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Abstract 

Ramp Metering (RM) is one of the most effective control measures applied in 

freeways. RM, when driven by an opportune control strategy, alleviates significantly 

the overall traffic congestion and improves freeway conditions in terms of safety, 

travel time and reliability.  

Local ramp metering strategies are implemented for a single ramp and 

compute the metering rates by taking into account traffic conditions in the vicinity of 

a ramp. Several real-time ramp metering control algorithms have been developed and 

proposed in the literature, with ALINEA, an I-type feedback regulator, being the most 

popular and efficient as it has already been implemented in many field applications.  

However, there exist cases where bottlenecks with smaller capacity, than the merging 

area’s, exist further downstream due to, for example, a lane drop, a tunnel, an 

upgrade, a speed limit area or an uncontrolled downstream on-ramp. In such cases, 

ALINEA fails to respond satisfactorily and, therefore, other control strategies should 

be employed, which have been designed so as to use measurements from those further 

downstream areas where the bottleneck is activated.  

Towards this direction, this work investigates the application of a new control 

strategy, specifically a Linear Quadratic Regulator augmented with integral action 

(LQI), for the local ramp metering control problem when bottlenecks are located many 

kilometres (up to 5 km) downstream of the metered on-ramp. LQI makes use of 

measurements all along the area extending from the controllable on-ramp to the 

bottleneck location, being therefore capable to improve the stability and robustness 

properties of the control loop.  

This study investigates various downstream bottleneck scenarios and uses the 

second-order macroscopic traffic flow model METANET as ground truth for the 

control application. Simulation results revealed that: i) the proposed methodology 

handles efficiently the local RM task in case of very distant downstream bottlenecks 

and, ii) LQI is less sensitive compared to previously proposed control strategies. 
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1. Introduction 

This first section corresponds to the introductory section of this thesis. Sections 

1.1 describes the motivations and objectives of this work, while Section 1.2 presents 

the outline of this thesis.  

 

1.1 Motivation and Thesis Objectives 

The number of vehicles and the need of transportation is continuously 

growing causing traffic congestion problems. The continuously increasing daily traffic 

congestion on freeway networks around the world calls for innovative control 

measures and control strategies that would drastically improve the current traffic 

conditions [1], [2]. Traffic congestion in freeways has become a common phenomenon, 

which leads to delays, lower speeds, long trip times, increased vehicular queueing, 

increased fuel consumption, reduced traffic security and severe air pollution. As 

traffic demand approaches the available capacity of the freeway, traffic congestion 

appears and bottleneck areas start to activate. A traffic bottleneck is a localized 

disruption of vehicular traffic on a freeway caused mainly due to the existence of lane 

drops, bridges, tunnels, upgrades, curvatures, speed limit areas and uncontrollable 

ramps. In order to avoid congestion phenomena, several control measures and control 

strategies have been proposed [17].  

In order to deal with the traffic congestion problems in freeways, there have 

been many methods developed and proposed in literature during the last years [12], 

[15]. Related studies provide methods, which guarantee strong theoretical properties 

and are easily applicable for real traffic control. Thus, Ramp Metering (RM) can be 

defined as a method by which a traffic flow to gain access to a freeway network, is 

controlled at the access point via traffic signals. This control aims at maximize the 

capacity of the freeway and prevent the congestion phenomena. As far as RM is 
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concerned, several RM control strategies have been proposed in the literature, with 

ALINEA [19], an I-type feedback regulator, being the most popular and efficient. 

ALINEA aims to maximize freeway throughput in the ramp merging area and, to this 

end, occupancy measurements are required and have to be collected from a 

mainstream cross section located at most a few hundred meters downstream of the 

metered on-ramp. Another control strategy have been proposed is PI-ALINEA 

(Proportional Integral) [10], an extension of ALINEA, that instead of using 

measurements from the merging area, takes the measurements from the downstream 

bottlenecks [9]. PI-ALINEA is proposed because of the main weakness of ALINEA 

regulator that compute the control law only on the basis of measurements at the region 

that the control action is actuated. According to the ones mentioned before, areas with 

smaller capacity than the merging area may exist further downstream of the freeway. 

PI-ALINEA seems to be efficient in cases where areas with smaller capacity than the 

merging area may exist downstream of the freeway (up to 2 km). Although, PI-

ALINEA’s action fails in the case of very very far downstream bottlenecks (more than 

2 km).   

The fact that other strategies, such as PI-ALINEA, fail to succeed handling the 

control task in these areas, has been a motive to construct a new regulator based on a 

promising control strategy. This thesis is based on a traffic-responsive ramp metering 

control algorithm that has been developed to control the ramp locally. Thus, this 

report aims to present a promising approach for developing a control strategy that is 

more efficient and robust than the strategies that have been already developed [12], 

[15].  

 The proposed control strategy consists of a Linear Quadratic Regulator with 

Integral action (LQI) in cases where the bottleneck is located many kilometers 

downstream from the on-ramp (more than 2 km) [6], [8], [31]. In order to test this 

strategy, various scenarios have been constructed depending on the location of the 

bottleneck (five scenarios are presented herein) and a freeway with a single on-ramp 

is assumed. Given the ability of second-order models, this thesis examines the 

formulation of a popular second-order model, namely METANET [5], [8] [30] model. 
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This thesis, utilizes mathematical tools that describe general traffic systems and 

freeways. To summarize, the scope of this work is to test the robustness, the efficiency 

and the ability of the LQI strategy to handle with success the control task in areas far 

downstream of the on-ramp’s location. 

 

1.2 Thesis Outline  

This diploma thesis is composed of 6 Chapters. Chapter 2 presents briefly some 

theoretical background issues related to control theory (control loop, stability, 

controllability and observability). An overview of traffic flow control is also presented 

(control measures and control strategies). At the end of Chapter 2, there is an 

introduction in Traffic Flow Modeling and especially the second order METANET 

model. In Chapter 3, there is a presentation of the build and the formulation of Linear 

Quadratic Integral regulator. Chapter 4 consist of a description of the simulation set-

up and the control set-up used for simulations. In Chapter 5, simulation investigations 

are presented and compared to other related studies. Finally, Chapter 6 summarizes 

the conclusions and proposes future work. 
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2. Theoretical Background 

2.1 Control Theory 

Control theory deals with the control of continuously operating dynamical 

systems in freeways, by developing a controller with the appropriate behavior. In 

order to handle deviations from a desired system behavior, the main tool is the use of 

feedback. Feedback control theory involves the analysis and synthesis of feedback 

controllers that manipulate system inputs to obtain a desired effect on the output of 

the system in the face of system uncertainty and system disturbances.  

Sensors deployed in freeways collect information, for designed time steps, 

about the stationary flow, the mean speed and the density (actual values) of the 

vehicles. A controller compares actual and desired values (𝑦∗- set point) of the variable 

of interest and calculates the difference between them (error). Error is applied as 

feedback to generate a control action in order to make actual and desired values equal. 

Τhe mathematical background of the process is the system function that express the 

relation between the input (𝑢(𝑘)) and output (𝑥(𝑘)) based on the differential equations 

describing the system (Figure 1).  

 

 

Figure 1: Description of a control loop 
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2.1.1 Control Loop 

 

There are two types of control loops: open loop control and closed loop control.  

In open loop control, the control action from the controller is independent of the 

variable of interest. In closed loop control, the control action from the controller is 

dependent on feedback from the process in the form of the variable of interest. A 

closed loop controller, that is concerned here, has a feedback loop. It is also called 

feedback controller.  

In general, the kernel of the closed control loop is the control strategy, whose 

task is to specify in real time the control inputs, based on available measurements in 

order to achieve the pre-specified goals despite the influence of various disturbances. 

If a human operator undertakes this task, we have a manual control system. In an 

automatic control system, this task is undertaken by an algorithm (the control 

strategy). The relevance and efficiency of the control strategy determines the efficiency 

of the overall control system. In this thesis a single-input-single-output (SISO) control 

system is used.  

 

2.1.2 Stability, Controllability and Observability 

 

The task of the control theory is to decide which is the best control strategy to 

be applied or whether it is even possible to control or stabilize the system. Before that, 

it is necessary to check if the system is stabilizable, controllable and observable.  

