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Abstract

Ramp Metering (RM) is one of the most effective control measures applied in
freeways. RM, when driven by an opportune control strategy, alleviates significantly
the overall traffic congestion and improves freeway conditions in terms of safety,
travel time and reliability.

Local ramp metering strategies are implemented for a single ramp and
compute the metering rates by taking into account traffic conditions in the vicinity of
aramp. Several reattime ramp metering control algorithms have been developed and
proposed in the literature, with  ALINEA, an | -type feedback regulator, being the most
popular and efficient as it has already been implemented in many field applications .

However, there exist cases wherebottlenecks with smaller capacity , than the merging

aread s , exi st further down st laeeadrop, d turnel, tao |,

upgrade, a speed limit area or an uncontrolled downstream on -ramp. In such cases,
ALINEA fails to respond satisfactorily and, therefore, other control strategies should
be employed, which have beendesigned so as touse measurements from those further
downstream areas where the bottleneck is activated

Towards this direction, t his work investigates the application of a new control
strategy, specifically a Linear Quadratic Regulator augmented with integral action
(LQI), for the local ramp metering control problem when bottlenecks are located many
kilometres (up to 5 km) downstream of the metered on-ramp. LQI makes use of
measurements all along the area extending from the controllable on-ramp to the
bottleneck location, being therefore capable to improve the stability and robustness
properties of the control loop.

This study investigates various downstream bottleneck scenarios and usesthe
second-order macroscopic traffic flow model METANET as ground truth for the
control application . Simulation results revealed that: i) the proposed methodology
handles efficiently the local RM task in case of very distant downstream bottlenecks

and, i) LQI is less sensitive compared to previously proposed control strategies.
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1. Introduction

This first section corresponds to the introductory section of this thesis. Sections
1.1 describes the motivations and objectives of this work, while Section 1.2 presents

the outline of this thesis.

11Motivation anfhesi s Objectives

The number of vehicles and the need of transportation is continuously
growing causing traffic congestion problems. The continuously increasing daily traffic
congestion on freeway networks around the world call s for innovative control
measures and control drategies that would drastically improve the current traffic
conditions [1], [2]. Traffic congestion in freeways has become a common phenomenon,
which leads to delays, lower speeds, long trip times, increased vehicular queueing,
increased fuel consumption, reduced traffic security and severe air pollution. As
traffic demand approaches the available capacity of the freeway, traffic congestion
appears and bottleneck areasstart to activate. A traffic bottleneck is a localized
disruption of vehicular traffic 0 n a freeway causedmainly due to the existence of lane
drops, bridges, tunnels, upgrades, curvatures, speed limit areas and uncontrollable
ramps. In order to avoid congestion phenomena, several control measures and control
strategies have beenproposed [17].

In order to deal with t he traffic congestion problems in freeways, there have
been many methods developed and proposed in literature during the last years [12],
[15]. Related studies provide methods, which guarantee strong theoretical properties
and are easily applicable for real traffic control. Thus, Ramp Metering (RM) can be
defined as a method by which a traffic flow to gain access to a freeway network, is
controlled at the access point via traffic signals. This control aims at maximize the

capacity of the freeway and prevent the congestion phenomena. As far as RM is
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concerned, several RM control strategies have been proposed inthe literature, with
ALIN EA [19], an I-type feedback regulator, being the most popular and efficient.
ALINEA aims to maximize freeway throughput in the ramp merging area and, to this
end, occupancy measurements are required and have to be collected from a
mainstream cross sectionlocated at most a few hundred meters downstream of the
metered on-ramp. Another control strategy have been proposed is PI-ALINEA
(Proportional Integral) [10], an extension of ALINEA, that instead of using
measurements from the merging area, takes the measuwements from the downstream
bottlenecks [9]. PI-ALINEA is proposed because of the main weakness of ALINEA
regulator t hat compute the control law only on the basis of measurements at theregion
that the control action is actuated. According to the ones mentioned before, areas with
smaller capacity than the merging area may exist further downstream of the freeway.
PI-ALINEA seems to be efficient in cases whereareas with smaller capacity than the
merging area may exist downstream of the freeway (up to 2 km). Although, PI -
ALI NEAS6s action fails in the case of very very
2 km).

The fact that other strategies, such as PIALINEA, fail to succeed handling the
control task in these areas, has been a motive ta@onstruct a new regulator based on a
promising control strategy. This thesis is based ona traffic -responsive ramp metering
control algorithm that ha s been developed to control the ramp locally. Thus, this
report aims to present a promising approach for developing a cont rol strategy that is
more efficient and robust than the strategies that have been already developed[12],
[15].

The proposed control strategy consists of aLinear Quadratic Regulator with
Integral action (LQI) in cases where the bottleneck is located many kilometers
downstream from the on -ramp (more than 2 km) [6], [8], [31]. In order to test this
strategy, various scenarios have been constructeddepending on the location of the
bottleneck (five scenarios are presented herein) and a freeway with a sinde on-ramp
is assumed. Given the ability of second-order models, this thesis examines the

formulation of a popular second -order model, namely METANET [5], [8] [30] model.
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This thesis, utilizes mathematical tools that describe general traffic systems and
freeways. To summarize, the scope of this work i s to test the robustness, the efficiency
and the ability of the LQI strategy to handle with success the control task in areas far

downstream of theon-r ampds | ocati on.

1.2 Thesis Outline

This diploma thesis is composed of 6 Chapters. Chapter Zoresents briefly some
theoretical background issues related to control theory (control loop, stability,
controllability and observability). An overview of traffic flow control is also presented
(control measures and control strategies) At the end of Chapter 2, there is an
introduction in Traffic Flow Modeling and especially the second order METANET
model. In Chapter 3, there is a presentation of the build and the formulation of Linear
Quadratic Integral regulator. C hapter 4 consist of a description of the simulation set-
up and the control set-up used for simulations. In Chapter 5, simulation investigations
are presented and compared to other related studies. Finally, Chapter 6 summarizes

the conclusions and proposes future work.
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2. TheoreticaBackground

2.1 Control Theory

Control theory deals with the control of continuously operating dynamical
systems in freeways, by developing a controller with the appropriate behavior. In
order to handle deviations from a desired system behavior, the main tool is the use of
feedback. Fealback control theory involves the analysis and synthesis of feedback
controllers that manipulate system inputs to obtain a desired effect on the output of
the system in the face of system uncertainty and system disturbances.

Sensors deployed in freeways ollect information, for designed time steps,
about the stationary flow, the mean speed and the density (actual values) of the
vehicles. A controller compares actual and desired values (W - set point) of the variable
of interest and calculates the difference between them (error). Error is applied as
feedback to generate a control action in order to make actual and desired values equal.
dhe mathematical background of the process is the system function that express the
relation between the input (6 Q) and output (® 'Q) based on the differential equations

describing the system (Figure 1).

