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Abstract 
 
An optimal control strategy based on Two-Point-Multirate Controllers (TPMRCs), is used to design a desirable 
excitation controller of a hydrogenerator system, in order to enhance its dynamic stability characteristics. In the 
TPMRCs based scheme, the control is constrained to a certain piecewise constant signal, while each of the controlled 
plant outputs is detected many times over a fundamental sampling period T0. On the basis on this strategy, the 
original problem is reduced to an associate discrete-time linear quadratic (LQ) regulation problem for the 
performance index with cross product terms, for which a fictitious static state feedback controller is needed to be 
computed. Simulation results for the actual 117 MVA synchronous generator with conventional exciter supplying 
line to an infinite grid show the effectiveness of the proposed method which has a quite satisfactory performance. 
 
Keywords: Digital Multirate controllers, LQ control, power systems, turbogenerators. 
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1. Introduction  

 
The typical control problem has always been to start with a 
suitable linear (or linearized) open-loop mathematical model 
of a physical plant (in continuous or discrete form) and 
attempt to design a proper controller for it, i.e. to obtain an 
associated closed-loop system with enhanced dynamic 
stability characteristics. [1-7]. The digital controller applied 
for the discrete linear systems may be obtained by using a new 
TPMRCs [8, 9]. 
 It is pointed out that the used TPMRCs technique reduced 
the original LQ regulation problem to an associated discrete-
time LQ regulation problem for the performance index with 
crossed product terms, for which is computer a fictitious static 
state feedback controller [11-16]. In addition, thus technique 
offers more flexibility in choosing the sampling rates and 
provides a power design computed method. 
 In the present work the discrete linear open-loop system 
model under consideration systematically derived from the 
associated continuous 8th order SIMO linearized open-loop 
model of a practical power system, hawing on 117 MVA 
synchronous generator supplying power to an infinite grid 
through a step-up transformer and a transmission line [17, 
18]. The sought digital controller for the enhancement of the 
dynamic characteristics of the above 6th order discrete model 
is accomplished by the proper application of the new 
TPMRCs to it. 
 
 

 

2. Overview of Relevant Mathematical Considerations  
 
Consider the controllable and observable continuous linear 
state-space system model of the general form 
 
( )tx =Ax(t)+Bu(t) (1) 

( ) ( ) ( )t t D t= +y Cx u ,      (1) 
 
where: (t)∈ nx R , (t)∈ mu R , are the state, input,  and 
controlled output vectors, respectively. In Eqn. 1 all matrices 
have real elements and appropriate dimensions. Now follows 
a useful definition.  
 The associated general discrete description of the system 
of Eqn. 1 is as follows  
 
(k+1) (k) (k)
(k) (k)
x = Ax +Bu
y = Cx

       (2) 

 
where: ( ) ( ) , ( )k k k∈ ∈ ∈n m px R , u R y R  are state, input 
and output vectors respectively; and A, B and C are real 
constant system matrices with proper dimensions. 
 
 
3. Overview of new TPMRCs for Linear Discrete Systems 
 
This method with Ηο and HN being zero-order holds and with 
holding times To and TN, respectively (see Figure 1) is 
presented here in a concise manner, whereas the details are 
found [8]. 
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Fig. 1. Simplified representation of power system under investigation in 
discrete form. 
 
 
 Starting with the general linear state space system 
description in continuous form  
 
( ) ( ) ( )

( ) ( )

t t t

t t

= +

=

x Ax Bu

y Cx
      (3) 

 
where (t) , (t) and (t)∈ ∈ ∈n m px R u R y R  are the state, 
input and output vectors respectively. 
 The associated discrete system description is obtained by 
letting { },p,...,2,1Ji,n pi =∈  be used of observability 

indices of the pair and( ), ∈ +
oA,C T R  be a sampling 

period. Also, by letting  
 

0Φ exp( T )= A        (4) 
 
and N ∈ NnxpB R  be the full rank matrix defined by  
 

T
N N N 0(T ,0) 0= ≥B B W  

 
with the generalized reachability Grammian of ord N in the 
interval 0[0, ]T  being  