Stability of a linear system can be achieved if the poles of its transfer function 

have negative-real values, the real part of each pole must be less than zero. 

Controllability is an important property of a control system. It is related to the 

possibility of forcing the system into a particular state by using an appropriate control 

signal. If a state is not controllable, then no signal will ever be able to control the state. 

If a state is not controllable, but its dynamics are stable, then the state is termed 

stabilizable. 

Observability is the possibility of observing, through output measurements, the 

state of the system. If a state is not observable, the controller will never be able to 
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determine the behavior of the state and hence cannot use it to stabilize the system. If 

a state cannot be observed it might still be detectable. Controllability and observability 

of a system are mathematical duals. 

 

2.2 Traffic Flow Control  

Traffic Flow Control [1], [2] aims to limit congestion phenomena observed at 

traffic networks, and especially freeway networks. Freeways are congested on a daily 

basis during rush hours causing congestion that occurs as use increases, and is 

characterized by slower speeds, longer trip times, and increased vehicular queueing. 

Thus, the drivers experience delays, the traffic safety is reduced, the fuel consumption 

and air pollution are increased. 

After extensive research, there are control measures have been developed to 

deal with this phenomenon. Control measures can be used to improve traffic 

performance. Speed limits, Route guidance and Ramp metering are control measures 

that are currently applied or could be applied in the near future. Freeway control 

measures increase the efficiency and safety of the system. To achieve their goal, the 

following control measures must be driven by appropriate control strategies. The 

most investigated control measures include: 

 

2.2.1 Variable Speed Limits (VSL) 

The working principle of a speed limit system can be categorized based on 

their intended effects: improving safety, improving traffic flow, or their 

environmental effects, such as reducing noise or air pollution. VSL offer considerable 

promise in restoring the credibility of speed limits and improving safety by restricting 

speeds during adverse conditions. These speed limits change based on road, traffic 

and weather conditions and they are displayed on the electronic signs in freeways. 

Traffic sensors along the roadway collect vehicle speeds, congestion information and 

traffic flow rates to gradually reduce the approaching flow of traffic to the congested 
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area. Drivers speeding up and slowing down to adjust to the traffic flow. VSL are 

valuable for traffic safety (reduction of accidents), but their current usage has hardly 

any positive impact for the increase in throughput or decrease in average travel times. 

 

2.2.2 Route Guidance 

Route guidance systems assist drivers in choosing their route when alternative 

routes exist to their destination. The systems typically display traffic information such 

as congestion length, the delay on the alternative routes, or the travel time to the next 

common point on the alternative routes. It is expected to improve the network 

performance (better use of the available capacity, higher throughput and stability, and 

less spill-back), and reduce the travel time (minimize delays) for the individual road 

user as well. Finding the right route guidance configuration is a complex task that 

should take potentially unfavorable effects and coordination into account.  

 

2.2.3 Ramp Metering (RM) 

Ramp Metering is one of the most investigated and applied freeway traffic 

control measures. A ramp meter is a device, usually a basic traffic light or a two-

section signal light together with a signal controller that regulates the flow of traffic 

entering freeways according to current traffic conditions.  

In this thesis, we focus on Ramp Metering as a freeway traffic control measure 

[18]. By the use of traffic lights positioned at on-ramps, RM reduces overall freeway 

congestion by managing the amount of traffic entering the freeway. Although, some 

delay may be caused at waiting ramp queues, the overall time may be decreased due 

to the optimal operation of the existing infrastructure.  Ramp meters on freeways are 

proved successful in decreasing traffic congestion and improving driver safety.  
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 Flow, Reliability and Efficiency 

 

RM reduces mainstream congestion and overall delay, while increasing flow 

through the freeway network and traffic throughput. Travel times, even when 

considering time in queue on the ramp, are generally reduced when ramp metering is 

implemented. Travel time reliability has become an important measure of ramp 

metering effectiveness. 

 

 Safety 

 

Ramp meters help breaking up platoons of vehicles that are entering the 

freeway and competing for the same limited gaps in traffic. Thus, RM help to avoid 

collisions and crashes on the freeway. Effective ramp queue management can prevent 

queues from spilling into the mainstream flow. 

 

 Reduced Environmental Impacts  

 

Ramp meters smooth the traffic flow entering the freeway so vehicles can 

merge with the mainstream network with minimal disruption to traffic flow. By 

reducing periods of stop-and-go conditions that caused because of the congestion, 

vehicle emissions and fuel consumption on the freeway can be reduced.  

 

 Cost  

 

To estimate if the implementation of ramp metering is great value, it is 

necessary to evaluate and compare the cost effectiveness of ramp metering 

implementation and operation against the no ramp meter scenario. This benefit/cost 

analysis seems to be excellent for transportation improvements. 
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In general, without ramp meters in freeways, vehicles merge in packed 

platoons, causing drivers on the mainstream freeway  to slow down or even stop in 

order to allow to other vehicles to enter the freeway. Thus, the vehicles develop lower 

speeds, both on the mainstream and on the ramp, and that quickly leads to congestion 

and sometimes stop-and-go conditions. Ramp meters can control the rates at which 

vehicles enter the mainstream network from the on ramp. These vehicles enter the 

mainstream flow smoothly and there is no need any more for vehicles in the 

mainstream network to reduce speed. In addition, RM help managing the entrance 

demand at a level that is near the capacity of the freeway, which prevents traffic flow 

breakdowns. Thus, RM reduce at peak hours the density of the freeway and maximize 

the flow at the freeway exit [27].  

 

2.3 Ramp Metering Control Strategies 

In order to achieve a sustainable mobility system, by taking care the needs of 

the system, it is necessary to develop a control strategy. The control methods 

developed nowadays must have the objectives not only of decreasing travel delays 

experienced by drivers in the traffic system but also of reducing pollution , fuel 

consumption, accidents, noise and so on. Control measures such as Ramp metering, 

which described before, must be driven by appropriate control strategies, to achieve 

their goals. For instance, ramp metering control strategies have as an ultimate goal to 

determine, in the most efficient way, the inflows from the on-ramps, when congestion 

phenomena are present at the corresponding mainstream region, so as to maximize 

the freeway throughput.  

In general, control strategies can be classified into fixed-time and traffic-

responsive strategies. Fixed-time control strategies use historical data, while traffic-

responsive (real-time) strategies use current traffic data, provided by sensors installed 

in the freeway network and the on-ramps (traffic measurements). Their goals are to 

specify the optimal plans that depend on the time of day and to specify the values of 

the control variables that minimize the extend of congestion, respectively.  
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Traffic responsive strategies, that interest us, can be classified into local and 

coordinated strategies. Local ramp metering strategies are implemented for a single 

ramp by taking into account traffic conditions within a vicinity of this ramp to 

compute the metering rates; while coordinated ramp metering strategies determine 

the metering rates of multiple ramps based on the traffic conditions of a 

correspondingly extended section of the network. For the purpose of this study, local 

ramp metering will be considered. Moreover, local ramp metering strategies make use 

of measurements from further downstream of a single on-ramp. Instead, coordinated 

ramp metering strategies make use of measurements from the whole region of the 

network to control all metered ramps of the network.  

The most important control strategies include Nonlinear Optimal Control, Model 

Predictive Control and Explicit Feedback Control. The first two control approaches are 

very efficient but they are highly demanding from the computational point of view. 

Explicit feedback control approaches has been shown to enhance the efficiency of 

traffic operations without the computational effort.  

 

2.3.1 Existing local RM Strategies 

 

There are a wide range of ramp metering control strategies and algorithms [12], 

[15], [24].  Local control strategies select metering rates based on traffic conditions 

present on the on ramp and are often used as back-up strategies. When calculating a 

metering rate, control takes into account traffic conditions upstream and downstream 

from an individual ramp along a specific freeway segment.  

 

2.3.1.1 ALINEA and PI-ALINEA 

 

ALINEA controls the traffic entering from an on-ramp and targets a critical 

density in the mainstream merging segment to maximize the freeway throughput. 

