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Clustering Big Data Streams in Apache Flink 
by Theodoros Bitsakis 

 

Abstract 
 

We live in the era of Big Data where massive amounts of information are generated 

continuously from numerous types of sources. Today’s goal is to apply techniques 

that take into consideration the volume, the variety and the velocity of the data, in 

order to gain insight that couldn’t be revealed with traditional data processing 

application software. Cluster analysis is a technique that groups a set of objects such 

that objects in the same group have similar properties. It is commonly used in the 

fields of machine learning, data mining, statistical data analysis, pattern recognition 

and bioinformatics. In this thesis, we propose a parallel implementation for the well-

known unsupervised learning algorithm, StreamKM++, for clustering data streams in 

an online fashion. For the development phase, Apache Flink framework is chosen as a 

distributed streaming engine with high-throughput, low-latency and fault-tolerant 

computations over unbounded and bounded data streams. Initially, we introduce the 

theoretical background of the implemented algorithm and the distributed framework. 

Afterwards, we propose a parallel implementation which computes the set of cluster 

centers after the consumption of the input dataset. In addition to that, we propose an 

alternative implementation which produces periodically requests for the re-evaluation 

of cluster centers. Finally, we develop a program that exploits the Queryable State 

feature of Flink, in order to allow the user to query the most up-to-date values of the 

cluster centers. Experimental evaluation shows that by increasing the level of 

parallelism the running time droops significantly and at the same time the quality of 

the clustering gets slightly better. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

Acknowledgements 
 

First and foremost, I would like to express my sincere gratitude to Prof. Antonios 

Deligiannakis, my academic supervisor, who provided me with feedback and support 

throughout this diploma thesis. Furthermore, I would like to thank the rest of my 

thesis committee members: Prof. Minos Garofalakis and Prof. Vasilis Samoladas, for 

their useful comments and their time to evaluate this work. Last but not least, I would 

like to thank my family and all my friends, for encouraging and supporting me all 

these years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Contents 
 

 

Introduction .................................................................................................................. 1 

1.1 Thesis Outline .............................................................................................. 2 

K-Means Clustering Algorithms ................................................................................ 3 

2.1 K-Means ...................................................................................................... 4 

2.2 K-Means++ .................................................................................................. 5 

2.3 StreamKM++ ............................................................................................... 7 

2.3.1 Preliminaries ................................................................................. 8 

2.3.2 Coreset Definition ......................................................................... 8 

2.3.3 Coreset Construction ..................................................................... 9 

2.3.4 The Streaming Algorithm ........................................................... 14 

Apache Flink............................................................................................................... 16 

3.1 Dataflow Programming Model .................................................................. 17 

3.2 Distributed Runtime Environment............................................................. 20 

3.3 Programming APIs & Libraries ................................................................. 21 

3.3.1 DataStream API .......................................................................... 23 

Algorithm Implementation ....................................................................................... 26 

4.1 Distributed StreamKM++ .......................................................................... 26 

4.2 Evaluation Methodology ........................................................................... 29 

4.3 Distributed Solution with Requests ........................................................... 31 

4.3.1 Real-Time Cluster Queries ......................................................... 33 

Experimental Evaluation .......................................................................................... 36 

5.1 Flink Cluster Setup .................................................................................... 36 

5.2 Non-Parallel Experiments.......................................................................... 36 

5.2.1 Runtime vs. Quality .................................................................... 37 

5.2.2 Comparison with original StreamKM++ .................................... 40 

5.3 Parallel Experiments .................................................................................. 43 

5.3.1 Runtime & Cost .......................................................................... 43 

5.3.2 Throughput .................................................................................. 49 

Conclusions & Future Work ..................................................................................... 52 

References ................................................................................................................... 53 

 



 
 

 

 

 



1 
 

Chapter 1 

 

Introduction 

 
We live in the era of Big Data where massive amounts of information are 

generated continuously from numerous types of sources (e.g. financial transactions, 

sensor networks). Today’s goal is to apply techniques that take into consideration the 

volume, the variety and the velocity of the data, in order to gain insight that couldn’t 

be revealed with traditional data processing application software. One technique to 

analyze this kind of data is with streaming algorithms, which they process the input 

data as a sequence of items. Commonly, algorithms of this category perform few 

passes over the input data within memory and time constraints. 

Cluster Analysis or Clustering is the problem to partition a given set of objects 

into groups (called clusters) such that objects in the same group are more similar 

(have same properties) than those that belong in different groups. Therefore, the term 

“cluster” can be thought of as a new entity that is conceptually composed of a group 

of objects that share common characteristics. The general purpose of cluster analysis 

is to organize the collected data into meaningful structures so that new knowledge can 

be discovered from the underling structure of the data.  

Cluster analysis has been an essential asset for the fields of machine learning, 

exploratory data mining, statistical data analysis, pattern recognition and 

bioinformatics. Clustering methods have been used in many real applications in 

Finance & Marketing (stock market analysis, characterization of customers into 

groups based on their purchasing patterns), in Security & Networks (credit card fraud 

detection, traffic monitoring of sensor networks), in Biology (Transcriptomics, 

exploration of plant and animal taxonomies), in Meteorology (identification of spatial 

and climate changes over the years) and in many others. 

 StreamKM++ [1] is an unsupervised, online learning algorithm for clustering 

data streams. It belongs to the category of partition based clustering algorithms, where 

the initial set of objects is divided to a fixed number of clusters. This algorithm 

computes incrementally a small weighted sample of the data stream and then solves 

the problem of clustering on the sample by using the k-means++ algorithm [9]. For 

the construction of the weighted sample, StreamKM++ uses a hierarchical divisive 

clustering algorithm called Coreset Tree. For the incremental process of the data 

stream, the algorithm uses a technique called “merge-and-reduce” [15, 16]. 

In order to propose a scalable parallel implementation of StreamKM++, we 

use Apache Flink framework [31]. Apache Flink is an open source framework and 

distributed processing engine for large scale computations over unbounded and 

bounded data streams. Flink provides APIs for both Stream and Batch processing, and 

libraries for relational queries, complex event processing scenarios, graph processing 

and machine learning. In Flink, programs can be written in Java, Scala, Python and 

SQL, and can be deployed in local, cluster or cloud mode. 
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1.1 Thesis Outline 

 

In Chapter 2, we give a formal definition of the Partition-based clustering problem, 

also known as k-means clustering. Then, we analyze the fundamental heuristic 

algorithm to solve this problem, called k-means [14], and the well-known 

initialization method of k-means, called k-means++. Finally, we give a detailed 

description of StreamKM++ along with illustrative diagrams.  

 

In Chapter 3, we give a brief description of Apache Flink framework. We describe 

the process that Flink uses to transform the programs to streaming dataflows. Then, 

we describe how Flink programs are executed in the distributed runtime environment. 

Finally, we present the different levels of abstraction that Flink offers to develop 

streaming and batch applications. We give more emphasis on the DataStream API. 

 

In the first section of Chapter 4, we propose a parallel implementation for 

StreamKM++ which computes the set of cluster centers after the consumption of the 

entire input dataset. In the second section, we describe the evaluation methodology 

that we use to rank the quality of the produced clustering, and we propose a parallel 

implementation to compute it. We claim that with minor modifications, we could use 

the evaluation methodology to predict the cluster of new incoming data points. In the 

third section, we propose an alternative parallel implementation for StreamKM++ 

which produces periodically requests for the re-evaluation of the cluster centers. In 

the last section, we develop a program that allows the user to query in real-time the 

cluster centers produced by StreamKM++. 

 

In Chapter 5, we conduct several experiments on different datasets to evaluate the 

performance of the parallel implementation. In the first set of experiments, we discuss 

the trade-off between the runtime and the clustering cost of StreamKM++, and we 

compare the quality of our clustering with the original non-parallel algorithm. In the 

second set of experiments, we conduct experiments with different levels of 

parallelism to evaluate the runtime, the clustering cost and the throughput of our 

implementation. 

 

Chapter 6 concludes the thesis by presenting the main contributions, and suggests 

potential directions for future work. 
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Chapter 2 

 

K-Means Clustering Algorithms 

 
K-means clustering belongs to the category of Partition based clustering, 

where the number of clusters is fixed to a discrete value “k”.  K-means clustering is a 

technique of vector quantization in signal processing where clusters are represented 

by a vector of mean values. The optimization problem in Euclidian space is to 

partition the set of initial data points into k number of clusters, such that the sum of 

squared distances between the points and their nearest cluster center is minimized. 

The center of these clusters is called centroid value and it is calculated as the 

arithmetic mean of the set of points that each cluster represents. The result of the 

above procedure is the partitioning of the Euclidian space into Voronoi cells. In 

literature the term “center” is more frequently used than the term “centroid”, so for 

the rest of this thesis we will refer to the centroid values as cluster centers.  

A more formal definition of k-means clustering problem is the following: 

Given a set of   unlabeled observations               , where each observation is 

a d-dimensional real vector in Euclidian space, the goal is to partition the n 

observations into   clusters                   , so as the following objective 

function is solved: 

        ∑ 

 

   

∑‖    ‖ 
  

 

      

 

 

where    is the set of points that belong to cluster  ,    is the arithmetic mean (center 

value) of points in    and ‖    ‖ 
  is the squared Euclidian norm    between   and 

  .The objective function aims to minimize the within cluster sum of squares. 

It is known that solving k-means clustering in Euclidian space is a NP-hard 

optimization problem [6, 7], even with just two clusters or even in the 2-dimensional 

space (for any number of clusters) [8]. To overcome this fact, several heuristic 

algorithms have been proposed during the past years. In the first sector of this chapter 

we review Lloyd’s algorithm as one of the most widely used heuristics in the field of 

k-means clustering. In the second chapter we review k-means++ algorithm, which is 

used for choosing the initial values of cluster centers for the Lloyd’s algorithm.           

