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Abstract

Traffic congestion is a critical societal problem that causes an increase in road traffic
accidents and environmental pollution as well as waste of time. The aim of this work
is to investigate whether the adoption of the new tendency of Internet of things could
improve real-time traffic control with the involvement of connected vehicles in the
role of the unique detector of the traffic conditions, instead of spot sensors (e.g loop
detectors, radars, video sensors etc.).

The first key point of this thesis was the implementation of an algorithm which
uses a mathematical approach that achieves real-time queue estimation (in vehicles)
in every link of an urban road network, based on connected vehicle measurements.
Then, the algorithm was integrated into two real-time traffic control strategies, the
Max-pressure algorithm (decentralized control) and the TUC strategy (centralized
control) to investigate whether the information from connected vehicles can be con-
sidered reliable; and to what extent the percentage of connected vehicles influences
this reliability. In order to draw conclusions, the AIMSUN microscopic simulator
was used for the urban network of Chania.

Statistical analysis of simulation investigations results showed that the estima-
tion approach leads to reliable queue estimation for all penetration rates tested.
Furthermore, as far as it concerns control strategies performance after the integra-
tion of connected vehicle approach; it turned out that TUC strategy could work
efficiently by taking information from connected vehicles while Max-pressure algo-
rithm which uses second by second measurements to take second by second decisions
cannot work properly for low penetration rates of connected vehicles because of the
limited real-time information.
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Chapter 1

Introduction

1.1 Mobility and Traffic Control Systems

Since the beginning of the human species and during its evolution and organization
in social clusters, land transport has been a vital factor for its survival, the extension
of its domination to the earth, but also for the improvement of quality life he seeks.
People with the purpose of transporting goods and moving their own have created
a whole transport technology industry that began with the discovery of the wheel
(Mesopotamia 3500 BC) and continues to advance up to today, reaching the creation
of autonomous vehicles.

Since the second half of the previous century population growth and trade glob-
alization have created the need for more, denser urban centers and interconnections
through road networks. At the same time, the rapid technological progress of the
automotive industry has triggered an increase in the supply and demand of private
means of transport developing a chaotic and complex transport network, which re-
quires regulatory factors of high know-how and complexity in order to be functional.

Traffic control, consists the supervision of the movement of people, goods, or
vehicles to ensure efficiency and safety [1]. Some of the most common traffic control
system components are operational procedures, rules and laws, and physical devices
(e.g. signs, markings, and traffic lights). As the above definition denotes, the
crucial part of traffic control is to ensure the efficiency of mobility around different
networks in a way witch diminish accidents. Although a traffic control process must
be designed in a way that respects its crucial purposes, its efficiency depends not only
on the proper design but also on operators compliance and right decision making.

The first attempts to regulate traffic with traffic lights, before traffic was regu-
lated by the police, dates back to December 1868 in London with the first manually
operated traffic light. In 1912, a traffic control device was placed on the top of a
Paris tower on the Rue Montmartre and Grande Boulevard, which also operated
manually. In the same year, Lester Wire, a police officer in Salt Lake City invented
the first electric lights while the first interconnected traffic system was installed in
1917 in Salt Lake City, with six connected intersections controlled simultaneously
from a manual switch. Some years later, in March 1922 the automatic control of in-
terconnected traffic lights (via automatic timers) operated in Houston, Texas. Over
the course of time and the evolution of computers and communication systems, traf-
fic control has also evolved, resulting in the operation of computerized traffic control
systems that began in the 1950s and prevail to the present [2].
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1.2 Intelligent Transportation Systems and Adap-

tive Traffic Control Systems

ITS (Intelligent Transportation Systems) has been developed since the early 1970s,
constituting a global technological trend that establishes a fully effective real-time
and accurate information management system. Intelligent Transportation Systems
(ITS) is a broad range of diverse technologies applied to transportation to make
systems safer, more efficient, more reliable and more environmentally friendly, with-
out necessarily having to physically alter existing infrastructure [3]. The range of
technologies involved includes sensor and control technologies, communications, and
computer informatics and cuts across disciplines such as transportation, engineering,
telecommunications, computer science, finance, electronic commerce and automobile
manufacturing.

In many cases, ITS have evolved into Adaptive Traffic Control Systems (ATCS)
that employ actuated control through the use of detection and surveillance devices
over a central communications network. The primary objectives of ATCS are to
adjust traffic signal patterns to meet estimated traffic demand, communicate vi-
tal information to traffic engineers and motorists and respond to traffic congestion
resulting from crashes or backups [4].

Information technology plays a critical role in efficiency of Adaptive Traffic Con-
trol Systems. Generally, real-time traffic information comes from point sensors or
Global Positioning System (GPS) receivers. Spot sensors such as loop detectors,
radars, video sensors, magnetometers etc. allow the extraction of accurate real-time
information of the traffic state. However the information they provide is only point-
based information on traffic conditions, which does not represent the total reflection
of a traffic state and in order to be more accurate about the realistic measures (such
as the speed) over a link of a network, a large quantity of sensors must be installed.
Nevertheless the installation of many spot sensors is not practical due to high costs
of installation and maintenance [5].

1.3 Connected Vehicles

Nowadays most vehicles have built-in GPS or GPS devices, allowing IoT technol-
ogy to contribute to signal traffic control. Back in 1999 the British technology
expert Kevin Ashton introduced the term “Internet of Things” (IoT) to illustrate
the function of a system in which different physical objects could be connected to
the Internet by sensors. Therefore “Internet of Things” (IoT) is not a new tendency,
companies have been using sensors and networks in order to provide a steady stream
of information about where devices are, how they’re being used, their condition, and
the state of their environment for more than 20 years [6].

In our days, IoT has become very popular due to specific factors such as progress
in the field of mining and data analysis and the economic way of disseminating data.
On the one hand, the development of many ways to store and process large volumes
of data such as cloud and the amelioration of techniques to analyze these data allows
the data to be well exploited. On the other hand the extensive technological progress
in mobile devices and applications and the broad availability of wireless connectivity
permit us to spread data information easily and without significant cost [6]. As a
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result of all the above, Internet of things is extremely convenient and efficient in
practice.

The IoT has a great impact on transportation field in many ways. Internet of
things application extends to the vehicle, the infrastructure and to the driver, via
dynamic interaction of all these components of a transport system, achieving inter
and intra vehicular communication, smart traffic control, smart parking, electronic
toll collection systems, logistic and fleet management, vehicle control as well as
safety and road assistance. As far as it concerns the traffic management, IoT via
“connected vehicles” may be the key of progress on the upcoming traffic signal
control. The common use of point detectors for real-time traffic control, permits
the identification of vehicles at specific locations, as a result significant measures
witch act as parameters on traffic signal control algorithms can only be estimated
or completely unknown. With connected vehicles, signal systems would be able
to use data transmitted wirelessly from in-vehicle sensors in equipped vehicles to
the signal controller, overcoming the problem of getting limited information about
measures significant for real-time traffic control strategies, such as vehicle speeds,
positions, arrival rates, rates of acceleration and deceleration, queue lengths, and
stopped time.
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Chapter 2

Urban Traffic Control Features

2.1 The Necessity of Traffic Control

From the second half of last century, the phenomenon of traffic congestion is well
identified. The sharp augmentation of mobility needs has led to the maximization of
vehicles in networks. Traffic congestion appears when too many vehicles attempt to
use a common transportation infrastructure with limited capacity. In the best case,
traffic congestion leads to queuing phenomena (and corresponding delays) while the
infrastructure capacity (“the server”) is fully utilized. When a network presents
this kind of traffic state, we refer to under-saturated conditions. In the worst (and
far more typical) case, traffic congestion leads to a degraded use of the available
infrastructure (reduced throughput). An over-saturated link prevents the traffic
movements at the upstream intersection to cross, even though they have the right of
way (green signal). This is a waste of resources (waste of green time) that contributes
to an accelerated increase of congestion due to vehicles trapped in the upstream
links, which leads to blocking of further upstream intersections, increased waste of
green time, and so forth. This vicious circle frequently leads to gridlocks in network
cycles with devastating effects for the traffic flow in extended urban areas. Although
traffic congestion is triggered by the sharp increase in demand on an urban network,
the inefficient traffic control process may extend this phenomenon, so it is necessary
for traffic control strategies to act properly and to prevent the downgrading of the
network and the infrastructure [7].

The traffic congestion causes excessive time delays, high fuel costs and a sig-
nificant environmental burden. Therefore, it is important the existence of efficient
traffic control both on urban roads and on motorways (in Greece the problem is
mainly in urban networks) in order to achieve the optimal way of human and goods
mobility saving time and money, avoiding environmental pollution and ensuring
safety in the network. The efficiency of traffic control depends on the quality of
the employed control methodologies, so the development of reliable traffic control
strategies is a major social need and requires great responsibility.

The figure below illustrates the control loop, which identifies the traffic control
process and the interconnection of the elements involved. The next paragraph tries
to figure out the main flow of the control loop, which is presented at Figure 2.1, [8].
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Figure 2.1: The traffic control loop

A traffic network is characterized by some independent measures, called distur-
bances such as the demand or the incidents, which may possibly be measurable (e.g.
demand), detectable (e.g. incident) or predictable over a future time horizon. Dis-
turbances is the first input information we need to know in order to design a control
strategy. The next necessary input information is real world measurements about
vehicles significant measures such as the average speed or vehicle position. This
kind of information may be obtained by sensors or in our case study by connected
vehicles. In the case of measurements coming from sensors, the next important
stage of control loop is surveillance. The task of the surveillance is to enhance and
to extend the information provided by suitable sensors (e.g. inductive loop detec-
tors) as required by the subsequent control strategy and the human operators [7].
In an automatic control system, after the important input information is selected
and evaluated, it is integrated in the control strategy algorithms. Obviously, the
control strategy is the principal part of control loop which provide control devices
e.g. the traffic lights, with the suitable information of orders or control inputs, such
as the green times for all the stages of all intersections. In case control strategy is
not practiced by algorithms but by a human operator, we have a manual control
system. The most common indexes of performance of the control loop are the total
time spent by all vehicles in the network, the mean delay, the mean density or even
the mean speed measured in the network over a time horizon. Summarily, the kernel
of the control loop is the control strategy, whose task is to specify in real-time the
control inputs, based on available measurements, estimations and predictions, so as
to achieve the prespecified goals (e.g. minimization of total time spent) despite the
influence of various disturbances [7].
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2.2 Urban Traffic Control Notions and Ways

Nowadays, traffic lights at intersections consist the main tool of traffic control in
urban networks, pursuing safety and optimal network operation. Below are some
definitions of basic features of urban traffic control [7].

• An intersection consists of a number of approaches and the crossing area.

• An approach may have one or more lanes but has a unique, independent queue.
Approaches are used by corresponding traffic streams (veh/h).

• Traffic Capacity is the maximum sustainable flow rate at which vehicles rea-
sonably can be expected to traverse a point or uniform segment of a lane or
roadway during a specified time period under given roadway, geometric, traf-
fic, environmental, and control conditions; usually expressed as vehicles per
hour.

• A saturation flow is the average flow crossing the stop line of an approach when
the corresponding stream has right of way (r.o.w.), the upstream demand (or
the waiting queue) is sufficiently large, and the downstream links are not
blocked by queues.

• Compatible streams are two streams which can safely cross the intersection
simultaneously else they are called antagonistic.

• A signal cycle is one repetition of the basic series of signal combinations at an
intersection; its duration is called cycle time.

• A stage (or phase) is a part of the signal cycle, during which one set of streams
has r.o.w.

• Constant lost (or inter-green) times of a few seconds are necessary between
stages to avoid interference between antagonistic streams of consecutive stages

There are four factors that can be appropriately regulated in a traffic control
strategy.

• Stage specification: For complex intersections involving a large number of
streams, the specification of the optimal number and constitution of stages is
a nontrivial task that can have a major impact on intersection capacity and
efficiency.

• Split: This is the relative green duration of each stage (as a portion of the
cycle time) that should be optimized according to the demand of the involved
streams.

