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Abstract

Non-orthogonal multiple access is an old problem, which has recently attracted re-
newed interest. This work revisits the problem in the context of industrial RFIDs and
scatter radio. The latter has emerged as a key enabling wireless technology for low-cost
and large-scale ubiquitous sensing. Radio frequency identification (RFID) tags/sensors
utilize scatter radio technology to transfer sensed information to readers, typically employ-
ing Gen2, the industrial RFID protocol. In this thesis, a new system model is developed
for the simultaneous transmission of two Gen2 RFID tags, as well as a channel estimation
algorithm, based on clustering techniques.

In the system model part of the thesis, two collided RN16 packets from two RFID
tags are considered, which may not be perfectly synchronized. This work builds upon
prior art and further considers the time offset that can occur in the transmission among
the two tags. It is shown that there are three possible scenarios, based on the time offset
of the most delayed tag and their connection is further highlighted. Work includes both
theoretical analysis of these scenarios, as well as experimental evaluation from a testbed.

The channel estimation part of the thesis employs the clustering algorithm called
Affinity Propagation, based on probabilistic graphical models and inference algorithms.
Channel estimates are obtained, based on the clustered, received data patterns, in con-
junction with a line fitting method. Having obtained the channel estimates, the offset of
the most delayed tag is estimated. Finally, the collision scenario is inferred and tag data
detection is performed. Future work will focus on different clustering algorithms, as well
as memory-based, long-sequence detection.
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Chapter 1

Introduction

“When wireless is perfectly
applied the whole earth will be
converted into a huge brain,
which in fact it is, all things
being particles of a real and
rhythmic whole. We shall be
able to communicate with one
another instantly, irrespective of
distance.”

Nikola Tesla

Wireless communications have well made their way in our lives throughout these
last two decades. Everyday technologies like WiFi, BlueTooth, RFIDs, smartphones,
smartwatches, etc. have definitely made a great impact in our daily lives. Great progress
has also been noted in the sectors of health care, education, entertainment, news reporting
and environmental protection with the aid of wireless communications. However, along
with all this technological growth, a massive load of data has also made its way to the
surface. Data that need to be downloaded, uploaded or shared as soon as possible, since
our daily routine or the circumstances require so from now on.

Throughout these years one could focus on a couple of major cellular network technolo-
gies like 3G or 4G that brought along with them higher bandwidth of communication,
thus higher transfer rates, better voice quality, faster and safer access to the internet,
streaming media etc. However most of these technologies also brought along with them
a few new operating frequencies to add in to the already crowded frequency spectrum.

To overcome spectral efficiency issues, various multiple access techniques were in-
vented, like FDMA, TDMA, CDMA, SDMA, PDMA, to list a few. Nonetheless, solving
the problem of frequency allocation and also meeting the demands of a great amount of
users sometimes cannot be met at the same time, which means that someone is not going
to be pleased and that costs money both to the user and the provider of the communi-
cation link. Of course, there are scenarios where these techniques have proved what they
are capable of and that is the exact reason they are still being used up until today.

That being said, a new generation of wireless communications that will sustain such
heavy loads and equally serve every user to the best of its ability, is needed. A new multiple
access scheme is required and that new scheme could probably be a Non Orthogonal
Multiple Access or NOMA for short. NOMA’s application in future 5G networks is
already being included in many papers (Ding et al. [30],[25] and Xu et al. [27]) and
application experiments are already starting to take place. It is envisioned to be an
essential component of the 5G network.
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2 Introduction

Massive MIMO sytem’s ability to serve multiple users - and multiple devices - si-
multaneously within a condensed area while maintaining fast data rates and consistent
performance makes it the perfect technology to address the needs of the forthcoming 5G
era (Ding et al. [28],[31],[29]). Massive MIMO is already deployed and being used com-
mercially in China and Japan within the 4G LTE context. While this thesis work mainly
focuses on RFID networks, which are a part of the IoT that 5G will revolutionise, the
ideas and facts mentioned above can be easily adopted and adjusted to fit the application’s
framework without deviating from the original course or making any compromises.

1.1 The Promise of NOMA

Orthogonal multiple access techniques have been used during the past and although
they still perform great under certain scenarios and circumstances, a better trade-off
between system throughput and user fairness needs to be realized. Thus, the promising
solution is to break orthogonality.

The basic concept of NOMA is to serve multiple users simultaneously at the same
frequency and code. In addition to that, users with better channel conditions would get
less power, while successive interference cancellation (SIC) is used at the receivers of all
users when needed.

As Liu et al. [23] argue, NOMA promises very high channel capacity gain and better
spectral efficiency than the present state of the art technologies thus satisfying the needs
of Internet of Things and of 5G, in which a massive amount of users require to be served
rapidly for small packet transmissions; with low latency. The concept of 5G is to virtually
connect everything together, from our driverless cars to our fridge, thus implementing a
ubiquitous connectivity scheme. So far, the only promising architecture to achieve the
great throughput needed for such a venture is NOMA.

1.2 Backscatter Radio

Backscatter communication is comprised of a very simple, low-power and low-cost
implementation, which basically allows a backscatter node (RFID tag) to communicate
with the reader by modulating and reflecting the incident continuous wave from the
reader. Lately, it is being considered as a promising solution to power the future Internet
of Things in 5G networks. Thus, an application of NOMA on RFID networks seems very
interesting.

An RFID tag can be seen as an automatic identification device which uses radio-
frequency electromagnetic fields to identify objects carrying tags when they come close
to a reader’s detection range. A simple RFID network usually consists of a reader and
the RFID tags/chips. The reader in our lab’s experiments is a USRP (Universal Software
Radio Peripheral), which basically is a software defined radio (SDR); meaning you can
use your PC to program it they way you want it to operate, while the tags are commercial
OTS tags that cost around 0.15$ each.

1.3 Thesis Organization & Contributions

In this section we jointly outline the organization of this thesis and its key contribu-
tions.

In Chapter 2, basic RFID knowledge is offered along with some details about the
FM0 encoding scheme and the EPCglobal Class 1 Gen2 Protocol, that was used in the
simulations. The EPCglobal Gen2 Specification protocol can be found here [2].
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In Chapter 3, basic definitions and theorems are given along with a clustering al-
gorithm that will be used in the channel estimation process. A system model for the
simultaneous asynchronous transmission of two Gen2 RFID tags along with some basic
knowledge on how RFID systems operate and their applications, is provided for the first
time.

In Chapter 4, a derived equivalent system model for two tags along with its mathe-
matical derivation is provided. We differentiate between the different scenarios that might
occur during the asynchronous RN16 transmission of the tags and the mandatory signal
to noise (SNR) relations are provided.

In Chapter 5, a technique for channel estimation using clustering is offered along
and an offset estimation algorithm. In more detail, the key contributions of the chapter
are the following:

– The DC offset of the received signal is estimated.

– We take advantage of our powerful clustering algorithm, to provide a channel esti-
mation scheme based on the clusters generated by the transmitted symbols on the
I/Q plane, and their repeating pattern.

– An offset estimation technique based on our channel coefficients estimation is pro-
vided. At this step, we are able to distinguish which tag is which on a physical level.

In Chapter 6, a detection scheme for the proposed system model is provided, our
results are also verified through the Bit Error Rate diagrams.

In Chapter 7, we conclude this thesis, and we provide directions for future work and
possible extensions to our solutions.
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Chapter 2

RFID Systems Basics

In this chapter, the operating process of an RFID system is formalized. Furthermore,
the FM0 encoding algorithm is presented, while also our system model for the simultane-
ous transmission of two Gen2 RFID tags is provided.

2.1 Basics of an RFID system

Radio-frequency identification (RFID), uses electromagnetic fields to identify and
track tags attached or embedded to objects. It is a technology with a purpose simi-
lar to the one of the barcodes, but unlike a barcode, the tag need not be within the line of
sight of the reader. An RFID system usually consists of tags, that are mostly attached to
objects and transfer information to a processing device called reader also known as inter-
rogator. Typical RFID applications include logistics and supply chain visibility, item level
inventory tracking, materials management, access control, biomedical sensor applications
and sensor networks, to name a few.

RFID systems operate in various frequency bands; low frequency (LF), high frequency
(HF) and ultra-high frequency (UHF). The LF band covers frequencies from 30 kHz to
300 kHz and is not considered a truly global application because of the slight differences
in frequency and power levels throughout the world. The HF band ranges from 3 to 30
MHz and there are several standards in place, such as the ISO 15693 standard for tracking
items and others. Last, UHF band covers range from 300 MHz to 3 GHz and across the
European Union is regulated by the European Telecommunications Standards Institute
(ETSI), and ranges from 865 MHz to 868 MHz, based on the ECPglobal Gen2, which we
will go through to the extent that is required for this thesis, in Section 2.2.

An RFID system can have one of the following possible configurations, monostatic or
bistatic. A monostatic RFID system utilizes the same antenna circuitry for both trans-
mission and reception, i.e. both antennas in the system first transmit, then switch modes,
typically with the help of a circulator, and start receiving RF energy. This system is usu-
ally much cheaper than a bistatic system because it requires less antennas and RF cables,
but it is also slower than standard bistatic systems because the reader has to switch be-
tween transmitting and receiving modes. In a bistatic system each antenna performs one
function only, i.e. the antenna will either transmit or receive RF energy. This configura-
tion requires a bistatic reader, that has two separate RF channels for transmitting and
receiving RF energy for every port. The transmitter and receiver can also be dislocated
offering advantages as increased coverage and lower cost, as argued by Kimionis et al.
[18].

RFID tags can be divided into three categories : active, passive and battery-assisted
passive. Passive tags, in contradiction to active or semi-passive ones, are not powered
by a battery, instead they harvest all the energy the get from the reader’s RF signal.

5



6 RFID Systems Basics

Communication between the reader and passive or semi-passive tags is achieved by means
of reflection. A passive tag typically terminates its antenna between two loads; in that
way, the incident carrier wave (CW) is reflected with altered amplitude and/or phase
and tag information is modulated on the tag’s antenna reflection coefficient changes. The
work of, Bletsas et al. [7], demonstrates an optimized way of selecting these loads.

Figure 2.1: Top figure: the RFID tag. Middle figure: RFID tag’s circuitry. Bottom figure:
RFID tag switching between 2 loads and corresponding (on-off keying) backscattered
signal, as depicted in the work of Ouroutzoglou et al. [4].

2.2 EPCglobal Class 1 Gen2 Protocol

This protocol, Gen 2 or EPCglobal Class 1 Generation 2 as its full name is, defines
the physical and logical requirements for a passive backscatter, Interrogator (Reader)
Talks First (ITF), RFID system operating in the 860-960 MHz frequency range. However,
there are usually two basic frequencies of operation at, 860-868 MHz and 902-928 MHz. As
mentioned earlier, the tag harvests energy and replies with its data only when instructed to
do so by the reader. In addition, readers and tags are not required to ‘talk’ simultaneously;
rather, communications are half-duplex, meaning that readers ‘talk’ and tags ‘listen’, or
vice versa.

2.2.1 Description of Operating Procedures

In this section, the key elements needed from the Gen 2 protocol will be briefly dis-
cussed, in order to formalize the communication procedure between the tags and the
reader and vice-versa. No further analysis of the protocol will be conducted, since some
of the assumptions in this thesis work, do not require further knowledge of the protocol’s
experimental features.

2.2.2 Physical Layer

The physical layer of the protocol describes how the tags and the reader exchange
information. At all times, the reader must be transmitting a continuous carrier-wave
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(CW), in order for the tag to collect energy from it and be able to respond. Furthermore,
the modulation needs to be simple in order for a low power tag to decode it. This layer
can be seen as the signalling interface, that defines frequencies, modulation, data coding,
data rates, and other parameters required for RF communications.

2.2.3 Downlink Communication

Downlink communication refers to reader-to-tag communication. The reader uses a
type of amplitude shift keying (ASK) modulation with pulse-interval encoding (PIE), as
depicted in Fig. 2.2, to communicate with the tags. The tags receive their operating
energy from this same modulated RF carrier. The reader must use a fixed modulation
format and data rate for the duration of an inventory round. An analysis over the PIE
encoding scheme and its reference times, or the ASK modulation used by the reader, will
not be provided since it will not be needed throughout this thesis.

The reader always starts the transmission with either a Preamble or Frame-sync
packet. A Preamble precedes a Query command, while all other reader commands begin
with a Frame-Sync packet. In this thesis only the Preamble packet was used, since the
main interest lies on the Query commands, where the tags reply with their RN16 sequence
and a collision might occur.

Figure 2.2: PIE encoding for downlink communication, as shown in Gen2 [2].

2.2.4 Uplink Communication - FM0 Encoding

Tags shall encode the backscattered data as either FM0 baseband or Miller modulation
of a subcarrier at the given data rate. The reader specifies the encoding type that will be
used in the tags response. In this thesis, we only worked with the FM0 encoding scheme,
hence, FM0 will be the only technique we will focus on. In FM0 encoding, amplitude
level must change at every symbol boundary, while a data-0 transmission has also an
amplitude change in the middle of the symbol. The data-0 symbol is transmitted either
with a 𝑠2(𝑡) pulse, or with a 𝑠3(𝑡) pulse, depending on the data bit that was previously
transmitted. The same applies for data-1, which is either transmitted with a 𝑠1(𝑡) pulse
or with a 𝑠4(𝑡) pulse. One can easily grasp that this is a memory-based modulation. The
admissible symbol transitions, can be seen in the state diagram offered in Fig. 2.4b, while
the four FM0 symbols mentioned above, can be seen in Fig. 2.4a. It is also mandatory,
for an FM0 transmission to always end with a dummy data-1 symbol, as shown in Fig.
2.6. All possible sequences that can be created with FM0 encoding, are presented in
Fig. 2.5. Last but not least, it should be noted that, each tag response begins with the
Preamble sequence shown in Fig. 2.3. The v indicates an FM0 violation; an amplitude
change should have normally occurred, but since this is the preamble that violation exists
on purpose.
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Figure 2.3: Tag Preamble for uplink communication.

(a) FM0 Symbols. (b) FM0 State diagram. (c) FM0 Basis functions.

Figure 2.4: FM0 encoding in RFID uplink communications.

Figure 2.5: FM0 Sequences.

Figure 2.6: FM0 Transmission termination, as shown in Gen2 [2].
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Figure 2.7: FM0 line coding signal. The dashed areas correspond to two orthogonal
s-shaped waveforms that can simplify detection.