ALINEA aims to maximize freeway throughput in the ramp merging area and, to this 

end, required occupancy measurements should be collected from a mainstream cross 
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section that is located at most a few hundred meters downstream of the metered on-

ramp (where the merging congestion is likely to appear first). This can be achieved by 

maintaining traffic density in the merging area, around the critical density, so that the 

mainstream flow of the merging area can be maximized. In some cases, however, a 

bottleneck with lower capacity than the merging area may exist further downstream, 

due to the existence of curvatures, lane drops, tunnels or downstream uncontrollable 

on-ramps. In these cases, density that feeds the feedback ramp metering controller 

should be collected at the downstream location because the maximum throughput 

that can be accommodated by the downstream bottleneck is lower than that in the 

merging area.  

PI-ALINEA, as feedback ramp metering strategy, is a functional extension of 

ALINEA. PI-ALINEA is very efficient in handling the local ramp metering task in 

presence of distant downstream bottlenecks. Thus, PI-ALINEA acts like ALINEA, but 

it is a suitable proportional-integral extension of ALINEA and is selected to investigate such 

cases [9], [19]. 

 

2.4 Traffic flow Modeling 

Traffic flow modeling [7] is a branch of mathematics and engineering that 

studies the relationship between the drivers and their environment. A lot of 

mathematical models have been proposed since the appearance of traffic jams, in 

order to describe the traffic flow situation on freeways. These mathematical models, 

can be used to adjust the traffic flow in crucial areas, maximize the overall throughput 

of traffic along the stretch of the freeway and as a result solve the traffic jam problem. 

By these models, we can predict, given certain demand levels, where and when 

queuing will occur,  how long it will take for congestion to resolve, e.t.c. This study is 

related to the utilizization of these mathematical models in developing and testing 

traffic flow estimation algoritthms and traffic control strategies.  
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The first step in modeling is to study and represent the system by 

mathematical equations. For the assessment of traffic control strategies, a simulation 

model is used instead of (or before) a real-world test. Simulation has several 

advantages because is cheaper and faster than real- world tests and it does not require 

real human drivers as test subjects. 

In general, traffic flow models can be classified as microscopic, macroscopic or 

mesoscopic, according to the level of detail with which they describe the traffic process 

[1]. 

 

 Microscopic traffic flow models describe the behavior of individual vehicles. 

These models simulate single vehicle-driver units, so the dynamic variables of 

the models represent microscopic properties like the position and velocity of 

single vehicles. In microscopic traffic models different characteristics are 

assigned to each vehicle, such as the driving style of the driver (aggressive, 

patient), vehicle type (car, truck), destination and route choise. A microscopic 

model attemps to analyze the flow of traffic by modelling driver-driver and 

driver-road interactions within a traffic stream which respectively analyzes the 

interaction between a driver and another driver on road and of a single driver 

on the different features of a road. In general, it is difficult to calibrate 

microscopic models with real traffic data because of the large number of the 

parameters they use. The parameters in macroscopic traffic flow models are 

less than in microscopic models.  

 

 Macroscopic traffic flow models [28] consider the traffic flow as a compressible 

fluid with well-defined characteristics and describe it with aggregate variables, 

such as flow, density and mean speed, make use of partial differential 

equations, a conservation equation and a momentum equation. In macroscopic 

modeling, under homogeneous traffic conditions in space and time, traffic 

density is related to traffic volume by a relationship known as the 

Fundamental Diagram (FD). This relationship provides maximum flow at a 
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critical density value, while if density is further increased, traffic volume 

decreases and a, more or less, severe traffic congestion results. Macroscopic 

traffic flow modeling started when Lighthill and Whitham presented in 1995 a 

model based on the analogy between traffic flows and flows in rivers. One year 

later Richards published a similar model. This model is usually referred as the 

Lighthill-Whitham-Richards (LWR) model [22]. Since then a variety of 

macroscopic traffic flow models has evolved from the LWR model, with some 

differences.  

 

 Mesoscopic traffic flow models, in general, are not used for traffic control and 

they do not consider the vehicles as individuals. These models describe the 

behaviour of individual vehicles in probabilistic terms. Examples of these 

models are headway distribution models and gas-kinetic models. 

 

Moreover, traffic flow models are categorized as first-order (FOMs), second-

order (SOMs) or higher-order models, according to the number of differential equations 

they include.  

 

 First-order models (such as LWR model) are widely known for their simplicity 

and computational efficiency and this is the reason why they have been used 

extensively in the past [8]. They include one partial differential equation, 

which describes the mass conservation law, and consider a static relation 

between speed and density.   Although, they are not able to reproduce the 

capacity drop phenomenon that is observed at congested freeway areas and 

the stop-and-go waves that appear at freeway bottlenecks.  

 

 Second-order or higher-order models (such as Payne model) include except for 

the conservation equation, one more partial differential equation, which 
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describes the dynamics of speed and a slightly higher number of parameters, 

compared to the first-order models.  

 

Another classification of traffic flow models is whether the model is 

deterministic or stochastic. Deterministic models define the relationship between model 

inputs, variables, and outputs that describe the behaviour of traffic. Stochastic models 

describe traffic behaviour in terms of relationships between random variables, 

random reaction time of drivers, randomness in equilibrium speed-density 

relationships, route choice, etc. 

A last classification of traffic flow models is imposed by the type of mathematical 

equations used. The models are described by Partial Differential Equations (PDEs), 

Ordinary Differential Equations (ODEs) or Difference Equations (Discrete space-time 

models).  

 

2.4.1 METANET Traffic Flow Model 

METANET that is used in this thesis [5], [30],  is  a  program  for  motorway  

network  simulation  based  on  a  purely macroscopic modelling  approach. 

METANET ca be applied to existing or hypothetical, multi–origin, multi-destination, 

multi-route networks with characteristics like on-ramps, off-ramps etc. The fact that 

is a macroscopic model leads to low computational effort, which is independent of the 

number of vehicles in the simulated network. This modelling approach allows the 

simulation of all kinds of traffic conditions and of capacity reducing events. The use 

of model can be either off-line or in real-time. It is a useful tool to develop and evaluate 

traffic control strategies, by considering the application of control measures, such as 

ramp metering. Thus, simulation results by applying METANET, are provided in 

terms of macroscopic traffic variables such as density, flow, speed as well as in terms 

of travel times. Visualization of the results is provided by time trajectories of selected 

variables and by graphical representation of the whole network.   
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2.4.2 Description of stretch 

 

The freeway network is represented by a directed graph. Each stretch has the 

same geometry and specific characteristics such as on-ramps, off-ramps etc. The 

simulation of traffic behaviour in the freeway links is macroscopically characterized 

by the following aggregate variables: traffic density 𝜌  (veh/km/lane), mean speed 𝑣 

(km/h), and traffic flow 𝑞 (veh/h/lane). For modeling, any considered freeway stretch 

m is subdivided into a number of  𝑁 cells with typical lengths 𝐿𝜄 of 300 to 800 meters 

(i=1, 2, . . . ,N). The time and space arguments are discretized (Figure 2). The time is 

discretized based on a model time step  𝑇 (5 − 10 𝑠) and the indexes 𝑘 = 1, 2, . . . , 𝑁 at 

discrete time  𝑡 = 𝑘𝑇. The aggregated traffic flow variables are defined for each cell 

and updated for each model time step. 

 

 

 

Figure 2:  Hypothetical Stretch  

 

Traffic density 𝜌 is the number of vehicles in cell 𝑖 at time 𝑡 = 𝑘𝑇 divided by 𝐿𝑖 and by 

the number of lanes 𝜆𝑖  in the considered stretch 𝑚 ; mean speed 𝑣 is the mean speed 

of vehicles in cell 𝑖 of stretch 𝑚 at time 𝑡 = 𝑘𝑇; and traffic flow 𝑞 is the number of 
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vehicles leaving the cell 𝑖 of stretch 𝑚 during the time period [𝑘𝑇, ( 𝑘 + 1 )𝑇] divided 

by 𝑇 (Figure 2).   

