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Design and Implementation of an FPGA-Based Convolutional Neural
Network Accelerator

by Antonios Georgios Pitsis

In recent years Convolutional Neural Networks (CNNs) have shown extremely
growth due to their effectiveness at complex image recognition problems. They are
currently adopted to solve an ever greater number of problems, ranging from speech
recognition to image segmentation and classification. The continuing increasing
amount of processing required by CNNs creates the field for hardware support
methods. Moreover, CNN workloads have a streaming nature, well suited to re-
configurable hardware architectures such as FPGAs. The amount of research on
the Machine Learning and especially on CNN (implemented on FPGA platforms)
within the last 4 years demonstrates the tremendous industrial and academic in-
terest. This study presents a CNN inference accelerator over FPGAs. The network
we aim to accelerate was developed by Dr. Tsagatakis in the context of DEDALE
project (Horizon 2020 [33]) for astrophysics subject. After carrying out Sensitivity
Analysis computational workloads and memory accesses are analyzed, as well as
compression methods and algorithmic optimizations to exploit FPGA parallelism.
At the level of neurons, optimizations of the convolutional and fully connected
layers are explained and compared. At the network level, approximate computing
optimization methods are examined limited by not reducing the accuracy of the
network. The platforms were used are ZCU102 and QFDB(a custom 4-FPGA
platform developed at FORTH). The implemented accelerator was managed to
achieve 20x latency speedup, 2.17x throughput speedup and 11.9x energy efficient
over GPU NVIDIA-Quadro-K2200 in terms of EuroExa [19] project.
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Chapter 1

Introduction

The exponential growth of data during the last years is increasing, leading to
the need for proper management.We always knew it was big in 2010 cracking the
zettabyte barrier. Extracting and analyzing these amounts of information makes
it difficult or even impossible using conventional software tools and technologies.
Digital information, sizes and dimensions, is growing at astonishing rates. For ex-
ample in 2013, according to the National Security Agency, the Internet is process-
ing 1.8 Petabytes of data per day (“National Security Agency”, 2013) [1]. During
2006-2011, digital data has grown 9 times in volume [24]. Moreover, its amount in
the world will be estimated to reach 35 trillion gigabytes [25]. More specifically,
according to Forbes ([48]) we produce every day globally is 2.5 ExaBytes (quintil-
lion of bytes) according to our current pace. This rapid explosion of digital data
brings big opportunities for innovative methods and creates the field to explore
ways to extract a high-level understanding of the low-level information given by
raw data such as images, video and speech sequences. Among the proposed meth-
ods, Convolutional Neural Networks (CNNs) [81] have become the driving force
by achieving accuracy even better than humans in many applications related to
machine vision (e.g detection [26], classification [38], segmentation [82]) and speech
recognition [58].

1.1 Motivation

State-of-the-art accuracy results in image , speech , language and many other
tasks are being achieved via using convolutional neural networks (CNNs) (e.g. [9],
[12], [42], [54],[55],[13]). This outstanding performance comes at the price of a
huge computational cost. CNNs require up to 40 GOP/s to classify efficiently a
single image [70]. As a result, dedicated hardware is required to accelerate their
execution. Graphics Processing Units (GPUs), have been the most widely used
platform to implement CNNs as they present the best performance in terms of
pure computational throughput, reaching up to 11 TFLOP/s [22]. Nevertheless, in
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terms of power consumption, Field-Programmable Gate Array (FPGA) solutions
are known to be more energy efficient (vs GPUs).

CNN training is highly compute-intensive, requiring hours, days or even weeks
to achieve high accuracy using high-end graphics processing units (GPUs). Hard-
ware acceleration is particularly suitable for inference, as training is typically done
once off-line, whereas inference with a is applied repeatedly. As a result, plethora
of FPGA-Based CNN accelerators have been proposed mostly for inference. They
targeting both High-Performance Computing (HPC) i.e. data-centers [61] and
embedded (low-power) applications [4]. Moreover, there is increased emphasis on
performing CNN inference embedded-computing context (e.g. mobile applications,
aerospace, etc), where low-power and low latency are the most important metrics.

1.2 Scientific Contributions

The scientific contribution of this work is focused on two aspects. Firstly several
methods have been performed to scale down the memory footprint and compu-
tation complexity by reducing the redundancy of CNN models. These methods
include pruning, lower floating point, static and dynamic fixed point, clustering
algorithms Memory Layout Transformation etc was based on sensitivity analysis
implemented in MATLAB. The results of this analysis show us the limitations of
how aggressive we can be in each technique, having as a limiting factor to keep
low error rate of the network. In typical neural networks, there are millions of
parameters which define the model and requires a large amount of data to store
them. This problem is especially intense in implementations over FPGA where we
have limitations in memory. B-RAM is immensely fast but its size is too small (few
MB), on the other hand, D-RAM has significantly bigger size (tens of GB) but
limited bandwidth. In our network we have 22.776.272 (64-bit, double precision
floating point) weights, meaning 173.77 MB, thus it is essential to reduce its size ef-
ficiently to accelerate the network. More specifically the hardware of choice is GPU
as they present the best performance in terms of pure computational throughput,
using a runtime such as TensorFlow. TensorFlow provides high-level of abstraction
features as a general purpose solution suitable for GPUs and CPUs. According
to a Google, there was a fear that if the over a billion Android users began to
use Google’s voice search for just three minutes a day it would require Google to
double its number of data centers (using CPUs and GPUs leads to high energy
and power demands) [27]. For this reason Google deployed TPU [57] targeting
its data centers to accelerate the inference phase of neural networks (NNs) hav-
ing lower power and energy consumption comparing to GPU and CPU solutions.
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As a result, dedicated hardware is required to accelerate the execution of CNN
applications efficiently leading to high throughput/Watt (or energy) results.

We managed to use FPGAs as CNN accelerators using some of the techniques
mentioned above and exploit its parallelism. A pipeline was originally created at
each layer separately and then it was expanded between the layers. In order to
achieve this, we have to transform the order in which the layers export their results
so that the next layers are able to start their process before the previous finish
their own. Another challenge was to limit I/O transactions which are the main
bottleneck in every FPGA implementation. Several architectures are examined
but in order to split efficiently workload in each FPGA, eventually we managed
to fit entire CNN in a single FPGA applied significant resource optimization in
order to achieve this. Finally, We propose two architectures for a single FPGA
(ZCU-102) and for QFDB (Quad FPGA Daughter Board) [19]. The implemented
accelerator was managed to achieve 2.5x speedup and 10x energy efficient over
GPU NVIDIA-Quadro-K2200. Both results are important when we are targeting
satellite-based applications (Euclid satellite).

1.3 Thesis Outline

In this section we outline the organization of this thesis.

• Chapter 2: We describe in detail the theoretical background of Machine
Learning and especially for CNN.

• Chapter 3: We describe in detail the related work in the field of CNN and
more specifically for hardware implementations.

• Chapter 4: We present our Sensitivity Analysis of the given CNN 2.8 in
MATLAB. Moreover, several techniques have been performed to limit the
memory footprint and computation complexity by reducing the redundancy
of the network based on our robustness analysis.

• Chapter 5: We develop two architectures for a single FPGA (ZCU-102)
and for QFDB (Quad FPGA).

• Chapter 6: We present and compare both Architectures results in through-
put,latency power and energy consumption with GPU (NVIDIA-Quadro-
K2200) and CPU(i-7 7700HQ).
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• Chapter 7: We conclude this thesis, and we provide directions for future
work and possible extensions to our work.

In chapter 3,4 the CNN that we analyze was developed by FORTH re-
searchers (Dr. Tsagatakis and his team). The corresponding section has
been obtained from the paper of Dr. Tsagatakis (currently is on submission
stage) with his permission (private communication).
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Chapter 2

Theoretical Background

In deep learning, the algorithms
we use now are versions of the
algorithms we were developing
in the 1980s, the 1990s. People
were very optimistic about
them, but it turns out they
didn’t work too well.”

Geoffrey Hinton

In this Chapter, we describe in detail the theoretical background of Machine
Learning and especially for CNN.

The human and several animals have very complex visual recognition systems.
We are able to distinguish and classify objects independently. The structure neural
network is imitated from the biological brain structure. Each neuron in the net-
work is connected to other neurons through synapses. When a neuron is "fired",
sends to the next layer of neurons a chemical substance to change the potential
"state" of these neurons. If the potential of a neuron exceeds a threshold, it is
activate. Otherwise, it will not be activated. One of the most common research
fields in computer science is image recognition. Convolutional Neural Networks
(CNNs) neural networks aims to solve problems such as image recognition, by us-
ing significant process, such as Gradient Descent [14] and Backpropagation [37].
One of the earliest neural network was inspired in 1943. McCulloch and Pitts
(MCP) [77] hve raised an artificial neural model, which was aimed to simulate the
process of human neuron response using a computer. It simplifies neurons into
two basic processes: linearization of the input signal, and non-linear activation
(threshold method). The first use of MCP for machine learning was the percep-
tron algorithm invented by Rosenblatt in 1958 [65] constituting the foundations of
further development in ML.
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2.1 Machine Learning

Machine learning is a sub-field of computer science that uses techniques with sta-
tistical nature to develop in computer systems the ability to progressively learn
(gradually improve performance on a specific task) with data, without being pro-
grammed in a predetermined manner [41].

The name "machine learning" first was given by Arthur Samuel in 1959 [66].
Machine Learning is the sub-field of Artificial Intelligence that explores and study
the construction of algorithms that can "learn" from data and make predictions
on them [64]. Firstly was developed and evolved from the fields of computational
"learning" theory and pattern recognition in artificial intelligence. Machine learn-
ing is employed in a wide range of tasks related to computer. Designing and
programming algorithms with these characteristics with high performance are dif-
ficult or even impossible. Machine learning promises to approach tasks such as
include email filtering, network filtering or various insiders, learning to classify,
and computer vision is problems that.

Machine learning is closely related to (and often overlaps with) computational
statistics, which also focuses on prediction-making through the use of computers.
It has strong ties to mathematical optimization, which delivers methods, theory
and application domains to the field. Machine learning is sometimes conflated
with data mining [46], where the latter sub-field focuses more on exploratory data
analysis and is known as unsupervised learning [8]. Machine learning can also be
unsupervised [31] and be used to learn and establish baseline behavior for various
tasks and entities and then used to find meaningful disorders.

In data analytics, machine learning is a method used to manage complex
models and algorithms that focus to prediction. Many applications in commercial
use, known as predictive analytics. These analytical models allow engineers, re-
searchers, and analysts to be able to produce reliable decisions and high-accuracy
results and uncover hidden information and structures through learning from his-
torical relationships and trends in the data [45].

2.2 Convolutional Neural Network

In machine learning, a convolutional neural network (CNN) is a sub-class of deep,
feed-forward artificial neural networks, most commonly applied to analyze visual
data.

CNNs use a variation of multi-layer perceptrons designed to require a mini-
mum amount of preprocessing. Convolutional Neural Networks were inspired by
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biological processes. Thus the connectivity patterns between neurons relied on the
study of the organization of the animal visual cortex. Individual cortical neurons
respond to stimuli only in a restricted region of the visual field known as the re-
ceptive field. The receptive fields of different neurons partially overlap such that
they cover the entire visual field.

Figure 2.1: Standard Structure of Real Neural Network: URL

Convolutional Neural Networks are very similar to ordinary Neural Networks.
They are made up of neurons that have learnable weights and biases. Each neuron
receives some inputs, performs a dot product and optionally follows it with a non-
linearity. The whole network still expresses a single differentiable score function:
from the raw image pixels on one end to class scores at the other. And they still
have a loss function (e.g. SVM/Softmax) on the last (fully-connected) layer.

DNNs can replace a Machine Learnign expert on Feauture Extraction using
relatively little pre-processing compared to other image classification algorithms.
This means that the network learns the filters that in traditional algorithms were
hand-engineered. This independence from prior knowledge and human effort in
feature design is a major advantage. They have applications in image and video
recognition and natural language processing [13].

https://nurseslabs.com/nervous-system/
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2.3 Structure of Convolutional Neural Network

A typical Convolutional Neural Network Figure 2.2 consists of millions of neurons
where they are organized in several layers. The beginning layer is Convolution layer
and the last few layers,1-5 depending on the application, are Fully Connected. The
las Fully Connected Layer also named as Classifier. The layers between them are
called hidden layers. The main purpose of the convolution layer is to extract
image features, then drive them into the hidden layers of computing, and extract
the results through the output layer. Layers among hidden layers usually, such as
pooling layers (max, average etc), are sub-sampling layers, are partially connected,
while the output layers are fully connected. Between hidden layers often there are
activation functions that help to keep valuable information for next layers.

Figure 2.2: Architecture of CNN

2.3.1 Convolution Layer

Convolutional layers apply a convolution operation to the input, passing the result
to the next layer. Therefore convolution emulates the response of an individual
neuron to visual stimuli [32].It can be implemented in a variety of ways.
There are some hyper-parameters that are used to configure a convolution layer:

• Kernel size(K): Size of filter

• Stride(S): How many pixels the kernel window will slide (on each dimen-
sion). Normally 1, in conv layers, and 2 in pooling layers.

• Zero Padding(pad): Convolution operation can be performed with or with-
out zero padding in three different ways :

– valid returns only those parts of the convolution that are computed
without zero-padded edges.
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– same returns the same size of the input with appropriate zero padding.

– full returns the full convolution with full zero-padded edges.

• Number of filters(F): Number of patterns and structures, known as "fea-
ture maps", that the conv layer will look for.

2.3.2 Pooling

A pooling layer is another building block of a CNN. They are used to progressively
reduce the size of the representation, but not depth. By having less spatial infor-
mation you gain computation performance. Also, less spatial information means
fewer parameters, so less chance to over-fit the network. Convolutional networks
may include local or global pooling layers combining the output of neurons from
the previous layer into a single neuron to the next layer [56],[10] The most common
approach used in pooling 2.3 is max pooling uses the maximum value of the out-
put of neurons. Another differention of pooling is average , which uses the average
value of each neuron at the prior layer and outputs the pooled neuron [11].

Figure 2.3: Pooling Comparison

2.3.3 Activation Function

In artificial neural networks, the activation function of a node defines the output of
that node given an input or set of inputs. A standard computer chip circuit can be
seen as a digital network of activation functions that can be "ON" (1) or "OFF"
(0), depending on input. This is similar to the behavior of the linear perceptron in
neural networks. However, only nonlinear activation functions allow such networks
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to compute nontrivial problems using only a small number of nodes. In artificial
neural networks, this function is also called the transfer function.

