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ABSTRACT

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia occurring in 2% of the general population,
while the assuming projected incidence in 2050 will rise to 4.3%. This paper presents a multicriteria methodology
for the development of a model for monitoring the post-operative behaviour of patients who have received treatment
for AF. The model classifies the patients in seven categories according to their relapse risk, on the basis of seven
criteria related to the AF type and pathology conditions, the treatment received by the patients and their medical
history. The analysis is based on an extension of the UTilités Additives DIScriminantes (UTADIS) method, through
the introduction of a two-stage model development procedure that minimizes the number and the magnitude of the
misclassifications. The analysis is based on a sample of 116 patients who had pulmonary veins isolation in a Greek
public hospital. The classification accuracy of the best fitted models scores between 71% and 84%. Copyright © 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Atrial fibrillation (AF) is the most common arrhythmia
and can be either symptomatic or not. Its prevalence
increases with age, and it appears that one in four
adults older than 40 years has a lifetime risk of
developing AF of approximately 25%. The major
mechanism that initiates and perpetuates AF relies
on rapid electrical discharges from the pulmonary
veins (PV) that return oxygenated blood from the
lungs to the left atrium (LA) of the heart. Electrical
isolation of the PV with the application of high
frequency current across the ostia of the PV is
particularly effective for elimination of AF and is
widely used in cardiac electrophysiology departments
of tertiary hospitals.

However, even after PV isolation (PVI), AF often
recurs. Recurrence is classified as early when it takes
place 48 h after the operation, late when it occurs
within 30 days and very late for cases more than
30 days after the operation. The efficacy of PVI
depends on several medical variables, and the
assessment of the AF recurrence risk is of major
importance in order to decide the most suitable
treatment for a patient. Analytic decision models can
be particularly useful for defining post-operative AF
treatment.

Empirical evidence has shown that medical
decision support systems often improve signi
ficantly the medical decision process (Garg et al.,
2005; Kawamoto et al., 2005), in different ac
tivities (e.g. diagnosis, therapy, monitoring and
prevention) and contexts such as acute care,
primary care and patient advice (Ammenwerth
et al., 2013). Data mining, computational intel
ligence and statistical pattern recognition techniques
have been widely used for diagnostic purposes (for
an overview, see the work of Hardin and Chhieng,
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2007). Such methods have also been used in
predicting and detecting AF and other forms of
cardiac arrhythmia (Alonso-Atienza et al., 2012;
Chesnokov, 2008; Mohebbi and Ghassemian,
2012), mostly using complex machine learning/data
mining models that emphasize the accuracy of the
results rather than their inter pretability. However,
as noted by Berner and La Lande (2007), many
physicians are hesitant to use such systems because
the reasoning behind them is not transparent and
they are not built on the grounds of knowledge
derived from the medical literature, or rules and
guidelines issued by clinical associations based on
clinical trials’ results, registries and experts’
consensus (see for instance, the work of Camm
et al., 2012).

Multicriteria decision aid (MCDA) is well suited in
this context, providing a constructive approach for
developing medical support systems that combine
the physicians’ expert judgments with evidence-based
clinical practice, in a patient-centred clinical decision-
making context (Dolan, 2010). Medical applications
of MCDA methods cover, among others, generic
computer-aided diagnostic systems (Du Bois et al.,
1989; Rahimi et al., 2007), specialized diagnostic
and screening models (Belacel, 2000; Dolan and
Frisina, 2002; Goletsis et al., 2004), decision aiding
in evidence-based medicine (O’Sullivan et al., 2014;
van Valkenhoef et al., 2013), medication risk analysis
and appraisal (Goetghebeur et al., 2012; Tervonen
et al., 2011), therapy planning (Hamacher and Küfer,
2002; Schlaefer et al., 2013) and and the setting of
medical practice guidelines and policy interventions
(Angelucci et al., 2008; Baltussen et al., 2010;
Postmus et al., 2014).

In this paper, we present a novel MCDA approach
for the construction of a decision model that supports
the analysis of AF recurrence risk. The model can be
used both preoperatively and post-operatively to
assess possible options for performing the PVI
operation, consult with patients regarding the
operation and assess the status of patients after the
operation in order to prescribe a proper post-operative
pharmacological therapy when needed. The model
provides estimates on the AF recurrence risk as well
as insights into the factors that contribute to AF
recurrence. These factors relate both to the
characteristics of patients and the way the PVI
operation are performed. The model is expressed in
the form of an additive value function, which allows
the modelling of nonlinear relationships between the
considered factors and the AF recurrence risk, while
retaining the interpretability of simpler linear models.

The additive form of the model provides both overall
risk estimates and the marginal effects due to each
separate factor.

