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Abstract

Hyperspectral Imaging is a powerful analytical tool that enables the acquisition of a series of

images in narrow spectral bands. This technique makes it possible to extract both spatial and

spectral information about the scene under investigation. Therefore, it is widely used for non-

destructive and non-invasive analysis in a variety of fields, ranging from food quality assessment

to biomedical applications. Material Identification is the key to all these applications, which is

achieved by using a library of spectral signatures of materials of interest and Spectral Similarity

Measurements. Finding the right Spectral Similarity Measure is an important step and many

studies have been conducted for their evaluation in terms of accuracy. However, in these studies

the evaluation is made using members of the libraries (labeled data) and time performance

is never assessed. This study proposes a series of steps that should be followed in Spectral

Similarity Measures evaluation, including both labeled and unlabeled data for comparison. More

specifically, reflectance measurements of various materials were gathered from online public

spectral libraries to construct a database of spectral signatures. Furthermore, a series of Spectral

Similarity algorithms were implemented and tested for their speed and accuracy. The accuracy

of the algorithms has been assessed on the basis of their ability to produce a right match when

an unknown spectrum is compared against the reference spectra of the database. The Spectral

Similarity algorithms tested in this study are: a) SAM, b) ED, c) SID, d) SCA, e) SGA, f)

SID-SAM, g) SID-SCA, h) AWN, i) SSS, j) NS3, k) SSD and l) SPM. Finally, hyperspectral

measurements of skin lesions have been used as a test case for the final evaluation of the

implemented comparison methods. The combination of a spectral database of references with

the right Spectral Similarity algorithms can provide a valuable tool for material identification,

with applications in a variety of scientific and industrial fields.
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Chapter 1

Preface

1.1 Thesis Outline

Chapter 2 provides a theoretical background of the of the principals behind spectroscopy and

spectral imaging.

Chapter 3 gives an outline of the Classification methods used on Spectral Imaging data, as well

as a detailed analysis of the Spectral Similarity Algorithms implemented for the purposes of

this thesis.

In Chapter 4 the implementation methods used for the Spectral Library and Spectral Matching

are analyzed.

In Chapter 5 a test case is used to present the results about the performance of the methods

discussed on Chapter 4. The test case consists of Hyperspectral data acquired from human nevi.

In Chapter 6 the conclusions of this thesis are provided and the possible future research direc-

tions on the problem.

1





Chapter 2

Spectral Imaging

2.1 Electromagnetic Radiation

Electromagnetic radiation is the energy carried by electromagnetic waves. An electromagnetic

wave consists of an oscillating electric field E and an oscillating magnetic field M. The two

fields are perpendicular to each other as well as to the propagation direction of the wave. The

key features describing an electromagnetic wave are its wavelength λ and its frequency f. The

wavelength corresponds to the horizontal distance of a full oscillation and the frequency to the

number of oscillations that occur per second. The two measures are inversely proportional, as

the shorter the wavelength gets, the higher the frequency becomes.

This relationship of wavelength and frequency is described by Maxwells equation:

c = λf, (2.1)

where C is the speed of light, which equals to 299.792.458 m/s in a vacuum. With this equation,

Maxwell proved that light is an electromagnetic wave.

Einstein, on the other hand, proved that electromagnetic radiation and therefore light can be

treated as a continuous flow of wave energy packets, called photons. The energy content of each

photon is given by:

E = hf =
hc

λ
(2.2)

where h is Planck’s constant (6.6261× 10−34Js), c is the speed of light, v is the frequency and

is the wavelength of the radiation.

3



Chapter 2. Spectral Imaging 4

The above two principals led to todays perception of light being both a wave and a flow of

particles. When light travels it behaves as an electromagnetic wave and whenever it interacts

with matter it behaves as a particle.

Figure 2.1: The electromagnetic spectrum.

The continuous range of frequencies of electromagnetic radiation is known as the electromagnetic

spectrum. This range is divided into different regions, called bands, mostly on the basis of how

electromagnetic waves of each region interact with matter. The electromagnetic spectrum ranges

from the longest radio waves to the very short gamma rays. The transition from one band to

another is gradient and not instant and therefore there are more categories in between bands.

Visible light, as part of the electromagnetic spectrum, occupies only a narrow band of it, from

400nm to 700nm approximately.

2.2 Spectroscopy-Spectrometry

Spectroscopy refers to the study of how electromagnetic energy interacts with matter. This

interaction can result in energy being absorbed, reflected, transmitted or scattered by matter.

Matter is comprised of atoms and empty space. When electromagnetic energy passes through

a material it may interact with its atoms. The probability of photons interacting with the

atoms of a material depends on numerous factors, such as the photon’s energy or the atomic

composition. When a photon does interact with a particle it transfers energy to it. The

amount of energy transferred depends on the electromagnetic wave’s frequency as described
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Figure 2.2: Ways in which electromagnetic radiation interacts with matter.

in Equation 2.2. Therefore, low energy photons belonging to the infrared side of the spectrum

will only cause a vibration to the particles they interact with and as a result increase the heat

of the material. On the other hand, photons that are part of the visible spectrum, have enough

energy to cause outer atom electrons to get elevated to higher energy levels. Lastly, when

photons of the x-ray and γ-ray bands of the spectrum interact with matter, they can cause the

excitation of core atomic electrons.

Spectrometry is the technique used to measure this radiation to material interactions and pro-

duce quantifiable results. Essentially, spectrometry is the application of spectroscopy. Spec-

trometers measure the intensity of the light emerging from the sample as a function of the

wavelength. Spectrometry is used in chemistry for the identification of substances, by analyzing

the absorbed or reflected spectrum of these substances.
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Figure 2.3: Atomic excitation.

2.2.1 Reflectance Spectroscopy

As was previously mentioned, reflection is one of the interactions that may occur between elec-

tromagnetic radiation and matter. When a beam of radiation hits the boundary that separates

two mediums, a fraction of it bounces back into the initial medium. This phenomenon is called

reflection. When the reflected beam has the same angle as the initial beam, then the reflection

is called specular. In the opposite case, the reflection is called diffused.

Reflectance spectroscopy is widely used in scientific measurements as it can offer information

about the materials comprising the measured sample. Since, the fraction of light that is not

reflected, gets absorbed by the material, it can give an intuition about its chemical composition.

2.3 Spectral Imaging (SI)

Spectral imaging combines spectroscopy with photography in a way that enables spectral

information to be collected at every location in an image plane. Spectral Imaging systems

record light intensity as a function of both wavelength and location. Over the years, different

techniques have been applied, creating categories of Spectral Imager. In regards to spectral

range, two distinctions are made: Multispectral Imaging and Hyperspectral Imaging. Their

main difference lies in the number of bands each system can acquire and how narrow these bands
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can be. A Multispectral imager typically acquires fewer and wider bands than a Hyperspectral

Imager.

2.3.1 Hyperspectral Imaging

HyperSpectral Imaging systems can acquire data in a wide range of continuous bands. The

hyperspectral imager takes a full image at each individual wavelength. When these images are

put together they form a three-dimensional data set of spectral and spatial information, known

as a spectral or hyperspectral cube. In other words, a spectral cube can be viewed as a stack of

images of the same scene, each of them representing a different wavelength. This way, a fully

resolved spectrum can be recorded at each pixel, providing millions of individual spectra per

scene.

(a) Spectal curve extracted from a pixel (b) The coordinates of a spectral cube

Figure 2.4: Hyper-spectral Cubes

It is this large amount of information contained in a measurement that makes Hyperspectral

Imagery a powerful analytical tool, which has been widely used in a variety of applications

like satellite or airborne remote sensing, industrial quality control, astronomy, military target

detection, internal medicine, chemometrics, molecular biology and so many more.

2.3.2 Spectral Signatures

Each material has its own chemical composition that differentiates it from others. Different

materials reflect differently and in different sections of the electromagnetic spectrum. This

property makes it possible to uniquely identify through the spectrum in which it reflects. The

radiation reflected from an object as a function of wavelength, that uniquely identifies it is called

Spectral Signature.

In Hyperspectral Imaging spatial resolution is an important factor to take into account, while

processing data from spectral cubes. When the spatial resolution is low, a single pixel may
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contain many spectral signatures mixed together. In this case, special methods of Spectral

Unmixing must be performed so as to reveal all hidden signatures. In most cases, though,

and when spatial resolution is higher, a collection of pixels may represent the same spectral

signature. This process is called Classification and it will be further discussed in Chapter 3.

Figure 2.5: Spectral signatures of different surface materials

2.3.3 Target Detection and Material Identification

Hyperspectral Image Analysis is used for Anomaly Detection, Target Detection, and Material

Identification. Anomaly detection is used to identify pixels that are different from the back-

ground. Target detection is used to identify pixels in the image that contain spectra of a known

type, called target spectra. In that essence, known spectra from a spectral library are compared

with the acquired spectra and pixels containing the target are separated from the rest. Essen-

tially, in both anomaly and target detection pixels are either labeled as anomalies/targets or

background.