Activation functions are used to determine the firing of neurons in a neural
network. Given a linear combination of inputs and weights from the previous layer,
the activation function controls how we’ll process and pass that information on to
the next layer.

An ideal activation function is both nonlinear and differentiable. The nonlin-
ear behavior of an activation function allows our neural network to learn nonlinear
relationships in the data. Differentiability is important because it allows us to
backpropagate the model’s error when training to optimize the weights.

Perceptron
While 2.1 is the original activation first developed when neural networks were

invented, it is no longer used in neural network architectures because it’s incompat-
ible with backpropagation. Backpropagation allows us to find the optimal weights
for our model using a version of (mainly stochastic) gradient descent. Unfortu-
nately, the derivative of a perceptron activation function cannot be used to update
the weights. . The step function is not "convex" and thus you cannot find a local
min using Gradient Descent[67].

f(x) =

0, x < 0

1, x ≥ 0
(2.1)

The sigmoid 2.2 function is commonly used when training CNNs, however,
it has fallen out of practice to use this activation function in real-world neural
networks due to a problem known as the vanishing gradient.

Most commonly sigmoid used is 2.2 2.5.There are several sigmoid such as tanh
2.3.3 2.6 and arctan .

Recall that we included the derivative of the activation function in calculating
the "error" term for each layer in the backpropagation algorithm. The maximum
value of the derivative for the sigmoid function is 0.25, thus, and you progress
backwards each layer in backpropagation you’re reducing the size of your "error"
by at least 75 at each layer. This ends up limiting our ability to change the weights
in layers close to the input layer for deep networks because so many of terms mul-
tiplied together in the derivative chain are less than or equal to 0.25.

f(x) =
1

1 + e−x
(2.2)
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Figure 2.4: Perceptron

tanh(x) =
ex − e−x

ex + e−x
(2.3)

ReLU (rectified linear unit)
This is 2.4 one of the most popularly used activation functions of 2018. Due

to its popularity, a number of variants have been proposed that provide an incre-
mental benefit over standard ReLUs.

f(x) =

0, x < 0

x, x ≥ 0
(2.4)

Softmax
The softmax function 4.2 is commonly used as the output activation function for
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Figure 2.5: Sigmoid Function

multi-class classification because it scales the preceding inputs from a range be-
tween 0 and 1 and normalizes the output layer so that the sum of all output
neurons is equal to one. As a result, we can consider the softmax function as a
categorical probability distribution. This allows you to communicate a degree of
confidence in your class predictions.

fi(x) =
exi∑J
j=1

(2.5)
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2.4 Typical Architecture of a 1-Dimensional CNN

In this section, we analyze the Convolution Neural Network on which we’ll study
and worked on. The structure, informations, and the document below have been
obtained after approval by K. Tsagtakakis. A typical 1-D CNN 2.8 is structured
in a sequential manner, layer by layer, using a variety of different layer types. The
foundational layer of a CNN is the Convolutional Layer. Given as an input vector
of size (1 x N) and a trainable filter (1 x K), the convolution operation of the two
entities will result in a new output vector with a size (1 x M), whereM = N−K+1.
The value of M may vary based on the stride of the operation of convolution, with
bigger strides leading to smaller outputs. In the entirety of this thesis, we assume
the generic case of a stride value equal to 1. The trainable parameters of the
network (incorporated in the filter), are initialized randomly [6] and, therefore,
are totally unreliable, but as the training of the network advances, through the
process of back-propagation [15], they are essentially optimized and are able to
capture interesting features from the given inputs. The parameters(i.e.weights)
of a certain kernel are considered to be shared [43], in the aspect that the same
weights can be used throughout the convolution of the entirety of the input. This
can consequently lead to a drastic decrease in the number of weights, enhancing the
ability of the network to generalize and adding to its total robustness against over-
fitting. To ensure that all different features can be captured in the process, more
than one filters can be actually used. More specifically to be able to compose high
level features we need to extract more than one feature from each input "pixel".

2.4.1 Convolutional Layer

In more difficult problems, using one Convolutional Layer is insufficient, if we
want to construct a reliable and more complex solution. A deeper architecture,
able to derive more detailed characteristics from the training examples, is a ne-
cessity. To cope with this issue, a non-linear function can be interjected between
adjacent Convolutional Layers, enabling the network to act as a universal function
approximator [34]. Typical choices for the non-linear function (known as acti-
vation function) include the logistic (sigmoid) function, the hyperbolic tangent
(tanh) and the Rectified Linear Unit (ReLU). The most common choice in CNNs
is ReLU (f(x) = max(0,x)) and its variations [30]. Compared to the cases of the
sigmoid and hyperbolic tangent functions, the rectifier possesses the advantage
that it is easier to compute (as well as its gradient) and is resistant to saturation
conditions [56], rendering the training process much faster and less likely to suffer
from the problem of vanishing gradients [65].
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2.4.2 Fully-Connected Layer

Finally, one or more Fully-Connected Layers are typically introduced as the final
layers of the CNN, committed to the task of the supervised classification. A Fully-
Connected Layer is a typical layer met in Multilayer Perceptron and as the name
implies, all its neuronal nodes are connected with all the neurons of the previous
layer leading to a very dense connectivity. Given the fact that the output neurons
of the CNN correspond to the unique classes of the selected problem, each of these
neurons must have a complete view of the highest-order features extracted by the
deepest Convolutional Layer, meaning that they must be necessarily associated
with each of these features.

2.4.3 Final Classification

The final classification step is performed using the multiclass generalization of
Logistic Regression known as Softmax Regression. Softmax Regression is based on
the exploitation of the probabilistic characteristics of the normalized exponential
(softmax) function below where x is the input of the Fully-Connected Layer, θj are
the parameters that correspond to a certain class wj and W is the total number
of the distinct classes related to the problem at hand. It is fairly obvious that the
softmax function reflects an estimation of the normalized probability of each class
wj, to be predicted as the correct class. As deduced from the previous equation,
each of these probabilities can take values in the range of [0,1] and obviously, they
all add up to the value of 1. This probabilistic approach composes a good reason
for the transformation of the examined problem to a classification task, rendering
possible to quantify the level of confidence for each estimation and providing a
clearer view on what has been misconstrued in the case of mis-classification.

2.4.4 Pooling Layer

The use of Pooling Layers has been excluded from the pipeline, given the fact
that pooling is considered, among others, a great method of rendering the network
invariant to small changes of the initial input. This is a very important property
in image classification, but in our case, these translations of the original rest-frame
SEDs, almost define the different redshifted states. By using pooling, we suppress
these transformations, “crippling” the network’s ability to identify each different
redshift.
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Figure 2.8: Simple 1-Dimensional CNN: The input vector v is con-
volved with a trainable filter h (with a stride equal to 1), resulting
in an output vector of size M = N - 2. Subsequently, a non-linear
transfer function (typically ReLU) is applied element-wise on the
output vector preserving its original size. Finally, a fully-connected,
supervised layer is used for the task of classification. The number of
the output neurons(C) is equal to the number of the distinct classes

of the formulated problem (800 classes in our case).
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Chapter 3

Related Work

3.1 Google Brain Project

TensorFlow is an open-source software library for data-flow programming across a
range of tasks. It is an extended math library, developed specifically for machine
learning applications such as Deep Neural Networks.[49] It is developed and used
for both production and research at Google Labs, often extended its closed-source
predecessor, DistBelief. TensorFlow was initially inspired and developed by the
Google Brain team for internal Google use. It was released under the Apache 2.0
open source license on November 9, 2015, [73].

3.1.1 DistBelief

During 2011, Google Brain built DistBelief as a machine learning system based
on Deep Learning neural networks. It has shown rapid growth across different
Alphabet companies in both commercial and research applications. Google hired
multiple computer scientists, including Jeff Dean, to simplify and reconstruct the
base of DistBelief into a faster, more reliable and robust application library, which
became TensorFlow. In 2009, Google Brain team, led by Geoffrey Hinton, had
developed generalized back-propagation and other important improvements which
allowed generation of neural networks to grow and achieve higher performance i.e.
a significant 25% reduction in the error rate in speech recognition.

3.1.2 TensorFlow

TensorFlow [75] was originally a major project developed by researchers and engi-
neers working on the Google Brain Team. They collaborate with Google’s Machine
Intelligence research organization for the purpose of conducting machine learning
and deep neural networks research. The results of this project was applicable to
a number of other domains, as well, says Google. TensorFlow is Google Brain’s
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second-generation system. Version 1.0.0 was released on 2017 [74], while the ref-
erence implementation is able to run on single devices. Moreover, TensorFlow can
run on multiple CPUs and GPUs (with optional CUDA extensions for general-
purpose computing on graphics processing units). Its flexible architecture allows
deployment of computation across a variety of systems (CPUs, GPUs, TPUs).
TensorFlow computations could be expressed as stateful data flow graphs. The
name TensorFlow derives from the operations that such neural networks perform
on multidimensional data arrays. These arrays are referred to as "tensors". In
June 2016, Dean stated that 1,500 repositories on GitHub mentioned TensorFlow,
of which only 5 were from Google.

3.1.3 Tensor Processing Unit (TPU)

In May 2016, Google announced its Tensor processing unit (TPU), an application-
specific integrated circuit (ASIC) developed specifically for machine learning and
optimized for the use of TensorFlow. TPU is a programmable AI accelerator de-
signed to provide high throughput of low-precision arithmetic (e.g., 8-bit), and
oriented toward inference or running models rather than training them. Google
announced, that they had been running TPUs inside their data centers for more
than a year leading to 30x-80x higher TOPS/Watt compared to contemporary
CPU and GPU [57]. Afterwards, it mentioned that they were able to deliver an
order of magnitude better "optimized" performance per watt for machine learn-
ing.[39]

In May 2017, Google announced the evolution of the first generation, as well
as the availability of the TPUs in Google Compute Engine [36]. The second-
generation TPUs deliver up to 180 teraflops of performance, and when organized
into clusters of 64 TPUs, provide up to 11.5 petaflops. In February 2018, Google
announced that they were developed TPUs to be available in beta on the Google
Cloud Platform.

3.2 GPU approach

Deep learning frameworks allow researchers to develop and explore Convolutional
Neural Networks (CNNs) and other Deep Neural Networks (DNNs), while deliv-
ering high throughput for both research and industrial deployment. The NVIDIA
Deep Learning SDK accelerates deep learning frameworks such as Caffe, Tensor-
Flow, Theano and Torch as well as many other machine learning applications.
Neural Network applications run faster on GPUs and scale across multiple GPUs
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within a single node. To use the frameworks with GPUs for Convolutional Neural
Network training and inference processes, NVIDIA provides toolbox and libraries
such as, cuDNN and TensorRT respectively. cuDNN and TensorRT provide highly
tuned implementations for standard operations in Deep Learning such as convolu-
tion, pooling, normalization, and activation functions.

3.3 The FPGA perspective

In recent years, modern Convolutional Neural Networks were being over-developed,
but the biggest challenge was getting them to work efficiently. That meant that
accuracy, speed during training and energy efficiency were the top priorities. Com-
munity mainly focuses on reducing the operands on training and inference. Orthog-
onal and complementary techniques for reducing redundancies like weight com-
pression, pruning techniques [71] and compact architectures [51] are impressively
efficient and they were proposed in the past years.

Until recently, the use of low-precision networks from fixed-point, lower floating
points format to binary, in the extreme case, was believed to be highly destructive
to the network performance [53] during training and inference procedure. Contrary
by showing that good accuracy performance could be achieved (in training) even
if a network was binarized to +-1 [16]. This was implemented using Expectation
Back Propagation (EBP), a variational Bayesian approach, which infers networks
with bi-Binarized Neural Networks: Training Neural Networks with Weights and
Activations. Constrained to +-1 binary weights and neurons by updating the
posterior distributions over the weights. These distributions are updated by dif-
ferentiating their parameters (e.g., mean values, average values etc.) through the
back propagation (BP) procedure. Implemented a fully binary network at run-
time using a very similar approach to EBP, showing significant results in energy
efficiency [72]. The drawback of EBP is that the binarized parameters were only
used during the inference procedure.

Both procedures are very important and they started hierarchical separated.
The first is a prerequisite for the second to start operating. The trend in recent
years is to run together.
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3.3.1 Training

Training as a process is computationally intensive and requires a lot of resources
in hardware implementations. On the other hand, it is an one-time procedure (not
always), but it requires a lot of time to get a high-performance behavior (accuracy).

3.3.2 Weight Reduction

During the past years methods were proposed to train DNNs with binary weights
(BC) and activations (BNN) successively [52] [51] . Initially they add noises to
weights and activations as a input of regularization but gradients are calculated
with real-valued variables, suggesting that high precision data-types formats ac-
cumulation is likely required for Stochastic Gradient Descent optimization. Many
researchers have also explored training neural networks directly with fixed-point
weights. In 1990 proposed a hardware architecture for on-chip learning with fixed-
point operations. More recently, in [51], the authors train neural networks with
3 different data types ( floating-point, fixed-point and dynamic fixed- point for-
mats) demonstrating and compare its results. [23] demonstrate a Convolutional
Neural Network training using 16-bit fixed-point weights rounded with stochastic
scheme. XNOR-Net [56] has proposed a filter-wise scaling factor for weights trying
to improve the performance of fixed point. XNOR-Net implements efficiently con-
volution operations using XNOR logical units and bit-count operations. However,
these high-precision factors are calculated simultaneously during training, which
generally aggravates the training effort. In TWN [20] and [68] were proposed two
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symmetric thresholds to retain the weights to be ternary-valued: -1,0,+1. They
came up with a trade-off between model expressive ability and complexity of the
network.

Computional Reduction

DoReFa-Net [69] quantizes gradients to low-bitwidth floating-point formats with
static discrete states in the backward pass. Another quantization of gradient up-
dates to ternary values proposed in [78] to reduce the overhead of gradient syn-
chronization in distributed training. Nevertheless, in DoReFa-Net and TernGrad
the weights were stored and updated with single-precision float during training
like formal works. Besides, the quantization of batch normalization and its deriva-
tive were ignored. Thus, the overall computation graph for the training process is
still presented with float(32 bit-width) and more complex with external quantiza-
tion. Generally, it is impossible to apply DoReFa-Net training in an integer-based
hardware directly. Therefore, it could lead to a potential opportunity to explore
high-dimensional discrete spaces with discrete gradient descent.