* Measured
y + error Feedback 11{1(.) Teaffic Svet X{k)
- Controller ratfic system

\j

Figure 1: Description of a control loop
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2. Cohtrol Loop

There are two types of control loops: open loogontrol and closed loopontrol.
In open loopcontrol, the control action from the controller is independent of the
variable of interest. In closed loogontrol, the control action from the controller is
dependent on feedback from the process in the form of the variable of interest. A
closed loop controller, that is concerned here, has a feedback loop.It is also called
feedback controller.

In general, the kernel of the closed control loop is the control strategy, whose
task is to specify in real time the control inputs, based on available measuremernts in
order to achieve the pre-specified goals despite the influence of various disturbances.
If a human operator undertakes this task, we have a manual control system. In an
automatic control system, this task is undertaken by an algorithm (the control
strategy). The relevance and efficiency of the control strategy determines the efficiency
of the overall control system. In this thesis a single-input -single-output (SISO) control

system is used.

2.2 Stability, Controllability and Observab

The task of the control theory is to decide which is the best control strategy to
be applied or whether it is even possible to control or stabilize the system. Before that,
it is necessary to check if the system isstabilizablecontrollableand observable

Stablity of a linear system can be achieved if the poles of its transfer function
have negative-real values, the real part of each pole must be less than zero.

Controllability is an important property of a control system. It is related to the
possibility of forcing the system into a particular state by using an appropriate control
signal. If a state is not controllable, then no signal will ever be able to control the state.
If a state is not controllable, but its dynamics are stable, then the state is termed
stabilizable.

Observabilityis the possibility of observing, through output measurements, the

state of the system. If a state is not observable, the controller will never beable to
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determine the behavior of the state and hence cannot use it to stabilize the system. If
a state cannot be observed it might still be detectable. Controllability and observability

of a system are mathematical duals.

2.2 Traffic Flow Control

Traffic Flow Control [1], [2] aims to limit congestion phenomena observed at
traffic networks, and especially freeway networks. Freeways are congested on a daily
basis during rush hours causing congestion that occurs as use increases, and is
characterized by slower speeds, longer trip times, and increased vehicular queueing.
Thus, the drivers experience delays, the traffic safety is reduced, the fuel consumption
and air pollution are increased.

After extensive research, there are control measures have been desloped to
deal with this phenomenon. Control measures can be used to improve traffic
performance. Speed limits, Route guidance and Ramp metering are control measures
that are currently applied or could be applied in the near future. Freeway control
measures increase the efficiency and safety of the system.To achieve their goal, the
following control measures must be driven by appropriate control strategies. The

most investigated control measures include:

2.2.1Variable Speed Limits (VSL)

The working princ iple of a speed limit system can be categorized based on
their intended effects: improving safety, improving traffic flow, or their
environmental effects, such as reducing noise or air pollution. VSL offer considerable
promise in restoring the credibility of speed limits and improving safety by restricting
speeds during adverse conditions. These speed limits change based on road, traffic
and weather conditions and they are displayed on the electronic signs in freeways.
Traffic sensors along the roadway collect vehicle speeds, congestion information and

traffic flow rates to gradually reduce the approaching flow of traffic to the congested
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area. Drivers speeding up and slowing down to adjust to the traffic flow. VSL are
valuable for traffic safety (reduction of accidents), but their current usage has hardly

any positive impact for the increase in throughput or decrease in average travel times.

2.2.2Route Guidance

Route guidance systems assist drivers in choosing their route when alternative
routes exist to their destination. The systems typically display traffic information such
as congestion length, the delay on the alternative routes, or the travel time to the next
common point on the alternative routes. It is expected to improve the network
performance (better use of the available capacity, higher throughput and stability, and
less spill-back), and reduce the travel time (minimize delays) for the individual road
user as well. Finding the right route guidance configuration is a complex task that

should take potentially unfavorable effects and coordination into account.

2.2.3Ramp Metering (RM)

Ramp Metering is one of the most investigated and applied freeway traf fic
control measures. A ramp meter is a device, usually a basic traffic light or a two-
section signal light together with a signal controller that regulates the flow of traffic
entering freeways according to current traffic conditions.

In this thesis, we focus on Ramp M etering as afreeway traffic control measure
[18]. By the use of traffic lights positioned at on-ramps, RM reduces overall freeway
congestion by managing the amount of traffic entering the freeway. Although, some
delay may be caused at waiting ramp queues, the overall time may be decreased due
to the optimal operation of the existing infrastructure. Ramp meters on freeways are

proved successfulin decreasing traffic congestion and improving driver safety.
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1 Flow, Reliability and Efficiency

RM reduces mainstream congestion and overall delay, while increasing flow
through the freeway network and traffic throughput. Travel times, even when
considering time in queue on the ramp, are generally reduced when ramp metering is
implemented. Travel time reliability has become an important measure of ramp

metering effectiveness.

1 Safety

Ramp meters help breaking up platoons of vehicles that are entering the
freeway and competing for the same limited gaps in traffic. Thus, RM help to avoid
collisions and crashes on the freeway. Effective ramp queue managementcan prevent

gueues from spilli ng into the mainstream flow.

1 Reduced Environmental Impacts

Ramp meters smooth the traffic flow entering the freeway so vehicles can
merge with the mainstream network with minimal disruption to traffic flow. By
reducing periods of stop-and-go conditions that caused because of the congestion,

vehicle emissions and fuel consumption on the freeway can be reduced.

 Cost

To estimate if the implementation of ramp metering is great value, it is
necessary to evaluate and compare the cost effectiveness of ramp metering
implementation and operation against the no ramp meter scenario. This benefit/cost

analysis seems to be excéént for transportation improvements.
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In general, without ramp meters in freeways, vehicles merge in packed
platoons, causing drivers on the mainstream freeway to slow down or even stop in
order to allow to other vehicles to enter the freeway. Thus, the vehicles develop lower
speeds, both on the mainstream and on the ramp, and that quickly leads to congestion
and sometimes stop-and-go conditions. Ramp meters can control the rates at which
vehicles enter the mainstream network from the on ramp. T hese vehicles enter the
mainstream flow smoothly and there is no need any more for vehicles in the
mainstream network to reduce speed. In addition, RM help managing the entrance
demand at a level that is near the capacity of the freeway, which prevents traffic flow
breakdowns. Thus, RM reduce at peak hours the density of the freeway and maximize

the flow at the freeway exit [27].