K-means++ offers specific guarantees for the quality of the clustering. Both of these 

algorithms play an important role for the understanding of StreamKM++, because 

they are used as building blocks. In the last sector we give a thorough review of the 

implemented algorithm StreamKM++, along with illustrative diagrams. 
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2.1 K-Means 

 

Lloyd’s algorithm [14], commonly known as k-means algorithm, is by far the 

most popular and widely used heuristic algorithm to solve the k-means clustering 

problem [10]. Historically this algorithm has been published in similar variants by 

E.W. Forgy in 1965 [2], J. B. MacQueen in 1967 [3] and S. P. Lloyd in 1982. K-

means belongs to the category of unsupervised learning in the field of machine 

learning, where there is no need for explicit assignment of a label-class for each data 

point. Given a set of initial mean values for the centers of the clusters, this algorithm 

uses an iterative refinement of two optimization steps to produce a final result: 

 

1. Cluster assignment step: each data point is assigned to its nearest cluster, 

based on the squared Euclidian distance between the point and the center 

value. 

2. Cluster center update step: each cluster center is recomputed as the mean 

value of all points assigned to it. 

 

 These two local optimization steps continue repeatedly until no more 

improvement is possible. K-means algorithm needs in advance the specification of the 

number of clusters and the initial vector for the mean values. To solve this problem a 

common practice is to choose these values uniformly at random from the data points. 

Algorithm 2.1 describes a pseudocode implementation of k-means for better 

understanding. Lines 2-3 compose the cluster assignment step and it easy to observe 

that this algorithm aims to minimize the within cluster sum of squares by assigning 

each point to the cluster with the nearest mean. Lines 4-5 compose the cluster center 

update step that readjusts the center of mass for all points in each cluster. 

 

ALGORITHM 2.1: k-means 

Input:     arbitrary     mean values for centers:                    

                (typically chosen uniformly at random from data points), 

                    points in Euclidian space:                

Output:      clusters:                

 

1   Repeat 

2       For each               

3     Assign    to    if ‖     ‖ 

 
   ‖     ‖ 

 
                      

4    For each               

5          
 

    
 ∑    

        

6   Until center values (  vector) has not changed 
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Regarding the time complexity, the worst case running time of the algorithm is 

exponential in the number of input points        [11, 12]. This bound stands even in 

the 2-dimensional space. Nevertheless, in the field of smoothed analysis it has been 

proven [13] that the running time of the algorithm is polynomially bounded. More 

precisely the authors of [13] prove that for an arbitrary set of   points in [   ] , if 

each point is independently perturbed by a normal distribution with mean 0 and 

standard deviation σ, then the running time of k-means in the produced set is bounded 

by                      . In practice this algorithm is considered to be very fast as 

it may converge to a local optimum with a few dozens of iterations, but there is no 

proof of this allegation. Furthermore, if we set the number of iterations to a fixed 

number “i”, then the overall complexity is        . 

As it concerns the quality of the clustering, k-means is a heuristic algorithm 

and there is no guarantee that an optimal solution will be found. However it has been 

proven that the algorithm converges to a local optimum solution [4], but the result 

may be affected by the choice of initial clusters. For example, Kanungo et al. [5] 

construct a situation where k-means algorithm converges to a local minimum that is 

arbitrary bad compared to the optimal solution. 

 In figure 2.1, we show some applications of k-means algorithm in different 

datasets (source of diagrams [21]). In all of these diagrams the initial values of centers 

were chosen uniformly at random from the points in the plane. Diagram (a) shows an 

optimal solution of the clustering where clusters fit the actual distribution of the 

points. Diagram (b) shows a suboptimal solution where the two upper left clusters 

partition the same group of points into two subgroups. Diagram (c) proves that an 

inappropriate choice of the number of clusters can lead to poor results that contradict 

the physical shape of the points in the plane. The last two diagrams, (d) – (e), show 

that even if the choice of the number of clusters is correct, there is no guarantee that 

the algorithm may find a clustering that matches the “special” shape of the points. 

This happens due to the fact that k-means algorithm uses as a distance metric the 

Euclidian distance which is the only criterion when it comes for a point to be assigned 

to its nearest cluster. 

 

2.2 K-Means++ 

 

In the previous sector we showed that the quality of the clustering solution 

produced by k-means algorithm depends to a great extent on the initial values of 

cluster centers. David Arthur and Sergei Vassilvitskii proposed in 2007 an algorithm 

called k-means++ that chooses the initial values of centers and guarantees a clustering 

solution with a certain quality. This algorithm is based on the idea that it is a “good” 

technique to scatter out the initial values of the cluster centers according to some 

probability. More specifically, this algorithm chooses the first center uniformly at 

random from the data points. Then each subsequent point is chosen as the next center 

with a probability proportional to its squared distance from the nearest cluster center. 
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Finally, this algorithm executes the k-means algorithm with the pre-computed cluster 

centers.  

A description of k-means++ is presented by Algorithm 2.2. Lines 1-3 of the 

algorithm are often called in the literature as the “seeding procedure of the                 

k-means++”. Moreover, we will refer to line 3 of the code as “sampling a point 

according to the squared distance”. 

Regarding the performance of k-means++, the authors prove that the algorithm 

is guaranteed to find a solution of k-means clustering problem that is         

competitive compared to the optimal. Furthermore, the empirical evaluation from this 

paper showed that k-means++ outperforms k-means in both time and accuracy of the 

clustering. 

 

 
Figure 2.1: K-means paradigms 

 

ALGORITHM 2.2: k-means++ 

Input:     an empty vector for     mean values of centers:                    

                    points in Euclidian space:                

Output:      clusters:                

 

1   Choose an initial center    uniformly at random from   

2   For each             

3  Choose    as    with probability 
       ‖    ‖ 

 

∑        ‖   ‖ 
  

     
                 

4   Execute Algorithm 2.1 with   vector 
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2.3 StreamKM++ 

 

In real use case scenarios, we want to perform clustering techniques in 

unbounded sequences of data objects or in large static datasets stored in the hard disk. 

Classical clustering algorithms, such as k-means and k-means++, fail to perform in 

the above cases because they need random access to the input data.  

StreamKM++ is an on-line algorithm that computes incrementally a small 

weighted sample of the data stream and then solves the problem of clustering on the 

sample by using the k-means++ algorithm. For the construction of the weighted 

sample the algorithm uses coreset structures. In general, a coreset is a small set of 

weighted points that approximates, within an error factor, the original set of points. 

Typically, the construction process of the coreset depends on the type of optimization 

problem. The authors propose two types of coresets: 

 

1. A coreset called “Adaptive Coreset”. This coreset is basically the seeding 

procedure of k-means++ with minor differences. 

2. A coreset called “Coreset Tree”. This coreset is underneath a binary tree that is 

generated with a hierarchical divisive clustering algorithm. The purpose of 

coreset tree is to speed up the process of sampling that k-mean++ performs. 

 

For the incremental process of the data stream the algorithm uses a technique called 

“merge-and-reduce” [15, 16]. This technique consumes the data stream with buffers 

of specific size and at the same time it merges these buffer so that a weighted sample 

can be found with the use of coreset tree. 

 The authors compare this algorithm with k-means, k-means++ and two other 

well-known data stream clustering algorithms, BIRCH [17] and STREAMLS [18]. 

Briefly, BIRCH is a single-pass algorithm that computes a preclustering of the data 

stream by summarizing dense regions of points. After the preclustering phase, it uses 

a hierarchical agglomerative clustering algorithm to calculate the final clusters. This 

algorithm is super-fast, but it computes clusters with relatively low quality.  On the 

other hand, STREAMLS partitions the input stream into chunks and for each chunk 

uses a local search algorithm to compute a clustering. Afterwards, the local search 

algorithm is applied one more time on the union of the previous clusterings. 

STREAMLS is slower than BIRCH but it computes clusterings with much better 

quality. The empirical evaluation of StremKM++, shows that the quality of the 

clustering is comparable (in terms of square error) with STREAMLS, k-means++ and 

much better than BIRCH. Regarding the time of the execution, StreamKM++ is 

slower than BIRCH but faster than STREAMLS. More specifically, StreamKM++ 

seems to scale better with the increment in the number of clusters. Finally, 

StreamKM++ outperforms k-means in all the experiments. We strongly encourage the 

reader to take a deeper look in the empirical evaluation from the original paper. In the 

following sectors we will only focus to the building blocks of StreamKM++. 
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2.3.1  Preliminaries 

 

 In this sector we describe the basic mathematical definitions as these were 

presented by the authors of StreamKM++. For any two points          and any set of 

points       we define: 

 

        ‖   ‖ , the Euclidian distance between x and y. 

                    , the minimum Euclidian distance between x and 

any point in set  . 

         ‖   ‖ 
 , the squared Euclidian distance between x and y. 

                      , the minimum squared Euclidian distance 

between x and any point in set  . 

 

 Using the above definitions we give a formal definition of the Euclidian           

k-means clustering problem: 

 

Definition 2.1 (Euclidian k-means Clustering problem). For a set      and      , 

the Euclidean k-means clustering problem is to find a set of centers      with 

     , such that 

          ∑          
 

     

 

 

is minimized. We define           as the cost of the k-means clustering for a set of 

points   with a set of centers  . The minimization of           satisfies the square 

error function of Chapter 2. Similarly, for a weighted set of points      with 

weight function         and      , the weighted Euclidean k-means clustering 

problem is to find a set of centers      with      , such that 

 

           ∑              
 

     

 

 

is minimized. We define            as the cost of the weighted k-means clustering 

for a set of weighted points   with a set of centers  . 

 

2.3.2  Coreset Definition 

 

 A key feature of StreamKM++ is the use of coreset structures for the 

computation of the small weighted sample of the data stream. In this sector we give a 

formal definition of coresets in the scope of k-means clustering problem.  