METANET employs a second-order traffic flow model consisting of two 

interconnected dynamic equations, which describe the evolution of traffic density and 

mean speed, respectively. For every stretch 𝑚 and every cell 𝑖, the stochastic nonlinear 

difference equations of the second-order macroscopic traffic flow model used to 

calculate the traffic variables are: 

 

Transport Equation: 

 

𝑞𝑚,𝑖(𝑘𝑠) = 𝜌𝑚,𝑖(𝑘𝑠) ∙ 𝑣𝑚.𝑖(𝑘𝑠) ∙ 𝜆𝑖 

 
(2.1) 

Continuity Equation: 

 

𝜌𝑚,𝑖(𝑘 + 1) = 𝜌𝑚,𝑖(𝑘) +
𝑇

𝐿𝑖 ∙ 𝜆𝑖
[𝑞𝑚,𝑖−1(𝑘) − 𝑞𝑚,𝑖(𝑘) + 𝑟𝑖(𝑘) − 𝑠𝑖(𝑘)] (2.2) 

 

Speed Equation: 

 

𝑣𝑚,𝑖(𝑘 + 1) = 𝑣𝑚,𝑖(𝑘) +
𝑇

𝜏
[𝑉 (𝜌𝑚,𝑖(𝑘)) − 𝑣𝑚,𝑖(𝑘)] +

𝑇

𝐿𝑖
𝑣𝑚,𝑖(𝑘) ∙ [𝑣𝑚,𝑖−1(𝑘) − 𝑣𝑚,𝑖(𝑘)]

−
𝑣𝑇[𝜌𝑚,𝑖+1(𝑘) − 𝜌𝑚,𝑖(𝑘)]

𝜏𝐿𝑖[𝜌𝑚,𝑖(𝑘) + 𝜅]
  

 

(2.3) 

Fundamental Diagram: 

 

𝑉 (𝜌𝑚,𝑖(𝑘)) = 𝑣𝑓,𝑚 ∙ 𝑒𝑥𝑝 [−
1

𝑎𝑚
(
𝜌𝑚,𝑖(𝑘)

𝜌𝑐𝑟,𝑚
)

𝑎𝑚

] 

 

   

(2.4) 

𝑄 (𝜌𝑚,𝑖(𝑘𝑠)) = 𝜌𝑚,𝑖(𝑘𝑠)⸱ 𝑣𝑓,𝑚 ∙ 𝑒𝑥𝑝 [−
1

𝑎𝑚
(
𝜌𝑚,𝑖(𝑘)

𝜌𝑐𝑟,𝑚
)

𝑎𝑚

] (2.5) 
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where 𝑟𝑖(𝑘), 𝑠𝑖(𝑘) are the on-ramp inflow and off-ramp outflow, respectively; 𝑣𝑓,𝑚 

and 𝜌𝑐𝑟  are the free-flow speed and critical density, respectively; functions V, Q 

provide a speed and a flow value for the cell 𝑖  of the stretch 𝑚 , respectively; 

𝜏(𝑡𝑎𝑢), 𝑣(𝑛𝑢𝑒), 𝜅(𝑘𝑎𝑝𝑝𝑎) are global parameters given for the whole network. More 

specifically, 𝜏  is a time constant; 𝑣  is an anticipation constant; and 𝜅  is a model 

parameter. So, the first term of Equation (2.3) express the relaxation time, the second 

term express the convection between the cells and the third one, the anticipation of 

the network. Equations (2.1)-   (2.4) are only applied to normal stretches inside the 

network. 

If the network consists of several stretches that merge at a node or there are 

leaving links (on-ramps – off ramps), merging phenomena have to be considered. This 

can be achieved by adding the following term to speed Equation (2.3): 

 

−
𝛿𝑇

𝐿𝑖 ∙ 𝜆𝑖
⸱
𝑟1(𝑘) ∙ 𝑣𝑚,𝑖(𝑘)

𝜌𝑚,𝑖(𝑘) + 𝜅
, (2.6) 

where 𝛿 is a global parameter.  

 

 

2.4.3 Fundamental Diagram 

 

The fundamental diagram (FD) of traffic flow is a diagram that gives the 

relationship between the traffic flow and the traffic density in cell 𝑖 of stretch 𝑚. On 

the previous section, the free flow speed 𝑣𝑓,𝑚 (𝑣𝑓𝑟𝑒𝑒) , the critical density 

𝜌𝑐𝑟,𝑚 (𝑟𝑜𝑐𝑟𝑖𝑡), for which the flow at cell 𝑖 is maximized, and the exponent 𝑎𝑚 , are 

designed for the construction of fundamental diagram (Equations    (2.4)-(2.5)) of the 

considered stretch 𝑚. The Equation (2.5) is used to design the FD of cell 𝑖 of stretch 𝑚 

is an empirical relation.  

FD represents the capacity of each cell in terms of vehicle density. Maximum 

capacity (𝑞𝑐𝑎𝑝) of cell 𝑖 is the region that the traffic density becomes critical (𝑟𝑜𝑐𝑟𝑖𝑡) 

and traffic flow is maximized. The shape of the fundamental diagram is determined 

by the parameters 𝑣𝑓,𝑚 , 𝜌𝑐𝑟,𝑚  and 𝑎𝑚  (no direct physical significance), which are 



33 

 

Linear Quadratic Integral Regulator                                Technical University of Crete  

specific for each FD. The FD can be presented either by a triangular or either by a 

parabolic curve. Here, the FD of each cell is described by the following parabolic 

shaped flow - density diagram. Related studies support that triangular shaped flow – 

density diagram is an accurate representation of real world events in comparison with 

parabolic shaped flow - density diagram. Although, in theoretical level, the first type 

of FD is been used efficiently.   

 

 

 

Figure 3: Flow-Density diagram 

 

Each FD consists of two regions. The one represents the uncongested area and 

the other one the congested area. Congestion appears when the network characterized 

of maximum capability (𝑞𝑐𝑎𝑝). Thus, as it is shown in Figure 3, 𝑣𝑓,𝑚 (𝑣𝑓𝑟𝑒𝑒) can be 

found by calculating the slope of the tangent at a point of  FD’s uncongested area. This 
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slope indicates the linearized speed that is denoted by 𝑣𝑓 (𝑣𝑓𝑟𝑒𝑒) if the linearization 

point is zero or by 𝑣𝑙𝑖𝑛,𝑖  if the linearization point is near the critical density. 

 The continuity Equation (2.3) is a dynamical equation that expresses the 

conservation of vehicles within the network. Taking into consideration the 

Generalized Cell Transmission Model (CTM), the uncongested area of the FD, the 

linearization at a point of the FD and the absence of on-ramps and off-ramps at the 

region of linearization, the continuity equation is  

 

𝜌𝑚,𝑖(𝑘 + 1) = 𝜌𝑚,𝑖(𝑘) +
𝑇

𝐿𝑖 ∙ 𝜆𝑖
[𝑣𝑙𝑖𝑛,𝑖−1𝜌𝑚,𝑖−1(𝑘) − 𝑣𝑙𝑖𝑛,𝑖𝜌𝑚,𝑖(𝑘)] (2.7) 

 

Thus,  

 

𝜌𝑚,𝑖(𝑘 + 1) = [1 −
𝑇

𝐿𝑖 ∙ 𝜆𝑖
 𝑣𝑙𝑖𝑛,𝑖] 𝜌𝑚,𝑖(𝑘) + 

𝑇

𝐿𝑖 ∙ 𝜆𝑖
𝑣𝑙𝑖𝑛,𝑖−1𝜌𝑚,𝑖−1(𝑘) (2.8) 

 

 

The Equation (2.2) is similar to the Equation (2.8) with the difference that the 

second equation depends on the value of the slope of the FD (𝑣𝑙𝑖𝑛,𝑖) near the critical 

density. This expression will be useful to explain how LQI regulator is constructed 

and it is described in the following section. 
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3. LQI Regulator 

3.1 Introduction 

The theory of optimal control is concerned with operating a dynamic system 

at minimum cost. The case where the system dynamics are described by a set of linear 

differential equations and the cost is described by a quadratic function is called the 

LQ problem. The solution is provided by the linear quadratic regulator (LQR), a 

feedback controller, which is an important part of the solution to the LQI (Linear 

Quadratic Integral) problem. The LQI algorithm reduces the amount of work done by 

the user to optimize the controller [8], [4]. However, the user still needs to specify the 

cost function parameters, and compare the results with the specified design values. 