• Cycle time: Longer cycle times typically increase the intersection capacity
because the proportion of the constant lost times becomes accordingly smaller;
on the other hand, longer cycle times may increase vehicle delays in under-
saturated intersections due to longer waiting times during the red phase.
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• Offset: This is the phase difference between cycles for successive intersections
that may give rise to a “green wave” along an arterial; clearly, the specifica-
tion of offset should ideally take into account the possible existence of vehicle
queues.

.
There are many performance criteria in order to evaluate traffic control strategies

(e.g. total travel time, delay, density), in this work it was used criteria of delay and
density.

• Delay: The average additional travel time experienced by a vehicle with ref-
erence to a base travel time (in this work, the free-flow travel time) per unit
distance. It is measured in sec/km.

• Density: The average number of vehicles that occupy one kilometer of road
space, expressed in vehicles per kilometer.

Control strategies employed for road traffic control may be classified according
to the following characteristics: the collection time of control measurements and the
width of the application space. Therefore, on the criterion of the time range of input
measurement collection, we consider the fixed-time strategies and traffic-responsive
strategies. The fixed-time strategies are derived off-line by use of appropriate op-
timization codes based on historical constant demands and turning rates for each
stream for a given time of day (e.g. morning peak hour). Unlike previous category
of strategies, traffic-responsive strategies make use of real-time measurements (typi-
cally one or two inductive loops per link) to calculate in real-time the suitable signal
settings. As far as it concerns the space of application of traffic control strategy,
we consider that isolated or decentralized strategies are applicable to single inter-
sections while coordinated or centralized strategies consider an urban zone or even
a whole network comprising many intersections [7].
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Chapter 3

Real-Time Traffic Control
Strategies

3.1 Centralized and Decentralized Control Struc-

tures

In general, a global or centralized control problem can be viewed as a simple level
and simple objective method [9]. By simple level, it is meant that there is a complete
system and a single controller. By simple objective, it is meant that the controller
computes all the control inputs in a single optimization problem. This framework
may also be extended to include systems that have many subsystems and then the
control action for each such subsystem depends entirely on the centralized controller
[10].

Although the centralized control is suitable for small-scale systems resulting in
global system performance, when considering large-scale systems such as transport
networks and traffic networks, a centralized control structure results in high compu-
tational requirements and increasing communication overhead as it has to collect all
the inputs distributed across the large system and generate control actions for the
whole system. An other disadvantage of centralized control is that it lacks scalabil-
ity. Furthermore, in case of failures in the system, this structure offers no graceful
degradation. Many times the difficulties resulting from a centralized approach can
be overcome considering decentralized control schemes for controlling large-scale
systems.

In decentralized control, the global control is distributed across many indepen-
dent, loosely coupled subsystems. The local controller computes the control inputs
using local measurements and optimizes local dynamics. In this control structure,
the decomposition of system leads to simpler controller structures. By using local
controllers, the computational burden, data gathering, and storage requirements are
much lower. When local controllers do not have any conflicting actions, we can com-
bine the series of local solutions to obtain an overall solution. However, in practice,
independence among the local controllers is unrealistic and thus the resulting global
solution will be sub-optimal [10].
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3.2 Adaptive Traffic Control Strategies

Over the years the design of adaptive signal systems has received considerable atten-
tion and development. The first traffic responsive urban network control strategies
were introduced in the 1980s with the first field implementations of the British
SCOOT [11], and the Australian SCATS [12]. These well known and widely used
traffic responsive control systems are based on heuristic optimization algorithms
[13]. Both SCOOT and SCATS decide on incremental changes of splits, offsets, and
cycles based on real time measurements [14].

Other optimization methods are OPAC [15], PRODYN [16] and RHODES [17],
which are all based on dynamic programming and the rolling-horizon optimization
scheme [13]. These strategies do not consider explicitly splits, offsets and cycles.
They formulate the traffic-responsive urban control problem as a combinatorial op-
timization problem, and they employ exponential complexity algorithms to solve
for a global minimum [14]. Furthermore an other advanced model-based strategy is
CRONOS [18]. Like the other mentioned optimization methods, CRONOS does not
consider explicitly splits, offsets and cycles, but unlike them, it employs a heuristic
global optimization method with polynomial complexity which allows for simulta-
neous consideration of several junctions, albeit for the price of specifying a local
minimum [14]. In addition, TUC system, see Section 3.4, has been successfully
implemented in several large networks in Europe and South America [13].

All the aforementioned systems have a centralized nature; in order to apply
one of these systems, the information from all intersections must be collected and
transmitted to a central location (i.e. Traffic Management Center). However there
are also local controllers as Max-pressure algorithm, see Section 3.3, which are much
easier to implement as they only use the measurements around a certain area of
interest [13].

3.3 Max-Pressure Algorithm

3.3.1 Max-Pressure Introduction

The Max-pressure controller is a decentralized algorithm which stems from commu-
nication network control and considers signal control as a resource allocation prob-
lem. The algorithm achieves to stabilize the network and maximize its throughput
within a real time traffic control process. More specifically, vehicles are considered
customers served by a specific number of servers. Servers can not function at the
same time as they represent the different stages of a junction. The main purpose is
to schedule server activation to maximize the number of served clients and therefore
the performance of the system.

Some parameters and conditions of a signalized network differ from those of
a telecommunication system, so the original algorithm has been modified to be
operationally implemented. More specifically, some modifications are due to the
fact that in a signalized junction switching from a stage to the next causes inter-
stage lost times, hence too frequent switching should be avoided. Further possible
differences include the fixed stage sequence, as well as the existence of upper and
lower bounds for the stage duration in signal control systems [19].

The basic model of Max-pressure algorithm demands information about the mean
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turn ratios and saturation rates and local information about the queues on each inter-
section. In contrast to other predictive control models the Max-pressure algorithm
does not depend on any knowledge of mean current or future demands, the demand
has only to be in certain limits. Different variations of Max-pressure basic method
can be applied depending on the appropriate infrastructure [13].

3.3.2 Max-Pressure Mathematical Formulation

In all different variations of Max-pressure so as the one implemented in this work,
the control variables are the effective green time gn,j(kn) of each stage j of all in-
tersections n of the urban network,where kn = 0, 1, 2 . . . is the control discrete-time
index. Max-pressure algorithm’s main function is to determine the effective green of
every stage at all intersection in a way that stabilize the network. The algorithm in
order to decide the effective green for each stage attaches a pressure in every stage
of every node, giving priority on the stage with the maximum pressure.

The formulation adopted here is proposed in [19] and it is based on the approach
proposed in [13] with some modifications that have proved to be beneficial for the
algorithm application at Chania urban network. In particular, this version of the
algorithm fully respects the predetermined sequence of stages to avoid confusion of
the driver as well as the minimum and maximum allowable green time limits (3.1).
At this version of the algorithm we assume no standard signal cycle, with other words
the signal cycle is developed dynamically after the application of Max-pressure. To
apply the algorithm, the pressure of each junction approach must first be calculated
(3.2). The principal parameter that determines the pressure can be either the current
queue in vehicles or the current number of vehicles in the corresponding link. In
this application of the algorithm, the pressure of each approach depends to the
expected queues in vehicles, which are normalized in relation to the storage capacity
of the approach (first term of Equation (3.2) ). To avoid waste of green time due
to potential downstream blockage caused by queue spillovers at output links, if in
output links the queue is high enough the approach pressures are reduced by an
amount equal to a percentage of the pressure of the output links (second term of
Equation (3.2)) In our case if the pressure of an output link is more than 0.85 (which
means 85 % occupancy) we reduce the pressure of the current link by 10% of this
downstream pressure. Finally, the pressure of each signal stage is calculated as the
sum of the pressures of all approaches that receive right of way during this stage,
and the resulting stage pressures are used to make a control decision (3.3). The next
paragraph presents all the above in a mathematical way.

The urban network is represented as directed graph with links z ∈ Z and nodes
n ∈ N . For each signalized intersection n, the sets of incoming approaches In and
outgoing On links are defined. The signal control plan of node n is based on a fixed
number of stages that belong to the set Fn, wherein uj denotes the set of links that
receive right of way at stage j ∈ Fn. The basic equations of the algorithm are shown
below. The first one represents the constraint about minimum and maximum limits
of allowable green time,

gn,j,min ≤ gn,j(kn) ≤ gn,j,max, j ∈ Fn (3.1)

while the second one represents the pressure of incoming links of each node during
the control cycle kn, under the condition of maximum output links pressure.
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pz(kn) =


[
xz(kn)
xz,max

0.1
∑

w∈0n
βz,wxw(kn)

xw,max

]
Sz, if pw(kn) ≥ 0.85

[
xz(kn)
xz,max

]
Sz, otherwise

(3.2)

where z ∈ In, xz,max is the storage capacity of incoming link z (in vehicles),xz(kn) is
the queue length of link z during the control cycle kn, βz,w is the turning movement
rates Sz is the saturation flow of link z, xw,max is the storage capacity of outgoing
link w (in vehicles) and xw(kn) is the queue length of outgoing link w during the
control cycle kn. Finally, last equations represent the pressure of each signal stage j
of each intersection,

Pnj
(kn) = max

{
0,
∑
z∈uj

pz(kn)

}
, j ∈ Fn (3.3)

where the term
∑

z∈uj pz(kn) refers to the sum of pressures of all incoming links of

node n [13].
In this work, the algorithm uses as input information 1 second time-step mea-

surements of expected queues, in vehicles. The control decision concerns either a
short extension, 2 seconds, of the current active stage or the activation of the next
step of the sequence. However, extension of the current active stage is only granted
if the current green time does not exceed its maximum permissible value, while at
the same time, either it has been found to be the maximum-pressure stage, or its ini-
tial calculated pressure (at the beginning of the stage activation) has not decreased
more than a predetermined percentage(e.g. 35%). This latter condition is used to
avoid frequent step changes that contribute to the unnecessary increase in delay
due to lost times between stages. In case an active stage is not extended, the next
stage is activated at its minimum permissible green time. Then the whole process
is repeated so that a new control decision is taken, in order to make a new control
active stage or after the minimum green time of the next stage, whichever has been
decided [19].

3.4 TUC Strategy

3.4.1 TUC Introduction

The traffic-responsive urban control (TUC) strategy, was developed by Diakaki,
Papageorgiou and McLean, in 1999 as part of an integrated traffic control system
for corridor networks within the European Telematics Applications in Transport
project TABASCO (Telematics Applications in BAvaria, SCotland, and Others)
[14].

The strategy is based on a store-and-forward modelling of the urban network
traffic proposed by Gazis and Potts in 1963, and the linear-quadratic (LQ) regula-
tor methodology. TUC approach designs (off-line) and employs (on-line) a multi-
variable regulator for the traffic-responsive co-ordinated urban network control in a
systematic and generic way [14].

Although traffic-responsive urban network control strategies have been intro-
duced since 1980s, most of them are not suitable for saturated traffic conditions,

17



which are quite widespread during peak hours in modern cities, because they fail
to consider the downstream traffic conditions in their real-time decision-making at
individual junctions. In addition, there is generally a lack of efficient, genuinely
and systematically coordinated control strategies applicable to large-scale networks.
Given the above, TUC has been developed to tackle the problem of traffic-responsive
network-wide signal control, particularly under saturated traffic conditions [14].

However, when demands and queuing are low, TUC’s split decisions are close
to the utilized fixed plans. Thus, its performance depends on the quality of these
plans, which need to be the appropriate for the considered traffic load. To circum-
vent the need for good fixed-time plans, the hybrid variant of the TUC strategy was
developed, whereby signalized junctions are controlled by a real-time Webster-type
demand-driven strategy as long as traffic conditions are undersaturated; while a
switching to the original TUC is effectuated when traffic conditions are close to sat-
uration [20]. An other proposed solution to this problem is an additional actuation
control at the local junction level [21]. These two methods need inflow and outflow
measurements respectively. In this thesis we do not use either of them because we
suppose there is no use of detectors in the network.

