which avoid over-fitting and a famous classifier
but technically speaking, in that problem cannot composes an accurate estimation
because it averages the regression decision of the decision trees, and alongside, it
averages the values that are laid on the same decision bounds. This double averaging
declines the performance of the final estimation. Ending up, SVR gives the worst
estimations and it seems that cannot be a way to achieve the spectral estimation
goal, but it is one of the most practical ways for classification.

The execution of the above experiments give us undeniably useful information
about the effectiveness of the compared methods. But, an important question is
what will be happened, if the target surface is more complex in spectral domain
compare with the training set. Munsell database includes a great amount of spectra
that by observing Fig. (3.1) and Fig. (3.2), it seems that the majority of Macbeth
patches are already included in the Munshell database. Therefore, a way to answer
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Figure 3.39: Isolated patches of Munsell in the greed grid for exper-
iments.

this question is to swap the experiments by setting Macbeth as training set and
Munsell as validation set. In the following section we execute one more time the
same experiment using the same algorithms but swapped training and validation set.

3.5 Second Series of Experiments
The experiments at this section were carried out using the Macbeth SG Color Checker
as training set and Munsell database as validation set. The bands that we used for
sampling are [460 nm, 480 nm, 530nm, 580 nm, 610 nm, 690nm] and we strive to
reconstruct the entire spectrum from 400nm - 730nm, totally 36 bands. All the other
terms are the same as the first part of experiments but the estimation figures will be
presented for the patches into the green grid in Fig. (3.39)
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3.5.1 Wiener Method

Figure 3.40: Second Experiments - Wiener Color Map.
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Figure 3.41: Second Experiments - Wiener Performance.
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Figure 3.42: Second Experiments - Wiener, Patch 2M-Patch 8M.
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3.5.2 PCA Method

Figure 3.43: Second Experiments - PCA Color Map.
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Figure 3.44: Second Experiments - PCA Performance.
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Figure 3.45: Second Experiments - PCA, Patch 2M-Patch 8M.
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3.5.3 Hybrid Method

Figure 3.46: Second Experiments - Hybrid Color Map.
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Figure 3.47: Second Experiments - Hybrid Performance.
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Figure 3.48: Second Experiments - Hybrid, Patch 2M-Patch 8M.
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3.5.4 Adaptive Wiener Method

Figure 3.49: Second Experiments - Adaptive Wiener Color Map.
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Figure 3.50: Second Experiments - Adaptive Wiener Performance.
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Figure 3.51: Second Experiments - Adaptive Wiener, Patch 2M-
Patch 8M.
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3.5.5 Adaptive Hybrid Method

Figure 3.52: Second Experiments - Adaptive Hybrid Color Map.
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Figure 3.53: Second Experiments - Adaptive Hybrid Performance.
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Figure 3.54: Second Experiments - Adaptive Hybrid, Patch 2M-
Patch 8M.
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3.5.6 Linear Regression Method

Figure 3.55: Second Experiments - Linear Regression Color Map.
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Figure 3.56: Second Experiments - Linear Regression Performance.
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Figure 3.57: Second Experiments - Linear Regression, Patch 2M-
Patch 8M.
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3.5.7 Random Forest Method

Figure 3.58: Second Experiments - Random Forest Color Map.
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Figure 3.59: Second Experiments - Random Forest Performance.
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Figure 3.60: Second Experiments - Random Forest, Patch 2M-Patch
8M.
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3.5.8 Neural Network Method

Figure 3.61: Second Experiments - Neural Network Color Map.
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Figure 3.62: Second Experiments - Neural Network Performance.
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Figure 3.63: Second Experiments - Neural Network, Patch 2M-Patch
8M.
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3.5.9 SVR method

Figure 3.64: Second Experiments - SVR Color Map.
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Figure 3.65: Second Experiments - SVR Performance.
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Figure 3.66: Second Experiments - SVR Performance.
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3.5.10 Second Comparison of the Methods
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Figure 3.67: Second Comparison of the Methods.
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Figure 3.68: Second ranking of the Methods.
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Method MEAN RMSE(%) MAX RMSE(%) MIN RMSE(%) MEAN GFC

Wiener 1.6902 7.2230 0.1443 0.9978
PCA 1.7213 6.3235 0.2085 0.9974
Hybrid 1.5450 6.2968 0.2623 0.1574

Adaptive Wiener 1.6488 6.4958 0.1464 0.9978
Adaptive Hybrid 1.5065 5.8194 0.1719 0.9981
Linear Regression 1.7619 4.8335 0.4079 0.9963
Neural Network 2.023 8.456 0.4054 0.9960
Random Forest 5.562 24.73 0.2769 0.9955

SVR 7.2715 16.955 2.3936 0.9951

Table 3.5: Metrics of Error of the Second Series of Experiments.