Target detection is actually a binary classification technique. In material identification, on the

other, a spectral library of known spectra is used to label pixels regardless of whether they

belong to the background or not. Material identification can be viewed as target detection

used multiple times over the entire scene. Spectral similarity measures are the most common

technique used for material identification. In order to speed up the process of labeling, pixels

are usually first grouped together based on their spatial and spectral information through clas-

sification (Multiclass Classification). In the following chapter the major principles of Spectral

Classification are discussed.
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Hyperspectral Image Classification

3.1 Introduction

Classification comprises a basic step in Hyperspectral Image Analysis, as it enables the analyst to

extract important information about the scene under investigation. As a process, classification

aims to partition the pixels of an image into groups (called classes), such as those pixels of

the same group have similar characteristics. Spectral classification techniques use the spectral

information of every pixel in order to assign it to a predefined class. In general, the number of

classes contained in an image should be exhaustive so as to reflect the complexity of the scene.

Choosing the correct number of classes will guarantee that all pixels are correctly classified.

Correct separability means that pixels within a class have similar spectral signatures, which are

dissimilar to spectral signatures of neighboring classes.

The Classification process has two main stages. In the first stage, which is usually called

Prototyping or Training, the number and nature of the classes are determined. In the second

stage - usually called Identification or Labelling - every unknown element is assigned to one of the

predefined classes, according to its level of similarity to the basic pattern. The result of image

classification is a thematic map that shows the segmented regions, each of which corresponds

to a class.

Generally, the classification techniques are traditionally divided into two categories: Unsuper-

vised Classification and Supervised Classification. The division is done on the basis of the

analyst’ s involvement in the classification process. In Supervised Classification, an expert an-

alyst with prior knowledge of the scene guides the classifier during prototyping and training

of the system. On Unsupervised Classification, on the other hand, the classifier is trained us-

ing statistical information about the data. Unsupervised classification is preferred, when there

exists no prior knowledge about the dataset under analysis. Other methods have been pro-

posed in literature through the years, which are actually exploiting or combining features of

9
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the two traditional Classification techniques. These methods are called Partially Supervised or

Semi-Supervised Classifications and are preferred when a priori knowledge of the scene exists

for some data, but not for all them. Recently, semi-supervised methods have gained attention,

in an attempt to produce semi-automated classifiers. Before applying any technique, though, a

series of preprocessing steps should be performed on the spectral cube. In the following section,

some common preprocessing techniques are described.

3.2 Preprocessing

Hyperspectral measurement systems can cause unwanted effects on data during acquisition. In

order to achieve a meaningful interpretation of data, there are several issues that should be

handled before the analysis of a sample. Hyperspectral images acquired for different applica-

tions may require different preprocessing methods to be applied. Airborne hyperspectral data,

for example, require atmospheric and topographic corrections, while in medical applications a

common preprocessing step is the removal of artifacts that are not useful for diagnosis. The

following methods are common preprocessing steps applied in the majority of applications.

3.2.1 Noise Reduction

Hyperspectral sensors, no matter how advanced they are, will add noise to the acquired data.

Instrumental noise includes thermal, quantization and shot noise which causes corruption in

the spectral bands by varying degrees. Noise will cause distortion to the original data and

lead to vague results during the analysis. There are three main methods of noise reduction for

hyperspectral data:

1. Smoothing Filtering

2. Image Transformation

3. Wavelet Transformation

3.2.2 Image Registration

A sudden movement of the measuring system or the hyperspectral sensor will cause the images

of the spectral cube to be misaligned in regards to one another. The use of image registration

algorithms helps to align all images of the cube according to a reference or target image.
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3.2.3 Feature Extraction

As was mentioned in Chapter 2, a hyperspectral cube can contain millions of spectra. Processing

all that data can be computationally intensive and time-consuming. Feature extraction is a

method used to find key features that best describe a data set. A feature is a single element of

a pattern. Transforming the image set to the feature set is often essential since it reduces the

dimensionality of the data and simplifies the calculations performed by classifiers.

One of the most commonly used methods for dimensionality reduction is that of the Principal

Component Analysis (PCA). This method computes an orthonormal basis derived from the

eigenvectors of the covariance matrix, which in turn correspond to the largest eigenvalues (also

known as Principal Components). Generally, the first several principal components contain most

of the necessary information and the rest can be discarded with no great loss of information.

3.3 Unsupervised Classification

Figure 3.1: Data points formed into classes using Unsupervised classification.

The Unsupervised Classification method is used when the analyst has no a priori knowledge

of the acquired scene and the classes that it might actually contain. In cases like these, where

there is insufficient reference information available the unsupervised method helps to reveal the

hidden structures of the hyperspectral cube. The user has to specify the number of classes and

maybe some statistical measures, depending upon the algorithm used. The algorithms, then,

use a predefined Spectral Similarity (Section 3.6) measure to create clusters of pixels that have

similar features. When the clustering has completed the user has to spend some time to label
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the generated classes based on his/her knowledge of the scene. However, because the clustering

procedure does not require the analyst’ s involvement, Unsupervised Classifiers are considered

automated.

Clustering has been used for several decades in various fields for grouping data. There are

numerous clustering algorithms that can be used to determine the classes present in the data

set, each having its own characteristics. Some of the most popular clustering algorithms used

are k-means, fuzzy C-means, ISODATA, statistical clustering methods, and the SOM (self-

organizing feature maps), an unsupervised neural classification method.

Figure 3.2: Differences of Supervised and Unsupervised Classification.

3.4 Supervised Classification

Supervised classification methods are based on the knowledge of the area to be classified. It

may be defined as the process of identifying unknown objects by using the spectral information

derived from training data provided by the analyst. In this method, the analyst selects and

specifies representative samples on the image of a known cover type called Training Sites/Ar-

eas. The training samples should be selected from homogenous regions and cover the variability

within the image. The extracted data are used to find the properties of each individual class.

A computer software, then, uses the training set and classifies the whole image. The result of

the classification is the assignment of unknown pixels to pre-defined groups. Ideally, the classi-

fication result should provide classes that do not overlap. The selected references that comprise

the Training Areas play a critical role in Supervised Classification. If they are not accurate or
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representative of the complexity of the image, then the classification will give inaccurate results.

On the other hand, Supervised Classification performed with a good training set can give better

and more accurate results than Unsupervised Classification.

Supervised classification is performed in three stages. In the first stage, called the training stage,

the analyst defines the regions that will be used to extract training data, from which statistical

estimates of the data properties are computed. At the classification stage, which is the second

stage, every unknown pixel in the test image is labelled in terms of its spectral similarity to

specified land cover features. As a result, a thematic map is produced, showing every pixel with

a class label. Finally, in the third stage, the results of the classification are validated in terms

of accuracy and performance. The accuracy of supervised classification is determined partly by

the quality of the ground truth data and partialy by how well the set of ground truth pixels are

representative of the full image. In order to measure the accuracy, it is common practice to use

only part of the ground truth data for training the classifier and to use the remaining pixels for

testing, that is to see if the classifier output corresponds to reality.

The size of the training data set is very important in supervised classification if statistical

estimates are to be reliable. The analyst that selects the training sites must have very good

knowledge of the variability in the image. The sample size is mainly related to the number

of features whose statistical properties are to be estimated. Supervised classification methods

require more user interaction, especially in the collection of training data. The majority of

work is done before the actual classification of a hyperspectral image. In traditional Supervised

Classification, the training set extracted from one hyperspectral cube cannot be used on an

another. This is a timely and costly process that made researchers look for other ways to have

the classification accuracy of Supervised methods in a more autonomous way.

Figure 3.3: Training Areas selection to perform Supervised Classification.
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3.5 Semi - Supervised Classification

The main difference between Supervised and Unsupervised Classification is that Supervised

Classification uses a training set of spectral data which are previously labelled by an analyst.

Unsupervised Classification algorithms, on the other hand, are used on unlabelled data and

must determine the classes in an image on their own, based on statistics and patterns of the

data. In general, supervised classification is more accurate when the training dataset is good,

but it is time-consuming and costly. Semi-Supervised Classification exploits the two traditional

methods, by using both labeled and unlabeled data for classification. Including unlabeled data

on the classification process has proved to provide better classification results and improve the

classification accuracy, while at the same time reduces time and cost. This way provides a

semi-automatic classification procedure. Several approaches to semi-supervised classification

have been proposed, which can be categorized as co-training, self-training or generative models.

A common method used in hyperspectral imaging is the ”Knowledge Transfer” model, which

belongs to the generative category of Semi-Supervised models. In this model, the analyst uses

reference data extracted from an already labeled image. The labeled data are used on the

target image to determine if there are any spectral data present in this image and what that

may be. Then an unsupervised classifier is trained on the unlabeled data in order to define

the boundaries of the classes or even identify new ones. This way the analyst does not have

to identify training areas from each and every image to be classified. However, this method

requires that the labeled data used for the classification of the target image come from a nearby

and preferably overlapping area.