0 1
* 1

0 0
0

( , 0) , ( , 0)
N

T

N N NT T p rank Tµ µ
µ

−
−

=

= Δ Δ =∑W W  and  

0
*

1*
0 0

ˆ ˆ/ , N
N T

T T N A Bµ
µ

− −= Δ =  
8

*

*

0

ˆ ˆexp( ), exp( )
T

N T
T dλ λ= = ∫A A B A B     (5) 

 
 Next follows the application of the OMCM technique to 
the above descriptions. The input of the plant are constrauned 
to the following piecewise constant control  
 

* * 1

0 0

0

ˆ( ) ( ),

ˆ ( ) N

T

N

p

kT T T u kT

kT R

τ
µµ ς −+ + = Δ

∈

u B

u
      (6) 

 
for 
 

*
0 0

* 1

, 0,..., 1, 0

[0, ), ( ) .T
N N N N

t kT T N k

and J T where B B B Bτ

µ µ
−

= + = − >>

∈ =
 

 

 The ith plant output )(tyi  is detected at every 

0 /i iT T M= , such that  

0 0( ) ( ),
0,1,..., 1

T
i i i i

i

y kT T c x kT T
M

ρ ρ
ρ

+ = +
= −

     (7) 

 
where ,i pM Z i J+∈ ∈  are the output multiplicities of the 

sampling. In general .iM N≠  The sampled values of the 
plant outputs obtained over 0 0[ , ( 1) )kT k T+  are stored in the 

*M -dimentional column vector 0ˆ( )kTγ  of the form 
 

0 1 0 1 0 1 1

0 0

ˆ( ) [ ( )... ( ( 1) )...

( )... ( ( 1) )]Tp p p p

kT y kT y kT M T

y kT y kT M T

γ = + −

+ −
 

 

where *

1

p

i
i

M M
=

=∑ .  

 
 The vector 0ˆ( )kTγ  is used in the control law of the form  
 

0 0 0ˆˆ ˆ[( 1) ] ( ) ( )uk T kT kTγ+ = −u L u K        (8) 
 
where 

*

,N N Np xp p xM
u ∈ ∈L R K R . 

 Finally, one scetcs a controller in the form of (6) and (8) 
which, nowen applied to system (1), minimizes the following 
performance index 
 

0

1 [ ( ) ( ) ( ) ( )]
2

T TJ t t t t dt
∞

= +∫ y Qy u Ru       (9) 

 
where pxp mxmR and R∈ ∈Q R  are symmetric matrices with 

0, 0≥ >Q R  while ( )TAC QC  is an observable pair.  
 The above problem is equivalent to the problem of 
designing a control law of the form of Eqn. 9, in order to 
minimize the following index:  
 

( ) ( ) ( )
( )

0
0 0

0 0

1 ˆ
ˆ2

TT N N
T

k N N

kT
J kT kT

kT

∞

=

⎡ ⎤ ⎡ ⎤⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ Γ ⎣ ⎦⎣ ⎦
∑ xQ G

x u
uG

 

 
for the system 
 
[ ]0 0 0ˆ( 1) ( ) ( )Nk T kT B u kT+ =Φ +x x  

 
 Where NQ , NG , NΓ are giver explicitly [2].  
 
Theorem 2.1. The following basic formula of the multirate 
sampling mechanism holds. 
 

( ) ( ) ( )0 0 0ˆ ˆ1k T kT kT kγ+ = − ≥⎡ ⎤⎣ ⎦Hx Du   ,  0  

 
where, matrices  
 

( ) ( ) ( )0 0 , 0
ˆ ˆ ˆ1iM

i i ikT T k T kTρ
ρρ −+ = + +⎡ ⎤⎣ ⎦x A x B u   

 
are defined as follows  
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( )

( )