The reconduction of the above comparisons led to important conclusions about the
spectral estimation methods using a smaller training set. Figure 3.67 illustrates the
performance of the algorithms and specifically the number of patches that were esti-
mated perfectly, very goodly, goodly, and badly. Error measurements are depicted in
Table 3.5.

Overall, it is clear from Fig. (3.67) and Table.(3.5) that Hybrid and Adaptive
Hybrid algorithms are the two main methods that achieve the most considerable
estimations. In the opposite direction, SVR and Random Forest are the algorithms
that did not estimate accurately the spectrum from 400nm-730nm as they accounted
for the biggest mean RMSE.

On the second series of experiments, Hybrid still gives more perfectly and goodly
estimated patches than traditional Wiener. Wiener, Adaptive Wiener, and Linear
Regression perform in the same way as got the same score. Specifically, Linear Re-
gression seems to be more powerful as it achieves the lowest amount of badly estimated
patches and the lowest max RMSE. Therefore, Linear Regression outperforms Wiener
and Adaptive Wiener. Adaptive Hybrid and simple Hybrid methods accounted for the
highest ranking in the score bar chart. Adaptive Hybrid gives 705 perfectly estimated
patches, 249 and 159 very good and good estimations respectively. Nevertheless, Hy-
brid and Linear Regression are characterized by stability and effectiveness comparing
the experiments with the larger training set and with the smaller. SVR and Random
Forest are the most inefficient methods due to the reasons that described in Section
3.4.10.

Conclusively, that experiment answered the question that had been posed in Sec-
tion 3.4.10. A smaller training set can train a model in way that the model can
estimate a great amount of unknown spectra. In other words, all the models were
trained with only 96 spectra and, for instance, Adaptive Hybrid estimated badly only
167 patches out of 1269 patches. That is an optimistic result for the spectral estima-
tion approach due to the fact that a HS imager could be trained with the database
of Munsell and with high probability achieves accurate estimations in an unknown
environment.
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3.6 Total Scoring
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Figure 3.69: Total scoring of the Methods.

At this section, a final scoring of the algorithms took place. Specifically, both the
scores from the fist series of experiments and from the second were summarized and
normalized to the highest score. This calculation produced the Figure 3.69, which
illustrates the performance of the algorithms as a function of the above two series of
experiments.

Overall, it is clear from Fig. (3.69) that Linear Regression and Adaptive Hybrid
algorithms are the two main methods that achieve the most considerable estimations.

It comes without doubt that Hybrid and PCA outperform the traditional Wiener
method, but at the same time Hybrid raise the number of the perfectly estimated
patches. Moreover, Hybrid model reached that highest accuracy, when the available
training set is small (i.e Mars Missions). The Adaptive Wiener seems to achieve the
same score as the Linear Regression. According to that result, Linear Regression
is a better candidate method than the Adaptive Wiener, which has time complexity
O(pixels×(2pk+J log J)). Adaptive Hybrid keeps the first place in both experiments,
therefore, whether the high accuracy of estimation is demanded Adaptive Hybrid is
the best algorithm.

Ending up, Linear Regression and Hybrid-FL are the most powerful whether
the real time execution and a good estimation are demanded, and Adaptive Hy-
brid whether the high spectral accuracy is needed regardless the time complexity.
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3.7 Execution Times of the Spectral Estimation Algo-
rithms
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Figure 3.70: Execution Times of the Spectral Estimation Algo-
rithms.

Figure 3.70 illustrates the execution times of each spectral estimation algorithm . The
execution times are presented in four different forms of the possible spatial resolutions.
Specifically, we have acquired a 6MP spectral cube by using the MuSES-9 HS camera
and then, we utilized our software (Fig. (3.6)) both to scale the resolution of the
6MP spectral cube into FULL HD, VGA, 300 ×300, and to measure the execution
times as a function of the spatial resolution.

Considering the Figure 3.70 and the time complexity of each algorithm, it was
predictable that due to the fact that Wiener, Hybrid, PCA, Linear Regression, SVR,
and the Neural network methods have O(pk) complexity their execution time will be
approximately the same and equal to the minimum among all methods. Specifically,
Hybrid method produces a really high spatial resolution cube by locking only for
approximately 5 seconds the Intel I7 processor. As the resolution is declined the
execution time is dropped off.

On the other side, adaptive methods haveO(pixels×(2pk+J log J)) time complex-
ity, therefore, this is the reason that the execution time of estimating a 6MP spectral
cube is approximately 1 minute. All the adaptive methods were implemented using
multi-threading approaches, hence, the procession time could be fell down by raising
up the number of the processor cores.