Another semi-supervised approach is the ”Cluster-then-Label” technique [34], which also belongs

to the generative group of models. This method uses an Unsupervised algorithm first in order

to cluster the image and produce class mean values. Then, the mean of each class is labeled

using a Supervised algorithm and a set of already labeled data. Since the supervised method is

used for a much smaller set of data compared to the millions that may be on a hyperspectral

image, the whole process of classification becomes much faster. A spectral library can be used

to assist to the labeling of the classes’ mean spectrum or centroid.

Spectral libraries [34-35],[37] have been widely used by analysts to assist in the interpretation

of spectral data. The benefit of using spectral libraries is that they allow reusability of already

labeled data and of the spectral knowledge gained from images acquired at different periods

of time. Furthermore, apart from labeled hyperspectral data they can also contain laboratory

spectral measurements acquired with other equipment like a spectrometer. Spectral library

search is emerging as a promising approach in semi-supervised classification models and espe-

cially in the field of material identification and mapping. Material identification by spectral

library search requires:
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1. a spectral library of reflectance spectra that contains the application specific materials,

2. appropriate Spectral Similarity metrics to perform the search in the library and find the

right matches, and

3. performance evaluation criteria.

The quality of the spectra in the library is of key importance in the classification process. This

is why a processing sequence to normalize the spectral data in the library should be followed so

as to yield better results during the labeling process.

The following section describes the Spectral Similarity Metrics that are commonly used in

Classification procedures and especially in spectral library searching.

3.6 Spectral Similarity Metrics for Material Identification

Spectral Similarity Metrics are used in all Classification approaches in order to quantify the

variance between the spectral data at hand. Such algorithms compare two spectra with each

other and produce a score of similarity. In the majority of cases, as this score tends to zero the

similarity between the spectra increases, while a score equal to zero indicates a perfect match.

Reflectance intensities are represented as n-dimensional vectors, where n is the number of spec-

tral bands used during the acquisition. The magnitude of the vector corresponds to brightness,

while direction corresponds to the spectral shape. Several spectral similarity measures have

been proposed in the literature that can be categorized as either stochastic or deterministic. In

this study, the following twelve algorithms have been used in order to evaluate their performance

in a spectral library search.

3.6.1 Spectral Angle Mapper (SAM)

SAM [42] algorithm is one of the most widely used Spectral Similarity algorithms. This algo-

rithm uses the dot product between two spectra and finds the angle difference between them.

SAM algorithm is defined as:

SAM(x,y) = arccos

(
< x,y >

||x||2||y||2

)
(3.1)

where x,y are two n-dimensional spectra, and n is the number of spectral bands. The resulted

angle is expressed in radians and smaller angles represent a closer match. SAM is invariant to

the intensity changes and relies heavily upon the spectral features to produce a result.
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Figure 3.4: Vector representations of two reflectance vectors x,y in 3D orthonormal space
created by three different wavelengthts. SAM measure calculates the angle (θ) between the two

vectors.

3.6.2 Euclidean Distance (ED)

The Euclidean Distance algorithm calculates the distance between two n-dimensional vectors of

spectral curves using the following equation:

ED(x,y) = ||x− y|| =

√√√√ n∑
i=1

(xi − yi)2 (3.2)

To remove the dependency on the number of the spectral bands, a normalized Euclidean Distance

can be calculated by:

ED′(x,y) =

√√√√ 1

n

n∑
i=1

(xi − yi)2 (3.3)

Naturally, an increase of the distance between the two spectral curves means higher dissimilarity.

ED is a measure that takes into account the intensity difference between the two vectors, which

makes it more suitable in cases where spectra differ mainly in intensity characteristics.
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3.6.3 Spectral Information Divergence (SID)

SID [43] algorithm is based on the concept of divergence of information theory. This algo-

rithm considers each spectral curve used in the comparison process as a random variable and

then measures the discrepancy of probabilistic behaviors between them. The definition of SID

algorithm is:

SID(x,y) = D(x||y) +D(y||x) (3.4)

where,

D(x||y) =
n∑
i=1

pi log(
pi
qi

) (3.5)

and

D(y||x) =

n∑
i=1

qi log(
qi
pi

) (3.6)

with pi and qi being,

pi =
xi∑n
j=1 xj

(3.7)

and

qi =
yi∑n
j=1 yj

(3.8)

The term D(x||y) is known as the KullbackLeibler information function and represents the

relative entropy of y with respect to x.

3.6.4 Spectral Correlation Mapper (SCM) and Angle (SCA)

Spectral Correlation Mapper [41] is a measure that effectively calculates a statistical measure of

independence between two spectral vectors, which is known as Pearson’ s correlation coefficient.

In probability theory and statistics, correlation refers to the strength and direction of a linear

relationship between two random variables. SCM metric is calculated by the following equation:
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SCM(x,y) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(3.9)

where x, y are two n-dimensional spectral vectors, with n being the number of bands used during

acquisition and x, y being their respective means. The correlation coefficient produces values

in the range [-1, +1], with -1 indicating a negative correlation, while +1 a positive one. SCM

algorithm has been created as an improvement on the SAM algorithm, as it has the ability

to centralize itself in the mean of x and y. This means that SCM can distinguish between

negative and positive correlations between the two vectors, while SAM takes into account only

the absolute value. Using the Pearson’ s correlation coefficient of Equation 3.9, the correlation

angle is calculated by:

SCA(x,y) = arccos

(
SCM(x,y) + 1

2

)
(3.10)

where SCA ∈ [0, π2 ]. As SCA angle gets closer to zero x, y are becoming more similar.

3.6.5 Spectral Gradient Angle (SGA)

The Spectral Gradient Angle [71] is an algorithm that also uses the angle to produce similarity

results. The difference lies in the fact that SGA takes into consideration the slope changes within

the vectors used in the comparison. Given an n-dimensional vector x, the spectral gradient is

calculated as:

SG(x) = (x2 − x1, x3 − x2, ..., xn − xn−1) (3.11)

In order to calculate the gradient angle between two vectors x and y the following equation is

used:

SGA(x,y) = SAM(abs(SG(x), abs(SG(y))) (3.12)

where SAM is the Spectral Angle Mapper algorithm as that was defined in eq. 3.1. SGA is also

invariant to illumination distance, just like SAM is and can discriminate materials with distinct

reflectance features.



Chapter 3. Hyperspectral Image Classification 19

3.6.6 SID - SAM

SID - SAM [45] algorithm is a combination of the two separate algorithms in one. SID - SAM

has two expressions:

SID − SAMtan(x,y) = SID(x,y) tanSAM(x,y) (3.13)

or

SID − SAMsin(x,y) = SID(x,y) sinSAM(x,y) (3.14)

3.6.7 SID - SCA

Another combinational algorithm is that of SID - SCA [46] and it too can be expressed in two

different ways:

SID − SCAtan(x,y) = SID(x,y) tanSCA(x,y) (3.15)

or

SID − SCAsin(x,y) = SID(x,y) sinSCA(x,y) (3.16)

3.6.8 Adaptive Wiener Normalization (AWN)

Wiener estimation [36] has been widely used as a reflectance reconstruction technique. A mod-

ified Wiener method was proposed in 2007, that requires no prior knowledge of the spectral

characteristics of the sample in order to reconstruct its reflectance. In this method, the spectral

similarity measure of Equation 3.17 was proposed in order to select the training samples that

are more similar to the estimated reflectances and which will be subsequently used to calculate

the correlation matrix of reflectances.

AWN(x,y) = a ·mean|x′ − y′|+ (1− a) ·max|x′ − y′| (3.17)

where x′ and y′ are n-dimensional vectors of reflectances normalized to the sum as follows:
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x′ =
xi∑n
i=1 xi

(3.18)

y′ =
yi∑n
i=1 yi

(3.19)

so as
∑n

i=1 xi and
∑n

i=1 yi equal to 1 and a is a scaling factor equal to 0.5. This normalization has

the advantage of keeping the statistical information regarding the shape and not the magnitude

of the spectral curve. In AWN as the resulted score gets closer to 0, so does the similarity

between the two vectors increase.

3.6.9 Spectral Similarity Scale (SSS)

The SSS [47] algorithm uses the ED and SCM algorithms to create the new similarity measure,

such as:

SSS(x,y) =
√
ED′(x,y)2 + (1− SCM ′(x,y))2 (3.20)

where ED’ is the described in Equation 3.3 and SCM’ is normalized to remove dependence of

the number of bands:

SCM ′(x,y) =

 1
n−1

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑N

i=1(yi − y)2

2

(3.21)

SSS algorithm exploits the benefits of both algorithms to produce a new similarity measurement.

ED algorithm measures the brightness difference between the two spectra and is insensitive to

shape differences, while SCM compares the features and is insensitive to brightness. As a result,

SSS takes into consideration both the brightness differences as well as the shape differences

between the compared spectra. Finally, as the score gets closer to zero, the similarity of the two

spectra increases.