TUC consists of three distinct but interconnected modules [19],[22].

• Split control: The aim is the minimization of the risk of oversaturation and
queue spillback, through the appropriate manipulation of the green splits at
signilized junctions for given cycle times and offsets. The methodology used
is based on the linear-quadratic (LQ) regulator theory of automated control.

• Cycle control: It is effectuated through a simple, feedback-based algorithm
(P-Regulator) that modifies the network cycle time so as to adapt the cycle
duration to the currently observed maximum saturation level in the network.

• Offset control: It is effectuated through the application of a decentralized
feedback control law that modifies the offsets of the main stages of successive
junctions along arterials, so as to create “green waves”, taking into account
the possible existence of vehicle queues.

3.4.2 Split Control Mathematical Formulation

The main idea when using store-and-forward models for road traffic control is to
introduce a model simplification that enables the mathematical description of the
traffic flow process without use of discrete variables. This is of paramount impor-
tance because it opens the way to the application of a number of highly efficient
optimization and control methods (such as linear programming, quadratic program-
ming, nonlinear programming, and multivariable regulators) with polynomial com-
plexity, which, on its turn, allows for coordinated control of large-scale networks in
real time, even under saturated traffic conditions [7].

The basic methodology employed by TUC for split control is the formulation
of the urban traffic control problem as a Linear-Quadratic (LQ) optimal control
problem based on a store-and-forward type of mathematical modeling. The control
objective is to minimize the risk of oversaturation and the spillback of link queues by
suitably varying, in a coordinated manner, the green-phase durations of all stages
at all network junctions around some nominal values without affecting neither the
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offsets nor the cycle times. The LQ-approach leads in a straightforward way to the
following multivariable control law [22]

g(k) = gN − Lx(k) (3.4)

where k is the discrete-time index for each cycle, g is the vector of the green times
for all stages of all considered junctions, gN is the vector of their nominal values, L is
the control matrix, and x is the vector of numbers of vehicles xz within the network
links z that approach the considered signal-controlled junctions. The control ma-
trix L depends on the specific network characteristics (topology, staging, saturation
flows, and turning rates), but was found in simulation investigations to have very low
sensitivity with respect to reasonable variations of the involved traffic parameters
(turning rates and saturation flows) [22]. The calculation of L is the straightforward
outcome of the LQ problem formulation and may be very time-consuming for large-
scale networks. However, this calculation is carried out off-line (at the lab) once per
application network, while the on-line (i.e. real-time) calculations are limited to the
execution of Equation (3.4) with a given constant control matrix L and state mea-
surements x(k). After the application of Equation (3.4), a simple low-cost algorithm
[22] applies any existing constraints (e.g. cycle constraints and minimum permis-
sible green times), to the obtained values of g. Moreover, in case that no nominal
values are available for utilization in Equation (3.4), two alternative formulas that
eliminate the need of nominal values gN are available for employment [22]. Given
the split decisions of this part of the TUC strategy as well as the input that this part
has received from the Cycle and Offset Control parts, complete network-wide signal
settings including cycle, split and built-in offsets are available for implementation,
at the end of Split Control.

3.4.3 Cycle Control Mathematical Formulation

One of the ways to influence traffic conditions via traffic lights is through the modi-
fication of cycle time. Note that one single cycle time is considered here for a whole
network in order to enable junction coordination via suitable offsets. Considering
the aforementioned remarks, the objective of cycle control should be to increase the
junctions capacities as much as necessary to limit the maximum observed saturation
level in the network.

The feedback algorithm for cycle control comprises the following three steps [22]:

• A pre-specified p percentage of network links with currently maximum load
σ(k) = xz(k)/xz,max is identified and the corresponding loads are averaged to
provide the average maximum load σ(k).

• The network cycle is calculated from the feedback control law (P-regulator)

C(k) = CN +Kc(σ(k)− σN) (3.5)

where CN is a nominal network cycle time (e.g. equal to the minimum admis-
sible cycle Cmin); σN is a nominal average load (e.g. equal to zero); and Kc

is a control parameter, the value of which affects the intensity of the control
reactions. After the application of Equation (3.5), the calculated cycle time
is constrained within the range

[
Cmin, Cmax

]
, if necessary, to become feasible,
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where Cmin and Cmax are the minimum and maximum permissible cycle times,
respectively.
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Chapter 4

Real-Time Queue Estimation

4.1 Real-Time Estimation of Traffic State

It is generally recognized that one of the most effective ways to reduce congestion on
urban networks is through adaptive traffic signal control [23]. An adaptive system
is superior to a fixed-time system as it responds in real-time measurements, creating
more realistic control plans and thus more efficient.

The adaptive traffic signal control differs from fixed-time signal control in the use
of real-time traffic information instead of fixed historical traffic data. Commonly,
traffic detection technologies use spot sensors or Global Positioning System (GPS)
receivers. As far as concerns spot sensors, loop detectors and magnetometers are
widely used and provide controller with information about traffic speed, volume and
presence of vehicles. Although traditional sensors are well understood by industry
professionals and preferred, the installation and maintenance of inductive loops and
magnetometers are typically much more expensive and invasive than more modern
detection technologies as they require cutting and patching of pavement. Besides
detectors installed in the roadway, many transportation agencies have incorporated
radar, infrared, ultrasonic and acoustic traffic detection devices into their actuated
control systems. In addition to providing traffic speed, volume and presence, sensors
installed above the roadway can also provide vehicle classification and multiple lane
coverage. Therefore, the use of this kind of sensors is superior to the inductive loops
and magnetometers, preventing unnecessary damage to the pavement, facilitating
the maintenance and increasing the coverage area. However, this kind of sensors are
typically more sensitive to inclement weather when compared to detection devices
installed in the roadway [4]. Generally all spot sensors major disadvantage is that
they can only provide point-based information on traffic conditions thus, they do
not represent the realistic traffic state.

With recent advances in technology, a growing number of vehicles are now
equipped with wireless communication systems and global positioning system (GPS)
sensors. Using such vehicles, called probe or connected vehicles, there is a promise
of accurate and timely information without large infrastructure and construction
expenses [24]. Therefore, instead of reliance on point sensors, signal systems would
be able to use data transmitted wirelessly from in-vehicle sensors to the infrastruc-
ture (V2I connectivity), to the cloud (V2C connectivity) or even to everything (V2E
connectivity) [25].

For safety applications, each vehicle transmits a basic safety message that trans-
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mits its temporary identifier, location, speed, heading, lateral and longitudinal ac-
celeration, brake system status, and vehicle size. By listening to these messages, or
by processing measures that arise from these messages, such as queue estimations,
a signal controller can gain a more comprehensive understanding of the movements
of nearby vehicles than with spot sensors [25].

With connected vehicle innovation, traffic signal control would have access to
many measures used for real-time estimation of traffic state, that were previously
estimated or unknown, such as vehicle speeds, positions, arrival rates, rates of ac-
celeration and deceleration, queue lengths, and stopped time [25].

The purpose of this thesis is to evaluate the performance of two real-time traffic
control strategies, the Max-pressure and TUC strategy, when the real-time infor-
mation needed to operate the control strategies is provided by connected network
vehicles; to determine whether they can successfully compete with spot detectors.

In Section 4.2, it is briefly described how the collection of the necessary traffic
information, for the operation of the TUC strategy and the Max-pressure algorithm,
in the case of detectors has been done in this thesis, while Section 4.3 details the
procedure followed in the case of the connected vehicles

4.2 Detector Scenario

4.2.1 Max-Pressure Algorithm

In Max-pressure algorithm, two detectors are plant in every link, one at the entrance
and one at the exit of the link. All (detected) vehicles arriving at the link entrances
during a prespecified time-step (e.g. 1 sec.) are grouped into clusters, which are
assumed to move with constant speeds towards the stop line. Depending on the link
length and the constant speed, we can split the link into time segments supposing
that a cluster moves to the next segment during one time-step. The cluster which
belongs to the last segment transforms to a queue cluster or exits the link (exit
detector). The anticipated queue cluster is formed by the queue cluster, merged
with clusters or parts of clusters that are expected to join the existing queue before
it is cleared at the junction. The anticipated queue cluster is the first cluster that
will be served when the corresponding approach receives right of way. Obviously,
the anticipated queue cluster is continuously updated according to the difference of
the number of expected vehicle arrivals and the number of (detected) link exiting
vehicles. Each cluster is looked upon as an entity to be served without splitting it.

4.2.2 TUC Strategy

In TUC strategy, it is assumed that detectors exists around the middle of the ap-
proaches which provide the occupancy and flow information of links in a cycle time
control interval. As far as its measurement requirements are concerned, an average
estimate of the traffic load in every approach of the considered network over the last
control interval is sufficient [19]. This information about occupancy is incorporated
into an appropriate equation which estimates the accumulation of vehicles in the
link. More details about the mathematical formulation are shown in [26].
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4.3 Connected Vehicle Scenario

First of all a certain percentage of vehicles are assumed to be equipped with con-
nected vehicle technology whereas GPS sensors and V2I or V2C communication
technology in order to provide their location and speed in real-time at short sam-
pling periods which equal the desired estimation sampling periods. The methodology
used is suggested in [24].

As long as the measurements from connected vehicles are collected, they are
appropriately treated at every time step. The first task of the algorithm is the
determination of the queue tail location. Specifically, based on a velocity threshold
(e.g. 8 km/h), any connected vehicle is assigned to the group of moving or the group
of (virtually) stopped vehicles. Then, the connected vehicle located the farthest
from the downstream end of the link with a speed lower than the threshold is
obviously closest to the queue tail and may therefore be considered to provide a first
rough estimation of the queue length, by assuming that the queue tail reaches up
to that vehicle location; clearly, this may be an underestimation, since there may
be farther, non-connected, vehicles queuing behind the last connected vehicle. This
first estimation is calculated as follows:

Lq = maxi(di) (4.1)

where i ∈ I = {n|vn ≤ vmin} for n = 1, . . . , Nc, vmin is the speed threshold that
designates vehicles to either stopped or moving groups, Nc is the number of con-
nected vehicles, and di and vi are the distance of the ith-vehicle measured from the
downstream end of the link and its corresponding speed, respectively.

Therefore, (4.1) is the initial estimation for the queue tail location, counted from
the stop line of the link. The robustness of this rough queue tail estimation in
terms of accuracy, increases proportionally to the percentage of connected vehicles.
Specifically, in cases of high penetration rates, the estimation of queue length using
equation (4.1) is accurate in a great percentage since the probability for a connected
vehicle to be at or very close to the actual queue tail is accordingly high. However, in
cases of low penetration rates this estimation is clearly an underestimation, hence
there may be further, non-connected, vehicles queuing behind the last connected
vehicle. Given the fact that, lower penetration rates are more likely to prevail at the
current and near future conditions, a further elaboration of the initial queue length
estimation is necessary. In order to overcome this problem, a probability-based
correction approach proposed in [24] was used. This approach suggests adding an
error factor to the initial assessment of Lq which success to compensate the principal
queue tail estimation and render the algorithm more robust to low penetration rates
producing this way bias-free estimation.

The developed analytic approach [24], uses the penetration rate and the number
of lanes on the link to conclude on the probability properties of the error due to
dislocation of the queue tail compared to the exact estimation that would result in
case of 100% penetration rate. In this work, it is assumed 1 to be the number of
lanes of the link and α the penetration rate of connected vehicles, which corresponds
to the probability for a vehicle to be connected. In addition, it is considered that
any vehicle in the queue covers a row, see Figure 4.1.

The probability of presence of one connected vehicle in the row i, is Pi = a, hence
the probability of the complementary event is 1−Pi, for i = 0, . . . , r. It is considered
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Figure 4.1: A snapshot of vehicles standing in rows behind the stop bar

that the space-headway of queuing vehicles is Lv which is empirically assumed to
be 5m. Based on the derived probabilities, the following statements arise:

• If there is a connected vehicle in row 0, there is no error in identifying the real
queue tail (with probability P0).