The analysis is based on a sample of 116 patients
who have undergone PVI operation in a major Greek
hospital and have been classified into seven recurrence
risk categories according to their post-operative
condition. The model is developed through a
multicriteria classification approach in the context of
disaggregation analysis (Jacquet-Lagrèze and Siskos,
2001) on the basis of the available data. Given the
multi-category nature of the problem, a new mixed-
integer programming formulation is introduced that
takes into account not only the number of
misclassifications but also their magnitude. These
two model fitting criteria are handled through a
lexicographic process, and the robustness of the model
is also analysed. The results demonstrate that the
proposed MCDA modelling approach can provide
not only a useful medical decision aid model but also
guidelines and insights into the role of the AF
recurrence risk assessment criteria.

The rest of the paper is organized as follows.
Section 2 describes the problem context regarding
the assessment of AF recurrence risk and the
prognostic attributes used in the modelling process.
Section 3 is devoted to the proposed multicriteria
methodology for constructing the prognostic
medical decision model, whereas section 4 presents
the application of the methodology and discusses
the obtained results. Finally, Section 5 concludes
the paper and proposes some future research
directions.

2. PROBLEM SETTING

Atrial fibrillation is the most common sustained
cardiac arrhythmia occurring in 2% of the general
population, while the projected incidence in 2050
will rise to 4.3%. The prevalence of AF increases
with age, from <0.5% at 40–50 years, to 5%–15%
at 80 years (Kirchhof et al., 2012; Wann et al.,
2011). Men are more often affected than women.
The lifetime risk of developing AF is approximately
25% in those who have reached the age of 40 years
(You et al., 2012).

Atrial fibrillation is characterized electrocardio
graphically by low-amplitude baseline oscillations
(fibrillator, f-waves that lead to chaotic and irregular
atrial rhythm) and an irregular ventricular rhythm,
which leads to abnormal contraction and consequently
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inadequate emptying of both atria of the heart in every
cardiac cycle (heart beat). The abnormal and
occasionally slow blood flow into the atria in AF
patients leads to thrombus formation, thus increasing
the risk of stroke, organ ischemia and other acute
medical conditions that need hospitalization and have
increased mortality risk.

The most common causes for developing AF are
excessive alcohol intake, myocardial infarction,
pericarditis, myocarditis pulmonary embolism and
hyperthyroidism. Other risk factors include congestive
heart failure, aortic and mitral valve disease, left atrial
enlargement, obstructive sleep apnea and advanced
age. On the other hand, the effects of AF in the
cardiovascular system have been well studied; it
doubles the risk of mortality, triples the risk for
hospitalization and increases the risk of stroke nearly
five times. Overall, AF promotes heart failure, and
heart failure aggravates AF to worsen patients’ overall
prognosis.

Atrial fibrillation that terminates spontaneously
within 7 days is termed paroxysmal, and AF of more
than seven continuous days is called persistent. AF
persistent for more than 1 year is termed longstanding,
whereas longstanding AF refractory to electrical
cardioversion is called permanent.

Depending on the characteristics of AF, its
treatment can be based on pharmacological rate and

rhythm control strategies. Left atrial catheter ablation
is another option for long-term management involving
patients who remain symptomatic despite other
treatments. Catheter ablation is an electrophys
iological operation during which multiple endocardial
lesions are created by the multiple applications of high
frequency current created by an external generator
through ablation catheters (Figure 1). The aim of the
operation is to isolate electrically the ostia (entrances)
of the PV that return oxygenated blood from the lungs
into the LA with the use of fluoroscopy and an
electroanatomic mapping system for the navigation
of ablation catheters in the heart.

The efficacy of AF ablation (PVI) varies widely
depending mainly on medical variables like the type
of AF, duration of AF, duration of the last AF episode,
diameter and volume of the LA, the number of
applications of high frequency current and the time of
fluoroscopy. It is very important for electrophysiologists
to choose the right patients, that is, with certain values of
medical variables related to AF prior to PVI, who are
more likely to benefit from the operation and remain free
from arrhythmia for as long as possible, taking also into
consideration the risk of adverse events due to the
operation (which is estimated to by about 1%–3%).

In this context, this study employs a multicriteria
methodology to determine the risk of AF recurrence.
The analysis is based on a sample of 116 patients