Thus, the controller construction will be an iterative process in which the user 

evaluates the "optimal" controllers produced through simulation and then adjusts the 

parameters to produce a controller more consistent with design values. The LQR, and 

in specific the LQI algorithm, is essentially an automated way of finding an 

appropriate state-feedback controller. 

 

3.2 LQI Formulation 

The kinematic wave Lighthill-Whitham-Richards (LWR) model is a scalar 

nonlinear conservation law of hyperbolic type and turns out to be one of the simplest 

nonlinear conservation laws. LWR type models represent a valuable tool for the study 

of traffic behavior because of their simplicity, efficiency under congesting conditions.  

In order to derive the LQI regulator for local ramp metering (single on-ramp control), 

the system is described by a set of nonlinear differential equations (3.1): 

 

𝝆(𝑘 + 1) = 𝐹(𝝆(𝑘),   𝑟(𝑘)), (3.1) 
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where  𝐹 is a nonlinear function reflecting the discretized LWR model [8], 𝝆(𝑘) ⋲  ℜ𝑛 

denotes the densities corresponding in freeway sections between the on-ramp and the 

bottleneck and 𝑟(𝑘)  ⋲  ℜ denotes the on-ramp flow, at time step 𝑘. Linearization of 

this system around the steady-state (𝝆𝑑 , 𝑟𝑑) yields to the following equation: 

 

𝛥𝝆(𝑘 + 1) = 𝑨𝛥𝝆(𝑘) + 𝑩𝛥𝑟(𝑘), (3.2) 

 

where 𝛥𝝆(𝑘) = 𝝆(𝑘) − 𝝆𝑑  and 𝛥𝑟(𝑘) = 𝑟(𝑘) − 𝑟𝑑  denote the linearized state vector 

and control input, respectively.  𝑨 ⋲ ℜ𝑛𝑥𝑛  and  𝑩 ⋲  ℜ𝑛𝑥1  are the state and input 

matrices.  

 

In order to include integral parts into the state regulator, we consider now the state 

Equation (3.2) augmented by the use of  

 

𝑦(𝑘 + 1) = 𝑦(𝑘) + 𝑯𝛥𝝆(𝑘), (3.3) 

 

where 𝑦 ⋲  ℜ  and 𝐻 ⋲ ℜ1𝑥𝑛  is a horizontal vector, which has a one at the 𝑛𝑡ℎ 

component (so that the bottleneck density is integrated in (3.3)) and 0’s elsewhere. For 

deriving the LQI control, the control goal is to minimize the quadratic criterion: 

 

𝐽 =
1

2
∑[‖𝛥𝝆(𝑘)‖𝑸

2 + ‖𝛥𝑟(𝑘)‖𝑹
2 + ‖𝑦(𝑘)‖𝑆

2],

∞

𝑘=0

 (3.4) 

 

where 𝑸 ⋲ ℜ𝑛𝑥𝑛  is a symmetric positive definite weighting matrix and 𝑅, 𝑆 ⋲  ℜ 

correspond to positive constants. Considering the Equations (3.3) and (3.4) the 

following augmented matrices for LQI control are obtained: 

 

�̃� = [
𝑨 𝟎
𝑯 1

] , �̃� = [
𝑩
0
] , �̃� = [

𝑸 𝟎
𝟎 𝑆

] , �̃� = 𝑅, (3.5) 
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leading to the following time-invariant solution: 

 

𝛥𝑟(𝑘) = −�̃� [
𝛥𝝆(𝑘)

𝑦(𝑘)
], (3.6) 

 

where �̃� is the gain matrix depending on the problem matrices  �̃�, �̃�, �̃�, �̃�.  Matrix �̃� is 

a horizontal vector that may be calculated by the backward integration of the 

augmented Riccati matrix  �̃�(𝑘) starting form any terminal condition �̃�(𝐾) ≥ 0 until 

convergence towards a unique stationary value �̃� ≥ 0 is obtained. The gain matrix �̃� 

is specified by solving the following system equation: 

 

�̃� = �̃�𝑻𝑷�̃� + �̃� − �̃�𝑻�̃�𝑻𝑷�̃� (3.7) 

�̃� = (�̃�𝑻𝑷�̃� + �̃�)
−𝟏

𝑩𝑻𝑷�̃� , (3.8) 

 

where Equation (3.7) denotes the algebraic Riccati equation. Decomposing �̃� =

[𝑲𝒙 𝐾𝑦], we obtain from (3.8): 

 

𝛥𝑟(𝑘) = −𝑲𝒙𝛥𝝆(𝑘) − 𝐾𝑦𝑦(𝑘) (3.9) 

 

Considering Equation (3.3), the Equation (3.9) is obtained 

 

𝛥𝑟(𝑘) = −𝑲𝒙𝛥𝝆(𝑘) − 𝐾𝑦𝑦(𝑘 + 1) + 𝐾𝑦𝜢𝛥𝝆(𝑘) (3.10) 

 

After some algebra by subtracting above equation at k-1 from the same equation at k, 

and considering the Equation (3.3), we get 

 

𝑟(𝑘) = 𝑟(𝑘 − 1) − (𝑲𝒙 − 𝐾𝑦𝑯)[𝝆(𝑘) − 𝝆(𝑘 − 1)] + 𝐾𝑦𝜢𝛥𝝆(𝑘), (3.11) 

 

thus getting the LQI feedback control law: 
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𝑟(𝑘) = 𝑟(𝑘 − 1) − (𝑲𝒙 − 𝐾𝑦𝑯)[𝝆(𝑘) − 𝝆(𝑘 − 1)] + 𝐾𝑦𝜢[𝜌𝑛
𝑑 − 𝜌𝑛(𝑘)], (3.12) 

 

where 𝜌𝑛(𝑘)  and 𝜌𝑛
𝑑  indicate the bottleneck’s state and desired state, respectively. 

Setting now: 

 

 

The final LQI controller is obtained: 

 

𝑟(𝑘) = 𝑟(𝑘 − 1) − 𝑲𝑷[𝝆(𝑘) − 𝝆(𝑘 − 1)] + 𝐾𝐼[𝜌𝑛
𝑑 − 𝜌𝑛(𝑘)] (3.13) 

 

Similar to the application of  PI-ALINEA, in order to avoid wind-up-effects, 

the feedback LQI regulator (3.13) is truncated if it exceeds a range [𝑟𝑚𝑖𝑛 , 𝑅𝑚𝑎𝑥(𝑘)], 

where 𝑅𝑚𝑎𝑥(𝑘) = min (𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥(𝑘 − 1) + 400), 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 are the minimum and 

maximum admissible on-ramp flow, respectively, 𝑟𝑚𝑖𝑛(𝑘 − 1) is the measured ramp 

inflow during the last control time interval with 400 being an empirical value.   

 

𝑟(𝑘𝑐) = max (𝑟𝑚𝑖𝑛 ,min (𝑅𝑚𝑎𝑥(𝑘𝑐), 𝑟(𝑘𝑐 − 1) − 𝑲𝑷[𝝆(𝑘𝑐) − 𝝆(𝑘𝑐 − 1)] + 𝐾𝐼[𝜌𝑛
𝑑 − 𝜌𝑛(𝑘𝑐)] (3.14) 

 

 

𝑲𝑷 = 𝑲𝒙 − 𝐾𝑦𝑯 

𝐾𝐼 = 𝐾𝑦 𝑯 
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4. Local Ramp Metering using LQI 

4.1 Simulation model and simulation set-up  

METANET traffic flow model that described before, has been used to 

simulation investigations. Five freeway stretches are considered in the following 

section. The critical density for METANET equations is defined as 𝜌𝑐𝑟 = 31.4  

veh/km/lane for each stretch; the parameter 𝑎 = 2 ; 𝑣𝑓1 = 105  km/h about non-

bottleneck cells; 𝑣𝑓2 = 79 km/h about bottleneck cells; 𝜏(𝜏𝑎𝑢) = 20/3600 h; 𝑣(𝑛𝑢𝑒) =

35  km2/h,  𝜅(𝑘𝑎𝑝𝑝𝑎) = 13  veh/km/h. For LQI formulation 𝑟𝑚𝑖𝑛  and 𝑟𝑚𝑎𝑥  are set 

equal to 300 and 2000 veh/h, respectively [9], [10]. 