2.2.5 Decoding the FM0 packet

As mentioned earlier, FM0 is a memory based modulation, where work on Bletsas et
al. [5] and Simon et al. [1], has shown that after shifted examination of the transmitted
waveform by 𝑇/2 before the beginning of the bit, where 𝑇 is the bit (symbol) period, only
two possible pulse shapes can be generated, shown in Fig. 2.7 marked with dashed lines.

In order to detect a transmitted bit, the reader has to differentially decode two received
symbols (using 2𝑇 signal observation instead of just 𝑇 ), realizing a gain of 3dB compared
to maximum-likelihood symbol-by-symbol detection. More specifically, memory of FM0
signalling is exploited in the detection of two collided FM0 signals by observing the
duration of exactly two bits: the bit under observation, half-bit before it, and half-bit
after it. In Chapter 6, a more in depth analysis of the detection scheme will be provided.
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Chapter 3

Clustering Algorithms & Basic Def-
initions

In this chapter, basic definitions and theorems will be introduced along with some
discussion about the clustering algorithm that was used in the thesis. Furthermore, our
proof regarding the equivalence of k-means to EM on GMM is provided. Finally, our
system model for the asynchronous transmission of 2 RFID tags is provided.

3.1 Definitions & Theorems

Initially, the notion of Complex Normal random variables and random vectors along
with their important subclass of circular symmetry is introduced.

3.1.1 Complex Gaussian Distribution

Before proceeding into explaining the concepts of circular symmetry in complex Gaus-
sian random variables we first have to introduce the complex normal distribution and the
proper complex Gaussian distribution.

Definition 3.1.1. If 𝒳 and 𝒴 are jointly Gaussian random variables, then 𝒵 = 𝒳 + 𝑗𝒴
is also a complex Gaussian random variable.

Definition 3.1.2. A proper complex Gaussian vector, is a Gaussian vector which is
complex and has non-zero mean (𝐸[𝑧] ̸= 0) and specific probability density function:

𝑝𝑧(𝑧) = 1
𝜋|𝐶|

𝑒−(𝑧−𝐸[𝑧])𝐻𝐶−1(𝑧−𝐸[𝑧])

3.1.2 Circular Symmetry for Gaussian Random Variables

An important subclass of the Complex Normal family is called the Circularly Symmet-
ric Complex Normal or for short CSCN. Circularly Symmetric Complex Normal random
variables are used extensively in signal processing, and are sometimes referred to as just
Complex Normal in signal processing literature. A Circularly Symmetric Complex Gaus-
sian random variable or vector is a proper complex Gaussian random variable or vector
that has zero mean. Consider a CSCN random variable 𝒵 = 𝒳 + 𝑗𝒴, then the following
properties hold.

∙ E[𝑍] = 0

∙ E[𝑍𝑍𝑇 ] = E[𝑍2] = 0→ var(𝑋) = var(𝑌 ), cov(𝑋, 𝑌 ) = 0

11



12 Clustering Algorithms & Basic Definitions

∙ If 𝒵 is a circularly symmetric complex Gaussian random variable, its real and imag-
inary parts are independent and have equal variance.

The probability density function of a complex random variable and its value will be
now computed for the case of a circularly symmetric Gaussian.

𝑓𝑍(𝑧) = 𝑓𝑋,𝑌 (𝑥, 𝑦) (!)= 𝑓𝑋(𝑥)𝑓𝑌 (𝑦)

= 1√︁
2𝜋 𝜎2

2

𝑒− 𝑥2
𝜎2

1√︁
2𝜋 𝜎2

2

𝑒− 𝑦2

𝜎2

= 1
𝜋𝜎2 𝑒− 𝑥2+𝑦2

𝜎2

= 1
𝜋𝜎2 𝑒− |𝑧|2

𝜎2

Where at (!) we took advantage of the independence between the two random variables
that make up the real and the imaginary components of our random variable 𝒵, as
mentioned above, to further explain the expression.

3.1.3 Circular Symmetry for Gaussian Random Vectors

Definition 3.1.3. If 𝒳 ∼ 𝒩 (𝜇𝑥, 𝜎2

2 𝐼) and 𝒴 ∼ 𝒩 (𝜇𝑦, 𝜎2

2 𝐼) are jointly Gaussian random
vectors , then 𝒵 = 𝒳 + 𝑗𝒴 is a complex Gaussian random vector with the characteristics
of 𝒞𝒩 (𝜇𝑧, 𝜎2𝐼), where 𝜇𝑧 = 𝜇𝑥 + 𝜇𝑦.

Definition 3.1.4. A complex Gaussian random vector 𝒵 ∼ 𝒞𝒩 (𝜇𝑧, 𝜎2𝐼𝑛) is circularly
symmetric iff. 𝑒𝑗𝜑𝒵 has the same distribution as 𝒵 for all real values of 𝜑, which can
only happen when E[𝑍] = 0.

If 𝒵 is circularly symmetric, then:

∙ E[𝑍] = E[𝑒𝑗𝜑𝑍] = 𝑒𝑗𝜑E[𝑍] = 0, since E[𝑍] = 0

∙ cov(𝑒𝑗𝜑Z) = E[𝑒𝑗𝜑𝑍𝑒−𝑗𝜑𝑍𝑇 ]

∙ Define pseudocovariance matrix of 𝒵 as E[𝑍𝑍𝑇 ], then E[ZZ𝑇 ] = E[𝑒𝑗𝜑𝑍𝑒𝑗𝜑𝑍𝑇 ] =
𝑒2𝑗𝜑E[𝑍𝑍𝑇 ] = 0, since E[𝑍𝑍𝑇 ] = 0

The formula of the probability density function of the random vector case will not be
provided, since it will not be needed throughout this thesis. For further reading please
refer to the work of R. Gallager [22] on Circularly-Symmetric Gaussian random vectors.

3.1.4 Law of Iterated Expectation

The following proposition in probability theory is more commonly known as the law
of iterated expectation or otherwise as the law of total expectation.

Definition 3.1.5. If 𝑋 is a random variable whose expected value E[𝑋] is defined, and
𝑌 is any random variable on the same probability space, then, E[𝑋] = E[E[𝑋|𝑌 ]], i.e.,
the expected value of the conditional expected value of 𝑋 given 𝑌 is the same as the
expected value of 𝑋.

One special case states that if {𝐴𝑖} is a finite or countable partition of the sample
space, then:

E[𝑋] =
∑︁

𝑖

E[𝑋|𝐴𝑖]P(𝐴𝑖) (3.1)
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Proof.

E[E[𝑋|𝑌 ]] = E
𝑦

[︂∑︁
𝑥

𝑥P(𝑋 = 𝑥|𝑌 )
]︂

=
∑︁

𝑦

[︂∑︁
𝑥

𝑥P(𝑋 = 𝑥|𝑌 )
]︂
P(𝑌 = 𝑦)

=
∑︁

𝑦

∑︁
𝑥

𝑥P(𝑋 = 𝑥, 𝑌 = 𝑦)

If the series is finite, then the summations can be switched around, and the previous
expression will become:

∑︁
𝑦

∑︁
𝑥

𝑥P(𝑋 = 𝑥, 𝑌 = 𝑦) =
∑︁

𝑥

𝑥
∑︁

𝑦

P(𝑋 = 𝑥, 𝑌 = 𝑦)

=
∑︁

𝑥

𝑥P(𝑋 = 𝑥)

= E[𝑋]

This completes the proof.

The law of iterated expectation will be needed in Chapter 4 where the SNR relations
of our model are going to be calculated.
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3.2 Affinity Propagation Clustering

In this part of the thesis it is going to be briefly explain how the Affinity Propagation
algorithm operates and some very basic math formulas will be provided in order to help
demonstrate the true power and simplicity of this clustering algorithm.

To begin with, Affinity propagation simultaneously considers all data points as possible
exemplars, exchanging real-valued messages between them until a high-quality set of
exemplars (and corresponding clusters) emerges. Messages are updated on the basis of
simple formulae that reflect sum-product or max-product update rules and, at any point
in time, the magnitude in each message reflects the current affinity that one point has for
choosing another data point as its exemplar, hence the name ‘Affinity Propagation’.

Affinity propagation takes as input a collection of real-valued similarities between data
points, {𝑠(𝑖, 𝑘)}, where each similarity 𝑠(𝑖, 𝑘) indicates how well the data point with index
𝑘 is suited to be the exemplar for data point 𝑖. Each data point is paired with a variable
node, 𝑐𝑖 in a factor graph as shown in Figure 3.1 below. A value of 𝑐𝑖 = 𝑘 for 𝑖 ̸= 𝑘
indicates that data point 𝑖 is assigned to a cluster with point 𝑘 as its exemplar; 𝑐𝑘 = 𝑘
indicates that data point 𝑘 serves as a cluster exemplar.

Figure 3.1: Factor Graph Network of Affinity Propagation

The graph’s function is a constrained net similarity (exponentiated, so the function is
non-negative), defined as follows:

𝐹 (𝑐; 𝑠) = 𝑒
∑︀𝑁

𝑖=1 𝑠(𝑖,𝑐𝑖)+
∑︀𝑁

𝑘=1 log𝑓𝑘(𝑐) =
𝑁∏︁

𝑖=1
𝑒𝑠(𝑖,𝑐𝑖) ·

𝑁∏︁
𝑘=1

𝑓𝑘(𝑐1, 𝑐2 . . . , 𝑐𝑁 ),

where, the second term contains a coherence constraint defined as follows:

𝑓𝑘 =
{︃

0, if 𝑐𝑘 ̸= 𝑘 but ∃ 𝑖 : 𝑐𝑖 = 𝑘 (disallow clusters without an exemplar)
1, otherwise

,

which causes the function to evaluate to zero for the incoherent configuration of a cluster
without an exemplar, i.e., a data point 𝑖 has chosen 𝑘 as its exemplar (𝑐𝑖 = 𝑘) with
𝑘 having been incorrectly labelled as a non-exemplar (𝑐𝑘 ̸= 𝑘). The goal of affinity
propagation is to search over configurations of variables c in the factor graph to maximize
𝐹 (𝑐; 𝑠). The affinity propagation algorithm went through many stages, until it obtained
its last form that is based on the Max-Product algorithm. The analysis of these versions
is outside the context of this thesis.
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As mentioned earlier, affinity propagation exchanges messages between data-points.
There are two type of messages that are being exchanged, the responsibility messages
𝑟(𝑖, 𝑘) that are passed from variable nodes to function nodes (i.e., data points to candi-
date exemplars) and availability messages 𝑎(𝑖, 𝑘) that are passed from function nodes to
variable nodes (C), interpreted as candidate exemplars to data points. Figure 3.2 better
depicts the message exchange process.

(a) Responsibility messages. (b) Availability messages.

Figure 3.2: Message exchange in affinity propagation.

The final version of these messages also make up the update rules of the algorithm.
The steps of the algorithm are presented below.

Algorithm 1: Affinity Propagation
Input: {𝑠(𝑖, 𝑗)}𝑖,𝑗∈{1,...,𝑁} data similarities and preferences
Output: Cluster assignments 𝑐 = (𝑐1, . . . , 𝑐𝑁 ), 𝑐𝑖 = argmax𝑘{𝑎(𝑖, 𝑘) + 𝑟(𝑖, 𝑘)}

1 ∀𝑖, 𝑘 : 𝑎(𝑖, 𝑘) = 0, 𝑟(𝑖, 𝑘) = 0
2 while unconverged do
3 ∀𝑖, 𝑘 : 𝑟(𝑖, 𝑘) = 𝑠(𝑖, 𝑘)− argmax𝑘′:𝑘′ ̸=𝑘{𝑠(𝑖, 𝑘′) + 𝑎(𝑖, 𝑘′)}
4 if 𝑘==𝑖 then
5 𝑎(𝑖, 𝑘) =

∑︀
𝑖′:𝑖′ ̸=𝑖 max{0, 𝑟(𝑖′, 𝑘)}

6 else
7 𝑎(𝑖, 𝑘) = min{0, 𝑟(𝑘, 𝑘) +

∑︀
𝑖′:𝑖′ /∈{𝑖,𝑘} max{0, 𝑟(𝑖′, 𝑘)}}

The simplicity and effectiveness of these update equations have made it the standard
incarnation of affinity propagation since its initial 2007 publication in Science [10]. All
of the above is extensively presented on the PhD work of D. Dueck [11], as well as on
the book of Koller and Friedman [33] on probabilistic graphical models and inference
algorithms. There also exist, multiple versions of the algorithm available for download
at http://www.psi.toronto.edu, like the one where you force affinity to find a specific
number of clusters, 𝐾, which is going to be used during the detection process in Chapter
6.

http://www.psi.toronto.edu
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3.3 k-Means as a limit case of Expectation Maximization
on GMM

k-Means is a clustering algorithm which makes hard assignments of points to clusters,
which means that a point either totally belongs to a cluster or not at all. Often, k-Means
doesn’t work when clusters are not round shaped, and/or may overlap, and/or are unequal.
The k-Means algorithm, performs the following steps iteratively until convergence, where
a possible convergence criteria could be that the cluster means do not change anymore.
Before we proceed to the proof we are going to lay some fundamental pieces of the process
that will help us along the way. Below the k-means algorithm is presented in its simplest
form.

∙ Input: 𝑁 data samples {𝑥1, . . . , 𝑥𝑁}; 𝑥𝑖 ∈ R𝐷

∙ Initialize: 𝐾 cluster means 𝜇1, . . . , 𝜇𝐾 , 𝜇𝑘 ∈ R𝐷. Usually initialized randomly, but
good initialization is crucial and differs from one problem to another; many smarter
initialization heuristics exist (e.g.,K-means++, Arthur & Vassilvitskii, 2007)

∙ Iterate:

∙ (Re-)Assign each data sample 𝑥𝑖 to each closest cluster center.

𝒞 = {𝑖 : 𝑘 = argmin
𝑘
||𝑥𝑖 − 𝜇𝑘||2}

(𝒞𝑘 is the set of data samples assigned to cluster 𝑘 with center 𝜇𝑘)

∙ Update the cluster means.

𝜇𝑘 = 𝑚𝑒𝑎𝑛(𝒞𝑘) = 1
|𝒞𝑘|

∑︁
𝑖∈𝒞𝑘

𝑥𝑖

∙ Repeat until convergence.

A Gaussian Mixture Model (GMM) is a probabilistic model for representing the pres-
ence of subpopulations of Normal distributions within an overall population of Normal
distributions, i.e. the component distributions are Gaussians. A GMM can be modelled
like this:

P(𝑥) =
𝐾∑︀

𝑘=1
𝜋𝑘P(𝑥|𝜃𝑘), 𝑥 ∈ R𝐷

Where 𝜋𝑘’s are the mixing weights and it always holds that :
∑︀𝐾

𝑘=1 𝜋𝑘 = 1, 𝜋𝑘 ≥
0. Intuitively, 𝜋𝑘 is the proportion of data generated by the 𝑘-th distribution. Each
component distribution P(𝑥|𝜃𝑘)) represents a ‘cluster’ in the data.