9 
 

 A coreset extraction from an initial set of points  , corresponds to a small 

weighted set of points  , in which the weighted cost of k-means clustering 

approximates the clustering cost of the original set   within a small relative error, for 

any set of cluster centers  . The significance of coreset structures in k-means 

clustering problem is that we can apply any k-means clustering algorithm of our 

choice and obtain an approximate clustering result in less time. A more formal 

definition from the authors is presented: 

 

Definition 2.2 (Coreset for k-means Clustering problem). Let       and   with       

      be a precision parameter. A weighted multiset      with positive weight 

function         is called      -coreset of   for the k-means clustering problem 

if, for each      of size      , we have 

 

                                        . 

 

2.3.3    Coreset Construction  

  

 For the extraction of the weighted sample of the data stream, the authors 

propose two novel coreset structures. The first one is called “adaptive coreset” and the 

second one “coreset tree”. The construction of both of these coresets is based on the              

k-means++ seeding procedure which works well for high dimensional datasets. 

 

Adaptive Coreset 

 

 This coreset is quite easy to implement (see Algorithm 2.3) and the authors 

provide a formal proof that this structure is indeed a      -coreset (Theorem 2.1).  

 More specifically, given a set of points      with size      , the 

algorithm initially chooses a set of points                of size m (   ) at 

random according   , with the same methodology as k-means++ does.  Afterwards, it 

assigns every point of the set   to its nearest point   , denoting a new set called    

that contains these assignments. Finally, by using the weight function         

with           , it obtains the weighted set   as the resulted coreset. The basic 

differences between this algorithm and k-means++ are that this algorithms uses a 

larger number of initial centers (     ) and that it assigns to every center a 

weight attribute that is computed from the set of points that are nearest to it. 

 Regarding the performance of the algorithm, we have to mention that the size 

bound of the coreset proven by the theorem 2.1 is not tight, as it depends on the 

dimensionality of the points. Nevertheless, the authors claim that in practice a size of 

       is sufficient, based on the experimental evaluation of the algorithm. The 

major drawback of this algorithm is that is still iterates many times over the initial 

point set  . More precisely, the overall computational complexity is       . 
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ALGORITHM 2.3: AdaptiveCoreset(   ) 

1   choose an initial coreset point    uniformly at random from   

2            

3          

4   for     to   

5     choose    at random according to    from   

6              

7         ⋃       

8   for each       

9     let             , be the nearest coreset point to   

10                    

 

Therorem 2.1 Let      , let   with       be a precision parameter and let   with 

      be an error probability. Given a point set      of size       and a size 

parameter 

  (
 

  
)
    

             
 
  (

       

  
)  

 

algorithm AdaptiveCoreset computes a weighted multiset   with size   that is a 

      -coreset of   with probability at least     (log(.) denotes the binary 

logarithm to the base 2). 

 

Coreset Tree 

 

 This type of coreset was proposed by the authors as a solution to reduce the 

computational complexity of the coreset constructed by AdaptiveCoreset algorithm, 

from        to       . The coreset tree structure is basically a binary tree that is 

constructed with a hierarchical divisive clustering algorithm applied to the initial set 

of points  . When the construction of the binary tree is completed, the union of its 

leaves constitutes the set of points of the coreset. The significant advantage of this 

technique is that it allows as to perform fast sampling of the input data, using subsets 

of points from the initial set  . Figure 2.2 illustrates a possible instance of a coreset 

tree for a set of 10 points in the plane. 

 A brief description of the hierarchical divisive clustering algorithm is the 

following: At the beginning, the algorithm starts with a single cluster that contains the 

whole point set  . Afterwards, it successively partitions the existing clusters into two 

subclusters, such that the points in one subcluster are far from the points in the other 

subcluster. The division step is repeated until the number of clusters corresponds to 

the desired number of points of the coreset. 
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Definition of the Coreset Tree 

 

 In this paragraph we define the basic properties of a coreset tree (T) and the 

attributes that each node of the tree stores. A coreset tree that is constructed with the 

previous hierarchical divisive technique must satisfy the following properties: 

 Each node of T is associated with a cluster in the hierarchical divisive 

clustering. 

 The root of T is associated with the single cluster that contains the whole point 

set P. 

 The nodes associated with the two subclusters of a cluster C are the child 

nodes of the node associated with C. 

 

Each node “v” of the coreset tree (T), stores the following attributes: 

 A point set   : This attribute contains the points of the cluster associated with 

node  . It has only to be stored explicitly in the leaf nodes of the tree. For an 

inner node, the set    is defined by the union of the point sets of its children. 

 A representative point    from   : This attribute is stored only in the leaf 

nodes of the tree. At any point of time the union of these points represent the 

points that have been chosen so far to be the points of the final coreset. 

 A weight value          : For a leaf node, this attribute represents the sum of 

squared distances over all points in    to   , that is            . For an inner 

node,           is computed as the sum of the weights of its children. 

 

 

 

 

Figure 2.2: Example of a coreset tree for a set of 10 points in the plane.  

The representative points are chosen in the order            . 
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Construction of the Coreset Tree 

 

 We move on the methodology for the construction of the coreset tree (see 

algorithm 2.4). As we mentioned before, the purpose of the coreset tree is to construct 

a coreset               , given a set of points                with    . 

The construction of the tree (T) starts with a single node, the root, which contains the 

whole point set  . The first representative point    is chosen from the root, uniformly 

at random from the point set  . Then, assuming that the tree contains already “ ” leaf 

nodes, with      , and therefore has already computed the representative points 

           and the corresponding point sets           , the next representative 

point      is sampled by performing the following three steps: 

 

1. We choose a leaf node   at random with a probability proportional to 

           : More specifically, we start from the root of the tree and then we 

iteratively select the inner nodes until we reach a leaf node. In this process, a 

child node   is chosen from the current node  , with probability           

         . Following this procedure, a leaf node is chosen among the others 

with probability             ∑            
 
   . 

2. We chose the next representative point      from the subset    with a 

probability proportional to its squared distance to the representative point   . 

In this step, each point   of the set    is chosen among the other points with 

probability                     . 

3. We split the current node based on    and     , in order to create two new 

child nodes    and   : At first, we store at node    the point    and at node 

   the new representative point     . Then, we assign to each node the points 

of    that are nearest to its representative point. More formally,    
  

                           and    
                           . 

Finally, we compute the new weight attribute of every child and we 

propagate this update until we reach the root of the tree. 

 

The previous three steps are executed until the number of the leaf nodes 

matches the desired number of the coreset points (i.e.   points). When the 

construction of the tree is completed, we obtain the point set               , 

from the representative points of leaf nodes. We denote the weight of each        as 

the total number of points in each subset P of the corresponding leaf node. Figure 2.3 

illustrates the construction process of the coreset tree presented by figure 2.2. 
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ALGORITHM 2.4: TreeCoreset(   ) 

1   choose    uniformly at random from   

2   construct a      node with          and                         

3          

4   for     to   

5     start at     , iteratively select one of the two child nodes at random 

  according to their weights, until a leaf   is chosen 

6     choose    according to    from    

7          ⋃       

8     create two child nodes,    and    from  , and update           

9     propagate the update of weight attribute upwards to the      node 

 

 
 

Figure 2.3: Construction process of the coreset tree presented by fig. 2.2 
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2.3.4   The Streaming Algorithm 

 

 In this section we describe the clustering algorithm of StreamKM++. The 

algorithm uses a technique called merge-and-reduce, which consumes the input 

stream of points with buffers of specific size. At any point of time that two buffers 

represent the same number of consumed points, this technique takes the union of these 

buffers (merge step) and then it applies to the unified set the coreset tree algorithm in 

order to maintain a small set of representative points. When the stream of points is 

consumed, or generally when there is a need to find a clustering from the points that 

have already been consumed, we can extract the final coreset and apply to it any       

k-means clustering algorithm of our choice.  

 

The Merge and Reduce Technique 

 

 We proceed to the formal description of the technique (see algorithm 2.5). 

Given the size       of the coreset as a fixed size parameter and the size       of 

the data stream, the algorithm maintains                 buckets 

            . For these buckets the following properties must be satisfied: 

 

1. Bucket    can store any number of points between   and  , whereas bucket 

   with     must be either empty or have exactly   points.  

2. At any point of time if bucket    with     is full, then it contains a coreset 

of size   that represents       points of the data stream. Bucket    is used 

as an input buffer for the incoming points of the stream. 

 

Given the above properties, the algorithm consumes the data stream with the 

following procedure: New points from the data stream are always inserted into bucket 

  . If bucket    is full, then the points are moved from    to   . If    is empty, then 

the data stream continues to flow into bucket   . In the case where    is full, then a 

new coreset is constructed from the union of    and   . The computed coreset is 

stored in bucket    as it represents    points. If bucket    is also full, then the 

previous procedure of the coreset construction is repeated until an empty bucket of the 

appropriate size is found.  

 In order to extract the final weighted sample of the data stream, we can 

obtain a final coreset from the union of all buckets             . The unified set 

will contain at most                 weighted points. The technique of merging 

and reducing coreset structures is based on the following observations: 

 

1. If    and    are      -coresets for disjoint sets    and   , respectively, then 

   ⋃     is a      -coreset for    ⋃    . 

2. If    is a      -coreset for    and    is a       -coreset for   , then    is a 

                 -coreset for   . 
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The StreamKM++ Algorithm 

 

 The algorithm performs two steps: In the first step, it applies the algorithm 

2.5 to every input point of the data stream. For the coreset construction, the coreset 

tree structure is used (algorithm 2.4). In the second step, it computes a final coreset 

from the union of all non-empty buckets created by the merge-and-reduce technique. 

Then, it applies five times independently the k-means++ algorithm on the final 

coreset, and obtains the best clustering as the final result. Some important 

clarifications must be noted:  

 

1. The overall computational complexity of the algorithm is        and the 

maximum number of memory units is              . The choice for the 

appropriate size of the coreset implies the trade-off between the time and the 

accuracy of the clustering. From the experimental evaluation of 

StreamKM++, a sufficient size of the coreset and the buckets is considered to 

be       , where   is the desired number of clusters. 