Figure 1. Postero-anterior view of left atrium (endocardial lesions—red dots—created by application of high frequency
current through the irrigated tip ablation mapping catheter (MC); lasso catheter (LC) records endocardial potentials at the
ostia of left superior pulmonary vein (LSPV), left inferior pulmonary vein (LIPV), right superior pulmonary vein (RSPV)
and right inferior pulmonary vein (RIPV)).
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who had PVI in a Greek public hospital. The condition
of the patients was monitored after the operation, and
AF recurrence was characterized as ‘early’ for cases in
which it occurred during the first 48 h post-
operatively, ‘late’ when in the first month and ‘very
late’ if it occurred more than a month after the
operation. Thus, the patients were classified into seven
ordinal recurrence risk categories, ranging from high
risk cases (class YYY), corresponding to patients for
whom AF recurrence occurred at all three-time
windows (early, late and very late), to patients for
which PVI was successful as no recurrence occurred
(class NNN).1 The risk order of the classes was
defined in cooperation with a cardiologist with
experience on the treatment of AF and the PVI
operation. Table I illustrates the definition of the
recurrence risk categories and the number of sample
patients in each class. It should be noted that early
recurrence is often observed without any future
complications whereas late or very late recurrence is
more likely to be associated with cases that may
require additional treatment. Thus, patients in category
YNN are considered to be of lower risk than those in
category NNY. Furthermore, patients with late
recurrence are more likely to require additional
treatment compared with patients with no late
recurrence. This is why the top three risk categories
(YYY, NYY and NYN) all correspond to patients
with late recurrence.

The assessment of the AF recurrence risk is based
on the seven prognostic criteria noted in the
succeeding texts, which have been selected in
cooperation with an expert medical decision-maker
and existing medical guidelines on the risk factors of
AF and its treatment (Camm et al., 2012; Kirchhof
et al., 2012). In particular, the assessment criteria
involve the following measures:

• AF type (paroxysmal, persistent and permanent):
ordinal criterion, such that a permanent type is
associated with higher recurrence risk whereas a
paroxysmal type is associated to lower risk.

• Duration of AF (number of years since first episode
of AF): positively associated to recurrence risk (i.e.
the larger the duration of AF, the higher the risk).

• Duration of the last AF episode (in days): positively
associated to recurrence risk.

• LA diameter (measured in two-dimension echocar-
diogram in millimetre): positively associated to
recurrence risk.

• LA volume (calculated automatically by echocar-
diograph software using longitudinal and transverse
dimensions in cubic centimetre): positively asso-
ciated to recurrence risk.

• Number of applications of high frequency current
(each application lasts 60 s): negatively associated
to recurrence risk (i.e. the risk of recurrence
decreases with the number of applications of high
frequency current).

• Time of fluoroscopy (duration of fluoroscopy used
in order to visualize catheters and navigate them
across cardiac chambers and PV in minutes):
positively associated to recurrence risk.

The aforementioned assessment criteria combine
attributes about the nature of the arrhythmia in each
patient as well as attributes that are related to the
PVI operation. The combination of such factors in an
aggregate recurrence risk assessment model can
support medical doctors in a number of ways, both
preoperatively and post-operatively. First, it allows
them to assess the risk of recurrence preoperatively
based on the cardiovascular diagnostic characteristics
of patients and the parameters that define how the
PVI operation can be performed. In that respect, a
model combining such factors can guide medical
doctors to differentiate the ablation strategy during
operation (i.e. increase the number of applications of
high frequency current or make additional lesion lines
in patients with longstanding AF and dilated LA) and
provide patients with personalized estimated success
rate during preoperative consultation. Furthermore,
through such a model, cardiologists can change the
type and duration of post-operative pharmacological
therapy (i.e. more potent antiarrhythmic drugs in high
risk patients).

First, it allows them to assess (post-operatively)
additional treatments that may improve the condition
of the patients and minimize the AF recurrence risk.
Furthermore, through such a model, medical doctors

Table I. Definition of the atrial fibrillation recurrence risk
categories

Recurrence period

Early Late Very late Class labels No. of cases

Yes Yes Yes YYY 8
No Yes Yes NYY 8
No Yes No NYN 9
Yes No Yes YNY 2
No No Yes NNY 12
Yes No No YNN 3
No No No NNN 74
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can analyse the trade-offs between the factors that
define the nature of the PVI operation (applications
of high frequency current and fluoroscopy time) while
controlling for the characteristics of the AF for each
patient. This allows doctors to decide on make
informed decisions about the best way to perform
the operation in order to minimize the recurrence risk.

3. MULTICRITERIA METHODOLOGY

In the context of the problem setting described in the
previous section, the development of a decision model
that facilitates the monitoring of the patients can be
considered as a multicriteria classification problem.
Multicriteria classification problems have received
much interest among MCDA researchers over the past
couple of decades, and several modelling approaches
have been developed (Zopounidis and Doumpos,
2002). In this study, we employ an additive value
function model. In particular, denoting by xi= (xi1,
…, xin) the vector with the available data for patient i
on a set of n recurrence risk attributes, the patient’s
overall recurrence risk is assessed with the following
additive function:

V xið Þ ¼ ∑
n

j¼1
wjvj xij

� �
; with ∑

n

j¼1
wj ¼ 1; (1)

where wj is the (non-negative) weight for criterion j
(the weights represent the trade-offs the decision-
maker is willing to make among the criteria) and vj(·)
is the marginal value function for criterion j,
normalized in [0, 1]. The additive model is well
founded from a theoretical point of view (Keeney
and Raiffa, 1993) and has been used in a wide range
of multicriteria evaluation problems. The additive
form of the model makes it easy to use and
comprehend. The comprehensibility of the model is
an important feature that greatly helps medical doctors
to understand the model’s logic, thus improving the
practical usefulness of the model. More complex
modelling forms (e.g. a multi-linear value function)
take into account interactions between the decision
criteria at the expense of yielding models, which are
difficult to construct and understand.