The challenge we face at this point is to learn the parameters of the GMM. Given 𝑁
observations {𝑥1, . . . , 𝑥𝑁} drawn from the Normal distribution P(𝑥) learning the param-
eters of the GMM involves.

∙ Learn the cluster assignments {𝑧1, 𝑧2, . . . , 𝑧𝑁}.

∙ Estimating the mixing weights 𝜋 = {𝜋1, . . . , 𝜋𝐾} and the parameters 𝜃 = {𝜇𝑘, Σ𝑘}𝐾𝑘=1
of each of the Gaussians.
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Figure 3.3: GMM of 3 Gaussians.

One of the algorithms that can be used to learn these parameters of our multivariate
GMM is Expectation Maximization (EM). The EM algorithm steps and update rules are
presented below.

First, initialize parameters 𝜃 and the mixing weights 𝜋𝑘 and then alternate between
the following steps until convergence:

∙ Given the current estimates of 𝜃 and 𝜋, estimate the posterior probability that 𝑥𝑖

belongs to cluster 𝑘.

𝛾𝑖,𝑘 = 𝜋𝑘𝒩 (𝑥𝑖|𝜇𝑘,Σ𝑘)
𝐾∑︀

𝑗=1
𝜋𝑗𝒩 (𝑥𝑖|𝜇𝑗 ,Σ𝑗

, ∀ 𝑖, 𝑘

∙ Given the current estimates of the above posterior probabilities 𝛾𝑖,𝑘 estimate the
mean, the covariance matrix and the mixing weight of each of the Gaussians in-
volved.

𝜇𝑘 = 1
𝑁𝑘

𝑁∑︁
𝑖=1

𝛾𝑖,𝑘𝑥𝑖, ∀𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑁𝑘 =
𝑁∑︁

𝑖=1
𝛾𝑖,𝑘

Σ𝑘 = 1
𝑁𝑘

𝑁∑︁
𝑖=1

𝛾𝑖,𝑘(𝑥𝑖 − 𝜇𝑘)(𝑥𝑖 − 𝜇𝑘)𝑇 , ∀𝑘

𝜋𝑘 = 𝑁𝑘

𝑁
, ∀𝑘

Lemma 1. k-Means is equal to a hard-assignment EM for GMM, in the case of Σ𝑘 =
Σ = 𝜎2𝐼𝑁×𝑁 , and with equiprobable cluster centers, 𝑤𝑘 = 1

𝐾 .

Proof. Consider the posterior probabilities of cluster assignments

𝛾𝑖,𝑘 = 𝜋𝑘𝒩 (𝑥𝑖|𝜇𝑘,Σ𝑘)
𝐾∑︀

𝑗=1
𝜋𝑗𝒩 (𝑥𝑖|𝜇𝑗 ,Σ𝑗)

= 𝜋𝑘𝑒𝑥𝑝{− 1
2𝜎2 ||𝑥𝑖−𝜇𝑘||2}∑︀𝐾

𝑗=1 𝜋𝑗𝑒𝑥𝑝{− 1
2𝜎2 ||𝑥𝑖−𝜇𝑗 ||2}

, ∀ 𝑖, 𝑘

As 𝜎2 → 0 we observe that in the denominator the term for which ||𝑥𝑖 − 𝜇𝑗 ||2 is
smallest, will go to zero most slowly, and hence the responsibilities 𝛾𝑖,𝑘 for the data
point 𝑥𝑖 all go to zero except for term 𝑗, for which the responsibility 𝛾𝑖,𝑘 will go to
unity. Thus, in this limit, we obtain a hard assignment of data points to clusters,
just as in the k-means algorithm.
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𝛾𝑖,𝑘 ≈
𝜋𝑗𝑒𝑥𝑝{− 1

2𝜎2 ||𝑥𝑖−𝜇𝑗 ||2}
𝜋𝑗𝑒𝑥𝑝{− 1

2𝜎2 ||𝑥𝑖−𝜇𝑗 ||2} = 1

Let us write :

||𝑥𝑖 − 𝜇𝑘||2 = 𝛿𝑘

Then

𝜋𝑘𝑒𝑥𝑝{−||𝑥𝑖 − 𝜇𝑘||2}/2𝜎2∑︀𝐾
𝑗=1 𝜋𝑗𝑒𝑥𝑝{−||𝑥𝑖 − 𝜇𝑗 ||2/2𝜎2}

= 𝜋𝑘𝑒𝑥𝑝{−𝛿𝑘/2𝜎2}∑︀𝐾
𝑗=1 𝜋𝑗𝑒𝑥𝑝{−𝛿𝑗/2𝜎2}

If we take

𝛿* = argmin
𝑖

𝛿𝑖

we have

𝜋𝑘𝑒𝑥𝑝{−𝛿𝑘/2𝜎2}∑︀𝐾
𝑗=1 𝜋𝑗𝑒𝑥𝑝{−𝛿𝑗/2𝜎2}

= 𝜋𝑘𝑒𝑥𝑝{(𝛿* − 𝛿𝑘)/2𝜎2}∑︀𝐾
𝑗=1 𝜋𝑗𝑒𝑥𝑝{(𝛿* − 𝛿𝑗)/2𝜎2}

where 𝛿* − 𝛿𝑘 < 0 except for 𝑘 = 𝑘* where 𝛿* − 𝛿𝑘* = 0. So, for all 𝑘 ̸= 𝑘*,

lim
𝜎2→0

𝜋𝑘𝑒𝑥𝑝{(𝛿* − 𝛿𝑘)/2𝜎2}∑︀𝐾
𝑗=1 𝜋𝑗𝑒𝑥𝑝{(𝛿* − 𝛿𝑗)/2𝜎2}

= lim
𝜎2→0

𝜋𝑘𝑒𝑥𝑝{(𝛿* − 𝛿𝑘)/2𝜎2}
𝜋𝑘*

∑︀
𝑗 ̸=𝑘* 𝜋𝑗𝑒𝑥𝑝{(𝛿* − 𝛿𝑗)/2𝜎2}

= 0

since, for 𝑎 > 0,

lim
𝜖→0

𝑒𝑥𝑝{−𝑎/𝜖} = 0

while

lim
𝜎2→0

𝜋𝑘*𝑒𝑥𝑝{(𝛿* − 𝛿𝑘*)/2𝜎2}∑︀𝐾
𝑗=1 𝜋𝑗𝑒𝑥𝑝{(𝛿* − 𝛿𝑗)/2𝜎2}

= lim
𝜎2→0

𝜋𝑘* × 1
𝜋𝑘*

∑︀
𝑗 ̸=𝑘* 𝜋𝑗𝑒𝑥𝑝{(𝛿* − 𝛿𝑗)/2𝜎2}

= 1

For 𝑙 ̸= 𝑗, 𝛾𝑖,𝑙 ≈ 0 ⇒ hard assignment with 𝛾𝑖,𝑗 = 1 for a single cluster 𝑗.Thus
for Σ𝑘 = Σ = 𝜎2𝐼𝑁×𝑁 (spherical covariance matrix) and 𝜎2 → 0 , EM for GMM
reduces to k-Means. The update rules of EM we mentioned above are :

𝑧𝑖 = argmax
𝑘

1
𝐾
𝒩 (𝑥𝑖; 𝜇, Σ𝑘)

= argmax
𝑘

𝑒𝑥𝑝
{︁
− 1

2𝜎2 ||𝑥𝑖 − 𝜇𝑘||2
}︁

The M-step becomes :

|𝒞𝑘| =
𝑁∑︁

𝑖=1
1𝑧𝑖=𝑘 =

∑︁
𝑖:𝑧𝑖=𝑘

1 = |{𝑖 : 𝑧𝑖 = 𝑘}|

𝜇𝑘 = 𝑚𝑒𝑎𝑛(𝒞𝑘) = 1
|𝒞𝑘|

∑︁
𝑖∈𝒞𝑘

𝑥𝑖

As we have foresaid the above update equations coincide with the k-Means update
rules and this completes the proof.
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3.4 Channel Model for 2 Asynchronous Tags

In this section, our system model is presented for the first time, while in the next
chapter an extensive derivation of an equivalent system model is provided that is going to
be used in the simulations. Considering the simultaneous transmission of 2 tags, in the
equations below we denote as 𝑘 the number of samples, 𝑁 the number of symbols to be
transmitted and 𝐿 the oversampling factor in our reader. According to Kimionis et al.
[18], the received digitized signal is expressed as:

𝑦[𝑘] = ℎ𝐴𝑥𝐴[𝑘] + ℎ𝐵𝑥𝐵[𝑘] + 𝑛[𝑘], (3.2)

where, 𝑥𝐴[𝑘] =
𝑁−1∑︀
𝑛=0

𝑆𝐴
𝑑(𝑛)[𝑘 − 𝑛𝐿− 𝜏𝐴], 𝑥𝐵[𝑘] =

𝑁−1∑︀
𝑛=0

𝑆𝐵
𝑑(𝑛)[𝑘 − 𝑛𝐿− 𝜏𝐵].

In the above equations, 𝑛[𝑘] = 𝑛(𝑘𝑇𝑠) ∼ 𝒞𝒩 (0, 2𝜎2
𝑛) is considered to be CSCN (Cir-

cularly Symmetric Complex Normal) additive white noise, i.e. 𝑛[𝑘] ⊥ 𝑛[𝑚] for 𝑘 ̸= 𝑚,
𝑑(𝑛) ∈ {0, 1} denotes the transmitted bit, 𝑇 denotes the nominal bit duration and 𝑆0 and
𝑆1 are set according to Kargas et al. [3] and can be selected between the following two
waveforms, since these are the only waveforms that can be observed when we examine
the transmitted waveform, shifted by 𝑇/2 before the beginning of the bit:

𝑆0[𝑘] =
{︃

1, if 0 ≤ 𝑘 < 𝐿
2

0, if 𝐿
2 ≤ 𝑘 < 𝐿

, 𝑆1[𝑘] =
{︃

0, if 0 ≤ 𝑘 < 𝐿
2

1, if 𝐿
2 ≤ 𝑘 < 𝐿

.

Last, 𝜏𝐴, 𝜏𝐵 ∈ [0, 𝐿 − 1] denote the sampled time offset before each tag starts trans-
mitting. In this thesis work we have made the assumption that, 𝜏𝐴 = 0, i.e. we are
fully synchronized with tag A and we receive tag’s A signal first, while time offset 𝜏𝐵 is
considered to be the delay of tag’s B response as demonstrated in Figure 4.1. We refer
to them as sampled time offsets since we have oversampled the signal received on our
reader, hence we can count by how many samples we observe this misalignment and then
translate that into time units.

The received digitized signal 𝑦[𝑘] is then filtered with a square pulse impulse response
Π[𝑘], given by:

Π[𝑘] =
{︃

1, if 0 ≤ 𝑘 < 𝐿
2

0, otherwise,
(3.3)

which has a length of 𝐿/2 taps.
The filtered signal is then given by:

𝑦𝑓 [𝑛] =
∞∑︁

𝑘=−∞

𝑦[𝑘]
𝐿/2Π[𝑛− 𝑘] (3.4)

where we divide by 𝐿/2 in order to normalize our results.

3.5 Discussion

To summarize, in this chapter we introduced some basic theorems and definitions,
mostly in the context of Complex Normal random variables, which are going to use
throughout this whole thesis. We demonstrated briefly how the Affinity Propagation
clustering algorithm works and how we are going to embed it into our implementation.
We gave the complete proof of the k-Means as a limit case of EM algorithm on GMM.
Finally, we presented for the first time a signal model for the simultaneous transmission,
of two RFID tags, with the only assumption that we are able to identify where the collided
RN16 packet starts and after locking on to that packet start we would be able to perform
that mathematical analysis that precedes.
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Chapter 4

Analysis & Derived Equivalent Sys-
tem Model

In this chapter we are going to prove that when 2 tags are transmitting simultaneously,
with a time offset between their corresponding packet start, then the emerging scenarios
can be classified into 3 different categories, depending on the time offset of the most
delayed tag. It will also be demonstrated how the 2 tags problem becomes a 3 tags
problem and under what circumstances it can occur.

4.1 System Model

Assuming that, 𝜏𝐴 = 0 and that 𝜏𝐵 ∈ [0, 𝐿 − 1], in terms of samples as mentioned
earlier, along with nominal bit duration 𝐿 samples i.e., asynchronous 2-tags transmission,
each FM0 symbol observed with a 𝐿/2 shift, can be written after matched filtering and
sampling at the half of each symbol period, as a 2 × 1 complex vector of the following
form:

𝑦 ,

[︃
𝑦0
𝑦1

]︃
= ℎ𝐴𝑥𝐴 + 𝐵ℎ𝐵𝑥𝐵⏟  ⏞  

𝑢

+𝑛 = 𝑢 + 𝑛, (4.1)

where, 𝑦0 and 𝑦1 correspond to the first and second half-bits respectively, 𝑥𝐴, 𝑥𝐵 ∈ {𝑒0 ,
[1 0]𝑇 , 𝑒1 , [0 1]𝑇 }, 𝑛 ∼ 𝒞𝒩 (0, 4

𝐿𝜎2
𝑛𝐼2) ≡ 𝒞𝒩 (0, 𝜎2𝐼2), 𝐵 is a 2 × 2 shaping matrix

and 𝑢 is a 2 × 1 vector that its content varies depending on the scenario. Below it is
declared the 𝑢 vectors for each scenario where, the first row of vector 𝑢 corresponds to
the first half-bit and the second row to the second half-bit.

To begin with, there exist 3 scenarios as mentioned earlier, depending on the delay
offset of tag B. These 3 scenarios are distinguished based on the number of clusters they
form on the I/Q plane.

∙ Scenario 1: 𝜏𝐵 ∈ {1, . . . , 𝐿
4 − 1, 𝐿

4 + 1, . . . , 𝐿
2 − 1, 𝐿

2 + 1, . . . , 3𝐿
4 − 1, 3𝐿

4 + 1, . . . , 𝐿− 1}

∙ Scenario 2: 𝜏𝐵 ∈ {𝐿
4 , 3𝐿

4 }

∙ Scenario 3: 𝜏𝐵 ∈ {0, 𝐿
2 }

In order to extract the elements of the 𝑢 vectors for each scenario, the output of the
next two equations is needed, Equations (4.2) and (4.3), under different values of 𝑥𝐴, 𝑥𝐵,
offset 𝜏𝐵 and previously transmitted bit of tag B, with regard to Table 4.1. We should
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not forget to mention that, the division by 𝐿/2 is done in order to normalize the results
and focus on the offset of tag B.