2. The algorithm is not only designed for clustering data streams of specific 

size. The size parameter      , is used for the exact estimation of the total 

number of buckets. Even if we don’t know a priori the size of the stream, the 

growth in the numbers of buckets is logarithmically bounded (i.e.   

             ). 

3. The authors do not prove that the coreset tree structure is indeed a      -

coreset. However, they are optimistic that a mathematical proof can be 

found, as the creation methodology is based on the k-means++ seeding 

procedure. 

 

 

ALGORITHM 2.5: InsertPoint( ) 

1   put   into    

2   if    is full 

3     create an empty bucket   

4     move points from    to   

5     empty    

6          

7     while    is not empty 

8      create coreset from the union of    and   

9       store coreset in   

10    empty    

11           

12   move points from   to    
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Chapter 3 

 

Apache Flink 

 
Apache Flink is an open source framework and distributed processing engine 

for large scale computations over unbounded and bounded data streams. Flink was 

formerly known as “Stratosphere”, a research project conducted by three universities 

in Berlin. In December 2014, it was accepted as an Apache top-level project. The core 

of Apache Flink is a distributed streaming dataflow engine written in Java and scala. 

Batch processing is built on top of the streaming engine as a special case of stream 

processing. In Flink, programs can be written in Java, Scala, Python and SQL, and 

can be deployed in local, cluster or cloud mode. Flink also provides connectors to 

thirdly-party systems for data sources and sinks, such as Apache Kafka, Apache 

Cassandra, Apache Kinesis, HDFS, and Elasticsearch. 

 

 
Figure 3.1: Component Stack of Apache Flink 

 

We briefly describe some of the features that let Flink to have a wide 

acceptance in real-time analytics and applications: 

 

 Continuous Streaming Processing: In many real-time use case scenarios, 

data is generated in the form of streams. Flink’s engine, process data streams 

as true streams because each record is processed immediately and 

independently as soon as it arrives. Furthermore, Flink’s expressive APIs and 

specific performance guarantees allow applications to run 24/7. 
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 Low Latency & High Troughput: Benchmarks have proven that Flink can 

compete with other well-known distributed Big Data platforms and that it can 

process millions of records per second [19]. Users of Flink have reported 

impressive performance numbers, such as applications running on thousands 

of nodes that process multiple trillions of events per day. 

 Fault Tolerance: Streaming applications often require some custom state to 

maintain intermediate results of their computations. Flink uses an 

asynchronous lightweight incremental checkpoint mechanism [20] that 

guaranties extacly-once state consistency in case of a failure. 

 Event Time Handling: Apache Flink embraces the notion of event time in 

stream processing, guaranteeing that out of order events are handled correctly 

and that results are accurate. 

 

 In the following sectors, we describe briefly the core of Apache Flink, the 

distributed runtime environment and the different levels of abstraction of the 

programming API. In this analysis we are more concerned about handling streaming 

data. 

 

3.1 Dataflow Programming Model 

 

 The core of Apache Flink is consisted of two building blocks, streams and 

transformations. A stream is a (potentially never-ending) flow of data records and a 

transformation is an operation that takes one or more streams as input and produces 

one or more output streams as a result. Flink programs are mapped to streaming 

dataflows and each one of them is constituted by the following four features:  

 

1. One or more data sources: The source defines where the input data comes 

from (e.g Apache Kafka or HDFS) 

2. One or more data sinks: The sink defines where the output result is stored (e.g 

Apache Cassandra or Elasticsearch) 

3. One or more operators: An operator applies transformations into streams (e.g 

Map, Filter, KeyBy, Aggregations, Join) 

4. Intermediate streams: The resulted streams produced by data sources, sinks or 

operators. 

 

Flink represents the streaming dataflows as directed acyclic graphs (DAGs). 

However, special forms of cycles are permitted through iteration operators. Figure 3.2 

shows an example of a Flink program written in the DataStream API, along with the 

DAG of the streaming dataflow. In the beginning, the program uses a data source 

connector to consume data from Apache Kafka in the form of a stream of string 

records. Then, a Map operator transforms the initial data stream of strings to events, 

with a parse function that process each string record individually. The next operator 
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groups the data stream of events according to some key “id,” and then applies every 

10 seconds an aggregation function to the events with the same key. Finally, a data 

sink is used to store the results of the aggregation function to rolling files in the 

system. 

 

 
Figure 3.2: Streaming Dataflow 

 

When programs are executed in parallel, each stream has one or more stream 

partitions and each operator has one or more operator subtasks. The operator subtasks 

are independent from each other and execute in different threads of machines. 

Furthermore, different operators in the same streaming dataflow may have different 

levels of parallelism, but the parallelism of stream partitions is always the same of its 

producing operator.  

 

 
Figure 3.3: Parallel Dataflow 
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Figure 3.3 shows an arbitrary parallel dataflow of the previous example. In 

this figure we observe that there are two different types of streams, one-to-one and 

redistributing streams. The first type of stream, preserves the partitioning and the 

ordering of the records (e.g stream between Source[1] and Map[1]). In the second 

type, the ordering of records is only preserved within each pair of sending and 

receiving subtasks (e.g stream between Map[1] and KeyBy/window[2]). 

 

Stateful Operators & Fault Tolerance 

 Streaming applications often require data structures to store intermediate 

results of their computations (e.g current version of a machine learning model). 

Operators that remember information across the processing of individual data records 

are called stateful and the information that each operator remembers is called state. 

Flink provides in-core data structures for stateful operations, that are scoped per 

parallel subtask (e.g figure 3.3 Map[1]) or per key attributes from the data records (e.g 

figure 3.2 keyBy(“id”)).  

Flink uses a checkpoint mechanism to ensure that in the presence of failures 

the set of states will reflect every record from the input data stream exactly once. A 

checkpoint is a global asynchronous snapshot of the set of states, taken in a regular 

basis. In case of a failure, Flink restarts the application using the most recently 

completed checkpoint.  

 

Notion of Time 

 

An important aspect of streaming applications is the measurement of time. 

Flink supports three different notions of time:  

 

1. Processing time refers to the system time of the machine that is executing the 

respective time-based operation. 

2. Ingestion time is the time when an event enters the Flink streaming dataflow at 

the source operator. 

3. Event time is the time when an event was created and it is usually described by 

a timestamp in the events. 

 

The mechanism of Flink to measure progress in time-based operations is called 

watermarks. Watermarks carry a timestamp and flow as part of the parallel streaming 

dataflow along with stream events. Events that follow a watermark’s timestamp 

should have a timestamp with greater value. When a subtask of an operator receives a 

watermark, it advances its internal clock according to the watermark’s timestamp. 

This mechanism is crucial for streaming operators that handle out-of-order events. 

 

 

 

 



20 
 

3.2 Distributed Runtime Environment 

 

 In the distributed execution, Flink chains different operators into tasks. For 

example, the DAG presented by figure 3.2 is executed with three tasks. The first task 

is composed of the source and map operators, the second and third task contains the 

KeyBy/window and sink operators respectively. The same idea applies when we 

execute DAGs with parallelism higher than one (e.g figure 3.3 has five subtasks). The 

procedure of chaining operators increases the overall throughput of the program. 

 Figure 3.4 shows the various processes that take part in the distributed 

execution of a Flink program:  

 

 The Job Client is the starting point of the program execution and it is not a 

part of the runtime. The job client creates and sends the streaming dataflow to 

the Job Manager for the execution in the distributed environment. During the 

execution, the client receives statistics and results from the Job Manager. 

 The Job Managers, also known as master nodes, coordinate and manage the 

distributed execution of the program. They assign the parallel subtasks of the 

dataflow to the available Task Managers, they coordinate the checkpoint 

mechanism and the recovery upon failures, and more. 

 The Task Managers, also known as worker nodes, execute the parallel 

subtasks of the dataflow and they exchange data streams with other Task 

Managers. Each Task Manager is a separate JVM process and it is composed 

by a number of task slots. 

 

 Each task slot represents a fixed subset of resources of the Task Manager. A 

Task Manager with three slots will execute three parallel subtasks of a task, with 1/3 

of the managed memory dedicated to each slot. By default, slots are allowed to 

contain at the same time subtasks of different tasks, as long as they are from the same 

job. In this way, a task slot may hold the entire parallel pipeline of the streaming 

dataflow.  A general practice is to set the total number of slots as the total number of 

CPU cores in each Task Manager. If the CPU supports hyper-threading then each task 

slot will use two virtual threads. The maximum number of task slots in the distributed 

environment denotes the maximum parallelism of the streaming job. Figure 3.5 shows 

a Task Manager with three slots, where each slot contains a parallel pipeline of the 

streaming dataflow presented by figure 3.2. 
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Figure 3.4: Distributed Architecture 

 

 
Figure 3.5: Task Slots of the Task Manager 

 

3.3 Programming APIs & Libraries 

 

 DataStream is the core API for handling unbounded and bounded streams. This 

API provides many common stream processing operators, such as map, filter, keyBy, 

reduce, aggregations, time & count windows, iterations, window-based join 

transformations and more. The window mechanism of Flink, offers various types of 

windows (e.g global, sliding, session, tumbling) and the ability to handle out of order 

elements. DataStream API supports two types of broadcast streams, streams that are 

broadcasted to the downstream parallel subtasks of an operator and streams that are 
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available among the parallel subtasks. All of the above operators can be stateful and 

fault tolerant with the appropriate use of state data structures. Flink has a feature 

called Queryable State that allows the user to query the state from outside of the 

distributed environment. Furthermore, DataStream API is compatible with Apache 

Storm and therefore allows the reuse of Storm code (e.g Storm topologies, Spouts & 

Bolts). 