2.3 Ramp Metering Control Strategies

In order to achieve a sustainable mobility system, by taking care the needs of
the system, it is necessary to develop a control strategy. The control methods
developed nowadays must have the objectives not only of decreasing travel delays
experienced by drivers in the traffic system but also of reducing pollution , fuel
consumption, accidents, noise and so on.Control measures such as Rampmetering,
which described before, must be driven by appropriate control strategies, to achieve
their goals. For instance, ramp metering control strategies have as an ultimate goal to
determine, in the most efficient way, the inflows from the on -ramps, when congestion
phenomena are present at the corresponding mainstream region, so as to maximize
the freeway throughput.

In general, control strategies can be classified into fixedtime and traffic-
responsivestrategies. Fixedtime control strategies use historical data, while traffic -
responsive (real-time) strategies use current traffic data, provided by sensors installed
in the freeway network and the on -ramps (traffic measurements). Their goals are to
specify the optimal plans that depend on the time of day and to specify the values of

the control variables that minimize the extend of congestion, respectively.
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Traffic responsive strategies, that interest us, can beclassified into localand
coordinatedstrategies. Local ramp metering strategies are implemented for a single
ramp by taking into account traffic conditions within a vicinity of this ramp to
compute the metering rates; while coordinated ramp metering strategies determine
the metering rates of multiple ramps based on the traffic conditions of a
correspondingly extended section of the network. For the purpose of this study, local
ramp metering will be considered. Moreover, local ramp metering strategies make use
of measurements from further downstream of a single on-ramp. Instead, coordinated
ramp metering strategies make use of measurements from the whole region of the
network to control all metered ramps of the network.

The most important control strategies include Nonlinear Optimal ControlModel
PredictiveControl and Explicit Feedback Controlhe first two control approaches are
very efficient but they are highly demanding from the computational point of view.
Explicit feedback control approaches has been shown to enhance the efficiency of

traffic operatio ns without the computational effort.

23. 1 Exliec®RaMn gt rategi es

There are a wide range of ramp metering control strategies and algorithms [12],
[15], [24]. Local control strategies select metering rates based on traffic conditions
present on the on ramp and are often used as backup strategies. When calculating a
metering rate, control takes into account traffic conditions upstream and downstream

from an individual ramp alo ng a specific freeway segment.

23.11ALINEA and PI-ALINEA

ALINEA controls the traffic entering from an on -ramp and targets a critical
density in the mainstream merging segment to maximize the freeway throughput.
ALINEA aims to maximize freeway throughput in the ramp merging area and, to this

end, required occupancy measurements should be collected from a mainstream cross
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section that is located at mosta few hundred meters downstream of the metered on-
ramp (where the merging congestion is likely to appear first ). This can be achieved by
maintaining traffic density in the merging area, around the critical density, so that the
mainstream flow of the merging area can be maximized. In some cases, however, a
bottleneck with lower capacity than the merging area may exist further downstream,
due to the existence of curvatures lane drops, tunnels or downstream uncontrollable
on-ramps. In these casesdensity that feeds the feedbackramp metering controller
should be collected at the downstream location because the maximum throughput
that can be accommodated by the downstream lottleneck is lower than that in the
merging area.

PI-ALINEA, as feedback ramp metering strategy, is a functional extension of
ALINEA. PI-ALINEA is very efficient in handling the local ramp metering task in
presence of distant downstream bottlenecks. Thus, PI-ALINEA acts like ALINEA, but
it is a suitableproportionalintegralextensiorof ALINEA and is selected to investigate such
cased9], [19].

2 4 Traffic flow Modeling

Traffic flow modeling [7] is a branch of mathematics and engineering that
studies the relationship between the drivers and their environment. A lot of
mathematical models have been proposed since the appearance of traffic jams, in
order to describe the traffic flow situation on fr eeways. These mathematical models,
can be used to adjust the traffic flow in crucial areas, maximize the overall throughput
of traffic along the stretch of the freeway and as a result solve the traffic jam problem.
By these models, we can predict, given cetain demand levels, where and when
qgueuing will occur, how long it will take for congestion to resolve, e.t.c. This study is
related to the utilizization of these mathematical models in developing and testing

traffic flow estimation algoritthms and traff ic control strategies.

Linear Quadratic I ntegral Re g uil tayt oaf

Crete



27

The first step in modeling is to study and represent the system by

mathematical equations. For the assessment of traffic control strategies, a simulation

model is used instead of (or before) a realworld test. Simulation has several

advantages because is cheaper and faster than realorld tests and it does not require

real human drivers as test subjects.

In general, traffic flow models can be classified as microscopicmacroscopior

mesoscopj@ccording to the level of detail with which they describe the traffic process

[1].

Li

1 Microscopictraffic flow models describe the behavior of individual vehicles.

These modelssimulate single vehicle-driver units, so the dynamic variables of
the models represent microscopic properties like the position and velocity of
single vehicles. In microscopic traffic models different characteristics are
assigned to each vehicle, such aslte driving style of the driver (aggressive,
patient), vehicle type (car, truck), destination and route choise. A microscopic
model attemps to analyze the flow of traffic by modelling driver -driver and
driver -road interactions within a traffic stream which respectively analyzes the
interaction between a driver and another driver on road and of a single driver
on the different features of a road. In general, it is difficult to calibrate
microscopic models with real traffic data because of the large number of the
parameters they use. The parameters in macroscopic traffic flow models are

less than in microscopic models.

Macroscopidraffic flow models [28] consider the traffic flow as a compressible
fluid with well -defined characteristics and describe it with aggregate variables,
such as flow, density and mean speed, make use of partial differential
equations, a conservation equation and a momentum equation. In macroscopic
modeling, under homogeneous traffic conditions in space and time, traffic
density is related to traffic volume by a relationship known as the

Fundamental Diagram (FD). This relationship provides maximum flow at a
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critical density value, while if density is further increased, traffic volume
decreases aul a, more or less, severe traffic congestion results. Macroscopic
traffic flow modeling started when Lighthill and Whitham presented in 1995 a
model based on the analogy between traffic flows and flows in rivers. One year
later Richards published a similar model. This model is usually referred as the
Lighthill -Whitham -Richards (LWR) model [22]. Since then a variety of
macroscopic traffic flow models has evolved from the LWR model, with some

differences.

1 Mesoscopitraffic flow models, in general, are not used for traffic control and
they do not consider the vehicles as individuals. These models describe the
behaviour of individual vehicles in probabilistic terms. Examples of these

models are headway distribution models and gas -kinetic models.

Moreover, traffic flow models are categorized as first-order (FOMs) second
order (SOMs)or higherordermodels, according to the number of differential equations

they include.