 

4.1.1 Network Description  

 

In this thesis, for modelling and simulation, a freeway network of  𝑁 = 32 cells, 

is considered (Figure 4-Figure 8), for each of five bottleneck cases have been tested. The 

network has a main entrance (cell 1), one exit (cell 32) and a single on-ramp located at 

the upstream boundary of the ninth (9th) cell, which is 2 km downstream from the 

network entrance. The length of each cell is 𝐿𝑖 = 0.25 km. Each cell has 𝑙𝑖 = 3 lanes. 

Thus, the total length of the freeway is 8 km. The length of each bottleneck is 1 km (4 

cells) and it is assumed to be present in different locations downstream of the on-ramp 

for the different control scenarios (see the grey areas in Figure 4-Figure 8). 

Five bottleneck cases are described here. In the first case, the bottleneck is 

located at cell 10, near the on-ramp at the 9th cell (Figure 3). Thus, each of the five cases 

have a 1 km-long bottleneck at locations 0.25 km, 1.5 km, 2.75 km, 4 km and 5 km, 

respectively, downstream of the on-ramp (Figure 4-Figure 8). 

The linearized (considered) system extends from the on-ramp location (cell 9) 

to the first cell of the bottleneck section (see the areas indicated by circles in Figure 4-

Figure 8). These cells 𝑁′ indicate the number of considered cells of the network. 
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Figure 4: Bottleneck case1 

 

 

Figure 5: Bottleneck case 2 

 

 

Figure 6: Bottleneck case 3 

 

 

Figure 7: Bottleneck case 4 
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Figure 8: Bottleneck case 5 

 

4.1.2 Fundamental Diagram and Demand scenarios   

 

A bottleneck section differs from a non-bottleneck section in traffic flow 

characteristics. More specifically, the fundamental diagram “FD for non-bottlenecks 

cells” is included to the simulation model to emulate each non-bottleneck cell, 

whereas “FD for bottlenecks cells” is considered for each bottleneck cell (Figure 9). 

Bottleneck cells are characterized by FDs with lower capacity compared to non-

bottleneck cells.  

 

 

Figure 9: Fundamental diagrams considered 

Linearization at  

15 veh/km/h 
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 Thus, 𝑞𝑐𝑎𝑝1 = 2000  veh/h/lane and  𝑞𝑐𝑎𝑝2 = 1500  veh/h/lane about non-

bottleneck and bottleneck cells, respectively, are the maximum capacities while 

density is critical  𝜌𝑐𝑟 = 31.4 veh/km/lane. As shown in Figure 9, two FD’s have the 

same critical density, but different free speeds (linearized speeds) and capacities. The 

slope of the tangent of FD diagram (uncongested area) at point 15 veh/km/h, near 

the critical density, denotes the linearized speed at this point.  

 

 

Figure 10: Utilized mainstream and on-ramp demand scenarios 

 

The trapezoidal demand scenarios shown in Figure 10 are used in the 

simulation investigations over a time horizon 4 h. This figure presents the considered 

entrance and on-ramp demand scenarios. The trapezoidal demand of the mainstream 

entrance reaches the value of 4400 veh/h and the demand of the on-ramp reaches the 

value of 1350 veh/h. 
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4.2 Control set-up 

The simulation time step 𝑇and control time step 𝑇′  are 5 sec and 30 sec, 

respectively. Measurements of flow and density for each cell  𝑖  of each considered 

freeway stretch, are extracted from the simulator every 𝑇 = 5 sec. Then, the average 

of these measurements is fed to the regulator (Equation (3.14)) of the LQI every 𝑇′ =

30 sec.  

Therefore, the dimension of density 𝜌 and the dimensions of corresponding 

matrices 𝐴, 𝐵, 𝑄, 𝐻, 𝑅, 𝑆 considered in Section for LQI Formulation depends on the 

bottleneck location (see Figure 4: Bottleneck case1Figure 8: Bottleneck case 5). The number 

of considered cells, indicating with circles in Figure 4: Bottleneck case1Figure 8: 

Bottleneck case 5, is expressed by the symbol 𝑁′ . In particular, according to the 

Equation (2.8), the matrices 𝐴 and 𝐵 are formulated as follows:  

 

𝐴𝑁′× 𝑁′ =

[
 
 
 
 
 
 
 
 
 
 
 1 −

𝑇

𝐿1𝜆1

𝑣𝑙𝑖𝑛,1 0 ⋯ ⋯ ⋯ 0

𝑇

𝐿2𝜆2

𝑣𝑙𝑖𝑛,1 1 −
𝑇

𝐿2𝜆2

𝑣𝑙𝑖𝑛,2 0 ⋮ ⋮ ⋮

0
𝑇

𝐿3𝜆3

𝑣𝑙𝑖𝑛,2 ⋱ ⋮ ⋮ ⋮

⋮ 0 ⋮ ⋱ 0 ⋮

⋮ ⋮ 0 ⋮ 1 −
𝑇

𝐿𝑁′−1𝜆𝑁′−1

𝑣𝑙𝑖𝑛,𝑁′−1 0

0 ⋯ ⋯ 0
𝑇

𝐿𝑁′𝜆𝑁′

𝑣𝑙𝑖𝑛,𝑁′−1 1 −
𝑇

𝐿𝑁′𝜆𝑁′
𝑣𝑙𝑖𝑛,𝑁′

]
 
 
 
 
 
 
 
 
 
 
 

 

 

𝐵𝑁′×1 =

[
 
 
 
 
 
 
 

𝑇

𝐿1𝜆1

0
⋮
⋮
0
0
0 ]

 
 
 
 
 
 
 

 

 

The linearized speed at point 15 veh/km/h for non-bottleneck cells is set equal to 

𝑣𝑙𝑖𝑛,1 = 72 km/h and for bottleneck cells equal to 𝑣𝑙𝑖𝑛,2 = 54 km/h.  The matrix 𝐻 is 

formulated as following (taking into consideration the single on-ramp): 
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𝐻𝑁′× 1 = [0 0 ⋯ ⋯ ⋯ ⋯ ⋯ 0 1] 

 

For driving the gain matrices 𝐾𝑃 , 𝐾𝐼 an appropriate selection of the weighting matrices 

𝑄 , 𝑅 , 𝑆  should be performed. After extensive simulation tests, in this study these 

matrices are: 

 

𝑄𝑁′×𝑁′ =

[
 
 
 
 
 
 
 
 
 
 
104

𝑁′
⋯ ⋯ ⋯ ⋯ ⋯

⋮
104

𝑁′
⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋮ ⋮ ⋮ ⋮
104

𝑁′
⋮

⋯ ⋯ ⋯ ⋯ ⋯
106

𝑁′ ]
 
 
 
 
 
 
 
 
 
 

            

 

 

       𝑅1𝑥1 = 1                       𝑆1𝑥1 = 104 

 

For each of these network scenarios described before, no control and control results 

under the LQI and PI-ALINEA, are presented.  
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5. Simulation Investigations 

Here, the simulation investigation results are presented. Five typical scenarios 

of bottlenecks are considered in this thesis (Bottleneck case 1, Bottleneck case 2, 

Bottleneck case 3, Bottleneck case 4, Bottleneck case 5) and two configurations of ramp 

metering controllers are considered for each scenario (ramp metering with LQI, ramp 

metering with PI-ALINEA). For each scenario there is a bottleneck of 1 km at various 

locations downstream of the on-ramp. Also, the no control case is presented for each 

bottleneck case. It is important to note that the set-point used for both regulators is the 

factual critical density of each bottleneck cell, which is different with the one given as 

FD parameter, due to METANET model dynamics (see Table 1). 