𝑦0 =
𝐿
2 −1∑︁
𝑘=0

𝑦[𝑘]
𝐿/2 =

𝐿
2 −1∑︁
𝑘=0

ℎ𝐴𝑥𝐴[𝑘]
𝐿/2 +

𝐿
2 −1∑︁
𝑘=0

ℎ𝐵𝑥𝐵[𝑘]
𝐿/2 +

𝐿
2 −1∑︁
𝑘=0

𝑛[𝑘]
𝐿/2 , (4.2)

𝑦1 =
𝐿−1∑︁
𝑘= 𝐿

2

𝑦[𝑘]
𝐿/2 =

𝐿−1∑︁
𝑘= 𝐿

2

ℎ𝐴𝑥𝐴[𝑘]
𝐿/2 +

𝐿−1∑︁
𝑘= 𝐿

2

ℎ𝐵𝑥𝐵[𝑘]
𝐿/2 +

𝐿−1∑︁
𝑘= 𝐿

2

𝑛[𝑘]
𝐿/2 . (4.3)

Each bit a tag transmits, has an ideal duration of 𝑇 seconds, where at the receiver
that bit gets oversampled by a factor of 𝐿. This means that each half-bit, is comprised of
𝐿
2 samples. Focusing the detection on the 𝐿 samples long window as seen in Figure 4.1,
one can better observe the time offset 𝜏𝐵 and the multiple scenarios that can occur with
different waveforms and time offsets.

(a) 𝑥𝐵 [𝑘] = 𝑆1[𝑘 − 𝜏𝐵 ] and
𝑥𝐵 [𝑘 − 𝐿] = 𝑆0[𝑘 − 𝜏𝐵 ].

(b) 𝑥𝐵 [𝑘] = 𝑆1[𝑘 − 𝜏𝐵 ] and
𝑥𝐵 [𝑘 − 𝐿] = 𝑆1[𝑘 − 𝜏𝐵 ].

Figure 4.1: Delayed response of Tag B by 𝜏𝐵 samples.

Studying the above figures, the FM0 bit boundary can be clearly noticed, as well as
the dotted part of the waveform denoting the last bits of tag’s B previous transmission
‘intruding’ by 𝜏𝐵 samples into our detection window, due to the offset. To make things
easier, one could envision that intrusion as a ‘pseudotag’ C that interferes with the trans-
mission of tag B. Essentially it is the same tag; that is why it was named ‘pseudotag’ in
the first place, and it will obviously have the exact same channel coefficient with tag B,
i.e. ℎ𝐶 , ℎ𝐵; we will also only refer to it as tag C from now on. In Figure 4.1a, it can
be noticed that tag C (dotted part of Tag B waveform) was definitely transmitting a 𝑆0
waveform since it is intruding our detection window with 𝜏𝐵 samples of 0’s. Equivalently,
if the 0’s were instead 1’s, like in Figure 4.1b, then again it can be claimed with certainty,
that the waveform tag C was transmitting was 𝑆1. What is more, from the above figures
it can also be observed that tag B is currently broadcasting a 𝑆1 waveform. Bearing in
mind the above observations, after the matched filtering process is performed, a 𝑢 vector
for that case can be extracted. To be more specific all that needs to be done is counting,
which we is demonstrated below.

Based on Figure 4.1a, on the first half bit for both tags, i.e. 𝑦0, there are 𝐿
2 0’s for

tag B and 𝐿
2 1’s for tag A. While, on the second half-bit, 𝑦1, there are 𝐿

2 − 𝜏𝐵 1’s for tag
B and 𝐿

2 0’s for tag A. Dividing by 𝐿
2 to normalize the results, and ignoring the noise, we
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obtain:

𝑦0 =
𝐿
2 −1∑︁
𝑘=0

ℎ𝐴𝑥𝐴[𝑘]
𝐿/2 +

𝐿
2 −1∑︁
𝑘=0

ℎ𝐵𝑥𝐵[𝑘]
𝐿/2 =

1𝐿
2 ℎ𝐴 + 0𝐿

2 ℎ𝐵

𝐿/2 = ℎ𝐴,

𝑦1 =
𝐿−1∑︁
𝑘= 𝐿

2

ℎ𝐴𝑥𝐴[𝑘]
𝐿/2 +

𝐿−1∑︁
𝑘= 𝐿

2

ℎ𝐵𝑥𝐵[𝑘]
𝐿/2 =

0𝐿
2 ℎ𝐴 + 0𝜏𝐵ℎ𝐵 + 1

(︁
𝐿
2 − 𝜏𝐵

)︁
ℎ𝐵

𝐿/2 =
(︁
1− 2𝜏𝐵

𝐿

)︁
ℎ𝐵,

which can be written more neatly in the form of,

𝑢 =

⎡⎣ ℎ𝐴(︁
1− 2𝜏𝐵

𝐿

)︁
ℎ𝐵

⎤⎦ .

In the same manner as before, the 𝑢 vector that will obtained if we use the Equations
(4.2) and (4.3), on Figure 4.1b, whilst ignoring the additive noise, is:

𝑢 =

⎡⎣ ℎ𝐴 + 2𝜏𝐵
𝐿 ℎ𝐵(︁

1− 2𝜏𝐵
𝐿

)︁
ℎ𝐵

⎤⎦ .

Similarly, the rest of the cases can be studied, by alternating the values of 𝑥𝐴, 𝑥𝐵, 𝜏𝐵

and the waveform that tag B broadcast last (i.e. tag C transmission), as defined in Table
4.1. In that way, after extensive calculations, the following scenarios will be observed.

4.2 Scenario Analysis

Before proceeding into demonstrating the categories that occurred in our analysis
below, it needs to be made clear that scenarios 2 and 3 are special cases of scenario 1.
One might have already observed by now that the time offset 𝜏𝐵 values that are ‘missing’
from scenario 1, are indeed the time offset values that are examined in scenarios 2 and
3. They are considered to be special cases since they produce 6 and 4 clusters on the
I/Q plane respectively, and can both be derived if the 𝑢 vectors of scenario 1 are used,
as it will be demonstrated in this section. Furthermore, we should also mention that in
an indoor environment, where the distance between the tags and the reader is small and
the RFID configuration is most likely monostatic, it is more likely to notice a scenario
3 situation, since the propagation delays do not have a great distance to develop and
cannot be observed. On the other hand, in an outdoor environment with an ambient
bistatic RFID configuration and large distances that scale up to many km, it is more
likely to notice that propagation delay, hence it would be more likely notice a scenario 1
or 2 situation. In the next few pages, the scenarios that occur are listed along with their
respective clusters, regardless of the RFID configuration.

Scenario 1

In scenario 1 two cases are distinguished that both produce 𝑁𝑐 = 8 cluster centres in
the I/Q plane:

∙ Case 0
(︀
𝜏𝐵 < 𝐿

2
)︀
: 𝜏𝐵 ∈ {1, . . . , 𝐿

4 − 1, 𝐿
4 + 1, . . . 𝐿

2 − 1}
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∙ Case 1
(︀
𝜏𝐵 > 𝐿

2
)︀
: 𝜏𝐵 ∈ {𝐿

2 + 1, . . . , 3𝐿
4 − 1, 3𝐿

4 + 1, . . . , 𝐿− 1}

Using Eq. (4.2),(4.3) and based on the notion that Figure 4.1 of the previous page
introduced, the 𝑢 vectors for the first case of scenario 1 can be extracted:

𝑢 ∈
{︂

𝑢0 =
[︁
ℎ𝐴 + (1− 2𝜏𝐵

𝐿
)ℎ𝐵

2𝜏𝐵

𝐿
ℎ𝐵

]︁𝑇
, 𝑢1 =

[︁
0 ℎ𝐴 + (1− 2𝜏𝐵

𝐿
)ℎ𝐵

]︁𝑇
,

𝑢2 =
[︁
ℎ𝐴 (1− 2𝜏𝐵

𝐿
)ℎ𝐵

]︁𝑇
, 𝑢3 =

[︁
(1− 2𝜏𝐵

𝐿
)ℎ𝐵 ℎ𝐴 + 2𝜏𝐵

𝐿
ℎ𝐵

]︁𝑇
,

𝑢4 =
[︁
ℎ𝐴 + ℎ𝐵

2𝜏𝐵

𝐿
ℎ𝐵

]︁𝑇
, 𝑢5 =

[︁2𝜏𝐵

𝐿
ℎ𝐵 ℎ𝐴 + (1− 2𝜏𝐵

𝐿
)ℎ𝐵

]︁𝑇
,

𝑢6 =
[︁
ℎ𝐴 + 2𝜏𝐵

𝐿
ℎ𝐵 (1− 2𝜏𝐵

𝐿
)ℎ𝐵

]︁𝑇
, 𝑢7 =

[︁
ℎ𝐵 ℎ𝐴 + 2𝜏𝐵

𝐿
ℎ𝐵

]︁𝑇}︂
.

In the same way as in the first case above, the 𝑢 vectors extracted for the second case
are:

𝑢 ∈
{︂

𝑢0 =
[︁
ℎ𝐴 + (2𝜏𝐵

𝐿
− 1)ℎ𝐵 (2− 2𝜏𝐵

𝐿
)ℎ𝐵

]︁𝑇
, 𝑢1 =

[︁
(2𝜏𝐵

𝐿
− 1)ℎ𝐵 ℎ𝐴

]︁𝑇
,

𝑢2 =
[︁
ℎ𝐴 + (2𝜏𝐵

𝐿
− 1)ℎ𝐵 0

]︁𝑇
, 𝑢3 =

[︁
(2𝜏𝐵

𝐿
− 1)ℎ𝐵 ℎ𝐴 + (2− 2𝜏𝐵

𝐿
)ℎ𝐵

]︁𝑇
,

𝑢4 =
[︁
ℎ𝐴 + (2− 2𝜏𝐵

𝐿
)ℎ𝐵 ℎ𝐵

]︁𝑇
, 𝑢5 =

[︁
(2− 2𝜏𝐵

𝐿
)ℎ𝐵 ℎ𝐴 + (2𝜏𝐵

𝐿
− 1)ℎ𝐵

]︁𝑇
,

𝑢6 =
[︁
ℎ𝐴 + (2− 2𝜏𝐵

𝐿
)ℎ𝐵 (2𝜏𝐵

𝐿
− 1)ℎ𝐵

]︁𝑇
, 𝑢7 =

[︁
(2− 2𝜏𝐵

𝐿
)ℎ𝐵 ℎ𝐴 + ℎ𝐵

]︁𝑇}︂
.

It should be noted that, no matter which case we are in, the cluster centres produced
by these equations will ‘land’ on the same spots on the I/Q plane.

𝐶1,0 =
{︁

0,
(︁
1− 2𝜏𝐵

𝐿

)︁
ℎ𝐵,

2𝜏𝐵

𝐿
ℎ𝐵, ℎ𝐵, ℎ𝐴, ℎ𝐴 +

(︁
1− 2𝜏𝐵

𝐿

)︁
ℎ𝐵, ℎ𝐴 + 2𝜏𝐵

𝐿
ℎ𝐵, ℎ𝐴 + ℎ𝐵

}︁

𝐶1,1 =
{︁

0,
(︁2𝜏𝐵

𝐿
− 1

)︁
ℎ𝐵,

(︁
2− 2𝜏𝐵

𝐿

)︁
ℎ𝐵, ℎ𝐵, ℎ𝐴, ℎ𝐴 +

(︁2𝜏𝐵

𝐿
− 1

)︁
ℎ𝐵, ℎ𝐴 +

(︁
2− 2𝜏𝐵

𝐿

)︁
ℎ𝐵, ℎ𝐴 + ℎ𝐵

}︁

Scenario 2

Similarly to scenario 1, but this time for scenario 2, two cases that both produce
𝑁𝑐 = 6 cluster centres in the I/Q plane are distinguished. These two cases of 𝜏𝐵 are:

∙ Case 0: 𝜏𝐵 = 𝐿
4

∙ Case 1: 𝜏𝐵 = 3𝐿
4

In this scenario, we can either work by using Equations (4.2) and (4.3), or by taking
advantage of the fact that scenario 2 is a special case of scenario 1 and use scenario 1 𝑢
vectors that correspond to case 0, i.e. 𝜏𝐵 < 𝐿/2, plug in 𝜏𝐵 = 𝐿

4 and derive the 𝑢 vectors.
Either way, the 𝑢 vectors for scenario 2 in case of 𝜏𝐵 = 𝐿

4 (case 0) are the following:
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𝑢 ∈
{︂

𝑢0 =
[︁
ℎ𝐴 + ℎ𝐵

2
ℎ𝐵

2
]︁𝑇

, 𝑢1 =
[︁
0 ℎ𝐴 + ℎ𝐵

2
]︁𝑇

, 𝑢2 =
[︁
ℎ𝐴

ℎ𝐵

2
]︁𝑇

,

𝑢3 =
[︁ℎ𝐵

2 ℎ𝐴 + ℎ𝐵

2
]︁𝑇

, 𝑢4 =
[︁
ℎ𝐴 + ℎ𝐵

ℎ𝐵

2
]︁𝑇

, 𝑢5 =
[︁ℎ𝐵

2 ℎ𝐴 + ℎ𝐵

2
]︁𝑇

,

𝑢6 =
[︁
ℎ𝐴 + ℎ𝐵

2
ℎ𝐵

2
]︁𝑇

, 𝑢7 =
[︁
ℎ𝐵 ℎ𝐴 + ℎ𝐵

2
]︁𝑇}︂

.

Similarly, in this case we could take advantage, once again, of the fact that scenario 2
is a special case of scenario 1 and use the 𝑢 vectors of scenario 1 that correspond to case
1, i.e. 𝜏𝐵 > 𝐿/2, plug in 𝜏𝐵 = 3𝐿

4 and extract the 𝑢 vectors. No matter the way chosen,
the 𝑢 vectors for scenario 2 in case of 𝜏𝐵 = 3𝐿

4 (case 1) are the following:

𝑢 ∈
{︂

𝑢0 =
[︁
ℎ𝐴 + ℎ𝐵

2
ℎ𝐵

2
]︁𝑇

, 𝑢1 =
[︁ℎ𝐵

2 ℎ𝐴

]︁𝑇
, 𝑢2 =

[︁
ℎ𝐴 + ℎ𝐵

2 0
]︁𝑇

,

𝑢3 =
[︁ℎ𝐵

2 ℎ𝐴 + ℎ𝐵

2
]︁𝑇

, 𝑢4 =
[︁
ℎ𝐴 + ℎ𝐵

2 ℎ𝐵

]︁𝑇
, 𝑢5 =

[︁ℎ𝐵

2 ℎ𝐴 + ℎ𝐵

2
]︁𝑇

,

𝑢6 =
[︁
ℎ𝐴 + ℎ𝐵

2
ℎ𝐵

2
]︁𝑇

, 𝑢7 =
[︁ℎ𝐵

2 ℎ𝐴 + ℎ𝐵

]︁𝑇}︂
.

