

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

ONTONL: ΜΙΑ ΓΕΝΝΗΤΡΙΑ ΔΙΕΠΑΦΩΝ ΦΥΣΙΚΗΣ ΓΛΩΣΣΑΣ ΣΕ ΒΑΣΕΙΣ

ΓΝΩΣΗΣ

Υπό

Αναστασία Καραναστάση

Διατριβή που υπεβλήθη για την μερική ικανοποίηση των απαιτήσεων για την απόκτηση

Μεταπτυχιακού Διπλώματος Ειδίκευσης

στους Ηλεκτρονικούς Μηχανικούς και Μηχανικούς Υπολογιστών

Εργαστήριο Διανεμημένων Πληροφοριακών Συστημάτων και Εφαρμογών Πολυμέσων

ΧΑΝΙΑ 2007

Περίληψη

Οι διεπαφές φυσικής γλώσσας (Natural Language Interfaces) είναι πολύ αποτελεσματικές

διεπαφές για απλούς χρήστες, για σύνθετα δομημένη πληροφορία, χρήστες με αναπηρία,

κτλ. Είναι εντούτοις πολύ ακριβό να χτιστούν οι διεπαφές φυσικής γλώσσας σε βάσεις

γνώσεων. Επιπλέον, οι ασάφειες στη φυσική γλώσσα μπορούν να δημιουργήσουν την

ανάγκη για διαλόγους διευκρίνισης που καταστρέφουν την αποτελεσματικότητα της

επικοινωνίας.

Σε αυτήν την διατριβή στοχεύουμε και τα δύο προβλήματα. Παρουσιάζουμε ένα πλαίσιο

τεχνολογίας λογισμικού, το πλαίσιο OntoNL που προσφέρει επαναχρησιμοποιήσιμο

κώδικα για την παραγωγή των διεπαφών φυσικής γλώσσας σε βάσεις γνώσης.

Αναπτύσσουμε επίσης τις μεθοδολογίες μέσα σε αυτό το πλαίσιο για την ελαχιστοποίηση

των σημασιολογικών ασαφειών της φυσικής γλώσσας και ταξινομούμε τα αποτελέσματα

βασιζόμενοι σε ένα σημασιολογικό μέτρο συγγένειας που αναπτύξαμε, έτσι ώστε ο

χρήστης να βλέπει μέσα στις πρώτες απαντήσεις τα επιθυμητά αποτελέσματα.

Το πλαίσιο OntoNL υλοποιεί μια πλατφόρμα λογισμικού που αυτοματοποιεί σε έναν

μεγάλο βαθμό την κατασκευή των διεπαφών φυσικής γλώσσας για τις βάσεις γνώσης. Για

να επιτύχει τη δυνατότητα εφαρμογής και επαναχρησιμοποίησης του πλαισίου OntoNL

σε πολλές διαφορετικές εφαρμογές και περιοχές, το λογισμικό είναι ανεξάρτητο στις

οντολογίες περιοχών.

Τα τμήματα λογισμικού του πλαισίου OntoNL εξετάζουν και αντιμετωπίζουν ενιαία μια

σειρά προβλημάτων στην ανάλυση της πρότασης, κάθε ένα από τα οποία παραδοσιακά

απαιτούσε έναν χωριστό μηχανισμό. Μια ενιαία αρχιτεκτονική χειρίζεται τη συντακτική

και τη σημασιολογική ανάλυση, χειρίζεται τις ασάφειες και στο γενικό και εξαρτώμενο

από το πεδίο περιβάλλον. Συγχρόνως, το πλαίσιο έχει σχεδιαστεί με τέτοιο τρόπο ώστε να

αποφευχθούν οι εξαρτήσεις από την βάση πληροφοριών. Με τον τρόπο αυτό γίνεται

επαναχρησιμοποιήσιμο στις διαφορετικές εφαρμογές με τη διαφορετική σημασιολογία

περιοχών.

Παρουσιάζουμε επίσης μια εφαρμογή του πλαισίου OntoNL που δημιουργεί μια διεπαφή

φυσικής γλώσσας σε μια σημασιολογική βάση πολυμέσων με ψηφιακό οπτικοακουστικό

περιεχόμενο γεγονότων και μεταδεδομένων ποδοσφαίρου, που αναπτύχθηκε και

καταδείχτηκε στο 2ο και 3ο Annual Review του DELOS II EU Network of Excellence

(IST 507618) (http://www.delos.info/).

Η έρευνα που πραγματοποιήθηκε στην παρούσα διατριβή υποστηρίχθηκε από το DELOS

II, Network of Excellence on Digital Libraries NoE-G038-507618 / IST-507618.

ONTONL: AN ONTOLOGY-BASED NATURAL LANGUAGE INTERFACE

GENERATOR FOR KNOWLEDGE REPOSITORIES

by

Anastasia Karanastasi

A thesis submitted in fulfilment of the

requirements for the degree of

Master of Science in Electronic and Computer Engineering

TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

Laboratory of Distributed Multimedia

Information Systems and Applications

MUSIC

CHANIA 2007

DEDICATION

To Nikos.

The man who taught me that

The greatest thing you‘ll ever learn is just to Love, and be Loved in return.

Eden Ahbez

“Nature Boy” (1948)

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize the Technical University of Crete to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize the Technical University of Crete to reproduce the thesis by

photocopying of by other means, in total or part, at the request of other institutions

or individuals for the purpose of scholarly research.

ACKNOWLEDGMENTS

My thesis work would not have been possible without the help of my advisor,

other collaborators, and fellow students. I am especially fortunate to have been

advised by Prof. Stavros Christodoulakis. Firstly, I am grateful to him for

teaching me almost everything I know about doing research and being part of

the academic community. Secondly, I deeply appreciate his constant support

and advice on many levels. The work in this thesis was profoundly shaped by

numerous insightful discussions with him.

I would also like to thank Prof. Michael Lagoudakis and Prof. Alexandros

Potamianos for being on my oral exam committee, for the time they devoted

and their critical evaluation and comments on my thesis.

I would also like to thank my colleagues Chrisa Tsinaraki and Fotis Kazasis for

their support and useful comments on my work and especially Nektarios

Gioldasis. Many thanks to Alexandros Zotos for his contribution to the work

described in chapter 6 of this thesis.

There have been a number of people who made the grad school process much,

much easier to deal with: my best friends Maria Frantzi, George Kotopoulos

and Aristotelis Kotopoulos, and my friends and office mates Themistoklis

Dakanalis, Nikos Giannopoulos and Manolis Mylonakis.

Finally, and most importantly, deepest thanks to my mom and dad; they always

believed, even when I didn't.

PUBLICATIONS

Part of the work that is included in this report has been published in the following

Conference Proceedings:

 A. Karanastasi, S. Christodoulakis: "The OntoNL Semantic Relatedness Measure

for OWL Ontologies", in the Proceedings of the Second IEEE International

Conference on Digital Information Management (IEEE ICDIM ‘07), 28-31

October 2007, Lyon, France

 A. Karanastasi, S. Christodoulakis: "Semantic Processing of Natural Language

Queries in the OntoNL Framework", in the Proceedings of the IEEE International

Conference on Semantic Computing (IEEE ICSC), 17-19 September 2007, Irvine,

CA

 A. Karanastasi, S. Christodoulakis: “Ontology-Driven Semantic Ranking for

Natural Language Disambiguation in the OntoNL Framework”, in the Proceedings

of the 4th European Semantic Web Conference (ESWC), 3-7 June 2007,

Innsbruck, Austria

 A. Karanastasi, A. Zwtos, S. Christodoulakis: “The OntoNL Framework for

Natural Language Interface Generation and a Domain-specific Application”, in

Proceedings of the DELOS Conference on Digital Libraries, 13-14 February,

Tirrenia, Pisa, Italy 2007

 A. Karanastasi, A. Zwtos, S. Christodoulakis: “User Interactions with Multimedia

Repositories using Natural Language Interfaces: an Architectural Framework and

its Implementation”, in the Journal of Digital Information Management (JDIM),

Volume 4 Issue 4, December 2006

 A. Karanastasi, A. Zwtos, S. Christodoulakis: “User Interactions with Multimedia

Repositories using Natural Language Interfaces: an Architectural Framework and

its Implementation”, in Proceedings of the Fourth Special Workshop on

Multimedia Semantics (WMS06), June 19-21, 2006

 S. Christodoulakis, A. Karanastasi, J. Koehler, K. Biatov, T. Catarci, S. Kimani:

“Natural Language and Speech Interfaces to Knowledge Repositories”, Poster on

the 9th European Conference on Research and Advanced Technology for Digital

Libraries (ECDL 2005), September 2005, Vienna, Austria

 A. Karanastasi, S. Christodoulakis: “OntoNL: An Ontology-based Natural

Language Interface Generator for Multimedia Repositories”, in Proceedings of the

Seventh International Workshop of the EU Network of Excellence DELOS on

AUDIO-VISUAL CONTENT AND INFORMATION VISUALIZATION IN

DIGITAL LIBRARIES (AVIVDiLib'05), May 2005

 A. Karanastasi, F. Kazasis, S. Christodoulakis: “A Natural Language Model and a

System for Managing TV-Anytime Information in Mobile Environments”,

ACM/Verlag Personal and Ubiquitous Computing Journal, Volume 4, 2005

 A. Karanastasi, F. Kazasis, S. Christodoulakis: "A Natural Language Model for

Managing TV-Anytime Information in Mobile Environments", In Proceedings of

the International Workshop on Ubiquitous Mobile Information and Collaboration

Systems (UMICS), Riga, Latvia, 7 - 8 June, 2004

 A. Karanastasi, F. Kazasis, S. Christodoulakis: "A Natural Language Model and a

System for Managing TV-Anytime Information from Mobile Devices", In

Proceedings of the 9th International Conference on Applications of Natural

Language to Information Systems (NLDB), Manchester, United Kingdom, June

2004

 F.G. Kazasis, N. Moumoutzis, N. Pappas, A. Karanastasi, S.Christodoulakis:

"Designing Ubiquitous Personalized TV-Anytime Services", In the proceedings of

the International Workshop on Ubiquitous Mobile Information and Collaboration

Systems (UMICS), Klagenfurt/Velden, Austria, June 2003

Table of Contents

Introduction ..18
Ambiguity Resolution in Language Understanding ...20

Part-of-Speech Ambiguity..20
Word Sense Ambiguity ..21
Noun Compound Analysis..22
Dealing with Unknown Words ...22

Natural Language and Context ...23
The Motivation ...24

A Common Framework for Ambiguity Resolution in Question-Answering Systems
to Knowledge Repositories...24
The Use of Domain Ontologies for a Domain-Specific Disambiguation...................25

Contributions ..25
Report Structure..26

Related Research and Work..28
Natural Language Understanding...29
Word Sense Disambiguation ..30
Semantics..36
Ontologies...38
WordNet ...44
Semantic Relatedness in a Semantic Network ...46
Natural Language Interfaces to Databases ...57
Previous work on Natural Language Interfaces for Question Answering......................60

The early years: databases, cognitive science and limited domains...........................60
Beyond cognitive psychology: open-domain Natural Language Query Answering..62
Semantic Processing to Question Answering...63

Recent work on Natural Language Interfaces ..63
Ontologies and Natural Language Interfaces ...63

Conclusions ..65
Related Technologies ...66

The Stanford Log-linear Part-Of-Speech Tagger ...66
Ontology Description Standard ..68
RDF Query Languages ...79
SPARQL Syntax...82

The OntoNL Framework ...86
Natural Language Processing Component ...87
Summary...89

Syntactic Disambiguation in OntoNL...90
The OntoNL Request Conversion Mechanism...91
The OntoNL Part-Of-Speech Tagger ...92
The OntoNL Noun Compound Analyzer ...94
The OntoNL Grammatical Relations Analyzer ..98
The OntoNL Synonyms and Sense Discoverer ..108
The OntoNL Language Model ...110
Summary and Contributions.. - 114 -

Domain-Specific Semantic Disambiguation in OntoNL... - 117 -
Sources of Ambiguity.. - 117 -
The OntoNL Semantic Disambiguation Algorithm... - 120 -
The OntoNL Ontology-Driven Semantic Ranking.. - 128 -
Representation of the processed Natural Language Interactions in OntoNL - 138 -

Query Formulation to SPARQL.. - 139 -
Summary.. - 154 -

Implementation of the OntoNL Framework... - 156 -
The OntoNL Infrastructure.. - 156 -
Implementation of an Application in the domain of Soccer.................................... - 172 -
System Flow .. - 182 -
Summary.. - 195 -

Evaluation... - 197 -
Measures Description .. - 199 -
Evaluation Results ... - 203 -
Summary.. - 252 -

Conclusions... - 253 -
APPENDIX... - 279 -

List of Tables
Table 1: The Penn Treebank Tagset .. - 93 -
Table 2: Definition of the OntoNL Grammatical Types ... - 103 -
Table 3: Types of user queries after the structural disambiguation from Ontologies . - 141 -
Table 4: Semantic Query Examples .. - 180 -
Table 5: 15 sentences from the Brown Corpus, to compare outputs of Minipar, the Link
Parser and the OntoNL parser. .. - 211 -
Table 6: Test Set distribution... - 213 -
Table 7: Human and computer ratings for the domain ontology Technical.owl......... - 222 -
Table 8: Human and computer ratings for the domain ontology People.owl.............. - 223 -
Table 9: Human and computer ratings for the domain ontology Koala.owl - 224 -
Table 10: Human and computer ratings for the domain ontology Pizza.owl - 225 -
Table 11: Human and computer ratings for the domain ontology Wine.owl - 226 -
Table 12: Human and computer ratings for the domain ontology Travel.owl - 227 -
Table 13: Human and computer ratings for the domain ontology about Soccer - 229 -
Table 14: The values of the relative weights f1 and f2 of eq. 26 and w1 (for relPROP), w2 (for
relCD) and w3 (for relRS) of eq. 36 for each one of the ontologies used for the specific
experimentation ... - 230 -
Table 15: Human subjects and OntoNL measure ratings for the data set of different
domains.. - 233 -
Table 16: The values of the coefficients of correlation between human ratings of
relatedness and four computational measures; the three submeasures that constitute the
OntoNL Semantic Relatedness Measure and the overall OntoNL measure with relative
weights of Table 6 ... - 234 -
Table 17: The values of the relative weights f1 and f2 of relPROP and w1 (for relPROP), w2
(for relCD) and w3 (for relRS) of the overall OntoNL Semantic Relatedness measure. - 234 -
Table 18: The values of the coefficients of correlation between human ratings of
relatedness and four computational measures; the three submeasures that constitute the
OntoNL Semantic Relatedness Measure and the overall OntoNL measure with relative
weights of Table 8 ... - 235 -
Table 19: The values of the parameters that influence the metrics used for calculation of
the weight value f1 of the OntoNL Semantic Relatedness Measure and the minimized
errors for each one of the seven ontologies used for experimentation. - 244 -
Table 20: The values of the parameters that influence the metrics used for calculation of
the weight value f2 of the OntoNL Semantic Relatedness Measure and the minimized
errors for each one of the seven ontologies used for experimentation. - 245 -
Table 21: The values of the parameters that influence the metrics used for calculation of
the weight value w1 of the OntoNL Semantic Relatedness Measure and the minimized
errors for each one of the seven ontologies used for experimentation. - 246 -
Table 22: The values of the parameters that influence the metrics used for calculation of
the weight value w2 of the OntoNL Semantic Relatedness Measure and the minimized
errors for each one of the seven ontologies used for experimentation. - 246 -
Table 23: The values of the parameters that influence the metrics used for calculation of
the weight value w3 of the OntoNL Semantic Relatedness Measure and the minimized
errors for each one of the seven ontologies used for experimentation. - 247 -
Table 24: Quality metrics for the first iteration... - 249 -
Table 25: Quality metrics for the second iteration .. - 250 -

List of Figures

Figure 1: Fragment of the WordNet taxonomy. Solid lines represent IS-A links; dashed
lines indicate that some intervening nodes have been omitted. Adapted from [Resnik,
1995].. - 51 -
Figure 2: An example of the common problem of assigning a tag to a word in a sentence
... …- 66 -
Figure 3: The OntoNL Framework.. - 86 -
Figure 4: The result of the POS – Tagging [http://nlp.stanford.edu/software/tagger.shtml]
procedure for the sentence ‘I want to find the players that scored for Milan in the last two
football games’ .. - 94 -
Figure 5: The result of the POS – Tagging [http://nlp.stanford.edu/software/tagger.shtml]
procedure for the sentence the players scored for Milan in the last two football games’…..
... - 94 -
figure 6: The OntoNL grammatical relation hierarchy.. - 104 -
Figure 7: An example of a typed dependency parse for the sentence “I want the man who
scored” ... - 108
Figure 8: Logical Structure of WordNet.. - 109
Figure 9: The syntactic structure of the independent clause ... - 110
Figure 10: The language model that derives from the linguistic analysis - 112
figure 11: An instance of the Language Model for the sentence “The player with shirt
number 9 gave Milan the victory”... - 113 -
Figure 12: The OntoNL Syntactic Disambiguation Procedure - 115 -
Figure 13: The procedure for finding alternatives natural language names to ontological
concepts names .. - 121 -
Figure 14: The OntoNL Semantic Disambiguation procedure.................................... - 124 -
Figure 15: The language model that derives from the syntactic and semantic analysis…….
... - 127 -
Figure 16: Two figures with the same Conceptual Distance

(1 2
6(,)

2 5
conceptualDist c c =

∗
) and different specificity (2 3log 0

3 3specw ×
= − =

+
and

2 1log log3 0.48
3 3specw ×

= − = ≈
+

 respectively) ... - 136 -

Figure 17: A class diagram representing the grammatical relationships in an OntoNL
sentence ... - 140 -
Figure 18: A graphical view of a general OWL ontology with IS-A relations and Object
Properties ... - 142 -
Figure 19: A graphical instance of the general OWL ontology as an IS-A hierarchy with
structures that show the ObjectProperties and the DatatypeProperties - 143 -
Figure 20: The OntoNL Infrastructure .. - 157 -
Figure 21: The grammatical relation hierarchy ... - 161 -
Figure 22: An example of a typed dependency parse for the sentence “I want the man who
scored” ... - 162 -
Figure 23: The Architectural Representation of the Application - 173 -
Figure 24: The ontological Infrastructure.. - 174 -