Ending up, the two main algorithms Linear Regression and Adaptive Hybrid could
be executed in real time (less than a minute) and especially Linear Regression could
also be implemented in a smart phone with a miniaturized HS camera for hands-on
applications
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Chapter 4

Band Selection - Feature
Extraction

4.1 Introduction to Band Selection
A hyperspectral image cube contains hundreds of spectral bands with very fine spec-
tral resolution. In particular, the very high data dimensionality presents a challenge
to many traditional image analysis algorithms. One approach of reducing the data
dimensionality is to transform the data onto a low dimensional space by using cer-
tain criteria. For instance, the objective of principal component analysis (PCA) is
to maximize the variance of the transformed data (or minimize the reconstruction
error). However, these methods usually change the physical meaning of the original
data because the channels in the low-dimensional space do not correspond to individ-
ual original bands but their linear combinations. Another dimensionality reduction
approach is the band selection approach in order to select a subset of the original
bands without losing their physical meaning. Many band selection methods have
been proposed. In terms of object information availability, band selection techniques
can be divided into two categories: supervised and unsupervised. Supervised meth-
ods are to preserve the desired object information, which is known a priori, whereas
unsupervised methods do not assume any object information. For example, canoni-
cal analysis was employed for band selection in [26]; the Jeffries–Matusita distance,
divergence, and Bhattacharya distance between classes were used as selection criteria
in [27]–[28], respectively. Although these supervised techniques clearly aim at se-
lecting bands that include important object information and the selected bands can
provide better detection or classification than those from unsupervised techniques,
the required prior knowledge may be unavailable in practice. For instance, the bands
that are more informative and they contribute in order to achieve more considerable
spectral estimation are unknown and there is no apriori knowledge. Therefore, it is a
need to develop reliable unsupervised band selection methods that can generally offer
good performance regardless of the types of surfaces they estimate (or classify).

Because the basic idea of unsupervised band selection methods is to find the most
distinctive and informative bands, a plenty of algorithms have been proposed over
the last years. The major difference is that the algorithms are applied in the spatial
domain, instead of being applied in the spectral domain for endmember extraction.
There are quite few endmember extraction algorithms and a comparative study can
be found in [29]. In general, endmember extraction algorithms can be divided into the
following two categories: one extracting distinctive pixels based on similarity mea-
surement and the other using the geometry concept, such as simplex. In this Chapter,
we propose the application of the similarity-based endmember extraction algorithms
in the spectral domain. Practical considerations such as algorithm initialization, the
number of pixels to be involved in the band selection process are investigated.
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4.2 Data Preprocessing
To select the most distinctive but informative bands, water absorption and low SNR
bands need to be preremoved. This is because they can be very distinctive but not
informative. Instead of manual selection, we compute the spectral correlation coeffi-
cients between original bands; those bands that have very low correlation coefficients
with adjacent bands are considered as bad bands and will be preremoved[30]. The
noise component in different bands is varied. If the noise component is larger, a band
may look more different from others, although it may not be informatively distinct.
Thus, noise whitening is needed, which requires noise estimation. It is known that
noise estimation is a difficult task. In [31], it was demonstrated that the net effect of
noise whitening and data whitening is similar. Therefore, we apply data whitening
to the original bands (after bad band removal), which can be easily achieved by the
eigendecomposition of the data covariance matrix. Then, the whitened bands actu-
ally participate in the following band selection process. Note that the selected bands
are the original ones, not the whitened ones.

4.3 Properties of Similarity-Based Band Selection
To select the most distinctive and dissimilar bands, a similarity metric needs to be
designated (widely used metrics include distance, correlation, etc). The measure-
ment is taken on each pair of bands. The proposed band selection algorithms are
using the same concept in endmember extraction except for Entropy and PCA ap-
proaches which just rank each band using a certain criterion. In addition, due to the
large number of original bands, the exhaustive search for optimal band combinations
is computationally prohibitive. The sequential forward search can save significant
computation time [27]. It begins with sub-optimal two bands combination, and then,
this band combination is subsequently augmented to three, four, and so on until the
desired number of bands is selected. The proposed band selection algorithms using
the endmember extraction concept adopt this sequential forward search strategy. The
basic steps of that method can be described as follows:

1. Initialize the algorithm by choosing a pair of bands b1 and b2. Then, the
resulting selected band subset is Φ = {b1b2}.

2. Find a third band b3 that is the most dissimilar to all the bands in the current
Φ by using a certain criterion. Then, the selected band subset is updated as
Φ = Φ ∪ {b3}.