In the modelling setting followed in this study, it is
assumed that the higher the global value V(xi) of
patient i, the higher is his/her recurrence risk. Thus,
with the additive model (1), a patient i is classified into
risk group k if and only if tk<V(xi)< tk� 1, where
t0>1> t1> t2>⋯> tq� 1> tq> 0 is a set of

thresholds that distinguish between the q recurrence
risk categories C1, …, Cq (e.g. q=7 for the sample
used in this study).2 In accordance with the
aforementioned interpretation of the additive value
model, the categories are risk-ordered such that C1

corresponds to high risk patients (i.e. category YYY
in Table I) and Cq to low risk ones (category NNN
in Table I).

The construction of the additive model and the
estimation of the separating thresholds are performed
using a preference disaggregation approach (Jacquet-
Lagrèze and Siskos, 2001), namely, the UTADIS II
method (Doumpos and Zopounidis, 2002), which
adapts the framework of the UTilités Additives
(UTA) method (Jacquet-Lagrèze and Siskos, 1982) to
classification problems. In this context, the evaluation
model (1) is fitted on a set of data (reference set) for
m patients already classified in q recurrence risk
categories. The objective of the model-fitting process
is to construct a decision model that is as compatible
as possible with the predefined classification of the
patients in the reference set. The constructed model
can then be calibrated (if needed) through an
interactive process with the medical decision-maker
and then used to evaluate the risk for patients in a real
time setting. In the UTADIS II approach, the fitting of
the model is based on the solution of the following
mixed-integer programme (MIP):

min
1
q
∑
q

k¼1

1
mk

∑
∀i∈Ck

σþi þ σ�i
� �

s:t: V xið Þ � tk þ σþi ≥δ ∀ i∈Ck k ¼ 1; …; q� 1ð Þ
V xið Þ � tk�1 � σ�i ≤� δ ∀ i∈Ck k ¼ 2; …; qð Þ ;
V x�ð Þ ¼ 0; V x�ð Þ ¼ 1

tk�1 � tk≥ε k ¼ 1; …; q� 1

σþi ; σ
�
i ∈ 0; 1f g i ¼ 1; …; m;

(2)

where mk denotes the number of patients in the
reference set from category Ck whereas σþi and σ�i are
binary slack variables associated with patients
misclassified by the additive model. In particular, σþi
equals one if a patient is misclassified in a lower risk
category compared to the one he/she actually belongs
to (i.e. when the model underestimates the actual
recurrence risk), whereasσ�i denotes the misclassification
into higher risk classes (i.e. overestimation of risk). The
first two constraints define these error variables on the
basis of the threshold-based classification rule. In both
constraints, δ is a small user-defined positive constant
used to handle ambiguous classification results, which
arise when the risk score of a patient equals one of the
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classification thresholds (in the analysis, we set
δ=0.0001). The third set of constraints normalizes the
additive model in [0, 1], such that a low risk patient
(denoted by x*) is assigned a risk score of 0, whereas
a patient with the highest risk (denoted by x*) is
assigned the maximum risk score of 1. These two
extremes (x* and x*) can either be defined through
medical expertise or through the data used in the
analysis. In this study, we followed the latter approach,
defining x* and x* by the minimum and maximum
levels, respectively, of the criteria described in the
previous section (except for the number of applications
of high frequency current, which is negatively related
to recurrent risk; for this criterion, x* was defined by
the minimum level of the criterion and x* by its
maximum). Thus, a high risk patient (x*) has permanent
AF, large durations, large LA diameter/volume, small
number of applications of high frequency current during
the PVI operation and large fluoroscopy time.

Finally, the fourth constraint of problem (2) defines
the minimum difference between two consecutive
classification thresholds, with ε being a user-defined
positive constant (in this study, we used ε=0.02).
The objective function of problem (2) minimizes the
total weighted classification error for the patients in
the reference set. The weighting of the errors for each
patient i from risk class Ck by 1/mk imposes a balance

among all risk categories, thus ensuring that the
classifications of the fitted model will not be biased
towards classes with a large number of patients. The
aforementioned optimization problem can be
formulated as a linear MIP, through the modelling of
the marginal value functions of the additive model (1)

as piecewise linear functions of the data (for details,
see Doumpos and Zopounidis, 2002; Jacquet-Lagreze
and Siskos, 1982).