• If there is no connected vehicle in row 0, but there is one in row 1, there is an
error equal to Lv (with probability (1− P0)P1)).

• If there is no connected vehicle in row 0 and row 1, but there is one in row 2,
there is an error equal to 2Lv (with probability (1− P0)(1− P1)P2)).

• The probability of error being iLv is (1− Pi)iPi for i = 0, . . . , r.

There are two possible error compensation options described in [24]. The first
one proposes the production of a random value, yk (where k = 1, 2, . . . is the discrete
time index) based on the distribution function of queue tail estimation error, and
adding it to Lq while the second one proposes to add the mean value, ym (4.3), of
the distribution function to Lq. It is proven in [24] that both approaches produce a
bias-free estimation, but the second approach features lower (in fact, minimum) γµ
for the final resulting estimation error. Given this, the second approach was chosen
in order to compensate the initial queue tail location. We calculated ym value as
follows,

ym,r(a) =
r∑
i=1

iLvP0(1− Pi)i (4.2)

lim
r→∞

ym,r(a) =
Lv(1− a)

a
= ym(a) (4.3)

where a is the penetration rate. After this, the initial queue tail estimation (4.1) is
replaced by the compensated queue tail estimation

L̂q = Lq +
ym(a)

λ
(4.4)

where λ is the number of lanes of a section.
There is a consideration in apply the compensation approach in case of Equation

(4.1) delivers Lq = 0. Actually, at very low demands and especially during the
green traffic phase, there may be actually no queue. So compensating queue tail
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estimation leads to over-estimations, which are greater in low penetration rates than
in higher as Equation (4.3) declares. However the zero estimate may be inaccurate
due to the lack of connected vehicles in the section. In order to overcome this
consideration, it was used the decision tree depicted in Figure 4.2. This conditional
compensation approach is proposed and tested over an unconditional compensation
approach resulting in better results according to the queue tail Bias and RMSE
values in [24] work. Depending on that, it was adopted in this work.

Figure 4.2: Decision tree of queue tail compensation in case of zero queue tail initial
estimate

Decision tree 4.2 is based on the consideration that the probability of Lq = 0
estimate to be accurate, is higher when both demand and penetration rate are low,
since absence of a connected vehicle in a formed small queue is more probable so
that compensation may lead to high and frequent over-estimates. So in this case it
is worthy not to compensate the zero estimate.

After the queue tail location estimation, the next step is the estimation of queue
length in vehicles, as in this work this measure consists the input information of
Max-pressure and TUC strategy. Below is explained the logic followed for queue
length estimation. For non-saturated intersections, when the traffic light turns red
and a queue starts forming, all vehicles inside the queue have relatively low or zero
speed, hence the number of vehicles in the downstream part of the queue length is
calculated based on the average headway of queuing vehicles and the number of the
lanes:

Nd(k) =
L̂q(k)

Lv
λ (4.5)

where L̂q(k) is the estimation of the queue tail after compensation according to the
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previous section and λ is the number of lanes of the link. However this equation can
only be used when all vehicles inside the queue have almost zero speed.

In under-saturated intersections Equation (4.5) holds true only in cases there is
no residual queue from the previous cycle-time, and the queue is forming during the
red phase of the traffic light. However, during the green phase of the traffic light as
well as in saturated traffic conditions, Equation (4.5) is not accurate because of the
fact that some vehicle located downstream of the queue tail, may be moving with a
far from zero velocity.

So in order to make a proper queue estimate, it is suggested in [24] a nonlinear
function (4.6) that receives the prior estimation of number of vehicles, Nd(k), and
the average speed of connected vehicles inside the queue, Vd(k), as input arguments
and returns the N̂d(k), via

N̂d(k) = f(Nd(k), Vd(k), β) (4.6)

where β is a vector of unknown parameters. Based on Equation (4.5), Nd(k) is
derived from L̂q and the assumed value for Lv, while in general Lv may vary from

application to application. Therefore it is preferable to directly use L̂q as an input
argument for the nonlinear function, in which case the value of Lv can be tuned
accordingly. Thus, the following equation may be used instead of Equation (4.6)

N̂d(k) = f(L̂q(k), Vd(k), β) (4.7)

Many mathematical approaches have been suggested to solve the above equation,
ranging from physical (white-box) modeling to experimental (black-box) modeling
[24]. In this work a physical model was used, based on traffic flow theory. For the
physical modeling, it is assumed that there is a linear relationship between the speed
Vj and the applied headway Hj of each individual vehicle j, i.e. Vj = −A + BHj.
Note that, from this equation and according to Equation (4.5), we have for Vj = 0
that Hj = A/B = Lv, hence there is only one degree of freedom for parameters A,
B if Lv is known. Taking the average speed Vd for all queuing vehicles from the
above equation, we get

Vd = −A+BHd (4.8)

where Hd is the average headway downstream of the queue tail. This equation
corresponds to the right-hand side (congested part) of a triangular fundamental
diagram, i.e. to a descending line; and −A is the corresponding negative slope,
which is often called wave speed and is known empirically to be equal to -4 m/s.
Thus, we have in place of equation (4.5)

Nd(k) =
L̂q(k)

Hd

λ (4.9)

and, substituting A
B

= Lv relation, we finally get

Nd(k) =
λAL̂q(k)

Lv(Vd + A)
(4.10)

This equation has the exact form of Equation (4.7), but has a physical significance
and only two parameters to be tuned, namely A and Lv, which have both a physical
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background and could be set to reasonable physical values, A = 4 and Lv = 5, even
without elaborative tuning.

However, in order to advance, it is assumed that there is an available set of
K data points, (z1, (x1, y1 )), (z2, (x2, y2 )), . . . , (zK , (xK , yK)) to be used for
calibration, and a model function z = f(x, y, β). It is desired to find the optimal
values of the unknown parameters β in the least squares sense, that is, to minimize
the sum of squares

S =
K∑
k=1

r2k (4.11)

where the errors rk are given by

rk = zk − f(xk, yk, β) (4.12)

For the physical modeling (4.10) the error function is nonlinear with respect to
the unknown parameters. However, defining a new parameter P = Lv

A
and consider-

ing the inverse of (4.10), i.e. [1/Nd(k)], for computing the sum of squares of errors
S, we end up with a linear-in-parameters function.

Hence in order to improve the results, the convex quadratic minimization prob-
lem (4.13) was solved analytically for the global minimum, offline, by a minimization
algorithm designed in Matlab.

β̂ =
K∑
k=1

[zk − f(xk, yk, β)]2 (4.13)

subject to Equation (4.7)
In Section 6.2 reference is made to the parameters used.
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Chapter 5

Simulation Environment

5.1 Simulation Environment

To study and compare the efficiency of connected vehicles as source of queue infor-
mation for two considered signal control approaches under realistic traffic conditions,
the urban traffic network of Chania has been used see Figure 5.1. In particular, the
simulation model, which had been developed for the needs of a past study in Aimsun,
a well-known microscopic traffic modelling software, has been adopted herein.

Aimsun is a traffic modeling software that allows, complete road networks mod-
elling. Aimsun software simulates static and dynamic traffic assignment with meso-
scopic, microscopic and hybrid simulation. Moreover it permits the expandability of
its function, allowing the user to intervene any time on simulation environment us-
ing Python or C++ language. In this work, it was used two main ways of interface
with the main software, the Application Programming Interface and the Aimsun
Microscopic Simulator Software Development Kit.

The Application Programming Interface or API is a collection of functions, in
Python or C++, that allow the function of Intelligent Transportation Systems (ITS)
in the simulation. These include non-standard adaptive traffic control, advanced
traffic management, vehicle guidance and many more. The Aimsun Microscopic Sim-
ulator Software Development Kit or microSDK enables the user to override Aimsun’s
behavioral models (car-following, lane-changing, etc.) and apply its own behavioral
models, programmed in C++. In this work, API was used in order to include adap-
tive traffic control algorithms, while microSDK to get necessary information like
speed and position from vehicles of the simulation.

The considered network of Chania consists of 13 junctions with complex geom-
etry and signal control, and 47 links; each link represents a road approach, which
comprises one or more traffic streams that receive identical signaling; note that some
physical roads may be reflected in more than one model links, whereby each link
receives independent signaling. The specific characteristics of the links and their
associated demands are given in Table 5.1. We have tested our algorithms in a
heavy scenario according to demand, see Figure 5.2. In this scenario, using the
real life traffic control, the network suffers from severe congestion problems, leading
sometimes even to (partial) gridlocks as, especially during the peak hours of the day,
traffic entering from the major network origins, located at junctions 1, 7, 8, 9 and
13, is directed towards the utmost central district of the city located in the vicinity
of junctions 4, 5 and 6.

28



Figure 5.1: Chania traffic network

Each reported simulation lasts for one and a half hour, and data from detectors
and connected vehicles are collected every one second. For control cases 4 and 5,
different penetration rates of connected vehicles, ranging from 10% to 100% are con-
sidered. The vehicles are produced in the simulation environment with the average
length of 4 m and 0.5 m standard deviation. The average distance between two
stopped vehicles is 1 m with 0.3 m standard deviation.

The investigations performed herein involve comparisons for the following five
control cases:

• Control case 1: Application of fixed 90 sec cycle time plans. These plans
correspond to one of the fixed predefined network-wide signal plans used by
the Traffic Control System (TCS) of the city.

• Control case 2: Application of the Max-pressure algorithm with detectors.

• Control case 3: Application of the TUC strategy with detectors.

• Control case 4: Application of the Max-pressure algorithm with connected
vehicles.

• Control case 5: Application of the TUC strategy with connected vehicles.

The comparison criterions of the above cases are Delay (the average delay per
car per kilometer) and Density ( the average network density).
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Figure 5.2: Traffic demand of Chania network, for all cases of simulations
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Network characteristics
Junction id Sections Length(m) Number of lanes

L1 70.4 2
1 O20 150.0 2

O26 100.0 1
O1 66.0 1
L4 70.1 2

2 O2 49.9 1
L42 48.3 2
L46 34.0 2

3 L43 70.5 2
O18 62.4 1

L8, L9 40.0 4
4 O21 19.0 2

O3 50.0197 1
L10 80.7 3

5 L39, L40 71.5 2
L37, L38 59.1 2

L48 62.0 2
6 L41 119.9 2

L50 60.0 1
L13 64.0 3

7 L12 78.6 2
O4 80.0 2

L34, L35 55.5 1
L17 65.6 2

8 O6 90.0 1
L15, L16 55.5 2

O22 200.0 2
9 L60 93.3 1

L56 145.2 1
L51 66.6 2

10 L53 61.1 1
L57 148.9 1
O16 170.0 2

11 L54, L55 58.1 1
O15 120.0 1
L36 119.0 1

12 O14 160.0 1
O24 111.7 1
L49 63.1 2

13 O25 305.0 1
L58 33.0 1

Table 5.1: Characteristics of Chania urban network
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Chapter 6

Queue Estimation Results

6.1 Characteristics and Assumptions

Our queue estimation method assumes the following conditions:

• There is no communication error, sensor failure, etc., hence the locations and
speeds of all connected vehicles are known.

• The connected vehicles are randomly distributed in the link inflow; the exact
prevailing penetration rate is unknown; but the average penetration rate is
known and used for queue tail error compensation.

• Vehicles are equally distributed across all the lanes of a link.

• Vehicles are not allowed to park in the utilized link lanes.

In order to evaluate the quality of the produced results, the statistical measures
used are the Bias and the Root Mean Square Error (RMSE) of the estimation.
Suppose that the produced estimate and the ground truth for a quantity are ŷ and
y, respectively. Then, the statistical measures mentioned, are calculated as follows:

Bias =
n∑
k=1

(ŷk − yk)
n

(6.1)

RMSE =

√√√√ n∑
k=1

(ŷk − yk)2
n

(6.2)

For reasons of easier conclusion it was chosen to present statistical data for some
crucial junctions of the network; 4, 5 and 6 around which the collision phenomenon
is more pronounced and junction 12 which is the only junction composed entirely of
one lane sections.
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6.2 Parameter Calibration

For estimating the number of vehicles downstream of the queue tail, the physi-
cal mathematical modelling approach (4.10) was used, based on the estimation of
queue tail location, the average speed of connected vehicles inside the queue and the
unknown parameters A and Lv (see Section 4.3).