Observing all of the above vectors the same set of 𝑁𝑐 = 6 distinct clusters is distin-
guished, for both cases of scenario 2:

𝐶2,0 = 𝐶2,1 =
{︁

0,
ℎ𝐵

2 , ℎ𝐵, ℎ𝐴, ℎ𝐴 + ℎ𝐵

2 , ℎ𝐴 + ℎ𝐵

}︁

Scenario 3

Once again, in scenario 3, two cases can be distinguished, in the same fashion as
before:

∙ Case 0: 𝜏𝐵 = 0

∙ Case 1: 𝜏𝐵 = 𝐿
2

Similar to scenario 2, the 𝑢 vectors for scenario 3 in case of 𝜏𝐵 = 0 are the following
and can be very easily extracted if plugged 𝜏𝐵 = 0 into scenario 1, case 0 𝑢 vectors:

𝑢 ∈
{︂

𝑢0 =
[︁
ℎ𝐴 + ℎ𝐵 0

]︁𝑇
, 𝑢1 =

[︁
0 ℎ𝐴 + ℎ𝐵

]︁𝑇
, 𝑢2 =

[︁
ℎ𝐴 ℎ𝐵

]︁𝑇
, 𝑢3 =

[︁
ℎ𝐵 ℎ𝐴

]︁𝑇
,

𝑢4 =
[︁
ℎ𝐴 + ℎ𝐵 0

]︁𝑇
, 𝑢5 =

[︁
0 ℎ𝐴 + ℎ𝐵

]︁𝑇
, 𝑢6 =

[︁
ℎ𝐴 ℎ𝐵

]︁𝑇
, 𝑢7 =

[︁
ℎ𝐵 ℎ𝐴

]︁𝑇}︂
.

Similarly, the 𝑢 vectors for scenario 3 in case 𝜏𝐵 = 𝐿
2 are the following and can be

extracted similar to the above, if plugged 𝜏𝐵 = 𝐿
2 into scenario 1, case 0 or case 1 𝑢

vectors:

𝑢 ∈
{︂

𝑢0 =
[︁
ℎ𝐴 ℎ𝐵

]︁𝑇
, 𝑢1 =

[︁
0 ℎ𝐴

]︁𝑇
, 𝑢2 =

[︁
ℎ𝐴 0

]︁𝑇
, 𝑢3 =

[︁
0 ℎ𝐴 + ℎ𝐵

]︁𝑇
,

𝑢4 =
[︁
ℎ𝐴 + ℎ𝐵 ℎ𝐵

]︁𝑇
, 𝑢5 =

[︁
ℎ𝐵 ℎ𝐴

]︁𝑇
, 𝑢6 =

[︁
ℎ𝐴 + ℎ𝐵 0

]︁𝑇
, 𝑢7 =

[︁
ℎ𝐵 ℎ𝐴 + ℎ𝐵

]︁𝑇}︂
.

Once again, by observation, the same set of 𝑁𝑐 = 4 distinct clusters can be distin-
guished, for both cases of scenario 3:

𝐶3,0 = 𝐶3,1 = {0, ℎ𝐵, ℎ𝐴, ℎ𝐴 + ℎ𝐵}
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4.3 Shaping matrix B

To further explain Eq. (4.1) we only need to form 8 𝐵 matrices for 𝜏𝐵 ≤ 𝐿
2 and 8 𝐵

matrices for the case of 𝜏𝐵 > 𝐿
2 , where on both cases they will be based on scenario 1

𝑢 vectors, since the other two scenarios are the special cases of scenario 1, as mentioned
earlier. The notation used for 𝐵 matrices corresponds to the equivalent 𝑢 vector, i.e. 𝐵1,3
corresponds to vector 𝑢3 for 𝜏𝐵 > 𝐿/2, while 𝐵0,3 corresponds to vector 𝑢3 for 𝜏𝐵 ≤ 𝐿/2.
The first column of the matrix corresponds to tag B emitting 𝑥𝐵 = [1 0]𝑇 , while the
second column corresponds to tag B emitting 𝑥𝐵 = [0 1]𝑇 . Due to the shifted (by T/2)
detection, a signal like 𝑥𝐵 = [1 1]𝑇 will never be observed and that is the reason why
there cannot be values on both columns of the matrix; one column will always be filled
with zeros. The rows of the matrix correspond to 𝑦0 and 𝑦1 respectively, i.e. the part of
the detection window on which the signal from tag B and tag C is present. The elements
of these matrices are essentially the coefficients of ℎ𝐵 on each one of the 𝑢 vectors above.
To further explain this last sentence, we trace back to the 𝑢 vectors of our scenarios and
notice that all vectors’ elements are given in the form of 𝛼ℎ𝐴 +𝛽ℎ𝐵, where 𝛼 ∈ {0, 1} and
𝛽 ∈ {0, 1, (1 − 2𝜏𝐵

𝐿 ), 2𝜏𝐵
𝐿 , (2𝜏𝐵

𝐿 − 1), (2 − 2𝜏𝐵
𝐿 )}, depending on the scenario. The matrices

for 𝜏𝐵 ≤ 𝐿
2 are given below:

𝐵0,0 =

⎡⎣1− 2𝜏𝐵
𝐿 0

2𝜏𝐵
𝐿 0

⎤⎦ , 𝐵0,1 =
[︃0 0

0 1− 2𝜏𝐵
𝐿

]︃
, 𝐵0,2 =

[︃0 0

0 1− 2𝜏𝐵
𝐿

]︃
, 𝐵0,3 =

⎡⎣1− 2𝜏𝐵
𝐿 0

2𝜏𝐵
𝐿 0

⎤⎦ ,

𝐵0,4 =
[︃ 1 0

2𝜏𝐵
𝐿 0

]︃
, 𝐵0,5 =

⎡⎣0 2𝜏𝐵
𝐿

0 1− 2𝜏𝐵
𝐿

⎤⎦ , 𝐵0,6 =

⎡⎣0 2𝜏𝐵
𝐿

0 1− 2𝜏𝐵
𝐿

⎤⎦ , 𝐵0,7 =
[︃ 1 0

2𝜏𝐵
𝐿 0

]︃
.

In the same fashion as before, the matrices for 𝜏𝐵 > 𝐿
2 are given below:

𝐵1,0 =

⎡⎣2𝜏𝐵
𝐿 − 1 0

2− 2𝜏𝐵
𝐿 0

⎤⎦ , 𝐵1,1 =
[︃
0 2𝜏𝐵

𝐿 − 1
0 0

]︃
, 𝐵1,2 =

[︃
0 2𝜏𝐵

𝐿 − 1
0 0

]︃
, 𝐵1,3 =

⎡⎣2𝜏𝐵
𝐿 − 1 0

2− 2𝜏𝐵
𝐿 0

⎤⎦

𝐵1,4 =
[︃
2− 2𝜏𝐵

𝐿 0
1 0

]︃
, 𝐵1,5 =

⎡⎣0 2− 2𝜏𝐵
𝐿

0 2𝜏𝐵
𝐿 − 1

⎤⎦ , 𝐵1,6 =

⎡⎣0 2− 2𝜏𝐵
𝐿

0 2𝜏𝐵
𝐿 − 1

⎤⎦ , 𝐵1,7 =
[︃
2− 2𝜏𝐵

𝐿 0
1 0

]︃
.

From the above matrices it can be observed that all of them exist two times each.
For instance, matrix 𝐵0,0 = 𝐵0,3, 𝐵0,1 = 𝐵0,2 etc., which means that each matrix has a
probability of appearance equal to 1

4 . That holds if it is assumed, without loss of generality,
that all matrices have an equal chance of occurring. The same holds for the matrices in
the case of 𝜏𝐵 > 𝐿

2 . It is also worth mentioning that these two sets of matrices hold for
all scenarios, with respect to their time offset, only scenario 1 equations are needed to
extract them, since it is the master scenario.

As an example, let us assume that the time offset 𝜏𝐵 = 3𝐿
4 . Since, 𝜏𝐵 = 3𝐿

4 > 𝐿
2 ,

then the second set of matrices will be chosen that holds for values of 𝜏𝐵 > 𝐿
2 . Plugging

𝜏𝐵 = 3𝐿
4 into that second set of matrices and using Equation (4.1) we can return back to

the equivalent system model that uses the 𝑢 vectors, thus proving how that equality is
obtained.
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In all the above equations the following cases were considered in order to extract the
𝑢 vectors. Going through the following cases one by one, while using Equations (4.2) and
(4.3), the way it was done in Figure 4.1, but with different time offset 𝜏𝐵 values each
time, all the above 𝑢 vectors will eventually be yielded.

Tag A Tag B Tag C

𝑢0 𝑆0 𝑆0 𝑆0

𝑢1 𝑆1 𝑆1 𝑆0

𝑢2 𝑆0 𝑆1 𝑆0

𝑢3 𝑆1 𝑆0 𝑆0

𝑢4 𝑆0 𝑆0 𝑆1

𝑢5 𝑆1 𝑆1 𝑆1

𝑢6 𝑆0 𝑆1 𝑆1

𝑢7 𝑆1 𝑆0 𝑆1

Table 4.1: 𝑢 vectors’ cases for all scenarios.

Concluding, it is noticed that all 𝑢 vectors of any scenario can be produced from
scenario 1 clusters, thus for convenience cluster centres of scenario 1 will be denoted as:

𝒰 =
{︃

𝐶1,0, if 0 ≤ 𝜏𝐵 ≤ 𝐿
2

𝐶1,1, if 𝐿
2 < 𝜏𝐵 ≤ 𝐿− 1,

(4.4)

4.4 Signal to Noise Ratio (SNR)

To begin with, it is mandatory to explain how the additive noise to our system was
modelled. It is already declared that 𝑦[𝑘] = ℎ𝐴𝑥𝐴[𝑘] + ℎ𝐵𝑥𝐵[𝑘] + 𝑛[𝑘], where 𝑛[𝑘] ∼
𝒞𝒩 (0, 2𝜎2

𝑛). An analysis is going to be performed on how the different expressions for the
noise variances are connected to each other, and how they were derived. Focusing on the
noise samples, after the process of match filtering we get:

𝐿
2 −1∑︁
𝑘=0

𝑛[𝑘]
𝐿/2 = 2

𝐿

𝐿
2 −1∑︁
𝑘=0

𝑛[𝑘],

where,

𝐿
2 −1∑︁
𝑘=0

𝑛[𝑘] ∼ 𝒞𝒩 (0,
𝐿

2 2𝜎2
𝑛) ≡ 𝒞𝒩 (0, 𝐿𝜎2

𝑛),

hence,

2
𝐿

𝐿
2 −1∑︁
𝑘=0

𝑛[𝑘] ∼ 𝒞𝒩 (0,
4

𝐿2 𝐿𝜎2
𝑛) ≡ 𝒞𝒩 (0,

4
𝐿

𝜎2
𝑛) ≡ 𝒞𝒩 (0, 𝜎2).
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It was stated earlier that 𝑛0 ⊥ 𝑛1 with,

𝑛 =
[︃
𝑛0
𝑛1

]︃
=

⎡⎢⎢⎢⎢⎢⎣
𝐿
2 −1∑︀
𝑘=0

𝑛[𝑘]
𝐿/2

𝐿−1∑︀
𝑘= 𝐿

2

𝑛[𝑘]
𝐿/2

⎤⎥⎥⎥⎥⎥⎦ .

It can finally be deduced that, 𝑛 ∼ 𝒞𝒩 (0, 4
𝐿𝜎2

𝑛𝐼2) ≡ 𝒞𝒩 (0, 𝜎2𝐼2).

As seen earlier in Section 4.3, all possible 𝐵 matrices are a function of the offset 𝜏𝐵

and the oversampling factor L. At this point, it is needed to state that 𝜏𝐵 is a random
variable with discrete uniform distribution, for the sake of our computations, in the range
of [0, 𝐿 − 1], i.e. 𝜏𝐵 ∼ 𝒰(0, 𝐿 − 1), thus E[𝜏𝐵] = 𝐿−1

2 . As first case, only the signal
transmitted from tag A is considered as a useful signal source, hence, tag B signal is
treated as interference in the calculations below:

𝑆𝑁𝑅𝐴 = E[||ℎ𝐴𝑥𝐴||22]
E[||𝐵ℎ𝐵𝑥𝐵 + 𝑛||22]

= |ℎ𝐴|2

E[(𝐵ℎ𝐵𝑥𝐵 + 𝑛)𝐻(𝐵ℎ𝐵𝑥𝐵 + 𝑛)]

= |ℎ𝐴|2

E[(ℎ*
𝐵𝑥𝑇

𝐵𝐵𝑇 + 𝑛𝐻)(𝐵ℎ𝐵𝑥𝐵 + 𝑛)]

= |ℎ𝐴|2

E[(ℎ*
𝐵𝑥𝑇

𝐵𝐵𝑇 𝐵𝑥𝐵ℎ𝐵 + ℎ*
𝐵𝑥𝑇

𝐵𝐵𝑇 𝑛 + 𝑛𝐻𝐵ℎ𝐵𝑥𝐵 + 𝑛𝐻𝑛)]

= |ℎ𝐴|2

E[ℎ*
𝐵ℎ𝐵𝑥𝑇

𝐵𝐵𝑇 𝐵𝑥𝐵] + E[𝑛𝐻𝑛]

= |ℎ𝐴|2

E[ℎ*
𝐵ℎ𝐵]E[𝑥𝑇

𝐵𝐵𝑇 𝐵𝑥𝐵] + 2𝜎2 = |ℎ𝐴|2

|ℎ𝐵|2 E[𝑥𝑇
𝐵𝐵𝑇 𝐵𝑥𝐵] + 2𝜎2 . (4.5)

Observing the above equation it becomes clear that the term of E[𝑥𝑇
𝐵𝐵𝑇 𝐵𝑥𝐵] needs

to be calculated, which can be done by using the law of iterated expectation like below.
As a reminder, the law of iterated expectation was described and proved in Chapter 3.