 

5.1 Set point selection  

For bottleneck case 1, 2, 3, 4 and 5, the factual density of  the first bottleneck 

cell was found around 42 , 41 , 39 , 39 and 42  veh/km/lane (Table 1), respectively 

(instead of  31.4 veh/km//lane), used also as set-point for the  control application. 

Taking into consideration the considered (linearized system) that described 

before, the dimension of the gain matrices 𝐾𝑃 , 𝐾𝐼 depend on the bottleneck location. 

For each bottleneck case, matrices 𝐾𝑃 ,  𝐾𝐼 are formulated as follows (see Table 2): 
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Table 1: Set-point selection 

 Set Point (veh/km/lane) Stationary  Flow (veh/h) 

Bottleneck Cases   

1 

41 

42 

43 

5193 

5194 

5192 

2 

40 

41 

42 

5270 

5269 

5267 

3 

38 

39 

40 

5279 

5282 

5283 

4 

38 

39 

40 

5280 

5283 

5284 

5 

41 

42 

43 

5084 

5084 

5082 
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Table 2: Gain values for each bottleneck case 

Bottleneck Cases 1 2 3 4 5 

Ν΄ 2 7 12 17 21 

KP (km*lane/h) 135 124 111 104 99 
 

125 153 137 126 119 
  

177 159 147 139 
  

194 178 165 157 
  

204 192 181 173 
  

208 202 193 186 
  

146 207 201 196 
   

210 207 203 
   

212 211 208 
   

212 212 211 
   

212 213 213 
   

149 214 214 
    

214 215 
    

214 215 
    

214 215 
    

214 215 
    

150 215 
     

215 
     

215 

     215 
     

151 

KI (km*lane/h) 61 63 64 64 65 
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5.2 Simulation Investigations- Bottleneck case 1 

 

 

Figure 11: Bottleneck case 1: (a) No control case, (b) control case with LQI, (c) control case 
with PI-ALINEA  

 

(a) 

(c) 

(b) 
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The bottleneck case 1 (see Figure 1) has a bottleneck of 1 km (cell 10 to cell 13) 

located at cell 10, near the on-ramp’s entrance (cell 9). The linearized (considered) 

system extends from the upstream boundary of cell 9 to the fist cell of the bottleneck 

section (cell 10).  

No Control Case: As shown in Figure 11(a), a severe congestion is created in 

the freeway mainstream resulting accordingly to capacity drop. The total demand 

(mainstream and on-ramp’s demand = 5750 veh/h) entering the merging area during 

the peak period exceeds considerably the capacity level of cell 9. The density of cell 9 

reaches the critical value of 42 veh/km/lane at about 𝑡 = 1.3 h, at which time that the 

stationary flow of cell 9 reaches the capacity level. As the density continues to increase, 

congestion initially builds in the bottleneck cell (cell 10) and gradually spills back to 

the upstream cells. Due to the uncontrollable on-ramp inflow, the mainstream 

demand upstream of the on-ramp cannot be efficiency served. Thus, the cells 

downstream the bottleneck location are not congested. Consequently, the outflow of 

cell 9 is around to 5089 veh/h. 

LQI: For bottleneck case 1 shown in Figure 11(b), the factual critical density 

and the stationary flow (of three lanes) for the bottleneck cell are found to be around 

42  veh/km/lane and 5194 veh/h, respectively. As is shown in Figure 11(b), the 

density becomes undercritical much earlier than in the no control case. The ramp 

metering action leads to a corresponding reduction of the total time spent by all 

vehicles. The density of cell 10 is kept exactly at the set value, whereas the capacity 

level of the bottleneck section is achieved, and the mainstream demand is well served.   

PI-ALINEA: For bottleneck case 1 shown in Figure 11(c), the ramp metering 

results by PI-ALINEA are so satisfactory as the results by LQI. As in LQI case, the 

factual density and the stationary flow for cell 10 are found equal to 42 veh/km/lane 

and 5194 veh/h, respectively. For PI-ALINEA’s action,  𝐾𝑃, 𝐾𝐼 gains as set equal to 

100, 4 km*lane/h, respectively. 
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5.3 Simulation Investigations- Bottleneck case 2 

 

 

Figure 12: Bottleneck case 2: (a) No control case, (b) control case with LQI, (c) control case 
with PI-ALINEA 

 

 

(a) 

(b) 

(c) 
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The bottleneck case 2 (see Figure 5) has a bottleneck of 1 km (cell 15 to cell 18) 

located at cell 15, downstream the on-ramp’s entrance (cell 9). The linearized 

(considered) system extends from the upstream boundary of cell 9 to the fist cell of 

the bottleneck section (cell 15).  

No Control Case: As shown in Figure 12(a), a severe congestion is created in 

the freeway mainstream resulting accordingly to capacity drop. The total demand 

(mainstream and on-ramp’s demand = 5750 veh/h) entering the merging area during 

the peak period exceeds considerably the capacity level of cell 9. The density of cell 9 

reaches the critical value of 41 veh/km/lane at at about 𝑡 = 1.3 h, at which time the 

stationary flow of cell 9 reaches the capacity level. As the density continues to increase, 

congestion initially builds in the bottleneck cell (cell 15) and gradually spills back to 

the upstream cells. Due to the uncontrollable on-ramp inflow, the mainstream 

demand upstream of the on-ramp cannot be efficiency served. Thus, the cells 

downstream the bottleneck location are not congested. Consequently, the outflow of 

cell 9 is around to 5189 veh/h. 

LQI: For bottleneck case 2 shown in Figure 12(b), the factual critical density 

and the stationary flow (of three lanes) for the bottleneck cell are found to be around 

41 veh/km/lane and 5269 veh/h, respectively. The ramp metering action leads to a 

corresponding reduction of the total time spent by all vehicles. The density of cell 15 

is kept exactly at the set value, whereas the capacity level of the bottleneck section is 

achieved, and the mainstream demand is well served.   

PI-ALINEA: For bottleneck case 2 shown in Figure 12(c), the ramp metering 

results by PI-ALINEA are similar to the results by LQI. As in LQI case, the factual 

density and the stationary flow for cell 15 are found equal to 41 veh/km/lane and 

5269 veh/h, respectively. For PI-ALINEA’s action,  𝐾𝑃, 𝐾𝐼 gains as set equal to 70, 2 

km*lane/h, respectively. 
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5.4 Simulation Investigations- Bottleneck case 3 

 

 

Figure 13: Bottleneck case 3: (a) No control case, (b) control case with LQI, (c) control case 
with PI-ALINEA 

 

 

(a) 

(c) 

(b) 
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The bottleneck case 3 (see Figure 6) has a bottleneck of 1 km (cell 20 to cell 23) 

located at cell 20, downstream the on-ramp’s entrance (cell 9). The linearized 

(considered) system extends from the upstream boundary of cell 9 to the fist cell of 

the bottleneck section (cell 20).  

No Control Case: As shown in Figure 13(a), a severe congestion is created in 

the freeway mainstream resulting accordingly to capacity drop. The density of cell 9 

reaches the critical value of 39 veh/km/lane at at about 𝑡 = 1.3 h, at which time the 

stationary flow of cell 9 reaches the capacity level. As the density continues to increase, 

congestion initially builds in the bottleneck cell (cell 20) and gradually spills back to 

the upstream cells. Due to the uncontrollable on-ramp inflow, the mainstream 

demand upstream of the on-ramp cannot be efficiency served. Thus, the cells 

downstream the bottleneck location are not congested. Consequently, the outflow of 

cell 9 is around to 5185 veh/h. 

LQI: For bottleneck case 3 shown in Figure 13(b), the factual critical density 

and the stationary flow (of three lanes) for the bottleneck cell are found to be around 

39 veh/km/lane and 5282 veh/h, respectively. The ramp metering action leads to a 

corresponding reduction of the total time spent by all vehicles. The density of cell 20 

is kept exactly at the set value, whereas the capacity level of the bottleneck section is 

achieved, and the mainstream demand is well served.   