3.3.3 Inference

As far as the part of the inference is concerned, which is a continuous procedure,
while the training has been preceded. It is important to be able to achieve high
performance (low error-rate), and throughput. Furthermore, an important factor
in Hardware implementations is the energy efficiency.

Weight Reduction

The data type precision of weights and activations plays a major role in deter-
mining the speed accuracy and energy efficiency of any CNN implementations in
hardware or software. Plethora of research focuses on how to efficiently replace
the 32-bit floating-point data with reduced precision data for CNN inference. Sev-
eral data-types have been proposed such as [28] representing both weights and
activations using low-bit floating point, i.e., single or half. However, it is well
known that the fixed-point arithmetic is much efficient than floating-point arith-
metic. This state direct most research focuses on fixed-point quantization. Many
papers present the impacts of different fixed-point rounding formats on the ac-
curacy of various benchmark network [44]. Thereinafter researchers demonstrate
that targeting the minimum required data precision not only varies across different
networks but also across different layers of the same network [59]. [17] propose
a fixed-point quantization technique to approaching the optimal data precision
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(range, resolution) for all layers of a network. [60] present a framework Ristretto
for fixed-point quantization and re-training of CNN based on [80].

Re-training approaches

Many other approaches for memory compression of neural networks have been ex-
plored. [9] propose a combination of network pruning, weight quantization during
training and compression based on Huffman coding to reduce the VGG-16 network
size by 49X. In [84], store both 8-bit quantized floating-point weights and 32-bit
full precision weights. At runtime, compressed weights or floating point weights are
randomly fetched in order to reduce memory bandwidth. The continuous research
effort to reduce the memory footprint has led to many interesting demonstrations
reaching up to 2-bit weights [23] and even binary weights/activations [53]. [69]
demonstrate AlexNet training with 1-bit weights, 2-bit activations and 6-bit gra-
dients. These techniques require additional re-training of the network and can
result in sub-optimal accuracy.

3.4 Convolutional Neural Networks for Spectro-

scopic Red-shift Estimation on Euclid Data

The Convolutional Neural Network was developed by FORTH researchers (Dr.
Tsagatakis and his team). The following section has been taken from the paper
of Dr. Tsagatakis (This is on submission stage) with his permission. [63] Modern
astrophysical cosmological researches seek answers to questions like “what is the
distribution of dark energy and dark matter in the Universe?” [7], [18]. In this
paper, there was an extended study of performing accurate redshift estimation
using realistic spectroscopic observations, modeled after Euclid. Redshift estima-
tion is considered to be a regression task, given the fact that a galaxy redshift (z)
can be measured as a non-negative real-valued number (with zero corresponding
to the rest-frame). Given the specific characteristics of Euclid, we can focus our
study on the redshift range of detectable galaxies. Subsequently, we can restrict
the precision of our estimations to match the resolution of the spectroscopic in-
strument, meaning that split the chosen into evenly sized slots equal to Euclid ’s
required resolution. Hence, we can transform the problem at a regression task to a
classification task using a set of ordinal classes, with each class corresponding to a
different slot, and accordingly, we can utilize a classification model (Convolutional
Neural Networks in our case) instead of a regression algorithm.
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Training and Evaluation

The simulated dataset that was used is modeled after the upcoming Euclid satellite
galaxy survey [62]. The training of the network was implemented in the GPU using
TensorFlow tools. As far as the Inference part is concerned, there is space for other
dedicated hardware like FPGA because energy efficiency is much more important
than throughput in aerospace applications. Below are the results of the training
3.1 and the performance 4.16 of the network.

Figure 3.1: Accuracy of Euclede: Validation performance of a 3-
layered network, using larger and more limited in size datasets. In
all cases the training accuracy (not depicted here) can asymptoti-
cally reach near to 100% accuracy, after enough epochs. Copyrights

from []
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Table 3.1: Comparison of CPU and GPU training running time

Experiment # CPU Time (per epoch) GPU Time (per epoch)

1 4 75 sec. 11 sec.
2 4 735 sec. 107 sec.
3 158 sec. 4 20 sec.

Comparison of CPU and GPU training running time, in 3 different benchmark
experiments. In the 1st and the 2nd experiments, we utilize 40,000 and 400,000 training
observations, of the idealistic case, in a CNN with 1 Convolutional Layer. In the 3rd
case, we deploy 40,000 realistic training examples for the training of a CNN with 3

Convolutional Layers.

3.5 Thesis Approach

In contrast to prior works,[2], [40], [9] and [21] this thesis comes to develop and pro-
pose new ways of compressing information into a specific CNN 3.4 implementation.
For the proper use and implementation of clustering algorithms, we highlighted
the characteristic problems when implemented on CNN applications and propose
techniques to limit them. We also propose new compression methods (Pair com-
pression, Hierarchical Clustering) combining it with existing ones, resulting in a
large compression rate(36x) with high accuracy performance (0.7%).
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Chapter 4

Robustness analysis of CNN

The key to artificial intelligence
has always been the
representation.”

Jeff Hawkins

In this chapter, we intend to analyze the structure of the given Convolution
Neural Network [63] 3.4. Afterwards, we aim to model the network in MATLAB
[50] and evaluate the results with TensorFlow. The initial CNN has been built
and pre-trained in TensorFlow. Therefore starts the inference procedure, where
images are fed into the network and this predicts their (target) classes. We built
our ToolBox in MATLAB, functions were created for each operation of the network,
from importing and formatting image and the filters to the SoftMax layer for the
final classification. Thereinafter, we are going to perform a Sensitivity Analysis to
explore opportunities for hardware implementation. Finally, several compress and
algorithmic optimizations have been studied and tested in order to reduce memory
footprint and accelerate the network. Methods, relies on previous studies, such as
pruning, different data-types( single floating point, half floating point, fixed point,
dynamic-fixed point) and clustering algorithms have been implemented. Finally,
we propose new techniques and methods that approach better the problems of
already state-of-the-art optimizations.

4.1 MATLAB vs TensorFlow

TensorFlow uses high-level of abstraction, hence we manage to transform to MAT-
LAB code for lower-level understanding of the network. Next step was to extract
and compare the results between MATLAB and TensorFlow. This procedure will
show us whether a TensorFlow’s Convolutional Neural Network (CNN) can be im-
plemented in MATLAB with our toolbox. In our experiments with TensorFlow,
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we used double-precision floating point (IEEE standard) and single-precision float-
ing point (IEEE standard) for MATLAB implementation. After running inference
procedure for both implemantations for 10000 images, the main dataset, and com-
paring the results we had fully matched top-1 classification.

Below we present the main building blocks of a typical 1-D Convolution Neural
Network.

In Algorithm1 we perform an 1-D Convolution with stride 1. This is the first
layer of our network. As inputs, it gets a one-dimensional vector( image from the
dataset), the kernel which are the pre-trained filters on which the operation of
convolution will be based and bias. The output of the layer will be a 2-Dimension
vector.

Algorithm 1 Convolution (1-D)
1: procedure Convolution(image, kernel, bias)
2: ImageSize← size(image, 1) . Size of 1st Dimension
3: NumOfKernels← size(kernel, 2) . Number of kernels
4: KernelDim1← size(kernel, 1) . Size of 1st Dimension
5: for k:=1 to NumOfKernels do
6: for i:=1 to (ImageSize-KernelSize+1) do
7: Conv(i, k)← 0

8: for k:=1 to NumOfKernels do
9: for i:=1 to (ImageSize-KernelSize+1) do

10: for j:=1 to KernelSize do
11: Conv(i, k)← Conv(i, k) + image(i+ j − 1) ∗ kernel(k, j)

12: Conv(i, k)← Conv(i, k) + bias(k)

13: return Conv

In 2 we perform an 2-D Convolution with stride 1. This is the second and
third layer of our network. As inputs it gets a two-dimensional vector(imagestage
from the previous layers), the kernel which are the pre-trained filters on which the
operation of convolution will be based and bias. The output of the layer will be a
2-Dimension vector.
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Algorithm 2 Convolution (2-D)
1: procedure Convolution(image, kernel, bias)
2: ImageSize← size(image, 1) . Size of 1st Dimension
3: NumOfKernels← size(kernel, 3) . Number of kernels
4: KernelDim1← size(kernel, 1) . Size of 1st Dimension
5: KernelDim2← size(kernel, 2) . Size of 2nd Dimension
6: for k:=1 to NumOfKernels do
7: for i:=1 to (ImageSize-KernelSize+1) do
8: Conv(i, k)← 0

9: for k:=1 to NumOfKernels do
10: for i:=1 to (ImageSize-KernelDim2+1) do
11: for p:=1 to KernelDim2 do
12: for j:=1 to KernelDim1 do
13: Conv(i, k)← Conv(i, k)+ image(i+ j−1, p)∗kernel(k, p, j)

14: Conv(i, k)← Conv(i, k) + bias(k)

15: return Conv

In 3 we perform a Matrix Multiplication. This is the final layer of the network.
As inputs it gets a flatten vector (transforming from 2 to 1 Dimension), densekernel
which are the pre-trained filters and densebias. The output of the layer will be a
1-Dimension vector in the size of Number of Classes.

Algorithm 3 Fully Connected
1: procedure Fully Connected(conv, kerneldense, bias)
2: ConvSize← size(conv) . Size of Conv
3: NoClasses← size(kerneldense, 1) . Number of Classes
4: for k:=1 to NoClasses do
5: Classes(k)← 0

6: for k:=1 to NoClasses do
7: for i:=1 to ConvSize do
8: Classes(k)← Classes(k) + conv(i) ∗ kerneldense(k, j)

9: Classes(k)← Classes(k) + bias(k)

10: return Conv

In 4 we perform ReLU activation function. This layer performed in the output
of Convolution Layers.
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Algorithm 4 ReLU
1: procedure ReLU(conv)
2: ConvSize1← size(conv, 1) . Size of 1st Conv
3: ConvSize2← size(conv, 2) . Size of 2nd Conv
4: for i:=1 to ConvSize1 do
5: for k:=1 to ConvSize2 do
6: if conv(i, k) < 0 then
7: conv(i, k)← 0

8: return conv

In 5 we perform SoftMax activation function. This layer performed in the
output of Fully Connected Layer. It outputs the target class of the network with
a probability distribution.

Algorithm 5 SoftMax
1: procedure SoftMax(Classes)
2: NoOfClasses← size(Classes) . Number of Classes
3: sumC ← 0

4: maxC ← − 8

5: posC ← −1
6: for i:=1 to NoOfClasses do
7: sumC ← sumC + eClasses(i)

8: if eClasses(i) > maxC then
9: maxC ← eClasses(i)

10: posC ← i . Find the position of the predicted class

11: Pmax ← maxC/sumC . Probality of the max Class
12: return Pmax, posC

4.1.1 Data types

In our experiments, we used 3 different data types: double, single, half precision
floating point. All three formats are IEEE Floating Point, the first two are sup-
ported by MATLAB while for half Floating Point a mini-toolbox was used by
MATH-WORKS. One first step is to understand what floating point datatype ac-
tually we need because Input/Output (I/O) has always played a crucial role in
computer, industrial applications and especially in FPGAs which are main speed
bottleneck. Below in table 4.1 is presented error rate in top-1 classification for 3
different floating point types.
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Table 4.1: Error rate

Data type Error rate(%)

double 0
single 0.02
half 0.04

It is easily observed that there isn’t significant error rate for lower floating
point formats, thus creating space to exploit their use.

4.2 Memory Footprint

An important issue that has been reported several times is memory footprint. Es-
pecially for implementing FPGA applications, memory is a performance inhibitor.
Most of the time, the application is to fit into internal B-RAMs or even to ac-
commodate a lot. Of course in modern FPGA there is the solution of D-RAM
but speed is the main disadvantage. It is important to perceive how weights are
distributed in the network stages and find ways to reduce the overall memory foot-
print. Tables (5.8,4.3) presents memory footprint of the weights and the stages of
the image using double floating point.

Table 4.2: Weights Memory Footprint

Layer #Weights Footprint Memory(%)

conv1 144 1.1KB 6.33 ∗ 104
conv2 2064 16.1KB 9.2 ∗ 103
conv3 2064 16.1KB 9.2 ∗ 103
dense 22771200 173.7MB 99.98

Table 4.3: Data Stages Memory Footprint

Stage #Data Footprint Memory(%)

image 1800 14KB 2
conv1 28688 224KB 32
conv2 28576 223.2KB 32
conv3 28464 222.4KB 32
dense 800 6.25KB 0.9
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4.3 Weight Distribution

In typical neural networks, there are millions of parameters which define the model
and requires a large amount of data to store them. Neural networks are typically
over-parameterized, and there is significant redundancy for deep learning mod-
els. This results in a waste of both computation and memory. There have been
various proposals to remove the redundancy. In our network, we have 22.776.272
parameters, so it is essential to make a weight distribution and analyze its results.

Weights can get values (−∞, 0)U(0,+∞), but what we are interested in for
our study is the absolute distribution of weights in the histogram chart. In Fig-
ures (4.1, 4.2, 4.3) we present the weight distribution of 3 Convolutional Layers
grouping them into bins with adjacent values. In Figure 4.4 we present the weight
distribution of Fully Connected (Dense) Layer grouping them into bins with adja-
cent values.

Figure 4.1: Weight Distribution of 1st Convolutional Layer
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Figure 4.2: Weight Distribution of 2nd Convolutional Layer
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Figure 4.3: Weight Distribution of 3rd Convolutional Layer

Figure 4.4: Weight Distribution of Dense Layer
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4.4 Pruning

After weight and data distribution studies a resulting optimization is the pruning.
Pruning is a technique in machine learning that reduces the size of the network by
removing weights that provide little power to classify instances. We chose a factor
and values that are absolute-smaller than this are zeroing. The question is to what
extent we could prune values while having the least possible cost in classifying.
Afterwards, it is essential to consider pruning only in weights of Fully Connected
Layer because contains 99% of the network parameters. After implementation in
MATLAB 4.5 for several pruning factors it was observed that there is a trade-off
between network accuracy - prune factor. it is easy to perceive that selecting suit-
able prune factor (0.015) we can achieve high weights reduction (97.78%) having
the least possible loss of network accuracy (error rate=0.34%). It is easily per-
ceived that factor =0.015 were selected because it leads to low error rate with high
weights reduction.

In Fig 4.6 we present the Weight Distribution of Fully Connected Layer after
Pruning.