3. Continue on Step 2) until the number of bands in Φ is large enough.

Another advantage is that, it is less dependent on the number of bands to be selected
because those bands that are already being selected do not change with this value;
increasing this value simply means to continue the algorithm execution with the
bands being selected, whereas decreasing this number simply means to keep enough
bands from the selected band subset (starting with the first selected band) as the
final result. Moreover, in this section a new similarity based algorithm (BS), specific
for spectral estimation will be introduced and compared with other well-known band
selection methods. BS algorithm does not need initialization of bands, something
that is really important comparing with other band extraction methods, which need
initialization of the first two bands bands. Furthermore, we propose a second band
selection algorithm that is based on linear interpolation technique (LIBS).
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4.4 Band Selection Algorithms
Eight band selection algorithms are evaluated here. Entropy, Correlation, Principal
component analysis ranking-based algorithm, Linear prediction and Orthogonal sub-
space projection, Sparse PCA, LIBS, and BS algorithm will be discussed and analyzed
in this Section.

4.4.1 Information Entropy

This method is based on evaluating each band separately using the information en-
tropy measure (Russ et al. [32]) defined as follows:

H(λ) = −
l∑

i=1
pi ln pi (4.1)

where H is the entropy measure, p is the probability density function of reflectance
values, and l is the number of distinct reflectance values. The probabilities are esti-
mated by computing a histogram of reflectance values. Generally, if the entropy value
H is high, then the amount of information in the data is large. Thus, the bands are
ranked in the ascending order from the band with the highest entropy value (large
amount of information) to the band with the smallest entropy value (small amount
of information).

4.4.2 Principal Component Analysis Ranking (PCAr)

Principal component analysis has been used very frequently for band selection in the
past (Campbell et al. [33]). The method transforms a multidimensional space to one
of an equivalent number of dimensions where the first dimension contains the most
variability in the data, the second most, and so on. The process of creating this space
gives two sets of outputs. The first is a set of values that indicate the amount of
variability each of the new dimensions in the new space represents, which are also
known as eigenvalues. The second is a set of vectors of coefficients, one vector for each
new dimension, that define the mapping function from the original coordinates to the
coordinate value of a particular new dimension. The mapping function is the sum
of the original coordinate values of a data point weighted by these coefficients. As a
result, the eigenvalue indicates the amount of information in a new dimension and the
coefficients indicate the influence of the original dimensions on the new dimension.
The PCA-based ranking system (PCAr) makes use of these two facts by scoring the
bands (the “original” dimensions in the above discussion) as follows:

PCAr(λi) =
j∑
i=1
|εicij | (4.2)

where λi is the central wavelength, εj is the eigenvalue for the jth principal component,
and cij is the mapping coefficient of the ith central wavelength in the jth principal
component. Because the procedure for computing the eigenvalues and coefficients
is both complex and available in most data analysis texts (Duda et al. [34]), it is
omitted.
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4.4.3 Linear prediction (LP)

Qian et al. [35] proposed the LP band selection method. The concept in the LP-based
band selection was originally used in the UFCLSLU for endmember pixel selection
in [36], which means that a pixel with the maximum reconstruction error, using the
linear combination of existing endmember pixels, is the most distinctive pixel. The
difference here is that, for band selection, there is no constraint imposed on the
coefficients of linear combination. Assume that all the pixels in a spectral cube for
each band are gathered in B, where B = [b1,b2, . . . ,bp] is a N × p matrix and there
are two bands b1 and b2 in Φ with N pixels each. To find a band that is the most
dissimilar to b1 and b2, b1 and b2 are used to estimate a third band b, i.e.,

a0 + b1a1 + b2a2 = b′ (4.3)

where b′ is the estimate or linear prediction of band b using b1 and b2, and a0, a1,
and a2 are the parameters that can minimize the linear prediction error. Let the
parameter vector be a = (a0 a1 a2)T . It can be determined using a least squares
solution

a = (XTX)−1XTy (4.4)

where X is an N ×3 matrix whose first column is one, second column includes all the
N pixels in b1, and third column includes all the pixels in b2. y is an N × 1 vector
with all the pixels in b. The band that yields the maximum error emin (using the
optimal parameters) is considered as the most dissimilar band to b1 and b2 and will
be selected as b3 for Φ. Obviously, the similar procedure can be easily conducted
when the number of bands in Φ is larger than two.