Even though problem (2) is easy to solve for
medium-size reference sets (with existing powerful
MIP solvers), it fails to distinguish between the
magnitude of the classification errors, which is an
important issue in multi-category ordinal classification
problems such as the one considered in this study. In
such cases, instead of using the total number of
misclassifications as the modelling fitting criterion,
the mean absolute error is a more meaningful
objective. Imposing weights to account for the
imbalances in the number of patients in each risk
category in the reference set, the mean-weighted
absolute error (MWAE) is defined as follows:

1
q
∑
q

k¼1

1
mk

∑
∀i∈Ck

ŷi � yij j; (3)

where yi={1, 2, …, q} is the actual risk category for
patient i and ŷi is classification of the patient by the
decision model. The construction of an additive value
function model that optimizes this fitting measure for a
given reference set can be performed with the
following MIP formulation:

Compared to model (2), this formulation
distinguishes between the possible misclassifications
for a patient i from risk category Ck through the binary
error variables ξ+ and ξ�. More specifically, the first
constraint compares the global value of every patient
belonging in the set of risk categories {C1,C2,…,

min ∑
q

k¼1

1
mk

∑
∀i∈Ck

∑
q

ℓ¼1
ξþiℓ þ ξ�iℓ
� �

s:t: V xið Þ � tk þ ξþik≥δ ∀i∈ C1; …; Ckf g; k ¼ 1; …; q� 1

V xið Þ � tk�1 � ξ�ik≤� δ ∀i∈ Ck; …; Cq

� �
; k ¼ 2; …; q

tk � tk�1≥ε k ¼ 1;…; q� 1

V x�ð Þ ¼ 0; V x�ð Þ ¼ 1

ξþik ; ξ
�
ik∈ 0; 1f g i ¼ 1; …; m; k ¼ 1; …; q

: (4)
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Ck} (for each, k=1, …, q� 1), against the lower
threshold tk of category Ck. For instance, a patient
from the high risk category C1 (i.e. k=1) is compared
(successively) against t1 (the lower threshold of
category C1) and t2 (the lower threshold of category
C2), up to tq� 1 (the lower threshold of category
Cq� 1). Each of these comparisons is associated with
a different error variable ξþiℓ (ℓ= k, …, q� 1), which
equals to 1 if and only if a patient i that actually
belongs to the set of risk categories {C1,C2,…,Ck}
is misclassified in any of the risk categories {Cℓ + 1,
Cℓ + 2,…,Cq}. For example, if a patient from the risk
category C1 is assigned into category C3, then ξþi1 ¼
ξþi2 ¼ 1 , thus indicating that there is a two-notch
difference between the actual and the estimated
classification.

In a similar manner, the second constraint
compares the global value of every patient from the
set of risk categories {Ck,Ck + 1,…,Cq} (for each,
k=2, …, q), against the upper threshold tk� 1 of
category Ck. For instance, a patient from the low risk
category Cq is compared (successively) against tq� 1

(the upper threshold of category Cq) and tq� 2 (the
upper threshold of category Cq� 1), up to t2 (the upper
threshold of category C2). These comparisons are
associated with error variables ξ�iℓ (ℓ =2, …, k), which
equal to 1 if and only if a patient i that actually
belongs to the set of risk categories {Ck,Ck + 1,…,
Cq} is assigned (misclassified) into any of the risk
categories {C1,C2,…,Cℓ� 1}.

Thus, the sum ξþik þ ξþi;kþ1 þ⋯þξþi;q�1 for a
patient from risk category Ck equals the difference
ŷi� yi (as in the example noted previously), when
the patient is assigned into a lower risk category
compared to its actual risk level (i.e. ŷi> yi), whereas
the sum ξ�i2 þ⋯þξ�ik equals the difference yi� ŷi,
when the patient is assigned into a higher risk
category compared to its actual risk level (i.e. ŷi< yi).
Obviously, the ordinal definition of the risk
categories implies that ξþiℓ ¼ 1 whenever ξþi;ℓþ1 ¼ 1
and ξ�iℓ ¼ 1 whenever ξ�i;ℓ�1 ¼ 1.

4. RESULTS

4.1. Empirical setting
In this study, the two model fitting formulations
described in the previous section are employed in a
lexicography manner. In particular, model (2) is first
used to obtain an additive evaluation model that
minimizes the total weighted number of
misclassifications while ignoring their magnitude.

Then, at a second stage, problem (4) is solved to
minimize the MWAE while controlling for the
number of misclassified patients on the basis of the
solution of model (2), that is, by adding the following
constraint to problem (4):

∑
∀i∈Ck

ξ±ik þ ξ±i;k�1

� �
¼ E�; (5)

where E� ¼ ∑i σ
þ
i þ σ�i

� �
is the total number of

misclassifications corresponding to the solution of
model (2).