Figure 4.5: Pruning Comparison: Weight reduction rate (%): Per-
centage of weights that were pruned , Pruning Factor: The factor
where values are absolute-smaller than this are pruned. , Error rate

(%): Percentage of misclassification in top-1 Class.
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Figure 4.6: Weight Distribution of Dense Layer after Pruning:
Pruning factor = 0.015 was selected because it leads to low error
rate with high weights reduction. More specifically 97.78% weight

reduction and 0.34% error rate.

4.4.1 Using Fixed Point

Using floating point was the safest way to guarantee high accuracy and perfor-
mance on the results. Floating Point solutions in hardware are expensive com-
puting and consume a lot of resources. They also have a big memory footprint.
Hence an alternative solution that comes is the use of Fixed Point, where they
are more FPGA-friendly computing (TPU uses 8-bit fxed-points). In FPGA de-
signs, fixed-point formats are very efficient if we know beforehand the resolution
and range of our data so that we can select the appropriate format. Compared to
floating point, fixed point requires less resources in FPGAs (DSPs) and they are
less computational complex. In addition, we can reduce the memory footprint to
a percentage that the network allows.

Below is the table using various fixed-point format and their impact on per-
formance 4.5. As error we define top-1 miss-classification.
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Table 4.4: Fixed point formats

Format Compression Error rate (%)

32 bit 2x 0.8
24 bit 2.66x 3.8
16 bit 4 20.01

4.4.2 Dynamic Fixed Point

Using Fixed Point, we observe that there is indeed a significant improvement in
memory footprint. Another solution to be considered is the Dynamic Fixed Point,
which was first introduced by Williamson in 1991 [5]. The difference is that instead
of using a global scaling factor, more can be used depending on the application’s
needs. The way this idea was applied to the network was to group the layers
separately and each to have a different fixed point format using scaling factors.

We have noticed that the dense layer has the largest memory footprint com-
pared to the others. So we tried to find the minimum number of representation
bits having as a limit to the correct classification of the top classes. For the rest of
the groups, the image is read by 32-bit for high precision, for weights and bias ex-
cept dense 12-bit is the best lower limit and in addition for the final classification,
32-bit was used for large analysis.

Below is the table of various Dynamic Fixed Point Formats.

Table 4.5: Dynamic Fixed Point

Format Compression Error rate (%)

18 bit(1) 3.55x 0.8
12 bit(2) 5.33x 2.8
10 bit(3) 6.4x 4.2
8 bit(4) 8x 8.01
7 bit(5) 9.14 10.01

1. Dynamic 18-bit : image: 18-bit FP for weights and every image stage except the
except output Classification (32bit FP)

2. Dynamic 12-bit : image: 12-bit FP for weights and every image stage except the
except output Classification (32bit FP)
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3. Dynamic 10-bit :image: 12-bit FP for weights except dense:10-bit FP and for every
image stage 12 bit FP except the output Classification (32-bit FP).

4. Dynamic 8-bit : image: 12-bit FP for weights except dense:8-bit FP and for every
image stage 12 bit FP except output Classification (32-bit FP).

5. Dynamic 7-bit : image: 12-bit FP for weights except dense:7-bit FP for every im-
age stage 12 bit FP except output Classification (32-bit FP).

4.5 Evaluating Results

In order to test the techniques and methods are followed we used a second stage
training set of 2500 images. This data-set will provide us the opportunity to
develop these methods and test their behavior. Then to evaluate compression
methods and extract the error results we used an inference "unkown" dataset of
10000 images.

4.6 Clustering

Clustering is the task of grouping a set of objects in such a way that objects in the
same group (called a centroid) are more similar (in some sense) to each other than
to those in other groups (clusters). In CNN clustering works well as a small error
occurs while we have large compression of the weights. Network quantization and
weight sharing compress the network by reducing the number of bits required to
represent each weight. We limit the number of effective weights we need to store
by having multiple connections share the same weight, and then fine-tune those
shared weights.

4.6.1 Pre-Clustering Techniques

As the clustering process is computational intensive it is important to study and
determine the number of different values in the network. This will allow us to
really understand how close the values are and how far we are allowed to group
together. Afterwards, a function (named Pre-Clustering) is implemented. It gets
as arguments sorted weights and a variable named tolerance. Finally, it groups
weights where the absolute differences of values are smaller than this tolerance.
We sort the initial weights and then weights that have an absolute difference less
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than the tolerance are grouped. In figure 4.7 and table 4.6 it is presented the
number of different weights using Pre-Clustering algorithm for various tolerances.

Figure 4.7: Pre-Clustering : Number of different weights for sev-
eral tolerances.

Table 4.6: Pre-Clustering Compression Error

Tolerance #Weights Frequency (%) Error rate (%)

0 18615045 81.7 0
10−4 482910 0.8 0
10−2 24995 0.2 0.01
10−3 3047 0.01 0.02
10−1 352 0.002 0.03

#Weights ≤ 22771200 , Frequency = #Weights
22771200 ∗ 100%

4.6.2 Quantization with Codebook

Using Fixed Point (static or dynamic), we observe that there is indeed a significant
improvement in memory footprint but as we reduce bit-width, the accuracy of
the network decreases. So we are heading to a hybrid solution, which provides
us floating point format for the kernels (using double or single ) with much less
memory footprint. The idea is to group weights according to their values in k
centroids and store their values in a codebook 4.8. Thus, each weight instead



38 Chapter 4. Robustness analysis of CNN

of storing its value, it stores the index of the corresponding centroid in a shared
code-book. Using this quantization, given k centroids, we only need log2k bits to
encode the index. There are several algorithms to cluster these centroids such as
Lloyds, K-means. These optimizations in our network concern dense layer only
because this is the main memory bottleneck.

Figure 4.8: Clustering : A sample of Clustering 4.

4.6.3 Comparison of different Codebooks

In table 4.6 it is observed that with the pre-clustering algorithm we have a low
error rate and at the same time high compression (few centroids). Thus we can
start using the Lloyds algorithm from blog2 352c = 8 and below and see what
is the clustering limit of our network. In the following table 4.7 it is presented
Lloyds clustering for several centroids. To calculate the compression rate, given k
centroids, we only need (4.1) log2(k) bits to encode the index. In general, for a
network with n connections (weights) to have the only k shared weights (centroids)
will result in a compression rate of 4.2:

Below in figure 4.9 we present an example of the use of clustering algortihm
with 16 centroids.
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Figure 4.9: Clustering-16 example

Stohasting Clustering

The time Complexity of Lloyd’s algorithm (and other clustering algorithms) is
O(n ∗ k ∗ d ∗ i) [29] [47],where d is the number of different dimensions,n the num-
ber of the input dataset, k the number of target centroids and i the number of
iterations needed until convergence. The [79] dictates that Lloyd’s algorithm is
often considered to be of "linear" O(n) complexity in practice. In the worst case
scenario is super-polynomial. Hence we realize that when we use large n it takes
a long time to complete. Consequently, we assume that it is acceptable to go to
an estimated solution. The way to perform this is to introduce the stochasticity
into the original dataset. Accordingly, we capture a representative sample of the
original data-set (10-30%) stochastically. This can be theoretically supported for
its correctness by the Pre-Clustering algorithm that we previously applied and
showed us that values are concentrated around specific values.

BitWidth = log2(k) (4.1)
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Compression =
nb

nBitWidth + kb
(4.2)

Table 4.7: Lloyds Clustering

#Centroids BitWidth Error rate(%) Compression

256 8 0.03 8x
128 7 0.09 9.1x
64 6 0.16 10.7x
32 5 0.26 12.8x
16 4 1.37 16x
8 3 4.6 21.3x

BitWidth = log2(k), Compression = nb
nBitWidth+kb

Figure 4.10: Lloyds Clustering : Error rate for several bit-widths.

4.6.4 Proposed methods for quantization with Codebook

An ideal case would be to use Lloyds with 16 centroids (ie, 4-bit). We will try
to develop some techniques so that we can drop the error at smaller levels. A
problem that seems to arise, is that Lloyds is trying to group weights without
understanding their differential importance. For example, weight with value 0.69
is much more important for the network than weight with value 0.0023. Larger
weights play a more important role than smaller weights (Han et al., 2015), but
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the density of them are inversely proportional.

Inverse Density: A very important factor is that we can give normalization
to the algorithm by giving it the initial codebook. Knowing that density is in-
versely proportional to the importance of weights, it is necessary to give an initial
code-book that takes this into account. So we propose a technique to initialize
the code-book, starting from the minimum value and ending up to the maximum,
trying to have a big resolution at the absolute big values and as we approach small
values to reduce resolution linearly 4.11.

Figure 4.11: Inverse Density: Importance => more resolution

Hierarchical Clustering: The second method we propose is trying to solve
the same problem from another point of view. As long as we use a larger number
of centroids, we increase the resolution across all values (large and small). Thus,
we force the algorithm to pay more attention to high values. Then if we apply
the clustering algorithm hierarchically we will come up with a better resolution at
weights that are of greater importance to us.
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Figure 4.12: Clustering 16: Error rate for Clustering methods.
Clust. = Clustering , H. Clust. = Hierarchical Clustering

4.7 Pair-Compression

Another technique we proposed for further compression is compression pairing
4.13.The pair compression is a lossy compression method very similar to Vector
Quantization method. Knowing that there is a spatial relationship between the
weights and weights that are spatial close have similar values, we have the idea of
joining two consecutive weights so that we keep the information a single weight. A
problem that arises is when the two consecutive weights w1, w2 have heteronymous
values. The solution comes by storing at the unite weight w1,2 their absolute
average value keep the sign of w1 and placing an extra bit for the decompression
to understand whether we will keep or not sign for the w2. Let b the number of
bits required for a weight, the compression rate appears below in equation 4.3.

Compressionrate =
2b

b+ 1
(4.3)
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Figure 4.13: Pair Compression : An example of Pair Compression.

4.7.1 Proposed Methods and Pair-Compression

The initial error that resulted using the Pair-Compression was 0.38%. Below we
propose some techniques that helps Pair-Compression have a better implementa-
tion on CNNs leading a further reduction of the error.

Clustering and Pair-Compression: An optimization was to apply the clus-
tering algorithm first so that the weights are pooled into some centroids. In this
way, we would help the Pair-Compression unite weights as the sparsity would have
already decreased.

Normalization: Another factor in improving the behavior of the algorithm
is to normalize the calculation of the united weight. Instead of calculating the
average of the absolute values of weights, we will compute the Euclidean norm:

Weight12 =

√
Weight1

2 +Weight2
2 (4.4)

Below in Figure 4.14 we present error rate for the previous techniques.
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Figure 4.14: Pair Compression : Comparison of the above Tech-
niques, P.C. = Pair Compression, Norm = Normalization

4.8 Quad-Compression

The logic of combining consecutive weights can be extended to more than 2. So
we suggest Quad Compression 4.15 union 4 consecutive weights w1, w2, w3, w4 into
a union weight wunion. The problem that contiguous weights might not have the
same sign will be solved using 3-bits. In the same way as before the union weight
wunion will retain the sign of the w1 and each of the following 3 bits will show us
the sign for w2, w3, w4 during the decompression. Let b the number of bits required
for a weight, the compression rate appears below in equation 4.3. Applying the
techniques we mentioned before the error reached up to 0.6%

Compressionrate =
4b

b+ 3
(4.5)
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Figure 4.15: Quad Compression : An example of Quad Compres-
sion.

4.9 Pair Compression and Hierarchical Clustering

In order to be able to use the two main compression methods mentioned above,
we need to follow the procedure below. We will first implement a Clustering
algorithm with 256 centroids and then Pair Compression. At this point, values
from the original centroids have changed, so we will reapply hierarchical clustering
to result in the final codebook with 16 centroids.

Below table 4.14 presents final error rate and Compression rate using our
proposed Compression methods.

Table 4.8: Compression Methods

Method Error rate(%) Compression rate

Clust. 4 1.37 16x
H.Clust. 4 0.65 16x
P.C.& H.Clust. 4 0.62 25.6x
Q.C.& H.Clust. 4 0.76 36.57x

Clust. = Clustering , H. Clust. = Hierarchical Clustering , P.C. = Pair Compression,
Q.C. = Quad Compression

Below figure 4.16 presents the weight distribution in CDF format using our
proposed Compression methods. We notice that techniques help us to spread
the weight distribution to incrementally higher weights, giving them the better
resolution.

Below on figures 4.17 4.18 we present the procedure followed to extract the
final compressed weights using methods Hierarchical Clustering, Pair or Quad
Compression.
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Figure 4.16: Comparison of Weight Distribution CDF

Figure 4.17: Hierarchical Clustering And Pair Compression Pro-
cedure
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Figure 4.18: Hierarchical Clustering And Quad Compression Pro-
cedure
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4.10 Second Level Codebook (SLC)

Next, we propose and analyze a new lossless method (Second Level Codebook)
that can be applied to clustering algorithms. This method will help us to further
reduce the error rate by keeping the memory footprint constant. We will begin by
considering that we have implemented clustering with 16 centroids in the original
data-set. As we have analyzed above, we would need blog2 16c = 4 bits to represent
this information. The difference, in this case, is that we will concatenate two
compressed weights (4-bit) and create an 8-bit block. This 8-bit block will contain
values from 0-256 and when decompression is applied will produce the 2 initial
compressed weights. After an extensive study, we grouped all the weights in this
way, and we concluded that the 8-bit block did not contain 256 different values (
there was not any possible weight combination). Instead, we came up with 165
different combinations. Initially, this study was aimed at compressing the 2 weights
with a smaller number of 8 bits. In order to achieve this, 8-bit blocks would have
to end up with less than 127 different values so we would be able to perform a
second lossless compression ending at 7 bits.

This could not be achieved, and hence we ended up applying another thought.
We will try to exploit the fact that we do not use the whole range that 8-bits
blocks can provide us. We came up with the following approach:

• Clustering with more centroids: Originally, we will operate the clus-
tering algorithm with more centroids than the number of bits, we want to
encode, would allow us. In this case, we want to reach a compressed weight
ratio of 4-bit. Consequently, we will create more than 16 centroids, which
4-bit allow us, and we’ll consult what is the maximum we can get.

• Creation of 8-bit block: To represent the 16+ centroids (eg 18 19) we
would need at least 5 bits dlog2 18e = 5. Going one step further we will create
an 8-bit weight-block concatenating 2 consecutive (loseless decompression)
weights.