Figure 25: The OWL class hierarchy defined for the representation of typed relationships..
... - 175 -
Figure 26: The “ScoresRelation” and “ScoredByRelation” object properties - 176 -
Figure 27: The DS-MIRF Metadata Repository.. - 178 -
Figure 28: An example of the query “Show me penalties or red cards of France ” in the
query language of the repository. .. - 182 -
Figure 29: OntoNL System Flow .. - 184 -
Figure 30: The part of speech assignment in the sentence the goals scored in the football
game between Italy and France... - 185 -
Figure 31: An example of a typed dependency parse for the sentence “the goals scored in
the football game between Italy and France” .. - 188 -
Figure 32: The language model for the sentence “the goals scored in the football game
between Italy and France” ... - 190 -
Figure 33: Screenshots of the OntoNL Framework for the domain of soccer. - 193 -
Figure 34. Screenshots with the XML fragment that contains the information asked by the
user... - 193 -
Figure 35: Screenshot of an application of the OntoNL framework with use of a speech
recognizer for the input of the natural language request ... - 195 -
Figure 36: The multimedia object retrieved from the user selection........................... - 196 -
Figure 37: The language model that describes the different categories of Natural Language
expressions that the OntoNL can parse ... - 201 -
Figure 38: Syntax of the natural language expressions ... - 201 -
Figure 39: Screenshot of the graphical user interface of the OntoNL Framework
application for the domain of soccer. .. - 203 -
Figure 40: Minipar’s dependency parse for the sentence “Bills on ports and immigration
were submitted by Senator Brownback” ... - 208 -
Figure 41: Link Parser’s dependency parse for the sentence “Bills on ports and
immigration were submitted by Senator Brownback” .. - 209 -
Figure 42: OntoNL Parser’s dependency parse for the sentence “Bills on ports and
immigration were submitted by Senator Brownback” .. - 209 -
Figure 43: Accuracy of analysis of the test set under the dependency and the adjacency
model for the pattern training scheme that follows Pustejovsky (1993) in counting the
occurrences of subcomponents and for the windowed training schemes with window
widths of 2, 3, 4, 5 and 10 words... - 216 -
Figure 44: Accuracy of analysis of the test set under the dependency and the adjacency
model for the pattern training scheme using lexical association and conceptual association
... - 217 -
Figure 45: Accuracy of analyzing the test set using a tagged corpus under the dependency
and the adjacency model for the pattern training scheme that follows Pustejovsky (1993)
in counting the occurrences of subcomponents and for the windowed training schemes
with window widths of 2, 3, and 4 words and comparison with the accuracy presented in
figure 43... - 218 -
Figure 46: Accuracy of analyzing the test set using a tagged corpus and domain ontologies
under the dependency and the adjacency model for the pattern training scheme that
follows Pustejovsky (1993) in counting the occurrences of subcomponents and for the

windowed training schemes with window widths of 2 and 3 words and comparison with
the accuracy presented in figure 45. .. - 219 -
Figure 47: The precision of the OntoNL measure to the user input for the requests of
disambiguation type (2) ... - 250 -
Figure 48: The precision of the OntoNL measure to the user input for the requests of
disambiguation type (2) for a second iteration .. - 250 -
Figure 49. The effectiveness of the NL2DL in the domain of soccer against a keyword-
based search... - 251 -
Figure 50. The OntoNL Semantic Disambiguation procedure.................................... - 256 -
Figure 51. NL2DL Infrastructure .. - 260 -
Figure 52: The Hierarchy of the Soccer Event Classes ... - 423 -
Figure 53: The Hierarchy of the Referee Action Classes .. - 424 -
Figure 54: The Hierarchy of the Game Action Classes, where Technical Stuff Actions and
Spectator Actions are expanded .. - 424 -
Figure 55: The Hierarchy of the Game Action Classes, where Illegal Actions are expanded
... - 424 -
Figure 56: The Hierarchy of the Player Action Classes, where Restart Actions are
expanded.. - 424 -
Figure 57: The Hierarchy of the Player Action Classes, where Goal and Goalkeeper
Actions are expanded... - 425 -
Figure 58: The Hierarchy of the Player Action Classes, where Hitball and Reflection
Actions are expanded... - 425 -
Figure 59: The Hierarchy of the Player Action Classes, where PlayerInteractions are
expanded.. - 426 -
Figure 60: The Hierarchy of the Soccer Time Classes .. - 426 -
Figure 61: The Hierarchy of the Soccer Object Classes.. - 426 -
Figure 62: The Hierarchy of the Soccer Place Classes.. - 427 -
Figure 63: The Hierarchy of the Soccer State Classes .. - 427 -
Figure 64: The Hierarchy of the Soccer Agent Classes... - 428 -
Figure 65: The Hierarchy of the Soccer Action Pattern Classes - 429 -

ABSTRACT
ONTONL: AN ONTOLOGY-BASED NATURAL LANGUAGE

INTERFACE GENERATOR FOR KNOWLEDGE REPOSITORIES

Anastasia Karanastasi
Supervisor: Professor Stavros Christodoulakis

Natural Language Interfaces are very effective interfaces for naïve users, complex

structured information, users with disabilities, etc. It is however very expensive to build

Natural Language Interfaces to knowledge bases. In addition, ambiguities in natural

language may create the need for clarification dialogues that destroy the effectiveness of

communication.

In this Thesis we target both problems. We present a Software Engineering Framework,

the OntoNL Framework, that offers reusable code for the generation of Natural Language

Interfaces to Knowledge Repositories. We also develop methodologies within this

framework for reducing the semantic ambiguities of the natural language and we rank the

results based on a semantic relatedness measure that we developed so that the user sees

within the first few answers the desired results.

The OntoNL Framework implements a software platform that automates to a large degree

the construction of natural language interfaces for knowledge repositories. To achieve the

applicability and reusability of the OntoNL Framework in many different applications and

domains, the supporting software is independent on the domain ontologies.

The software components of the OntoNL Framework address uniformly a range of

problems in sentence analysis each of which traditionally had required a separate

mechanism. A single architecture handles both syntactic and semantic analysis, handles

ambiguities at both the general and the domain specific environment. At the same time,

the Framework has been designed in a way to avoid dependencies with the information

repository so that it becomes reusable in different applications with different domain

semantics.

We also present an application of the OntoNL Framework that creates a natural language

interface to a semantic multimedia repository with digital audiovisual content of soccer

events and metadata concerning soccer in general, that has been developed and

demonstrated in the 2nd and 3rd Annual Review of the DELOS II EU Network of

Excellence (IST 507618) (http://www.delos.info/).

This research that was carried out in this thesis was supported by the DELOS II, Network

of Excellence on Digital Libraries NoE-G038-507618 / IST-507618.

 - 18 -

Chapter 1

Introduction

The goal of the Natural Language Processing (NLP) is to design and build software that

will analyze and understand languages that humans use naturally, so that eventually a user

will be able to address his/her computer as though he/she were addressing another person.

This goal is not easy to reach. "Understanding" language means, among other things,

knowing what concepts a word or phrase stands for and knowing how to link those

concepts together in a meaningful way. It's ironic that natural language, the symbol

system that is easiest for humans to learn and use, is hardest for a computer to master.

Long after machines have proven capable of inverting large matrices with speed and

grace, they still fail to master the basics of our spoken and written languages.

The challenges we face stem from the highly ambiguous nature of natural language. As an

English speaker a person effortlessly understands a sentence like "Flying planes can be

dangerous". Yet this sentence presents difficulties to a software program that lacks both

human knowledge of the world and the user experience with linguistic structures. Is the

more plausible interpretation that the pilot is at risk, or that the danger is to people on the

ground? Should "can" be analyzed as a verb or as a noun? Which of the many possible

meanings of "plane" is relevant? Depending on context, "plane" could refer to, among

other things, an airplane, a geometric object, or a woodworking tool. How much and what

sort of context needs to be brought to bear on these questions in order to adequately

disambiguate the sentence?

In particular, the advantages of natural language interfaces for user interaction with

information repositories when using modern interaction devices, like mobile phones,

PDA’s etc., when the information is complex and when access for all is desired, are well

understood.

Chapter 1

 - 19 -

Among the very best-performing and most robust language processing systems have been

knowledge-based natural language systems — NLP systems that understand an input text

– sentence, by relying heavily on handcrafted knowledge about the domain and about the

world in general. Not surprisingly, however, generating this background knowledge for

new domains is time consuming, difficult and error prone, and requires the expertise of

computational linguists familiar with the underlying NLP system. This is an example of

the knowledge engineering bottleneck for natural language processing systems. It is one

of the biggest problems in designing and building natural language systems and promises

only to become worse as natural language systems attempt to understand a wider variety

of natural language expressions, to produce more complex language models, and to derive

knowledge structures directly from these expressions.

Until recently, the natural language interfaces (NLIs) between humans and machines were

either specific to a particular application with limited expectations or linguistic-based with

possibly many ambiguities that lead to lengthy disambiguation dialogues. An attempt of

using a more generalized approach of the construction of an NLI, particularly in the

domain of digital TV was presented by Karanastasi et. all [2003, 2004] with good results

when dealing with ambiguities, without the need of using clarification dialogues for the

disambiguation, because of the well-structured domain of Digital TV, the TV-Anytime

standard [TV-Anytime Forum] and the TV-Anytime User Profile information. The

differentiation from other NLIs was in the structures of the language model that were

easily reusable and extendable. In that way the grammatical rules could be applied in a

language model formed for a specific domain. Another improvement was in the algorithm

for resolving ambiguities that was based on the schema of the repository and on User

Profile information.

A limitation of a system like this is that using a domain grammar, with specific domain

grammar rules the system searches for specific information in a repository, so the NLI is

not very easily reusable. This specific information can have relative information that can

disorient the user if the grammar rules that fulfill a certain utterance do not specify the

correct context of interest. Also, the grammar rules are defined by the syntax of the

Chapter 1

 - 20 -

repository they refer to, a fact that can be limiting in searching in more than one

ontologies of the same domain. The implementation framework that is presented here has

as its domain of use the English language and not particular information concerning a task

of interest. We are targeting to the creation of a framework, since it provides a very high

degree of reuse, much more so than individual classes and it is easily extendable, which is

significant in the automatic construction of natural language interfaces domain

independent.

By providing a software engineering framework we face the problem of the prohibited

cost of constructing natural language interfaces for particular applications and domain.

The framework is an extendable subsystem for a set of related services. It is a cohesive set

of abstract classes that define a natural language interface to conform to and object

interactions to participate in. Using specific limited-sized lexicon that has a strong

dependency on a specific domain, leads to loosing the context of each word a user uses,

because of the relative clarification from the grammar and loosing the synonyms that can

be very helpful in the disambiguation phase.

Ambiguity Resolution in Language Understanding

Ascertaining what is intended in a sentence when more than one interpretation is possible

has always been a central issue in natural language processing: ambiguity resolution is

required whenever the system must choose among two or more distinct representations of

the input. Ambiguity pervades virtually all aspects of language analysis, and sentence

analysis in particular exhibits a large number of syntactic, semantic, and pragmatic

ambiguities that demand adequate resolution before the sentence can be understood.

TheOntoNL framework is designed to acquire solutions to all lexical and structural

ambiguity problems encountered during sentence analysis.

Part-of-Speech Ambiguity

Chapter 1

 - 21 -

Knowing the part of speech of a word (noun, verb, preposition, etc.) in a particular

context, for example, often supplies important hints for determining the word’s function in

the sentence. Consider the word “chairs” in the sentences below:

1. Professor James Cameron chairs the workshop held by the Technical University

of London.

2. IKEA chairs were used for the workshop held by the Technical University of

London.

Despite nearly identical local contexts, “chairs” is a verb in sentence 1, but a noun in

sentence 2 and making this distinction is crucial to determining meaning of each sentence.

Word Sense Ambiguity

Even if a word’s part of speech is known, the intended meaning of the word in a particular

context often requires disambiguation. The word “player”, for example, is a noun in both

sentences below. In each sentence, however, the word takes on a very different meaning:

1. He was the best player of Barcelona ever.

2. He was a major player in setting up the corporation.

In sentence 1, “player” refers to a person that participates or is skilled at some game while

in the second sentence it is used metaphorically to mean “an important participant”. Even

when it seems as if a word is unquestionably unambiguous, it can be used in contexts that

confer a novel meaning. In general, one would probably say that the word “Milan” is

unambiguous, for example. It refers to a city in northern Italy. Consider the following

sentence, however:

Milan will be looking to continue their positive run of results at Chievo when they take

the pitch at the Bentegodi stadium on Saturday.

In this sentence Milan refers to a football team that participates in the Champions League.

Chapter 1

 - 22 -

Noun Compound Analysis

Noun compounds are a frequently encountered construction in natural language

processing (NLP), consisting of a sequence of two or more nouns which together function

syntactically as a noun. In English, compounds consisting of two nouns are predominantly

right-headed [Piera, 1995]. However, compound construction is recursive and both the

modifier and the head can themselves be compounds, resulting in structural ambiguities.

Consider the following pair of noun compounds:

1. [player [shirt number]]

2. [[soccer team] shirt]

Both compounds consist of the same parts-of-speech, yet the structures differ: (1) is right-

branching, while (2) is left-branching. In linguistics, branching is the general tendency

towards a given order of words within sentences and smaller grammatical units within

sentences (such as subordinate propositions, prepositional phrases, etc.).

Dealing with Unknown Words

The problem of ambiguity in sentence analysis is also clearly pronounced in the case of

unknown words. When encountering a word for which it has no definition, a robust NLP

system makes a series of decisions that together shape the meaning of the word as it

functions in the current context. Each decision is essentially a separate, but related,

ambiguity resolution task. What is the word’s part of speech in the current context? What

is its meaning? How is it related to other items in the sentence or paragraph or text? Is the

word of special importance with respect to the goals of the answering mechanism?

A related problem for natural language processing systems is to know when the system’s

knowledge of a word is incomplete. Assume, for example, that an NLP system had a

definition for the word “market” that was syntactically and semantically compatible with

its use in sentence 1 below, but then encountered “market” in sentence 2:

Chapter 1

 - 23 -

1. The Asian beef market generally is starting to open up to exporters.

2. Two companies plan to market a new chip with ceramic circuits.

A robust system should (1) note that its current definition is inadequate, (2) infer the

appropriate syntactic and semantic features of “market,” (3) incorporate the new definition

into the system’s lexicon, and (4) determine how the system will distinguish the two uses

of “market” in the future.

Natural Language and Context

“You shall know a word by the company it keeps.” This remark of J. R. Firth, famed

British linguist, seems as an apt reminder for the ubiquity of context. According to Crystal

[Crystal, 1991], ‘context’ is a general term in linguistics and phonetics to refer to specific

parts of an utterance (or text) near or adjacent to a unit (e.g., a sound, word) which is the

focus of attention. Blackburn [Blackburn, 1994] offers a similar definition: “In linguistics,

context is the parts of an utterance surrounding a unit and which may affect both its

meaning and its grammatical contribution.” However, he is quick to add that context also

refers to “the wider situation, either of the speaker or of the surroundings that may play a

part in determining the significance of a saying.” It is standard nowadays to use the term

‘co-text’ for the narrow, purely linguistic context [Lyons, 1995]. As for the total

nonlinguistic background to an utterance (including: the immediate situation in which it is

used, the knowledge of speaker and hearer about the commonsense world, the knowledge

of what has been said earlier, the relevant beliefs and presuppositions of speaker and

hearer), the term ‘situational context’ has been offered. Similarly, Lyons [Lyons, 1995]

uses the term ‘context of situation’ as a synonym for situational context. He believes that

natural language meaning must be studied as a multiple phenomenon, its numerous

aspects being relatable to (i) different levels of linguistic analysis, and (ii) features of the

world.

While approaches to natural language generation that ignore context are straightforward to

implement, they often produce unsatisfactory linguistic output. In generating noun phrases

for example, a system that ignores context must make a global choice about which

Chapter 1

 - 24 -

properties and relations to include in its output. Such a system may awkwardly evoke

properties or relations in contexts in which the referent would be perfectly clear without

them or it may produce ambiguous output in contexts where some categorically excluded

property or relation would disambiguate the intended referent.

McCarthy offers no definition of context. His underlying assumption is that “[t]here are

mathematical context structures of different properties, some of which are useful”

[McCarthy, 1996]. He wittily remarks that asking what a context is like asking what a

group element is.

All these remarks conclude to a need for a more systematic way for dealing with semantic

ambiguities that concern natural language and the solution can be found by combining

structural and syntactic information and domain specific information that specialize the

context of the natural language expression.

The Motivation

A Common Framework for Ambiguity Resolution in Question-Answering
Systems to Knowledge Repositories

The OntoNL framework for natural language processing systems is motivated by the

following observations:

1. There is a need to organize the various methods that are used for syntactic and

semantic analysis in a natural language interface with good results without the

dependence of particular grammatical rules and domain-dependent lexicons. The

framework describes a method for designing an information system in terms of a

set of building blocks, and for showing how the building blocks fit together. It

includes a list of recommended standards and compliant products that can be used

to implement the building blocks.

2. Knowing the context in which an ambiguity occurs is crucial for resolving it.

Sentence analysis in general and sense understanding in particular , requires a

series of context-sensitive mappings from one representation into another – the

Chapter 1

 - 25 -

system often maps the words of a sentence into parts of speech, the part-of-speech

sequences into low level constituents and the low-level constituents into predicate-

argument relations enhanced afterwards with context information (sense in a

particular domain), for example. This results to context-sensitive solutions by the

framework.

3. By developing a Natural Language Interface Generator, we provide system

developers the most natural way of communication with their users. . Every

system that uses knowledge for a specific domain based on an OWL ontology can

use the OntoNL Framework for NLI generation.

The Use of Domain Ontologies for a Domain-Specific Disambiguation

Due to the complexity of natural language, reliable word sense disambiguation is an

unaccomplished goal in spite of years of work in fields like Artificial Intelligence,

Computational Linguistics and other. The goal could be approached by applying methods

for consulting knowledge sources such as domain ontologies. Ontologies are usually

expressed in a logic-based language, so that detailed, accurate, consistent, sound, and

meaningful distinctions can be made among the classes (general concepts), properties

(those concepts may have), and the relations that can exist among these concepts. A

module dealing with ontologies can perform automated reasoning using the ontologies,

and thus provide advanced services to intelligent applications such as:

conceptual/semantic search and retrieval, software agents, decision support, speech and

natural language understanding and knowledge management.

We examine how consulting ontologies can help to do semantic language processing and

disambiguation, not just syntactic.

Contributions

The goal of this work is to address the knowledge engineering bottleneck for natural

language processing systems. To this end, it will present the OntoNL natural language

Chapter 1

 - 26 -

interface generator for interactions with knowledge repositories and make the following

claims:

1. The OntoNL framework is able to address uniformly a range of problems in

sentence analysis each of which traditionally had required a separate

computational mechanism. In particular a single architecture:

a. handles both syntactic and semantic ambiguities

b. handles ambiguity at both a general and a domain specific environment

c. uses semantic relatedness measures for the concepts of the ontology to

provide better ranked results

2. The OntoNL framework makes use of OWL rich vocabulary by using upper and

domain ontologies. The semantic search procedure proposed here is designed to

satisfy different kinds and levels of ambiguity. The procedure uses information

from the ontologies and by specific clusters of context inside an ontology. Given

an OWL ontology, weights are assigned to links based on certain properties of the

ontology, so that they measure the level of relatedness between concepts. In this

way we can identify related concepts in the ontology that guide the semantic

search procedure.

3. The OntoNL framework is reusable, domain independent and works with input

only the OWL ontology that was used as a reference schema for constructing the

repository.