All optimization problems are solved with a quad-
core personal computer with an Intel i7-2600K/
3.4GHz processor and 16GB of RAM, using the
Gurobi 6 solver. With this computational environment,
the mixed integer linear programming formulation
of UTADIS II was easily solved to optimality,
whereas problem (4) was much more challenging
due to its increased complexity. In that respect, a
time limit of 1 h was imposed during the solution
process.

4.2. Analysis of results
Table II presents some main model fitting measures
for three different additive evaluation models,
including the model resulting from the solution of
the UTADIS II problem (2), the one obtained from
the MWAE problem (4), the MWAE-Lex model
obtained from the combination of the previous two
approaches through the aforementioned lexicographic
scheme and a weighted ordinal logistic regression
model (King and Zeng, 2001). For each evaluation
model, three fitting indices are calculated, namely: (i)
the overall classification accuracy, defined as the
percentage of patients correctly classified by the

Table II. Model fitting metrics

UTADIS
II MWAE

MWAE-
Lex WOLR

Overall
classification
accuracy

0.724 0.569 0.724 0.345

Average
classification
accuracy

0.843 0.691 0.793 0.244

Mean-weighted
absolute error

0.679 0.530 0.588 1.627

MWAE, mean-weighted absolute error; WOLR, weighted ordinal
logistic regression model.
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model; (ii) the average classification accuracy, defined
by the objective function of problem (2) and (iii) the
MWAE index (3).

The basic UTADIS II performs best in terms of the
average classification accuracy, which corresponds to
the objective function of the MIP (2), whereas the
MWAE model minimizes the MWAE on the basis of
the optimization problem (4). The performance of
the MWAE model, however, on the two classification
accuracy criteria is significantly lower compared to the
results of UTADIS II. The MWAE-Lex approach
provides a good balance between the two other
models. In particular, compared to UTADIS II,
MWAE-Lex has slightly lower average classification
accuracy (by about 6% in relative terms) while
improving the weighted absolute error by about 13%
(again in relative terms). On the other hand, compared
to MWAE, the MWAE-Lex model has a bit higher

weighted absolute error but yields much higher
classification accuracies. Finally, the ordinal logistic
regression model performs consistently worst than all
multicriteria models.

The detailed classification matrices for the results
of the additive decision models constructed with the
UTADIS II and the MWAE-Lex approaches are
presented in Table III. It is evident that the UTADIS
II model performs very well for patients in the high
risk categories YYY–YNY but it leads to some
significant misclassifications. For instance, about
33% of the patients from the low risk category YNN
are classified as very risky cases (category YYY),
whereas 17.6% of the patients with no recurrence
indications (category NNN) are classified as high risk
patients in category NYY. Overall, the UTADIS II
model is clearly biased towards overestimating the
recurrence risk as all classification errors involve cases
misclassified into higher risk categories. On the other
hand, the decision model constructed with the
lexicographic scheme provides more balanced results
with a considerable reduction of the major
misclassifications noted previously.

Detailed results for the weights of the criteria in the
UTADIS II and MWAE-Lex models are presented in
Table IV. Both models indicate that the duration of
AF episodes, the number of applications of high
frequency current during AF ablation, the fluoroscopy
time and the LA volume are major factors contributing
to the decisions regarding the monitoring and
evaluation of a patient’s condition. The type of AF
on the other hand, seems to be a less important factor.

Table III. Classification matrices for the UTADIS II and MWAE-Lex models (all entries in %)

Model’s classification

YYY NYY NYN YNY NNY YNN NNN

Actual
classification

UTADIS II YYY 100.0 0.0 0.0 0.0 0.0 0.0 0.0
NYY 0.0 100.0 0.0 0.0 0.0 0.0 0.0
NYN 0.0 0.0 100.0 0.0 0.0 0.0 0.0
YNY 0.0 0.0 0.0 100.0 0.0 0.0 0.0
NNY 33.3 8.3 0.0 0.0 58.3 0.0 0.0
YNN 33.3 0.0 0.0 0.0 0.0 66.7 0.0
NNN 4.1 17.6 5.4 2.7 2.7 2.7 64.9

MWAE-
Lex

YYY 100.0 0.0 0.0 0.0 0.0 0.0 0.0
NYY 12.5 50.0 12.5 0.0 12.5 12.5 0.0
NYN 0.0 0.0 66.7 0.0 11.1 0.0 22.2
YNY 0.0 0.0 0.0 100.0 0.0 0.0 0.0
NNY 16.7 0.0 8.3 0.0 66.7 0.0 8.3
YNN 0.0 0.0 0.0 0.0 0.0 100.0 0.0
NNN 2.7 1.4 6.8 8.1 4.1 5.4 71.6