4.4.4 Orthogonal Subspace Projection (OSP)

Qian et al. [35] proposed the OSP algorithm for band selection approaches. Assume
that there are two bands b1 and b2 in Φ. To find a band that is the most dissimilar
to b1 and b2, an orthogonal subspace of b1 and b2 is constructed as

P = I− Z(ZTZ)−1ZT (4.5)

where I is an N × N identity matrix, and Z is an N × 2 matrix whose first column
includes all the pixels in b1 and second column includes all the pixels in b2. Then,
the projection yo = PTy is computed, where y includes all the pixels in b and yo is
the component of b in the orthogonal subspace of b1 and b2. The band that yields
the maximum orthogonal component ‖ yo ‖ is considered as the most dissimilar
band to b1 and b2 and will be selected as b3 for Φ. The similar procedure can
be easily conducted when the number of bands in Φ is larger than two. It can be
proved that the least squares solution to the unconstrained linear unmixing problem
is mathematically equivalent to the OSP solution. Therefore, the LP-based approach
(which can be considered as the unconstrained linear unmixing problem) actually
yields the identical selected bands from the OSP based approach. Nevertheless, we
will present the results from both LP and OSP algorithms. Compared to the OSP
solution, the LP-based approach is computationally more efficient because it involves
matrices with relatively smaller size. The remaining problem is to find the initial
bands for OSP, LP, and CorM algorithms.
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Band Used as the Initial for Band Selection for OSP and LP

The initial band pair is critical to the performance of the proposed algorithms. Intu-
itively, we should use the two bands whose dissimilarity is the largest. Instead of the
exhaustive search, the following algorithm can be applied to an original p-band data
set.

1. Randomly select a band A1, and project all the other p−1 bands to its orthog-
onal subspace 〈A1〉⊥.

2. Find the band A2 with the maximum projection in 〈A1〉⊥, which is considered
as the most dissimilar to A1.

3. Project all the other p − 1 bands to the orthogonal subspace 〈A2〉⊥, and find
the band A3 with the maximum projection.

4. If A3 = A1, A1 and A2 are confirmed to be the pair with the most significant
dissimilarity, and the algorithm is terminated; if A3 6= A1, go to the next step.

5. Continue the algorithm until Ai+1 = Ai−1, then either Ai−1 or Ai can be used
as the band selection initial b1 (or Ai−1 and Ai are used as the initial band
pair).

Qian et al. [35] found out that this algorithm can always extract the two most
distinctive bands, regardless of its initial A1, although it will result in a suboptimal
set of bands. In the following experiments we exhaustively searched the two initial-
optimal bands, due to the fact that a suboptimal initialization could easily decline
the accuracy of the spectral estimation algorithms.

4.4.5 Correlation Measure (CorM)

One of the standard measures of band similarity is normalized correlation (Duda et al.
[34]). The normalized correlation metric is a statistical measure that performs well
if a signal-to-noise ratio is large enough. This measure is also less sensitive to local
mismatches because it is based on a global statistical match. The correlation based
band ordering computes the normalized correlation measure for all adjacent pairs
of bands similar to the spatial autocorrelation method (Warner et al. [37]). After
selecting the first least correlated band based on all adjacent bands, the subsequent
bands are chosen as the least correlated bands with the previously selected bands.
This type of ranking is based on mathematical analysis of Jia and Richards et al.
[38] where spectrally adjacent blocks of correlated bands are represented in a selected
subset.

4.4.6 Sparse Principal Component Analysis of a constant-rank ma-
trix

The principal components (PCs) of a set of observations on N variables capture or-
thogonal directions of maximum variance and offer a distance-optimal, low-dimensional
representation that for many purposes conveys sufficient amount of information.
Without additional constraints, the PCs of a data set can be computed in polynomial
time using the eigenvalue decomposition. A disadvantage of conventional PCA is
that, in general, the extracted components are expected to have nonzero elements in
all their entries, therefore, PCA does not provide information about the source of the
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principal components. On that account, George Karystinos et al. [39] and Megasthe-
nis Asteris proposed a non NP-hard sparse PCA algorithm that computes the most
k-sparse principal components alongside with the their support vectors in real time.
Authors proved that the sparse principal components of a p× p correlation matrix C
can be obtained in polynomial time under a new sufficient condition: when C can be
written as a sum of a scaled identity matrix and a positive semidefinate update, i.e.,
C = σIp + A, and the rank D of the update A is not a function of the problem size.
Under this condition, they show that sparse PCA is solvable with time complexity
O(pD+1). The C matrix is defined as the auto-correlation matrix of the B matrix,
which is a N × p matrix, where N is the number of pixels of the spectral cube, p is
the number of observations-wavelengths, and k is the number of bands we want to
isolate as the most informative and distinctive. Because the procedure of computing
the sparse PCA is complex and available in paper [39], it is omitted. Nevertheless,
intuitively, the original problem of the k-sparse PCA is formed as

Xopt = argmax
‖x‖=1,‖x‖0≤k

{xTCx}. (4.6)

Solving the original problem, it is needed to find the k-row sub-matrix of V, where
V is given by the decomposition of A (A = VVT ) whose principal singular value (σ)
is the maximum one among all sub-matrices. The indices that are contained in the
optimal support Iopt, where Iopt is given by

Iopt , argmax
I⊆|N |,|I|=k

{σmax(VI,:)} (4.7)

corresponding to the nonzero loadings of the solution Xopt. Note that VI,: is the left
singular vector.