To demonstrate support for these claims, we use OntoNL framework to create a Natural

Language Interface for an MPEG-7 Semantic Repository with information concerning the

domain of soccer. The NLI is used in a question answering system.

Report Structure

The rest of the report is organized as follows. Section 2 is about related research and work

in the Natural Language Understanding area and in the application of the methods in

Question Answering Systems. In Section 3 the OntoNL framework is presented and in

Section 4 and 5 the analysis of the models for syntactic and semantic disambiguation of

Chapter 1

 - 27 -

Natural Language is presented. Section 6 is about the implementation of a Natural

Language Interface for an MPEG-7 Multimedia Repository. Section 7 introduces the

Evaluation Framework, measures and results and in Section 8 we discuss about the results

and we conclude.

 - 28 -

Chapter 2

Related Research and Work

Natural language processing (NLP) is a subfield of artificial intelligence and linguistics.

It studies the problems of automated generation and understanding of natural human

languages.

The major tasks in NLP

 Text to speech

 Speech recognition

 Natural language understanding

 Natural language generation

 Machine translation

 Question answering

 Information retrieval

 Information extraction

 Text-proofing

 Translation technology

 Automatic summarization

In the work presented in this thesis we focus in Natural Language Understanding and in

Question Answering with information retrieval techniques. In this chapter we provide an

overview of research in the Word Sense Disambiguation area and how semantics interfere

with Natural Language Understanding. We also provide a short overview of ontologies

that are going to be used in the thesis for the semantic disambiguation procedure and an

overview of the WordNet that is used for the syntactic disambiguation of the natural

Chapter 2

 - 29 -

language expression. We then provide a short survey in Natural Language Interfaces to

Databases and conclude with the state of the art in Question Answering Systems. We

show what research has been carried out in the past, what research is currently being

undertaken, and the shortcomings of current and past research. We conclude with an

overview of the related technologies that were used for the research and development of

the OntoNL system.

Natural Language Understanding

To understand something is to transform it from one representation into another, where

this latter representation is chosen to correspond to a set of available actions that could be

performed, and for which a mapping is designed so that for each event an appropriate

action will be performed.

The steps in the process of natural language understanding are:

Morphological analysis [Ritchey, 1998]

Individual words are analyzed into their components, and non-word tokens (such as

punctuation) are separated from the words. For example, in the phrase "Bill's house" the

proper noun "Bill" is separated from the possessive suffix "'s."

Syntactic analysis [Allen, 1995]

The purpose of syntactic analysis is to determine the structure of the input text. This

structure consists of a hierarchy of phrases, the smallest of which are the basic symbols and

the largest of which is the sentence. It can be described by a tree with one node for each

phrase. Basic symbols are represented by leaf nodes, and other phrases by interior nodes.

The root of the tree represents the sentence. Syntactic processing interprets the difference

between "John hit Mary" and "Mary hit John."

Semantic analysis [Allen, 1995]

Chapter 2

 - 30 -

The structures created by the syntactic analyzer are assigned meanings. In most universes,

the sentence "Colourless green ideas sleep furiously" [Chomsky, 1957] would be rejected

as semantically anomalous. This step must map individual words into appropriate objects

in the knowledge base, and must create the correct structures to correspond to the way the

meanings of the individual words combine with each other. Semantic processing

determines the differences between such sentences as "The pig is in the pen" and "The ink

is in the pen."

Discourse integration [Ledoux, et. al, 2006]

It is the process of capturing the contextual effects that individual sentences have on each

other in determining their joint meaning. The meaning of an individual sentence may

depend on the sentences that precede it and may influence the sentences yet to come. The

entities involved in the sentence must either have been introduced explicitly or they must be

related to entities that were. The overall discourse must be coherent.

Pragmatic analysis [Doyle, 1997]

The structure representing what was said is reinterpreted to determine what was actually

meant. It is the process of using more general knowledge about the world/domain to

modify the interpretation into it’s true meaning

Word Sense Disambiguation

Word sense disambiguation is the task of assigning to each occurrence of an ambiguous

word in a text one of its possible senses [Ide, N., Veronis, J.,1998]. It is a process that can

use one to all the steps mentioned above. The task therefore necessarily involves two

steps: (1) the determination of all the different senses for every word relevant (at least) to

the text or discourse under consideration; and (2) a means to assign each occurrence of a

word to the appropriate sense.

Chapter 2

 - 31 -

The automatic disambiguation of word senses has been an interest and concern since the

earliest days of computer treatment of language in the 1950's [Ide and Veronis, 1998].

Sense disambiguation is an “intermediate task” [Wilks and Stevenson, 1996] which is not

an end in itself, but rather is necessary at one level or another to accomplish most natural

language processing tasks. It is obviously essential for language understanding

applications such as message understanding, man-machine communication, etc.; it is at

least helpful, and in some instances required, for applications whose aim is not language

understanding:

 machine translation: sense disambiguation is essential for the proper translation of

words.

 information retrieval and hypertext navigation: when searching for specific

keywords, it is desirable to eliminate occurrences in documents where the word or

words are used in an inappropriate sense.

 content and thematic analysis: a common approach to content and thematic

analysis is to analyze the distribution of pre-defined categories of words--i.e.,

words indicative of a given concept, idea, theme, etc.--across a text.

 grammatical analysis: sense disambiguation is useful for part of speech tagging.

 speech processing: sense disambiguation is required for correct phonetization of

words in speech synthesis.

 text processing: sense disambiguation is necessary for spelling correction.

The problem of word sense disambiguation has been described as AI-complete, that is, a

problem which can be solved only by first solving all the difficult problems in artificial

intelligence (AI), such as the representation of common sense and encyclopedic

knowledge. However, at about the same time considerable progress was being made in the

area of knowledge representation, especially the emergence of semantic networks, which

were immediately applied to sense disambiguation. In the past ten years, attempts to

automatically disambiguate word senses have multiplied, due, like much other similar

activity in the field of computational linguistics, to the availability of large amounts of

machine readable text and the corresponding development of statistical methods to

identify and apply information about regularities in this data. Now that other problems

Chapter 2

 - 32 -

amenable to these methods, such as part of speech disambiguation and alignment of

parallel translations, have been fairly thoroughly addressed, the problem of word sense

disambiguation has taken centre stage, and it is frequently cited as one of the most

important problems in natural language processing research today. The following sections

survey the approaches applied to date.

Early Word Sense Disambiguation (WSD) in Machine Translation

The first attempts at automated sense disambiguation were made in the context of

machine translation (MT). In his famous Memorandum, Weaver [Weaver, 1949] discusses

the need for WSD in machine translation and outlines the basis of an approach to WSD

which underlies all subsequent work on the topic:

If one examines the words in a book, one at a time as through an opaque mask with a hole
in it one word wide, then it is obviously impossible to determine, one at a time, the
meaning of the words. [...] But if one lengthens the slit in the opaque mask, until one can
see not only the central word in question but also say N words on either side, then if N is
large enough one can unambiguously decide the meaning of the central word. [...]The
practical question is: “What minimum value of N will, at least in a tolerable fraction of
cases, lead to the correct choice of meaning for the central word?”

A well-known early experiment by Kaplan [Kaplan, 1950] attempted to answer this

question at least in part, by presenting ambiguous words in their original context and in a

variant context providing one or two words on either side to seven translators. Kaplan

observed that sense resolution given two words on either side of the word was not

significantly better or worse than when given the entire sentence. The same phenomenon

has been reported by several researchers since Kaplan's work appeared: [Masterman,

1961], [Koutsoudas and Korfhage, 1956], [Gougenheim and Michéa, 1961], [Choueka

and Lusignan, 1985].

The striking fact about this early work on WSD is the degree to which the fundamental

problems and approaches to the problem were foreseen and developed at that time.

However, without large-scale resources most of these ideas remained untested and to large

extent, forgotten until several decades later.

Chapter 2

 - 33 -

AI methods

AI methods began to flourish in the early 1960’s and began to attack the problem of

language understanding. As a result, WSD in AI work was typically accomplished in the

context of larger systems intended for full language understanding. In the spirit of the

times, such systems were almost always grounded in some theory of human language

understanding which they attempted to model and often involved the use of detailed

knowledge about syntax and semantics to perform their task, which was exploited for

WSD. The most common methods that follow this perspective are the symbolic methods

and the connectionist methods. As far as it concerns the connectionist methods work in

psycholinguistics in the 1960’s and 70’s established that semantic priming--a process in

which the introduction of a certain concept will influence and facilitate the processing of

subsequently introduced concepts that are semantically related--plays a role in

disambiguation by humans. This idea is realized in spreading activation models [Collins

and Loftus, 1975; Anderson, 1976, 1983], where concepts in a semantic network are

activated upon use, and activation spreads to connected nodes. Activation is weakened as

it spreads, but certain nodes may receive activation from several sources and be

progressively reinforced.

Knowledge-based methods

The AI-based work of the 1970’s and 80’s was theoretically interesting but not at all

practical for language understanding in any but extremely limited domains. A significant

roadblock to generalizing WSD work was the difficulty and cost of hand-crafting the

enormous amounts of knowledge required for WSD: the so-called “knowledge acquisition

bottleneck” [Gale et al., 1993]. Work on WSD reached a turning point in the 1980's when

large-scale lexical resources such as dictionaries, thesauri, and corpora became widely

available. Efforts began to attempt to automatically extract knowledge from these sources

and, more recently, to construct large-scale knowledge bases by hand.

Chapter 2

 - 34 -

Corpus-based methods

Since the end of the Nineteenth Century, the manual analysis of corpora has enabled the

study of words and graphemes and the extraction of lists of words and collocations for the

study of language acquisition or language teaching. Corpora have been used in linguistics

since the first half of the Twentieth Century. Some of this work concerns word senses, and

it is often strikingly modern. From the other hand, manual sense-tagging of a corpus is

extremely costly, and at present very few sense-tagged corpora are available. Several

efforts to create sense tagged corpora have or are being made: recently, the Linguistic

Data Consortium distributes a corpus of approximately 200,000 sentences from the Brown

Corpus and the Wall Street Journal in which all occurrences of 191 words are hand-tagged

with their WordNet senses [Ng and Lee, 1996]. Also, the Cognitive Science Laboratory at

Princeton has undertaken the hand-tagging of 1000 words from the Brown Corpus with

WordNet senses [Miller et al., 1993] (so far, 200,000 words are available via ftp), and

hand-tagging of 25 verbs a small segment of the Wall Street Journal (12,925 sentences) is

also underway [Wiebe et al., 1997]. However, these corpora are far smaller than those

typically used with statistical methods.

Several efforts have been made to automatically sense-tag a training corpus via

bootstrapping methods. Hearst [Hearst, 1991] proposed an algorithm (CatchWord) which

includes a training phase during which each occurrence of a set of nouns13 to be

disambiguated is manually sense-tagged in several occurrences. Statistical information

extracted from the context of these occurrences is then used to disambiguate other

occurrences. If another occurrence can be disambiguated with certitude, the system

automatically acquires additional statistical information from these newly disambiguated

occurrences, thus improving its knowledge incrementally. Hearst indicates that an initial

set of at least 10 occurrences is necessary for the procedure, and that 20 or 30 occurrences

are necessary for high precision.

The problem of data sparseness, which is common for much corpus-based work, is

especially severe for work in WSD. First, enormous amounts of text are required to ensure

that all senses of a polysemous word are represented, given the vast disparity in frequency

among senses.

Chapter 2

 - 35 -

Smoothing is used to get around the problem of infrequently occurring events, and in

particular to ensure that non-observed events are not assumed to have a probability of

zero.

Class-based models attempt to obtain the best estimates by combining observations of

classes of words considered to belong to a common category. Class-based methods

answer in part the problem of data sparseness, and eliminate the need for pre-tagged data.

However, there is some information loss with these methods because the hypothesis that

all words in the same class behave in a similar fashion is too strong.

Similarity-based methods exploit the same idea of grouping observations for similar

words, but without re-grouping them into fixed classes. Each word has a potentially

different set of similar words. Like many class-based methods, similarity-based methods

exploit a similarity metric between patterns of co-occurrence.

Open problems

Context is the only means to identify the meaning of a polysemous word. Therefore, all

work on sense disambiguation relies on the context of the target word to provide

information to be used for its disambiguation. For data-driven methods, context also

provides the prior knowledge with which current context is compared to achieve

disambiguation. Broadly speaking, context is used in two ways:

• The bag of words approach: here, context is considered as words in some window

surrounding the target word, regarded as a group without consideration for their

relationships to the target in terms of distance, grammatical relations, etc.

• Relational information: context is considered in terms of some relation to the

target, including distance from the target, syntactic relations, selectional

preferences, orthographic properties, phrasal collocation, semantic categories, etc.

Information from micro-context, topical context, and domain contributes to sense

selection, but the relative role and importance of information from the different contexts

and their inter-relations are not well understood. Very few studies have used information

Chapter 2

 - 36 -

of all three types, and the focus in much recent work is on micro-context alone. This is

another area where systematic study is needed for WSD.

Semantics

Basic Notions of Semantics

A perennial problem in semantics is the delineation of its subject matter. The term

meaning can be used in a variety of ways, and only some of these correspond to the usual

understanding of the scope of linguistic or computational semantics. We shall take the

scope of semantics to be restricted to the literal interpretations of sentences in a context,

ignoring phenomena like irony, metaphor, or conversational implicature [Grice, 1975],

[Levinson 1983].

A standard assumption in computationally oriented semantics is that knowledge of the

meaning of a sentence can be equated with knowledge of its truth conditions: that is,

knowledge of what the world would be like if the sentence were true. This is not the same

as knowing whether a sentence is true, which is (usually) an empirical matter, but

knowledge of truth conditions is a prerequisite for such verification to be possible.

Meaning as truth conditions needs to be generalized somewhat for the case of imperatives

or questions, but is a common ground among all contemporary theories, in one form or

another, and has an extensive philosophical justification, e.g., [Davidson 1969, 1973].

A semantic description of a language is some finitely stated mechanism that allows us to

say, for each sentence of the language, what its truth conditions are. Just as for

grammatical description, a semantic theory will characterize complex and novel sentences

on the basis of their constituents: their meanings, and the manner in which they are put

together. The basic constituents will ultimately be the meanings of words and morphemes.

The modes of combination of constituents are largely determined by the syntactic

structure of the language. In general, to each syntactic rule combining some sequence of

child constituents into a parent constituent, there will correspond some semantic operation

combining the meanings of the children to produce the meaning of the parent.

Chapter 2

 - 37 -

Practical Applications of Semantics

Some natural language processing tasks (e.g., message routing, textual information

retrieval, translation) can be carried out quite well using statistical or pattern matching

techniques that do not involve semantics in the sense assumed above. However,

performance on some of these tasks improves if semantic processing is involved.

Some tasks, however, cannot be carried out at all without semantic processing of some

form. One important example application is that of database query, of the type chosen for

the Air Travel Information Service (ATIS) task [Defense Advanced Research Projects

Agency 1989]. For example, if a user asks, ``Does every flight from London to San

Francisco stop over in Reykyavik?'' then the system needs to be able to deal with some

simple semantic facts. Relational databases do not store propositions of the form every X

has property P and so a logical inference from the meaning of the sentence is required. In

this case, every X has property P is equivalent to there is no X that does not have property

P and a system that knows this will also therefore know that the answer to the question is

no if a non-stopping flight is found and yes otherwise.

Any kind of generation of natural language output (e.g., summaries of financial data,

traces of KBS system operations) usually requires semantic processing. Generation

requires the construction of an appropriate meaning representation, and then the

production of a sentence or sequence of sentences which express the same content in a

way that is natural for a reader to comprehend, e.g., [McKeown et. al, 1994]. To illustrate,

if a database lists a 10 a.m.\ flight from London to Warsaw on the 1st--14th, and 16th--

30th of November, then it is more helpful to answer the question What days does that

flight go? by Every day except the 15th instead of a list of 30 days of the month. But to do

this the system needs to know that the semantic representations of the two propositions are

equivalent.

Chapter 2

 - 38 -

Ontologies

In computer science, an ontology is a data model that represents a domain and is used to

reason about the objects in that domain and the relations between them.

Ontologies are used in artificial intelligence, the semantic web, software engineering and

information architecture as a form of knowledge representation about the world or some

part of it. Ontologies generally describe:

 Individuals: the basic or "ground level" objects

 Classes: sets, collections, or types of objects

 Attributes: properties, features, characteristics, or parameters that objects can
have and share

 Relations: ways that objects can be related to one another

Difference from philosophical ontology

The term ontology has its origin in philosophy, where it is used to name the fundamental

branch of metaphysics concerned with existence. In other words, ontology is the name of

a philosophical discipline in much the same way that biology names one of the scientific

disciplines.

Its use in computer science retains little of its original philosophical meaning. In computer

science an ontology is a specification of concepts and the relationships that may exist

between those concepts for some Universe of discourse or community (see also

taxonomy.) An ontology is therefore primarily a way for a community to agree upon the

meanings of terms and relations so that they may reliably share knowledge and

information. With terms and relations thus defined, automated processes that share this

common definition can perform simple reasoning. There are numerous syntaxes for

describing ontologies; for example, see Web Ontology Language.

It should be clear, therefore, that while it makes little sense to speak of an ontology in the

context of philosophy and metaphysics, it makes perfect sense in the domain of computer

Chapter 2

 - 39 -

science. Computer scientists borrowed the term ontology from metaphysics because an

ontology is a way of representing knowledge about the things that can exist in some

Universe of discourse.

Elements of an ontology

Contemporary ontologies share many structural similarities, regardless of the language in

which they are expressed. As mentioned above, most ontologies describe individuals

(instances), classes (concepts), attributes, and relations. In this section each of these

components is discussed in turn.

Individuals (Instances)

Individuals (instances) are the basic, "ground level" components of an ontology. The

individuals in an ontology may include concrete objects such as people, animals, tables,

automobiles, molecules, and planets, as well as abstract individuals such as numbers and

words. Strictly speaking, an ontology need not include any individuals, but one of the

general purposes of an ontology is to provide a means of classifying individuals, even if

those individuals are not explicitly part of the ontology.

Classes (concepts)

Classes (Concepts) are abstract groups, sets, or collections of objects. They may contain

individuals, other classes, or a combination of both. Some examples of classes:

 Person, the class of all people

 Molecule, the class of all molecules

 Number, the class of all numbers

 Vehicle, the class of all vehicles

 Car, the class of all cars

 Individual, representing the class of all individuals

 Class, representing the class of all classes

 Thing, representing the class of all things

Ontologies vary on whether classes can contain other classes, whether a class can belong

to itself, whether there is a universal class (that is, a class containing everything), etc.

Chapter 2

 - 40 -

Sometimes restrictions along these lines are made in order to avoid certain well-known

paradoxes.