3.6.10 NS3

NS3 [50] is another combinational measurement that uses the SAM (Equation 3.1) and the nor-

malized ED’ (Equation 3.3) algorithms to create a new similarity algorithm, which is described

as:
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NS3(x,y) =
√
A′(x,y)2 + (1− cosSAM(x,y))2 (3.22)

where:

A′(x,y) =
ED′(x,y)− ED′min(x,y)

ED′max(x,y)− ED′min(x,y)
(3.23)

is the normalization of ED’ algorithm in the range of [0,1] so as to allow the comparison of

the spectral vectors in a common baseline. From a geometrical point of view, NS3 is using

the Pythagorean theorem to calculate the hypotenuse connecting the edge of the perpendicular

measures A’ and SAM. In this algorithm, the similarity becomes greater as the score gets closer

to zero, too.

Figure 3.5: Geometrical representation of the NS3 measure.

3.6.11 Spatio-Spectral Decomposition (SSD)

This algorithm uses the Pearson’ s correlation coefficient (Equation 3.9) to create a similarity

measure:

SSD(x,y) =

(
1− SCM(x,y)

2

)2

(3.24)

since SCM score result in values in the range [-1,+1], SSD is actually a normalization of SCM

correlations in the range [0,1]. SSD [48] algorithm takes into consideration the features of the

spectral curves to produce a similarity score.
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3.6.12 Spectral Pan-Similarity Measure (SPM)

SPM [48] combines ED, SSD and SID algorithms as follows:

SPM(x,y) = SID(x,y) tan (
√
ED′(x,y)2 + SSD(x,y)2) (3.25)

SPM algorithm is yet another effort to measure the similarity between two spectra using both

the amplitude and the shape of the curves.

3.7 Accuracy Assesment of Spectral Similarity Measurements

A classification process is not complete until its accuracy is assessed. The purpose of accu-

racy assessment is to produce quantitative results about the classifier’ s capacity to produce

classes that describe the complexity of the scene exhaustively. When a spectral library search

is performed for the identification of target spectra, the Spectral Similarity measurements are

assessed based on their capacity to find the right match from within the spectral library. Given

a spectral library, ∆ and a set of spectral signatures {si}Mi=1 ∈ ∆, the Spectral Discriminatory

Probability [50], and Spectral Discriminatory Entropy[50] are used to assess the accuracy of a

Spectral Similarity algorithm.

3.7.1 Spectral Discriminatory Probability

Let m(., .) be any spectral similarity measure and t be a target spectrum to be identified using

∆. The Spectral Discriminatory Probability (SDP) is defined as:

SDP (t, si) =
m(t, si)∑J
j=1m(t, sj)

(3.26)

SDP calculates the likelihood that the target spectrum will be identified as a member of the

spectral library. A small SDP value indicates a difficulty for the measurement m(., .) to distin-

guish between the target spectrum and a library reference. In other words, a small SDP means

that the measure is likely to find the best match in the library ∆.

3.7.2 Spectral Discriminatory Entropy

Using SDP, the Spectral Discriminatory Entropy (SDE) of a measurement m(., .) can be defined

as:
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SDE(t, si) = −
J∑
j=1

SDP (t, sj) logSDP (t, sj) (3.27)

SDE provides a measurement for the uncertainty of the identification of target t using ∆. As

the entropy value gets lower, the possibility to find a match of t in the spectral library increases.

Thus, t can be easily determined.

3.8 The Problem at Hand

Many studies have been conducted in an effort to evaluate Spectral Similarity metrics and find

the most accurate one. These studies create a library of spectral signatures acquired from online

sources or from cover types selected from a hyperspectral image as reference data for Supervised

Classification. These libraries are generally, relatively small in their number of entries (usually

about 400 signatures are used). In the first case, in which online acquired spectral signatures

are used, a member of the library is selected and compared against all the other members in the

library using different Spectral Similarity algorithms. In the second case, where reference data

from a hyperspectral image are used, a Supervised Classification is performed using different

Spectral Similarity algorithms. In this essence, the data used for evalution are already labelled,

which cannot provide an intution on the metrics capability to identify unknown data or its

robustness.

In this study, a spectral library is used to evaluate the twelve spectral similarity metrics men-

tioned above. The evaluation procedure is comprised from three steps. In the first step, spectral

signatures are chosen from the spectral library and concidered as target spectra to identify.

Then, the chosen signatures are compared to the library using the spectral similarity metrics

one by one. As the spectrum treated as unknown is aready a member of the library this step

is used to verify the correct implementation of the metrics, since every one of them must be

able to find the match in the library. In the second step, reference data are collected from a

hyperspectral image and stored in the library. Pixels are then selected from the cube and using

the similarity metrics and the library the get identified. So in this step, the image is a mixture

of labelled and unlabelled data, which are both used during the evaluation process. In the last

step, the algorithms are tested on a hyperspectal cube containing unlabelled data, meaning that

none of the spectral signatures contained on the cube are members of the library. The scene

should be known to the analyst for this step to be effectively realized and give an accurate

evaluation of the metrics.





Chapter 4

Implementation of a Spectral

Library and Spectral Similarity

Algorithms

4.1 Introduction

Spectral Libraries have been widely used by spectroscopists in their analysis of spectral data.

Lately, there is an effort to incorporate spectral libraries for material identification on Hyper-

spectral Data. By exploiting the spectral signatures already stored in the library the analyst

does not need to manually select reference data from the scene when performing Supervised

Classification. This way, the Supervised Classification process becomes more automatic.

In this study, a Library containing spectral signatures from various materials was implemented

on SQLite. Then, the algorithms described in Section 3.6 were used for the library search.

Library search was performed in three steps. First, a signature was selected from the library

and compared with the rest of the signatures in it. Since the selected signature was already a

member of the library, the first best match for each algorithm was the signature itself. In the

second step, reference data were collected from a hyperspectral image and stored in the library.

Then, pixels from the same image were selected at random and compared against the library

signatures. The discriminatory probabilities and entropies, as well as time performance, were

measured during this step. Since some data from the image are already stored in the library

they are labelled, while the rest are unlabelled. In the last step, a hyperspectral image was

used for the final evaluation of the algorithms. This image was not labelled, which means that

none of the spectral data it contains were part of the library. The areas of the image and its

classes were already known to the analyst. This final step can give conclusive results on the

Spectral Similarity metrics accuracy and performance. Moreover, it shows the possibility that

25
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using a Spectral Library instead of manually selecting reference data in the Supervised method

can have accurate classification results.

4.1.1 Data Collection

The first step of this study was to find publicly available online spectral libraries that contained

the spectral signatures of interest. In this study, the reflectances of various materials were

collected from the following spectral libraries:

1. United States Geological Survey (USGS) Spectral Library: USGS library contains spec-

tral reflectances of thousands of materials measured from 200nm-2000nm. The spectral

library was assembled to facilitate the identification and mapping of manmade materials,

vegetation, and minerals.

2. Aster Spectral Library: ASTER spectral library was created by NASA and contains spec-

tral signatures of manmade materials, soils, rocks, minerals and so much more.

3. ECOSTRESS Spectral Library: ECOSTRESS is an extension of the ASTER spectral

library in which 1100 new reflectance measurements from vegetation were added.

4. EcoSIS: EcoSIS is a spectral library containing thousands of spectral signatures of vege-

tation.

5. National Institute of Standards and Technology: NIST offers a publicly available dataset

of a 100 reference reflectance spectra of human skin tissue measured in 250nm-2500nm.

The total number of spectral signatures selected is 5000. Each of them belongs in one of the

following three categories of interest:

1. Man-made Materials

2. Soils and Soil Mixtures

3. Vegetation

4. NIST Skin

5. Macbeth Colorchecker

6. Munsell Colors

7. Color Panels of Man-made Pigments

8. Nevi Samples
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The aforementioned categories were very general and did not help in the accurate categorization

of the collected spectra. Thus, subcategories were used to better organize the spectral signatures.

The subcategories have been created on the basis of the relative information accompanying each

sample from the source it was acquired. The final categorization creates the tree-like structure

of Figure 4.1

4.1.2 Dataset Preparation

The spectra collected from the open libraries were not homogeneous in their form. Different

instruments have been used for the measurements in each case, while the bands selected for

each measurement differ. In addition, some spectral signatures have been stored in their raw

form without being processed, and as a result, they were noisy. Finally, the reflectances in some

cases were provided on a scale of 0-100, while in others were normalized on the 0-1 scale. These

data inconsistencies were not preferable so it was necessary to process the spectral curves before

they were stored in the database.