4.4.7 BS (Band Selection Algorithm)

It can be easily observed that none of the above algorithms are specific for spectral
estimation approaches. The described methods search for the best subset of bands
that are informative and distinctive, but this is not enough for the spectral estimation
approach. The spectral estimation procedure is based on estimation algorithms and
on their performance. Each spectral estimation method is constructed using differ-
ent criteria and mathematical formulas, so different methods perform better using
different subset of bands.

Furthermore, all the above band selection methods and especially the most well-
known (OSP, LP) obtain the initial two bands either using geometry projections
or using exhaustive methods like experiments in[35]. According to [35], geometry
projection methods return sub-optimal initial bands, something that effects negatively
the performance of the spectral estimation algorithms.

Moreover, PCA and Correlation methods locate the bands using statistical meth-
ods under low SNR conditions. However, these methods usually change the physical
meaning of the original data, due to the fact that the channels in the low-dimensional
space do not correspond to individual original bands but their linear combinations.

Hence, we need an algorithm individual of PCA and Correlation methods, specific
for spectral estimation aim without need of initialization.

All the above requirements are satisfied by BS. BS is a band selection algorithm
specific for spectral estimation. Furthermore, the most important achievement is that
it works without need of searching for initial bands. The BS algorithm works from
high dimensional space to a lower. Specifically, the algorithm uses all the bands that
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a spectral cube contains as initial bands. Then it locate the band j, which can be
subtracted from the entire set of bands and will not affect negatively the reconstruc-
tion of the spectral cube, using a spectral estimation algorithm. In other words, in
each step a band that it does not raise significantly the RMSE of reconstruction of
the spectral cube is subtracted from the initial set. The algorithm returns a set with
the k most important bands, capable for spectral estimation. The following pseudo-
code describes the BS method analytically. BS takes as input parameter a N × p
matrix that contain N pixel of the spectral cube and their reflectance values in p
wavelengths. The time complexity of this algorithm is in the worst case O(p2), where
p is the number of wavelengths that are contained in the spectral cube.

Algorithm 1 BS Algorithm
1: procedure BS(B = [b1,b2, . . . ,bp] ∈ RN×p , number of bands to keep k)
2: Btmp = {B}
3: RMSE = 0
4: index = 0
5: for i in range 1 : p− k do
6: maxRMSE =∞
7: for j in range 1 : (p+ 1)− i do
8: v = Btmp − {Btmp

j }
9:

10: EstimatorMatrix = SpectralEstimationAlgorithm(v,B)
11: FinalEstimation = v ∗EstimatorMatrix
12: RMSE = CalculateRMSE(FinalEstimation,B)
13:
14: if RMSE < maxRMSE then
15: maxRMSE = RMSE;
16: index = j
17:
18: end if
19: end for
20: Btmp = Btmp − {Btmp

index}
21: end for
22: return Btmp ∈ RN×k
23: end procedure

This algorithm returns a sub-optimal subset of bands, due to the fact that the
subtraction of a band for the initial set take place without prediction of the next-
subtracted band. On this way, algorithm may exclude the ith band from the initial
set, but the spectral estimation may be more considerable whether after the exclusion
of the jth next-subtracted band, the remain subset of bands included the ith band
gives better spectral estimation than the returned subset of the BS. Nevertheless, the
heuristic BS algorithm is adapted for spectral estimation purposes and the experi-
ments shew that the method returns more capable bands to augment the spectral
estimation accuracy compare with other methods.

4.4.8 Band selection using Linear Interpolation (LIBS)

Another idea to fulfill the aim of the band selection is to consider as features, the
bands of the spectrum that can be united using linear interpolation technique, and
that union yields the reconstruction of the spectrum with the minimum error. In
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Figure 4.1: LIBS algorithm.
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Figure 4.2: Procedure of finding feature points.

Chapter 2 we shew that a way to reconstruct the spectrum can be performed using
any interpolation operator among -captured bands. For instance, such bands are
those that are characterized in Figure 4.1 as points. The red line illustrates the
reference spectrum and the black line the reconstruction of the spectrum using linear
interpolation between these points.