PI-ALINEA: For bottleneck case 3 shown in Figure 13(c), the factual density 

and the stationary flow for cell 20 are found equal to 39  veh/km/lane and 5282 

veh/h, respectively. The resulting density and flow of cell 20 and of the further 

downstream cells are lightly oscillating around the set value. For PI-ALINEA’s action, 

𝐾𝑃, 𝐾𝐼 gains as set equal to 60, 1 km*lane/h, respectively. 
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5.5 Simulation Investigations- Bottleneck case 4 

 

 

Figure 14: Bottleneck case 4: (a) No control case, (b) control case with LQI, (c) control case 
with PI-ALINEA 

 

(a) 

(c) 

(b) 
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The bottleneck case 4 (see Figure 7) has a bottleneck of 1 km (cell 25 to cell 28) 

located at cell 25, downstream the on-ramp’s entrance (cell 9). The linearized 

(considered) system extends from the upstream boundary of cell 9 to the fist cell of 

the bottleneck section (cell 25).  

No Control Case: As shown in Figure 14(a), a severe congestion is created in 

the freeway mainstream resulting accordingly to capacity drop. The density of cell 9 

reaches the critical value of 39 veh/km/lane at at about 𝑡 = 1.3 h, at which time the 

stationary flow of cell 9 reaches the capacity level. As the density continues to increase, 

congestion initially builds in the bottleneck cell (cell 25) and gradually spills back to 

the upstream cells. Due to the uncontrollable on-ramp inflow, the mainstream 

demand upstream of the on-ramp cannot be efficiency served. Thus, the cells 

downstream the bottleneck location are not congested. Consequently, the outflow of 

cell 9 is around to 5184 veh/h. 

LQI: For bottleneck case 4 shown in Figure 14(b), the factual critical density 

and the stationary flow (of three lanes) for the bottleneck cell are found to be around 

39  veh/km/lane and 5282 veh/h, respectively. As is shown in Figure 14(b), the 

ramp metering action leads to a corresponding reduction of the total time spent by all 

vehicles. The density of cell 25 is lightly oscillating around the set value, whereas the 

capacity level of the bottleneck section is achieved, and the mainstream demand is 

well served.   

PI-ALINEA: For bottleneck case 4 shown in Figure 14(c), the factual density 

and the stationary flow for cell 25 are found equal to 39  veh/km/lane and 5282 

veh/h, respectively. The resulting density and flow of cell 25 and of the further 

downstream cells are lightly oscillating around the set value. For PI-ALINEA’s action,  

𝐾𝑃, 𝐾𝐼 gains as set equal to 40, 0.4 km*lane/h, respectively. 
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5.6 Simulation Investigations- Bottleneck case 5 

 

 

Figure 15: Bottleneck case 5 : (a) No control case, (b) control case with LQI, (c) control case 
with PI-ALINEA 

 

(a) 

(c) 

(b) 
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The bottleneck case 5 (see Figure 8) has a bottleneck of 1 km (cell 29 to cell 32) 

located at cell 29, downstream the on-ramp’s entrance (cell 9). The linearized 

(considered) system extends from the upstream boundary of cell 9 to the fist cell of 

the bottleneck section (cell 29).  

No Control Case: As shown in Figure 15(a), a severe congestion is created in 

the freeway mainstream resulting accordingly to capacity drop. The density of cell 9 

reaches the critical value of 42 veh/km/lane at at about 𝑡 = 1.3 h, at which time the 

stationary flow of cell 9 reaches the capacity level. As the density continues to increase, 

congestion initially builds in the bottleneck cell (cell 29) and gradually spills back to 

the upstream cells. Due to the uncontrollable on-ramp inflow, the mainstream 

demand upstream of the on-ramp cannot be efficiency served. Thus, the cells 

downstream the bottleneck location are not congested. Consequently, the outflow of 

cell 9 is around to 4962 veh/h. 

LQI: For bottleneck case 5 shown in Figure 15(b), the factual critical density 

and the stationary flow (of three lanes) for the bottleneck cell are found to be around 

42 veh/km/lane and 5084 veh/h, respectively. The ramp metering action leads to a 

corresponding reduction of the total time spent by all vehicles. The density of cell 29 

is lightly oscillating around the set value, whereas the capacity level of the bottleneck 

section is achieved, and the mainstream demand is well served.   

PI-ALINEA: For bottleneck case 5 shown in Figure 15(c), the factual density 

and the stationary flow for cell 29 are found equal to 42  veh/km/lane and 5084 

veh/h, respectively. The resulting density and flow of cell 29 and of the further 

downstream cells are lightly oscillating around the set value. For PI-ALINEA’s action,  

𝐾𝑃, 𝐾𝐼 gains as set equal to 30, 0.3 km*lane/h, respectively. 
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The comments on the simulation investigations described before can be 

summarized for all bottleneck cases: 

 No control case: In all cases, a congestion is created in the freeway mainstream 

resulting accordingly to capacity drop. The congestion initially builds in the 

bottleneck cell and gradually spills back to the upstream cells. 

 RM case: As simulation tests demonstrate, the performance of LQI and PI-

ALINEA (using the gains that proposed) is pretty much the same. Both regulators 

succeed to avoid mainstream congestion and to achieve a higher throughput. In 

Table 3, the improvement of the stationary flow is calculated.  However, when 

the bottleneck is moved further downstream (beyond 2 km, including bottleneck 

cases 3, 4, 5 presented herein), the control task becomes increasingly difficult. 

Using the same gains for PI-ALINEA leads to aggressive and oscillatory behavior. 

Thus, as it is described previous, in order to obtain satisfactory performance for 

PI-ALINEA the gains must change for every different bottleneck case by selecting 

more and more conservative gains as the bottleneck moves further downstream.  

 

Table 3: Improvement of stationary flow 

Bottleneck Cases 

Stationary Flow (veh/h) 

Improvement (%) 

No control LQI/PI-ALINEA 

1 5089 5194 2.06% 

2 5189 5269 1.54% 

3 5185 5282 1.87% 

4 5184 5283 1.91% 

5 4962 5084 2.46% 
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5.7 Constant Gains 

Taking into consideration the considered (linearized system) and the 

dimension of the gain matrices by applying LQI (see Table 2), 𝐾𝑃  and 𝐾𝐼  obtained 

using weights that lead to smooth and efficient control performance. Although, after 

extensive simulations, similar performance can be obtained using constant gains 𝐾𝑃 

and 𝐾𝐼, which are close to the optimal solution. The results presented before are the 

same in case of using constant values for gains. All the simulation tests for the different 

bottlenecks have been derived using 𝐾𝑃,𝑖 = 200 km*lane/h (where 𝑖 = 1,… . , 𝑁′) and 

𝐾𝐼 = 60 km*lane/h. Thus, LQI seems to be a robust regulator, because of the low 

sensitivity in gain selection.  

 

5.8 Control Decision  

In Figure 16, the behaviour of control decision is presented for bottleneck cases 

1, 2, 3, 4 and 5, using the LQI regulator. According to the on ramp’s demand, the 

control decision seems to be efficient. For bottleneck cases 1, 2, 3, the trajectories of the 

control decision is smother than for bottleneck cases 4 and 5 (bottleneck cases 

downstream the 2 km).    
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Figure 16: Control decision for each bottleneck case 
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6. Conclusion and Future Work 
 

The objective of this diploma was to develop and investigate the performance 

of a Linear Quadratic Regulator augmented with Integral action (LQI) for the freeway 

ramp metering control problem in case of far downstream bottlenecks. For this reason, 

a second order model was employed and examined, in particular METANET model, 

using measurements from the considered network. Thus, the reported theoretical 

analysis and simulation studies demonstrate that LQI is very efficient in handling the 

local ramp metering task in the case of very distant downstream bottlenecks (over the 

2 km).  PI-ALINEA’s performance is similar with LQI’s. However, the overall study 

indicates that LQI is much less sensitive in terms of the gains selection, hence easier 

to deploy. Also, it’s important that LQI can handle cases of very distant downstream 

bottlenecks by setting static gains to construct the regulator.  

 Future work will focus on integrating LQI within a random-located bottleneck 

framework. Some random-located bottleneck cases have been tested in related studies 

via ALINEA ramp metering strategy [8]. 
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