The processing of the spectra was done in MATLAB’s environment. Initially, the spectral curves

were displayed using MATLAB’s plot() function to see if they contained noise. In cases that

noise was found, a moving median smoothing filter was applied to eliminate the noise. Then,

the bands of interest were selected. Different spectra have been measured in different bands

with a different step. In this study, the reflectance data were used in the Ultraviolet (UV),

Visible (VIS) and Near Infrared (NIR) range, and more specifically from 370 nm to 1000 nm,

and the step selected was 10 nm. So, the acquired data had to be upsampled or downsampled

to be represented in that form.

4.2 Relational Database Implementation

After preprocessing all the acquired spectral signatures and bringing them into the chosen form,

a database system was chosen to store and handle all the data. There are many choices out

there for data storage, but a Relational Database Management System (RDBMS) was chosen

as the most appropriate for the dataset of this study. RDBMSs are a great choice for structured

data and provide high availability and consistency. Furthermore, data search, comparisons, and

analysis are faster and easier with RDBMSs. For this study, an RDBMS that can be stored

both locally and also be used in a client-server implementation was wanted.

SQLite is an RDBMS that is great for device-local storage, but it can also handle medium

traffic in a client-server application. SQLite stores the database at a single disk file and each

process that wants to access the database reads and writes directly on the disk file. This method
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improves performance and readability as it can be faster than a normal filesystem, with reduced

cost and complexity. On the downside, most systems have an upper limit on the size of files in

the disk, thus the database is limited to about 140 TB in size. In this study, the sqlite3 version

of SQLite was used. The following subsection describes the schema used to store the acquired

spectral signatures.

4.2.1 The Database Schema

As it can be seen in Figure 4.2 the database schema consists of three tables namely ”Category”,

”Sample” and ”Metadata”. The ”Category” table was used to store information about the

various categories and subcategories in which the spectral data belong to. An integer number

called, ”categoryID” was used to assign a unique number to each category or subcategory.

Since each category may have multiple subcategories, an Adjacency List Model was used to

store the hierarchy as that is depicted in Figure 4.1. Adjacency lists are computationally a

cheap model when it comes to inserting or deleting nodes in the hierarchy, but finding a node’s

level or ancestry is quite expensive as it requires to perform multiple JOINs. For these reasons,

Adjacency Lists are preferable when the hierarchical tree does not grow very deep. In this study

case, the height of the hierarchy does not go above the fourth level, so the Adjacency List Model

seemed the right choice.

The ”parent categoryID” attribute was used to show in which category each subcategory belongs

to. In the case of root categories, this attribute is assigned to Null. Additionally, in order to

make things easier in regards to finding the level and the ancestry of a node, two more attributes

were added namely ”level” and ”lineage”. The later holds the path from the root to that node

for each record.

As soon as the hierarchical structure of categories was established, a separate table, called

”Sample”, was created to hold the individual spectral signatures. Each spectral signature is

uniquely identified by an integer called ”sampleID”. The ”categoryID” attribute is a reference to

the ”Category” table and was used to enable the assignment of each spectral curve to a category

or subcategory. The relationship between the ”Category” table and the ”Sample table is that of

one to many (depicted as 1:N in the schema), which means that each category may have multiple

samples assigned to it, but each ”Sample” record can belong to only one category. The ”name”

attribute holds the name that characterizes each sample for a more user-friendly discrimination

between the spectral signatures. Then, the ”wavelength” and ”reflectance” attributes are used

to hold the actual spectral data for each spectral signature. The vectors of wavelength and

reflectance measurements are stored as comma separated strings for each spectral signature.
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Finally, the ”Metadata” table is used to store some additional information concerning each

sample. Because this table was created in order to further describe the original spectral data

and does not hold information that can be uniquely identified and stand on their one, it is

called a weak entity. The attribute ”sample ID” is used to refer to the ”sampleID” attribute

of the ”Sample” table. The ”measurement” attribute stores information about the equipment

used to perform the reflectance measurement, while the ”description” holds a few information

about the sample used or the conditions during which the measurement was conducted. Lastly,

the ”source” attribute holds the name of the online Spectral Library from which the specified

reflectance was acquired.

4.2.2 Database Constraints

A database system is useful as long as the information stored in it is accurate. Constraints are

rules forced onto a database schema so as to exclude invalid records from being stored in the

database. This way data integrity is guaranteed throughout the schema.

The attributes ”categoryID”, ”sampleID” and ”sample ID” are primary keys of the tables ”Cat-

egory”, ”Sample” and ”Metadata” respectively. A primary key uniquely identifies the records

in all possible valid cases of relationship instances. On the other hand, foreign keys are used to

establish relationships between tables on the schema. A foreign key of one table is connected

with the primary key on another table in order to form the relationship. To ensure data in-

tegrity, foreign keys may only refer to existing primary keys on the reference table. In this

study’s schema the attribute ”parent categoryID” is a foreign key referring to the primary key

”categoryID” on the same table. The attribute ”categoryID” of the ”Sample” is also a foreign

key to the ”Category” table. Finally, ”sample ID” attribute of table ”Metadata”, apart from

being the primary key of that table, is also a foreign key pointing to the ”sampleID” of the

”Sample” table. Referential integrity is ensured throughout the schema by cascading to the

foreign keys any updates or deletes that may happen on the primary key with which they are

associated in each case.

Apart from the key constraints, a NOT NULL constraint was used on the ”name” columns of

tables ”Category” and ”Sample”. The NOT NULL constraint was also forced on attributes

”wavelength” and ”reflectance”. NOT NULL constraints ensure that this attributes will al-

ways have values upon a new insert on the table. Furthermore, a CHECK constraint on both

”wavelength” and ”reflectance” columns verify that the inserted string for each record contains

only numerical characters and commas using regular expressions. A UNIQUE constraint on

”reflectance” ensures that there will be no duplicate reflectance measurement in the ”Sample”

table.
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4.3 Implementation of Spectral Similarity Algorithms

Since the database schema has been created and the database has been populated with the

acquired spectral signatures from the online Spectral Libraries, the next step was to test various

Spectral Similarity Algorithms, so as to verify how the use of a Spectral Database can assist in

semi-automatic classification. This section describes how the algorithms presented in Section 3.6

were implemented and the early tests that were performed on them.

4.3.1 Database Interface

A database interface is software program build to connect and interact with the database. It

provides the user with all the necessary tools to interact with the database without directly

using the SQL language. For the purposes of this study, a simple interface was created using

MATLAB and the ODBC library. The interface first establishes a connection with the database

and then retrieves all the stored reflectances and their respective names from it using the SQL

SELECT statement. Subsequently, the retrieved spectral signatures are converted from the

comma separated strings to numerical vectors.

Since a lot of the algorithms defined in Section 3.6 make use of other similarity measures in

order to produce a similarity score, each one of them was implemented as a separate MATLAB

function. To validate that the measurements were implemented correctly, a spectral signature

was chosen from the library and it was compared against all the spectral signatures contained

in it. If the algorithm was correct, then it would match the selected spectral signature with

a score equal to zero. Apart from the validation of the algorithms’ correctness, this stage was

used to find proper thresholds for each one.

Comparing a spectral signature from the database with the spectral library helped to see the

trends that the similarity algorithms have, but was not enough to assess their performance.

In order to validate the spectral similarity measurements for their performance in hyperspec-

tral data labelling, the interface described in this section was incorporated in a GUI built for

Hyperspectral Data Analysis.

4.3.2 Spectral Suite

The Interface and the algorithmic functions were incorporated in a Graphical User Interface

(GUI), called Spectral Suite, which was created in Electronics Laboratory of Technical Univer-

sity of Crete (Figure 4.3). This Suite was designed to assist in Hyperspectral Imaging Analysis

after the acquisition of a spectral cube. It consists of two windows namely ”Cube Viewer” and

”Spectrum Viewer”.
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The ”Cube Viewer” window is the main window where all functionalities lie. It consists of a

menu bar, a toolbar, and two axes. The user can upload a hyperspectral cube as a stack of

images or as Matlab file (.mat) using the ”Import” tab on the menu bar. During the import

process, the user is prompted to choose the spatial resolution of the cube among a list of options

and the case-specific category from the database. The resolutions provided are:

1. The original spatial dimensions of the cube.

2. 1920× 1080

3. 1280× 720

4. 800× 600

5. 640× 480

6. 320× 200

7. 150× 100

As soon as the import of the cube is completed, it is displayed on the right axis. The user

can view the images in the stack one by one using the slider below the axis. As the slider

moves through the images, a text label displays the wavelength in which the current image was

acquired.

The Spectral Suite software also provides three preprocessing filters that can be applied on

the cube. The filters can be selected from the ”Process Image” tab on the menu bar. The

offered filters are Median, Gaussian, and Wiener. The selected filter is applied to every image

in the cube and the user can either save the changes or reset the cube to its original form.

Furthermore, the user can reduce the spectral resolution through the ”Dimension Handling”

menu tab. When this tab is chosen, a list of the wavelengths in which the imported cube was

acquired is shown. The user can then choose manually the wavelengths which he/she would like

to keep for subsequent analysis.