1

1

1

1 1 1 1,0

1
1 1, 11 1

1
,0

1 , 1

ˆ ˆ

ˆˆ

ˆˆ

ˆˆ

p

p

MT T

TT
M

TMT
p pp p

T
T p p M
p p

−

−
−

−

− −

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

c A c B

c Bc A
H   ,  D

c Bc A

c Bc A

         (10) 

 
and where,  
 

( ) ( ) ( )0 0 , 0
ˆ ˆ ˆ1iMT T

i i i i i iy kT T k T kTρ
ρρ −+ = + +⎡ ⎤⎣ ⎦c A x c B u  

 
 The ultimate expressions for the control law optimal gain 
matrices uL  and K are as follows 
 

1 1( ) ( )T T
u N N N N N

− −= + +L R B PB G B PΦ H D   (11)  
 

1 1( ) ( )T T
N N N N N

− −= + +K R B PB G B PΦ H       (12) 
 
where ,N N andR G H  are defined in [2,3]. The resulting 

discrete closed-loop system matrix ( )/cl dA  takes the 
following  
 

/ /cl d ol d N= −A A B KH      (13) 
 
where cl=closed-loop, ol=open-loop and d=discrete.  
 
 
4. Design and Simulations of Resulting Discrete Closed-

Loop Power System Model 
 
In the present work, the aforementioned optimal control 
strategy is used to design a desirable excitation controller of 
a hydrogenerator system, for the purpose of enhancing its 
dynamic stability characteristics. The hydrogenerator system 
studied, is an 117 MVA hydrogenerator unit of the Greek 
Electric Utility Power System, and which supplies power 
through a step-up transformer and a transmission line to an 
infinite grid. A linear model of the hydrogenerator can be 
obtained by linearizing its nonlinear Park’s equations [16,17] 
about the operating point, of the hydrogenerator unit are ginen 
in table 1 wherein Pt and Qt denote the active and the reactive 
generator power. 
 
Table 1. Operating point of the hydrogenerator system.  

vt (p.u.) Pt (p.u.) Qt (p.u.) 
1.0 0.4 -0.68 

 
 Based on the state variables Figure 2 and  the values of 
the parameters and the operating point (see Appendix A), the 
system of Figure 2 may be described in state-space form, in 
the form of Eqn. 1, where 

T
v P i Et t f fdδ ω= ⎡ ⎤

⎢ ⎥⎣ ⎦x   

 
. , .refu V= Δ =y x

 

 
 The matrices A, B, C, are given in Appendix B. 

 

 

 
Fig. 2. Simplified representation of investigated practical power system. 
 
 The eigenvalues of the original continuous open-loop 
power system models and the simulated responses of the 
output variables ( ), , , , ,t t f fdv P i Eδ ω , are shown in Table 

2 and Figure 3, respectively.  
 
Table 2. Eigenvalues of original open-loop power system 

model.  

λ  -25.7163     -1.5764±9.0779i    -7.7698±5.9411i   
-3.6592 

 

 
Fig. 3. Responses of the output variables of the original continuous open-
loop power system models to step input change: ΔVref.=0.05. 
 
 
 The computed discrete linear open-loop power system 
model, based on the associated line arized continuous open-
loop system model described in Appendix B, is given below 
in terms of its matrices with sampling period To=0.2 sec. 
 

/

3.9360 0.1051 3.7891 1.8211 0.0840 0.0029
23.6256 0.1821 16.6745 8.1062 0.7112 0.0287
0.3975 0.0019 0.5291 0.1769 0.0688 0.0032
8.2682 0.2332 7.7538 3.8983 0.0671 0.0009
0.7243 0.0611 0.8290 0.3535 0.1208 0

ol dA

− − − −
− − − − −

− −
− − − −
− −

=

.0078
16.0254 0.1410 29.7656 7.3922 3.7738 0.1391− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

[ ]0.1728 2.8785 0.5197 0.4938 2.5522 30.9687/
T

Bol d = − −
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1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

/ 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

C Col d = =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 The computed magnitude of the eingenvalues of the 
discrete open-loop power system models and the simulated 
responses of the output variables (δ, ω, vt, Pt, if, Efd), are 
shown in Table 3 and Figure 3, respectively. 
 
Table 3:.Magnitude of eigenvalues of discrete original open-

loop and designed closed-loop power system 
models.  