9 First-ordermodels (such as LWR model) are widely known for their simplicity
and computational efficiency and this is the reason w hy they have been used
extensively in the past [8]. They include one partial differential equation,
which describes the mass conservation law, and consider a static relation
between speed and density. Although, they are not able to reproduce the
capacity drop phenomenon that is observed at congested freeway areas and

the stop-and-go waves that appear at freeway bottlenecks.

1 Seconebrderor higherordermodels (such as Payne model) include except for

the conservation equation, one more partial differenti al equation, which
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describes the dynamics of speed and a slightly higher number of parameters,

compared to the first-order models.

Another classification of traffic flow models is whether the model is
deterministicor stochastic. Deterministimodels define the relationship between model
inputs, variables, and outputs that describe the behaviour of traffic. Stochastianodels
describe traffic behaviour in terms of relationships between random variables,
random reaction time of drivers, randomness in equilibrium speed -density
relationships, route choice, etc.

A last classification of traffic flow models is imposed by the type of mathematical
equationsused. The models are described by Partial Differential Equations (PDES)
Ordinary Differential Equatioms (ODESs) or Difference EquationgDiscrete spacetime

models).

24 METANET Traffic Fl ow Model

METANET that is used in this thesis [5], [30], is a program for motorway
network simulation based on a purely macroscopic modelling approach.
METANET ca be applied to existing or hypothetical, multi dorigin, multi -destination,
multi -route networks with characteristics like on -ramps, off-ramps etc. The fact that
is a macroscopic model leads to low computational effort, which is independent of the
number of vehicles in the simulated network. This modelling approach allows the
simulation of all kinds of traffic conditions and of capacity reducing events. The use
of model can be either off-line or in real-time. It is a useful tool to develop and evaluate
traffic control strategies, by considering the application of control measures, such as
ramp metering. Thus, simulation results by applying METANET, are provided in
terms of macroscopic traffic variables such as density, flow, speedas well as in terms
of travel times. Visualization of the results is provided by time trajectories of selected

variables and by graphical representation of the whole network.
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2.4.2Description of stretch

The freeway network is represented by a directed graph. Each stretch has the
same geometry and specific characteristics such as oframps, off-ramps etc. The
simulation of traffic behaviour in the freeway links is macroscopically characterized
by the following aggregate variables: traffic density” (veh/km/lane), mean speed
(km/h), and traffic flown (veh/h/lane). For modeling, any considered freeway stretch
m is subdivided in to a number of 0 cells with typical lengths 0 of 300 to 800 meters
(i=1, 2, .. .,N). The time and space arguments are discretized(Figure 2). The time is
discretized based on a model time step "Yu p 1 and the indexesQ phres) at
discrete time 0 "Q"YThe aggregated traffic flow variables are defined for each cell

and updated for each model time step.

1 i Nm

——————> (m,ix1

Figure2: Hypothetical Stretch
Traffic density ” is the number of vehicles in cell ‘Gt time 6 "Q"Wivided by 0 and by

the number of lanes _ in the considered stretch & ; mean speedv is the mean speed

of vehicles in cell ‘®f stretch & at time 6 "Q"“Yand traffic flow 1 is the number of
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vehicles leaving the cell "®f stretch & during the time period QW ™Q p Y divided
by “Y(Figure 2).

METANET employs a secondorder traffic flow model consisting of two
interconnected dynamic equations, which describe the evolution of traffic density and
mean speed, respectively.For every stretch & and every cell "‘the stochastic nonlinear
difference equations of the secondorder macroscopic traffic flow model used to

calculate the traffic variables are:

Transport Equation :

- " Q
Ww” FQ vp CX)(,OF]i ”h
W h
- - - " h 0
0 ” F]Q ” F]Q Uﬁmwnﬁ ”h
@ A
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wherei Qhi "Q are the onramp inflow and off -ramp outflow, respectively; 0 f

and are the freeflow speed and critical density, respectively; functions V, Q
provide a speed and a flow value for the cell "Qof the stretch & , respectively;
To® & oM QO nate global parameters given for the whole network. More
specifically, T is a time constant; 0 is an anticipation constant; and Il is a model
parameter. So, the first term of Equation (2.3) express the relaxation time, the second
term express the convection between the cells and the third one, the anticipation of
the network. Equations (2.1)- (24) are only applied to normal stretchesinside the
network.

If the network consists of several stretchesthat merge at a hode or there are
leaving links (on -ramps & off ramps), merging phenomena have to be considered. This
can be achieved by adding the following term to speed Equation (2.3):

i Q1 5 Q. 26)
QoI '

<

1
b

where] is a global parameter.

2.4.3Fundamental Diagram

The fundamental diagram (FD) of traffic flow is a diagram that gives the
relationship between the traffic flow and the traffic density in cell “f stretcha . On
the previous section, the free flow speed L U Qi QQhe critical density
" = 1 € i féowhich the flow at cell "Qs maximized, and the exponent ¢ , are
designed for the construction of fundamental diagram (Equations (2.4)-(2.5)) of the
considered stretch & . The Equation (2.5) is used to design the FD of cell"(f stretch &
is an empirical relation.

FD represents the capacity of each cell in terms of vehicle density. Maximum
capacity n of cell (s the region that the traffic density becomes critical 1 € ®i Qo

and traffic flow is maximized. The shape of the fundamental diagram is determined

by the parametersU , ,” i and @ (no direct physical significance), which are
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specific for each FD. The FD can be presented eitherby a triangular or either by a
parabolic curve. Here, the FD of each cell is described by the following parabolic
shaped flow - density diagram. Related studies support that triangular shaped flow &
density diagram is an accurate representation of real world events in comparison with
parabolic shaped flow - density diagram. Although, in theoretical level, the first type

of FD is been used efficiently.

Flow (veh/h)

qCEC _______________

uncongested
area

congested
area

v

Density (velvkm/lane)

Figure 3: Flow-Density diagram

Each FDconsists of two regions. The one represents the uncongested area and
the other one the congested area. Congestion appears when the network characterized
of maximum capability 1 . Thus, as it is shown in Figure 3,0 ; L Qi ‘QdD be

found by calculating the slope of the tangent at a point o f uRdorigested area.This
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slope indicates the linearized speed that is denoted by 0 "Qi '@ fhe linearization
point is zero or by 0 § if the linearization point is near the critical density.