E[𝑥𝑇
𝐵𝐵𝑇 𝐵𝑥𝐵] = E

𝑥𝐵

{︀
E

𝐵|𝑥𝐵

[𝑥𝑇
𝐵𝐵𝑇 𝐵𝑥𝐵]⏟  ⏞  
𝑔(𝑥𝐵)

}︀
= 1

2𝑔

(︂
𝑥𝐵 =

[︃
1
0

]︃)︂
+ 1

2𝑔

(︂
𝑥𝐵 =

[︃
0
1

]︃)︂

= 1
2[0 1]E

{︂
𝐵𝑇 𝐵|𝑥𝐵 =

[︃
0
1

]︃}︂[︃0
1

]︃
+ 1

2[1 0]E
{︂

𝐵𝑇 𝐵|𝑥𝐵 =
[︃
1
0

]︃}︂[︃1
0

]︃
.

(4.6)

Since the previous expression was simplified a bit more, there is now left to compute
the expected value of E[𝐵𝑇 𝐵|𝑥𝐵]. Once again, the law of iterated expectation will be
used to reach the final result:

E[𝐵𝑇 𝐵|𝑥𝐵] = E
𝜏𝐵

{︀
E

𝐵𝑇 𝐵|𝑥𝐵 ,𝜏𝐵

[𝐵𝑇 𝐵|𝑥𝐵, 𝜏𝐵]
}︀ != E

𝜏𝐵

{︁ ∑︁
𝐵𝑇 𝐵

1
4𝐵𝑇 𝐵

}︁
, (4.7)

where at (!), the fraction 1
4 corresponds to the conditional probability:
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P(𝐵|𝑥𝐵) = P(𝑥𝐵, 𝐵)
P(𝑥𝐵) = 1/8

1/2 = 1
4 .

All possible 𝐵 matrices can be found at any time based on the value of 𝑥𝐵, as
described in Section 4.3. If 𝑥𝐵 = [0 1]𝑇 , then the possible 𝐵 matrices obtained are,
𝐵0,1/𝐵0,2, 𝐵0,5/𝐵0,6, for 𝜏𝐵 ≤ 𝐿/2, and 𝐵1,1/𝐵1,2, 𝐵1,5/𝐵1,6, for 𝜏𝐵 > 𝐿/2 as well,
totalling 8 (duplicate) matrices, each with a probability of 1/4, as stated in Section 4.3. If
𝑥𝐵 = [1 0]𝑇 , then the possible 𝐵 matrices obtained are, 𝐵0,0/𝐵0,3, 𝐵0,4/𝐵0,7, for 𝜏𝐵 ≤
𝐿/2, and 𝐵1,0/𝐵1,3, 𝐵1,4/𝐵1,7, for 𝜏𝐵 > 𝐿/2 as well, totalling 8 (duplicate) matrices,
once again each of them occurring with a probability of 1/4. By calculating the products
𝐵𝑇

𝑖 𝐵𝑖, for each case of 𝑥𝐵, summing them and then dividing by 4, a matrix that is only
a function of the r.v. 𝜏𝐵 occurs, on which we have to calculate the expectation, obviously
with respect to 𝜏𝐵. After extensive calculations, it is concluded that for 𝑥𝐵 = [0 1]𝑇 :

E
𝜏𝐵

{︁ ∑︁
𝐵𝑇 𝐵

1
4𝐵𝑇 𝐵

}︁
= 1

4

[︃
0 0
0 E[8𝐿2+24𝜏2

𝐵−24𝜏𝐵𝐿

𝐿2 ]

]︃
= 1

4

[︃
0 0
0 8 + 24

𝐿2 E[𝜏2
𝐵]− 24

𝐿 E[𝜏𝐵]

]︃

= 1
4

[︃
0 0
0 8 + 24

𝐿2
2𝐿2−3𝐿+1

6 − 24
𝐿

𝐿−1
2

]︃
= 1

4

[︃
0 0
0 4𝐿2+4

𝐿2

]︃
, (4.8)

while for 𝑥𝐵 = [1 0]𝑇 :

E
𝜏𝐵

{︁ ∑︁
𝐵𝑇 𝐵

1
4𝐵𝑇 𝐵

}︁
= 1

4

[︃
E[12𝐿2−24𝜏𝐵𝐿+24𝜏2

𝐵
𝐿2 ] 0
0 0

]︃
= 1

4

[︃
12 + 24

𝐿2 E[𝜏2
𝐵]− 24

𝐿 E[𝜏𝐵] 0
0 0

]︃

= 1
4

[︃
12 + 24

𝐿2
2𝐿2−3𝐿+1

6 − 24
𝐿

𝐿−1
2 0

0 0

]︃
= 1

4

[︃
8𝐿2+4

𝐿2 0
0 0

]︃
. (4.9)

Substituting Equations (4.8) and (4.9) into Eq. (4.6), it is yielded:

E[𝑥𝑇
𝐵𝐵𝑇 𝐵𝑥𝐵] = 1

2[0 1]14

[︃
0 0
0 4𝐿2+4

𝐿2

]︃ [︃
0
1

]︃
+ 1

2[1 0]14

[︃
8𝐿2+4

𝐿2 0
0 0

]︃ [︃
1
0

]︃
= 3𝐿2 + 2

2𝐿2 .

(4.10)

Further substituting Eq. (4.10) into Eq. (4.5) it is yielded:

𝑆𝑁𝑅𝐴 = |ℎ𝐴|2
3𝐿2+2

2𝐿2 |ℎ𝐵|2 + 2𝜎2
. (4.11)

Working in the same manner as before, to compute the signal to noise ratio of tag B,
𝑆𝑁𝑅𝐵, considering tag A signal as interference to the useful signal, i.e. tag B signal, in
the calculations below.

𝑆𝑁𝑅𝐵 = E[||𝐵ℎ𝐵𝑥𝐵||22]
E[||ℎ𝐴𝑥𝐴 + 𝑛||22]

= . . . = E[ℎ*
𝐵ℎ𝐵]E[𝑥𝑇

𝐵𝐵𝑇 𝐵𝑥𝐵]
E[ℎ*

𝐴ℎ𝐴] + E[𝑛𝐻𝑛] =
3𝐿2+2

2𝐿2 |ℎ𝐵|2

|ℎ𝐴|2 + 2𝜎2 . (4.12)

In case joint detection needs to be performed, both the signal transmitted by tag A
and tag B have to be considered as useful signal sources. Below the calculation of the
𝑆𝑁𝑅𝐴,𝐵 is presented.
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𝑆𝑁𝑅𝐴,𝐵 = E[||ℎ𝐴𝑥𝐴 + 𝐵ℎ𝐵𝑥𝐵||22]
E[||𝑛||22]

= E[(ℎ𝐴𝑥𝐴 + 𝐵ℎ𝐵𝑥𝐵)𝐻(ℎ𝐴𝑥𝐴 + 𝐵ℎ𝐵𝑥𝐵)]
2𝜎2

= E[ℎ*
𝐴ℎ𝐴𝑥𝑇

𝐴𝑥𝐴] + E[ℎ*
𝐴𝑥𝑇

𝐴𝐵ℎ𝐵𝑥𝐵] + E[ℎ*
𝐵𝑥𝑇

𝐵𝐵𝑇 ℎ𝐴𝑥𝐴] + E[ℎ*
𝐵𝑥𝑇

𝐵𝐵𝑇 𝐵𝑥𝐵ℎ𝐵]
2𝜎2

=
|ℎ𝐴|2 + 3𝐿2+2

2𝐿2 |ℎ𝐵|2 + 𝑥𝑇
𝐴 E[ℎ*

𝐴ℎ𝐵]E[𝐵𝑥𝐵] + E[ℎ*
𝐵ℎ𝐴]E[𝑥𝑇

𝐵𝐵𝑇 ]𝑥𝑇
𝐴

2𝜎2 .

To simplify the calculations it is considered that ℎ𝐴 ⊥ ℎ𝐵. This means that the
tags are not placed close to each other and their distance from the reader is not equal.
Furthermore, their line of sight (l.o.s.) to the reader could also be different. All the
above assumptions aid our conclusion, that the channel coefficients of the tags, are two
independent random variables. Hence, 𝑆𝑁𝑅𝐴,𝐵 is defined as:

𝑆𝑁𝑅𝐴,𝐵 =
|ℎ𝐴|2 + 3𝐿2+2

2𝐿2 |ℎ𝐵|2

2𝜎2 . (4.13)

Since, ℎ𝐴 ⊥ ℎ𝐵 ⇒ E[ℎ*
𝐵ℎ𝐴] = E[ℎ*

𝐵]E[ℎ𝐴] = 0. Similarly, E[ℎ*
𝐴ℎ𝐵] = E[ℎ*

𝐴]E[ℎ𝐵] = 0.
Swapping 𝜎2 = 4

𝐿𝜎2
𝑛 in the above equation it is obtained:

𝜎2
𝑛 =

𝐿(|ℎ𝐴|2 + 3𝐿2+2
2𝐿2 |ℎ𝐵|2)

8𝑆𝑁𝑅𝐴,𝐵
. (4.14)

It is also needed to compute the relation of tag’s A signal with respect to noise 𝑛 and
with respect to tag’s B signal. With respect to tag’s B signal first it is obtained:

E[||ℎ𝐴𝑥𝐴||22]
E[||𝐵ℎ𝐵𝑥𝐵||22]

= |ℎ𝐴|2
3𝐿2+2

2𝐿2 |ℎ𝐵|2
,

while, with respect to noise 𝑛 it is obtained:

E[||ℎ𝐴𝑥𝐴||22]
E[||𝑛||22]

= |ℎ𝐴|2

2𝜎2 .

Last, it is needed to compute the relation of tag’s B signal with respect to noise 𝑛
and with respect to tag’s A signal. With respect to tag’s A signal first it is obtained:

E[||𝐵ℎ𝐵𝑥𝐵||22]
E[||ℎ𝐴𝑥𝐴||22]

=
3𝐿2+2

2𝐿2 |ℎ𝐵|2

|ℎ𝐴|2
,

while, with respect to noise 𝑛 it is obtained:

E[||𝐵ℎ𝐵𝑥𝐵||22]
E[||𝑛||22]

=
3𝐿2+2

2𝐿2 |ℎ𝐵|2

2𝜎2 .

In the figures below, real world data is offered of the clusters that are generated on
each scenario. Later in this thesis, it will be shown that the patterns observed in Figures
4.3 and 4.4 will prove to be useful, since they are going to be used in order to solve the
labelling problem and estimate the channel coefficients as well as the time offset 𝜏𝐵 of tag
B.



Analysis & Derived Equivalent System Model 31

-1 -0.5 0 0.5 1

In-Phase

-2

-1.5

-1

-0.5

0

Q
u
a
d
ra

tu
re

Figure 4.2: I/Q constellation clusters for scenario 3 at 𝑆𝑁𝑅𝐴,𝐵 = 30 dB.
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Figure 4.3: I/Q constellation clusters for scenario 2 at 𝑆𝑁𝑅𝐴,𝐵 = 30 dB.
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Figure 4.4: I/Q constellation clusters for scenario 1 at 𝑆𝑁𝑅𝐴,𝐵 = 30 dB.
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4.5 Discussion

To summarize, in this chapter, an equivalent system model to the one we presented
at the end of Chapter 3 was provided, where this one is presented in a more compact
form using vectors. Using the system model of the previous chapter and by alternating
the values of the time offset of tag B 𝜏𝐵, 3 scenarios were discovered that defined how
the clusters were formed. Based on those clusters that were expressed in vector form we
were able to derive the vector equivalent system model using a shaping matrix 𝐵 that
only depends on 𝜏𝐵 to be fully calculated at any given time.

Next, the signal to noise ratios for different cases of useful signal and noise were
calculated. As an example, the SNR relation when we are interested on both tags’ signal
and only the additive noise is considered as interference. Another relation is when we are
interested only in tag A and we consider the signal from tag B as interference, and so on
and so forth. The reason all these relations were calculated is due to the fact that, the
detection scheme relies closely on these relations.



Chapter 5

CSI Estimation with Clustering

In the following pages we will provide an already widely used method for DC offset
estimation, a proposed algorithm for channel estimation that takes advantage of the
powerful affinity propagation algorithm and the clusters patterns that form especially in
high SNR environments and finally an offset estimation method.

5.1 DC Offset Estimation

In a real time RFID application, the DC offset component can be estimated during
a Gen2-defined interval before the tag starts switching. This interval is known to the
reader and is defined by Gen2 as 𝑇1; its duration depends on the tag’s data rate for FM0
encoding. Tag is absorbing energy with corresponding reflection coefficient close to zero;
thus, the reflected signal corresponding to one of the two tag load states, can be estimated
by averaging the received samples acquired in interval 𝑇1. The received signal during 𝑇1
is given by:

𝑦𝑇1 [𝑘] = 𝐴𝑑𝑐 + 𝑛[𝑘], 𝑘 = 0, . . . , 𝐿𝑇1 − 1

where 𝐿𝑇1 = 𝑇1
𝑇𝑠

is the length of the interval in samples.

The ML estimate of ̂︂𝐴𝑑𝑐 is found by:

̂︂𝐴𝑑𝑐 = argmax
𝐴𝑑𝑐∈C

𝑓(𝑦|𝐴𝑑𝑐)

= argmax
𝐴𝑑𝑐∈C

ln

(︃ 𝐿𝑇1 −1∏︁
𝑘=0

1
2𝜋𝜎2

𝑛

𝑒
|𝑦[𝑘]−𝐴𝑑𝑐|2

2𝜎2
𝑛

)︃

= argmax
𝐴𝑑𝑐∈C

𝐿𝑇1 −1∑︁
𝑘=0

|𝑦[𝑘]−𝐴𝑑𝑐|2

= argmax
𝐴𝑑𝑐∈C

𝐿𝑇1 −1∑︁
𝑘=0

(𝑦[𝑘]−𝐴𝑑𝑐)(𝑦[𝑘]−𝐴𝑑𝑐)*

= argmax
𝐴𝑑𝑐∈C

𝐿𝑇1 −1∑︁
𝑘=0

(𝑦[𝑘]𝑦[𝑘]* − 𝑦[𝑘]𝐴*
𝑑𝑐 −𝐴𝑑𝑐𝑦[𝑘]* + 𝐴𝑑𝑐𝐴

*
𝑑𝑐)

33



34 CSI Estimation with Clustering

differentiating with respect to 𝐴𝑑𝑐 we get:

𝐿𝑇1 −1∑︁
𝑘=0

𝐴*
𝑑𝑐 − 𝑦[𝑘]* = 0

𝐿𝑇1 −1∑︁
𝑘=0

𝑦[𝑘] = 𝐿𝑇1𝐴𝑑𝑐

̂︂𝐴𝑑𝑐 = 1
𝐿𝑇1

𝐿𝑇1 −1∑︁
𝑘=0

𝑦[𝑘].