Table IV. Weights of the criteria in the decision models
developed with UTADIS II and the lexicographic approach

UTADIS II MWAE-Lex

Type of AF 0.00 2.04
AF duration 14.29 10.70
AF episode duration 16.32 21.32
LA diameter 18.41 12.48
LA volume 12.33 13.03
Applications 12.19 19.21
Fluoroscopy time 26.46 21.21

MWAE, mean-weighted absolute error; AF, atrial fibrillation; LA,
left atrium.
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The marginal value functions for the criteria with
the highest weights in the MWAE-Lex decision model
are illustrated in Figure 2. The function for the AF
episode duration criterion has a concave form
indicating that the recurrence risk increases rapidly
even for cases with low AF episode duration and
remains at high levels for cases with duration above
1 day. A similar concave form is also evident for the
fluoroscopy time criterion, according to which the
recurrence risk increases significantly in cases where
the fluoroscopy time is more than 10min. All high risk
patients had fluoroscopy time greater than 10min.
This may be influenced by difficulties faced with
navigating and positioning the catheters into the PV
for patients with high LA volume. Additionally,
patients with longstanding AF episodes have more
intense and chaotic electric disorganization of the
atria, demanding prolonged and repeated lesions for
PVI, which are associated with longer operational
times and therefore longer fluoroscopy times. On the
other hand, the marginal value function for the LA
volume criterion reveals that recurrence risk increases
significantly for patients with LA volume above
70 cm3. It is worth noting that under normal
conditions, LA volume ranges between 25 and
58 cm3. Therefore, the model does confirm that the

ablation operation is likely to be unsuccessful for
patients with LA volume much higher than normal
levels. Finally, the function for the number of
applications of high frequency current during AF
ablation has a decreasing form, with the recurrence
risk being much lower when there are more than 100
applications. These insights provide cardiologists with
a disaggregated view of the global recurrence risk
assessment result for each particular patient, in terms
of his/her medical status on each one of the prognostic
attributes. This is valuable information that strengthens
the medical decision-maker’s confidence on the model’s
reasoning and results, facilitates their qualitative
analysis and supports the process for providing sound
medical treatment to individual patients.

4.3. Robustness analysis
In a preference disaggregation context, such as the one
adopted in this study for the inference of preferential
information from a set of decision instances, the
robustness of the obtained conclusions is a critical
issue. The robustness concern (Roy, 2010) has
recently received considerable attention among
MCDA researchers. The MCDA literature related to
the robustness concern in disaggregation techniques
can be categorized into two main streams. The first

Figure 2. Marginal value functions for the four evaluation criteria with the highest weights. AF, atrial fibrillation; LA, left
atrium.
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focuses on providing a range of recommendations
(instead of single point results) based on the full set
of models compatible with the information provided
by the decision-maker (see, for instance, Greco
et al., 2010). When inconsistencies exist in the data
(i.e. classification errors), these are resolved
(Mousseau et al., 2003) prior to the formulation of
the recommendations. An alternative approach adopts
a post-optimality perspective focusing on
investigating the existence of multiple optimal or
near-optimal models, after a decision model has been
constructed using a set of reference examples (Siskos
and Grigoroudis, 2010).

In this study, we adopt the latter approach in order
to examine the existence of alternative decision
models that describe the classification of the given
patients in the available sample in the same way the
obtained MWAE-Lex model does. If other very
different models exist, that would raise concerns about
the validity of the recommendations derived with the
MWAE-Lex model for patients outside the reference
sample.

Similarly to the post-optimality analysis often
employed in the context of UTA-like methods
(Jacquet-Lagrèze and Siskos, 1982; Siskos and
Grigoroudis, 2010), in order to examine the existence
of other optimal models, we first fix all the
classification assignments obtained from the MWAE-
Lex model and then check the variability of different
models that provide the same assignments for the
patients in the sample. More specifically, let
Ĉ1, Ĉ2, …, Ĉ7 denote the sets of patients assigned by
the MWAE-Lex model in each of the seven recurrence
risk classes. Then, all additive value models that are
compatible with the assignments of the MWAE-Lex
model should satisfy the following constraints:

V xið Þ ≥ tk þ δ ∀i∈Ĉk; k ¼ 1; …; 6

V xið Þ ≤ tk�1 � δ ∀i∈Ĉk; k ¼ 2; …; 7

tk � tk�1 ≥ ε k ¼ 1; …; 6

V x�ð Þ ¼ 0; V x�ð Þ ¼ 1

: (6)

In order to explore the robustness of the solutions in
the polyhedron defined by these constraints, we follow
two approaches. First, a post-optimality analysis
(Jacquet-Lagrèze and Siskos, 1982) is employed to
identify extreme solutions corresponding to the
maximization and minimization of the weight for each
criterion (separately). Additionally, we also examine
the divergence between the weights of the criteria in
the developed MWAE-Lex model and the ones that
correspond to the analytic centre of the aforementioned

polyhedron. As noted by Bous et al. (2010), decision
models close to the centre of feasible polyhedron are
more robust representations (compared to solutions near
the boundaries) of the preferential information
embodied in a set of reference examples. The
identification of analytic centre can be easily performed
through the solution of an optimization problem with
linear constraints and logarithmic barrier objective
function (Bous et al., 2010). A similar approach for
the construction of a robust and representative sorting
tool is outlined by Greco et al. (2011).