The continuity Equation (2.3) is a dynamical equation that expresses the
conservation of vehicles within the network. Taking into consideration the
Generalized Cell Transmission Model (CTM), the uncongested area of the FD, the
linearization at a point of the FD and the absence of onrramps and off-ramps at the

region of linearization, the continuity equation is

- - Y - -
” o 'Q ” o 'Q _ Al . ” . 'Q Al " o 'Q 27
hQp h L O §" R (2.7)
Thus,
” T Y ” T Y \ ” T
hQp P L R" R Q L r "R Q (2.8)

The Equation (2.2) is similar to the Equation (2.8) with the difference that the
second equation depends on the value of the slope of the FD (0  near the critical

density. This expression will be useful to explain how LQI regulator is constructed

and it is described in the following section.
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3. LQI Reqgulator

3.1 Introduction

The theory of optimal control is concerned with operating a dynamic system
at minimum cost. The case where the system dynamics are described by a set of linear
differential equations and the cost is described by a quadratic function is called the
LQ problem. The solution is provided by the linear quadratic regulator (LQR), a
feedback controller, which is an important part of the solution to the LQI (Linear
Quadratic Integral) problem. The LQI algorithm reduces the amount of work done by
the user to optimize the controller [8], [4]. However, the user still needs to specify the
cost function parameters, and compare the results with the specified design values.
Thus, the controller construction will be an iterative process in which the user
evaluatesthe "optimal" c ontrollers produced through simulation and then adjusts the
parameters to produce a controller mor e consistent with design values. The LQR, and
in specific the LQI algorithm, is essentially an automated way of finding an

appropriate state-feedback controller.

3.2 LQI Formulation

The kinematic wave Lighthill -Whitham -Richards (LWR) model is a scalar
nonlinear conservation law of hyperbolic type and turns out to be one of the simplest
nonlinear conservation laws. LWR type models represent a valuable tool for the study
of traffic behavior because of their simplicity, efficiency under congesting conditions.
In order to derive the LQI regulator for local ramp metering (single on -ramp control),

the system is described by a set of nonlinear differential equations (3.1):

zQ p Oz Qhi Q, (3.)
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where "Ois a nonlinear function refle cting the discretized LWR model [8] ,z Q & P
denotes the densities corresponding in freeway sections between the onrramp and the
bottleneck andi "Q & p denotes the onramp flow, at time step "Q Linearization of

this system around the steady-state z h yields to the following equation :

wQp =0 [d Qh (32)
whereaz Q zQ z andwi™@ 1 Q 1 denote the linearized state vector
and control input, respectively. =& p  and | & P are the state and input

matrices.

In order to include integral parts into the state regula tor, we consider now the state

Equation (3.2) augmented by the use of
OQ p OQ Fuz Qh (3.3

where wé p and Oé p is a horizontal vector, which has a one at the ¢
component (so that the bottleneck density is integratedin (33))and 0d6s el sewher e.

deriving the LQI control, the control goal is to minimize the quadratic crite rion:
o P QA A1 Q A QA h (34)
R B :

where |Ifé P is a symmetric positive definite weighting matrix and ‘YAYé p
correspond to positive constants. Considering the Equations (3.3) and (3.4) the

following augmented matrices for LQI control are obtained:

r o h Y 'Yh (35)

=
©

Linear Quadratic I ntegral Re g uiltayt oaf Cr et e



37

leading to the following time -invariant solution:

where L is the gain matrix depending on the problem matrices =h| Y. Matrix Lis
a horizontal vector that may be calculated by the backward integration of the
augmented Riccati matrix |} Q starting form any terminal condition | 0 Tuntil
convergence towards a unique stationary value ||- Ttis obtained. The gain matrix L

is specified by solving the following system equation :

== F Y=
LOH 4 =

where Equation (3.7) denotes the algebraic Riccati equation. Decomposing Lt

L, 0 , we obtain from (3.8):
wiQ Loz Q 0 ©Q
Considering Equation (3.3), the Equation (3.9) is obtained
wiQ Laz Q@ 0w0Q p 0o

After some algebra by subtracting above equation at k-1 from the same equation at k,

and considering the Equation (3.3), we get
i 17 op L, 03 zQ zQ p 00O,

thus getting the LQI feedback control law :
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i 17Qop L, 093 zQ zQp 0o " TQ, (3.12)
where” Qand” i ndicate the bottleneckds state and
Setting now:

“ b 03
0 U J
The final LQI controller is obtained :
i i Qp lLIFZ T z7Q p VI o) (3.13

Similar to the application of PI-ALINEA, in order to avoid wind -up-effects,
the feedback LQI regulator (3.13) is truncated if it exceeds arange i  RY Q,
whereY Q [ ET h M p tnm andi are the minimum and
maximum admissible on -ramp flow, respectively, i Q p is the measured ramp
inflow during the last control time interval with 400 being an empirical value.
i TAp RElY Qi p Lz zQ p 0" " 1Q (319
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4. Local Ramp Metering using LQI

4.1 Smulation model and simulation set -up

METANET traffic flow model that described before, has been used to
simulation investigations. Five freeway stretches are considered in the following
section. The critical density for METANET equations is defined as ” og@g
veh/km/lane for each stretch; the parameter & ¢; U p 1 km/h about non -
bottleneck cells; 0 X dkm/h about bottleneck cells ;T fd6 ¢ o @ Thyv € 6 'Q
o vkmz/h, I Q&N 1 dp oveh/km/h.  For LQI formulation i and i are set

equal to o mand ¢ 1T Tweh/h, respectively [9], [10].

4.1.1 Network Description

In this thesis, for modelling and simulation, a freeway network of 0 o ccells,
is considered (Figure 4-Figures), for each of five bottleneck cases have been tested. The
network has a main entrance (cell 1), one exit (cell 32)and a single on-ramp located at
the upstream boundary of the ninth (9th) cell, which is 2 km downstream from the
network entrance. The length of each cell is0 m®& W&km. Each cell hasd o lanes.
Thus, the total length of the freeway is km. The length of each bottleneck isp km (1
cells) andit is assumed to be present n different locations downstream of the on-ramp
for the different control scenarios (see the grey areas inFigure 4-Figures).

Five bottleneck casesare described here. In the first case, the bottleneck is
located at cell 10, near the onramp at the 9t cell (Figure 3). Thus, each of the five cases
have a1 km-long bottleneck at locations 0.25 km, 1.5 km, 2.75 km, 4 km and 5 km,
respectively, downstream of the on -ramp (Figure 4-Figures).