The estimated DC offset component, which is equal to the arithmetic mean of the
received samples, is then subtracted from each sample offering Equation (3.2).

5.2 Cluster Labelling

On this section we are going to solve the labelling problem in scenarios 1 and 2, since
it is a little bit more complicated to solve it under scenario 3, where we only have 4
clusters and the line fitting method will not work. The analysis for the methods applied
in scenario 3 will be presented later on during this thesis. A successful identification
of the cluster labels enables us to perform the channel estimation procedure with great
precision, especially in high SNR environments.

∙ Cluster of ℎ𝐵:

On the first part of this section we will try to locate where the ℎ𝐵 cluster will lie on
the I/Q plane at any given scenario (1 or 2). According to Section 4.2, in scenario 2 we
will notice the following clusters:

𝐶2 =
{︂

0,
ℎ𝐵

2 , ℎ𝐵, ℎ𝐴, ℎ𝐴 + ℎ𝐵

2 , ℎ𝐴 + ℎ𝐵

}︂
.

Assuming a completely noiseless environment, we observe that the clusters, {0, ℎ𝐵
2 , ℎ𝐵},

all lie upon a straight line passing from 0, ℎ𝐵
2 and ℎ𝐵, at this exact order, since:

0 <
1
2 < 1⇒ 0 <

⃒⃒⃒⃒
ℎ𝐵

2

⃒⃒⃒⃒
< |ℎ𝐵|.

It is obvious that, the remaining clusters {ℎ𝐴, ℎ𝐴 + ℎ𝐵
2 , ℎ𝐴 + ℎ𝐵}, also lie upon a line

parallel to the first one but their order depends on the value of ℎ𝐵 and we will further
elaborate on this later on. The same parallel lines pattern also holds for scenario 1 in
the exact same manner, where instead we observe the following sets of clusters, 𝐶1,0 and
𝐶1,1, as given in Section 4.2:

𝐶1,0 =
{︂

0,

(︂
1− 2𝜏𝐵

𝐿

)︂
ℎ𝐵 ,

2𝜏𝐵

𝐿
ℎ𝐵 , ℎ𝐵 , ℎ𝐴, ℎ𝐴 +

(︂
1− 2𝜏𝐵

𝐿

)︂
ℎ𝐵 , ℎ𝐴 + 2𝜏𝐵

𝐿
ℎ𝐵 , ℎ𝐴 + ℎ𝐵

}︂
,

𝐶1,1 =
{︂

0,

(︂
2𝜏𝐵

𝐿
− 1
)︂

ℎ𝐵 ,

(︂
2− 2𝜏𝐵

𝐿

)︂
ℎ𝐵 , ℎ𝐵 , ℎ𝐴, ℎ𝐴 +

(︂
2𝜏𝐵

𝐿
− 1
)︂

ℎ𝐵 , ℎ𝐴 +
(︂

2− 2𝜏𝐵

𝐿

)︂
ℎ𝐵 , ℎ𝐴 + ℎ𝐵

}︂
.

On both sets, the clusters of the form 𝛽ℎ𝐵, where 𝛽 ∈ {0, (1− 2𝜏𝐵
𝐿 ), 2𝜏𝐵

𝐿 , 1} for case 0,
where 𝜏𝐵 < 𝐿

2 , and 𝛽 ∈ {0, (2𝜏𝐵
𝐿 − 1), (2 − 2𝜏𝐵

𝐿 ), 1} for case 1, where 𝜏𝐵 > 𝐿
2 , once again
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lie upon the same straight line crossing 0 towards ℎ𝐵, in the order that the 𝛽 values are
given for each case. That holds, since for case 0, where 𝜏𝐵 < 𝐿

2 :

0 <

(︂
1− 2𝜏𝐵

𝐿

)︂
<

2𝜏𝐵

𝐿
< 1⇒ 0 <

⃒⃒⃒⃒(︁
1− 2𝜏𝐵

𝐿

)︂
ℎ𝐵

⃒⃒⃒⃒
<

⃒⃒⃒⃒2𝜏𝐵

𝐿
ℎ𝐵

⃒⃒⃒⃒
< |ℎ𝐵|,

while for case 1, where 𝜏𝐵 > 𝐿
2 :

0 <

(︂2𝜏𝐵

𝐿
− 1

)︂
<

(︂
2− 2𝜏𝐵

𝐿

)︂
< 1⇒ 0 <

⃒⃒⃒⃒(︂2𝜏𝐵

𝐿
− 1

)︂
ℎ𝐵

⃒⃒⃒⃒
<

⃒⃒⃒⃒(︂
2− 2𝜏𝐵

𝐿

)︂
ℎ𝐵

⃒⃒⃒⃒
< |ℎ𝐵|.

Once again, the remaining clusters of each case of scenario 1, all lie on a line parallel
to the first one in a similar fashion as in scenario 2, but their order depends on the value
of ℎ𝐵. This way, we can estimate the values of ℎ𝐵 at any of the scenarios 1 and 2, as we
will demonstrate later on. In Figure 5.1 below, a graphical representation of what we are
trying to describe is offered.

(a) Scenario 1 (b) Scenario 2

Figure 5.1: Parallel lines pattern as observed in scenario 1 in (a) and in scenario 2 in (b),
under CSCN additive white noise.

∙ Cluster of ℎ𝐴:

On the second part of this section we will try to locate where the ℎ𝐴 cluster will lie
on the I/Q plane at any given scenario (1 or 2). In order to be able to find the labelling
of the ℎ𝐴 clusters, we must distinguish two cases for ℎ𝐵. If ℜ{ℎ𝐵} > 0, then the first
cluster we will meet while scanning the I/Q plane from negative in-phase components to
the most positive ones will be cluster ℎ𝐴, which makes complete sense, since for scenario
2:

ℜ{ℎ𝐴} < ℜ
{︂

ℎ𝐴 + ℎ𝐵

2

}︂
< ℜ{ℎ𝐴 + ℎ𝐵}.

Identically to scenario 2, the exact same holds for scenario 1 for a constant time offset
value 𝜏𝐵, under case 0, where 𝜏𝐵 < 𝐿/2:

ℜ{ℎ𝐴} < ℜ
{︂

ℎ𝐴 +
(︂

1− 2𝜏𝐵

𝐿

)︂
ℎ𝐵

}︂
< ℜ

{︂
ℎ𝐴 + 2𝜏𝐵

𝐿
ℎ𝐵

}︂
< ℜ{ℎ𝐴 + ℎ𝐵},
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while, under case 1, where 𝜏𝐵 > 𝐿/2:

ℜ{ℎ𝐴} < ℜ
{︂

ℎ𝐴 +
(︂2𝜏𝐵

𝐿
− 1

)︂
ℎ𝐵

}︂
< ℜ

{︂
ℎ𝐴 +

(︂
2− 2𝜏𝐵

𝐿

)︂
ℎ𝐵

}︂
< ℜ{ℎ𝐴 + ℎ𝐵},

On the other hand, if ℜ{ℎ𝐵} < 0, then the first cluster we will meet will be ℎ𝐴 + ℎ𝐵,
since:

ℜ{ℎ𝐴 + ℎ𝐵} < ℜ
{︂

ℎ𝐴 + ℎ𝐵

2

}︂
< ℜ{ℎ𝐴}.

Equivalently in scenario 1, for a constant time offset value 𝜏𝐵, under case 0, where
𝜏𝐵 < 𝐿/2:

ℜ{ℎ𝐴} > ℜ
{︂

ℎ𝐴 +
(︂

1− 2𝜏𝐵

𝐿

)︂
ℎ𝐵

}︂
> ℜ

{︂
ℎ𝐴 + 2𝜏𝐵

𝐿
ℎ𝐵

}︂
> ℜ{ℎ𝐴 + ℎ𝐵}.

while, under case 1, where 𝜏𝐵 > 𝐿/2:

ℜ{ℎ𝐴} > ℜ
{︂

ℎ𝐴 +
(︂2𝜏𝐵

𝐿
− 1

)︂
ℎ𝐵

}︂
> ℜ

{︂
ℎ𝐴 +

(︂
2− 2𝜏𝐵

𝐿

)︂
ℎ𝐵

}︂
> ℜ{ℎ𝐴 + ℎ𝐵}.

On the first case, ℜ{ℎ𝐵} > 0, on both scenarios, we just have the estimation of ℎ𝐴,
while on the second case, ℜ{ℎ𝐵} < 0, we have to subtract by the estimate of ℎ𝐵 to obtain
an estimate for ℎ𝐴. To further aid our estimation of ℎ𝐴, after having estimated ℎ𝐵, we
notice that under any case and under any scenario all we need is the cluster centre with
the minimum real part and the cluster centre with the maximum real part, from the
cluster centres that are parallel to the ℎ𝐵 ones. These two cluster centres are ℎ𝐴 and
ℎ𝐴 + ℎ𝐵, where which one is max and which one is min is defined with respect to ℜ{ℎ𝐵},
as it can also be seen on the figures below. We can then simply add these two cluster
centres, subtract from them the estimate of ℎ𝐵 and divide by 2 to take the average, which
basically leaves us with a stronger estimate of ℎ𝐴, since we used most of our data. In
addition to that, if we are under scenario 2, we can also use the cluster centre of ℎ𝐴 + ℎ𝐵

2
to further enhance the estimation. The latter cannot be applied in scenario 1, since we
do not know a priori the value of the offset 𝜏𝐵. Figures 5.2 and 5.3 below, help us better
understand the concept of cluster labels we are trying to explain.
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(a) Scenario 2, for ℜ{ℎ𝐵} > 0.
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Figure 5.2: Scenario 2 cluster labels for two different cases of ℜ{ℎ𝐵}.
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Figure 5.3: Scenario 1 cluster labels for two different cases of ℜ{ℎ𝐵}.

5.3 Channel Estimation

Having solved the cluster labelling problem using line fitting as demonstrated, we can
now use the cluster labels and obtain our channel coefficient estimates. The algorithm
below, demonstrates the big picture of the most important steps we make in order to
obtain the channel coefficient estimates.

Algorithm 2: Channel Estimation
Input: Set 𝒞 of cluster centres.
Output: Estimated channel coefficients ̂︁ℎ𝐴, ̂︁ℎ𝐵.

1 𝜖← 10−3 // Choose an arbitrarily small value
2 for 𝑘 in 𝒞/{𝒞0} do
3 𝑦 = ℑ{𝒞𝑘}

ℜ{𝒞𝑘}(𝑥−ℜ{𝒞𝑘}) +ℑ{𝒞𝑘} // Form the line passing from 𝒞0 and 𝒞𝑘

4 𝒜 = find(𝑑(𝑦, 𝒞𝑘) < 𝜖) // Set of clusters 𝒞𝑖 close to line y
5 if |𝒜| == 𝑁𝑐

2 − 1 then
6 return 𝒜

7 𝛼* = 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝒜(||𝒞𝛼||2)
8 ̂︁ℎ𝐵 = 𝒞𝛼*

9 ̂︁ℎ𝐴 = (𝑎𝑟𝑔𝑚𝑖𝑛(||𝒞 − 𝒜||2) + 𝑎𝑟𝑔𝑚𝑎𝑥(||𝒞 − 𝒜||2)− ̂︁ℎ𝐵)/2;

5.3.1 Line Fitting

In this section we are going to further explain how the line fitting process works in
our application under scenarios 1 and 2. In the previous section, we defined the general
label expressions under scenarios 1 and 2. In order to fit a line on these cluster centres
we first have to identify cluster zero, which is a pretty simple task. We then create a
line passing from (0,0) and from each one of the five or seven remaining cluster centres,
depending on the scenario, one at a time. More specifically, what we are trying to find is
a slope for which we have a straight line crossing three or four cluster centres, including
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the axis start (0,0). As a counterexample to make it clear, suppose the green line crossing
(0,0) and the cluster centre near −2 + 0𝑗 of the Figure 5.4 below, then there would be no
other cluster centres for which their distance from that line would be almost zero, so that
cluster is definitely not of the form 𝛽ℎ𝐵. On the other hand, if we create the line passing
from (0,0) and the second cluster along the red line on Figure 5.4 we can see that the
third cluster automatically fits on the line thus making these two clusters the products
of ℎ𝐵 we were looking for. Using this method we can easily distinguish the clusters that
are products of ℎ𝐵 in scenarios 1 and 2. Knowing which cluster centres are products of
ℎ𝐵, as well as their corresponding labels, allows us to compute an estimate of the channel
coefficient ℎ𝐵.
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Figure 5.4: Line fitting on ℎ𝐵 cluster products.

In order to extract an estimate of ℎ𝐴, we must remember that the channel coefficients
are complex numbers and can be represented as vectors that have a certain direction.
There are almost only two ways these lines can appear on the I/Q plane, since it is prac-
tically impossible to have undefined or completely equal to zero slope in our application
and here is where we take advantage of the categorization we performed earlier based on
ℜ{ℎ𝐵}. We distinguish these two ways according to the real part values of our ℎ𝐵 esti-
mate, i.e. ℜ{ℎ𝐵} ≶ 0, which means that the position of ℎ𝐵 on the I/Q plane will define
how the lines will be placed and how we are going to estimate the channel coefficient ℎ𝐴.
It has now become much simpler to obtain the ℎ𝐴 estimate since all we have to do now
is use what the method we developed at the end of the previous section.
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5.3.2 Channel Estimation - Scenario 3

Scenario 3 does not impose great difficulty, since in that case only four clusters would
ideally exist. Being one of the four clusters is the all zeros case, we are left with the
remaining three that obviously represent ℎ𝐴, ℎ𝐵 and ℎ𝐴 + ℎ𝐵. The triangle inequality is
a tool we could use in this case, in order to identify the ℎ𝐴 + ℎ𝐵 cluster. All we have to
do is find the only two clusters that satisfy the triangle inequality:

|ℎ𝐴 + ℎ𝐵| ≤ |ℎ𝐴|+ |ℎ𝐵|

Having found the ℎ𝐴 +ℎ𝐵 cluster, the remaining two would be ℎ𝐴 and ℎ𝐵 respectively.
Since, 𝑥𝑝 = [1 1 0 1 0 0 1 0 0 0 1 1] are the preamble bits of the transmitted packet of
any RFID tag, if the first samples of the received signal are not approximately equal to
ℎ𝐴 + ℎ𝐵, since the preamble packet starts with two 1’s, and we have observed 4 clusters
then the offset is definitely not equal to 0 and is equal to 𝐿

2 . However, if it is not even
approximately equal to ℎ𝐴 + ℎ𝐵 then in order to obtain an estimate for the channel
coefficients we must trace back to the MSc work of N. Kargas [12]. More specifically what
Kargas does is a slightly modified version of the method proposed in [15] for channel
estimation. Let 𝑦1:𝑁 be the received sequence of FM0 symbols that follow the preamble.
The algorithm is based on the observation that two states of the total four states are
realized during the transmission of the preamble defining an one-dimensional subspace
𝑠𝑝 (line). Projecting the received half bits onto the subspace orthogonal to 𝑠𝑝 will give
a non-zero value if the corresponding half bit is equal to ℎ𝐴 or ℎ𝐵. The authors in [15]
search for points that have the maximum signal strength in this orthogonal subspace.
More specifically they process the received waveform after matched filtering 𝑦𝑓 and set:

𝑘𝐴 = argmax
𝑘∈{0,1,...,𝑁𝐿}

ℑ
{︁

𝑦𝑓 [𝑘]𝑒−𝑗∠ℎ𝐴+ℎ𝐵

}︁
𝑘𝐵 = argmin

𝑘∈{0,1,...,𝑁𝐿}
ℑ
{︁

𝑦𝑓 [𝑘]𝑒−𝑗∠ℎ𝐴+ℎ𝐵

}︁
and use 𝑦𝑓 [𝑘𝐴] and 𝑦𝑓 [𝑘𝐵] as the channel estimates. It is explicitly underlined that

the received signal cannot be jointly sampled using the nominal symbol duration L and
thus process FM0 symbols.