• Creating Level Stage Codebook(SLC): In order for this to be performed
efficiently, we have to implement the following procedure. We assume that
we will attempt to fit 18 centroids into the new block that will be built.
The procedure is to concatenate the two compressed weights as follows:
WeightBlock = weight1 ∗ 18 + weight2 to be able to ensure that we have
a unique decode. Consequently, the range of the resulting number is 0-323
(17*18 + 17). This number can be represented by dlog2 323e = 9bits in-
stead of 10 if we were coded separately. Furthermore, we checked all the



4.10. Second Level Codebook (SLC) 49

possible values, resulting in 245, that could occur. This information can be
represented by 8 bits because dlog2245e = 8.

• Decompression: Hence we will create a second-level codebook consists of
245 indexes. This codebook contains the primary, uniquely decodable, 9-bit
block. Finally, the optimized second-level codebook could be decompressed
to the 2 primitive compressed weights.

Below in figure 4.19 is an example of SLC compression with weight block 2

Figure 4.19: SLC compression example : Weights Block 2

To calculate the compression rate of the SLC, given k centroids, we only need
(4.2) log2(k) bits to encode the index. In general, for a network with n connections
(weights) to have the only k shared weights (centroids) and a weights-block with
p different indexes will result in a compression rate of 4.2:

BitWidth = log2(k) (4.6)

Compression =
nb

k ∗ b+ p ∗BitWidth

(4.7)

4.10.1 SLC with higher weights-blocks

This encoding can be expanded to a larger extent using larger weights-blocks. We
can concatenate 4,8 or even 16 weights in larger blocks. This can lead to 2 results.
We can compress the information even more (in smaller bits/weight ratio) or lower
the error by keeping the bits/weight ratio stable.

To calculate the compression rate of the SLC, given k centroids, we only need
(4.8) log2(k) bits to encode the 1st Level Codebook index. In general, for a network
with n connections (weights) to have the only k shared weights (centroids) and a
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weights-block(concatenating l different weights) with p different indexes will result
in a compression rate of 4.10:

BitWidth = log2(k) (4.8)

SLCFootprint = p ∗ l ∗BitWidth (4.9)

Compression =
nb

k ∗ b+ SLCFootprint + n ∗ bits/weight
(4.10)

Decreasing error rate

Originally we tried to reduce the error rate using large clusters and end up with
a small error rate. In conjunction with SLC, we can exploit the extremely small
error rate of a large clustering algorithm while compressing the information further.
The following study has been done for the largest clustering we have studied of
256 centroids.

Table 4.9: SLC compression on Codebook 256 for different
Weights Block

Method Bits/Weight Error rate(%) Compression rate

Clust. 256 & 8 0.03 8x
Clust. 256 & SLC 2-WB 6.5 0.03 9.84x
Clust. 256 & SLC 4-WB 5 0.03 10.79x
Clust. 256 & SLC 8-WB 3.5 0.03 5.57x

Clust. = Clustering , WB = Weights Block

Lowering bits/weights ratio

At this point, we used the Clustering with the 18 values and tried to compress
it into as small as possible bits/weights by increasing the number of compressed
weights-block.

We arranged the clustering codebook of 18 centroids and applied a pruning to
the 2 closest to 0 centroids. After calculating their weighted average, we have joined
them by storing this value. By implementing this we expected better compression
rate because the centroids that are close to 0 have high frequency, so we will reduce
the possible combinations for the SLC.
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Figure 4.20: SLC in Clustering with 256 centroids

Table 4.10: SLC compression on Codebook 18 for different
Weights Block

Method Bits/Weight Error rate(%) Compression rate

H.Clust. 18 & 5 0.43 12.8x
H.Clust. 18 & SLC 2-WB 4 0.43 15.99x
H.Clust. 18 & SLC 4-WB 2.75 0.43 20.5x
H.Clust. 18 & SLC 8-WB 2 0.43 30.96x
H.Clust. 18 & SLC 10-WB 1.5 0.43 30.82x
H.Clust. 18 & SLC 16-WB 1.31 0.43 10.24x

Clust. = Clustering , WB = Weights Block

Golden Ratio

By observing the tables and figures above, we realize that by using SLC we can
notably reduce the bits/weight ratio. Attention must be drawn to the fact that as
the weights-block (concatenate more weights) increases, linearity in compression
is dropped. The golden ratio for the correct use of SLC is: for the 18 centroids
using 8-weights blocks, for the 17 centroids using 12-weights blocks, while for the
256 centroids using 4-weights blocks 4.24.
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Figure 4.21: Weights-Block-2 on Clustering with 256 centroids

Lossless Method

A fact that needs to be reinstated is that this method is lossless. There is no loss
of data in compression and therefore, after its use, we end up with the same error
rate.
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Figure 4.22: SLC in Clustering with 18 centroids

Figure 4.23: Weights-Block-2 on Clustering with 18 centroids
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Table 4.11: SLC compression on Codebook 17 for different
Weights Block

Method Bits/Weight Error rate(%) Compression rate

H.Clust. 17 5 0.39 12.8x
H.Clust. 17 & SLC 2-WB 3.5 0.39 18.29x
H.Clust. 17 & SLC 4-WB 2.5 0.39 25.59x
H.Clust. 17 & SLC 8-WB 1.625 0.39 39.1x
H.Clust. 17 & SLC 10-WB 1.5 0.39 40.83x
H.Clust. 17 & SLC 12-WB 1.33 0.39 43.78x
H.Clust. 17 & SLC 15-WB 1.13 0.39 41.86x

Clust. = Clustering , WB = Weights Block

Figure 4.24: SLC Performance : For different codebooks an
weights-blocks
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4.11 SLC comparison with Huffman

In computer science, Huffman code is a commonly used lossless data compression
algorithm. Huffman’s coding algorithm is an prefix optimal code for a "symbol-
by-symbol" coding with a known probability distribution of data. The algorithm
developed by David A. Huffman while he was a PHD student at MIT, and pub-
lished in the 1952 [35].

In this section and more specifically in table 4.12 and figure 4.25 we compare
our lossless SLC algorithm with the optimal Huffman. The SLC method we have
implemented is more FPGA-friendly than Huffman. The problem with Huffman
and other prefix-code encoding are that they do not have a fixed Bits/weight ratio.
This varies by weight in weight and e.g. the most likely weight can be represented
by 1 Bit, which is unlikely by 14bits. The above to be effective in Hardware is
prohibitive because enormous if-conversions will have to be implemented. This will
dramatically increase the critical path and the use of many resources. In contrast
to Huffman, SLC creates a fixed Bits/weight ratio Compression, by reading a
certain number of bits leading to a specific number of weights.

Table 4.12: Comparison of SLC compression on Codebook 18 and
17 with Huffman Coding

Method Bits/Weight Error rate(%) Compression rate

H.Clust. 18 & SLC 8-WB 2 0.43 30.96x
H. Clust. 18 & Huffman 1.98 0.43 32.39x
H.Clust. 17 & SLC 12-WB 1.33 0.39 43.78x
H. Clust. 17 & Huffman 1.34 0.39 47.75x

Clust. = Clustering , WB = Weights Block

In this table, we see that SLC achieves compression rates very close to those
of Huffman. More specifically for the 17-codebook, it reaches 91.7%, while for the
18-codebook 95.6% of the optimal performance of Huffman.
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Figure 4.25: Comparison of SLC compression on Codebook 18
and 17 versus Huffman Coding: for different number of weights-

block

Figure 4.26: Compression Flow using Pair Compression and SLC:
Weights-Block 12
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4.12 SLC, Hierarchical Clustering and Pair Com-

pression

The next step is to try to combine the SLC method with the existing techniques we
have implemented. It is obvious that there is no conflict between the simultaneous
use of these methods and SLC is because they try to achieve data compression
from a different perspective. 4.27

Below in figures 4.27 4.28 we present compression flow using the proposed
methods and techniques.

Figure 4.27: Compression Flow using Pair Compression and SLC:
Weights-Block 12

To calculate the compression rate of the SLC alongside the other methods,
given k centroids, we only need (4.8) log2(k) bits to encode the 1st Level Codebook
index. In general, for a network with n connections (weights) to have the only k
shared weights (centroids) and a weights-block(concatenating l different weights)
with p different indexes will result in a compression rate of 4.13, 4.14 applied Pair
or Quad Compression:

BitWidth = log2(k) (4.11)

SLCFootprint = p ∗ l ∗BitWidth (4.12)
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Figure 4.28: Compression Flow using Pair Compression and SLC:
Weights-Block 8

Compression =
nb

k ∗ b+ SLCFootprint +
n∗((bits/weight)+1)

2

(4.13)

Compression =
nb

k ∗ b+ SLCFootprint +
n∗((bits/weight)+3)

4

(4.14)

In order to be able to unfify the proposed techniques, SLC Compression will
be applied to the compressed weights (After Pair, Quad Compression). Hence in
table we present our final compression and error results after every stage of our
techniques and compression methods we propose.

In this case the maximum compression rate we could get if we managed to
have q-Compression, where q →∞ is:

Compression = limq→∞
nb

k ∗ b+ SLCFootprint +
n∗(bits/weight+q−1)

q

= limq→∞
nb

k ∗ b+ n
= 64

(4.15)
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Table 4.13: Final Compression Methods

Method Bits/Weight Error rate(%) Compression rate

Clust. 16 4 1.37 16x
H.Clust. 16 4 0.65 16x
P.C.& H.Clust. 16 2.5 0.62 25.6x
Q.C.& H.Clust. 16 1.75 0.76 36.57x
P.C.& H.Clust. 18 WB-12 1.3 0.5 49.24x
Q.C.& H.Clust. 18 WB-8 1.17 0.8 54.73x
P.C.& H.Clust. 256 3 0.16 18.46x
Q.C.& H.Clust. 256 2 0.2 28.65x

Clust. = Clustering , H. Clust. = Hierarchical Clustering , P.C. = Pair Compression,
Q.C. = Quad Compression

4.13 Proposed methods comparison with Binarized

Approach

We notice that after applying all the methods we proposed the compressing rate
reaches the order of 54.73. This means that we need 1.17 bits to send a weight
overall (calculating the stream of codebooks), or more specifically 13+3=16 bits
to send 4*8=32 weights after send the 2 Codebooks for the decompression. This
analogy is extremely close to a binarized approach. Hence we implemented a
binarized approach for our network and compare the results with the previous
methods.

Table 4.14: Proposed methods comparison with Binarized Ap-
proach

Method Bits/Weight Error rate(%) Compression rate

Q.C.& H.Clust. 18 WB-8 1.17 0.8 54.73x
Binarized 1 40 64x

Clust. = Clustering , H. Clust. = Hierarchical Clustering, Q.C. = Quad Compression

We mention that a Binarized Network, having a 64x compression rate, reaches
a 40% error which is huge and prohibitive for a CNN. On the other hand, our own
network having a 57.38x compression rate, leading to a very small error of 0.7 %
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Chapter 5

FPGA Implementation

5.1 Tools Used

The CNN (Inference) Hardware Accelerator was implemented using the Xilinx
Vivado Design Suite - HL System Edition 2017.1. Vivado Design Suite is a software
suite developed by Xilinx for synthesis and analysis of HDL designs, superseding
Xilinx ISE with additional features for system on a chip development and high-
level synthesis. The tools used are the Vivado HLS, Vivado IDE, and Xilinx SDK
[76].

5.1.1 Vivado HLS

The Xilinx Vivado HLS tool [83] provides a higher level of abstraction for the user
by synthesizing functions written in C,C++ (with constraints and feautures) into
IP blocks, by generating the appropriate ,low-level, VHDL and Verilog code. Then
those blocks can be integrated into a real hardware system. Vivado HLS is tightly
integrated with the rest of the Xilinx design tools and provides comprehensive
language support and features for lower level optimizations, making it possible to
optimize the C code for hardware systems. The Vivado HLS tool allows for C
functions written in C, C++, SystemC, or an OpenCL API C kernel. We decided
to use C++, as there are several supported features in HLS design (template e.t.c.)
. To debug the code, Vivado HLS uses a C test bench to simulate the C function
prior to synthesis and to verify the RTL output using C/RTL Cosimulation.

The tool also adds some constraints to the exported IP block, like the clock
period, clock uncertainty, and FPGA target. The clock uncertainty defaults to
12.5% of the clock period, but you have the option to change it. Finally, the tool
allows for directives to be added to direct the synthesis process to implement a
specific behavior or optimization. Directives are optional and do not change the
behavior of the c code in the simulations, only in the synthesized IP block.
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Synthesis Report in Vivado HLS

When synthesize an HLS code tool exports a synthesis report showing the perfor-
mance metrics of the generated design. The report’s information on performance
metrics are presented below:

• Area: Amount of hardware resources required to implement the design
based on the resources available in the target FPGA. The types of resources
are, Look-Up Tables (LUT), Flip Flops (FF) , Block RAMs (BRAMs), and
DSP48s.

• Latency: Number of clock cycles required for the function to compute all
output values.

• Iteration Interval (II): Number of clock cycles before the function can
accept new input data.

• Loop Initiation Interval: Number of clock cycle before the next iteration
of the loop starts to process data.

• Loop Latency: Number of cycles to execute all iterations of the loop.

• Loop Iteration Latency: Number of clock cycles it takes to complete one
iteration of the loop.

Optimizations in Vivado HLS

Vivado HLS also provides (optional) directives that can be used to optimize the
design: reduce latency, improve throughput performance, and reduce area and
device resource utilization of the resulting RTL code. These pragmas can be
added directly to th1e source code for the kernel.

• Pipeline: The PIPELINE pragma reduces the initiation interval for a func-
tion or loop by allowing the concurrent execution of operations. A pipelined
function or loop can process new inputs every N clock cycles, where N is the
initiation interval (II) of the loop or function.

• Array Partition: Partitions an array into smaller arrays or individual ele-
ments.

This partitioning:

– Results in RTL with multiple small memories or multiple registers in-
stead of one large memory.
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– Effectively increases the amount of read and write ports for the storage.

– Potentially improves the throughput of the design. Requires more mem-
ory instances or registers.

• Unroll: Unroll loops to create multiple independent operations rather than
a single collection of operations. The UNROLL pragma transforms loops by
creating multiples copies of the loop body in the RTL design, which allows
some or all loop iterations to occur in parallel.

• Stream:By default, array variables are implemented as RAM. If the data
stored in the array is consumed or produced in a sequential manner, a more
efficient communication mechanism is to use streaming data as specified by
the STREAM pragma, where FIFOs are used instead of RAMs.

• Array Map: Combines multiple smaller arrays into a single large array to
help reduce block RAM resources.