Original open-loop 
power system model λ  0.7296   0.7296   0.4810 

0.2114  0.2114    0.0058 
Designed closed-

loop power system 
model 

λ̂  
0.5359  0.5359  0.3293  
0.1787  0.1787  0.0057 

 

 
 
Fig. 4. Responses of the output variables of the original discrete open-
loop power system model to step input change: ΔVref.= 0.05. 
 
 
 Due to space limitations the numerical description of the 
resulting discrete close loop system model is not presented 
here, but it depends on the following derive weight matrices 
Q=diag.(1   0.001   0.01   0.001   0.0001  0.00001) and  R=1, 
and the chosen  output multiplicities of the sampling: 
M=[2  4  6  8  10  12], N=8. 
 Evaluation relations (11) and (12) we obtain the 
admissible TPMRC gains. 
 The computed values of BN, K, Lu and feedback gain 
matrices are:  

0.5480 0 0 0 0 0
7.5204 2.1725 0 0 0 0
1.0351 0.6509 0.2221 0 0 0
0.5465 1.0853 0.3661 0.0007 0 0
3.6567 3.9961 2.3564 0.2923 0.0840 0
24.8707 37.7503 102.9724 69.3662 65.3728 34.4845

BΝ
− −
− −
− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

0.9806 0.0102 0.8505 0.4129 0.0284 0.0012
0.1004 0.0084 0.0495 0.0358 0.0094 0.0005
0.2241 0.0157 0.2399 0.0971 0.0036 0.0004
0.1127 0.0086 0.1233 0.0492 0.0023 0.0002
0.0130 0.0010 0.0142 0.0057 0.0003 0.0
0.08

F

− − − −
− − − − −
− −
− −

− − −
−

=

57 0.0047 0.0873 0.0367 0.0005 0.0001−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

 
0.1697 0.5419 0.6411 41.5272 35.1617 0.0215
0.0539 0.0661 0.1294 18.5269 156.4308 0.0232
0.1304 0.2641 0.3599 37.3146 315.3241 0.0271
0.0707 0.1412 0.1945 20.3661 172.1022 0.0151
0.0081 0.0163 0.0225 2.3584 19.

uL

− − −
− −

− − − −
− − − −

− −

=

9287 0.0018
0.0410 0.0871 0.1161 11.5424 97.5518 0.0074− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
 
 The magnitude of the eigenvalues of the discrete original 
open-loop and of the designed closed-loop power system 
model are shown in Table 3.  
 The simulated responses of the output variables (δ, ω, vt, 
Pt, if, Efd) of the discrete original open-loop and designed 
closed-loop power system models, for zero initial conditions 
and unit step input disturbance, are shown in Figure 3 and 
Figure 4. 
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Fig. 5.  (A), (B), (C), (D), (E), (F): Simulation results represent the 
responces of the discrete control system: 
(1), (3) for the open loop to step input power load changes ΔVref. = 0.05 
p.u. and 0.10 p.u. respectively.  
(2), (4) for the closed loop to step input power load changes ΔVref. = 
0.05 p.u. and 0.10 p.u. respectively. 

 
 
 By comparing the computed eigenvalues of the simulated 
responses of the discrete original open-loop power system 
model and the associated designed discrete closed-loop 
models, it is clear that the resulting enhancement in the 
dynamic system stability of the closed-loop system model is 
remarkable. 
 From Figure 3 it is clear that the dynamic stability 
characteristics of the designed discrete closed- loops systems-
models are far more syperior than the correspondig, ones of 
the original open-loop model, which attests in favour of the 
proposed TPMRCs-control technique.  
 It is to be noted that the solution results of the discrete 
system  models (i.e. eigenvalues, eigenvectors, responses of 
system variables etc.) for zero initial conditions were obtained 
using a special software program (which is based on the 
theory of § 3 and runs on MATLAB program environment).  
 In Figure  6, the variation of the optimal average cost Jopt  
[1]  with respect to the fundamental sampling period To is 
depicted in the case where (No, M1, M2, M3, M4, M5, 
M6)=(8, 2, 4, 6, 7, 8, 12) is depicted. The optimal average cost 
obtained is given by [2], 1 (0) (0)

2
T

optJ = x Px , where P is the 

Riccati solution [1, 2, 9]. In our case simple calulations yield 
92.4198optJ = . 