Apart from the preprocessing steps, the Suite offers Spectral Classification methods that can be

performed on the cube. This is the core of the Suite. Spectral Classification is performed through

the ”Clustering” tab on the menu bar. The ”Clustering” tab enlists a series of Unsupervised

Classification Algorithms namely: K-means, K-medoids, FCM, DBSCAN, Spectral-Clustering,

Gaussian Mixture Model and Fast K-means. The latter method is an improvement of the clas-

sical K-means algorithm that was implemented on the Electronics Laboratory of the Technical

University of Crete. The difference between the classical K-means algorithm and the Fast K-

means lies in the fact that the latter does not require the number of classes to be inserted from

the user and is able to find the optimum number of clusters in the hyperspectral dataset.
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Dimensionality reduction is performed automatically before each Unsupervised algorithm using

the Principal Component Analysis (PCA) method. After evaluation, it was proved that the

first five principal components contain most of the information and they could be used in

unsupervised classification without great loss. Each clustering algorithm produces a thematic

map of clusters as a result. A random color is assigned in each class and the final thematic map

is displayed on the left axis on the ”Cube Viewer” window.

Below the menu bar, a toolbar gives access to ”Zoom In” and ”Zoom Out” operations on

the currently displayed image of the cube or the pseudocolor map. Additionally, the toolbar

provides a ”Data Cursor”, which offers the ability of pixel selection. By clicking on it, a cursor

appears on the screen that allows the user to select a pixel from either of the two axes. When

a pixel is selected the respective reflectance intensity is extracted from it. The intensity is,

then, transformed in the range [0,1] to match the stored spectral signatures in the spectral

library and it is displayed on the ”Spectrum Viewer” window. Figure 4.4 shows an example

of a pixel selection from the cube and its respective reflectance being displayed on the axis

of ”Spectrum Viewer”. The x-axis on ”Spectrum Viewer” takes the values of wavelength in

which the imported cube was acquired (wavelength unit used is nanometers), while the y-axis

represents the reflectance intensity values of a chosen pixel in the range from 0 to 1.

The analyst has the option to save the chosen pixel reflectances in a text file through the ”Store

Spectrum” button. When this button is clicked a window opens that allows the user to place

a name for the .txt file and choose the directory in which it will be saved. The user can save

multiple pixels in the defined text file. Each time a pixel reflectance is stored, its curve is also

stored on the ”Spectrum Viewer” and a marker on the image indicates the place of the selected

pixel. The first utility offers the ability to compare at once the chosen reflectances, while the

latter prevents the analyst from choosing the same pixel twice. The stored reflectances can be

deleted by clicking on the ”Clear Spectra” button.

4.3.2.1 The Labelling Menu Tab

The ”Labelling” menu tab contains the twelve Spectral Similarity Algorithms implemented for

the purposes of this thesis. The analyst can select any of the algorithms on the list in order to

label the previously stored pixel reflectances. When a Similarity algorithm is chosen, the entries

on the .txt file are read one by one and compared against the entries of the Spectral Library.

The algorithms provide the best match found in the Library for each stored spectrum and plot

them both on the same axes.
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4.3.3 Cluster-then-Label Implementation

Apart from their use in the ”Spectral Suite” for pixel labeling, the implemented Spectral Similar-

ity metrics were assessed for their ability to label cluster centroids1. An Unsupervised Clustering

is first performed on a hyperspectral cube. The resulted centroids are then compared against

each entry on the database using each of the twelve algorithms. Subsequently, the spectral

similarity measurements are assessed for their ability to produce a right match for each of the

unlabelled centroids.

In Chapter 4 the final results of the Spectral Similarity algorithms are presented for both pixel

labelling and centroid labelling. The algorithms are tested on hyperspectral images taken from

skin lesions in-vitro.

1It is important to note that this utility is not part of the ”Spectral Suite” at the moment.
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Figure 4.1: Categories and subcategories of the collected spectral signatures. Macbeth Col-
orchecker, Color Panels, Munsell and NIST Skin categories have no subcategories so they are

not included in this depiction.
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Figure 4.2: The schema followed for the RDBMS implementation.
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(a) The ”Cube Viewer” window

(b) The ”Spectrum Viewer” window

Figure 4.3: Outlook of the Spectral Suite
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Figure 4.4: An example of pixel selection from the hyperspectral cube and its respective re-
flectance intensity plotted on ”Spectrum Viewer”
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(a) Spectral curves from multiple stored spectra

(b) Markers are placed on the selected pixels

Figure 4.5: Each time a pixel is stored ”Spectrum Viewer” holds its respective spectral curve
and markers apear on the thematic map.”



Chapter 5

Methods and Results (Case Study:

Identification of Skin Lesions)

5.1 Introduction

Skin cancer is the most common form of cancer, with about a million new cases in the U.S. each

year [72]. Skin cancer is mainly divided into three categories:

1. Basal-cell skin cancer (BCC)

2. Squamous-cell skin cancer (SCC)

3. Melanoma

the first two are benign forms, while melanoma is a malignant form of cancer. Often, skin cancer

is difficult to diagnose non-invasively, as malignant skin lesions can closely resemble the benign

ones. Different lesion types can have similar characteristics, making it difficult to discriminate

among them. In this Chapter, a dataset of skin nevi samples was assembled in order to test if

identification by spectral library searching can help in skin cancer diagnosis.

5.2 Spectral Imaging on Nevi Classification

Early detection and treatment of skin cancer can significantly improve patient outcomes. In

clinical practice, visual examination determines whether a skin lesion is cancerous based on

the ABCDE rule (asymmetry, border, color, diameter, and evolution) and the change in the

39
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appearance of a mole or pigmented area over a period of time. However, clinical diagnostic sen-

sitivity and specificity vary greatly, depending on the expertise and visual skills of the clinician.

Consequently, histopathologic examination of the excised suspicious element still remains the

gold standard. However, a biopsy is an invasive procedure and leaves a scar at the biopsy site,

which otherwise would be unnecessary in the case of benign lesions.

The absorption of light can provide information on the biochemical composition of the skin.

The light scattering properties of skin can provide information regarding its micro-architecture.

Recently, great attention has been given to skin cancer diagnosis with non-invasive spectro-

scopic and Spectral Imaging methods [5-27]. However, these studies are based on heuristic

techniques to classify a nevus as one type or another. More specifically, instead of using all the

features of the spectral curves, they only choose two wavelengths where the peak of melanin

and hemoglobin absorptions occur. Since each lesion has different spectral features these meth-

ods are not optimal and leave out information that could be of great importance in the lesions

accurate type classification.

In this study, a Hyperspectral Imaging system has been used to acquire reflectance data from

multiple types of pigmented skin lesions, in the wavelength range from 420-1000nm. The resulted

cubes are imported on the ”Spectral Suite” Software and reference data are selected to be stored

in the database. Then pixels are selected from the cubes and compared to the library of spectral

signatures using the whole spectral curve. The pixels are compared first with the case-specific

spectra acquired as references from the lesions cubes and then with all the spectral signatures

there are in the library. These two steps comprise the last steps of the Spectral Similarity

measures evaluation.

5.2.1 Acquasition System

The MuSES-9 HS Hyperspectral Imaging System was used in this experiment to acquire spectral

cubes from nevi samples in-vitro. The system is capable of acquiring spectral images in a

range of 370-1000 nm (UV-NIR) with a spectral resolution of 5nm to 15nm using a 1/1.8”

square pixel CMOS sensor. The camera can acquire 30 frames/sec with spatial resolution up

to 3096x2080pixels in 32s -15s integration time. Thus, up to 150 discrete spectral bands can be

acquired in real time.

A specially developed software is employed for the control of the camera and the CMOS sensor as

well as for the spectral image analysis. The system operates in two modes: the spectral imaging

and spectroscopy in both reflectance and fluorescence. The former enables the random selection

and real-time visualization of desired spectral images, while the spectrometry mode performs

synchronized spectral scanning and image capturing and, finally, calculation of one full spectrum

per image pixel. In both cases, a special calibration procedure is executed before these imaging
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procedures. A white surface with unity reflectance across the 370-1000 nm spectral range is

used for calibration. The shutter and gain values are automatically generated as the sensor

moves through the specified spectral range. These settings determine the sensitivity level of

the camera at each wavelength to ensure the efficiency of the system. During the acquisition

of a sample, the sensitivity of the camera is automatically regulated according to the stored

calibration. The resulted cube is stored and a spectrum can be calculated from the gray values

of the corresponding pixel spectral column and displayed for any spatial point of the image. The

spatial resolution of the detector determines the number of the spectra that can be collected in

one experiment run. With the described configuration, 1 000 000 spectra can be collected in

less than 1 min scanning time.

For this study, hyperspectral cubes of skin lesions were acquired in the range from 420nm to

1000nm with a 20nm step.