The linearized (considered) system extends from the on-ramp location (cell 9)
to the first cell of the bottleneck section (see the areas indicated by circles inFigure 4-

Figures). These cellsi indicate the number of considered cells of the network.
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0.25 km 0.25 km 025 km
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Cell 1 Cell® Cell 10 Cellll Cell12 Cell 13 Cell 32
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Main
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Figure4: Bottleneck casel
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Figure5: Bottleneck case 2
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Figure 6: Bottleneck case 3
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Figure 7: Bottleneck case 4
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0.25 km Skm 0.25 km

! 1 1
Cell 1 Cell @ Cell 29 Cell30 Cell 31 Cell 32
—_ ———— T
Main -1 < b —» Exit
entrance
On-ramp’s

enfrance

Figure 8: Bottleneck case 5

4.1.2Fundamental Diagram and Demand scenarios

A bottleneck section differs from a non-bottleneck section in traffic flow
characteristics. More specifically, the fundamental diagram 6 F D f ohottlenecks
c e | Is gndluded to the simulation model to emulate each non -bottleneck cell,
whereas 0 F D fotdenecks cellsd  dormssidered for each bottleneck cell (Figure 9).
Bottleneck cells are characterized by FDs with lower capacity compared to non-

bottleneck cells.

2000 T T T T T T T T

FD for non-bottleneck cell
1800T FD far bottleneck cell

1600 7

400y Linearization at

A

12001 15veh/km/h

1000

800

Flow (veh/h/lang)

600

400

200

) L . .
0 20 40 60 80 100 120 140 160 180

Density (veh/km/lang)

Figure9: Fundamental diagrams considered
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Thus, ¢ mt vah/h/lane and N p v niveh/h/lane about non -
bottleneck and bottleneck cells, respectively, are the maximum capacities while
density is critical " o @ veh/km/lane .As shownin Figure 9,t wo FDds have the
same critical density, but different free speeds (linearized speeds) and capacitiesThe
slope of the tangent of FD diagram (uncongested area) at pointp weh/km/h , near

the critical density, denotes the linearized speed at this point.

5000

===Mainstream| |
On-Ramp

4500

4000

3500 1

3000 1

2500 1

2000 r

Demand Flow {veh/h)

1500 r

1000

500 ¢

0 1 2 3 4 5
Time (h)

Figure 10: Utilized mainstream and eramp cemand scenarios

The trapezoidal demand scenarios shown in Figure 10 are used in the
simulation investigations over a time horizon 4 h. This figure presents the considered
entrance and on-ramp demand scenarios. The trapezoidal demand of the mainstream
entrancereaches the value oft T Twah/h and the demand of the on-ramp reaches the

value of p o wah/h.
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4.2 Control set-up

The simulation time step “Yand control time step "“¥are 5 sec and 30 sec,
respectively. Measurements of flow and density for each cell "(df each considered
freeway stretch, are extracted from the simulator every Y v sec. Then, the average
of these measurements is fed to the regulator(Equation (3.14)) of the LQI every "¢
O TBEC.

Therefore, the dimension of density ” and the dimensions of corresponding
matrices 6, 6, 0, "Q,"Y, "Yconsidered in Section for LQI Formulation depends on the
bottleneck location (seeFigure 4: Bottleneck case Figure8: Bottleneck case . The number
of considered cells, indicating with circles in Figure 4: Bottleneck caseFigure 8:
Bottleneck case 5 is expressed by the symbol 0 . In particular, according to the

Equation (2.8), the matrices 6 and 6 are formulated as follows:

Y | - .

P —U j i E E E n Ul
0 _ N
11 V= . 1
I R & g 0
] ()= h ()= h ¥
Ll Y R . i i Il
) 1 T U_U h E & € € i
] - = o 2 " ]
L] é T é E T e o
< A, A, Y ,
l é é m é p = VI s 1
] v = ¥
) T E E 1 M 0 o M o
u 0 _ h 0 _ g

Y .

—r1l

|"|)=|’|

II]I n

6 IIEH

Iren

[ K

L n

umn U

The linearized speed at point p weh/km/h for non -bottleneck cells is set equal to
O 5 X &m/h and for bottleneck cells equalto 0 j v t&km/h. The matrix Ois

formulated as following (taking into consideration the single on -ramp):
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For driving the gain matrices 0 h) an appropriate selection of the weighting matrices
0,"Y, "Yshould be performed. After extensive simulation tests, in this study these

matrices are:

2
Mk
Mh
Mh
Mk
Mk

[p))
[}

2]
>,
™ D CD>,C‘|
o, T»
> >,
™ D D
=

>
Dx
D>

M
T
T

Y p Y p

For each of these network scenariosdescribed before, no control and control results

under the LQI and PI-ALINEA , are presented.
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5. Simulation Investigations

Here, the simulation investigation results are presented. Five typical scenarios
of bottlenecks are considered in this thesis (Bottleneck case 1, Bottleneck case 2,
Bottleneck case 3, Bottleneck case 4,dtleneck case 5) and two configurations of ramp
metering controllers are considered for each scenario (ramp metering with LQI, ramp
metering with Pl -ALINEA). For each scenario there is a bottleneck ofp km at various
locations downstream of the on-ramp. Also, the no control case is presented for each
bottleneck case. It is important to note that the setpoint used for both regulators is the
factual critical density of each bottleneck cell, which is different with the one given as

FD parameter, due to METAN ET model dynamics (seeTable 1).

5.1 Set point selection

For bottleneck case 1, 2, 3, 4 and 5, the factual density of the first bottleneck
cell was found around T ¢T po wo wand T ¢veh/km/lane ( Table 1), respectively
(instead of o @ veh/km//lane), used also as set -point for the control application.

Taking into consideration the considered (linearized system) that described
before, the dimension of the gain matrices h) depend on the bottleneck location.

For each bottleneck case, matrice® hi are formulated as follows (see Table 2):
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Set Point (veh/km/lane)

Stationary Flow (veh/h)

Bottleneck Cases

41 5193
1 42 5194
43 5192
40 5270
2 41 5269
42 5267
38 5279
3 39 5282
40 5283
38 5280
4 39 5283
40 5284
41 5084
5 42 5084
43 5082
Linear Quadratic I ntegral Re g uil tayt oaf

Crete



Table2: Gain values for each bottleneck case

47

Bottleneck Cases 1 2 3 4 5
o0 2 7 12 17 21
Kp (km*lane/h) 135 124 111 104 99
125 153 137 126 119
177 159 147 139
194 178 165 157
204 192 181 173
208 202 193 186
146 207 201 196
210 207 203
212 211 208
212 212 211
212 213 213
149 214 214
214 215
214 215
214 215
214 215
150 215
215
215
215
151
K (km*lane/h) 61 63 64 64 65
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5.2 Simulation Investigations - Bottleneck case 1
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Figure11: Bottleneck case (a) No controkase, (b) control case with LQI, (c) control case

Linear

2 3 4 5
Time (h)

—Ceall 7
=—Cell 8

Cell 9
= Call 10

5089

—Cell 7
=—Callg

=—Call T

—Ceall 8

Cell @

1 ——Cell 10
- =Cell

4400 e

= = Cell 25

—Call 29

— Call 32

0 1

with PI-ALINEA

Quadratic

I ntegral

2 3
Time (h)

Re g uil tayt oaf

Crete



49

The bottleneck case 1(seeFigure 1) has a bottleneck of 1 km(cell 10 to cell 13)
located at cell 10, near the onr amp ds e nt r an direarided (edndideré) . The
system extends from the upstream boundary of cell 9 to the fist cell of the bottleneck
section (cell 10).