In this work, it was first used the modelling approach with A and Lv getting
their physical values, A = 4 m/s and Lv = 5 m, as both parameters have a physical
background so they can be used in their physical empirically produced values leading
to accurate results [24]. Parameter A represents the slope, i.e. in a more general
sense, the speed at which congestion increases. In addition, parameter Lv represents
the space-headway of queuing vehicles.

However, in order to improve the upcoming results, the modelling function (4.10)
was fitted once, by the analytic solution of the convex quadratic minimization prob-
lem (4.13) (see Section 4.3), for all the links of the network, in a simulation with
100% penetration rate. The same parameter values were used for links with the
same number of lanes (i.e the average value of the best values obtained for links
with the same number of lanes), as an attempt for wider use of the parameters. The
resulting parameters are then used for all different penetration rates. The clustering
of parameters by the number of lanes on each section seems to be an accurate effort
of a wider use of parameters based on the Table 6.1 and Figure 6.1.

Table 6.1 shows the queue estimation error for all sections of Chania traffic
network, as well as the queue estimation mean error and the root mean square
error of queue estimation , of the whole network for the use of physical parameters,
optimal and broadly optimal parameters. Mean error (ME) and RMSE values of
network queue estimation, are calculated as the average of mean error and RMSE
values of network links. Considering Table 6.1, the mean error of queue estimation in
the case of using broadly optimal parameters (0.10 veh) does not differ significantly
with the use of optimal parameters (0.13 veh), while it tends to be considerably
lower than the use of physical parameters (0.44 veh). In addition, the root mean
square error of network queue estimation is lower using optimal parameters (0.62
veh), as the minimization problem (4.13) (based on the sum of queue estimation’s
squared errors) indicates, while it is insignificantly higher in the case of using broadly
optimal parameters (0.78 veh).

It should be noted that links L8-L9, L10 and L13 present higher mean error
values from the average mean error value, this is because the original assumption
for the equal distribution of vehicles on the lanes of links is not always valid for some
links because of the existence of different approaches and for some others because
the vehicles tend to move to the left or right lanes to ensure a turn in a downstream
junction. We can solve this problem by taking the separate approaches as separate
links, what we did in the implementation of the TUC strategy hence TUC needs this
kind of formulation, or by reducing some unused lanes for our calculations. It was
decided not to change our formulation because the links where the problem occurs,
are the links of the main phases of central junctions 4 and 5 where we would prefer
some overestimation and high green times for the implemented strategies.
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Queue estimation error (veh)
Link (id) Physical values Optimal values Broadly optimal values

L1 0.02 0.01 0.01
O20 0.42 0.26 0.09
O26 0.01 0.00 0.01
O1 0.08 0.01 0.02
L4 0.08 0.07 0.07
O2 0.04 0.01 0.01
L42 0.28 0.17 0.23
L46 0.14 0.06 0.10
L43 0.45 0.35 -0.23
O18 0.00 0.00 0.00

L8, L9 2.18 0.92 1.57
O21 0.29 0.28 0.29
O3 0.02 0.01 -0.06
L10 3.00 0.45 1.06

L39, L40 1.82 0.38 0.92
L37, L38 0.60 0.20 -0.23

L48 0.62 0.11 -0.04
L41 1.11 0.20 -1.9
L50 0.11 0.02 -0.03
L13 2.92 0.86 1.25
L12 -0.12 -0.23 -0.44
O4 1.37 0.22 0.50

L34, L35 0.21 0.02 0.03
L17 0.30 0.20 0.05
O6 -0.38 0.01 0.00

L15, L16 0.34 0.04 0.19
O22 0.61 0.21 0.27
L60 -0.62 -0.01 0.14
L56 0.02 0.01 0.01
L51 1.00 0.09 -0.02
L53 0.15 0.00 -0.04
L57 0.29 0.04 -0.25
O16 0.65 0.15 0.29

L54, L55 -0.36 0.10 0.04
015 0.05 0.01 0.01
L36 0.03 0.01 0.01
O14 0.00 0.00 0.00
O24 0.08 0.00 0.01
L49 0.34 0.16 0.24
O25 0.04 0.00 0.01
L58 0.03 0.01 0.01

ME of network queue estimation (veh) 0.44 0.13 0.10
RMSE of network queue estimation (veh) 1.03 0.62 0.78

Table 6.1: Queue estimation error of Chania traffic network, in vehicles.
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Figure 6.1 shows the difference in queue estimation and actual value in vehicles
in the three different possible parameter set options (left subplot) and in the case
of selecting optimal or broadly optimal parameters (right subplot).
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Figure 6.1: Difference of queue estimation and real queue value for 100% penetration
rate in different parameter set values

By observing the diagrams of Figure 6.1 we can again see the use of widely
optimal values lead to queue estimation that is no different from queue estimation
when using the optimum parameter values. In addition, it appears again that widely
optimal values are superior to the quality of the estimation they produce, in relation
to the proposed physical values.

Table 6.2 presents the tuned values for the parameters of the physical model
approach (4.10), which were used in network simulations. Finally, it should be
noted that all used parameter sets of all links have been tested to lead to the optimal
solution area of minimization problem (4.13). Figure 6.2 shows the result of (4.13)
for different sets of parameters A and Lv for link L36. The vertical axis represents
A while the horizontal axis represents Lv. As we can see, the broadly optimal values
for link L36, A = 3.4 and Lv = 5.3, lead to the dark red area, which is the area of
the optimal values of (4.13). The same happens in all links of the network. That
means that the parameters A and Lv present low sensitivity around their best value.
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Figure 6.2: Colormap of sum of squared queue estimation errors for link L36 ac-
cording to parameters A and Lv.
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Broadly optimal values
Link (id) A (m/s) Lv (m)

L1 3.3 6.1
O20 3.3 6.1
O26 3.4 5.3
O1 3.4 5.3
L4 3.3 6.1
O2 3.4 5.3
L42 3.3 6.1
L46 3.3 6.1
L43 3.3 6.1
018 3.4 5.3

L8, L9 3.3 6.1
O21 3.3 6.1
O3 3.4 5.3
L10 3.3 6.1

L39, L40 3.3 6.1
L37, L38 3.3 6.1

L48 3.3 6.1
L41 3.3 6.1
L50 3.4 5.3
L13 3.3 6.1
L12 3.3 6.1
O4 3.3 6.1

L34, L35 3.4 5.3
L17 3.3 6.1
O6 2.5 4.1

L15, L16 3.3 6.1
O22 3.3 6.1
L60 2.5 4.1
L56 3.4 5.3
L51 3.3 6.1
L53 3.4 5.3
L57 3.4 5.3
O16 3.3 6.1

L54, L55 2.5 4.1
015 3.4 5.3
L36 3.4 5.3
O14 3.4 5.3
O24 3.4 5.3
L49 3.3 6.1
O25 3.4 5.3
L58 3.4 5.3

Table 6.2: Broadly optimal values used in Chania traffic network simulations.
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6.3 Statistical Evaluation

6.3.1 Estimation of the Queue Tail Location

As stated in Section 4.3, a first estimate of queue tail location is attained based on
Equation (4.1), which accuracy depends on the penetration rate. Low penetration
rates indicate a low probability of a connected vehicle existence close to the real
queue tail location, therefore this initial estimation may be subject to significant
error. To reduce the error, a probability-based approach was used to conditionally
compensate queue tail initial estimation.

In this work, for fixed signal control scenario, the speed threshold used in Equa-
tion (4.1) is 3.0 m/s, the thresholds used for conditional compensation are 10%
for the penetration rate and the time period of high demand in seconds is, t ∈[
1200, 3600

]
for simulations of one and a half hour duration.

The following tables show the statistic values of Bias and Root Mean Square
Error of queue tail estimation for the network and for some significant junctions 4,
5, 6 and 12, calculated as Equations (6.1), (6.2) indicate. Moreover the following
figures present estimates and real queue tail difference (6.3) for different penetration
rates, for a certain link of those junctions, following the mathematical relationship
where yk is the actual queue tail value and ŷk is the queue tail estimate.

Dif = yk − ŷk (6.3)

The results are obtained from samples of 10 fixed-time control simulations and
different penetration rate in each sample, in order to evaluate the accuracy of the
estimation approach under different rate of demand information. The rows of tables
represent the penetration rate of connected vehicles while the columns represent
the sections of a junction. Obviously there was no need to present the queue tail
estimation for 100% as it is equal with the actual queue tail value.

Network statistics (m)
Penetration rate (%) Average Bias (m) Average RMSE (m)
50 1.6 5.0
30 4.9 8.7
10 2.5 13.8

Table 6.3: Network statistics (in meters).

Considering RMSE Tables, 6.8, 6.9, 6.10, 6.11, Bias Tables 6.4, 6.5, 6.6, 6.7 and
the Table with statistics of the network 6.3, we see that Bias, except of 10% penetra-
tion rate case, and RMSE values increase as penetration rate decreases, indicating
that the accuracy of queue tail estimation is continually improving with increas-
ing penetration rates of connected vehicles. In the case of 10% connected vehicles,
some bias values present an improvement because of conditional compensation of
queue estimate, see Section 4.3. In particular, in low penetration rates such us 10%
we would expect higher absolute estimation bias. However, avoiding some wrong
estimates at the begin and at the end of the simulation, by not adding the mean
error when the estimated queue is zero, leads to a decreased absolute bias value as
happens in links O21, O3, L48, L50, L36, O14 and L50. Furthermore, considering
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plus and minus signs in Bias Tables 6.4, 6.5, 6.6 and 6.7, it seems that there is not
a specific overestimate or underestimate tendency.

Bias (m)
Penetration Links

rate (%) L8 O21 O3
50 0.3 1.5 2.4
30 0.2 4.6 6.3
10 -2.1 3.4 -0.1

Table 6.4: Bias of queue tail estimation for junction 4 (in meters).

Bias (m)
Penetration Links

rate (%) L10 L39 L37
50 -0.8 -0.6 0.7
30 -0.5 0.9 2.9
10 -4.1 -3.4 -0.5

Table 6.5: Bias of queue tail estimation for junction 5 (in meters).

Bias (m)
Penetration Links

rate (%) L48 L41 L50
50 0.5 0.2 1.4
30 2.1 0.9 6.2
10 -0.3 -2.4 1.6

Table 6.6: Bias of queue tail estimation for junction 6 (in meters).
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Bias (m)
Penetration Links

rate (%) L36 O14 O24
50 3.5 4.7 2.6
30 9.5 11.2 6.6
10 8.7 10.0 4.2

Table 6.7: Bias of queue tail estimation for junction 12 (in meters).

RMSE (m)
Penetration Links

rate (%) L8 O21 O3
50 4.4 3.0 5.5
30 6.1 5.5 9.7
10 8.9 6.4 16.1

Table 6.8: RMSE of queue tail estimation for junction 4 (in meters).

RMSE (m)
Penetration Links

rate (%) L10 L39 L37
50 5.8 6.9 4.6
30 8.7 8.8 6.8
10 14.8 15.6 12.8

Table 6.9: RMSE of queue tail estimation for junction 5 (in meters).

RMSE (m)
Penetration Links

rate (%) L48 L41 L50
50 5.8 4.8 6.9
30 8.9 8.5 10.8
10 13.8 19.2 15.3

Table 6.10: RMSE of queue tail estimation for junction 6 (in meters).