5.3 Data Selection

Table 5.1 shows the number of samples used for this study per skin lesion type. Each of the

samples was surgically removed and sent for histopathological analysis. After the biopsy was

conducted a hyperspectral cube was acquired in-vitro from each sample using the aforemen-

tioned system (Subsection 5.2.1). Figure 5.1 shows examples of the four nevi lesions in selected

wavebands. As it can be observed healthy nevi regions get transparent as the measurement

proceeds into the NIR. On the other hand, some patches or spots on the nevi remain visible

even after 800nm. Especially, in the case of the melanoma, the cancerous region of the nevus

remains dark until 1000nm. This is due to the high melanin concentration in this regions on

the nevi. Melanin is the main skin absorber in the infrared region of the spectrum. As the

malignancy of a nevus increases, so does the melanin concentration in the skin. So, dark spots

that remain after 750nm can be indicators of a problematic nevus.

Table 5.1: Number of nevi samples for each lesion type.

Dysplastic Compound Junctional Melanoma

7 8 1 1

In this study, reference spectra were selected from samples that were most representative of the

lesions. The biopsy results were used as a map during this stage of reference data selection.

In the case of the junctional and melanoma nevi, only one sample is available in each type, so

reference data were collected from them. In the case of dysplastic and compound skin lesions,

however, where multiple samples were available only one sample was used for the acquirement

of references. Figure 5.1 shows the compound and dysplastic samples used as a reference in
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selective bands1. After the selection of reference data was completed, a new category was

created in the database to store the newly selected spectral signatures.

Figure 5.2 shows indicative spectral signatures collected from a nevus. As it can be seen, the

spectral signatures of melanoma and those of normal skin have distinctive features and can be

separated from each other. On the other hand, it is very difficult to discriminate between the

compound and dysplastic spectra as their signature are overlapping. Furthermore, the junctional

and the melanoma signatures overlap at a certain degree, however, their features are not similar.

This area between melanoma signatures and normal skin signatures is of tremendous importance

for early skin cancer detection.

5.4 Pixel Identification Results

Since the dataset of reference was inserted into the database, a series of experiments were

conducted to assess the accuracy of the spectral similarity algorithms. The hyperspectral cubes

acquired from each sample were imported in the ”Spectral Suite” software. Various pixels were

selected from each sample and their respective reflectance intensities were compared to the

database entries using each similarity measure separately. In this section, two examples of a

pixel selection and its comparison to the database are presented. At first, the melanoma sample

is used for spectral similarity evaluation. Instances of the melanocytic nevus are shown on

Figure 5.1 d). A pixel was selected from the melanoma region that is visible beyond 760nm.

The extracted pixel was preprocessed to remove noise using a moving median smoothing filter

and then normalized in the [0-1] region.

In the second example, a dysplastic nevus is used for evaluation. The nevus used in the second

example is depicted in Figure 5.3. Figure 5.4 depicts the image of the nevus at 700nm and

a pixel selected from the cube represented with a square on the image. The extracted pixel

reflectance was also normalized in the region from 0 to 1 by dividing the reflectance values by

the maximum intensity of 255. A moving median smoothing filter was used for noise reduction.

5.4.1 When the a specified category is searched

At first, the reflectances of selected pixels were compared with only the relevant reference data

collected from the nevi samples. Figure 5.5 shows the first match that each algorithm produced

for the melanoma sample. Table 5.2 shows the resulted entropies and time performances for

each algorithmic implementation. The resulted signatures of the dysplastic sample and the

respective entropies and time performances are shown on Figure 5.6 and Table 5.3 respectively.

1Pay attention to the transitioning of melanin reflectance in the bands 760nm and 880nm.
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Type 480nm 640nm 760nm 880nm

a)
Dysplastic

b)
Compound

c)
Junctional

d)
Melanoma

Figure 5.1: The nevi used to comprise the reference dataset for the four different lesions types.
The lesions are depicted in four different wavebands (480nm, 640nm, 760nm, and 880nm) to
show the differences in melanin absorption. On the first row is the dysplastic nevus, on the
second the compound nevus. These two samples were selected because of the homogeneity they
exhibit in regards to melanin absorption. On the third row is the junctional nevus and finally

on the last row the melanoma.

As it can be seen by the retrieved spectral signatures of Figures 5.5 and 5.6 AWN, SAM,

SCA, SGA, and SSD matched the unknown spectrum according to its spectral feature and did

not take into consideration the intensity level of reflectance, which is in compliance with the

characteristics of these algorithms. From the remaining algorithms, SID-SAM and SID-SCA

results are very close to the unknown spectrum. The respective entropies of SID-SAM and SID-

SCA have the lowest value according to Tables 5.2, 5.3 and their entropies are numerically close

compared to the rest algorithms. On the other hand, their time performance falls somewhere in

the middle. Finally, on Table 5.4 similarity entropies are ordered according to their respective



Chapter 5. Methods and Results (Case Study: Identification of Skin Lesions) 44

Figure 5.2: Spectral signatures of the acquired reference data. In blue are normal skin spectral
signatures, in yellow the compound spectral signatures, in red the dysplastic spectral signa-
tures, in magenta the junctional spectral signatures and in black are the spectral signatures of

melanoma.

Table 5.2: Melanoma Sample: Results on entropy and time performance of each Spectral Sim-
ilarity Measurement, when a pixel is compared with nevi reference data in the Spectral Library

Similarity
measurement

Entropy Time (sec)

AWN 7.6214 0.0378

ED 0.19491 0.030

NS3 0.1969 0.0341

SAM 8.1915 0.0296

SCA 8.2159 0.0333

SGA 8.323 0.0435

SID 0.09302 0.028

SID-SAM 0.0038 0.031

SID-SCA 0.022 0.0317

SPM 0.91447 0.0369

SSD 6.5468 0.0358

SSS 0.299 0.0514

entropies and time performances from lowest to highest.
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Figure 5.3: The dysplastic nevus used as an example in this chapter

Table 5.3: Dysplastic Sample: Results on entropy and time performance of each Spectral Sim-
ilarity Measurement, when a pixel is compared with nevi reference data in the Spectral Library

Similarity
measurement

Entropy Time (sec)

AWN 7.426 0.026

ED 0.18461 0.0224

NS3 0.1865 0.0264

SAM 0.1865 0.047

SCA 8.0594 0.027

SGA 8.2052 0.0418

SID 0.062 0.0242

SID-SAM 0.0015 0.0284

SID-SCA 0.00937 0.029

SPM 2.0275 0.0312

SSD 5.4898 0.0302

SSS 0.286 0.0302

5.4.2 When the whole database is searched

The same pixel reflectances were used for comparison, but this time they were tested against

all the entries in the database. This was done in order to check the similarity measurements

robustness and their ability to correctly identify a material from a dataset of diverse spectral

signatures. Figures 5.7, 5.8 depict the best match that each algorithm retrieved from the
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Figure 5.4: A pixel (X=167, Y=540) is selected from the nevi cube to be compared with the
database entries. The selected pixel is represented with a square on the image. The image shown

is at 700nm and the pixel was selected from a dark spot on the nevus.

Table 5.4: Algorithms order from lowest to highest in respect to their mean of time performance
and resulted entropies, when a pixel spectrum is compared with a specific category in the database.

Time Entropy

SID SID-SAM

ED SID-SCA

SID-SAM SID

SCA ED

NS3 NS3

SID-SCA SSS

AWN SPM

SSD SAM

SPM SSD

SAM AWN

SSS SCA

SGA SGA

database, in the case of melanoma and dysplastic nevus respectively, while Tables 5.5,5.6 present

the relative entropies and time performances for each algorithm.
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Table 5.5: Melanoma Sample: Results on entropy and time performance of each Spectral
Similarity Measurement, when a pixel is compared with all entries in the Spectral Library

Similarity
measurement

Entropy Time (sec)

AWN 11.932 0.3899

ED 3.0965 0.3289

NS3 3.7681 0.4081

SAM 12.037 0.4337

SCA 12.013 0.4238

SGA 12.206 0.719694

SID 1.8149 0.3662

SID-SAM 0.1329 0.4154

SID-SCA 1.6249 0.4375

SPM 7.4487 0.4761

SSD 10.143 0.4094

SSS 3.952 0.4114

Table 5.6: Dysplastic Sample: Results on entropy and time performance of each Spectral
Similarity Measurement, when a pixel is compared with all entries in the Spectral Library

Similarity
measurement

Entropy Time (sec)

AWN 12.041 0.366

ED 2.6745 0.378

NS3 3.187 0.422

SAM 12.113 0.3732

SCA 11.914 0.399

SGA 12.211 0.7317

SID 1.2358 0.3496

SID-SAM 0.665 0.4209

SID-SCA 0.78076 0.4277

SPM 7.6017 0.4519

SSD 9.9456 0.4108

SSS 3.6112 0.4114

Figures 5.7,5.8 show clearly that AWN, SAM, SCA, SGA, SID-SAM, SID-SCA, and SSD are

not affected by changes in the intensity levels and can produce a correct match even if the

reference spectra show great diversity. Yet again, SID-SAM and SID-SCA manage to follow

both the spectral features and the reflectance intensity of the unknown spectral curve. Finally,

on Table 5.7 similarity entropies are ordered according to their respective entropies and time

performances from lowest to highest. Although algorithms such as AWN and SAM produced

correct matches for the unknown spectral curve, their respective entropies are very high com-

pared to the rest. Entropy can only evaluate the ability of a method to discriminate among

a number of spectral signatures, based on the numerical value distribution the similarity score

produces. The entropy cannot be used to evaluate the actual spectral identification accuracy of
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a method, but only provides inside on the distribution of the measurement’ s results.