 DataSet API enables transformations on bounded datasets (e.g., filtering, 

mapping, joining, grouping) with batch processing. Flink offers broadcast variables 

and distributed cache to make datasets and local files available to all parallel instances 

of an operation. DataSet API supports a type of iterate operator called Delta, which 

allows partial updates on the solution set of every iteration. Flink is compatible with 

Apache Hadoop and therefore allows implemented Hadoop code to be reused. Batch 

processing is treated as special case of stream processing, however there are a number 

of differences: DataSet programs use a query optimizer to generate the optimal 

execution plan, DataSet operators are blocking and in the event of failure recovery 

happens by replaying failed partitions. 

 Table API & SQL are integrated in a joint relational API. Table API is a 

declarative domain specific language that allows the composition of queries from 

relational operators such as selection, projection and joins on tables. Tables have a 

schema attached, similar to other relational databases. SQL API has the same 

semantics and expressiveness with the Table API, but it executes queries with SQL 

syntax. Apache Calcite is used for parsing, validation, and query optimization. Tables 

can be generated from and converted to DataSream/DataSet and vice versa, allowing 

the user to run relational queries to unbounded and bounded datasets. 

 CEP is the complex event processing library of Flink, which allows the user to 

detect event patterns of the input data. The CEP library is available through the 

DataStream API, and therefore patterns are evaluated on data streams. 

 GELLY is a library for scalable graph processing and analysis, which is 

available through the DataSet API. It provides data structures to store and represent 

graph data and it supports methods to create, transform and modify the graphs. 

Moreover, Gelly contains a library of graph algorithms, such as label propagation, 

triangle enumeration, and page rank. 

 FlinkML is the machine learning library developed by Flink, which is built upon 

the DataSet API. It supports supervised learning (e.g Support Vector Machines, 

Multiple linear regression) and unsupervised learning algorithms (e.g k-Nearest 

neighbors join, Principal Components Analysis), recommendation algorithms (e.g 

Alternating Least Squares), data preprocessing techniques (e.g Polynomial Features, 

Standard/MinMax Scaler) and more. FlinkML has a feature called ML-pipelines, 

which provides the ability to chain different transformers and predictors in a type-safe 

manner. 

 

 

https://calcite.apache.org/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/libs/ml/knn.html
https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/libs/ml/knn.html
https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/libs/ml/polynomial_features.html
https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/libs/ml/standard_scaler.html
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3.3.1   DataStream API 

 

 In this section we describe the anatomy of DataStream API programs along 

with specific operators that will help us understand the distributed implementation of 

StreamKM++. DataStream programs implement transformations on data streams. 

Data streams are represented by special classes (e.g DataStream<T>, 

KeyedStream<T, KEY>), which are immutable collections of data. Each DataStream 

program consists of the following five stages: 

 

1. Obtain a streaming execution environment: The execution environment defines the 

context in which a program is executed (e.g local or remote environment). We can 

automatically obtain the execution environment from the getExecutionEnvironment() 

function.  

 

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); 

 

2. Load or create input data from data sources: Data sources are attached to the 

execution environment. We can implement a custom source function or use one of the 

pre-implemented. To read a text file as a sequence of lines, we can use 

readTextFile(“path”) function. This function is treated by Flink's distributed runtime 

as two subtasks, called directory monitoring and data reading. The role of the 

monitoring subtask is to split the files of the directory into splits and then assign these 

splits to the downstream readers (this is a not-parallel subtask).  The second subtask is 

performed in parallel by the readers who read the actual data into multiple splits one-

by-one. 

 

DataStream<String> text = env.readTextFile("file:///path/to/file"); 

 

3. Perform transformations on this data: DataStream API provides a variety of stream 

operators. Here, we describe a few of them. 

 

 FlatMap: Receives one element from the input DataStream and produces zero, 

one, or more elements into a new DataStream. 

 

DataStream<Integer>  intNumbers = text.flatMap( new FlatMapFunction<String, Integer>() { 

 @Override 

 public void flatMap(String value, Collector<Integer> out) throws Exception { 

  for (String str: value.split(" ")){ 

   out.collect(Integer.parseInt(str)); 

  } 

 } 

}); 
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 Connect: Merges two input DataStreams and retains their types. The new 

ConnectedStream allows the process of the connected streams from a shared 

context. 

 

DataStream<Double> doubleNumbers = [...] 

ConnectedStreams<Integer, Double> connectedStreams = intNumbers.connect(doubleNumbers); 

 

 CoFlatMap: Applies a flatMap function individually to the elements of the 

connected stream, and produces a new DataStream. 

 

DataStream<String> stringStream =  

connectedStreams.flatMap( new CoFlatMapFunction<Integer, Double, String>() { 

    @Override 

   public void flatMap1(Integer value, Collector<String> out) {   

  out.collect(“Integer”); 

    } 

    @Override 

    public void flatMap2(Double value, Collector<String> out) { 

         out.collect(“Double”); 

    } 

}); 

 

 Transform: Is a method for transforming a DataStream with a user defined 

operator. This function gives us the ability to define low level operators that can 

handle basic mechanisms of the DataStream API, such as the Watermark 

mechanism. 

 

 KeyBy: Partitions a DataStream into disjoint partitions according to some key. 

All elements with the same key are assigned to the same partition, so that the 

number of partitions is equal to the number of distinct keys. Internally, KeyBy is 

implemented with hash partitioning. In the distributed runtime each task slot will 

preserve zero or more entire partitions. 

 

DataStream<Tuple2<Integer,String>> inputStream = [...] 

KeyedStream<Tuple2<Integer,String>,Integer> keyedStream = inputStream.keyBy(0); 

 

 Process: Transforms a DataStream or a KeyedStream given a ProccessFunction. 

The ProcessFunction can be thought of as a FlatMapFunction with access to 

keyed state and timers. 

 

All of the above operators can be stateful with the use of Flink's state data structures. 

There are two basic kinds of states, Keyed State and Operator State.  

 

 Keyed State is used only on a KeyedStream and it denotes the state of each 

partition (or distinct key). We can think of KeyedState as the state for each 
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combination of <parallel operator instance, key>. Flink supports different types 

of data structures that are scoped per key, such as ValueState<T>. This state 

keeps a value which can be updated or retrieved for each different key. 

 

 Operator State, is the state of each parallel operator instance. Flink provides only 

one data structure for this kind of state, called ListState<T>. This state keeps a 

list of elements. We can append elements or retrieve an Iterable over all currently 

stored elements. 

 

4. Store output results: DataStream API has a variety of data sink functions. For 

example, the following function writes the elements of a string stream to the output 

file, line by line.  

 

stringStream.writeAsText("file:///path/to/outputFile"); 

 

5. Trigger the program execution: Flink programs are executed lazily, and therefore 

we have to trigger the execution of the transformations by calling the execute() 

method from the execution environment.  

 

env.execute(“Job name”); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/path/to/outputFile
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Chapter 4 

 

Algorithm Implementation 

 
In this chapter we describe the distributed implementation of StreamKM++ in 

Apache Flink. For the development phase, we use the DataStream API in Java to 

apply transformations on bounded data streams. For data sources and sinks, we use 

Apache Hadoop Distributed File System (HDFS) [22]. During our implementation, 

we took into consideration the original source code of StreamKM++, which was 

developed by the authors in C [23].  

 In the first section, we propose a parallel implementation which computes the 

set of cluster centers after the consumption of the entire input dataset. In the second 

section, we describe the evaluation methodology that we use to rank the quality of the 

produced clustering, and then we propose a parallel implementation to compute the 

quality. We claim that with minor modifications, we could use the evaluation 

methodology to predict the cluster of new incoming data points. In the third section, 

we propose an alternative parallel implementation of StreamKM++ which produces 

periodically requests for the re-evaluation of the cluster centers. Additionally, we 

modify the stage that computes the clustering, to produce simultaneously clusterings 

with different number of centers. In the last section, we develop a program that allows 

the user to query in real-time the cluster centers produced by StreamKM++. 

 

4.1 Distributed StreamKM++ 

 

 In this section, we describe our distributed implementation of StreamKM++ 

for clustering bounded data streams (for unbounded data streams see section 4.3). 

First, we read line by line in parallel the input file from HDFS which contains the data 

points. Then, we transform each line to a d-dimensional point in Euclidean Space. 

Afterwards, we consume each data point according to algorithm 2.5 and therefore we 

maintain a list of buckets for every level of the parallelism. Once the input file is 

consumed, we take a union of the buckets from each one of the lists and then we 

extract a coreset using the coreset tree structure. We name these parallel coresets as 

“partial coresets”. We forward the partial coresets to a non-parallel task that computes 

incrementally a new coreset for each incoming partial coreset, until the total number 

of partial coresets is consumed. The result of the above procedure is the construction 

of a final coreset that represents the entire input. Finally, we apply five times the           

k-means++ algorithm on the final coreset and we extract the best clustering 

(StreamKM++ performs the same technique on the final coreset). At this point we 

describe the implementation details of each operator in the streaming dataflow 

(figures 4.1 & 4.2). 
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 HdfsSource: The input file that contains the data points is stored in HDFS in 

order to be accessible from the TaskManagers of the Job. Each line of the file 

represents a single point in the d-dimensional space. To access the contents of the file 

line by line, we use the pre-implemented data source function readTextFile(“path”) to 

generate a DataStream<String>. As mentioned previously, this function is composed 

of two subtasks, directory monitoring (figure 4.2 Custom File Source) and data 

reading (figure 4.2 HdfsSource). HdfsSource is executed in parallel and forwards the 

lines of the file to the downstream operator. 

 

 HandleWatermark: The purpose of this operator is to detect the end of file. 

Generally, when a source terminates its execution, the corresponding source function 

emits a watermark to the parallel streaming dataflow with value 

“Long.MAX_VALUE”. The HandleWatermark operator extends the base class of all 

stream operators and thus can access the watermark mechanism of Flink. Internally, 

this operator sends continuously the input lines to the downstream operator, and when 

it detects the final watermark it produces a new line with value “EOF”. This technique 

guarantees that the downstrem operator will receive the “EOF” line after the last data 

point. The result of this operation is the generation of a new DataStream<String> that 

contains the set of initial points and the string “EOF”. 