The classes of an ontology may be extensional or intentional in nature. A class is

extensional if and only if it is characterized solely by its membership. More precisely, a

class C is extensional if and only if for any class C', if C' has exactly the same members as

C, then C and C' are identical. If a class does not satisfy this condition, then it is

intentional. While extensional classes are more well-behaved and well-understood

mathematically, as well as less problematic philosophically, they do not permit the fine

grained distinctions that ontologies often need to make. For example, an ontology may

want to distinguish between the class of all creatures with a kidney and the class of all

creatures with a heart, even if these classes happen to have exactly the same members.

Importantly, a class can subsume or be subsumed by other classes. For example, Vehicle

subsumes Car, since (necessarily) anything that is a member of the latter class is a

member of the former. The subsumption relation is used to create a hierarchy of classes,

typically with a maximally general class like Thing at the top, and very specific classes

like 2002 Ford Explorer at the bottom.

A partition is a set of related classes and associated rules that allow objects to be placed

into the appropriate class. For example, this partial diagram of an ontology has a partition

of the Car class into the classes 2-Wheel Drive and 4-Wheel Drive:

Chapter 2

 - 41 -

The partition rule determines if a particular car is placed in the 2-Wheel Drive or the 4-

Wheel Drive class.

If the partition rule(s) guarantee that a single Car object cannot be in both classes, then the

partition is called a Disjoint Partition. If the partition rules ensure that every concrete

object in the super-class is an instance of at least one of the partition classes, then the

partition is called an Exhaustive Partition.

Attributes

Objects in the ontology can be described by assigning attributes to them. Each attribute

has at least a name and a value, and is used to store information that is specific to object it

is attached to. For example the Ford Explorer object has attributes such as:

 Name: Ford Explorer

 Number-of-doors: 4

 Engine: {4.0L, 4.6L}

 Transmission: 6-speed

The value of an attribute can be a complex data type; in this example, the value of the

attribute called Engine is a list of values, not just a single value.

If you did not define attributes for the concepts you would have either a taxonomy (if

concept relationships are described) or a Controlled Vocabulary. These are useful, but

are not considered true ontologies.

Relationships

An important use of attributes is to describe the relationships (also known as relations)

between objects in the ontology. Typically a relation is an attribute whose value is another

object in the ontology. For example in the ontology that contains the Ford Explorer and

the Ford Bronco, the Ford Bronco object might have the following attribute:

Successor: Ford Explorer

Chapter 2

 - 42 -

This tells us that the Explorer is the model that replaced the Bronco. Much of the power of

ontologies comes from the ability to describe these relations. Together, the set of relations

describes the semantics of the domain.

The most important type of relation is the subsumption relation (written as is-a, is-

subtype-of or is-subclass-of). This defines which objects are members of classes of

objects. For example we have already seen that the Ford Explorer is-a 4-wheel drive,

which in turn is-a Car:

The addition of the is-a relationships has created a hierarchical taxonomy; a tree-like

structure that clearly depicts how objects relate to one another. In such a structure, each

object is the 'child' of a 'parent class' (Some languages restrict the is-a relationship to one

parent for all nodes, but many do not).

Another common type of relations is the Meronymy relation (written as part-of) that

represents how objects combine together to form composite objects. For example, if we

extended our example ontology to include objects like Steering Wheel, we would say that

"Steering Wheel is-part-of Ford Explorer" since a steering wheel is one of the components

of a Ford Explorer.

If we introduce part-of relationships to our ontology, we find that this simple and elegant

tree structure quickly becomes complex and significantly more difficult to interpret

manually. It is not difficult to understand why; an entity that is described as 'part of'

Chapter 2

 - 43 -

another entity might also be 'part of' a third entity. Consequently, entities may have more

than one parent. The structure that emerges is known as a Directed Acyclic Graph (DAG).

As well as the standard is-a and part-of relations, ontologies often include additional types

of relation that further refine the semantics they model. These relations are often domain-

specific and are used to answer particular types of question.

For example in the domain of automobiles, we might define a made-in relationship which

tells us where each car is built. So the Ford Explorer is made-in Louisville. The ontology

may also know that Louisville is-in Kentucky and Kentucky is-a state of the USA.

Software using this ontology could now answer a question like "which cars are made in

America?"

Domain ontologies and upper ontologies

A domain ontology (or domain-specific ontology) models a specific domain, or part of the

world. It represents the particular meanings of terms as they apply to that domain. For

example the word card has many different meanings. An ontology about the domain of

poker would model the "playing card" meaning of the word, while an ontology about the

domain of computer hardware would model the "punch card" and "video card" meanings.

An upper ontology (or foundation ontology) is a model of the common objects that are

generally applicable across a wide range of domain ontologies. It contains a core glossary

in whose terms objects in a set of domains can be described. There are several

standardized upper ontologies available for use, including Dublin Core, GFO,

OpenCyc/ResearchCyc, SUMO, WordNet, and DOLCE.

Since domain ontologies represent concepts in very specific and often eclectic ways, they

are often incompatible. As systems that rely on domain ontologies expand, they often

need to merge domain ontologies into a more general representation. This presents a

challenge to the ontology engineer. Different ontologies in the same domain can also arise

due to different perceptions of the domain based on cultural background, education,

ideology, or because a different representation language was chosen.

Chapter 2

 - 44 -

At present, merging ontologies is a largely manual process and therefore time-consuming

and expensive. Using a foundation ontology to provide a common definition of core terms

can make this process manageable. There are studies on generalized techniques for

merging ontologies, but this area of research is still largely theoretical.

Ontology languages

An ontology language is a formal language used to encode the ontology. There are a

number of such languages for ontologies, both proprietary and standards-based:

 OWL is a language for making ontological statements, developed as a follow-on

from RDF and RDFS, as well as earlier ontology language projects including OIL,

DAML and DAML+OIL. OWL is intended to be used over the World Wide Web,

and all its elements (classes, properties and individuals) are defined as RDF

resources, and identified by URIs.

 KIF is a syntax for first-order logic that is based on S-expressions.

 The Cyc project has its own ontology language called CycL, based on first-order

predicate calculus with some higher-order extensions.

WordNet

WordNet is a semantic lexicon for the English language. It groups English words into sets

of synonyms called synsets, provides short, general definitions, and records the various

semantic relations between these synonym sets. The purpose is twofold: to produce a

combination of dictionary and thesaurus that is more intuitively usable, and to support

automatic text analysis and artificial intelligence applications. The database and software

tools have been released under a BSD style license and can be downloaded and used

freely. The database can also be browsed online.

Chapter 2

 - 45 -

As of 2005, the database contains about 150,000 words organized in over 115,000 synsets

for a total of 203,000 word-sense pairs; in compressed form, it is about 12 megabytes in

size.

WordNet distinguishes between nouns, verbs, adjectives and adverbs because they follow

different grammatical rules. Every synset contains a group of synonymous words or

collocations (a collocation is a sequence of words that go together to form a specific

meaning, such as "car pool"); different senses of a word are in different synsets. The

meaning of the synsets is further clarified with short defining glosses. A typical example

synset with gloss is:

 good, right, ripe -- (most suitable or right for a particular purpose; "a good time to
plant tomatoes"; "the right time to act"; "the time is ripe for great sociological
changes")

Most synsets are connected to other synsets via a number of semantic relations. These

relations vary based on the type of word, and include:

 Nouns

o hypernyms: Y is a hypernym of X if every X is a (kind of) Y

o hyponyms: Y is a hyponym of X if every Y is a (kind of) X

o coordinate terms: Y is a coordinate term of X if X and Y share a hypernym

o holonym: Y is a holonym of X if X is a part of Y

o meronym: Y is a meronym of X if Y is a part of X

 Verbs

o hypernym: the verb Y is a hypernym of the verb X if the activity X is a
(kind of) Y (travel to movement)

o troponym: the verb Y is a troponym of the verb X if the activity Y is doing
X in some manner (lisp to talk)

o entailment: the verb Y is entailed by X if by doing X you must be doing Y
(snoring by sleeping)

o coordinate terms: those verbs sharing a common hypernym

 Adjectives

o related nouns

Chapter 2

 - 46 -

o participle of verb

 Adverbs

o root adjectives

While semantic relations apply to all members of a synset because they share a meaning

and are all mutually synonyms, words can also be connected to other words by lexical

relations, including antonyms (opposites of each other) and derivationally related words.

WordNet also provides the polysemy count of a word: the number of synsets that contain

the word. If a word participates in several synsets (i.e. has several senses), then typically

some senses are much more common than others. WordNet quantifies this by the

frequency score: in several sample texts all words were semantically tagged with the

corresponding synset, and then it was counted how often a word appeared in a specific

sense.

The morphology functions of the software distributed with the database try to deduce the

lemma or root form of a word from the user's input; only the root form is stored in the

database unless it has irregular inflected forms

Semantic Relatedness in a Semantic Network

According to Lee et. al. [1993], a “semantic network is broadly described as any

representation interlinking nodes with arcs, where the nodes are concepts and the links are

various kinds of relationships between concepts”. The majority of the methods discussed

in the present section use WordNet, a broad coverage semantic network created as an

attempt “to model the lexical knowledge of a native speaker of English” [Richardson and

Smeaton, 1995].

Computing Path Length
A natural way to evaluate semantic relatedness in a taxonomy, given its graphical

representation, is “to evaluate the distance between the nodes corresponding to the items

being compared – the shortest the path from one node to another, the similar they are.

Chapter 2

 - 47 -

Given multiple paths, one takes the length of the shortest one” [Resnik, 1995]. The first

approach follows exactly this methodology.

Rada et al.'s Simple Edge Counting

Rada and colleagues [Rada et. al, 1989, Rada and Bicknell, 1989] describe a

research effort directed towards improving quality of a bibliographic information

retrieval system in a highly specific domain — biomedical literature. Unlike the other

approaches below, which use WordNet, Rada et al.'s central knowledge source is MeSH

(Medical Subject Headings), a hierarchical semantic network of over 15,000 terms

used in indexing over five million articles in Medline, one of the world's largest

bibliographic retrieval systems, maintained by the National Library of Medicine.

The principal assumption put forward by Rada and colleagues is that "the number of

edges between terms in the MeSH hierarchy is a measure of conceptual distance

between terms". Their distance distRetal(ti, tj) between two terms is thus defined

simply as

distRetal(ti, tj)= minimal number of edges in a path from ti to tj . (1)

Even with such a simple distance function, the authors were able to obtain surprisingly

good results. In part, their success can be explained by the following general

observation of Lee et al. [1993]: "In the context of Quillian's semantic networks,

shortest path lengths between two concepts are not sufficient to represent conceptual

distance between those concepts. However, when the paths are restricted to IS-A

links, the shortest path length does measure conceptual distance." Another component

of their success is certainly the aforementioned specificity of the domain, which

ensures relative homogeneity of the hierarchy.

Chapter 2

 - 48 -

Sussna's Depth-Relative Scaling

In Sussna's [1993, 1997] approach, each edge in the WordNet noun network is

constructed as consisting of two arcs representing inverse relations. Each relation r has

a weight or a range [minr;maxr] of weights associated with it: all antonymy arcs get

the value of minr = maxr = 2.5, hypernymy, hyponymy, holonymy, and meronymy have

weights between minr = 1 and maxr = 2. (Since synonymy is an intranode relation, its

(non-existent) arcs get weight 0.) The point in the range for a relation r arc from

node c1 to node c2 depends on the number nr of arcs of the same type leaving c1;

namely,

)(
minmaxmax)(
1

21 cn
ccw

r

rr
r

−
−=→ (2)

This is the type-specific fanout factor, which, according to Sussna, "reflects dilution of

the strength of connotation between a source and target node" and "takes into

account the possible asymmetry between the two nodes, where the strength of

connotation in one direction differs from that in the other direction". The two

inverse weights for an edge are averaged and scaled by depth d of the edge "within

the overall 'tree'". The key motivation for scaling is Sussna's observation that

sibling-concepts deeper in the tree appear to be more closely related to one another

than those higher in the tree. The formula for the distance between adjacent nodes

c1 and c2 then becomes

d
ccwccwccdist rr

S 2
)()(),(1'221

21
→+→

= (3)

where r is the relation that holds between c1 and c2 and r' is its inverse (i.e. , the

relation that holds between c2 and c1).

Finally, the semantic distance between two arbitrary nodes ci and cj is computed as

the sum of the distances between the pairs of adjacent nodes along the shortest path

connecting ci and cj .

Chapter 2

 - 49 -

Wu and Palmer's Conceptual Similarity

In a paper focusing on "semantic representation of verbs in computer systems and its

impact on lexical selection problems in machine translation", Wu and Palmer [1994]

devote a couple of paragraphs to introducing a metric that is somewhat specialized but

nonetheless deserving of at least a brief mention. Very superficially, the key idea of the

authors' approach to translating English verbs into Mandarin Chinese is to "project"

verbs (and verb compounds) of both languages onto something they call "conceptual

domains". The first immediate effect of the projection operation is that it separates

different senses of verbs by placing them into different domains. Another important

feature of conceptual domains — and the one that directly concerns us — is the fact

that the concepts within a single domain can be organized in a strict hierarchical

structure (namely, a tree) on which a measure of similarity can be defined.

Wu and Palmer define Conceptual Similarity between a pair of concepts c1and c2 as

3221
32),(21 NNN

NccsimWP ×++
×

= (4)

where N1 is the length (in number of nodes) of the path from c1 to c3, which is the least

common superconcept of c1 and c2, N2 is the length of the path from c2 to c3, and N3 is

the length of the path from c3 to the root of the hierarchy. Note that N3 represents the

'global' depth in the hierarchy, and to emphasize its role as a scaling factor more

clearly, we can consider a translation of the above equation from the language of

similarity into the language of distance:

3221
21),(1),(2121 NNN

NNccsimccdist WPWP ×++
+

=−= (5)

Leacock and Chodorow's Normalized Path Length

In the course of their attempt to alleviate the problem of sparseness of training

data for a statistical local-context classifier, Leacock and Chodorow [1998] proposed the

Chapter 2

 - 50 -

following formula for computing the semantic similarity between words w1 and w2

(notation borrowed from [Resnik, 1995]):

D

cclen
wwsim cc

LC ×
−=

2

),(min
log),(

21,
21

21 (6)

where D is the maximum depth of the taxonomy (also known as height, in graph

theory), len(c1,c2) is the length of the shortest path between c1 and c2, and c1,c2,

stand for “the set of concepts in the taxonomy that are senses of word w1, w2”[Resnik,

1995].

To avoid singularities, Leacock and Chodorow measure path lengths in nodes, rather

than edges, so synonyms (i .e. , members of the same synset) are 1 unit of distance apart

from each other.

Integrated Approaches

Like the methods in the preceding subsection, the final group of approaches that we

present in this thesis attempt to counter problems inherent in a general ontology.

These approaches incorporate an additional, and qualitatively different, knowledge

source: all three techniques outlined below use corpus analysis to augment the

information already present in the network. As a side-effect, this "provides a way of

adapting a static knowledge structure to multiple contexts" [Resnik, 1995].

Resnik's Information-Based Approach

The key underlying idea of Resnik's [1995] approach is the intuition that one

criterion of similarity between two concepts is "the extent to which they share

information in common", which in an IS-A taxonomy can be determined by

inspecting the relative position of a most specific concept that subsumes them both.

This intuition seems to be indirectly captured by edge-counting methods (such as that

Chapter 2

 - 51 -

of Rada and colleagues) in that "if the minimal path of IS-A links between two nodes is

long, that means it is necessary to go high in the taxonomy, to more abstract concepts,

in order to find a least upper bound". An example given in [Resnik, 1995] is the

difference in the relative positions of the most specific subsumer of nickel and dime —

coin — and that of nickel and credit card — medium of exchange (Figure 2).

In mathematical terms, let us augment our taxonomy (whose set of concepts is de-

noted by C) with a function p : C —> [0,1], such that for any c ∈ C, p(c) is the

probability of encountering an instance of concept c. Following the standard definition

from Information Theory, the information content of c is then — log p(c). Finally, for

a pair of concepts c1 and c2, we can define their semantic similarity as

)),((log)](log[max),(21),(21
21

cclsopcpccsim
ccScR −=−=

∈
 (7)

where S(c1, c2) stands for the set of concepts that subsume both c1 and c2, and lso(c1, c2)

stands for the most specific common subsumer (lowest super-ordinate) of c1 and c2.

Figure 1: Fragment of the WordNet taxonomy. Solid lines represent IS-A links; dashed lines
indicate that some intervening nodes have been omitted. Adapted from [Resnik, 1995]

Chapter 2

 - 52 -

One thing to note about the definition of p is that it is monotonic as one moves up the

taxonomy: c1 IS-A c2 implies p(c1) < p(c2) (whenever we encounter a nickel, we have

encountered a coin (Figure 2), so p(nickel) ≤ p(coin)). In particular, if the taxonomy

has a unique top node (such as um-thing in PENMAN Upper Model), its p is 1. As a

consequence, the higher the position of the most specific subsumer for given two

concepts in the taxonomy (i .e. , the more abstract it is), the lower the similarity. In

particular, if the most specific subsumer of a pair of concepts is the top node, their

similarity is 0.

Given the formula for similarity between two concepts, the similarity between two

words w1 and w2 can be calculated as

)],,([max),(21)(),(21
2211

ccsimwwsim
wscwscR ∈∈

= (8)

with s(wi) (i = 1,2).

In Resnik's experiments, frequencies of concepts in the taxonomy were estimated

through noun frequencies gathered from the Brown Corpus of American English

[Francis and Kucera, 1982], a 1-million-word "collection of text across genres ranging

from news articles to science fiction". The key characteristic of his counting method

is that an individual occurrence of any noun in the corpus "was counted as an

occurrence of each taxonomic class containing it" (see below). For example, an

occurrence of the noun nickel was, in accordance with Figure 2, counted towards the

frequency of nickel, coin, and so forth. Note that, as a consequence of using raw (non-

disambiguated) data, encountering a word will contribute to the counts of all its

senses (if it is polysemous) and those of any of its homographs. So in case of nickel,

the counts of nickel', chemical element, metal, etc., will also be increased.

Formally,

∑
∈

=
)(

)()(
cwordsn

ncountcfreq (9)

Chapter 2

 - 53 -

where words(c) is the set of words whose senses are subsumed by concept c

(provided that subsumption is reflexive), and, adopting the maximum likelihood

estimate (MLE) rule,

N
cfreqcp)()(= (10)

where N is the total number of nouns in the corpus which are also present in

WordNet.

Jiang and Conrath's Combined Approach

Resnik's approach described above attempts to deal with the problem of "varying link

distances" [Resnik, 1995] by generally downplaying the role of network edges in the

determination of the degree of semantic proximity: edges are used solely for locating

super-ordinates of a pair of concepts; in particular, the number of links does not figure

in any of the formulas pertaining to the method; numerical evidence comes from

corpus statistics, which are associated with nodes.

Such a selective use of the structure of the taxonomy, however, has its drawbacks, one

of which is the indistinguishability, in terms of semantic distance, of any two pairs of

concepts having the same most-specific subsumer. Going back to Figure 2, simR(money,

credit)=simR(dime, credit card) = - log p(medium of exchange), whereas, for a typical edge-

based method such as Leacock and Chodorow's, clearly simLC(money,

credit) ≠ simLC(dime, credit card).