RMSE (m)
Penetration Links

rate (%) L36 O14 O24
50 5.5 4.9 5.7
30 10.9 11.3 12.3
10 16.2 15.6 15.5

Table 6.11: RMSE of queue tail estimation for junction 12 (in meters).
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Figures 6.3, 6.4, 6.5 and 6.6 show the difference of queue tail actual value and
queue tail estimation in different penetration rates confirming that lower penetra-
tion rates provide lower accuracy estimates. In particular, it appears that both
underestimations and overestimations are increasing in frequency and value as the
penetration rate decreases. The underestimations are due to the lack of connected
vehicle information, due to low penetration rate. Overestimations are due to the
compensation error process. Serious overestimations occur in case of zero value
queue tail estimation especially for low penetration rates, as several times this esti-
mation is accurate, so compensation is causing overestimations.
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Figure 6.3: Difference of actual queue tail value and queue tail estimation for section
L8, for different penetration rates
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Figure 6.4: Difference of actual queue tail value and queue tail estimation for section
L10, for different penetration rates

However, underestimations have higher values than overestimations, which means
that there is a greater estimation error due to the low number of connected vehicles
in the network than due to the error compensation process. It follows from this
that the compensation error contributes more to reduce the estimation error than
to increase it, since without this process the underestimations would be even more.
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Figure 6.5: Difference of actual queue tail value and queue tail estimation for section
L48, for different penetration rates
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Figure 6.6: Difference of actual queue tail value and queue tail estimation for section
L36, for different penetration rates

It is also observed that in the 10% diagrams in the initial and final times appear
small underestimations instead of overestimations, opposed to the larger penetration
rates. This is due to the conditional compensation error process, where for small
penetration rates it was chosen not to apply error compensation during periods of
low demand (4.3).
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Finally, Figure 6.7 shows the distribution of the absolute error of queue tail
estimation in order to test empirically the validity of the analytic approach. An
empirical approach to find such distribution functions was employed and functions
were fitted from data of the average simulation of each sample set (10 simulations)
of different penetration rate. It is clear that the probability of having lower absolute
error values of 1 meter is very small for 50% and 30% penetration rates, while it is
quite large (near 0.45 probable ) when the penetration rate of connected vehicles is
10%. This is justified by the conditional compensation error approach.
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Figure 6.7: Empirical Probability Distribution

In fact, we achieve more zero value estimation because at times of low demand
for 10% penetration rate, we do not compensate the initial estimate at all, whereby
at times of high demand we compensate the estimation at half the grade than for
the higher rates. However, it seems that the probability of error to be less than X
for X > 3 m decreases as the penetration rate decreases as the cause of the error is
now the low information due to the small penetration rate.
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6.3.2 Estimation of Link Vehicle Accumulation Downstream
of Queue Tail

The following tables show the statistic values of Bias and Root Mean Square Error
of queue estimation, calculated as Equations (6.1), (6.2) indicate. The following
tables refer to the whole network, some junctions with typical links (6 and 12) and
specific junctions with links that present some peculiarities (4 and 5), in order to get
an overview of the results and to comment on certain specific points. Moreover the
following figures show the queue estimation and the actual queue value in vehicles
for a certain link of those specific junctions. The results are obtained from samples
of 10 fixed-time control simulations and different penetration rate in each sample,
in order to evaluate the accuracy of the estimation approach under different rate of
demand information. The broadly optimized parameters values have been used to
calculate the estimation function. The rows of tables represent the penetration rate
of connected vehicles while the columns represent the sections of a junction.

Table 6.12 shows the Bias and the RMSE of the network. We can see that Bias
and RMSE values increase as the penetration rate decreases, indicating that the
estimation accuracy decreases as the percentage of connected vehicles in the network
gets lower. However, bias value for 10% penetration rate has some improvement over
30% due to the conditional compensation approach followed; below is analyzed more
precisely what is going on. In addition, it is clear that the bias of the estimation is
close to zero for high penetration rates while for lower penetration rates is close to
1 vehicle, hence the estimation approach described in Section (4.3) is effective for
high penetration rates and quite accurate for lower penetration rates of connected
vehicles.

Network statistics (veh)
Penetration rate (%) Average Bias (veh) Average RMSE (veh)
100 0.1 0.8
50 0.2 1.3
30 1.2 2.2
10 0.8 3.4

Table 6.12: Network statistics (in vehicles).

Bias (veh)
Penetration Links

rate (%) L8 O21 O3
100 1.6 0.3 -0.1
50 1.0 0.0 0.5
30 0.7 1.9 1.0
10 1.0 1.6 -0.1

Table 6.13: Bias of queue estimation for junction 4 (in vehicles).

Observing Tables 6.13, 6.14, 6.15 and 6.16 it is clear that in general the bias of
the estimation is close to zero and especially to node 12 for 100% penetration rate
our estimation seems to be totally unbiased. Furthermore different conclusions are
made according to lane number of each section.
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Bias (veh)
Penetration Links

rate (%) L10 L39 L37
100 1.0 0.9 -0.2
50 0.7 0.5 -0.5
30 0.4 1.7 0.9
10 0.1 0.6 0.0

Table 6.14: Bias of queue estimation for junction 5 (in vehicles).

Bias (veh)
Penetration Links

rate (%) L48 L41 L50
100 -0.0 -1.9 -0.0
50 -0.3 -2.0 -0.2
30 1.0 -1.3 1.1
10 0.4 -2.0 0.3

Table 6.15: Bias of queue estimation for junction 6 (in vehicles).

For one lane links, such as O3, L50, L36, O12 and O24, it is observed that the
absolute bias values increase, hence estimation is getting worse, as the penetration
rate decreases, except for the 10% cases mentioned below. In addition, positive
and negative signs of estimation bias reveal that there is not a certain tendency to
overestimate or underestimate the number of vehicles inside the queue, by reducing
or increasing the penetration rate because of the assumption of connected vehicle
random distribution (see Section 6.1).

For links with more lanes we see that the absolute value of bias is lower for lower
percentages than for 100 %. Specifically, on some 2-lane streets such as O21 and L39,
the bias value in case of 50% penetration rate, improves to a small extent than the
100% bias and increases sharply in 30% penetration rate case. Also on L8 and L10
streets consisting of 4 and 3 lanes respectively, we see that there is an improvement
in bias even in the case of penetration 30%. This is because of the incompleteness
of the original assumption that has been made for the equal distribution of vehicles
in the lanes of a road (see Section 6.1). Although this assumption is accurate in real
networks, in Aimsun simulations for Chania Network, on links with several lanes,
this condition is not fully applicable. As a result some of the lanes are not covered
in the same way as the others, while the estimation model assumes that there is
equal distribution of vehicles in the lanes. That is the reason that bias of those links
for 100% connected vehicle rate indicates a large overestimation which is reduced to
the lower penetration rates, as low penetration rates counterbalance the uncovered
lanes, indicating this way a more accurate traffic state than high penetration rates.
Obviously, the more lanes a road has, the more intense this happens, so on L8 and
L10 links, even in case of 30% connected vehicle rate, present an improvement in
bias.

As far as it concerns 10% penetration rate cases, by studying the results obtained
from the simulations of Chania urban network, it was clear that for a penetration
rate of connected vehicles less than 10% the queue estimation was quite inaccurate
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Bias (veh)
Penetration Links

rate (%) L36 O14 O24
100 0.0 0.0 0.0
50 0.8 0.9 0.6
30 1.6 1.9 1.1
10 1.6 1.8 0.8

Table 6.16: Bias of queue estimation for junction 12 (in vehicles).

and specifically over-biased. This was due to the fact that for a low penetration
rate the mean error added to the initial vehicle estimation was too large resulting in
overestimation of the queue. To improve the estimation, it was decided for the case
of zero queue to add half the mean error to the initial estimation at the time of the
high demand of the network that is assumed to be between 1200 - 3600 sec. for the
simulations of 1.30 h carried out, while no adding it, the other time moments. This
is why in most links the queue estimation for 10% penetration rate exhibits a lower
bias than for higher penetration rates and the same is observed for the average bias
of the network (see Table 6.12).

RMSE (veh)
Penetration Links

rate (%) L8 O21 O3
100 3.4 0.6 0.3
50 3.2 0.7 1.0
30 3.1 2.0 1.7
10 3.8 2.5 3.0

Table 6.17: RMSE of queue estimation for junction 4 (in vehicles).

RMSE (veh)
Penetration Links

rate (%) L10 L39 L37
100 2.4 1.9 1.1
50 2.8 2.5 1.6
30 3.2 3.2 2.3
10 5.4 4.3 4.0

Table 6.18: RMSE of queue estimation for junction 5 (in vehicles).

Regarding the accuracy of estimation model, RMSE values indicate that the
accuracy of the provided estimation is worsened by increasing the penetration rate
(see Tables 6.17, 6.18, 6.19, 6.20) which was expected as with a lower penetration
rate there is not a precise sense of network demand throughout the simulation, since
the only source of information is connected vehicles.

However, it is observed that section L8, see Table 6.17, show a differentiation in
this generalization. In particular, it appears that the RMSE decreases as the pen-
etration rate decreases while rising sharply to 10%. This is because of the incom-
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RMSE (veh)
Penetration Links

rate (%) L48 L41 L50
100 0.9 3.2 0.3
50 1.6 3.6 1.2
30 2.5 4.2 1.9
10 3.8 6.7 2.7

Table 6.19: RMSE of queue estimation for junction 6 (in vehicles).

RMSE (veh)
Penetration Links

rate (%) L36 O14 O24
100 0.1 0.0 0.1
50 1.0 1.0 1.1
30 1.8 1.9 2.1
10 2.9 2.8 2.7

Table 6.20: RMSE of queue estimation for junction 12 (in vehicles).

pleteness of the original assumption that has been made for the equal distribution
of vehicles in the lanes of a road, as it was mentioned before.

Figures 6.8, 6.9, 6.10, 6.11 provide a comparison between actual and estimated
number of vehicles downstream of the queue tail for different penetration rates. The
figures of all the other links follows at the Appendix A. Figures 6.12, 6.13 show the
queue estimation of vehicles and the actual queue during a low demand period and
a high demand period in order to clarify the relationship between the estimation for
different rates of connected vehicles and network demand.

Chart analysis agree with the comments made up taking into account the sta-
tistical results, confirming that :

• There seems to be no particular tendency for overestimation or underestima-
tion relevant with the penetration rate increase or decrease.

• The accuracy of the estimation decreases as the percentage of connected vehi-
cles is reduced for all links irrespective of their number of lanes, that is because
the information of traffic state is reduced.

• The assumption of equal distribution between the lanes is a very crucial one.

• The estimation has serious problems in low demand periods especially when
there is a low penetration rate of connected vehicles. That is why for 10%
penetration rate the different way to add the mean error at the periods of low
demand has resulted in estimation improvements compared to higher penetra-
tion rates (see Figure 6.12).

• In high demand period especially when there is a high penetration rate of
connected vehicles, estimation succeeds to reach the actual number of vehicles
in some time-steps (see Figure 6.13).
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Figure 6.8: Difference of queue estimation and real queue value for section L8, for
different penetration rates
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Figure 6.9: Difference of queue estimation and real queue value for section L10, for
different penetration rates
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Figure 6.10: Difference of queue estimation and real queue value for section L48, for
different penetration rates
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Figure 6.11: Difference of queue estimation and real queue value for section L36, for
different penetration rates
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Figure 6.12: Difference of queue estimation and real queue value for section L36, for
different penetration rates, in a low demand period
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Figure 6.13: Difference of queue estimation and real queue value for section L36, for
different penetration rates, in a high demand period
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Chapter 7

Control Strategies Results

7.1 Introduction

The evaluation of mathematical approach (4.10) in Section 6.3.2 shows that con-
nected vehicles could provide realistic information about the traffic state, which
accuracy increases as the available connected vehicle rate increases in the urban
network. Thereafter, mathematical estimation approach (4.10) was embedded in
two different real-time traffic control strategies, the centralized TUC strategy (see
Section 3.3) and the decentralized Max-pressure algorithm (see Section 3.4) so that
to test their reaction on connected vehicle information and figure out how traffic con-
trol could function in an urban network given the availability of connected vehicle
provided information.