The criteria weights obtained from the aforementioned
two approaches are shown in Table V (the post-
optimality results include the minimum, maximum and
the average of each criterion’s weight). The results
obtained from the post-optimality approach indicate that
there are only very minor variations in the weights of
the criteria between different models compatible with
the assignments of the MWAE-Lex model. Furthermore,
both the post-optimality results as well as those obtained
from the analytic centre are extremely similar to the ones
of the MWAE-Lex model (cf. Table IV). The robustness
of decision model developed with the lexicographic
approach was also verified with the average stability
index (ASI) proposed by Grigoroudis and Siskos
(2002), which provides a comprehensive measure of the
robustness of an inferred additive value model taking into
account not only the weights of the criteria but also
variations with respect to the marginal value functions.
By definition, ASI ranges in a 0%–100% scale, with
higher values indicating more stable models. In the
context of the data in this study, the ASI of the
MWAE-Lex model was found to be 99.63%, slightly
improved over the ASI for the UTADIS II model
(99.18%).

Table V. Robustness analysis results for the weights of the
criteria

Post-optimality
(min, mean and max)

Analytic
centre

Type of AF [2.00, 2.05, 2.07] 2.05
AF duration [10.64, 10.75, 11.07] 10.74
AF episode duration [21.24, 21.29, 21.59] 21.31
LA diameter [10.48, 11.42, 12.82] 11.32
LA volume [12.94, 14.12, 15.28] 14.20
Applications [19.08, 19.14, 19.33] 19.18
Fluoroscopy time [21.14, 21.23, 21.49] 21.21

AF, atrial fibrillation; LA, left atrium.
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5. CONCLUSIONS AND FUTURE
PERSPECTIVES

The development of medical decision aiding models is a
challenging issue with important practical implications.
In this study, we presented a real-world case study
involving the development of such a model for
monitoring the post-operative condition of AF patients.
The model combines a number of medical factors that
are potential predictors of AF recurrence and classify
patients into risk categories.

A preference disaggregation approach was used to
develop an appropriate model, combining two main
fitting criteria through a lexicographic scheme. This
lexicographic approach was found to lead to a good
trade-off between the fitting criteria, resulting to a
model with a small number and magnitude of
misclassifications, with the overall accuracy rate
ranging higher than 70%. The model performed very
well in identifying high risk patients, whereas low-risk
cases were found to be more difficult to be evaluated
accurately, thus indicating the more detailed analysis
is further needed for such cases. In that regard, it could
be particularly beneficial to combine the model’s
results with the expertise and judgement of expert
cardiologists as well as to examine the usefulness of
additional prognostic criteria. Among the recurrence
risk criteria used in the analysis, the duration of the
most recent AF, the volume of the LA and the two
criteria related to the PVI treatment (number of
applications of high frequency current and fluoroscopy
time) were found to contribute to the assessment of
AF recurrence risk. The conducted robustness analysis
verified the validity of these results. These findings
are in accordance with complex nature of AF
recurrence, which is due to a combination of factors
regarding the nature of a patient’s AF, his/her physical
characteristics and the PVI operation. According to an
expert medical doctor, the results of the model were
found to be satisfactory, both in terms of their
classification performance as well as in terms of their
interpretation, their implications in practice and the
insights that it provides.

Future research can focus on the consideration of a
number of different variables of the aforementioned
medical procedure or other interventional methods.
On the methodological side, other model fitting
criteria could be considered model, focusing, for
instance, on eliminating/reducing important errors for
specific risk categories or patient cases, which are
explained poorly by the constructed model. The use
of efficient optimization techniques (e.g. meta-
heuristics) is also a point that could be considered in

order to improve the computational efficiency of the
model construction process. Comparisons with other
multicriteria and data mining techniques could also
be considered, focusing on the robustness of the
results for patients outside the reference set (out of
sample generalization ability).
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ENDNOTES

1. The case YYN is missing from the analysis, as it is
highly unlikely a patient with early and late atrial
fibrillation recurrence to go asymptomatic at the very late
time window (there was no such case in our data sample).

2. When V(xi) = tk for some k= 1, …, q� 1, then the
classification of patient i is arbitrary. In such cases, we
assume that patient i is assigned to risk group k (no such
cases were observed in our application).
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