Jiang and Conrath's [1997] idea was to synthesize edge- and node-based techniques

(hence it is a combined approach) by effectively restoring the dominant function of

network edges in similarity computations and using corpus statistics as a corrective

factor. They hypothesized that the general formula for the weight of a link between a

child-concept cc and its parent-concept cp in a hierarchy should be of the form

Chapter 2

 - 54 -

),(),(
)(

1)(
)(

)1(),(pcpc
p

p

p
pc ccTccLS

cd
cd

cE
Eccwt

α

ββ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= , (11)

where E(cp) denotes the number of children of cp ("local density"), E denotes the

average local density over the entire hierarchy, d(cp) the depth of the node cp in the

hierarchy, LS(cc,cp) the strength of the link between cc and cp, T(cc,cp) the link-type

coefficient, and the parameters),0[∞∈α and]1,0[∈β control the degree of

contribution of the node depth and the density factor, respectively. A careful reader

may notice a parallel between the local density, node depth, and link-type factors in

previous equation and type-specific fanout, edge depth, and relation weight of Sussna's

approach. The emphases of the two research programs, however, have been different.

Unlike Sussna, Jiang and Conrath to date have experimented only with a single link-

type, IS-A (personal communication), which was assigned T of 1. Their investigation

into the roles of the density and depth components have demonstrated that "they are

not the major determinants of the overall edge weight": setting a=0.5 and β=0.3

resulted in "a small performance improvement" over the simplest case of a=0 and β=1

(i.e., giving no consideration to density or depth). The main focus of Jiang and

Conrath's effort has thus been the link-strength factor, with the previous equation

reduced to the special case

wt(cc,cp) = LS(cc,cp) (12)

In the framework of the IS-A hierarchy, Jiang and Conrath postulated the strength

LS(cc,,cp) of the link connecting a child-concept cc to its parent-concept cp to be

proportionate to the conditional probability p(cc|cp) of encountering an instance of cc

given an instance of cp. More specifically,

LS(cc,cp) = -log p(cc|cp) (13)

By definition,

() ()
()p

pc
pc cp

ccp
ccp

&
| =

 (14)

Chapter 2

 - 55 -

If we adopt Resnik's scheme for assigning probabilities to concepts, then p(cc&cp) =

p(cc), since any instance of a child is automatically an instance of its parent. Then,

() ()
() ,|

p

c
pc cp

cp
ccp =

 (15)

and

() () ()pcpc cICcICccLS −=, , (16)

if we let IC(c) stand for the information content of concept c.

As per common practice, the semantic distance between an arbitrary pair of nodes was

taken to be the sum of the weights of the edges along the shortest path that connects

the nodes:

() ∑
∈

=
),(\),(

21
2121

))(,(,
cclsoccpathc

JC cparcwtccdist
 (17)

Here, path(c1, c2) is the set of all the nodes in the shortest path from c1 to c2, and

par(c) returns the parent of the node c. One of the elements of path(c1, c2) in an IS-A

hierarchy will always be the most specific common subsumer of the two concepts,

lso(c1,c2) the most specific common subsumer (lowest super-ordinate) of c1 and c2.

Furthermore (and this explains its removal from path(c1, c2) in), it will be the only

element without a parent in the same set.

Expanding the sum in the right-hand side of Equation 17, plugging in the expression

for the edge weight from Equation 12, and performing necessary eliminations will

result in the following final formulas for the semantic distance between concepts c1

and c2:

)),,((2)()(),(212121 cclsoICcICcICccdist JC ×−+= (18)

or

))(log)((log),((log2),(212121 cpcpcclsopccdist JC +−= (19)

Chapter 2

 - 56 -

Lin's Universal Similarity Measure

Having noticed that all of the similarity measures known to him are tied to a particular

application, domain, or resource, Lin [1998] undertook an attempt to define a

measure of similarity that is both universal (applicable to arbitrary objects and

"not presuming any form of knowledge representation") and theoretically justified

("derived from a set of assumptions" — instead of "directly by a formula" — so that

"if the assumptions are deemed reasonable, the similarity measure necessarily

follows"). In arriving at such a definition, he used the following three intuitions as a

basis:

1. The similarity between A and B (throughout this subsection, A and B will

denote arbitrary objects) is related to their commonality. The more

commonality they share, the more similar they are.

2. The similarity between A and B is related to the differences between them.

The more differences they have, the less similar they are.

3. The maximum similarity between A and B is reached when A and B are

identical, no matter how much commonality they share.

Lin also found it necessary to introduce a few additional assumptions (and definitions),

notably that the commonality between A and B is measured by the amount of

information contained in "the proposition that states the commonalities" between

them, formally

)),((BAcommonIC , (20)

and that the difference between A and B is measured by

)),,(()),((BAcommonICBAndescriptioIC − (21)

where description(A, B) is a proposition describing what A and B are.

Chapter 2

 - 57 -

Given the above setting and the apparatus of Information Theory, Lin was able to

prove the following

Similarity Theorem: The similarity between A and B is measured by the ratio

between the amount of information needed to state their commonality and the

information needed to fully describe what they are:

)),((log
)),((log),(
BAndescriptioP

BAcommonPBAsimL = , (22)

His measure of similarity between two concepts in a taxonomy ensued as a corollary:

)(log)(log
)),((log2),(
21

21
21 cpcp

cclsopccsimL +
×

= (23)

where the notation is consistent with Equations 7 and 19. (The probabilities p(c)

are determined in a manner analogous to Resnik's pB(c) (Equation 10))

As Lin points out, Resnik's similarity measure (Equation 7) is "quite close" to

simL. In fact, it can be shown that simR(c1,c2) = 1/2IC(common(c1, c2)). What may

be a little more unexpected, Lin demonstrates that, under certain conditions, his

similarity measure coincides with Wu and Palmer's simWP (c1,c2) (Equation 4).

Natural Language Interfaces to Databases

Prototype Nlidbs had already appeared in the late sixties and early seventies. The best-

known Nlidb of that period is Lunar [Woods et. al., 1972], a natural language interface to

a database containing chemical analyses of moon rocks. Lunar and other early natural

language interfaces were each built having a particular database in mind, and thus could

not be easily modified to be used with different databases. (Although the internal

representation methods used in Lunar were argued to facilitate independence between the

database and other modules [Woods, 1968], the way that these were used was somewhat

specific to that project’s needs.

Chapter 2

 - 58 -

By the late seventies several more Nlidbs had appeared. Rendezvous [Codd, 1974]

engaged the user in dialogues to help him/her formulate his/her queries. Ladder [Hendrix

et. al., 1978] could be used with large databases, and it could be configured to interface to

different underlying database management systems (Dbmss). Ladder used semantic

grammars, a technique that interleaves syntactic and semantic processing. Although

semantic grammars helped to implement systems with impressive characteristics, the

resulting systems proved difficult to port to different application domains. Indeed, a

different grammar had to be developed whenever Ladder was configured for a new

application. As researchers started to focus on portable Nlidbs, semantic grammars were

gradually abandoned. Planes [Waltz, 1978] and Philiqa1 [Scha, 1977] were some of the

other Nlidbs that appeared in the late seventies.

Chat-80 [Warren and Pereira, 1982] is one of the best-known Nlidbs of the early eighties.

Chat-80 was implemented entirely in Prolog. It transformed English questions into Prolog

expressions, which were evaluated against the Prolog database. The code of Chat-80 was

circulated widely, and formed the basis of several other experimental Nlidbs.

In the mid-eighties Nlidbs were a very popular area of research, and numerous prototype

systems were being implemented. A large part of the research of that time was devoted to

portability issues. For example, Team [Grosz, 1983] was designed to be easily

configurable by database administrators with no knowledge of Nlidbs.

Ask [Thompson and Thompson, 1983] allowed end-users to teach the system new words

and concepts at any point during the interaction. Ask was actually a complete information

management system, providing its own built-in database, and the ability to interact with

multiple external databases, electronic mail programs, and other computer applications.

All the applications connected to Ask were accessible to the end-user through natural

language requests. The user stated his/her requests in English, and Ask transparently

generated suitable requests to the appropriate underlying systems.

Janus [Resnik, 1989] had similar abilities to interface to multiple underlying systems

(databases, expert systems, graphics devices, etc). All the underlying systems could

participate in the evaluation of a natural language request, without the user ever becoming

Chapter 2

 - 59 -

aware of the heterogeneity of the overall system. Janus is also one of the few systems to

support temporal questions.

Although some of the numerous NLIDBs developed in the mid-eighties demonstrated

impressive characteristics in certain application areas, NLIDBs did not gain the expected

rapid and wide commercial acceptance. For example, in 1985 Ovum Ltd. [Johnson, 1985]

was foreseeing that “By 1987 a natural language interface should be a standard option for

users of DBMs and ‘Information Centre’ type software, and there will be a reasonable

choice of alternatives.” Since then, several commercially available NLIDBs have

appeared, and some of them are claimed to be commercially successful. However,

NLIDBs are still treated as research or exotic systems, rather than a standard option for

interfacing to databases, and their use is certainly not wide-spread. The development of

successful alternatives to NLIDBs, like graphical and form-based interfaces, and the

intrinsic problems of NLIDBs (both discussed in the following section) are probably the

main reasons for the lack of acceptance of NLIDBs.

In recent years there has been a significant decrease in the number of papers on NLIDBs

published per year. Still, NLIDBs continue to evolve, adopting advances in the general

natural language processing field, exploring architectures that transform NLIDBs into

reasoning agents, and integrating language and graphics to exploit the advantages of both

modalities, to name some of the lines of current research. Generic linguistic front-ends

have also appeared. These are general-purpose systems that map natural language input to

expressions of a logical language (e.g. the Cle system [Alshawi, 1992] – see also

[Alshawi, 1992]). These generic front-ends can be turned into NLIDBs, by attaching

additional modules that evaluate the logic expressions against a database.

Τhe database is structured according to some model of data, and the NLIDB is designed to

work with that data model. Database systems have also evolved a lot during the last

decades. The term “database system” now denotes (at least in computer science) much

more complex and principled systems than it used to denote in the past. Many of the

underlying “database systems” of early NLIDBs would not deserve to be called database

systems with today’s standards.

Chapter 2

 - 60 -

In the early days of database systems, there was no concept of naive end-users accessing

the data directly; this was done by an expert programmer writing a special computer

program.

The reason for this was the ‘navigational’ nature of the data model used by these early

database systems. Not only did the user need to know about the structure of the data in the

application. He/she also needed to know many programming tricks to get at the data. The

development of the relational model of data in the 1970’s [Codd, 1970] had a major

impact on database systems. In the relational model, the only storage structure is the table,

and this was something that even naive users could understand. Relatively simple

declarative query languages, such as SQL, were developed for this class of user.

Currently, there are two major developments in database technology that will have an

impact on NLIDBs. The first is the growing importance of object-oriented database

systems, and the second is the trend in relational database technology towards more

complex storage structures to facilitate advanced data modelling. We note that both of

these trends could make it harder to produce an NLIDB. They both reflect a tendency to

concentrate on new complex database application areas, such as network management and

computer-aided design, where the user is anything but naive, and the immediate access to

the database will often be carried out by a layer of application software.

Previous work on Natural Language Interfaces for

Question Answering

The early years: databases, cognitive science and limited domains

Research in Natural Language Interfaces for user query answering is not new: a number of

systems attempting to understand and answer natural language questions have been

developed since the early sixties [Simmons 1965] (Simmons reviewed 15 different

systems which had been implemented to that date). These early systems, such as the

BASEBALL program [Green et al., 1961] were based on retrieving information in a very

limited domain (in this case baseball games played over one season in the American

Chapter 2

 - 61 -

league) from a database. Another early experiment in this direction was the SHRDLU

system [Winograd 1972], which answered simple questions about a world constituted of

moveable blocks.

Simmons [Simmons, 1973] presents one of the earliest generic question answering

algorithms, which proceeds as follows:

1. Accumulate a database of semantic structures representing sentence meanings.

2. Select a set of structures that appears relevant to the question. Relevance is

measured by the number of lexical concepts in common between the proposed

answer and the question. This is done by ordering the candidates according to the

number of Token values they have in common with the questions.

3. Match the question structure against each candidate. This is done by:

 Determining if the head verb of the question matches the head verb of the

candidate. If there is no direct match, a paraphrase rule is applied to see if

the question structure can be transformed into the structure of the answer.

Paraphrase rules are stored as part of the lexicon and an examination of the

lexical structures of two words will be able to determine if there is a rule

(path) connecting the two. If there is not, the set of words that the first

transforms into is recursively examined to see if can be transformed into

the second word. If this fails, the transformation rules are recursively

applied to the second word to see if a match can be found. This procedure

continues until either a match is found or an arbitrarily set depth is reached.

 Applying the same procedure to the other words in the question and the

candidate answer in order to transform the question structure into the form

of the candidate answer.

 Examining quantifiers and modalities to see if quantificational, tense and

negation relationships are matched.

 Examining the question’s semantic structure to determine if the question

word type (the wh-word) is present and satisfied in the answer.

The key to this algorithm is the notion of semantic structure, which became a key theme

in natural language processing research in the seventies, with the emergence of systems

Chapter 2

 - 62 -

based on research in cognitive psychology, attempting to model human intelligence.

Lehnert [Lehnert, 1978], for example, sought to understand the nature of questions, in

particular their classification, based on ideas from dependency theory set out for example

in Schank and Abelson [Schank and Abelson, 1977] . Related to this is the work of Dyer

[Dyer, 1983], who built the BORIS system, which attempted to understand short

narratives (in a restricted domain) and answer questions related to the stories. A similar

approach was also taken by Bobrow, [Bobrow et al., 1977], who built the GUS system for

modeling human dialogue.

The common characteristic of all these systems was their limited scope: the domain which

the systems attempted to answer questions about was very limited and questions were

restricted to that limited domain; linked to this was the fact that there was no attempt to

find “real” user questions with systems only being able to answer the “toy” questions

prepared by the researchers.

Beyond cognitive psychology: open-domain Natural Language Query
Answering

A first attempt to move beyond the limited domain systems for natural language

processing of user queries was the FAQFinder system of Burke [Burke et al., 1997] which

tried to link users’ questions to a set of previously stored “question and answer” files

(taken from the “Frequently Asked Questions” posts of a number of newsgroups) by

locating the most similar question in the document collection and therefore the most

probable answer: questions could therefore be phrased at will on a very large number of

different topics, the topics being limited by the previously stored question and answer

files. The task performed by the FAQFinder system however is more accurately described

as answer finding rather than question answering [Berger et al. 2000], who describe

similar work trying to find a statistical relationship between questions and answers, rather

than the semantic relationship described by Burke), i.e. the search for an answer to a

question in a collection of ready-made answers, as opposed to a collection of generic

documents: in other words, the system is not required to actively seek and construct an

answer from unrestricted text or a knowledge base.

Chapter 2

 - 63 -

Semantic Processing to Question Answering

The extended use of the web has created a need for services that will help users to find

information they need fast and without cost. As far as it concerns keyword queries, an

interesting semantic searcher is SCORE [Sheth et al., 2002]. It uses automatic

classification and information-extraction techniques together with metadata and ontology

information to enable contextual multi-domain searches that try to understand the exact

user information need expressed in a keyword query.

Combining semantic searching with natural language processing, leads to Jeeves

[Askjeeves, 2000]. The system looks up the user’s question in its own database and

returns the list of matching questions which it knows how to answer. Then, the user

selects the most appropriate entry in the list. By this way the system stalls the interaction.

Also, the system does not have any result processing mechanisms and answers the users

by a set of documents, which is not so acceptable in natural language question-answering

systems.

Recent work on Natural Language Interfaces

Ontologies and Natural Language Interfaces

Ontologies have shown to be the right answer to knowledge structuring and modeling by

providing a formal conceptualization of a particular domain that is shared by a group of

people in an organization [O’Realy, 1998]. The rich, ontology-based semantic markup

information in a knowledge repository opens the way to novel, sophisticated forms of

question answering, which not only can potentially provide increased precision and recall

compared to today’s search engines, but are also capable of offering additional

functionalities, such as i) proactively offering additional information about an answer, ii)

providing measures of reliability and trust and/or iii) explaining how the answer was

derived.

Chapter 2

 - 64 -

Most closely related to this philosophy is ONTOSEEK. ONTOSEEK is an information

retrieval system coupled with an ontology [Guarino, 1999]. ONTOSEEK performs

retrieval based on content instead of string-based retrieval. Queries are translated to

conceptual graphs, but the problem in this step is according to the authors “in reducing to

ontology-driven graph matching where individual nodes and arcs match if the ontology

indicates that a subsumption relation holds between them”. These graphs are semi-

automatically constructed and users have to verify the links between different nodes in the

graph via the designated user interface.

Another natural language interaction system which amalgamates Natural Language

Processing (NLP), Logic, Ontologies and Information Retrieval techniques to provide

answers to queries in a specific domain in real time is AQUA [Vargas-Vera and Motta,

2004]. AQUA translates English questions into logical queries that are then used to

generate of proofs. AQUA is coupled with the AKT reference ontology for the academic

domain. This ontology (written in OCML) currently contains people, organizations,

research areas, projects, publications, technologies and events, and works as a pattern-

matching, which means that it tries to find exact match with names in the ontology. The

drawback is that the tests that have been carried out concern only a specific ontology with

a specific grammar and the system does not take into account the semantics of the

ontology. The evaluation tests were quite preliminary and limited.

A work for question answering on top of the British Telecom Digital Library is described

by Cimiano et. al. [Cimiano et. al., 2006]. It is an approach to query answering over

knowledge resources that makes use of different ontology management components

within an application scenario of the BT Digital Library. The novelty of the approach lies

in the combination of different semantic technologies providing a clear benefit for the

application scenario considered. The drawback concerns the natural language interface

were the translation of the natural language queries to structured queries relies on a

limited and partially automatically generated lexicon for the underlying ontology. The

lexicon specifies the possible lexical representations of the ontology elements in the user

query. So, the disambiguation procedure is limited to the specific application and it is not

automatic.

Chapter 2

 - 65 -

Conclusions

Natural Language Interfaces for human-system interactions try to solve the problem of

determining an answer to a question by searching for a response in a collection of

documents or data or metadata or generally in an information repository. While research

in this area spans almost three decades [Winograd 1972 and Dyer 1983 for early systems;

Moldovan et al. 2003 for the most successful recent example], progress has been slow,

and even the more successful recent systems are very limited [Moldovan et al. 2003 for

example find a correct answer for just over 83% of the questions examined; the questions

were however limited to closed-type questions requiring a single concept as an answer

and avoided the more complicated queries asking “why” or “how”]. Moreover, research in

natural language interfaces has been characterized by a lack of theoretical underpinnings,

and a consequent confusion regarding the aim of such systems: while there had been an

initial attempt to characterize in more detail the problem, either by developing generic

natural language query answering algorithms [Simmons 1973] or by proposing a generic

framework within which to work [e.g. Lehnert 1978 and 1986, working within the

conceptual dependency model developed in cognitive science], there has been little in this

direction since, with work such as Graesser and Franklin [Graesser and Franklin, 1990]

being focused on developing a cognitive model of human question answering (and trying

to partially implement this model) rather than providing a model for the problem of

automated natural language interaction systems. Thus, it is often unclear what even

Natural Language Interactions systems that are a typical application of natural language

interaction systems are trying to achieve. At the same time, linguists and philosophers

have been examining the problem of determining the general nature of questions and

answers [Gadamer 1960, Eco Hiz 1978, Eco 1990, Ginzburg 1995a and 1995b] and what

determines a “relevant” answer to a question [Grice 1967, Brown and Yule 1983, Wilson

and Sperber 1986, Sperber and Wilson 1995]. Nevertheless there is little, if any, evidence

of interaction between the theoretical and practical strands of question answering research.