However timing errors are not critical when tags operate using the minimum backscat-
ter link frequency (BLF). We apply the proposed method in case of synchronous tag
transmission, i.e. scenario 3. In addition taking into account the FM0 encoding, we can
search for a symbol 𝑦 that maximizes the following metric:

𝑘* = argmax
𝑘∈{1,2,...,16}

⃒⃒⃒
ℑ
{︁

𝑦𝑘[0]𝑒−𝑗∠ℎ𝐴+ℎ𝐵

}︁
−ℑ

{︁
𝑦𝑘[1]𝑒−𝑗∠ℎ𝐴+ℎ𝐵

}︁⃒⃒⃒

where ℑ{𝑦𝑘[0]𝑒−𝑗∠ℎ𝐴+ℎ𝐵},ℑ{𝑦𝑘[1]𝑒−𝑗∠ℎ𝐴+ℎ𝐵} are the projections of 𝑦𝑘[0] and 𝑦𝑘[1]
onto 𝑠𝑝⊥. We then set ℎ̂𝐴 = 𝑦𝑘* [0], ℎ̂𝐵 = 𝑦𝑘* [1]. It is insignificant if we exchange the
estimates of the channel coefficients.

5.3.3 Degenerate Cases

However, good the line fitting method for channel estimation may seem, there is
one obstacle that is really hard to overcome and that is the case of collinear clusters.
Collinear clusters exist only when ℎ𝐴 ≈ 𝑘ℎ𝐵, where 𝑘 ∈ R. Having, collinear clusters
does not allow us to perform the line fitting method with high precision and that way the
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estimated channel coefficients are not very representative of the real ones. The figures
below better illustrate the results of collinear channel coefficients.
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(a) Collinear clusters of Scenario 1 when,
𝜏𝐵 = 5 and ℎ𝐴 = ℎ𝐵 .
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(b) Collinear clusters of Scenario 2 when,
𝜏𝐵 = 30 and ℎ𝐴 = ℎ𝐵 .

Figure 5.5: Collinear clusters.

As we can see from the figures above in the first case (Figure 5.5a), we were expecting
to see 8 clusters, since we are in scenario 1, but instead we see 7, since the clusters of
ℎ𝐴 and ℎ𝐵 have merged into one cluster. On the second case (Figure 5.5b) we observe
only 5 clusters, where we would expect to see 6 of them. This is because, the clusters of
ℎ𝐴 and ℎ𝐵 are once again merged into one cluster, since they are approximately equal.
This phenomenon can have many different outcomes, like when we are in scenario 2 with
𝜏𝐵 = 30 and ℎ𝐴 = −2ℎ𝐵 and we still observe 6 collinear clusters, but do not know how to
detect them using line fitting. There could be a possibility that we are able to estimate
the channel coefficients if we also take advantage of the cluster transitions, but we are
not going to look further into it in this thesis.

5.4 Offset Estimation

In this offset estimation method, we have to find out which 𝜏𝐵 value holds best for
our signal. The idea behind this method is to take advantage of the preamble symbols
that exist in the start of the packet of the FM0 encoding scheme, and try to align with
the received signal. The preamble packet is denoted as, 𝑥𝑝 = [1 1 0 1 0 0 1 0 0 0 1 1].
We oversample every half-bit of the preamble packet by L/2 and denote it as 𝑥𝑝,𝑢𝑝. We
then create a discrete channel equivalent as shown below and pass the preamble symbols
through that channel.

𝑐[𝑘] = ℎ̂𝐴 * 𝑥𝑝,𝑢𝑝 + [𝑧𝑒𝑟𝑜𝑠(1, 𝜏𝐵) ℎ̂𝐵] * 𝑥𝑝,𝑢𝑝

Then, we have to pass 𝑐[𝑘] from the matched filter Π[𝑘] to obtain 𝑐𝑓 [𝑘].

𝑐𝑓 [𝑛] =
∞∑︁

𝑘=−∞

𝑐[𝑘]
𝐿/2Π[𝑛− 𝑘]
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To rule about the value of 𝜏𝐵, we have to test each value and make a decision like
below:

𝜏*
𝐵 = argmin

𝜏𝐵∈{0,1,...,𝐿−1}

∑︁⃒⃒
𝑐𝑓 (𝜏𝐵)− 𝑦𝑓 [0 : 𝑁𝑝𝐿/2]

⃒⃒
where, from 𝑦𝑓 we only need the first 𝑁𝑝

𝐿
2 samples, i.e. the preamble bits samples.
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Figure 5.6: Offset estimation in scenario 1, where 𝜏*
𝐵 = 5, in high 𝑆𝑁𝑅𝐴,𝐵.

5.5 Discussion

To summarize, in this chapter we provided a DC offset estimation for packets re-
ceived from real life simulations. We solved the cluster labelling problem by noticing
the repeating patterns of the clusters and that helped us in proceeding to the channel
estimation stage where line fitting was used and the channel coefficients were extracted.
Higher precision of the channel estimation algorithm is feasible when we are in a high
SNR environment and the clusters do not fall under the degenerate case of collinearity
we mentioned earlier above. Having obtained an estimate for the channel coefficients we
can easily estimate the time offset of tag B 𝜏𝐵. However, if the channel estimation is
wrong, then most likely the offset estimation will be wrong as well. In the last chapter
we propose as future work, alternative solutions for joint channel and offset estimation.
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Chapter 6

Detection & Performance Evalua-
tion

6.1 Detection with Perfectly Known Channel State Infor-
mation

Assuming an ideal case, where a perfect estimate of our channel coefficients ℎ̂𝐴, ℎ̂𝐵

and the time offset of tag B 𝜏𝐵 was somehow obtained, we can now attempt to detect
what each tag sent and try to resolve the RN16 packets collision. However, a reader can
only acknowledge a single tag even if it is able to resolve the collision and detect the
transmitted sequences of both tags. Thus, even if this method is applied and eventually
resolve the collision then the reader will only reply to one of the two tags.

6.1.1 Joint Detection

For the case of joint detection, i.e. when there is interest in decoding both tag A
and tag B, then for the conditional pdf of 𝑦 holds that: 𝑦|ℎ̂𝐴, ℎ̂𝐵, 𝜏𝐵 ∼ 𝒞𝒩 (ℎ̂𝐴𝑥𝐴 +
�̂�ℎ̂𝐵𝑥𝐵, 𝜎2𝐼2).

�̂�𝐴, �̂�𝐵 = argmax
𝑥𝐴,𝑥𝐵∈{[0 1]𝑇 ,[1 0]𝑇 }

𝑓(𝑦|ℎ̂𝐴, ℎ̂𝐵, 𝜏𝐵)

= argmax
𝑥𝐴,𝑥𝐵

1
𝜋2det(𝜎2𝐼2)exp

{︂
− (𝑦 − ℎ̂𝐴𝑥𝐴 − �̂�ℎ̂𝐵𝑥𝐵)𝐻(𝜎2𝐼2)−1(𝑦 − ℎ̂𝐴𝑥𝐴 − �̂�ℎ̂𝐵𝑥𝐵)

}︂
= argmin

𝑥𝐴,𝑥𝐵

(𝑦 − ℎ̂𝐴𝑥𝐴 − �̂�ℎ̂𝐵𝑥𝐵)𝐻( 1
𝜎2 𝐼2)(𝑦 − ℎ̂𝐴𝑥𝐴 − �̂�ℎ̂𝐵𝑥𝐵)

= argmin
𝑥𝐴,𝑥𝐵

(𝑦 − ℎ̂𝐴𝑥𝐴 − �̂�ℎ̂𝐵𝑥𝐵)𝐻(𝑦 − ℎ̂𝐴𝑥𝐴 − �̂�ℎ̂𝐵𝑥𝐵)
𝜎2

= argmin
𝑥𝐴,𝑥𝐵

||𝑦 − ℎ̂𝐴𝑥𝐴 − �̂�ℎ̂𝐵𝑥𝐵||22

= argmin
𝑢∈𝒰(𝜏𝐵)

||𝑦 − 𝑢||22 (6.1)
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Figure 6.1: BER at tag A and tag B with perfect channel state information.

The above figures correspond to perfect channel state information, hence they repre-
sent the lowest bound that can be achieved in our application. In Figures 6.1a and 6.1b,
tag B is observed having a difference of around 10 dB from tag A and that is due to the
fact that we are synchronized with respect to tag A and performed our detection that
way. In Figure 6.1c we observe the only case where tag B and tag A are asymptotically
equal in terms of BER, but this is an extreme case and it is mostly demonstrated it for
that purpose.
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6.2 Detection with Partially Known Channel State Infor-
mation

The above described estimation methods can be directly applied in a real-world sce-
nario, since an estimate of the channel and the offset can be obtained from the data and
then perform joint ML detection, or single tag detection. The method used to obtain
the channel estimates, is the one described in Section 5.3. Another method of cluster-
ing is also evaluated, where affinity propagation was forced to find 8 clusters every time
and perform the CSI estimation upon these clusters. The concept behind forcing affinity
propagation to search for 8 clusters lies behind the fact that all scenarios are ‘children’ of
scenario 1 since for the appropriate offsets the clusters of the other two scenarios can be
obtained. A universal form of clusters that only depends on the offset 𝜏𝐵 was formed as
shown in Eq. 4.4.

0 5 10 15 20 25

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

Perfect CSI

Estimated CSI

Estimated CSI on 8 clusters

(a) 𝐸[|ℎ𝐴|2] = 𝐸[|ℎ𝐵 |2]

0 5 10 15 20 25

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

Perfect CSI

Estimated CSI

Estimated CSI on 8 clusters

(b) 𝐸[|ℎ𝐴|2] = 4𝐸[|ℎ𝐵 |2]

0 5 10 15 20 25

SNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

Perfect CSI

Estimated CSI

Estimated CSI on 8 clusters

(c) 16𝐸[|ℎ𝐴|2] = 𝐸[|ℎ𝐵 |2]

Figure 6.2: BER at tag A in different cases .

The above figures correspond to a comparison between perfect CSI, estimated CSI
and estimated CSI using the 8 clusters method, when there is interest in decoding both
tags. Once again it can be observed that there is a gap of around 10 dB between the
estimated and the perfect CSI curve of tag A, whereas the method of forcing an 8 cluster
formation does not have an effect at all in any of our tested cases.
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Figure 6.3: BER at tag B in different cases.

The above figures correspond to a comparison between perfect CSI, estimated CSI and
estimated CSI using the 8 clusters method, when there is interest in decoding both tags.
It can once again be noticed that there is a gap of around 10 dB between the estimated
and the perfect CSI curve of tag B, whereas the method of forcing an 8 cluster formation
does not have an effect at all in any of our tested cases.

6.3 Discussion

All in all, what can be understood from the figures above is that, since we are syn-
chronized with respect to tag A it is expected to have a better BER curve in tag A than
in tag B at all cases and that indeed happens. It is also observed that the method of
forcing affinity propagation to search for 8 clusters and use them for the estimation and
detection process, did not work out very well, mostly for the reason being that the are
many degenerate cases, like collinear clusters, and due to the fact that affinity propaga-
tion does not search for patterns of clusters (i.e. 4+4 parallel clusters) in the way it was
thought it could. Probably, a pattern searching algorithm could perform better in that
case.



Chapter 7

Conclusions & Future Work

In this thesis, a system model for the simultaneous asynchronous transmission of
two RFID tags was developed, during the RN16 stage, along with a channel estimation
algorithm based on clustering techniques and line fitting.

7.1 Summary of thesis contributions

Although this system model is pretty close to a real life scenario, it does not take into
account the deviations that occur in the packets’ transmission, like that the bit duration
𝐿 can change during the transmission, or that offset can also change slightly during the
transmission. All these do not necessarily mean that this model would not work, when
applied in a real world scenario, but instead that it might need some small adjustments.
The most important part of this thesis was the study on the collision of two RFID tags,
during the transmission of their RN16 sequences. In our modelling, the tags need not be
perfectly synchronized, which is something that does occur a lot in a real world scenario.
The tags do not always have the same distance from the reader, thus their individual
channel adds to that delay causing a slight offset to the received signal from one of the
two tags. Even though the signals of the tags are collided in the air, using this algorithm
the collision can be resolved and the packet will not be lost.

It was already mentioned that, the channel estimation algorithm proposed in this
thesis has a small defect and that is, the collinear clusters. It can be really hard and
sometimes even impossible, to be able to estimate the channel coefficients using line
fitting. However, from real world simulations it was observed that this is something that
does not happen very often. Thus, for now, it can be safely assumed that this can be
a defect, but since it is not an often occurrence we could say, without harm, that it is
negligible.

7.2 Direction for future work

As future work, we could try to implement or use an algorithm that performs joint
channel and offset estimation, thus probably leading us to more robust performance and
better results. Furthermore, hierarchical clustering algorithms like HDBSCAN seem to
perform really good in terms of pattern matching, which could prove to be ideal for this
type of work. Other clustering algorithms could also be explored that have lower time
complexity than affinity propagation, or even modify affinity propagation to search for
our expected cluster patterns.
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