• Resource: Specify that a specific library resource (core) is used to imple-
ment a variable (array, arithmetic operation or function argument) in the
RTL. If the RESOURCE pragma is not specified, Vivado HLS determines
the resource to use.

• Dataflow: The DATAFLOW pragma enables task-level pipelining, allowing
functions and loops to overlap in their operation, increasing the concurrency
of the RTL implementation, and increasing the overall throughput of the
design.

5.1.2 Vivado IDE

The Vivado IDE ( was implemented from co-partner Giannis Kalomoiris) is the
GUI for the Vivado Design Suite. All of the Vivado design Suite tools are written
with a native Tcl interface, and all of those commands are available through the
IDE either through the GUI or through the Tcl console. Tcl commands can be
entered in the Tcl Console in the Vivado IDE or using the Vivado Design Suite
Tcl shell. You can run analysis and assign constraints throughout the design
process. Timing and power estimations are provided after synthesis, placement,
and routing.



64 Chapter 5. FPGA Implementation

5.1.3 Vivado SDK

The Xilinx SDK is an IDE tool to develop embedded software applications targeted
towards Xilinx ARM processors. The SDK works with hardware designs and bit-
streams created with Vivado Design Suite. The SDK is based on the Eclipse stan-
dard. SDK includes an C/C++ code editor and a compilation environment with
easy project management, application build configuration and automatic Makefile
generation. It also provides an environment for debugging and profiling of software
code as well as design performance. The SDK also provides it own tools to con-
figure FPGAs and create bootable bitstrems with software extensions. We open
the SDK (through IDE) using the preconfigured directories, including bitsreams
after successful Vivado IDE implementation. The SDK automatically imports the
project hardware wrapper and generates the files needed(memory porting , defines
,etc) for the software part. Therefore we create a new fuzzy project which gen-
erates the project files,and the needed BSP packages, which includes the suitable
drivers for the software design that the PS has access to.

The SDK is fisrtsly used to create a simple program to run by the PS to test
and debug the PL functionality. To be able to program the FPGA, the JTAG port
has to be connected to the PC, and to monitor and debug it we use the UART port
as well. Another very useful tool that is part of the Vivado IDE is the Hardware
Manager. It connects to the ILAs that have been added to the Vivado project and
allows us to monitor in real-time the values of the signals between our modules,
while the program is running.

For the needs of the SDK, we have created functions where activate and ini-
tialize our IPs, DMA, memories, and caches. Additionally, functions for writing
and reading data from the SD card were implemented. We made a study to be
able to measure the real memory bandwidth. The data was stored in the DDR
in 2 ways either by SD read or JTAG. Finally, time measurement functions were
used to enable speedups to be evaluated.

5.2 FPGA platforms

Our architectures are targetting on 2 FPGA platforms we worked on.

5.2.1 Xilinx Zynq UltraScale+ MPSoC ZCU102

The ZCU102 is a general purpose evaluation board for rapid-prototyping based
on the Zynq UltraScale+ XCZU9EG-2FFVB1156E-2-i MPSoC (multiprocessor
system-on-chip). High-speed DDR4 SODIMM and component memory interfaces,



5.3. Bottom-up Strategy 65

FMC expansion ports, multi-gigabit per second serial transceivers, a variety of pe-
ripheral interfaces, and FPGA logic for user customized designs provides a flexible
prototyping platform.

Below in table 5.1 we present main features of the FPGA

Table 5.1: ZCU102 Specifications

Logic Cells B-RAM DSP Slices PS DDR PL DDR
(K) (MB) (GB) (MB)

600 4 25200 4 512

MB=Mbytes , GB=Gbytes

5.2.2 QFDB

QFDB is a 4-FPGA custom platform designed and implemented by FORTH. It
has 4 ZCU102 FPGA,(meaning 4x powerful than ZCU102) thus our architecture
transference between platforms are fully compatible.

5.3 Bottom-up Strategy

The first approach was implemented with the bottom-up strategy. A bottom-
up approach is the unification of many "simple" systems to end up in a more
"complex" system.

The algorithm was divided into small entities with specific behavior and hi-
erarchical structure. Then they would be joined together to make the overall
accelerator. The entities were separated as follows:

• Convolution (1-D) (conv1): 1st Convolutional layer of the network (Input:
image, kernel1, bias1)(Output:ConvStage1)

• Convolution (2-D) (conv2): 2nd Convolutional layer of the network (Input:
ConvStage1, kernel2, bias2)(Output:ConvStage2)

• Convolution (2-D) (conv3): 3rd Convolutional layer of the network (Input:
ConvStage2, kernel3, bias3)(Output:ConvStage3)

• Fully Connected (fc): Fully Connected of the network (Input: ConvStage3,
kerneldense, biasdense)(Output:Classification)

• ReLU : ReLU is the main activation function that was performed after
every convolutional layer. For this purpose, ReLU was inserted in every
Convolutional Layer entity.
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5.3.1 Two Stage Architecture

After the network was divided and depicted in small entities, they were reunited to
make the two basic modules of our architecture. The first module is "Convolutional
Layers" where it contains the three Convolutional Layer with the corresponding
ReLU. The second module is the "Fully Connected Layer" where it receives the
exit of the first module and makes the final classification. This leads to a 2-
Stage Architecture designed to communicate 2 FPGAs. The first will implement
Convolution and the second the Fully Connected module 5.1.

Figure 5.1: Datapath of Two-Stage Architecture

5.4 First Approach

5.4.1 Memory and I/0

Firstly we have to clarify how to insert the data into the different Building Blocks
of the accelerator from the outside world. The first step is to pass the data to the
DDR of the processor. Then we have three ways to link this data to FPGA:

• Memory-mapped I/O (MMIO): A complementary method of performing
input/output (I/O) between the central processing unit (CPU) and periph-
eral devices such as FPGA. This method uses the same address space to
address both memory and I/O extensions. The memory and registers of the
I/O devices are mapped to (associated with) address values. This technique
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comes to emphasize the main DDR drawback, which is that it can not effi-
ciently drive multiple requests because it is random access. This means that
for each request we would have to "pay" the initial interval (30 -50 cycles)
and so there would be no meaning for pipeline design in the FPGA. This
technique can be implemented through using Xilinx’s IP Data-movers.

• Streaming (AXI-4): The second method we can use is Streaming Interface
using AXI-4 protocol. In fact, we are creating a continuous DDR communica-
tion channel with FPGA (a large FIFO) and we are sending the processor the
data we want without requests. This relieves us from the delay of requests,
and you create a huge pipeline for entering data by hiding the DDR interval.
This technique can be implemented through using Xilinx’s IP DMA.

• B-RAM : Another approach is to transfer the data in burst with memory
mapped or stream and then store them in B-RAM to take advantage of the
huge bandwidth. In order to achieve this, the data must have a small mem-
ory footprint. Typically the B-RAM is in the order of many KBs and a few
MBs.

Using Streaming Interface is much more efficient because it allows us to fully
utilize the DDR bandwidth (about 10 GBs). However, this method can be used
only in cases where we know in advance the data-flow. CNNs have inherently
streaming nature, so they are ideal for taking advantage of this.

5.4.2 Transference to HLS

A next step was to be able to integrate each Entity’s algorithm parts from MAT-
LAB into C++ and then into HLS synthesizable code. In order to successfully
complete this, the limitations and capabilities of the tool had to be studied. Con-
volution was the most algorithmic complex part. On the other hand, Matrix Mul-
tiplication has less algorithmic complexity, but it requires much more computation
time.

5.4.3 Convolution (1-D)

First, we grant the weights and the image into the FPGA and store them in the
internal B-RAM. This approach came because we need to use that data several
times. The reasoning in the use of B-RAM instead of sending the data with Stream
interface was to be able to exploit its bandwidth (TBs).
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Figure 5.2: Datapath of Convolution(1-D)

Array Partitioning

B-RAM has memory access limitations because it has two memory channels. A
feature that HLS provides you is the option to partition a B-RAM array. This
allows you to have more than two memory accesses in a clock cycle. Essentially
it creates copies of your original array with the use of multiplexer systems. The
nature of the algorithm is access to specific arrays many times in the same cycle,
so it is advisable to use this directive.

Pipeline

In FPGA designing, it is very important to manage running your algorithm in a
large pipeline, thus taking advantage of FPGA’s capabilities. However, in order to
succeed Pipeline, a limitation that came up was algorithmic. We basically wanted
to process an 8-part set, e.g. 0-7, of the image in a cycle. In the next cycle, we
have to retain the last 7 parts and store the next part, having at the end of this
cycle a new 8-part set e.g. 1-8 (stride=1 of the network). This was approached by
creating a new dimension in the image and implementing it as a shifted B-RAM,
achieving by that pipeline=1.
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5.4.4 Convolution (2-D)

The complexity of this entity is 16x compared to Convolution(1-D), as it has an
extra dimension size of 16. The weights and the image are granted into the FPGA
and store them in the internal B-RAM with the same way. This approach came
because we need to use that data several times. The reasoning in the use of B-
RAM instead of sending the data with Stream interface was to be able to exploit
its bandwidth (TBs).

Array Partitioning

B-RAM has memory access limitations because it has two memory channels. A
feature that HLS provides you is the option to partition a B-RAM array. This
allows you to have more than two memory accesses in a clock cycle. Essentially
it creates copies of your original array with the use of multiplexer systems. The
nature of the algorithm is access to specific arrays many times in the same cycle,
so it is advisable to use this directive.

Pipeline

In order to succeed Pipeline a limitation that came up was also algorithmic. We
basically wanted to process 16x8 parts of the image in a cycle and in the next
cycle to retain the last 16x7 and store the next 16 part (stride=1 of the network).
This was approached by creating a new dimension in the image and implementing
it as a shifted B-RAM, achieving by that an overall pipeline=8.The time-chart of
Convolutional Layers presents in figure 5.3.

Figure 5.3: Convolutional Layers Time-Chart of First Approach
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5.4.5 Fully Connected

The idea of the streaming interface was fully utilized to implement Fully Connected
Layer. We store into B-RAM the least possible data(image stage, bias) and we
basically stream the weights from DDR. The reason for this is because weights of
the dense layers could not be stored into B-RAM. 5.4

Figure 5.4: Fully Connected Module

Pipeline

A Pipeline (Iteration Interval=1) has been implemented essentially by export each
partial result in each cycle. The time-chart of CNN presents in figure 5.5.

GB=Gbytes
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Table 5.2: First Approach Performance

Modules Latency Comp. Performance Bandwidth
(cycles) (GFLOPS) (GB/s)

conv 593596 7.6 1
dense 22971200 0.6 1
conv+dense 23564796 0.77 1

In computing, floating point operations per second (FLOPS, flops or flop/s) is
an important measure of computational performance, useful in fields of scientific
computations that require floating-point calculations 5.1.

FLOPS =
cycles

second
∗ FLOPs

cycle
(5.1)

Figure 5.5: CNN Time-Chart of First Approach

5.5 A better Approach

After the first approach was realized how long we were from a possible speedup over
the GPU. The main obstacle was that we did not use the maximum DDR Band-
width (we used 1GB / s, meaning 6% of the maximum theoretical Bandwidth),
resulting in the failure to exploit the processing power of the FPGA.

5.5.1 Larger Streaming Buses

The next action is to try to limit ourselves from the bandwidth of DDR. Conse-
quently, we tried to use larger memory streaming buses (more than 32bits). The
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limitations here are three:

• DMA: The maximum memory bus that DMA can support is 1024 Bits in
one cycle.

• DDR Bandwidth: The maximum bandwidth of the DDR is 16GB/s. So
the maximum bus considering 300MHz clock we can support is 458 bit from
5.2.

• HP ports : The maximum memory bus that the CPU can transfer from
memory to FPGA through DMA. This is done through HP ports and the
limit is 128-bit.

BusBitWidth =
Bandwidth

Clockfrequency
(5.2)

Bandwidth=Memory Bandwidth in b/s , Clockfrequency of the FPGA

Therefore we end up using 128 bits, that is 4 times larger than the previous
ones. This means we use 4 times more memory bandwidth. This could lead to a
4x speedup by implementing the ideal architecture.

5.5.2 Multiple DMAs

Next, we realize that even though we used 4GB/s bandwidth we have not reached
its full potential(16GB/s). The next solution we can exploit is to use multiple
DMAs where they will stream from different HP ports (maximum 6) data linking
in the same DDR. Theoretically, 4 DMAs is the golden ratio because we will be
totally restrained from the memory.

DDR Bandwidth

In order to be convinced how many DMAs (and HP ports) would be the best to
use we did some fuzzy IPs (which reads and writes random values through DMAs)
to be able to accurately count read, write and read/write bandwidth as showing
table 5.3. Furthermore to achieve higher bandwidth we enabled caches and flushed
them with the weights.

Read and Write channels are separated, so it makes sense not to see a linear
increase in bandwidth for reading and write separately. Whereas when we use
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Table 5.3: Memory Bandwidth

HP ports Read BW Write BW Read/Write BW
(GB/s) (GB/s) (GB/s)

1 4.15 4.15 4.18
2 8.24 8.23 8.3
3 9.8 9.9 12.4
4 10.2 10.4 16.8

GB=Gbytes

both channels we see linearity. Our algorithm is using the read channel much
more because it requires to read more data than to write in the final classification.
Therefore we conclude that the best possible case for not consuming resources is
to use 2 HP ports and 2 DMAs.

5.5.3 Convolution (1-D) and Convolution (2-D)

Having 8 times higher bandwidth than the first approach we can store B-RAM
8 times faster. The rest and most of the implementation reads the data through
B-RAM, so there is no significant optimization.

5.5.4 Fully Connected

On the other hand, the fully connected was clearly set up as streaming oriented
IP. Now by bringing 8 times more data (2 DMA (128) -> 256 bit versus 32bit),
we must take advantage of this feature and come up with 8x speedup relation to
the first approach.

Multiply and Accumulate To be able to achieve this we need to observe from
a different perspective the basic operation of multiply and accumulate and try to
"hide" the Latency of the 10 cycles it needs. In order to be able to exploit the
rate that weights are being streamed in, we have to increase the parallelism at the
level of operations.

First Approach Trying to make the 8-fold multiplication and addition based
on the current Fully Connected implementation end up in a Pipeline equal to the
accumulative delay (10 in our case), something that does not satisfy us 6. This
leads to a very poor exploit of the memory bandwidth. It is perceptible that we
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have to follow a different implementation trying to achieve a full pipeline module,
managing to hide the MAC operation delay.