A new theory therefore needs to be developed specifically for the practical problem of

automated question answering, given that current systems, aiming at an ambitious

Chapter 2

 - 66 -

application of automated systems to an “open domain” with “open” questions, lack a solid

theoretical underpinning and research in this area is limited by the ambiguity of what is

being evaluated and the uncertainty of the direction research should take. The following

chapters will address this problem by examining the what and how of question answering,

as opposed to most current research, which is solely concerned with the how, presenting a

clear theoretical foundation and a software framework which can provide an unambiguous

model for work in this area. Before proceeding to the next chapter we will introduce the

related technologies that were guide the developed system.

Related Technologies

The Stanford Log-linear Part-Of-Speech Tagger

The task of POS-tagging is to assign part of speech tags to words reflecting their syntactic

category. Often words can belong to different syntactic categories in different contexts.

Essentially then POS-tagging is a first attempt to disambiguate the sense of every word

that constitutes the user’s request. For example, for the sentence “Flies like a flower”,

there are four words and several possible tags, giving many sequences depicted below.

flies/
VBZ

flies/
NNP

Null / 0

like/
VBP

like/JJR

a/V

a/DT

a/NNP

flower/
VBZ

flower/
NNP

Figure 2: An example of the common problem of assigning a tag to a word in a sentence

Numerous approaches exist for automatic assignment of parts of speech (“tagging”), that

use top performing methods, such as Hidden Markov Models [Brants, 2000], maximum

entropy approaches [Ratnaparkhi, 1996] and transformation-based learning. The Stanford

Chapter 2

 - 67 -

Log-Linear POS Tagger adopted a maximum entropy approach, because it allows the

inclusion of diverse sources of information without causing fragmentation and without

necessarily assuming independence between the predictors [Toutanova et. all, 2000,

2003].

The part-of-speech tagger demonstrates the following ideas: (i) explicit use of both

preceding and following tag contexts (past and future tag identity) via a dependency

network representation, (ii) broad use of lexical features, including jointly conditioning on

multiple consecutive words, (iii) effective use of priors in conditional log-linear models,

and (iv) finegrained modeling of unknown word features. By implementing these ideas,

the resulting Stanford tagger (http://nlp.stanford.edu/software/tagger.shtml) gives 96.86%

accuracy on the Penn Treebank (http://www.cis.upenn.edu/~treebank/), an error reduction

of 4.4% on the best previous single automatically learned tagging result and 86.91% on

previously unseen words.

The procedure for the development of the tagger started with a maximum entropy based

tagger that uses features very similar to the ones proposed in Ratnaparkhi [Ratnaparkhi,

1996]. The Stanford pos-tagger learns a log-linear conditional probability model from

tagged text, using a maximum entropy method. This model assigns a probability for every

tag t in the set T of possible tags given a word and its context h, which is usually defined

as the sequence of several words and tags preceding the word. This model can be used for

estimating the probability of a tag sequence t1…tn given a sentence w1…wn

The idea of maximum entropy modeling is to choose the probability distribution p that has

the highest entropy out of those distributions that satisfy a certain set of constraints. The

constraints restrict the model to behave in accordance with a set of statistics collected

from the training data. The statistics are expressed as the expected values of appropriate

functions defined on the contexts h and tags t. In particular, the constraints demand that

the expectations of the features for the model match the empirical expectations of the

features over the training data.

Some commonly used statistics for part of speech tagging are: how often a certain word

was tagged in a certain way; how often two tags appeared in sequence or how often three

Chapter 2

 - 68 -

tags appeared in sequence. These look a lot like the statistics a Markov Model would use.

However, in the maximum entropy framework it is possible to easily define and

incorporate much more complex statistics, not restricted to n-gram sequences.

Having defined a set of constraints that the model should accord with, the target is to find

the model satisfying the constraints that maximizes the conditional entropy of p . The

intuition is that such a model assumes nothing apart from that it should satisfy the given

constraints.

The approximation of p(h,t) (joint distribution of contexts and tags), is calculated by the

product of)(~ hp , the empirical distribution of histories h and the conditional distribution

)|()(),(
~

htphpthp ⋅≈ [Toutanova et. al, 2000].

Ontology Description Standard

In this section we present an overview of the and ontology description standard on which

the ontology disambiguation of the OntoNL relies; the OWL ontology definition

language.

The Web Ontology Language (OWL)

The Web Ontology Language (OWL) [McGuinness and Van Harmelen, 2004] is the

dominant standard in ontology definition. OWL has been developed according to the

description logics paradigm and uses RDF(S) [Brickley and Guha, 2004], [Manola and

Milles, 2004] syntax.

The Semantic Web is a vision for the future of the Web in which information is given

explicit meaning, making it easier for machines to automatically process and integrate

information available on the Web. The Semantic Web will build on XML's ability to

define customized tagging schemes and RDF's flexible approach to representing data. The

first level above RDF required for the Semantic Web is an ontology language what can

formally describe the meaning of terminology used in Web documents. If machines are

Chapter 2

 - 69 -

expected to perform useful reasoning tasks on these documents, the language must go

beyond the basic semantics of RDF Schema. The OWL Use Cases and Requirements

Document provides more details on ontologies, motivates the need for a Web Ontology

Language in terms of six use cases, and formulates design goals, requirements and

objectives for OWL.

 OWL has been designed to meet this need for a Web Ontology Language. OWL is

part of the growing stack of W3C recommendations related to the Semantic Web.

 XML provides a surface syntax for structured documents, but imposes no semantic

constraints on the meaning of these documents.

 XML Schema is a language for restricting the structure of XML documents and

also extends XML with datatypes.

 RDF is a datamodel for objects ("resources") and relations between them, provides

a simple semantics for this datamodel, and these datamodels can be represented in

an XML syntax.

 RDF Schema is a vocabulary for describing properties and classes of RDF

resources, with a semantics for generalization-hierarchies of such properties and

classes.

 OWL adds more vocabulary for describing properties and classes: among others,

relations between classes (e.g. disjointness), cardinality (e.g. "exactly one"),

equality, richer typing of properties, characteristics of properties (e.g. symmetry),

and enumerated classes.

Three OWL species of increasing descriptive power have been specified: OWL Lite,

OWL DL and OWL Full. The basic functionality provided by OWL is following:

 Import of XML Schema Datatypes, through the rdfs:Datatype construct, for

the representation of simple types that extend or restrict the basic datatypes (e.g.

ranges etc.).

Chapter 2

 - 70 -

 Definition of OWL Classes, using the owl:class construct, for the

representation of sets of individuals sharing some properties. Class hierarchies

may be defined using the rdfs:subClassOf construct.

 Definition of OWL properties, for the representation of the features of the OWL

class individuals. Two kinds of properties are provided by OWL: (a) Object

Properties, which relate individuals of one OWL class (the property domain) with

individuals of another OWL class (the property range). Object properties are

defined using the owl:objectProperty construct; and (b) Datatype

Properties, which relate individuals belonging to one OWL class (the domain of

the property) with values of a given datatype (the range of the property). Datatype

properties are defined using the owl:datatypeProperty construct.

Property hierarchies may be defined using the rdfs:subPropertyOf construct.

 Definition of class individuals.

 Definition of restrictions, using the owl:Restriction construct, including

type restrictions, cardinality restrictions and value restrictions.

The following OWL Lite features related to RDF Schema are included.

Class: A class defines a group of individuals that belong together because they share some

properties. For example, Deborah and Frank are both members of the class Person.

Classes can be organized in a specialization hierarchy using subClassOf. There is a built-

in most general class named Thing that is the class of all individuals and is a superclass of

all OWL classes. There is also a built-in most specific class named Nothing that is the

class that has no instances and a subclass of all OWL classes.

rdfs:subClassOf: Class hierarchies may be created by making one or more statements

that a class is a subclass of another class. For example, the class Person could be stated to

be a subclass of the class Mammal. From this a reasoner can deduce that if an individual is

a Person, then it is also a Mammal.

Chapter 2

 - 71 -

rdf:Property: Properties can be used to state relationships between individuals or from

individuals to data values. Examples of properties include hasChild, hasRelative,

hasSibling, and hasAge. The first three can be used to relate an instance of a class Person

to another instance of the class Person (and are thus occurences of ObjectProperty), and

the last (hasAge) can be used to relate an instance of the class Person to an instance of the

datatype Integer (and is thus an occurence of DatatypeProperty). Both owl:ObjectProperty

and owl:DatatypeProperty are subclasses of the RDF class rdf:Property.

rdfs:subPropertyOf: Property hierarchies may be created by making one or more

statements that a property is a subproperty of one or more other properties. For example,

hasSibling may be stated to be a subproperty of hasRelative. From this a reasoner can

deduce that if an individual is related to another by the hasSibling property, then it is also

related to the other by the hasRelative property.

rdfs:domain: A domain of a property limits the individuals to which the property can be

applied. If a property relates an individual to another individual, and the property has a

class as one of its domains, then the individual must belong to the class. For example, the

property hasChild may be stated to have the domain of Mammal. From this a reasoner can

deduce that if Frank hasChild Anna, then Frank must be a Mammal. Note that rdfs:domain

is called a global restriction since the restriction is stated on the property and not just on

the property when it is associated with a particular class. See the discussion below on

property restrictions for more information.

rdfs:range: The range of a property limits the individuals that the property may have as

its value. If a property relates an individual to another individual, and the property has a

class as its range, then the other individual must belong to the range class. For example,

the property hasChild may be stated to have the range of Mammal. From this a reasoner

can deduce that if Louise is related to Deborah by the hasChild property, (i.e., Deborah is

the child of Louise), then Deborah is a Mammal. Range is also a global restriction as is

domain above. Again, see the discussion below on local restrictions (e.g. AllValuesFrom)

for more information.

Chapter 2

 - 72 -

Individual : Individuals are instances of classes, and properties may be used to relate one

individual to another. For example, an individual named Deborah may be described as an

instance of the class Person and the property hasEmployer may be used to relate the

individual Deborah to the individual StanfordUniversity.

The following OWL Lite features are related to equality or inequality.

equivalentClass : Two classes may be stated to be equivalent. Equivalent classes have the

same instances. Class equivalence can be used to create synonymous classes. For

example, Car can be stated to be equivalentClass to Automobile. From this a reasoner can

deduce that any individual that is an instance of Car is also an instance of Automobile and

vice versa.

equivalentProperty: Two properties may be stated to be equivalent. Equivalent

properties relate one individual to the same set of other individuals. Property equivalenve

may be used to create synonymous properties. For example, hasLeader may be stated to

be the equivalentProperty to hasHead. From this a reasoner can deduce that if X is related

to Y by the property hasLeader, X is also related to Y by the property hasHead and vice

versa. A reasoner can also deduce that hasLeader is a subproperty of hasHead and

hasHead is a subProperty of hasLeader.

sameAs: Two individuals may be stated to be the same. These constructs may be used to

create a number of different names that refer to the same individual. For example, the

individual Deborah may be stated to be the same individual as DeborahMcGuinness.

differentFrom: An individual may be stated to be different from other individuals. For

example, the individual Frank may be stated to be different from the individuals Deborah

and Jim. Thus, if the individuals Frank and Deborah are both values for a property that is

stated to be functional (thus the property has at most one value), then there is a

contradiction. Explicitly stating that individuals are different can be important in when

using languages such as OWL (and RDF) that do not assume that individuals have one

and only one name. For example, with no additional information, a reasoner will not

deduce that Frank and Deborah refer to distinct individuals.

Chapter 2

 - 73 -

AllDifferent: A number of individuals may be stated to be mutually distinct in one

AllDifferent statement. For example, Frank, Deborah, and Jim could be stated to be

mutually distinct using the AllDifferent construct. Unlike the differentFrom statement

above, this would also enforce that Jim and Deborah are distinct (not just that Frank is

distinct from Deborah and Frank is distinct from Jim). The AllDifferent construct is

particularly useful when there are sets of distinct objects and when modelers are interested

in enforcing the unique names assumption within those sets of objects. It is used in

conjunction with distinctMembers to state that all members of a list are distinct and

pairwise disjoint.

There are special identifiers in OWL Lite that are used to provide information concerning

properties and their values. The distinction between ObjectProperty and DatatypeProperty

is mentioned above in the property description.

inverseOf: One property may be stated to be the inverse of another property. If the

property P1 is stated to be the inverse of the property P2, then if X is related to Y by the

P2 property, then Y is related to X by the P1 property. For example, if hasChild is the

inverse of hasParent and Deborah hasParent Louise, then a reasoner can deduce that

Louise hasChild Deborah.

TransitiveProperty: Properties may be stated to be transitive. If a property is transitive,

then if the pair (x,y) is an instance of the transitive property P, and the pair (y,z) is an

instance of P, then the pair (x,z) is also an instance of P. For example, if ancestor is stated

to be transitive, and if Sara is an ancestor of Louise (i.e., (Sara,Louise) is an instance of

the property ancestor) and Louise is an ancestor of Deborah (i.e., (Louise,Deborah) is an

instance of the property ancestor), then a reasoner can deduce that Sara is an ancestor of

Deborah (i.e., (Sara,Deborah) is an instance of the property ancestor). OWL Lite (and

OWL DL) impose the side condition that transitive properties (and their superproperties)

cannot have a maxCardinality 1 restriction. Without this side-condition, OWL Lite and

OWL DL would become undecidable languages. See the property axiom section of the

OWL Semantics and Abstract Syntax document for more information.

Chapter 2

 - 74 -

SymmetricProperty: Properties may be stated to be symmetric. If a property is

symmetric, then if the pair (x,y) is an instance of the symmetric property P, then the pair

(y,x) is also an instance of P. For example, friend may be stated to be a symmetric

property. Then a reasoner that is given that Frank is a friend of Deborah can deduce that

Deborah is a friend of Frank.

FunctionalProperty : Properties may be stated to have a unique value. If a property is a

FunctionalProperty, then it has no more than one value for each individual (it may have no

values for an individual). This characteristic has been referred to as having a unique

property. FunctionalProperty is shorthand for stating that the property's minimum

cardinality is zero and its maximum cardinality is 1. For example, hasPrimaryEmployer

may be stated to be a FunctionalProperty. From this a reasoner may deduce that no

individual may have more than one primary employer. This does not imply that every

Person must have at least one primary employer however.

InverseFunctionalProperty: Properties may be stated to be inverse functional. If a

property is inverse functional then the inverse of the property is functional. Thus the

inverse of the property has at most one value for each individual. This characteristic has

also been referred to as an unambiguous property. For example,

hasUSSocialSecurityNumber (a unique identifier for United States residents) may be

stated to be inverse functional (or unambiguous). The inverse of this property (which may

be referred to as isTheSocialSecurityNumberFor) has at most one value for any individual

in the class of social security numbers. Thus any one person's social security number is the

only value for their isTheSocialSecurityNumberFor property. From this a reasoner can

deduce that no two different individual instances of Person have the identical US Social

Security Number. Also, a reasoner can deduce that if two instances of Person have the

same social security number, then those two instances refer to the same individual.

OWL allows restrictions to be placed on how properties can be used by instances of a

class. These type are used within the context of an owl:Restriction. The owl:onProperty

element indicates the restricted property. The following two restrictions limit which

values can be used while the next section's restrictions limit how many values can be used.

Chapter 2

 - 75 -

allValuesFrom: The restriction allValuesFrom is stated on a property with respect to a

class. It means that this property on this particular class has a local range restriction

associated with it. Thus if an instance of the class is related by the property to a second

individual, then the second individual can be inferred to be an instance of the local range

restriction class. For example, the class Person may have a property called hasDaughter

restricted to have allValuesFrom the class Woman. This means that if an individual person

Louise is related by the property hasDaughter to the individual Deborah, then from this a

reasoner can deduce that Deborah is an instance of the class Woman. This restriction

allows the property hasDaughter to be used with other classes, such as the class Cat, and

have an appropriate value restriction associated with the use of the property on that class.

In this case, hasDaughter would have the local range restriction of Cat when associated

with the class Cat and would have the local range restriction Person when associated with

the class Person. Note that a reasoner can not deduce from an allValuesFrom restriction

alone that there actually is at least one value for the property.

someValuesFrom: The restriction someValuesFrom is stated on a property with respect

to a class. A particular class may have a restriction on a property that at least one value for

that property is of a certain type. For example, the class SemanticWebPaper may have a

someValuesFrom restriction on the hasKeyword property that states that some value for

the hasKeyword property should be an instance of the class SemanticWebTopic. This

allows for the option of having multiple keywords and as long as one or more is an

instance of the class SemanticWebTopic, then the paper would be consistent with the

someValuesFrom restriction. Unlike allValuesFrom, someValuesFrom does not restrict all

the values of the property to be instances of the same class. If myPaper is an instance of

the SemanticWebPaper class, then myPaper is related by the hasKeyword property to at

least one instance of the SemanticWebTopic class. Note that a reasoner can not deduce (as

it could with allValuesFrom restrictions) that all values of hasKeyword are instances of

the SemanticWebTopic class

OWL includes a limited form of cardinality restrictions. OWL cardinality restrictions are

referred to as local restrictions, since they are stated on properties with respect to a

particular class. That is, the restrictions constrain the cardinality of that property on

Chapter 2

 - 76 -

instances of that class. OWL Lite cardinality restrictions are limited because they only

allow statements concerning cardinalities of value 0 or 1 (they do not allow arbitrary

values for cardinality, as is the case in OWL DL and OWL Full).

minCardinality: Cardinality is stated on a property with respect to a particular class. If a

minCardinality of 1 is stated on a property with respect to a class, then any instance of that

class will be related to at least one individual by that property. This restriction is another

way of saying that the property is required to have a value for all instances of the class.