The control strategies have been tested using simulation environment of Chania
network, see Section 5.1. In order to make some general conclusions, it was used
a sample of 10 simulation replications for each control case, while traffic control
efficiency was evaluated using the control indexes of average delay and density (see
Section 2.2). Sections 7.2, 7.3 light up the performance of the two strategies individ-
ually to compare the use of spot detectors and connected vehicles. Finally, Section
7.4 compares the two strategies (in the case of detectors and connected vehicles)
with the fixed control, to determine which strategy case best responds. For rea-
sons of comprehension, it should be noted that FT, MP and TUC abbreviations in
following result tables refer to Fixed control, MP control with detectors and TUC
control with detectors. Abbreviations such as MP p.r % or TUC p.r %, refer to
control cases with the corresponding penetration rate of connected vehicles.

7.2 TUC Strategy

Considering tables 7.1 and 7.2, both the average delay and density seem to stand
in the same level of value in all different penetration rates. At TUC strategy, the
real-time information about vehicles accumulation inside the queue is the average of
estimates selected in a cycle control interval. However, the average queue estimate in
vehicles tends to be similar despite the different existing rates of connected vehicles,
as the bias of queue estimation does not vary significantly with different penetration
rates, see Section 6.3.2. Consequently, since the average estimated real-time queue is
almost similar in different penetration rates, the performance of the strategy remains
about the same in different connected vehicle rates.
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Moreover standard deviation of both indexes shows that for all penetration rates
results are low deviated, in particular density results, which means that both are
accurate control index of the sample. However for some penetration rate there is a
higher value of delay standard deviation which is justified by the initial assumption
that connected vehicles are randomly distributed in the link so the penetration rate
indicates an average and not the exact prevailing value.

In order to more accurately check the quality of the results and consequently the
conclusions we made, a statistical t-test was carried out. A t-test is commonly used
to determine whether the mean of a population significantly differs from a specific
value (called the hypothesized mean) or from the mean of another population. In
our case, the t-test was applied between all penetration rate cases per two, showing
there was no statistically significant difference in the average performance of differ-
ent samples, so we accept the zero hypothesis. Therefore conclusions are typically
accurate. The results of t-Test follows at the Appendix B.

Delay evaluation data
Average Delay (sec/km) St.Deviation (sec/km) % Improvement

TUC 122.0 4.2
TUC 100 % 125.9 3.3 -3.2
TUC 50 % 124.3 6.9 -1.9
TUC 30 % 122.6 6.1 -0.5
TUC 10 % 126.8 7.6 -3.9

Table 7.1: TUC delay evaluation data

Density evaluation data
Average Density (veh/km) St.Deviation (veh/km) % Improvement

TUC 8.1 0.3
TUC 100 % 8.4 0.2 -3.6
TUC 50 % 8.3 0.3 -2.5
TUC 30 % 8.1 0.2 -0.6
TUC 10 % 8.3 0.3 -2.7

Table 7.2: TUC density evaluation data
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Figure 7.1: Cycle time of Fixed control and TUC control cases

Figure 7.1 shows how cycle time is formed during the simulation time for Fixed
control, TUC detector control case and TUC with different connected vehicle rate
cases. Recall that, under TUC, there is one common cycle time for all junctions at
any time which is based on the most dense junctions in the network. The presented
cycle times are derived from the simulation of which the delay time is closer to the
average delay time of the 10 simulations performed, in any traffic control case.

Chart shows that all TUC cases form smaller cycles than the fixed control case.
Therefore, it is justified that they also exhibit lower delay values, as lower cycles
typically decrease delay time. As far as it concerns TUC cases, it is generally
observed that same decisions are made about increasing or decreasing the cycle,
varying in the specific cycle duration, exact size and response to change. However
the variations are small and this confirms the small variations in TUC performance
for different percentages of connected vehicles. With a more careful observation of
the diagram, we can see that detector case is more delaying to increase the cycle,
which increases sharply, and also throws it faster than other cases.

In addition, in 30% penetration rate case, the cycle does not fall to its minimum
value as in the rest of penetration rate cases. This is because the smaller the
penetration rate, the compensation approach (see Section 4.3) increases the queue
estimate, so it is estimated that there is some demand even in periods that it does
not exist and consequently the cycle grows unnecessarily. However, this is not the
case for 10% penetration rate because we do not apply the compensation approach
in times of low demand. For that reason 10% penetration rate seems to behave
closer to 100% penetration rate in the control cycle configuration, in low demand
periods, than the other rates.

It should be noted that TUC application starts under the typical for the network
90 s cycle time, which is updated by TUC’s cycle control module after 5 min. This
means that during the first 5 minutes of the simulation horizon, the cycle time is
rather high for the respective network load, which is still low, thus imposing further
delays.
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7.3 Max-Pressure Algorithm

The results of the third column of tables 7.3, 7.4 show that the Max-pressure algo-
rithm in the case of the use of connected vehicles with a percentage greater than or
equal to 50% best performs the criteria of delay and density, from the case of the
algorithm using spot detectors. However, for smaller percentages of 30% the algo-
rithm performs worse than using spot detectors. This is normal, since the algorithm
uses the estimation of queue in vehicles provided by Equation (4.10) in each step.
Specifically, as the percentage of connected vehicles increases, the accuracy of the
estimate increases, as the RMSE results of the queue estimation in vehicles confirm
in Section 6.3.2, therefore the quality of the algorithm control is also improved.

As for Max-pressure response to different percentages of connected vehicles, the
results show that it achieves better traffic control performance as the proportion of
connected vehicles grows according to the delay and density indicators.

The results of the standard deviation of the two indices indicate that, as the
penetration rate decreases, both the two criterion values deviate in the samples of
10 simulation replications. This is justified by the assumption that the connected
vehicles are randomly distributed in the link inflow; at low penetration rates, since
there is already inaccurate information, the additional relative variations in the
penetration rate intensify the difference in algorithm decisions.

However, as in the case of TUC results, a statistical t-test was carried out con-
firming that there is a significant statistical difference in the average performance
results of tested penetration rates, indicating that the difference in the average val-
ues of the criteria for tested penetration rates are indeed significant differences.
Consequently, the conclusions we reached are based on precise considerations. The
results of t-Test follows at the Appendix B.

Delay evaluation data
Average Delay (sec/km) St.Deviation (sec/km) % Delay Improvement

MP 118.1 12.7
MP 100 % 106.9 6.0 9.4
MP 50 % 115.2 6.0 2.4
MP 30 % 129.1 10.3 -9.3
MP 10 % 180.9 21.1 -53.2

Table 7.3: Max-pressure delay evaluation data

Density evaluation data
Average Density (veh/km) St.Deviation (veh/km) % Density Improvement

MP 8.4 0.7
MP 100 % 7.7 0.3 8.1
MP 50 % 8.2 0.3 2.3
MP 30 % 9.0 0.5 -8.1
MP 10 % 11.7 1.1 -40.5

Table 7.4: Max-Pressure density evaluation data

Figures 7.2, 7.3, 7.4 show cycle time created by Fixed control, MP algorithm with
detectors and Max-pressure algorithm with different penetration rates in 1.5 hours
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Figure 7.2: Cycle time of Fixed control and Max-pressure control cases for junction
5

simulation. Cycle data for each different control case belongs to the simulation
closer to the average delay index, so it is not directly comparable to each other.
Therefore, the following conclusions relate to the general tendency of cycle time
configuration for each control case. The junctions 5, 6 and 9 was selected as there is
a high demand on these junctions and therefore considered important. In addition,
in order to make the chart information clearer, Equation 7.1 was fitted to cycle data
of Max-pressure control cases.

a1 · sin(b1 · x+ c1) + a2 · sin(b2 · x+ c2) + a3 · sin(b3 · x+ c3) (7.1)

Observing the graphs, we can see that Max-pressure shapes the cycles with the
expected tendency at the highest rates of connected vehicles where the information
about the network traffic state is high. More precisely, the algorithm forms low cycles
at the beginning of the simulation where demand is still low, then increases the cycles
in the high demand period and towards the end of the simulation again throws the
cycles at the lowest price, indicating that by the decisions it took, manages to serve
the demand and thus clear the queues.

However, at the lower penetration rates, especially at 10%, the cycles do not
seem to be shaped this way. At the end of the simulation, at nodes 5 and 9 we see
that high cycles are formed because there are still high queues in the network; so the
algorithm did not perform well enough. That is explained by the second by second
control decisions which are taken with the use of inaccurate estimations.
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Figure 7.3: Cycle time of Fixed control and Max-pressure control cases for junction
6

0 1000 2000 3000 4000 5000 6000
40

60

80

100

120

Simulation time steps in sec

C
y
c
le

 t
im

e
 i
n

 s
e

c

 

 

FT MP MP 100%

0 1000 2000 3000 4000 5000 6000
40

60

80

100

120

Simulation time steps in sec

C
y
c
le

 t
im

e
 i
n

 s
e

c

 

 

FT MP MP 50%

0 1000 2000 3000 4000 5000 6000
40

60

80

100

120

Simulation time steps in sec

C
y
c
le

 t
im

e
 i
n

 s
e

c

 

 

FT MP MP 30%

0 1000 2000 3000 4000 5000 6000
40

60

80

100

120

Simulation time steps in sec

C
y
c
le

 t
im

e
 i
n

 s
e

c

 

 

FT MP MP 10%

Figure 7.4: Cycle time of Fixed control and Max-pressure control cases for junction
9
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7.4 Strategies Comparison

Table 7.5 summarize Max-pressure and TUC results in terms of the calculated crite-
ria of delay and density for the network as a whole. According to these results, both
examined real-time control methods perform significantly better than fixed-time con-
trol in case of detector scenario or in connected vehicle scenario of any penetration
rate, except of Max-pressure case with 10% connected vehicle rate. Max-pressure
case with 100% connected vehicle rate, outperforms all the others, achieving re-
ductions in delay and density at the levels of about 40.4% and 31.3%, respectively.
Next best performance is the Max-pressure algorithm with 50% connected vehicle
rate, achieving reductions in delay and density at the levels of about 35.8% and
27.0%. However, the worst performance occurs in the case of Max-pressure with
10% connected vehicle rate, leading to an increase in delay and density at the levels
of about 0.7% and 5.0% respectively. Results show that Max-pressure algorithm
achieve a better performance in penetration rates higher or near to 50% while TUC
is superior to Max-pressure in lower penetration rates achieving better average delay
time and average density. We have to remind that the TUC strategy does not use
all the modules that improve its performance. At the low demand periods if there
was inflow or outflow information, TUC could use its Hybrid form or local actuation
control respectively and achieve higher improvements.

Evaluation Data
Average Delay
(sec/km)

% Improvement
of average de-
lay compered to
fixed control

Average Density
(veh/km)

% Improvement
of average den-
sity compered to
fixed control

FT 179.6 11.2
TUC 122.0 32.1 8.1 27.7
TUC 100 % 125.9 29.9 8.4 25.1
TUC 50 % 124.3 30.8 8.3 25.9
TUC 30 % 122.6 31.7 8.1 27.3
TUC 10 % 126.8 31.8 8.3 25.7
MP 118.1 34.2 8.4 25.3
MP 100 % 106.9 40.4 7.7 31.3
MP 50 % 115.2 35.8 8.2 27.0
MP 30 % 129.1 28.1 9.0 19.2
MP 10 % 180.9 -0.7 11.7 -5.0

Table 7.5: Strategies evaluation data
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Chapter 8

Epilogue

8.1 Conclusions

Finally, some conclusions were drown from this work related to the two issues ex-
amined in this thesis; the reliability of mathematical modeling approach (4.10) de-
scribed at Section 4.3 and evaluated at Section 6.3, and the performance of TUC and
Max-pressure strategies, after the integration of the approach, which was evaluated
in Chapter 7.