Algorithm 6 Matrix Multiplication
1: procedure Matrix Multiplication(input, weights)
2: NumOfClasses← size(weights, 1) . Number of Classes
3: NumOfWeights← size(weights, 2) . Number of Weights/Class
4: FaddLat = 10 . Latency of Multiply and Accumulate
5: for i:=1 to NumOfClasses do
6: Classes(i)← 0

7: sum← 0
8: for i:=1 to NumOfClasses do
9: sum = 0

10: for j:=1 to NumOfWeights do
11: PIPELINE = FaddLat
12: sum← sum+ input(j) ∗ weights(i, j)
13: Classes(i)← sum

14: return Classes

Better Approach To achieve that we will perform the task in a different way.
In fact, we will calculate different partial results in parallel for each class. We
will end up having the partial results that need to be added to produce a result.
This will be achieved by creating a deep adder tree. The appropriate number of
different partial results must be equal to the adder delay, meaning 10 in 7.

Cyclic Array We originally solved the problem of how we process the 8-fold
weights in a single clock cycle and exploit the resources to do the 8-fold multipli-
cation and addition. Instantly the problem that arises is to explore how we will
ensure access to 8-Images stages of the edited image (in a cycle). This could easily
be achieved using the array partition of the tool by applying a cyclic partition.
This allows us, depending on the factor we will set, in how many consecutive cells
of the array we will have access ( in a cycle). However, because the array was large
(28464), the tool used a large multiplexer system to route access to the memory
and thus did not allow us to reach a competent clock (it greatly increased the
critical path).

Custom Cyclic Array So we ended up making our own "cyclic partition" help-
ing the tool to achieve the behavior we wanted. To achieve this we created 4 sub-
terranean arrays of the original one. We created 4 and not 8 because each B-RAM
has 2 memory channels, meaning 2 memory accesses. We stored weight1,weight2



5.5. A better Approach 75

in the first table, weight3,weight4 in the second etc. in order to be able to have
access in 8 consecutive image-stages. Hence we use a same sized B-RAM, but
instead of reading from 1 array, we now read from 4 different subterranean arrays
by striking the behavior we wanted. Finally, we ended up creating our own "cyclic
partition" helping the tool to achieve the behavior we wanted.

Algorithm 7 Matrix Multiplication (Opt)
1: procedure Matrix Multiplication(input, weights)
2: NumOfClasses← size(weights, 1) . Number of Classes
3: NumOfWeights← size(weights, 2) . Number of Weights/Class
4: FaddLat = 10 . Latency of Multiply and Accumulate
5: for i:=1 to NumOfClasses do
6: UNROLL
7: Classes(i)← 0

8: for i:=1 to FaddLat do
9: UNROLL

10: partialSum(i)← 0

11: for i:=1 to NumOfClasses step=FaddLat do
12: PIPELINEII = FaddLat
13: for k:=1 to FaddLat do
14: UNROLL
15: partialSum(k)← 0

16: for j:=1 to NumOfWeights do
17: partialSum(j)← partialSum(j) + input(j) ∗ weights(i, j)
18: for v:=1 to FaddLat do
19: UNROLL
20: Classes(k)← Classes(k) + partialSum(v)

21: return Classes

Table 5.4: Second Approach Performance

Modules Latency Comp. Performance Bandwidth
(cycles) (GFLOPS) (GB/s)

conv 593596 7.6 1
dense 2871400 4.8 8.23
conv+dense 3464996 5.25 9.23

GB=Gbytes
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5.6 Architecture v1.0

In this architecture, we basically integrate the study implemented in Sensitivity
Analysis 4. We have been able to reduce the memory footprint of weights to a sat-
isfactory degree with small error. Hence we can speed the processing of our data.
Then we managed to make our network a huge pipeline from the image enter-
ing and communication of Convolution Layers to the communication of the three
Convolutional Layers with the Fully Connected Layer. Afterwards, we perform
resource optimizations to be able to fit our network into an FPGA.

Figure 5.6: Datapath of the Architecture v1.0
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5.6.1 Embedding Compressed Weights

Originally, the analysis was done to reduce the memory footprint of the weights
that only applies to the fully connected, because this is the main memory bot-
tleneck of the algorithm. Furthermore, compressed weights are used in the I/O
streaming interface during the processing. We used 256-bit channel from the mem-
ory (2-DMA of 128 bits) based on the previous analysis on memory buses. Each
compressed weight has a 4-bit size. Therefore we can stream 64 weights in a
cycle(stream read). This gives us a possibility for a huge parallelism at the oper-
ation level. To achieve this we extend the previous architecture to operation level
parallelism.

5.6.2 Pipelining Convolution Module

The next step is to try to get the most out of all available resources. To accomplish
this, a pipeline must be created between convolutional layers as shown in figure
5.7, in such a way that different parts of the image are processed at the same time
by the three convolutional entities.

To perform this we need to change the way we obtain the data and output
them to the next entity in a way that is suitable for it, to process them in parallel
with the previous one. FIFO must be placed between the layers. Thus we create
a channel in which every entity will be able to obtain image-parts. We need to
introduce some new entities with specific behavior that will satisfy this purpose
and will enable pipeline processing.

Figure 5.7: Convolutional Layers Time-Chart of Architecture v1.0
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In table 5.9 we present performance results after the pipeline of Convolutional
Layers.

Table 5.5: Pipeline Convolutional Layers

Modules FLOPS MAC/cycle

conv1 459K 8
conv2 7.3M 16
conv3 7.3M 16
CONV 15.1M 40(peak)

GB=Gbytes MAC = Multiply and Accumulate FLOPS = Floating Point
Operations

Shifted FIFO

The utility of this entity is double. Originally, this implements a custom behavior
of a Shifted FIFO. It receives data from the previous layer, and when it reaches
16x8 it pushes it in 16 packages and streams them through a FIFO (512 bits) to
the next Layer to start the processing. Then in the next cycle, the next module
will need the last 16x7 + the new 16 data. Therefore here comes the shift register.
At the same time, we do not have to store some of the stages of the image (like
before in B-RAM), we just go through FIFOs and read them there. The shift
register functionality could be added to the next layer. However, this has led to
great critical paths and that’s why its behavior has taken place in a different entity.

Task Level Parallelism

Having created all the structures to activate the pipeline, the next step is to use
the Xilinx dataflow pragma. However, trying to incorporate it, we realized that
there was a feature, sequential and parallel processing in different modules at the
same time, that was not supported. As a result, when the tool noticed any FIFO
or some kind of stream behavior, it was trying to turn it into task level parallelism.

Sequential and Parallel Processing Accordingly, we should find a workaround
to incorporate this feature. This problem was presented in the insertion of the ini-
tial data (image, weights, bias) in the 1st module. Essentially we were reading at
several points from the same stream and stored in different B-RAMs. The solu-
tion was to create a custom mutual exclusion for reading in this stream (mutex).
Therefore we forced the tool to read in a specific manner the information and
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store it in specific B-RAMs. On the other hand, the image is passed to an internal
FIFO to continue the flow in the next modules. Below in 8 we present the behavior
above.

Algorithm 8 Sequential Parallel with MUTEX
1: procedure Sequential Parallel with MUTEX(InStream)
2: SKernel1 ← size(kernel1) . Size of kernel1
3: SKernel2 ← size(kernel2) . Size of kernel2
4: SKernel3 ← size(kernel3) . Size of kernel3
5: SBias1 ← size(bias1) . Size of bias1
6: SBias2 ← size(bias2) . Size of bias2
7: SBias3 ← size(bias3) . Size of bias3
8: SImage← size(Image) . Size of Image
9: TotalSize← SKernel1 +SKernel2 +SKernel3 +SBias1 ∗ 3 . Total Size

10: for i:=1 to TotalSize do
11: if i ≤ SKernel1 then
12: Kernel1(i)← InStream.read
13: else if i ≤ SKernel1 + SKernel2 then
14: k ← i− SKernel1
15: Kernel2(k)← InStream.read
16: else if i ≤ SKernel1 + SKernel2 + SKernel3 then
17: k ← i− SKernel1 + SKernel2
18: Kernel3(k)← InStream.read
19: else if i ≤ SKernel1 + SKernel2 + SKernel3 + SBias1 then
20: k ← i− SKernel1 + SKernel2 + SKernel3
21: Bias1(k)← InStream.read
22: else if i ≤ SKernel1 + SKernel2 + SKernel3 + SBias1 ∗ 2 then
23: k ← i− SKernel1 + SKernel2 + SKernel3 + SBias1
24: Bias2(k)← InStream.read
25: else if i ≤ SKernel1 + SKernel2 + SKernel3 + SBias1 ∗ 3 then
26: k ← i− SKernel1 + SKernel2 + SKernel3 + SBias1 ∗ 2
27: Bias3(k)← InStream.read
28: else if i ≤ TotalSize then
29: StreamImage.Write(InStream.read)

30: return Kernel1, Kernel2, Kernel3, Bias1, Bias2, Bias3, StreamImage

5.6.3 Pipelining two Modules

The next step is to be able to pipeline the two main modules of the Convolution
Layers and Fully Connected networks, as shown in figure 5.8. When we achieve
this, we will essentially gain the latency of the smallest module in total latency
5.3.

LatTOTAL = max(LatCONV , LatFC + LatencyInterval) (5.3)
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Figure 5.8: CNN Time-Chart of Architecture v1.0

To accomplish this, major modifications have to be made to the 2 modules.

Convolution Transformations

Convolution should transform the way we export the data. For these purposes,
a new entity was created by FifoToPackedFifo. This entity gets the processed
image and packs it into 32 items. That’s why we would need a 1024bits FIFO.
This feature is not supported by HLS, so we came with a workaround by having
two 512 FIFOs each containing half of the data. After the initial latency interval,
every 32 * 8 = 512 cycles, it feeds the Fully Connected Layer through FIFO.

Fully Connected Transformations

With regard to the Fully Connected Layer, the way the processed image is imported
should be transformed according to the above changes. Next, we need to try to
gain the most out of the data that comes, or else we can drive the system into
huge stalls and thus destroy the Pipeline. The way the FC has so far operated
was to calculate the results for each class individually. For each class, we had
to read the whole processed image again. This cannot be continued because the
whole processed image will be available only when the Conv module has finished
its processing. This would mean the pipeline concept will be lost. Hence we have
to change the way we calculate the classes. Another dimension of parallelism needs
to be added. There has to be another important change in the structure of FC.
We will create 2 FC Modules where each will calculate different classes. So in 400
cycles, we will have partial results for the 800 classes. To achieve this, we need
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to perform a Memory Layout Transformation where it will also transform the way
that weights are streamed.

Algorithm 9 Matrix Multiplication (Opt)
1: procedureMatrix Multiplication(InStream,ConvStream, input, weights)
2: NumOfClasses← size(weights, 1) . Number of Classes
3: NumOfWeights← size(weights, 2) . Number of Weights/Class
4: FaddLat = 10 . Latency of Multiply and Accumulate
5: for i:=1 to NumOfClasses do
6: UNROLL
7: Classes(i)← Densebias(i)

8: for i:=1 to FaddLat do
9: UNROLL

10: partialSum(i)← 0

11: for i:=1 to NumOfWeights/32 do
12: ConvStream.read()
13: for j:=1 to NumOfClasses step=FaddLat do PIPELINE=10
14: for k:=1 to FaddLat do
15: InStream.read()
16: sum64 = inp1 ∗w1+ inp2 ∗w2+ ...+ inp63 ∗w63+ inp64 ∗w64
17: Classes[j + k]+ = sum64

18: return Classes

In fact, a consumer-producer model has been created, where we feed at a rate
of 1/256 cycles and consume at a rate of 1/ 400. This could create stalls in the
first module. To avoid this speech in their communication, a large FIFO has been
placed

Another problem that appeared was that we had to divide the weights to 32
sets. We possessed 64 weights and would calculate 2 classes in parallel in each
module in a cycle (a total of 64 multiples in parallel). Hence the weights for
each class are 28464 must be divided into 32 sets. To accomplish this, a small
zero-padding of 16 elements has to be added. We also examined the method
of processing them completely without using zero-padding and the rest of them
sequentially but led worse results.

In table 5.6 we present performance results after the pipeline of Convolutional
Layers.
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Table 5.6: Pipeline Convolutional with Fully Connected Layer

Modules FLOPS MAC/cycle

conv 15.1M 40(peak)
fc 46.6M 64
CNN 60.7M 104(peak)

GB=Gbytes MAC = Multiply and Accumulate FLOPS = Floating Point
Operations

5.6.4 Resource Optimizations

It is important to ensure that we use efficiently the resources at our disposal.

• We used the array map where implicitly many small B-RAMs combined to
create large ones while maintaining their functionality.

• We have noticed that HLS UNROLL was bound many Flip Flops and LUTs.
These decreased considerably by manually unrolling. The tool has this be-
havior because it can not be guaranteed the exact number of iterations it
will run.

• The appropriate DSPs were used through the directive resource.

• Fixed calculations where they are performed many times we compute them
once and assign them to defines variables, otherwise the tool binds resources
to calculate them each time.

Table 5.7: Architecture v1.0 Performance

Modules Latency Comp. Performance Bandwidth
(cycles) (GFLOPS) (GB/s)

conv 263685 17.13 1
dense 439590 31.1 8.23
conv+dense 475590 38.3 9.23

GB=Gbytes

5.7 Architecture v2.0

After the successful completion of the first architecture, we realized that there was
an opening for more parallelism. So we decided to introduce another dimension
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of parallelism, the use of batching. Instead of computing the results for an image,
we calculate for two images in parallel.

5.8 Resource Optimizations

The first thought is to insert another instance of the already existing accelerator
to implement Batch 2. This would, however, lead to a doubling of resources, which
would make it impossible to routing to VIVADO IDE. Consequently, the solution
is integrating batch 2 into a single architecture in HLS avoiding duplication of
resources and helping the tool get better routing.

5.8.1 Batching

The weights will be streaming the same way. Instead of performing calculations for
one image, we will arrange for both. The I/O will also not be increased significantly
because the image is very small compared to the weights we stream in. More
specifically, the I/O will grow to 0.00012%. The reason why we can not proceed
to larger batches is that resources don’t allow us.