No Control CaseAs shown in Figure 11(a), a severe congestion is created in
the freeway mainstream resulting accordingly to capacity drop. The total demand
(mainstreamandon-r a mp 6 s d e i avaht) entering the merging area during
the peak period exceeds considerably the capacity level of cell 9.The density of cell 9
reaches the critical value oft qveh/km/lane at about 0 p& h, at which time that the
stationary flow of cell 9 reaches the apacity level. As the density continues to increase,
congestion initially builds in the bottleneck cell (cell 10) and gradually spills back to
the upstream cells. Due to the uncontrollable on-ramp inflow, the mainstream
demand upstream of the on-ramp cannot be efficiency served. Thus, the cells
downstream the bottleneck location are not congested. Consequently, the outflow of
cell 9 is around tov 1 Yveh/h .

LQI: For bottleneck case 1 shown inFigure 11(b), the factual critical density
and the stationary flow (of three lanes) for the bottleneck cell are found to be around
T qveh/km/lane and v p weh/h, respectively. As is shown in Figure 11(b), the
density becomes undercritical much earlier than in the no control case. The ramp
metering action leads to a corresponding reduction of the total time spent by all
vehicles. The density of cell 10 is kept exactly at the set value, whereas the capacity
level of the bottleneck section is achieved, and the mainstream demand is well served.

PI-ALINEA: For bottleneck case 1shown in Figure 11(c), the ramp metering
results by PI-ALINEA are so satisfactory as the results by LQI. As in LQI case, the
factual density and the stationary flow for cell 10 are found equal to 1 qveh/km/lane
and v p wveh/h, respectively. For PI-AL | N E Addion, 0 ,0 gains as set equal to

p Tthtkm*lane/h, respectively.
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5.3 Simulation Investigations - Bottleneck case 2
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Figure12: Bottleneclcase 2(a) No control case, (b) control case with LQI, (c) control case
with PI-ALINEA
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The bottleneck case 2 geeFigure 5) has a bottleneck of 1 km (cell 15 to cell 18)
located at cell 15, downstream the onr amp s ent r anc énearzede | | 9) .
(considered) system extends from the upstream boundary of cell 9 to the fist cell of
the bottleneck section (cell 15).

No Control CaseAs shown in Figure 12(a), a severe congestion is created in
the freeway mainstream resulting accordingly to capacity drop. The total demand
(mainstreamandon-r a mp 6 s d e i avaht) entering the merging area during
the peak period exceeds considerably the capacity level of cdl 9. The density of cell 9
reaches the critical value oft pveh/km/lane at at abouto p& h, at which time the
stationary flow of cell 9 reaches the capacity level. As the density continues to increase,
congestion initially builds in the bottleneck cell (cell 15) and gradually spills back to
the upstream cells. Due to the uncontrollable on-ramp inflow, the mainstream
demand upstream of the on-ramp cannot be efficiency served. Thus, the cells
downstream the bottleneck location are not congested. Consequenty, the outflow of
cell 9is around touv p Yveh/h.

LQI: For bottleneck case2 shown in Figure 12(b), the factual critical density
and the stationary flow (of three lanes) for the bottleneck cell are found to be around
T pveh/km/lane and v ¢ @veh/h, respectively. The ramp metering action leads to a
corresponding reduction of the total time spent by all veh icles. The density of cell 15
is kept exactly at the set value, whereas the capacity level of the bottleneck section is
achieved, and the mainstream demand is well served.

PI-ALINEA: For bottleneck case2 shown in Figure 12(c), the ramp metering
results by PI-ALINEA are similar to the results by LQI. As in LQI case, the factual
density and the stationary flow for cell 1 5 are found equal to T preh/km/lane and
L ¢ qveh/h, respectively. ForPI-AL | NEA® s Ua 0 tgaine as set equal tox 1

km*lane/h, respectively.
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5.4 Simulation Investigations - Bottleneck case 3
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The bottleneck case 3 geeFigure 6) has a bottleneck of 1 km (cell 20 to cell 23)
located at cell 20, downstream the onr amp s ent r anc énearzede | | 9) .
(considered) system extends from the upstream boundary of cell 9 to the fist cell of
the bottleneck section (cell 20).

No Control CaseAs shown in Figure 13(a), a severe congestion is created in
the freeway mainstream resulting accordingly to capacity drop. The density of cell 9
reaches the critical value ofc weh/km/lane at at about 0 p& h, at which time the
stationary flow of cell 9 reaches the capacity level. As the density continues to increase,
congestion initially builds in the bottleneck cell (cell 20) and gradually spills back to
the upstream cells. Due to the uncontrollable on-ramp inflow, the mainstream
demand upstream of the on-ramp cannot be efficiency served. Thus, the cells
downstream the bottleneck location are not congested. Consequently, the outflow of
cell 9 is around touv p yveh/h.

LQI: For bottleneck case3 shown in Figure 13(b), the factual critical density
and the stationary flow (of three lanes) for the bottleneck cell are found to be around
o weh/km/lane and v ¢ Yveh/h, respe ctively. The ramp metering action leads to a
corresponding reduction of the total time spent by all vehicles. The density of cell 20
is kept exactly at the set value, whereas the capacity level of the bottleneck section is
achieved, and the mainstream demand is well served.

PI-ALINEA: For bottleneck case 3 shown inFigure 13(c), the factual density
and the stationary flow for cell 20 are found equal to ¢ wweh/km/lane and v ¢ Y ¢
veh/h, respectively. The resulting density and flow of cell 20 and of the further
downstream cells are lightly oscillating around the set value. For PI-A L | N E #cfios,

0 ,0 gains as set equal top fp km*lane/h, respectively.
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5.5 Simulation Investigations - Bottleneck case 4
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Figure 14: Bottleneck case 4: (a) No control case, (b) control case with LQI, (c) control case
with PI-ALINEA
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The bottleneck case 4 ¢eeFigure 7) has a bottleneck of 1 km (cell 25 to cell 28)
located at cell 25, downstream the onr amp s ent r anc énearzede | | 9) .
(considered) system extends from the upstream boundary of cell 9 to the fist cell of
the bottleneck section (cell 25).