For example, the class Person would not have any minimum cardinality restrictions stated

on a hasOffspring property since not all persons have offspring. The class Parent, however

would have a minimum cardinality of 1 on the hasOffspring property. If a reasoner knows

that Louise is a Person, then nothing can be deduced about a minimum cardinality for her

hasOffspring property. Once it is discovered that Louise is an instance of Parent, then a

reasoner can deduce that Louise is related to at least one individual by the hasOffspring

property. From this information alone, a reasoner can not deduce any maximum number

of offspring for individual instances of the class parent. In OWL Lite the only minimum

cardinalities allowed are 0 or 1. A minimum cardinality of zero on a property just states

(in the absence of any more specific information) that the property is optional with respect

to a class. For example, the property hasOffspring may have a minimum cardinality of

zero on the class Person (while it is stated to have the more specific information of

minimum cardinality of one on the class Parent).

maxCardinality: Cardinality is stated on a property with respect to a particular class. If a

maxCardinality of 1 is stated on a property with respect to a class, then any instance of

that class will be related to at most one individual by that property. A maxCardinality 1

restriction is sometimes called a functional or unique property. For example, the property

hasRegisteredVotingState on the class UnitedStatesCitizens may have a maximum

cardinality of one (because people are only allowed to vote in only one state). From this a

reasoner can deduce that individual instances of the class USCitizens may not be related

to two or more distinct individuals through the hasRegisteredVotingState property. From a

maximum cardinality one restriction alone, a reasoner can not deduce a minimum

cardinality of 1. It may be useful to state that certain classes have no values for a

Chapter 2

 - 77 -

particular property. For example, instances of the class UnmarriedPerson should not be

related to any individuals by the property hasSpouse. This situation is represented by a

maximum cardinality of zero on the hasSpouse property on the class UnmarriedPerson.

cardinality: Cardinality is provided as a convenience when it is useful to state that a

property on a class has both minCardinality 0 and maxCardinality 0 or both

minCardinality 1 and maxCardinality 1. For example, the class Person has exactly one

value for the property hasBirthMother. From this a reasoner can deduce that no two

distinct individual instances of the class Mother may be values for the hasBirthMother

property of the same person.

Alternate namings for these restricted forms of cardinality were discussed. Current

recommendations are to include any such names in a front end system.

OWL Lite contains an intersection constructor but limits its usage.

intersectionOf: OWL Lite allows intersections of named classes and restrictions. For

example, the class EmployedPerson can be described as the intersectionOf Person and

EmployedThings (which could be defined as things that have a minimum cardinality of 1

on the hasEmployer property). From this a reasoner may deduce that any particular

EmployedPerson has at least one employer.

Both OWL DL and OWL Full use the same vocabulary although OWL DL is subject to

some restrictions. Roughly, OWL DL requires type separation (a class can not also be an

individual or property, a property can not also be an individual or class). This implies that

restrictions cannot be applied to the language elements of OWL itself (something that is

allowed in OWL Full). Furthermore, OWL DL requires that properties are either

ObjectProperties or DatatypeProperties: DatatypeProperties are relations between

instances of classes and RDF literals and XML Schema datatypes, while ObjectProperties

are relations between instances of two classes. The OWL Semantics and Abstract Syntax

document explains the distinctions and limitations. We describe the OWL DL and OWL

Full vocabulary that extends the constructions of OWL Lite below.

Chapter 2

 - 78 -

oneOf: (enumerated classes): Classes can be described by enumeration of the individuals

that make up the class. The members of the class are exactly the set of enumerated

individuals; no more, no less. For example, the class of daysOfTheWeek can be described

by simply enumerating the individuals Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday. From this a reasoner can deduce the maximum cardinality (7) of any

property that has daysOfTheWeek as its allValuesFrom restriction.

hasValue: (property values): A property can be required to have a certain individual as a

value (also sometimes referred to as property values). For example, instances of the class

of dutchCitizens can be characterized as those people that have theNetherlands as a value

of their nationality. (The nationality value, theNetherlands, is an instance of the class of

Nationalities).

disjointWith: Classes may be stated to be disjoint from each other. For example, Man and

Woman can be stated to be disjoint classes. From this disjointWith statement, a reasoner

can deduce an inconsistency when an individual is stated to be an instance of both and

similarly a reasoner can deduce that if A is an instance of Man, then A is not an instance

of Woman.

unionOf, complementOf, intersectionOf (Boolean combinations): OWL DL and OWL

Full allow arbitrary Boolean combinations of classes and restrictions: unionOf,

complementOf, and intersectionOf. For example, using unionOf, we can state that a class

contains things that are either USCitizens or DutchCitizens. Using complementOf, we

could state that children are not SeniorCitizens. (i.e. the class Children is a subclass of the

complement of SeniorCitizens). Citizenship of the European Union could be described as

the union of the citizenship of all member states.

minCardinality, maxCardinality, cardinality (full cardinality): While in OWL Lite,

cardinalities are restricted to at least, at most or exactly 1 or 0, full OWL allows

cardinality statements for arbitrary non-negative integers. For example the class of DINKs

("Dual Income, No Kids") would restrict the cardinality of the property hasIncome to a

minimum cardinality of two (while the property hasChild would have to be restricted to

cardinality 0).

Chapter 2

 - 79 -

complex classes : In many constructs, OWL Lite restricts the syntax to single class names

(e.g. in subClassOf or equivalentClass statements). OWL Full extends this restriction to

allow arbitrarily complex class descriptions, consisting of enumerated classes, property

restrictions, and Boolean combinations. Also, OWL Full allows classes to be used as

instances (and OWL DL and OWL Lite do not).

RDF Query Languages

Someone may ask why not SQL or XML. Query languages are typically designed to be

applied to data corresponding to a particular data model. For example, SQL is used to

retrieve, create, modify, and delete data represented in (a variation of) the relational model

of data. Similarly, XQuery is used to locate and retrieve (but not yet update) data that is

represented in the XPath data model, XDM [XDM]. It is sometimes possible to use one

language to query data represented in a data model other than that for which the language

was designed. This may be accomplished by mapping the data from its native data model

into the query language’s data model, but the question then would be at what cost.

Each of these data models and corresponding query languages has advantages and

disadvantages. SQL and the relational model are well designed to represent highly

structured data such as that used by many business processes. Such data usually includes a

value for every column of every table. SQL, but not the pure relational model supports a

special value—called the null value—to represent data that is missing, unknown, or

inapplicable. The possibility of null values complicates the definition of and queries

written in the SQL language, which makes SQL a bit awkward for use in dealing with less

structured information. The syntax of the SQL language focuses on identifying data for

which most or all components are available and combining data based on the values of

those components. In particular, combining data from two or more tables is specified by

explicit SQL operators such as JOIN or UNION.

XPath, XQuery, and the XPath Data Model are all directed at support of less regular data.

These languages and their data model function well when presented with data in which

Chapter 2

 - 80 -

most or all of the values are present, but they also function well when applied to data in

which many values are not represented at all. Such data, often called “semi-structured

data”, is quite common in the XML tree-structured world in which elements and attributes

may be optional and omitted entirely from instance data. It has been argued that the XPath

Data Model represents a superset of, and could thus supercede, the relational model.

Based on [Melton, 2006] that conclusion is rejected because of the inherent overhead

required by the XPath Data Model to self-identify each piece of data versus SQL’s regular

structures. That is, each datum in an SQL table takes its “name” from the name of the

column in which it appears, while the XPath Data Model requires that the name of each

datum be given explicitly—on every instance—as the name of the element or attribute of

which it is the value. XQuery syntax is optimized for building new XML documents from

one or more inherently semi-structured XML documents, easily accommodating the

complete absence of some data. Combining data from two or more (source) XML

documents is specified through the use of explicit operators such as a comma in a for

expression or the keyword union.

To which of these camps does RDF belong? Every RDF triple comprises a subject, a

predicate (or property), and an object, which—even though the subject or the object may

not be explicit (that is, they may be represented by “blank nodes”) in some triples—

implies that RDF is structured data. However, RDF defines a graph-based or network data

model, which—like tree-based data models such as XML—readily manages the concept

of optional data. In fact, [RDF] states that “it is not assumed that complete information

about any resource is available”. The conclusion based on [Melton, 2006] is that the RDF

model is structured in the same sense that the relational model is: every provided

assertion—SQL row or RDF triple—is complete (with the occasional missing datum

represented by an SQL null value or an RDF blank node), but there may be assertions

missing from the table or graph.

Surely, they say, those “reasoning engines” that operate on RDF and OWL constructs

could just as easily operate on them in the context of a relational database as in a new kind

of collection manager. In that case, why wouldn’t SQL be the language of choice for

answering questions before and after those engines have done their jobs?

Chapter 2

 - 81 -

In the question why RDF isn’t, or shouldn’t be, stored in a relational database and then

queried using SQL, a good answer is this: SPARQL syntax makes virtually all join

operations implicit, while SQL syntax usually makes them explicit. A consequence of this

design decision is that the SQL expressions to answer typical questions that will be asked

against RDF collections tend to be much larger and somewhat more difficult to create

because of the need to write explicit join operations and the requisite explicit join

conditions. Because typical questions asked of RDF involve several, sometimes many,

join operations, SPARQL provides a more compact notation that is perhaps easier to get

right with less debugging time spent.

In the question why XQuery isn’t more appropriate, since RDF is typically serialized as

XML, the response is similar: the number of explicit join operations in for clauses and the

number of join conditions required in the where clauses probably makes the XQuery

expressions more tedious to write and to debug than the corresponding SPARQL queries.

SPARQL follows this well-trodden path, offering a simple, reasonably familiar (to SQL

users) SELECT query form andbuilds on previous RDF query languages such as rdfDB

(http://www.guha.com/rdfdb/), RDQL, and SeRQL

(http://www.openrdf.org/doc/sesame/users/ch06.html), and has several valuable new

features of its own. A key aspect of the Semantic Web idea is the ability to extract and

query information held across many different ad hoc, third-party apps, services, or

repositories. That ability to move in and among various data sources is key to the

Semantic Web idea of the mash up. SPARQL, which is both a query language and a data

access protocol, has the ability to become a key component in the Semantic Web

applications: as a standard backed by a flexible data model, it can provide a common

query mechanism for all the Semantic Web applications. We choose SPARQL as the

query language to represent the natural language queries after the syntactic and semantic

disambiguation since SPARQL is defined in terms of the W3C's RDF data model and will

work for any data source that can be mapped into RDF.

The 14 June 2007 draft, along with the other working drafts for SPARQL, are a Candidate

Recommendation in W3C; it been widely reviewed and satisfies the requirements

documented in RDF Data Access Use Cases and Requirements.

Chapter 2

 - 82 -

For the above reasons as well as because our work emphasizes on semantic access to

information systems and gets input OWL domain ontologies we have chosen SPARQL to

be the query language of the OntoNL Framework.

SPARQL Syntax

The SPARQL is a query language for getting information from such RDF graphs. It

provides facilities to:

• extract information in the form of URIs, blank nodes, plain and typed literals.

• extract RDF subgraphs.

• construct new RDF graphs based on information in the queried graphs.

 A SPARQL query is a tuple (GP, DS, SM, R) where:

• GP is a graph pattern

• DS is an RDF Dataset

• SM is a set of solution modifiers

• R is a result form

The graph pattern of a query is called the query pattern.

A Graph Pattern is one of:

• Basic Graph Pattern, where a set of triple patterns must match

• Group Graph Pattern, where a set of graph patterns must all match using the

same variable substitution

• Value Constraints, which restrict RDF terms in a solution

• Optional Graph Pattern, where additional patterns may extend the solution

• Alternative, where two or more possible patterns are tried

• Patterns on Named Graphs, where patterns are matched against named graphs

An RDF Dataset is a set:

Chapter 2

 - 83 -

{ G, (<u1>, G1), (<u2>, G2), . . . (<un>, Gn) }.

where G and each Gi are graphs, and each <ui> is an IRI. Each <ui> is distinct. G is called

the default graph. (<ui>, Gi) are called named graphs. There may be no named graphs.

A Solution Sequence Modifier is one of:

• Projection modifier

• Distinct modifier

• Order modifier

• Limit modifier

• Offset modifier

The Result Form of a query is one of

• SELECT - Returns all, or a subset of, the variables bound in a query pattern match

• CONSTRUCT - Returns an RDF graph constructed by substituting variables in a

set of triple templates

• DESCRIBE - Returns an RDF graph that describes the resources found

• ASK - Returns a boolean indicating whether a query pattern matches or not

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?title

WHERE { <http://example.org/book/book1> dc:title ?title }

Starting from the top we encounter the PREFIX keyword. PREFIX is essentially the

SPARQL equivalent of declaring an XML namespace: it associates a short label with a

specific URI. And, just like a namespace declaration, the label applied carries no

particular meaning. It's just a label. A query can include any number of PREFIX

statements. The label assigned to a URI can be used anywhere in a query in place of the

URI itself; for example, within a triple pattern. Prefixes are syntactic: the prefix name

does not affect the query, nor do prefix names in queries need to be the same prefixes as

used in a serialization of the data.

Chapter 2

 - 84 -

In addition to the SELECT queries used in this article, SPARQL supports three other

query types. ASK simply returns "yes" if the query's graph pattern has any matches in the

dataset, and "no" if it does not. DESCRIBE returns a graph containing information related

to the nodes matched in the graph pattern. For instance, DESCRIBE ?person WHERE {

?person foaf:name "Jon Foobar" } would return a graph containing triples from the model

about Jon Foobar. Finally, CONSTRUCT is used to output a graph pattern for each query

solution. This allows a new RDF graph to be created directly from the results of the query.

You can think of a CONSTRUCT query on an RDF graph as somewhat analogous to an

XSL transformation of XML data.

SPARQL FILTERs restrict the set of solutions according to a given expression.

Specifically, FILTERs eliminate any solutions that, when substituted into the expression,

result in either an effective boolean value of false or produce an error.

SPARQL provides a subset of the functions and operators defined by XQuery Operator

Mapping. The following rules accommodate the differences in the data and execution

models between XQuery and SPARQL:

• Unlike XPath/XQuery, SPARQL functions do not process node sequences. When

interpreting the semantics of XPath functions, assume that each argument is a

sequence of a single node.

• Functions invoked with an argument of the wrong type (except xsd:boolean) will

produce a type error.

• Any expression other than logical or (||) or logical and (&&) that encounters an

error will produce that error.

• A logical or that encounters an error on only one branch will return TRUE if the

other branch is TRUE and an error if the other branch is FALSE.

• A logical and that encounters an error on only one branch will return an error if the

other branch is TRUE and FALSE if the other branch is FALSE.

Chapter 2

 - 85 -

• A logical or or logical and that encounters errors on both branches will produce

either of the errors.

 - 86 -

Chapter 3

The OntoNL Framework

In this thesis we describe a software engineering framework that aims to automate as

much as possible the construction of natural language interfaces to knowledge

repositories. Our purpose is to provide reusable generic methodologies and software that

will facilitate the generation of natural language interfaces for the interaction of the users

with the knowledge repository. Since natural language interactions may involve

ambiguities, our emphasis is in trying to reduce the ambiguities as much as possible. We

are building a system that supports this architectural framework.

The visual representation of the framework is shown in the following figure.

Figure 3: The OntoNL Framework

Chapter 3

 - 87 -

In figure 3 we see the two steps of interaction using the OntoNL system,described by a

model architecture with additional information, the components of software that comprise

the framework modules. We are now going to provide short descriptions of the

components and then their interaction.

Natural Language Processing Component

The Natural Language Processing Component provides the mechanisms for inserting a

user query either from different front-ends either from a system that received in some way

natural language etc., and concludes to disambiguated queries based on the OWL

ontological structures it used for the disambiguation. It consists of five sub-components

that are responsible for parsing the natural language expression and after that to

syntactically and semantically disambiguate it in a particular domain. Each time, the

domain is defined by a particular ontology, as shown in figure 1.

The Natural Language Processing Component is comprised by a component responsible

for the linguistic analysis of a user expression in English (Linguistic Analyzer), a

component for the semantic disambiguation based on the application’s domain (Semantic

Disambiguator), a component for the processing of the ontological structures and

semantics (Ontologies Processor) and a component for the reformulation of the

disambiguated user expression to a query language (Query Reformulator).

The linguistic analysis component is responsible for the production of a language model

with information concerning the syntax and the semantics of the components of an

utterance in the domain of English language. Name semantics are captured by part-of-

speech tagging, meaningless word filtering, synonym and sense discovery by using a

thesaurus, noun compound bracketing mechanisms enhanced with information that comes

from the ontologies and grammatical relationship annotation for capturing the role of each

word grammatically inside the user utterance.

Chapter 3

 - 88 -

The semantic disambiguation architecture is based on the information retrieved from the

ontology that defines the domain. It follows a procedure consisting of different

manipulation of the ontology based on different levels of ambiguity.

The semantic similarity clustering of the ontologies, which is a responsibility of the

Ontologies Processor, that describe a domain is based on a methodology for weighting.

The methodology takes advantage of the rich semantic information that can be extracted

from OWL ontologies, and classic measures for measuring the strength of the relation

between concepts in a graph. The Ontologies Processor has also the role to bridge the gap

between the terminology used by programmers of the ontology and the natural language,

by using mechanisms as word tokenization and abbreviation expansion.

The procedure for dealing with ambiguities has different mechanisms that refer to the

degree and type of disambiguation. Three examples of disambiguation follow:

 Request Type 1

o “players of soccer team Barcelona”

 Request Type 2

o “players of Barcelona” (Barcelona = city, soccer team, etc.)

 Request Type 3

o “mvp of Barcelona versus Real” (mvp = ?, Barcelona = city?, soccer team?

.., Real = soccer team?, person? ..)

In the request type 1, ambiguities can be resolved by using knowledge from the reference

domain ontology. Words like “players” and “soccer team” can be found as concepts in the

ontology.

 In the request type 2 there is a greater value of ambiguity since we cannot assign the

keyword “Barcelona” to any concept. The way of dealing with such an ambiguity,

requires a more systematic way of searching for specific and strongly related clusters of

context inside the ontology to make more domain specific the disambiguation.

Chapter 3

 - 89 -

In the request type 3 we are dealing with the fact that the response contains words that are

either concept instances or simple words without knowing the concept they refer to

(information that was not retrieved from the the ontology). In this difficult case we cannot

help the disambiguation processs.

To summarize the interactions concerning the OntoNL framework:

The NLP Component receives a natural language expression. It communicates with the

WordNet ontology that helps the syntactic disambiguation. After completing the syntactic

disambiguation it consults the ontological structures and the relatedness weight values

extracted from the processing of the ontology for the semantic disambiguation. Finally, it

constructs queries in an ontology query language with the disambiguated information.

Summary

In this chapter we introduced the OntoNL Framework by showing the basic software

components and how they are interacting. In the two following chapters we are going to

present the two basic models of the framework; the model for the syntactic and the model

for the semantic disambiguation of the natural language user input.

 - 90 -

Chapter 4

Syntactic Disambiguation in OntoNL

Ascertaining what is intended in a text when more than one interpretation is possible has

always been a central issue in natural language processing: ambiguity resolution is

required whenever the system must choose among two or more distinct representations of

the input. Ambiguity pervades virtually all aspects of language analysis, and sentence

analysis in particular exhibits a large number of syntactic, semantic, and pragmatic

ambiguities that demand adequate resolution before the sentence can be understood. The

OntoNL framework is designed to acquire solutions to all lexical and structural ambiguity

problems encountered during sentence analysis.