Table 5.7: Algorithms order from lowest to highest in respect to their mean of time performance
and resulted entropies, when an pixel spectrum is compared against all entries in the database

Time Entropy

ED SID-SAM

SID SID-SCA

AWN SID

SAM ED

SSD NS3

SCA SSS

SSS SPM

NS3 SSD

SID-SAM SCA

SID-SCA AWN

SPM SAM

SGA SGA

5.5 Cluster Centroids Identification Results

Another purpose of this study was to assess the Spectral Similarity measurements capacity

to correctly label cluster means or centroids. Two examples are presented using the sample

characterized as melanoma by the histopathological examination, and another one characterized

as a compound. Each sample’ s spectral cube was imported in the ”Spectral Suite” Software and

clustering was performed on them using the provided Unsupervised algorithms on the original

cube spatial resolution. Here, the clustering results of the K-means Fast method will be used as

an example to present the respective cluster labeling results. The colors used on the thematic

maps are assigned randomly, but a matrix is used to hold each cluster’ s RGB value. Figures 5.9,

5.10 show the image at 680nm and the thematic map produced by clustering for the compound

and the melanoma samples respectively.

Once the clustering was completed, the resulted centroids were labelled using each one of the

twelve similarity measures. Each centroid was preprocessed before comparison and normalized

in the range [0-1]. Figure 5.11 shows the resulted labels for the melanoma case when the

comparison is performed only on the ”Reference Data of Nevi Data” category.

As it can be seen from the resulted spectral signatures, the melanoma class (pink color) is

identified by all algorithms. Subsequently, the remaining nevus region (green) is labeled as

junctional from the majority of methods, except SAM, SCA, and SGA that identified it like

normal skin. However, the centroids spectral features, are more similar to those of dysplastic

or compound lesions. Finally, the purple area of normal skin tissue is correctly labeled as such.
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Figure 5.12 presents the resulted labels for the compound case when the comparison is performed

on the case-specific category on the database. As it can be seen the lesion area is given different

labels for each similarity measurement. However, AWN, SAM, SCA, SGA, and SID-SAM labels

manage to better follow the features of the centroid curve. The normal skin region is correctly

labelled from all similarity measurements. Finally, the black background is labeled as melanoma

by all algorithms. This is due to the fact that the search is performed only on the reference

data and so the closest resemblance to the black background is the low-intensity features of the

melanocytic region.
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(a) AWN (b) ED (c) NS3

(d) SAM (e) SCA (f) SGA

(g) SID-SAM (h) SID-SCA (i) SID

(j) SPM (k) SSD (l) SSS

Figure 5.5: Melanoma Sampe: The spectral signatures returned from each algorithm as a best
match, when the unknown pixel is compared against the ”Skin Lesions” category.
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(a) AWN (b) ED (c) NS3

(d) SAM (e) SCA (f) SGA

(g) SID-SAM (h) SID-SCA (i) SID

(j) SPM (k) SSD (l) SSS

Figure 5.6: Dysplastic Sampe: The spectral signatures returned from each algorithm as a best
match, when the unknown pixel is compared against the ”Skin Lesions” category.
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(a) AWN (b) ED (c) NS3

( d) SAM (e) SCA (f) SGA

(g) SID-SAM (h) SID-SCA (i) SID

(j) SPM (k) SSD (l) SSS

Figure 5.7: Melanoma Sample: The spectral signatures returned from each each algorithm as
a best match, when the unknown pixel is compared against the whole database.
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(a) AWN (b) ED (c) NS3

( d) SAM (e) SCA (f) SGA

(g) SID-SAM (h) SID-SCA (i) SID

(j) SPM (k) SSD (l) SSS

Figure 5.8: Dysplastic Sample: The spectral signatures returned from each each algorithm as
a best match, when the unknown pixel is compared against the whole database.
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(a) Saple at 680nm (b) Thematic map

Figure 5.9: Compound sample used for semi-supervised classification: a) shows the lesion at
680nm and b) the thematic map resulted after performing K-means Fast method for clustering

(a) Saple at 680nm (b) Thematic map

Figure 5.10: Melanoma sample used for semi-supervised classification: a) shows the lesion at
680nm and b) the thematic map resulted after performing K-means Fast method for clustering
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Figure 5.11: Labelling results for the melanoma case.
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Figure 5.12: Labelling results for the melanoma case.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

This study was conducted in order to evaluate the use of a Spectral Database in material iden-

tification applications. A database was implemented and populated with spectral signatures

of various materials. The spectral library was designed in such a way to allow for multiple

categories to be stored in one library. This way it can be used in multiple applications. To per-

form spectral searching in the library, twelve Spectral Similarity algorithms were implemented

and evaluated for their capacity to correctly label an unknown spectral signature. The simi-

larity measures were then incorporated in the Spectral Suite software. This software offers the

necessary tools for Hyperspectral Imaging analysis. The similarity measures were tested for

pixel labeling and cluster labeling. In the first case, hyperspectral cubes are imported into the

software and multiple pixels are selected from it. Subsequently, the extracted reflectances from

the selected pixels are compared with the database records. Then, algorithms were assessed for

their accuracy and time performance. In the second case, an Unsupervised classification was

first performed prior to labelling. Then, the mean of each resulted class was labelled through a

spectral library search.

In both pixel selection and cluster labelling, the similarity measurements were evaluated for their

accuracy and time performance. The results showed that SID-SAM and SID-SCA methods are

the most effective in retrieving a correct spectral signature from the database. This is due to the

fact that by combining an algorithm sensitive to intensity changes like SID with an algorithm

sensitive to feature changes (like SCA or SAM), the resulted method takes into account both

characteristics to find the most similar spectral curve. On the other hand, AWN, SAM, SCA,

and SGA also produced very good results, but their insensitivity in intensity changes can be

a drawback for applications that intensity levels are of key importance. In regards to time

performance, algorithms have small variations from one another, with SGA being the slowest

57
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in all cases. Furthermore, the entropy can evaluate better measurements based on distances.

Generally, since it is based on the numerical scores of the similarity measurement it cannot

evaluate the accuracy of the produce spectral signature.

Additionally, the proposed implementation was tested on skin lesions. In-vitro samples of

skin lesions were used for this purpose and spectral cubes were acquired from them using a

Hyperspectral Imaging system. The database was populated with a dataset of references selected

using the biopsy analysis for each lesion type. The reference data showed that spectral signatures

from different lesion types tend to overlap with one another. The reference set was then used to

label separate pixels and centroids of unsupervised classification. The results showed that SID-

SAM and SID-SCA manage to retrieve spectral signatures that are very similar to the unknown

pixel signature. On the clustering labelling, on the other hand, the results were ambiguous. The

classes of normal skin were correctly labeled for each sample, but the identification of lesions

was not always accurate.

The overlapping of spectral features of skin lesions types has gained considerate attention from

researchers. An increasing number of studies[5-27] is conducted in an effort to find ways to

discriminate the lesion types that lie between the normal skin and the melanoma spectral

signatures. These studies use only two features in the spectral curves to classify the nevi

in one of the skin cancer types. This study has shown that exploiting all the features in a

spectral curve can assist in the accurate classification of a nevus. The proposed methods and

algorithms have shown that the spectral signature of a lesion can be accurately identified even

in a collection of completely diverse materials signatures.

An accurate classification of a skin lesion can play an important role in early skin cancer diagnosis

thus saving thousands of lives. Moreover, it can help in avoiding unnecessary surgical operations

in cases where a nevus is considered suspicious.

6.2 Future Work

The problem of the hard discrimination between skin lesion types is widely exploratory and

interdisciplinary. For that reason, there is a number of expansions that could be made upon

this. Some suggestions are:

1. Better feature selection and lesion discrimination: Some better feature selection and better

class discrimination (by using trained and experienced doctor) can help the proposed

method achieve higher levels of prediction.

2. Directly connect the spectral library and the Spectral Suite with a hyperspectral imaging

system in order to provide live labeling: The final connection of the HSI system with
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implemented software can provide dermatologists a vital tool for the non-invasive analysis

of skin lesions.

3. Test the spectral similarity measurements for in-vivo applications: Although the tests

for this thesis, have been performed on biopsies, the results can give quite an optimistic

approach for in-vivo applications, thus using Hyper Spectral Imaging most useful tool:

non-destructive analysis
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