Table 5.8: Architecture v2.0 Performance

Modules Latency Comp. Performance Bandwidth
(cycles) (GFLOPS) (GB/s)

conv 264685 34.25 1
dense 441590 62 8.23
conv+dense 477590 76.5 9.23

GB=Gbytes

5.9 Porting to QFDB

Architecture 1 and 2 have been implemented as described above to run on ZCU-
102. To enable the two architectures to run at QFDB, we created 4 Instances of
Accelerators, ending in Batch 4 and Batch 8 respectively. Porting didn’t require
many transformations because there was FPGA consistency. The only substantial
differences are that there is no SD on the QFDB resulting in the use of JTAG to
send the data. Finally, ARM communication with our machine was done through
JTAG (instead of U-ART) using the coresight protocol.
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In table 5.9 we present performance results for the QFDB. More specifically for
the Architecture v2.0 (Batch 8).In peak performance we achieve 416 GFLOPS/s,
when all modules are executed in parallel.

Table 5.9: Pipeline Convolutional Layers

Modules FLOPS MAC/cycle GFLOPS/s

conv 120.8 8 57.4
fc 364.8M 16 104
CNN 485.6M 832(peak) 265

GB=Gbytes MAC = Multiply and Accumulate FLOPS = Floating Point
Operations
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Chapter 6

Results

In this chapter, we will present the results of our work. These results were obtained
from the 2 different architectures we propose. These two architectures were tailored
to the needs of each different ZCU-102 (released March 2015) and QFDB platforms
(essentially 4 ZCUs in parallel) to make the most of our resources.

6.1 Specification of Compared Platforms

Comparisons were made with CPU and GPU platforms. The CPU used was the
Intel i7 7700HQ (released January 2017) and the GPU was NVIDIA Quadro K2200
(released August 2014). Platforms of a similar generation were used. More specif-
ically due to the need of the application, the most important factor was high
performance with low power consumption as we aim to a satellite-based applica-
tion.

6.1.1 Intel i7 7700HQ

Below we present tables with the specifications of both CPU 6.1 and GPU 6.2
platforms

Table 6.1: Intel i7 7700HQ Specifications

Cores Threads Max Turbo TDP Max Memory Lithography
Frequency Bandwidth

4 8 3800 MHz 45W 37.5 GB/s 14nm

Thermal Design Power (TDP) represents the average power, in watts, the processor
dissipates when operating at Base Frequency with all cores active under an

Intel-defined, high-complexity workload.
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Table 6.2: NVIDIA Quadro K2200 Specifications

CUDA GPU Clock Memory Memory Power
Cores Memory Frequency Interface Bandwidth Consumption

640 4GB GDDR5 1124 MHz 128-bit 80 GB/s 60W

6.1.2 NVIDIA Quadro K2200

CUDA
Compute Unified Device Architecture is a technology developed by Nvidia that

accelerates GPU computation processes. With CUDA, researchers and developers
can send high-level code (C, C++, and Fortran) directly to the GPU without
using assembly code. This lets them take advantage of parallel computing in
which thousands of threads, can execute simultaneously.

6.2 Power Consumption

Power consumption refers to the required energy per unit time, supplied to the
current system to perform a task. Power consumption is usually measured in units
of Watts (W) or kiloWatts (kW). To be exact, when we consider about power, we
need to measure all the power that the machine on which the GPU the CPU and
the FPGA runs. Therefore for the GPU, it runs on a machine that consumes 300
Watts, while the CPU is at 100 Watts.

6.3 Energy Consumption

Energy consumption refers to the energy was required to perform a task in a
specific time. To calculate energy:

Energy = Power ∗ time, (6.1)

Power = required power , Time= required time to complete the task. Energy
consumption is usually measured in units of Joule (J) or kiloJoule (kJ).
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6.4 Throughput and Latency Speedup

In computer architecture, the notion speedup is the factor that measures the rel-
ative performance of two systems processing the same task. More specifically, it
is the improvement in speed of execution of a problem executed on two different
architectures. The notion of speedup was established by Amdahl’s law [3], which
was particularly focused on parallel processing. However, speedup can be used
more generally to show the effect on performance after any resource enhancement.

Latency is the time that a systems requires to perform a single task.

Latency =
1

v
=

T

W
, (6.2)

v is the execution speed of the task,
T is the execution time of the task,
W is the execution workload of the task

Throughput is the maximum rate of processing or production of a specific
problem.

Throughput = r ∗ v ∗ A =
r ∗ A ∗W

T
=
r ∗ A
L

, (6.3)

r is the execution density,
A is the execution capacity,

Speedup can be defined for two different types of quantities: latency and
throughput.

Slatency =
L1

L2

=
T1 ∗W2

T2 ∗W1

, (6.4)

Sthroughput =
Thr2
Thr1

(6.5)

6.5 Architecture v1.0

In this section, we will present the results of the Architecture v1.0 ported to both
platforms single-FPGA(ZCU-102) and Quad-FPGA (QFDB). These results report
resource utilization, performance over latency, throughput, power, and energy mat-
ters. Finally, we compare results with GPU and CPU.
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Table 6.3: Architecture v1.0

Clock LUT FF DSP BRAM BUFG
Frequency Usage (%) Usage (%) Usage (%) Usage (%)

300 39 39 19 18 1

LUT = LookUp Table, FF= Flip Flop, DSP= Digital Signal Processor, BRAM=Block
RAM, BUFG resource is one of the most expensive resources in FPGA. It is used for

sending the clock across the clock network in the design.

6.5.1 ZCU-102

In the following tables, we present results for the architecture v1.0, ported on
the ZCU-102 comparing to CPU and GPU. Comparing to CPU we get latency (
2533x) and throughput (180x) speedup. Furthermore, we are much more power
and energy efficient (9.1x and 1636x respectively). On the other hand, compared
to the GPU we grant speedup in latency (20x) while we are worse in throughput
(0.31x) due to the GPU’s big batching. In addition, we are more efficient on power
and energy metrics (27.2x and 8.5x respectively).

To extract the following results, we used the entire dataset that we had at our
disposal, ie the 10000 images.

Table 6.4: Architecture v1.0 comparison with CPU and GPU

ZCU-102 CPU GPU

Clock Frequency(MHz) 300 3800 1124
Throughput(Images/s) 628 3.47 2000
Latency(s) 0.003 7.6 0.06
GFLOPS 38.3 0.21 122.55
Total On-chip Power(Watt) 11 100 300
Energy Consumption(Joule) 175 288K 1.5K
Images/Joule 56.8 0.035 6.66

We use the entire data-set 10K images.

Table 6.5: Speedup over GPU and CPU

ZCU102 GPU CPU

Latency speedup 20x 2533x
Throughput speedup 0.33x 180x

We use the entire data-set 10K images.
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Table 6.6: Energy and Power Efficiency over GPU and CPU

ZCU-102 GPU CPU

Power Efficiency 27.2x 9.1x
Energy Efficiency 8.5x 1636x

We use the entire data-set 10K images.

6.5.2 QFDB

To complete porting to QFDB we got 4 instances from the existing implementation
on ZCU-102. In the following tables, we perceive results for the architecture v1.0,
ported on the QFDB comparing to CPU and GPU. Compared to the CPU we get
latency ( 2533x) and throughput (712x) speedup. Furthermore, we are much more
power and energy efficient (9.1x and 1618x respectively). Compared to the GPU
we grant speedup in latency (20x) and throughput (1.24x) (now we use batch 4).
In addition, we are more efficient on power and energy metrics (27.2x and 8.5x
respectively).

To extract the following results, we used the entire dataset that we had at our
disposal, ie the 10000 images.

Table 6.7: Architecture v1.0 comparison with CPU and GPU

QFDB CPU GPU

Clock Frequency(MHz) 300 3800 1124
Throughput(Images/s) 2640 3.47 2000
Latency(s) 0.003 7.6 0.06
GFLOPS 163 0.21 122.55
Total On-chip Power(Watt) 44 100 300
Energy Consumption(Joule) 166 288 K 1.5 K
Images/Joule 60 0.035 6.66

We use the entire data-set 10K images.

Table 6.8: Speedup over GPU and CPU

QFDB GPU CPU

Latency speedup 20x 2533x
Throughput speedup 1.32x 760x

We use the entire data-set 10K images.
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Table 6.9: Energy and Power Efficiency over GPU and CPU

QFDB GPU CPU

Power Efficiency 6.8x 2.27x
Energy Efficiency 8.4x 1618x

We use the entire data-set 10K images.

6.6 Architecture v2.0

In this section, we will present you the results of the Architecture v2.0 ported
to both platforms single-FPGA(ZCU-102) and Quad-FPGA (QFDB). These re-
sults report resource utilization, performance over latency, throughput, power, and
energy matters. Finally, we compare results with GPU and CPU.

Table 6.10: Architecture v2.0

Clock LUT FF DSP BRAM BUFG
Frequency Usage (%) Usage (%) Usage (%) Usage (%)

240 64 58 38 16 5

LUT = LookUp Table, FF= Flip Flop, DSP= Digital Signal Processor, BRAM=Block
RAM, BUFG resource is one of the most expensive resources in FPGA. It is used for

sending the clock across the clock network in the design.

6.6.1 ZCU-102

In the following tables, we present results for the architecture v2.0, ported on
the ZCU-102 comparing to CPU and GPU. Comparing to CPU we get latency (
2533x) and throughput (312x) speedup. Furthermore, we are much more power
and energy efficient (7.32x and 2286x respectively). On the other hand, compared
to the GPU we grant speedup in latency (20x) while we are worse in throughput
(0.55x) due to the GPU’s big batching (we use batch-2). In addition, we are more
efficient on power and energy metrics (22x and 11.9x respectively).
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Table 6.11: Architecture v2.0 comparison with CPU and GPU

ZCU-102 CPU GPU

Clock Frequency(MHz) 240 3800 1124
Throughput(Images/s) 1084 3.47 2000
Latency(s) 0.003 7.6 0.06
GFLOPS 76.5 0.21 122.55
Total On-chip Power(Watt) 13.66 100 300
Energy Consumption(Joule) 126 288 K 1.5 K
Images/Joule 79.36 0.035 6.66

We use the entire data-set 10K images.

Table 6.12: Speedup over GPU and CPU

ZCU102 GPU CPU

Latency speedup 20x 2533x
Throughput speedup 0.55x 312x

We use the entire data-set 10K images.

Table 6.13: Energy and Power Efficiency over GPU and CPU

ZCU-102 CPU GPU

Power Efficiency 7.32x 22x
Energy Efficiency 2286 11.9x

We use the entire data-set 10K images.
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6.6.2 QFDB

In the following tables, we present results for the architecture v2.0, ported on
the QFDB comparing to CPU and GPU. Compared to the CPU we get latency (
2533x) and throughput (1249x) speedup. Furthermore, we are much more power
and energy efficient (9.1x and 1618x respectively). Compared to the GPU we
grant speedup in latency (20x) and throughput (2.17x) (now we use batch 4).
In addition, we are more efficient on power and energy metrics (27.2x and 8.4x
respectively).

Table 6.14: Architecture v2.0 comparison with CPU and GPU

QFDB CPU GPU

Clock Frequency(MHz) 240 3800 1124
Throughput(Images/s) 4334 3.47 2000
Latency(s) 0.003 7.6 0.06
GFLOPS 265 0.21 122.55
Total On-chip Power(Watt) 54.64 100 300
Energy Consumption(Joule) 126 288K 1.5K
Images/Joule 79.36 0.035 6.66

We use the entire data-set 10K images.

Table 6.15: Speedup over GPU and CPU

QFDB GPU CPU

Latency speedup 20x 2533x
Throughput speedup 2.17x 1249x

We use the entire data-set 10K images.

Table 6.16: Energy and Power Efficiency over GPU and CPU

QFDB CPU GPU

Power Efficiency 1.83x 5.49x
Energy Efficiency 2286x 11.9x

We use the entire data-set 10K images.

6.7 Final Performance

Below we present throughput and latency speedups over different batches 6.1 and
different number of images in the given data-set. 6.2. Furthermore in figure 6.3 we
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present power and energy efficiency over GPU. Figure 6.4 presents Architecture
v1.0 ,v2.0 and optimized v2.0.

The first approach to be able to integrate the batch 2 is to instantiate the
existing IPs. This, however, has led to a doubling of all resources. Hence it was
decided to change the architecture of each IP to integrate the batch 2. After this
step, we were able to implement resource optimizations in the HLS as presented
and analyzed in the previous chapter. In figure 6.4 we present the results of the
optimizations.

Figure 6.1: Throughput Speedup for different batches
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Figure 6.2: Throughput Speedup for different Number of Images

Figure 6.3: Power and Energy Efficiency over GPU: Both archi-
tectures
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Figure 6.4: Utilization after the use of Resource Optimizations
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Chapter 7

Conclusions and Future Work

This chapter will sum up and evaluate this Thesis’ work. Furthermore opportu-
nities for future work will be rising and how this Thesis’s Robustness Analysis
creates scope for further optimizations (for CNN) in FPGA designs.

7.1 Conclusions

In recent years Convolutional Neural Networks (CNNs) have been shown extremely
growth due to their effectiveness at complex image recognition problems. The pur-
pose of this Thesis was to accelerate a specific-CNN for aerospace subject using Re-
configurable Logic(FPGA). After carrying out Robustness Analysis computational
workloads and memory accesses are analyzed, as well as compression methods and
algorithmic optimizations to exploit FPGA parallelism. At the level of neurons,
optimizations of the convolutional and fully connected layers are explained and
compared. At the network level, approximate computing optimization methods are
examined limited by not reducing the accuracy of the network. The platforms were
used are ZCU102 and QFDB(a custom 4-FPGA platform developed at FORTH).
The implemented accelerator was managed to achieve 20x latency speedup, 2.17x
throughput speedup and 11.9x energy efficient over GPU NVIDIA-Quadro-K2200.

7.2 Future Work

As a future work, the methods that have been proposed in Robustness Analysis,
Pair, Quad Compression and SLC, can be implemented in hardware to take full
advantage of the huge compression rate they give us and further reduce I/O which
is the main bottleneck of the most FPGAs’ designs. Subsequently, it could work on
algorithmic redundancies by exploiting the pruning that has been implemented.
Furthermore, if we’re concerned about High-Performance Computing, we could
scale up to more FPGAs (eg Mezzanine 8-QFDB) and expect an 8x near speedup
due to the parallelism of the application. On the other hand, if we moved to a larger
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FPGA we could increase the parallelism internally to the FPGA by adding larger
Batch to the images by presenting an almost linear speedup. Finally, the use-case
of the application is to travel into space with the Euclid satellite, therefore it would
be important to study FPGAs where they have resistance to space radiation and
porting to one of them. The FPGA’s suitability for space is that it more energy
efficient than GPU and we also managed to get throughput speedup over a Nvidia
GPU K2200.
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