 

 FlatMapToPoint: This operator transforms the points from the 

DataStream<String> to the DataStream<Point>. A Point is a class that holds the 

attributes of each data point (e.g vector with coordinates, weight & id). We choose to 

implement this operation with a flatMap function so that we can handle strings that 

represent incorrect points. The flatMap function parses the input string to extract the 

coordinates of the point. If the number of coordinates is equal to the number of 

dimensionality then a new Point is formed with the corresponding attributes. If the 

input string contains the “EOF” word, we generate a new marked Point. In any other 

case, the input string is aborted. 

 

 FlatMapToPartialCoresets: Each one of the parallel subtasks of this operator 

consumes the input points according to algorithm 2.5 (merge-and-reduce technique). 

At any point of time, these subtasks hold in memory the list of buckets that represent 

the current number of consumed points. The size of buckets is predefined at the start 

of the program execution. In our implementation we do not need the total number of 

input points, because we maintain only the necessary buckets (e.g    and any number 

of full buckets     ). The execution of the algorithm 2.5 continues until the parallel 

subtasks receive the marked point that denotes the end of file. In that case, we rely on 

the first observation of the merge-and-reduce technique, and we take the union of the 

buckets for each parallel list. Then, we extract a new coreset for each unified set by 

using the coreset tree. We name the resulting coresets as “partial coresets”. This 

operator produces a DataStream<Point[]> that contains the partial coresets of its 

parallel subtasks. 
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Figure 4.1: Streaming dataflow of Distributed StreamKM++ 

 

 
Figure 4.2: Source code of Distributed StreamKM++ 

 

 FlatMapToFinalCoreset: This is a non-parallel operator, which receives the 

partial coresets one by one. Initially, this operator saves the first partial coreset as the 

current solution. Then, for each one of the following, it calculates a new coreset from 

the union of the current partial coreset and the current solution, and saves the new 

coreset as the current solution. The above procedure continues until the last partial 

coreset is consumed. The final solution constitutes the final coreset, which represents 

the entire data set. The operator produces a DataStream<Point[]> that contains only 

the final coreset. 

 

 FlatMapToKmeansPP: At this stage, the parallel consumption of the input data 

stream is completed. We can perform any k-means clustering algorithm of our choice 

on the final coreset. We choose to follow the same technique that was proposed by the 

authors of StreamKM++, and therefore we apply five times the k-means++ algorithm 

on the final coreset with a convergence criterion. We obtain the clustering with the 

minimum cost. This operator produces a DataStream<String> that contains the cluster 

centers in a string format. 

 

 HdfsSink: This is a custom implementation of a sink function that stores the text 

file with the cluster centers inside the HDFS, with a specific format.  
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Flink provides a Web Dashboard to monitor the current state of running Jobs 

(e.g memory usage, back pressure, current state of checkpoints and more). Figure 4.1 

was taken from the Web Dashboard and represents the streaming dataflow of the 

Distributed StreamKM++. We observe the chaining mechanism of Flink's distributed 

runtime that groups different operators into tasks with the same parallelism. 

Furthermore, we notice the different types of streams among the tasks, one-to-one 

(FORWARD) and redistributing streams (REBALANCE). 

 

4.2 Evaluation Methodology 

 

 In this section we describe the methodology that we used to evaluate the 

quality of the clustering produced by the distributed StreamKM++. We rank these 

clusterings according to their           ∑           
   where   is the set of data 

points from the input file and   is the set of cluster centers produced by 

StreamKM++. In order to compute            we have to read the file from the start 

and then for each data point we have to find the cluster center that has the minimum 

squared distance to the corresponding point. This is a trivial procedure which can be 

implemented in any programming language. However, we decided to develop a Flink 

streaming program to process the input file in parallel. The first reason to develop this 

program is that the computation of the clustering cost may be time-consuming, based 

on the size of the input file. The second reason is that with minor modifications the 

proposed streaming dataflow could be used to predict the cluster of new incoming 

data points. 

 At this point we give a description of the program. We consume data from two 

different sources. In the first source, we read line by line in parallel the file with the 

data points from HDFS. Then, we transform each line to a d-dimensional point and 

we forward these points to the downstream operator. In the second source, we read 

line by line the file with the cluster centers from HDFS, which was produced by the 

distributed StreamKM++. We transform each one of these centers to a d-dimensional 

point and we assign to that point the weight of the corresponding center. Then, we 

broadcast the cluster centers to the downstream operator, so that each one of the 

parallel subtasks receives the entire set of centers. In the following operator, we 

receive input from both cluster centers an ordinary data points. We wait until the 

entire set of centers is collected, and then we sum in parallel the cost of the incoming 

data points (the cost of each point is equal to the minimum squared distance to its 

nearest center). We name these parallel sums as “partial costs”. Finally, we calculate 

the total cost of the clustering from the sum of partial costs. 

 Figures 4.3 & 4.4 represent the different operators of the streaming dataflow. 

We described some of them in the previous section and therefore we will refer only to 

specific operators.  
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Figure 4.3: Streaming dataflow of the Evaluation Methodology 

 

 
Figure 4.4: Source code of the Evaluation Methodology 

 

 FlatMapToCentroid: We use this operator to parse the lines of the source 

function in order to extract the coordinates and the weight of each cluster center. We 

execute this operator with parallelism-1 because the file that contains the centers has a 

small size. Finally, we broadcast each one of the centers to the subtasks of the 

downstream operator.  

 

 CoFlatMapToPartialCost: The purpose of this operator is to compute in parallel 

the cost of each incoming data point. In order to achieve that, each parallel subtask of 

this operator must preserve the entire set of centers. Therefore, we create a connected 

stream which is composed from the union of the broadcasted cluster centers and the 

incoming data points. The coFlatMap function provides us the ability to process 



31 
 

individually in the same operator, each one of the elements of the connected streams. 

Internally, coFlatMap contains two flatMap functions. We use the second flatMap 

function to save the cluster centers into a vector. The first function, initially buffers 

the incoming data points until the vector with the cluster centers is filled. Then, it 

computes the cost for each one of the buffer points. When the buffer is emptied, the 

function computes the cost of the new incoming data points until the input file ends. 

During the execution of this operation, we maintain the current sum of costs. We 

name that sum as “partialCost”. When the file ends, each parallel subtask emits its 

partialCost to the downstream operator. 

 

 CoFlatMapToFinalCost: We use this operator to calculate the total cost of the 

clustering from the sum of the partial costs. 

 

 In many real applications, it is often desirable to compute the initial values of 

the cluster centers from historical data, and then use these centers to predict the 

cluster in which the new data falls into. It is possible to accomplish this scenario by 

connecting the streaming dataflow of the figure 4.1 with the one from figure 4.3. 

More specifically, we could replace the operator “sourceHdfsCentroids” of the figure 

4.3 with “FlatMapToKmeansPP” of the figure 4.1. In that way, we could provide the 

initial cluster centers from historical data. Moreover, we could replace the operator 

“sourceHdfsPoints” of figure 4.3 with Flink's Apache Kafka connector to consume 

real-time data. Finally, we could modify the output of “CoFlatMapToPartialCost” and 

“CoFlatMapToFinalCost” operators to collect the specific cluster center that the 

incoming points fall into. 

 

4.3 Distributed Solution with Requests 

  

 The Distributed SreamKM++ of section 4.1 produces the final coreset, and 

therefore the cluster centers, after the consumption of the entire input dataset. 

However, when the input data is generated from an unbounded stream, we have to 

compute the cluster centers periodically in order to reflect the evolution of the input 

stream. In this section, we propose an alternative parallel dataflow based on the 

Distributed StreamKM++, that produces periodically requests for the re-evaluation of 

the cluster centers. Additionally, we modify the stage that computes the clustering, to 

produce simultaneously clusterings with different number of centers. In section 4.3.1 

we develop a program to access these clusterings from outside the Flink's runtime 

enviroment. We note that the alternative dataflow still consumes data from HDFS but 

we create the conditions for this implementation to be generalized for unbounded 

input streams. 

 The program receives data from two sources. In the first source, we read the 

input file from HDFS and then we transform the input lines to data points. In the 

second source, we generate periodically request elements and then we broadcast these 

elements to the downstream operator. The operator which receives the data points and 
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the requests, produces the parallel partial coresets per request. Once we receive the 

partial coresets, we compute incrementally the final coreset that represents the current 

number of consumed data points. Afterwards, we create a number of copies of the 

final coreset that is equal to the number of different clusterings that we want to 

perform. Finally, we compute these clusterings and we store them to the state of that 

operator. We continue with the implementation details of specific operators (figures 

4.5 & 4.6).  

 

 
Figure 4.5: Streaming dataflow of the Distributed StreamKM++ with requests 

 

 

 
Figure 4.6: Source code of the Distributed StreamKM++ with requests 
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 SourceRequests_R: In this operator we produce the periodic requests. A request 

is composed by a string that holds the request's id. We broadcast these requests so that 

each parallel instance of the following operator receives them.  

 

 CoFlatMapToPartialCoresets_R: We use this operator to produce the partial 

coresets per request. In order to handle both the requests and the data points inside the 

same operator, we connect the streams that were produced by the two source 

functions. When this operator receives a data point, it executes the algorithm 2.5 to 

update the list of buckets. When it receives a request or the special data point that 

denotes the end of file, it takes the union of the buckets and extracts the partial 

coresets. The output of each parallel instance of this operator is composed by the 

corresponding partial coreset along with the request id.  