 

 
Fig. 6. Discrete-time optimal average cost Jopt versus sampling To 
 
 It is to be noted that the solution results of the discrete 
system models (i.e. eigenvalues eigenvectors, responses of 
system variables etc) for zero initial conditions were obtained 
using a special software program (which is based on the 
theory of § 3 and runs on MATLAB program environment). 
 
 
5. Conclusions 

 
An optimal digital control strategy based on Two-Point-
Multirate Controllers has been used in this paper in order to 
design a desirable excitation controller of an unstable 
hydrogenerator system, for the purpose of enhancing its 
dynamic stability characteristics. The proposed method offers 
acceptable closed loop response as well as more design 
flexibility (particularly in cases where the system states are 
not measurable), and its performance is at least comparable to 
known LQ optimal regulation methods.  
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APPENDIX A 
Numerical values of the system parameters and the operating 
point (p.u. values on generator ratings). 

Hydrogenerator: 
117MVA, kV=15.75, RPM=125, H=3.0, xd=0.935 p.u., 
xq=0.574 p.u., xD=0.992 p.u., xQ=0.551p.u., xf=0.221 p.u., 
iq=0.665 p.u., id=0.746 p.u., vq=0.924 p.u., vd=0.381 p.u. 

External system:  
Re=0.015 p.u., Xe=0.40 p.u. (on a 117MVA base). 
Operating point:  
vto=1.0 p.u., Pt0=1.1 p.u., Qt0=0.5 p.u., 
δnom =0.9604 rad., ωnom=100π rad./sec, ifnom.=1.9634 p.u., 
Efdnom.=1.7720 p.u. 

 
 
APPENDIX B 
Numerical values of matrices A, B, C, D of the original 
continuous 6th –order system and X(0), the vector of the 
condition initial.  

0 1 0 0 0 0
520.7453 0 419.7003 201.2473 0 0
1.0160 0.0463 7.8918 0.0836 2.2300 0.0419
16.9059 1.9757 0.1124 8.0416 3.6896 0.0693
42.0882 0.2297 66.1062 15.2879 12.1346 0.6412
0 0 1000 0 0 20

A

− −
− − − −

−
− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

[ ]0 0 0 0 0 1000
TB =  

 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
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APPENDIX C 
Numerical values of matrices Acl/d  and Bcl/d  closed-loop 
discrete 6th –order system and P the Riccati solution  

/

3.3986 0.0995 3.3230 1.5948 0.0684 0.0022
16.0331 0.2404 10.1709 4.9231 0.4770 0.0189
0.6330 0.0003 0.3302 0.2522 0.0324 0.0015
8.8309 0.2239 8.1844 4.1272 0.0942 0.0023
4.1511 0.0253 3.5368 1.7636 0.029

cl d

− − − −
− − − − −
− − −
− − − −
− − −

=A

9 0.0004
37.5771 2.7414 24.8519 15.8357 3.9555 0.1899− − − −
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/

0.5480 0 0 0 0
7.5204 2.1725 0 0 0 0
1.0351 0.6509 0.2221 0 0 0
0.5465 1.0853 0.3661 0.0007 0 0
3.6567 3.9961 2.3564 0.2923 0.0840 0
24.8707 37.7503 102.9724 69.3662 65.3728 34.4845

cl dB − −
− −
− −

−
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/cl d =C C  
 

4.3830 0.0744 3.9291 1.8932 0.1097 0.0041
0.0744 0.0024 0.0761 0.0364 0.0015 0
3.9291 0.0761 3.6309 1.7476 0.0980 0.0036
1.8932 0.0364 1.7476 0.8419 0.0473 0.0017
0.1097 0.0015 0.0980 0.0473 0.0030 0.0001
0.0041 0 0.0

P

− −
− − −

− −
− − − −

− −

=

036 0.0017 0.0001 0−
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