Considering that, a new approach for band selection was implemented. Each band
is voted positive whether the algorithm find a point that lies on this band. Then, the
method counts all the votes and elects as more bands the k bands that were voted by
the majority pixels of the spectral cube. That procedure is known as majority voting.
The way that the algorithm follows to detect all the point is illustrated in Figure 4.2.
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Firstly, the method calculates the line that passes through the first and the last band
using the following model:

y − I(b1) = I(bp)− I(b1)
bp − b1

(x− b1) (4.8)

where I is the intensity value, b1 is the first band of spectrum and bp is the last
band of the spectrum. We have observed that we reconstruct more accurately the
spectrum, whether the first and the last bands of the spectrum are parts of the
selected subset of bands. Then, we detect the intersection points of the line with the
reference spectrum. Between each pair of intersection points, the band that has the
maximum projection on the line (green vertical line in Fig. (4.2)) is considered as
the most feature point. Observing Fig. (4.1), linear interpolation among these bands
can reconstruct accurately the spectrum. This procedure is repeated for each pixel
of the spectral cube and the algorithm returns the k most bounds of the spectrum
using the majority voting technique. The steps of algorithm are described below:

1. For each spectrum of each pixel of the spectral cube, find the line that passes
through the first and the last band.

2. Detect the intersection points of the line with the reference spectrum

3. Between each pair of intersection points, find the band that has the maximum
projection on the line

4. Adding +1 vote for each band, including the first and the last band.

5. At the end, count the votes of each band and elect the k most high voted sets,
as the most .

4.5 Practical Considerations
1. Number of Pixels Involved in the Band Selection Process: The size

of a spectral cube is very large due to the large number of pixels in an image.
Fortunately, authors of [35] found out that using a small subset of pixels in the
band selection process will not change the results in most cases. This is because
each band image is spatially highly correlated. Therefore, in the experiments,
we randomly choose 10% or 1% of N pixels for band similarity assessment.

2. Number of Bands to be Selected: In practice, it is difficult to know how
many bands should be selected. It is more than sure that by increasing the
number of the selected bands, the estimation accuracy will be augmented. The
number of selected bands is depend on the optical limitations of the hardware
and on the application that is studied.

4.6 Experiments for evaluation the band selection meth-
ods

4.6.1 Information about the experiments

To evaluate the performance of the band selection algorithms, a real band selection
procedure took place. The effectiveness of each method was evaluated according
to the preciseness of estimation using the k bands as features. In this experiment,



Chapter 4. Band Selection - Feature Extraction 89

the Macbeth SG ColorChecker was used to extract the six most informative and
distinctive bands and the Munsell’s patches as target of the estimation. The scoring
of each band selection method achieved using Root Mean Square Error (RMSE)
and Goodness of Fit (GFC) metrics. Specifically, max, mean, and min RMSE and
mean GFC are presented for each band selection method in Table 4.2. In Table 4.1
the selected bands from each method were depicted. Fig. (4.3) shows the success
percentage of the different band selection methods and Fig. (4.4) illustrates the total
ranking.

Method Selected Bands

Entropy [600nm, 620nm, 630nm, 650nm, 660nm, 720nm]
CorM [440nm, 490nm, 550nm, 700nm, 710nm, 720nm]
PCAr [560nm, 570nm, 580nm, 590nm, 670nm, 690nm]
OSP [430nm, 500nm, 560nm, 610nm, 650nm, 710nm]
BS [430nm, 480nm, 560nm, 600nm, 650nm, 700nm]
LP [430nm, 500nm, 550nm, 600nm, 660nm, 730nm]
LIBS [400nm, 500nm, 530nm, 560nm, 600nm, 730nm]

Sparse PCA [440nm, 550nm, 560nm, 570nm, 630nm, 700nm]

Table 4.1: Selected bands from the band selection algorithms.

Method MEAN RMSE(%) MAX RMSE(%) MIN RMSE(%) MEAN GFC

Entropy 8.053 32.74 0.5160 0.9620
CorM 2.1343 9.0090 0.3816 0.9950
PCAr 6.1260 28.7439 0.6102 0.9631
OSP 1.4578 4.7359 0.2279 0.9982
BS 1.4896 4.594 0.3143 0.980
LP 1.5369 5.4226 0.3448 0.9978
LIBS 2.44 8.9687 0.1749 0.9963

Sparse PCA 2.6187 10.5467 0.5187 0.9932

Table 4.2: Metrics of Error for the Band Selection Experiments.
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4.6.2 Conclusions of the Band Selection Experiments

The above tables and charts provide an analysis of the performance among different
band selection algorithms using Linear Regression as spectral estimation model.