No Control Case:As shown in Figure 14(a), a severe congestion is created in
the freeway mainstream resulting accordingly to capacity drop. The density of cell 9
reaches the critical value ofo weh/km/lane at at about 0 p& h, at which time the
stationary flow of cell 9 reaches the capacity level. As the density continues to increase,
congestion initially builds in the bottleneck cell (cell 25) and gradually spills back to
the upstream cells. Due to the uncontrollable on-ramp inflow, the mainstream
demand upstream of the on-ramp cannot be efficiency served. Thus, the cells
downstream the bottleneck location are not congested. Consequently, the outflow of
cell 9 is around touv p yYveh/h.

LQI: For bottleneck case4 shown in Figure 14(b), the factual critical density
and the stationary flow (of three lanes) for the bottleneck cell are found to be around
o weh/km/lane and v ¢ Uveh/h, respectively. As is shown in Figure 14(b), the
ramp metering action leads to a corresponding reduction of the total time spent by all
vehicles. The density of cell 25 is lightly oscillating around the set value , whereas the
capacity level of the bottleneck section is achieved, and the mainstream demand is
well served.

PI-ALINEA: For bottleneck case4 shown in Figure 14(c), the factual density
and the stationary flow for cell 25 are found equal to ¢ wweh/km/lane and v ¢ Y ¢
veh/h, respectively. The resulting density and flow of cell 25 and of the further
downstream cells are lightly oscillating around the setvalue. ForPI-AL| NEA®&s acti on,

0 ,0 gains as set equal tor fr@ km*lane/h, respectively.

Linear Quadratic I ntegral Re g uiltayt oaf Cr et e
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The bottleneck caseb (seeFigure 8) has a bottleneck of 1 km (cell D to cell 32)
located at cell 29 downstream the on-r amp ds ent r anc éneafzede | | 9) .
(considered) system extends from the upstream boundary of cell 9 to the fist cell of
the bottleneck section (cell 29.

No Control CaseAs shown in Figure 15(a), a severe congestion is created in
the freeway mainstream resulting accordingly to capacity drop. The density of cell 9
reaches the critical value oft qveh/km/lane at at about 0 p& h, at which time the
stationary flow of cell 9 reaches the capacity level. As the density continues to increase,
congestion initially builds in the bottleneck cell (cell 2 9) and gradually spills back to
the upstream cells. Due to the uncontrollable on-ramp inflow, the mainstream
demand upstream of the on-ramp cannot be efficiency served. Thus, the cells
downstream the bottleneck location are not congested. Consequently, the outflow of
cell 9is around to T w @veh/h.

LQI: For bottleneck case5 shown in Figure 15(b), the factual critical density
and the stationary flow (of three lanes) for the bottleneck cell are found to be around
T veh/km/lane and v 1T yveh/ h, respectively. The ramp metering action leads to a
corresponding reduction of the total time spent by all vehicles. The density of cell 29
is lightly oscillating around the set value, whereas the capacity level of the bottleneck
section is achieved, and the mainstream demand is well served.

PI-ALINEA: For bottleneck case5 shown in Figure 15(c), the factual density
and the stationary flow for cell 29 are found equal to T ¢veh/km/lane and v T YT
veh/h, respectively. The resul ting density and flow of cell 29 and of the further
downstream cells are lightly oscillating around the setvalue. ForPI-AL|l NEAG6s acti on,

0 ,0 gains as set equal too fr® km*lane/h, respectively.
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The comments on the simulation investigations described before can be

summarized for all bottleneck cases

1 No control casdn all cases, a congestion is created in thdreeway mainstream
resulting accordingly to capacity drop. The congestion initially builds in the
bottleneck cell and gradually spills back to the upstream cells.

1 RM case:As simulation tests demonstrate, the performance of LQI and PI-
ALINEA (using the gains that proposed) is pretty much the same. Both regulators
succeed to avoid mainstream congestion and to achieve a higher throughput. In
Table 3, the improvement of the stationary flow is calculated. However, when
the bottleneck is moved further downstream (beyond 2 km, including bottleneck
cases 3, 4, 5 presented herein), the control task becomes increasinglgifficult.
Using the same gains for PFALINEA leads to aggressive and oscillatory behavior.
Thus, as it is described previous, in order to obtain satisfactory performance for
PI-ALINEA the gains must change for every different bottleneck case by selecting

more and more conservative gains as the bottleneck moves further downstream.

Table3: Improvement of stationary flow

Stationary Flow (veh/h)

Bottleneck Cases Improvement (%)
No control LQI/PI -ALINEA
1 5089 5194 2.06%
2 5189 5269 1.54%
3 5185 5282 1.87%
4 5184 5283 1.91%
5 4962 5084 2.46%
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5.7 Constant Gains

Taking into consideration the considered (linearized system) and the
dimension of the gain matrices by applying LQI (seeT a bd),& and 0 obtained
using weights that lead to smooth and efficient control performance. Although, after
extensive simulations, similar performance can be obtained using constant gainsv
and U , which are close to the optimal solution. The results presented before are the
same in case of using constant values for gainsAll the simulation tests for the different
bottlenecks have been derived usingy ; ¢ T km*lane/h (where "'Q pf8 &) and
0 ¢ tkm*lane/h. Thus, LQI seems to be a robust regulator, because of the low

sensitivity in gain selection.

5.8 Control Decision

In Figure 16, the behaviour of control decision is presented for bottleneck cases
1,2, 3, 4and 5, usingthe LQIr egul at or . According to the on
control decision seems to be efficient. For bottleneck cases 1, 2, 3, the trajectories of the
control decision is smother than for bottleneck cases 4 and 5 (bottleneck cases

downstream the 2 km).
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6. Conclusionand Future Work

The objective of this diploma was to develop and investigate the performance
of a Linear Quadratic Regulator augmented with Integral action (LQI) for the freeway
ramp metering control problem in case of far downstream bottlenecks. For this reason,
a second order model was employed and examined, in particular METANET model,
using measurements from the considered network. Thus, the reported theoretical
analysis and simulation studies demonstrate that LQI is ver y efficient in handling the
local ramp metering task in the case of very distant downstream bottlenecks (over the
2km). P-AL1 NEA6s performance is similar with LQI &s
indicates that LQI is much less sensitive in terms of the gains selection, hence easier
to deploy. Also,i t 6s i mportant t haofveky@istantcdawnstrédaemn d|l e cas e
bottlenecks by setting static gains to construct the regulator.
Future work will focus on integrating LQI within a random  -located bottleneck
framework. Some random-located bottleneck caseshave been tested in related studies

via ALINEA ramp metering strategy [8].
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