 

 FlatMapToFinalCoreset_R: In this operator we compute the final coreset per 

request, from the partial coresets. We use the same incremental technique that we 

applied in the FlatMapToFinalCoreset operator of section 4.1. Once the final coreset 

is produced, we create a number of copies that is equal to the numbers of the different 

clusterings that we want to perform. The term “different clusterings” refers to 

clusterings with different number of cluster centers. For example, if we desire to 

compute clusterings with 10 and 20 centers on the final coreset, then this operator 

produces two tuples for each request, <final coreset, request id, 10> and <final 

coreset, request id, 20>. We note that the number of different clusterings is predefined 

at the start of the program. 

 

 KeyedProcessFuncToKmeansPP_R:  Initially, we use the KeyBy operator to 

group the output of FlatMapToFinalCoreset_R according to the number of the cluster 

centers. By using the KeyBy operator, we construct a new KeyedStream that each key 

represents the different number of cluster centers. For each one of the keys, we apply 

the KeyedProcessFuncToKmeansPP_R function. This function executes five times 

the k-means++ algorithm on the final coreset and then stores the best clustering to the 

Keyed State of Flink. We decided to use the ValueState to store the best clustering for 

each key. We update the clustering of the ValueState every time we receive a new 

request. In this way, we store to the Keyed State of Flink the most up-to-date 

clustering for each different number of cluster centers. 

 

4.3.1  Real-Time Cluster Queries 

 

 In the previous section, we proposed an implementation that uses requests to 

keep up-to-date the final coreset of StreamKM++ algorithm. During that process, 

every time we updated the final coreset, we performed simultaneously multiple 

clusterings with different number of cluster centers. Finally, we stored these 

clusterings to Flink's Keyed State, with the key being the number of cluster centers.  

In this section, we exploit the Queryable State Feature of Flink to allow the user to 
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query these keys from outside Flink's runtime environment. The Queryable State of 

Flink, exposes the Keyed State to the outside world and allows the user to query the 

available keys of a specific operator.  

 

Architecture of Queryable State 

 

The Queryable State is composed by three processes: 

 

 The QueryableStateClient, which runs outside from Flink's distributed runtime 

environment. The user submits to the client queries for the values of the keys.  

 

 The QueryableStateClientProxy, which runs on each TaskManager and is 

responsible to receive the client’s queries, to obtain the value of the requested key 

from the corresponding Task Manager, and to return the value to the client. 

 

 The QueryableStateServer, which runs on each TaskManager and is responsible 

for serving the key values of its locally stored state. 

 

Queryable State in Action 

 

 The Queryable State feature is capable of performing queries only in states 

maintained by KeyedStreams. In our use case, the keyed state is stored inside the 

“KeyedProcessFuncToKmeansPP_R” function, to the ValueState data structure. In 

order to query the keys of the ValueState, we have to specify the hostname and the 

port of the TaskManager. Then, we have to specify the name of the data structure that 

holds the state (e.g “centroidsState”). Afterwards, we submit the query to the Task 

Manager with a specific key. Internally, the QueryableStateClientProxy of the Task 

Manager receives the request, and then asks the Job Manager which one of Task 

Managers holds the value of the query-ed key. Based on that answer, the proxy will 

retrieve the value from the QueryableStateServer of the corresponding Task Manager. 

This value is then returned from the proxy to the client.  

 Figure 4.7 represents a sample of the code that we used to query the state of 

the “KeyedProcessFuncToKmeansPP_R” function. The value of the key corresponds 

to the number of cluster centers. In Figure 4.8, we show the results from queries with 

different keys. In figure 4.8 (a), we show the result from a query with key = 50. We 

observe that the cluster centers are computed from the first evaluation of the final 

coreset (request Id = 0). The field “subtask id = 1” denotes that the key belongs to the 

second parallel instance of that operator. In figure 4.8 (b), we show the result of the 

same query which was performed by (a), only in this case we observe that the cluster 

centers are computed upon the third evaluation of the final coreset (request Id = 2).  

Figures 4.8 (c-d) represent the results of queries with keys 60 and 70 respectively. In 

figure 4.8 (d), we observe that key = 70 is stored in the first parallel instance of that 

operator (subtask Id = 0). 
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Figure 4.7: Sample code to query the cluster centers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Results from queries performed with different keys 
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Chapter 5 

 

Experimental Evaluation 

 
We conducted several experiments on different datasets to evaluate the 

performance of the distributed implementation of StreamKM++. In the first set of 

experiments, we discuss the trade-off between the runtime and the clustering cost of 

StreamKM++. Moreover, we compare the quality of the clustering with the original 

non-parallel StreamKM++. In the second set of experiments, we conduct experiments 

with different levels of parallelism to evaluate the runtime, the clustering cost and the 

throughput of our implementation. The highest number of input elements that we 

tested our implementation was 176 million (approximately 124 GB input file). We 

note that we conducted the following experiments by using the first version of our 

distributed implementation (Distributed StreamKM++ of section 4.1). Furthermore, 

we measure the quality of the clustering by using the cost function (sum of squared 

distances for each point to its nearest cluster center, see section 4.2). 

 

5.1 Flink Cluster Setup 

 

In order to run our experiments to the multi-node cluster of our university, we 

deployed Flink by using the Standalone Cluster setup. This setup includes a single Job 

Manager (master node) and at least one Task Manager (worker nodes). In our setup, 

we used 11 Task Managers with maximum number of parallel task slots 44 (i.e. 44 

physical cores). During our experiments, the maximum Job parallelism that we used 

was 32, so we let Flink’s runtime to make the choice of the specific task slots. Table 

5.1 presents the system specifications of the Job and Task managers. 

 

Node CPU Cores Ram GB 

1 Job Manager Intel Xeon E5-2430 v2 6 (4 used) 32 (2 used) 

11 Task Managers Intel Xeon X3323 4 (4 used) 8   (2 used) 

Table 5.1: Cluster Specifications 

5.2 Non-Parallel Experiments 

 

 In this section we conduct experiments to compare the performance between 

our distributed implementation and the original StreamKM++. In order to accomplish 

a fair comparison, we used the same datasets from the original paper. The main source 

of these datasets is the UCI Machine Learning Repository [24]. At this point we give 

a brief description for the content of all the datasets that we use in the following 

experiments (table 5.2): 
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 Spambase [25] is a collection of spam and non-spam emails from work and 

personal emails. Each record is a vector that contains frequencies of specific words or 

characters which appear in the email. Each record is classified as spam or non-spam 

email. The total number of records is 4,601, and the number of attributes is 57 without 

the classification attribute. 

 

 Intrusion [26] is a dataset that contains information about TCP transmissions in a 

simulated network environment. This simulation produced both normal and intrusion 

connections. We used the 10% unlabeled subset of the whole dataset, which contains 

311,078 TCP transmissions with 34 attributes. 

 

 Covertype [27] contains measurements of cartographic variables obtained from 

four areas in the Roosevelt National Forest of northern Colorado. The analysis of this 

dataset aims to classify the forest cover type of specific regions. Without the 

classification attribute this dataset contains 581,012 points is 54 dimensions. 

 

 Tower [28] contains the RGB values from a 2,560 by 1,920 tower image. The 

4,915,200 pixels are mapped to a 3-dimensional vector. 

 

 Census [29] contains a one percentage sample of the Public Use Microdata 

(PUMS) person records from the 1990 U.S. census. The dataset was contributed by 

the U.S. Department of Commerce Census Bureau. It consists of 2,458,285 points in 

68 dimensions. 

 

Datasets Data Points Dimension Type 

Spambase 4,601 57 Integer, Real 

Intrusion 311,078 34 Integer, Real 

Covertype  581,012 54 Integer 

Tower  4,915,200 3 Integer 

Census  2,458,285 68 Integer 

Table 5.2: Datasets Characteristics 

5.2.1 Runtime vs. Quality  

 

 StreamKM++ produces clusterings which their quality depends on the size   

of the coresets. A choice of a small size leads to clusterings with higher cost, because 

the cluster centers are computed from a smaller set of representative points. However, 

a coreset with a small size leads to less computation time, because the buckets of the 

merge-and-reduce technique consume the input stream more often. In order to choose 

an appropriate size for the coresets, we followed the same experimental procedure 

from the original paper by using our implementation of StreamKM++. We conducted 

several experiments for different values of   and   on the datasets Covertype and 

Tower. Figures 5.1 and 5.2 present the average running times and cost of the 

clusterings from 10 runs for each fixed   and  . Regarding the cost of the clustering, 
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we observe that for coresets with size close to the number of centers, the quality can 

be improved significantly by increasing the size  . However, for coresets with size 

higher than 10,000 the quality of the clustering is marginally improved. As it concerns 

the running time of the clusterings, we observe that the growth of time is almost linear 

to the size of the coresets. Based on the above observations, we come to the same 

conclusion as the authors that the choice of m = 200k implies is a good trade-off 

between runtime and quality.  
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Figure 5.2: Scaling running time and average cost for Tower 
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5.2.2 Comparison with original StreamKM++  

 

 In this section we compare the clustering cost of our implementation with the 

original StreamKM++. We conducted the same experiments for all the datasets of 

table 5.2. We took the clustering costs of the original StreamKM++ from the table VII 

in the appendix section of that paper. In each of these experiments we set the same 

coreset size m = 200k and we conducted 10 experiments for each fixed k. We note 

that for some values of k, the Spambase dataset has less data points than 200k. We 

decided to use the original C-code to re-run the experiments of Spambase with coreset 

size m = 20k, because the authors do not mention the size of the coreset which they 

used. In figures 5.3-5.7, we observe that the clustering cost of our implementation is 

almost identical to the original. Now that we have established that our implementation 

produces accurate clusterings, we can move on to the experimental evaluation of the 

parallel execution. 
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Figure 5.3: Average cost comparison for Spambase 
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Figure 5.4: Average cost comparison for Intrusion 
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Figure 5.5: Average cost comparison for Covertype 
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Figure 5.6: Average cost comparison for Tower 
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Figure 5.7: Average cost comparison for Census 
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5.3 Parallel Experiments 

 

In this section, we evaluate the runtime, the clustering cost and the throughput 

of our distributed implementation, for different levels of parallelism. We use the 

HIGGS dataset [30] from the UCI Machine Learning Repository to run our 

experiments. This dataset contains events from simulated proton-proton collisions 

produced by the ATLAS experiments at CERN. It was published for the classification 

problem to distinguish between a signal process which produces Higgs bosons and a 

background process which does not. The dataset is composed of 11 million events 

(7.76 GB file size) and 28 real-valued attributes.  