8.1.1 Conclusions for Chapter 6

In Chapter 6 it was shown the statistical analysis results of tested mathematical
approach (4.10), which achieves real-time queue estimation, based on connected ve-
hicle measurements. Results have shown that the mathematical approach provide
accurate estimates for different tested penetration rates, hence the overall estimation
methodology described in Section 4.3 is satisfactorily effective. The key points are,
that the estimation accuracy decreases as the penetration rate of connected vehicles
decreases and the approach does not present overestimation or underestimation ten-
dency. Therefore, it was proved that connected vehicles could function as accurate
moving sensors of traffic state in an urban traffic network, providing information
which reliability increases as the penetration rate increases.

8.1.2 Conclusions for Chapter 7

In Chapter 7, the statistical evaluation of real-time control strategies, TUC and
Max-pressure, was performed in case of traffic state information from detectors or
from connected vehicles (using the mathematical model (4.10)), using the delay and
density indicators.

According to these results, both examined real-time control methods perform
significantly better than fixed-time control in case of any penetration rate of con-
nected vehicles or in detector scenario, except from Max-pressure algorithm in case
of 10% penetration rate. As far as it concerns TUC strategy, results presented in
Chapter 7.2 have shown that in all different connected vehicle cases, strategy remain
roughly stable on its performance. This is due to the use of the average informa-
tion collected during a cycle, and thus the elimination of instantaneous errors that
may occur at low rates of connected vehicles. Also, the performance of TUC in
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spot detector case is not significantly different from that of connected vehicles. So
we conclude that TUC strategy could work equally effectively when obtaining spot
detector and connected vehicle information.

As far as it concerns Max-pressure algorithm in connected vehicle cases, we
conclude that its performance improves as the penetration rate increases. This is
because the algorithm uses time-step measurements (1 sec) and is strongly affected
by faults in queue estimations especially in cases of low penetration rates of con-
nected vehicles, where failures are more intense. Also from the results of Section
7.3 it appeared that the algorithm using connected vehicles exceeds the spot detec-
tor performance when on average at least half of the vehicles in the network are
connected.

We therefore conclude that connected vehicles can operate reliably as moving
sensors, providing TUC control strategy with accurate information of local traf-
fic state in any case of penetration rate. The same applies to the Max-pressure
algorithm only in existence of high connected vehicle penetration rates (≥ 30%).

8.2 Future Work

We could improve TUC strategy performance by using connected vehicles to make
some flow estimations and use them for the hubrid-TUC strategy. We could also
improve the stability of Max-pressure algorithm according to the penetration rate,
by increasing the time of the decision making and using average queue estimations,
but this is expected to reduce its performance for high penetration rates due to the
delays in Max-pressure reactions. It is a trade-off that someone should examine
because it is not clear how such a change could interact in an urban traffic network.
Another way to improve Max-Pressure performance, especially in low penetration
rates, is to provide smoothed queue estimations as input of the algorithm.
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Appendix A

Figure A.1: Difference of queue estimation and real queue value for section L1, for
different penetration rates
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Figure A.2: Difference of queue estimation and real queue value for section O20, for
different penetration rates
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Figure A.3: Difference of queue estimation and real queue value for section O26, for
different penetration rates
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Figure A.4: Difference of queue estimation and real queue value for section O1, for
different penetration rates
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Figure A.5: Difference of queue estimation and real queue value for section L4, for
different penetration rates
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Figure A.6: Difference of queue estimation and real queue value for section O2, for
different penetration rates
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Figure A.7: Difference of queue estimation and real queue value for section L42, for
different penetration rates
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Figure A.8: Difference of queue estimation and real queue value for section L46, for
different penetration rates
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Figure A.9: Difference of queue estimation and real queue value for section L43, for
different penetration rates
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Figure A.10: Difference of queue estimation and real queue value for section O18,
for different penetration rates
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Figure A.11: Difference of queue estimation and real queue value for section L8, for
different penetration rates
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Figure A.12: Difference of queue estimation and real queue value for section O21,
for different penetration rates
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Figure A.13: Difference of queue estimation and real queue value for section O3, for
different penetration rates
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Figure A.14: Difference of queue estimation and real queue value for section L10,
for different penetration rates
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Figure A.15: Difference of queue estimation and real queue value for section L39,
for different penetration rates
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Figure A.16: Difference of queue estimation and real queue value for section L37,
for different penetration rates
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Figure A.17: Difference of queue estimation and real queue value for section L48,
for different penetration rates
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Figure A.18: Difference of queue estimation and real queue value for section L41,
for different penetration rates
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Figure A.19: Difference of queue estimation and real queue value for section L50,
for different penetration rates
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Figure A.20: Difference of queue estimation and real queue value for section L13,
for different penetration rates
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Figure A.21: Difference of queue estimation and real queue value for section L12,
for different penetration rates
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Figure A.22: Difference of queue estimation and real queue value for section O4, for
different penetration rates
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Figure A.23: Difference of queue estimation and real queue value for section L34,
for different penetration rates
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Figure A.24: Difference of queue estimation and real queue value for section L17,
for different penetration rates
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Figure A.25: Difference of queue estimation and real queue value for section O6, for
different penetration rates

90



Figure A.26: Difference of queue estimation and real queue value for section L15,
for different penetration rates
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Figure A.27: Difference of queue estimation and real queue value for section O22,
for different penetration rates
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Figure A.28: Difference of queue estimation and real queue value for section L60,
for different penetration rates
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Figure A.29: Difference of queue estimation and real queue value for section L56,
for different penetration rates
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Figure A.30: Difference of queue estimation and real queue value for section L51,
for different penetration rates
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Figure A.31: Difference of queue estimation and real queue value for section L53,
for different penetration rates
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Figure A.32: Difference of queue estimation and real queue value for section L57,
for different penetration rates
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Figure A.33: Difference of queue estimation and real queue value for section O16,
for different penetration rates
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Figure A.34: Difference of queue estimation and real queue value for section L54,
for different penetration rates
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Figure A.35: Difference of queue estimation and real queue value for section O15,
for different penetration rates
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Figure A.36: Difference of queue estimation and real queue value for section L36,
for different penetration rates
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Figure A.37: Difference of queue estimation and real queue value for section O14,
for different penetration rates
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Figure A.38: Difference of queue estimation and real queue value for section O24,
for different penetration rates
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Figure A.39: Difference of queue estimation and real queue value for section L49,
for different penetration rates
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Figure A.40: Difference of queue estimation and real queue value for section O25,
for different penetration rates

105



Figure A.41: Difference of queue estimation and real queue value for section L58,
for different penetration rates
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Appendix B

The t-Test is used to test the null hypothesis that the means of two populations are
equal. In our case, t-test was used for TUC and Max-pressure delay results for all
connected vehicles cases, assuming unequal variances for each two-sample.

To determine whether the difference is statistically significant, the t-test calcu-
lates a t-value. If t Stat < -t Critical two-tail or t Stat > t Critical two-tail, we
reject the null hypothesis. In all cases of TUC strategy, we accept the null hypothesis
hence there is no statistical significance in different average delay values for different
penetration rates. However in all Max-pressure cases we reject the null hypothesis
hence there is statistical significance in average delay values for different penetration
rates.

100% 50%
Mean 125.9460576 124.2759381

Variance 10.87413209 48.13074194
Observations 10 10

Hypothesized Mean Difference 0
df 13

t Stat 0.687548918
P(T<=t) one-tail 0.251909817
t Critical one-tail 1.770933396
P(T<=t) two-tail 0.503819634
t Critical two-tail 2.160368656

Table B.1: t-Test for 100% penetration rate and 50% penetration rate TUC delay
results

t-Test for Max-pressure algorithm connected vehicles cases: Two-Sample Assum-
ing Unequal Variances
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100% 30%
Mean 125.9460576 122.6429432

Variance 10.87413209 37.04682817
Observations 10 10

Hypothesized Mean Difference 0
df 14

t Stat 1.508901392
P(T<=t) one-tail 0.076778949
t Critical one-tail 1.761310136
P(T<=t) two-tail 0.153557898
t Critical two-tail 2.144786688

Table B.2: t-Test for 100% penetration rate and 30% penetration rate TUC delay
results

100% 10%
Mean 125.9460576 122.6429432

Variance 10.87413209 37.04682817
Observations 10 10

Hypothesized Mean Difference 0
df 14

t Stat 1.508901392
P(T<=t) one-tail 0.076778949
t Critical one-tail 1.761310136
P(T<=t) two-tail 0.153557898
t Critical two-tail 2.144786688

Table B.3: t-Test for 100% penetration rate and 10% penetration rate TUC delay
results

50% 30%
Mean 124.2759381 122.6429432

Variance 48.13074194 37.04682817
Observations 10 10

Hypothesized Mean Difference 0
df 18

t Stat 0.55952849
P(T<=t) one-tail 0.291348645
t Critical one-tail 1.734063607
P(T<=t) two-tail 0.582697291
t Critical two-tail 2.10092204

Table B.4: t-Test for 50% penetration rate and 30% penetration rate TUC delay
results
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30% 10%
Mean 122.6429432 126.809458

Variance 37.04682817 57.57429454
Observations 10 10

Hypothesized Mean Difference 0
df 17

t Stat -1.354499598
P(T<=t) one-tail 0.09665367
t Critical one-tail 1.739606726
P(T<=t) two-tail 0.193307341
t Critical two-tail 2.109815578

Table B.5: t-Test for 30% penetration rate and 10% penetration rate TUC delay
results

100% 50%
Mean 106.9372533 115.1901893

Variance 36.04583141 36.67937381
Observations 10 10

Hypothesized Mean Difference 0
df 18

t Stat -3.060314074
P(T<=t) one-tail 0.003369535
t Critical one-tail 1.734063607
P(T<=t) two-tail 0.00673907
t Critical two-tail 2.10092204

Table B.6: t-Test for 100% penetration rate and 50% penetration rate Max-pressure
delay results

100% 30%
Mean 106.9372533 129.10349

Variance 36.04583141 106.4732118
Observations 10 10

Hypothesized Mean Difference 0
df 14

t Stat -5.871587233
P(T<=t) one-tail 2.03176E-05
t Critical one-tail 1.761310136
P(T<=t) two-tail 4.06352E-05
t Critical two-tail 2.144786688

Table B.7: t-Test for 100% penetration rate and 30% penetration rate Max-pressure
delay results
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100% 10%
Mean 106.9372533 180.9145764

Variance 36.04583141 444.4614263
Observations 10 10

Hypothesized Mean Difference 0
df 10

t Stat -10.67206929
P(T<=t) one-tail 4.36496E-07
t Critical one-tail 1.812461123
P(T<=t) two-tail 8.72991E-07
t Critical two-tail 2.228138852

Table B.8: t-Test for 100% penetration rate and 10% penetration rate Max-pressure
delay results

50% 30%
Mean 115.1901893 129.10349

Variance 36.67937381 106.4732118
Observations 10 10

Hypothesized Mean Difference 0
df 15

t Stat -3.677312797
P(T<=t) one-tail 0.001120424
t Critical one-tail 1.753050356
P(T<=t) two-tail 0.002240849
t Critical two-tail 2.131449546

Table B.9: t-Test for 50% penetration rate and 30% penetration rate Max-pressure
delay results

50% 10%
Mean 115.1901893 180.9145764

Variance 36.67937381 444.4614263
Observations 10 10

Hypothesized Mean Difference 0
df 10

t Stat -9.475245077
P(T<=t) one-tail 1.29964E-06
t Critical one-tail 1.812461123
P(T<=t) two-tail 2.59928E-06
t Critical two-tail 2.228138852

Table B.10: t-Test for 50% penetration rate and 10% penetration rate Max-pressure
delay results
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30% 10%
Mean 129.10349 180.9145764

Variance 106.4732118 444.4614263
Observations 10 10

Hypothesized Mean Difference 0
df 13

t Stat -6.980277043
P(T<=t) one-tail 4.81028E-06
t Critical one-tail 1.770933396
P(T<=t) two-tail 9.62055E-06
t Critical two-tail 2.160368656

Table B.11: t-Test for 30% penetration rate and 10% penetration rate Max-pressure
delay results
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