Overall, it can be seen in Fig. (4.3) that BS, OSP, and LP are the best scored
methods that produce the most considerable spectral estimations. On the other hand,
Entropy and PCAr get the lowest rank in scoring table, therefore, they did not raise
up the estimation preciseness.

It is clear from Table 4.1 that Entropy selects the bands around 600nm and
720nm, something that is expected due to the fact that Entropy finds the most
informative parts of data. As a result, spectrum between 600nm and 720nm is the
most informative part of the visible spectrum but not the most distinctive. PCAr
method gives more informative and distinctive bands since the method gives a rank for
each band according to both the eigenvectors and eigenvalues. CorM method raises
significantly the perfectly estimated patches from 86 of PCAr to 410, as it is illustrated
in Fig. (4.3), and declines the mean RMSE error from 6.12% of PCAr to 2.13%.
Moreover, the selected bands of Sparse PCA and LIBS are more capable for spectral
estimation purposes than those of PCAr, but they did not move up the mean GFC
compared with CorM. Nevertheless, it comes without doubt that PCAr, CorM, and
Sparse PCA change the physical meaning of the original data, something that effects
negatively the spectral estimation accuracy. In the opposite direction, OSP, LP,
and BS improve the spectral estimation. OSP gives 683 perfectly estimated patches
and 128 badly estimated compared with LP that produces 135 badly estimated and
bigger mean RMSE. The projection of OSP on a orthogonal subspace is the key of
its success, due to the fact that combines similarity based metrics with geometric
approaches. Slightly up, with the highest score is the BS algorithm. The novelty
and the success of the proposed method stems from the manner of the algorithm.
Specifically, BS selects bands that can reconstruct accurately a spectral cube and for
that reason it achieved the lowest estimation error among the other methods. Using
the bands of the BS algorithm we can estimate the half of the Munsell database
perfectly and only 116 out of 1269 patches badly. Note that BS has bigger mean
RMSE than OSP but the max RMSE is the lowest compare to the other methods.

Ending up, BS method is the most suitable band selection method for the spectral
estimation aim.
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Chapter 5

Conclusions and Future Work

Throughout this thesis we studied and compared methods of spectral estimation
alongside with band selection methods.

In Chapter 1, a plenty information about spectroscopy and hyper-spectral imaging
were provided. Furthermore, we shew that simple exposure imagers reveal a major
disadvantage. When we have phenomena that are changing on a time scale that
is sorter than the duration required for recording the spectral cube, the HS system
cannot perform accurately. On that account, a need for a snapshot spectral imager
that acquires in appropriate time the spectral data was revealed. Then, we utilized
spectral estimation methods due to the fact that snapshot imagers cannot obtain a
huge number of wavelengths without rapid loss of the spatial resolution.

In Chapter 2, all the well-known spectral estimation methods were compared ac-
cording to the quality of their estimation using RMSE and GFC metrics. A new
algorithm called (Adaptive) Hybrid proposed by us, in order to overcome shortcom-
ings of the other methods.

In Chapter 3, detailed experiments were carried out using Munsell and Macbeth
ColorChecker as training and validation set and vise versa. Then, a scoring of the
algorithms took place to evaluate the spectral accuracy. It turned out that Linear Re-
gression is the best candidate algorithm for spectral estimation approaches whether
the execution time of the estimation should be minimized and high estimation per-
formance is demanded. When the training set is small, Hybrid method achieves more
considerable estimation than the Linear Regression. Adaptive Hybrid seems to gives
the lowest spectral reconstruction error but its time complexity is undeniable higher
compare with Linear Regression. (Adaptive) Hybrid algorithm is more efficient than
the Wiener model, something that was indicated in experiments.

In Chapter 4, we strived to optimize the performance of the spectral estimation
methods by leveraging band selection techniques in order to select as features the
most informative and distinctive bands. A great amount of band selection algorithms
were analyzed, which based either on geometric approaches or on similarity formulas.
Additionally, a new promising band selection algorithm called BS proposed by us and
it turned out that BS performs more accurately than all the other methods. BS algo-
rithm is based on finding the most informative and distinctive bands, but alongside,
bands that will provide errorless spectral estimation using any spectral estimation
method.

Since Linear Regression and (Adaptive) Hybrid need small time period for process-
ing, we can create a system that will have six band pass filters and then have online
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processing to create a spectral cube in real time. That can also be used for mobile
applications (since spectral imaging nowadays is mostly for static applications). This
is extremely hopeful since in the present moment there is no miniaturized hyper-
spectral imaging device that can provide real time results.
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