 

Dataset Data Points Dimension Type Size 

HIGGS 11,000,000 28 Real 7.76 GB 

Table 5.3: HIGGS Dataset 

 

5.3.1 Runtime & Cost  

 

 In order to evaluate the runtime and the clustering cost of the distributed 

StreamKM++, we conducted several experiments on the Flink Cluster for different 

values of cluster centers and job parallelism. More specifically, we tested our 

implementation for the set of k = [25, 50, 75, 100] cluster centers and for job 

parallelism [1, 2, 4, 8, 16, 32]. We conducted 4 experiments for each fixed value of 

centers and parallelism, and we calculated the average running time and clustering 

cost. Furthermore, we tested our implementation with two different settings. In the 

first setting, we execute 5 times the k-means++ algorithm on the final coreset and we 

keep the clustering with the minimum cost. In the second setting, we execute only one 

time the k-means++ on the final coreset. We use these settings because k-means++ is 

executed by a non-parallel operator in the streaming dataflow, and therefore we want 

to observe the impact of the number of applications on the running time and cost.  

 In figure 5.8 we observe that the average running time for each fixed value k, 

droops rapidly with the increase of the job parallelism. This result was expected 

because we split the input file according to the parallelism, and we use parallel 

operators for the consumption of the data points and for the construction of the partial 

coresets. However, for parallelism higher than 8 the running time droops with lower 

rates. The reason for this is that the non-parallel part of our implementation (5 times 

execution of k-means++ on the final coreset) takes constant time, that is independent 

of both the size of the input file and the job parallelism. Thus, the influence of this 

constant time is greater, when the running time of the clustering decreases. Table 5.4 

shows for each fixed value k the percentage reduction in the running time that we 

accomplished, by increasing the parallelism from 1 to 32. The overall mean 

percentage reduction from all the different values of k is 86.2%.  

In figure 5.9 we observe that the average cost for each fixed value k, decreases 

with the increase of the job parallelism. This behavior is interesting because it gives 
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us the advantage to increase the job parallelism without sacrificing the cost of the 

clustering. In the contrary, with the increase of the parallelism we get slightly better 

results. We believe that this behavior comes from fact that with parallelism higher 

than one, we maintain more parallel lists and thus more total buckets. Therefore, the 

partial coresets represent the input data points with more precision.    

 

Cluster centers Running time (sec) 

with parallelism 1  

Running time (sec) 

with parallelism 32  

Percentage 

reduction  

k = 25   859.0   53.2 93.8% 

k = 50 1063.8 119.1 88.8% 

k = 75 1228.0 207.6 83.0% 

  k = 100 1530.4 322.5 78.9% 

Mean percentage reduction = 86.2% 

Table 5.4: Percentage reduction in average running time (5 k-means++) 

 

Figures 5.10, 5.11 represent the same experiments with the corresponding 

figures 5.8, 5.9, but with only one application of k-means++ on the final coreset. In 

figure 5.10 we observe that for each fixed value of cluster centers, the overall running 

time decreases. Moreover, we observe the running time becomes less dependent on 

the value of the cluster centers. For example, when the parallelism is 32 the running 

time for each value of k is below 200 seconds. This is also noticeable from the fact 

that the overall mean percentage reduction is increased from 86.2% to 91.9%. Figure 

5.11 shows that by using one application of k-means++, the average cost slightly 

increases form the first setting which applies 5 times the k-means++, but it still gets 

better with the increment of the job parallelism. 

 

Cluster centers Running time (sec) 

with parallelism 1  

Running time (sec) 

with parallelism 32  

Percentage 

reduction  

k = 25   854.2   49.0 94.3% 

k = 50 1014.6 67.8 93.3% 

k = 75 1132.2 100.3 91.1% 

  k = 100 1282.9 140.6 89.0% 

Mean percentage reduction = 91.9% 

Table 5.5: Percentage reduction in average running time (1 k-means++) 

 

To get a better picture for the comparison between these two settings, we 

constructed the bar graphs of figures 5.12, 5.13, 5.14 and 5.15. Each one of these 

figures compares the average running time and clustering cost between these two 

settings, for a fixed value of cluster centers. We observe that the benefit we get from 

the running time, by reducing the number of applications of k-means++ from five to 

one, is greater when the number of cluster centers increases. At the same time, we 

observe that by reducing the number of applications, the clustering cost slightly 

increases. However, the accuracy in the clustering cost that we sacrifice is two orders 

of magnitude smaller than the total cost. For the above reasons, we believe that the 

setting which applies one time the k-means++ on the final coreset, is better. 
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Figure 5.8: Average running time for 5 applications of k-means++ 

 

 

 
Figure 5.9: Average cost for 5 applications of k-means++ 
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Figure 5.10: Average running time for 1 application of k-means++ 

 

 

 
Figure 5.11: Average cost for 1 application of k-means++ 
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Figure 5.12: Comparison between 1 & 5 applications of k-means++ for k = 25 

 

 

 
Figure 5.13: Comparison between 1 & 5 applications of k-means++ for k = 50 
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Figure 5.14: Comparison between 1 & 5 applications of k-means++ for k = 75 

 

 

 
Figure 5.15: Comparison between 1 & 5 applications of k-means++ for k = 100 
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5.3.2 Throughput  

 

In this section, we conduct experiments to evaluate the throughput (tuples/sec) 

of our implementation for increasing number of data points. In order to simulate the 

increasement on the size of the input, we used multiple times the HIGGS dataset. 

Table 5.6 shows the different numbers of data points along with the size of the input 

file that we used in our experiments. We note that for the following experiments we 

used the second setting of our implementation, which applies only one time the               

k-means++ algorithm on the final coreset. We conducted 4 experiments for each fixed 

value of centers, parallelism and data points, and we took the average rate.  

 

Data points (million) Input file size (GB) 

1 x 11 = 11 1 x 7.76 = 7.76 

2 x 11 = 22 2 x 7.48  = 15.52 

4 x 11 = 44 4 x 7.48  = 31.04 

8 x 11 = 88 8 x 7.48  = 62.08 

16 x 11 = 176 16 x 7.48  = 124.17 

Table 5.6: Different sizes of input file used for throughput experiments 

 

Each one of the figures 5.16 and 5.17 compares the throughput rate that our 

implementation achieves for different levels of parallelism. In figure 5.16 we observe 

that for the fixed number of 25 centers, by increasing the parallelism from 8 to 16 we 

succeed 46% better average throughput. In figure 5.17 we observe that for the fixed 

number of 50 centers, the same increment leads to 37% better average throughput. In 

both of these figures we observe that by increasing the number of data points the 

throughput rate increases significantly. As we mentioned previously, our 

implementation contains a non-parallel part (execution of k-means++ on the final 

coreset) that takes constant time and it is independent of both the size of the input file 

and the job parallelism. Therefore, when we increase the number of data points the 

constant time is divided to the number of points, and thus throughput rate increases. 

Figures 5.18 and 5.19 represent the same experiments but for fixed levels of 

parallelism. In figure 5.18, the increasement of the cluster centers from 25 to 50 leads 

to 13% lower average throughput with parallelism 8. In figure 5.19, the same 

increasement leads to 22%  lower average throughput with parallelism 16.  
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Figure 5.16: Throughput rate for 25 cluster centers 

 

Figure 5.17: Throughput rate for 50 cluster centers 
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Figure 5.18: Throughput rate for job parallelism 8 

 

Figure 5.19: Throughput rate for job parallelism 16 
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Chapter 6 

 

Conclusions & Future Work 

 
In this diploma thesis, we proposed a distributed implementation of the well-

known StreamKM++ algorithm for clustering data streams. For the development 

phase, we used Apache Flink framework which is a state-of-the-art distributed 

processing engine for large scale computations over unbounded and bounded data 

streams. We proposed two different distributed implementations for the 

StreamKM++. In the first one, we computed the set of cluster centers after the 

consumption of the entire input dataset. In the second one, we proposed an alternative 

distributed model that produces periodically requests for the re-evaluation of the 

cluster centers. In addition to that, we modified the stage that computes the clustering, 

to produce simultaneously clusterings with different number of centers. Moreover, we 

developed a program that exploits the Queryable State feature of Flink, in order to 

allow the user to query the most up-to-date values of the cluster centers. 

We conducted several experiments on different datasets to evaluate the 

performance of our implementation. In the first set of experiments, we proved that our 

implementation produces cluster centers with the same quality of the original 

StreamKM++. In the second set of experiments, we tested the running time, the 

clustering cost and the throughput of our implementation, for different levels of 

parallelism. The experimental results proved that by increasing the job parallelism, 

the running time droops significantly and at the same time the quality of the clustering 

gets slightly better. Additionally, we showed that by reducing the number of 

applications of k-means++ on the final sample, we get even better results in the 

running time by sacrificing only a very small fraction of the clustering cost. Finally, 

throughput experiments showed that our implementation handles efficiently the 

growth in the size of the input. 

In future work it is important to evaluate the performance of the parallel 

implementation that produces requests. We could measure the throughput rate for 

different rates of requests and for different numbers of clusterings that we produce in 

the final stage of the dataflow. Furthermore, we could develop a prediction system 

based on section 4.2 that periodically re-evaluates the cluster centers and then uses 

these centers to predict the cluster in which the new data falls into. Finally, we could 

modify the StreamKM++ algorithm to handle concept drift. This could be done by 

using only a small percentage of the buckets that represent “old points”. 
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