For the needs of the sentence analysis, we have created a software component, the

linguistic analyzer that follows a procedure with mechanisms for the syntactic

disambiguation on the user’s utterance. The mechanisms concern the part-of-speech

tagging procedure, the noun compound bracketing procedure, the grammatical relation

annotation, the sense and synonyms discovery procedure that conclude to a language

model that describes the structure of the utterance after the syntactic analysis.

In the special occasion where the OntoNL is applied in a question answering system the

sentences that a user uses are requests or questions (Wh-questions; questions that start

with the words What, Where, Why, Which, When or How). Requests do not contain the

actual information to address the knowledge repository in the subject of the sentence, but

in one or more dependent clauses that complement the independent clause to a complex

sentence. For example, in a domain concerning football, a user query could be:

 I want you to find me the players that scored for Barcelona in the last two football

games that used to play for Milan.

Chapter 4

 - 91 -

In this case, the actual ‘subject’ of the request is not the one in the independent clause ‘I

want you to find me the players…’, but the object of the independent clause is actually the

‘subject’ of interest of the user’s request (‘players’). We need, therefore to identify what

the user asks the system and the complements-constraints that (s)he gives for this

‘subject’.

In the next sub-sections we describe the mechanisms that the parser uses to disambiguate

syntactically and semantically English language interactions with the knowledge

repositories.

The OntoNL Request Conversion Mechanism

For the request conversion mechanism, there is an effort to eliminate the first words that a

request or a question may have because, the words that do not contain semantics for the

retrieval of information from a repository. We distinguish 3 different types of requests and

questions in which we have a different approach when dealing with the information of the

utterance:

a. Requests for metadata (ex. Show me the goals scored in the game between Italy

and France)

b. WH-questions (ex. What was the score in the game between Italy and France?)

In the literature we find that the wh-questions testify the subject of the request

according to the type of input. We present in what follows the semantics of request of

each different type of wh-question.

When?
Where?
Who?
Why?
How?
What?

Which (one)?
Whose?
Whom?

Time
Place

Person
Reason
Manner

Object/Idea/Action
Choice of alternatives

Possession
Person (objective formal)

Chapter 4

 - 92 -

How much?
How many?
How long?
How often?
How far?

What kind (of)?

Price, amount (non-count)
Quantity (count)

Duration
Frequency
Distance

Description

c. Yes/No questions (ex. Were there any goals in the game between Italy and

France?)

In the input conversion mechanism we identify the type of the input and we use an

indicator to distinguish the three different types. After the conversion, the input becomes:

1. the goals scored in the game between Italy and France

2. the score in the game between Italy and France

3. any goals in the game between Italy and France

The grammatical dependencies (subject, object, verb, complements) of those converted

sentences have the semantics that we retrieve by interacting with the application-domain

ontology. This information enhances the OntoNL Language Model.

The OntoNL Part-Of-Speech Tagger

The tagset that OntoNL used for the representation of the part-of-speech tags was a subset

of the Penn Treebank Tagset (table 1).

1 Coordinating conjunction CC
2 Cardinal number CD
3 Determiner DT
4 Existential there EX
5 Foreign word FW

6
Preposition or subordinating
conjunction IN

7 Adjective JJ
8 Adjective, comparative JJR
9 Adjective, superlative JJS

10 List item marker LS
11 Modal MD

Chapter 4

 - 93 -

12 Noun, singular or mass NN
13 Noun, plural NNS
14 Proper noun, singular NNP
15 Proper noun, plural NPS
16 Predeterminer PDT
17 Possessive ending POS
18 Personal pronoun PP
19 Possessive pronoun PP$
20 Adverb RB
21 Adverb, comparative RBR
22 Adverb, superlative RBS
23 Particle RP
24 Symbol SYM
25 to TO
26 Interjection UH
27 Verb, base form VB
28 Verb, phrase VP
29 Verb, past tense VBD
30 Verb, gerund or present participle VBG
31 Verb, past participle VBN
32 Verb, non-3rd person singular present VBP
33 Verb, 3rd person singular present VBZ
34 Wh-determiner WDT
35 Wh-pronoun WP
36 Possessive wh-pronoun WP$
37 Wh-adverb WRB
38 Wh-Noun Phrase WHNP

Table 1: The Penn Treebank Tagset

For the OntoNL part of speech tagging procedure we used the Stanford Log-Linear Part-

Of-Speech Tagger (http://nlp.stanford.edu/software/tagger.shtml) with the tagset defined

in table 1. An example of the results coming from the POS-tagger for a request of a user is

shown in Figure 4. In Figure 5 there is an interpretation for the system of the core

information coming from user request. We isolate the object part of the user request and

transformed it in a new sentence with a subject and a verb phrase. The examples show that

for better results we must isolate and translate the user request to a simple sentence and

then try to find any grammatical relations in it.

Chapter 4

 - 94 -

NP Noun Phrase
VP Verb Phrase
PRP Personal

Pronoun
VBP Non-3rd person

singular present
tense verb

DT Determiner
NNS Plural Noun
VB Verb Base form
WHNP Wh-Noun

Phrase
WDT Wh-Determiner
VBD Verb, Past

Tense
IN Preposition
JJ Adjective
CD Cardinal

Number
NN Singular Noun
NNP Singular Proper

Noun
Figure 4: The result of the POS – Tagging [http://nlp.stanford.edu/software/tagger.shtml] procedure for the

sentence ‘I want to find the players that scored for Milan in the last two football games’

NP Noun Phrase
VP Verb Phrase
PRP Personal Pronoun
VBP Non-3rd person singular present tense

verb
DT Determiner

NNS Plural Noun
VB Verb Base form
VB
D

Verb, Past Tense

IN Preposition
JJ Adjective

CD Cardinal Number
NN Singular Noun
PP Prepositional Phrase

Figure 5: The result of the POS – Tagging [http://nlp.stanford.edu/software/tagger.shtml] procedure for the
sentence the players scored for Milan in the last two football games’

The OntoNL Noun Compound Analyzer

During the process of parsing natural language expressions, there are many linguistic

matters that must be taken into account. For instance, parsing noun compounds (NCs)

requires detailed world knowledge that is unavailable outside a limited domain [Sparck

Chapter 4

 - 95 -

Jones, 1983]. There are many corpus-based algorithms (at least four) proposed for

syntactically analyzing noun compounds. Three of the algorithms use the adjacency model

and the fourth algorithm uses the dependency model [Lauer, 1995]. The procedure that the

adjacency model follows it is reproduced here for reference [Marcus, 1980]:

 Given three nouns n1, n2 and n3:

 if either [n1 n2] or [n2 n3] is not semantically acceptable then build the alternative

structure;

 otherwise, if [n2 n3] is semantically preferable to [n1 n2] then build [n2 n3].

 otherwise, build [n1 n2].

The dependency model utilizes the following procedure when given three nouns n1, n2 and

n3:

 determine how acceptable the structures [n1 n2] and [n1 n3] are;

 if the latter is more acceptable, build [n1 n3] first;

 otherwise, build [n1 n2] first.

Adjacency and dependency models examine the left or right bracketing in a 3-word noun

compound, as for example ‘[[soccer team] shirt]’. A well known work on automated

unsupervised NC bracketing is that of Lauer [Lauer, 1995] who introduces the

probabilistic dependency model for the syntactic disambiguation of NCs and argues

against the adjacency model [Marcus, 1980], [Pustejovsky et al., 1993] [Resnik, 1993].

Recent experimental results along with experiments done in the OntoNL environment

show that the dependency model performs better (see chapter 7).

Recent research on the field of noun compound bracketing [Keller and Lapata, 2003],

[Nakov and Hearst, 2005] uses of the Web search engines for measuring page hits for

more accurate results. However, the use of Web search engines can impose limitations,

because of the lack of linguistic annotation, such as the use of a word as a particular part-

of-speech (noun compound refers to nouns, but there are nouns that can be found as verbs

in documents, also) and the ignorance of punctuation characters, hyphens and possessive

markers.

Chapter 4

 - 96 -

The problem with applying lexical association to noun compounds is the enormous number

of parameters required one for every possible pair of nouns. This leads to the need of a vast

amount of memory space and to the severe data sparseness problem. Resnik [Resnik, 1993]

introduced the term conceptual association to refer to association values computed between

groups of words. So, by having words organized in groups with similar behavior, the

parameter space can be built in terms of the groups. Resnik computed the groups of words

by calculating a measure of association using the classes to which the direct object and

object of the preposition belong, and by selecting the attachment site for which the evidence

of association was strongest. The use of classes introduced two sources of ambiguity. The

first was word sense ambiguity: just as lexically based methods conflate multiple senses of a

word into the count of a single token, each word may be mapped to many different classes

in the WordNet taxonomy. Second, even for a single sense, a word may be classified at

many levels of abstraction -- for example, even interpreted solely as a physical object (ratber

than a monetary unit), penny may be categorized as a (coin, 3566679), (cash,3566144),

(money, 3565439), and so forth on up to (possession, 11572) [Resnik and Hearst, 1993].

In OntoNL when dealing with noun compounds we first use a method to expand n-grams

into all morphological forms by using morphological tools [Minnen, et. al., 2001]. For

example, if we have a bigram ‘player scores’, then we create a list of all possible forms:

‘player scores’, ‘player score’, ‘players score’, etc. Also, based on the successful

performance of the dependency model over the adjacency [Lauer, 1995] we adopt the use

of it.

In OntoNL, conceptual association is used with groups consisting of all categories from

the Roget's II: The New Thesaurus (http://www.bartleby.com/62/) (254 categories). Given

two categories t1 and t2 there is a parameter P(t1 → t2) that represents the degree of

acceptability of the structure [n1 n2] where n1 is a noun appearing in t1 and n2 appears in t2.

The event t1 → t2 declares the modification of a noun in t2 by a noun in t1.

In OntoNL we used a window to collect training instances by observing how often a pair

of nouns co-occurs within some fixed number of words. For window size 2n ≥ , let

Chapter 4

 - 97 -

1 2(,)ncount n n be the number of times a sequence n1w1…win2 occurs in the training corpus

where 2−≤ ni . The estimates are:

1 1 2 2

1 2 2

1 2
1 2

1 2 , 1 2

, 1 2

(,)1P() (,) () ()
(,)

n

n w t w t

w N w t

count w wt t count w w amb w amb w
amb w w

∈ ∈

∈ ∈

→ = ∑
∑

where amb(w) counts the number of categories w appears and N is a set of words that can

only be used as nouns. The amb(w) has the effect of dividing the evidence from a training

instance across all possible categories for the words. The first parameter of the

multiplication is used to ensure that the parameters for a head noun sum to unity. After the

calculation of the estimates, we continue by trying to make a right choice of all possible

analyses for three word compounds, which are the counting of a right or a left branching

analysis. If the ratio is >1 then we conclude to a left-branching analysis. If it is <1 then a

right branching analysis is chosen. If it is =1, the OntoNL analyzer, based on Lauer

(Lauer, 1995) guesses left-branching, a rare case for conceptual association based on

experimental results.

So, for the dependency model and a given compound of w1, w2, w3 the estimation of the

ratio is done by applying the equation

()

()∑
∑

∈

∈

→→

→→
=

)(
3231

)(
3221

)(

)(

ii

ii

wcatst

wcatst
dep ttPttP

ttPttP
R

where t1, t2 and t3 are conceptual categories in a taxonomy or thesaurus, and the nouns

w1,…,wn are members of these categories. For a correct result we must sum over all

possible categories for the words in the compound. In any case, the estimation of

probabilities over concepts reduces the number of model parameters.

The innovation in this work is the training set of the noun compound bracketing

procedure. The corpus is provided by the domain ontologies the OntoNL uses for

disambiguation and it consists of the concept names that are compound nouns, after the

abbreviation expansion and the tokenization process that will be described in Chapter 5,

Chapter 4

 - 98 -

their synonyms from the WordNet, the <owl:label> content and the <owl:comment>

content that are the tags were the ontology developer can specify in more details the

semantics of the concept that is described. This may lead to the conclusion that the

training set is very limited in comparison to a linguistic corpus, but it is more specific to

the needs of the application. We are interested in the particular needs of the user based on

a specific domain. By combining the use of domain ontologies as the training corpus we

maintain all the information. Since we use the noun compound bracketing methodology to

be more accurate when dealing with the user request’s ambiguities we use as a test set the

noun compounds that are may appear in the exact user request and as a training corpus the

total of domain ontologies used. The results of the proposed methodology for the noun

compound bracketing will be presented in Chapter 7.

In the case were the domain ontologies do not include descriptions we cannot train the

OntoNL noun compound bracketing module and what we do is to search into the domain

ontological structures for all the expanded n-grams to find a match.

The procedure of the noun compound bracketing is useful in determining correctly the

grammatical relationships that structure the language model. We tested the correctness of

the OntoNL Syntactic Disambiguation without dealing compound nouns and the

annotation was wrong especially when the system tried to locate grammatical

dependencies of the object to the subject.

The OntoNL Grammatical Relations Analyzer

Grammatical relationships are an important aspect of natural language processing. One of

the main goals of an interpreter is to map the syntactic descriptions found in the sentence

into the correct roles that the elements, described by the nominals (a word or a group of

words that functions as a noun, i.e. a word or a group of words that can stand at the head

of a noun phrase), play in the situation at hand (described by the verb). We describe a

model for automatically extracting typed dependency parses of English sentences from

phrase structure parses. Typed dependencies and phrase structures are different ways of

Chapter 4

 - 99 -

representing the structure of sentences: while a phrase structure parse represents nesting of

multi-word constituents, a typed dependency parse represents dependencies between

individual words. A typed dependency parse additionally labels dependencies with

grammatical relations, such as subject or indirect object. For example the sentence I saw a

cat becomes:

I

saw

a

catnsubj

dobj

det

There has been much linguistic discussion of the two formalisms. There are formal

isomorphisms between certain structures, such as between dependency grammars and one

bar-level, headed phrase structure grammars [Miller, 2000].

In more complex theories there is significant debate: dominant Chomskyan theories

[Chomsky, 1981] have defined grammatical relations as configurations at phrase structure,

while other theories such as Lexical-Functional Grammar has rejected the adequacy of

such an approach [Bresnan, 2001].

Recent years have seen the introduction of a number of treebank-trained (treebanks are

language resources that provide annotations of natural languages - the main point with

treebanks are that that they consist of tree representations of entities in language)

statistical parsers (Collins [Collins, 1999], Charniak [Charniak, 2000], Stanford [Klein

and Manning, 2003]) capable of generating parses with high accuracy.

The original treebanks, in particular the Penn Treebank (The Penn Treebank Project

annotates naturally-occuring text for linguistic structure)

(http://www.cis.upenn.edu/~treebank/), were for English, and provided only phrase

structure trees, and hence this is the native output format of these parsers.

At the same time, there has been increasing interest in using dependency parses for a

range of NLP tasks, from machine translation to question answering. Such applications

benefit particularly from having access to dependencies between words typed with

grammatical relations, since these provide information about predicate-argument structure

Chapter 4

 - 100 -

which are not readily available from phrase structure parses. Perhaps partly as a

consequence of this, several more recent treebanks have adopted dependency

representation as their primary annotation format, even if a conversion to a phrase

structure tree form is also provided.

Grammatical relationships will help to create an appropriate language model that will lead

the system to retrieve the right data from the repository. They are the semantic basis for

the information extraction role of the system. It can further help in conducting proper

answers filled with repository data to present to the user.

Concentrating on those elements that are normally obligatory and based on the book A

University Grammar of English [Quirk et. al, 1973], we can usefully distinguish eight

general clause types:

 S – V Subject – Verb

 S – V – SC Subject – Verb – Subject Complement

 S – V – DO Subject – Verb – Direct Object

 S – V – O – Adv Subject – Verb – Object – Adverb

 S – V – DO – OC Subject – Verb – Direct Object – Object Complement

 S – V – IO – DO Subject – Verb – Indirect Object – Direct Object

 S – V – Adj Subject – Verb – Adjective

 S – V – Adv Subject – Verb – Adverb

where:

Subject of a sentence is that noun, pronoun, or phrase or clause about which the sentence

makes a statement.

Verb phrase or main verb of a sentence is a word or words that express an action, event,

or a state of existence. It sets up a relationship between the subject and the rest of the

sentence.

Subject complement is that noun, pronoun, adjective, phrase, or clause that comes after a

linking verb (some form of the be verb)

Direct object is a noun, pronoun, phrase or clause acting as a noun and takes the action of

the main verb. A direct object can be identified by putting what?, which? or whom? in its

place.

Chapter 4

 - 101 -

Indirect object is a noun, pronoun, phrase or clause acting as a noun and receives the

action expressed in the sentence. It can be identified by inserting to or for.

Object complement is a noun or a adjective coming after a direct object and adds detail

to the direct object. It can be identified by inserting [to be] between the direct and the

object complement.

The grammar of English is comprised by a large set of rules that is difficult to model. For

the needs of the OntoNL Framework we modeled and completely defined a subset of

those rules that concern specific grammatical types that are presented in table 2. Our main

goal was to create an annotation scheme for locating grammatical relations from scratch

and not use a scheme from literature. The reason for that was that the grammatical relation

definition in OntoNL has the goal to help the disambiguation of the user expression and

not to consume the design phase in orded to provide a complicated model for

computational linguistics that would give us extra complex and in the end useless

information for our cause.

For the definition of grammatical relations, the goal of the OntoNL Framework is more

practical than following a Chomskyan theory or a Lexical-Functional Grammar as they

were presented earlier, though in essence we are following an approach where structural

configurations are used to define grammatical roles.

We used as a starting point the set of grammatical relations defined in (Carroll et al., 1999).

The motivation for the creation of a new annotation scheme for locating grammatical

relations was that while the backbone of the hierarchy is quite similar to that in (Carroll et

al., 1999), over time we have introduced a number of extensions and refinements to

facilitate use in applications. Many NP(noun phrases)-internal relations play a very minor

role in theoretically motivated frameworks, but are an inherent part of corpus texts and can

be critical in real-world applications. Therefore, Carroll distinguishes the three modifiers,

cmod, xmod and ncmod that stand for the adjuncts and non clausal modifiers respectively,

but we define 5 new relations useful for natural language expressions used by plain users.

Also, besides the commonest grammatical relations for NPs, our hierarchy includes the

following grammatical relations: conj (conjunction) nn (noun compound), num (numeric

modifier), agent (agent) and empty (empty).

Chapter 4

 - 102 -

Name Description Examples
[source] [target] in text

head head
 Head of the parsed tree
 Head determines the type of the

clause (noun phrase, verb
phrase...)

[lives] in “Marisa lives in Rome”
[gift] in “the gift of a book”
[Picasso] in “Picasso the painter”

subj subject
 subject of a verb
 link a copula subject and object
 link a state with the item in that

state
 link a place with the item

moving to or from that place

[I] [promised] in “I promised to
help”
[I] [to help] in “I promised to
help”
[the cat] [ran] in “the cat that
ran”
[You] [happy] in “You are
happy”
[You] [a runner] in “You are a
runner”
[you] [happy] in “They made
you happy”
[I] [home] in “I went home”

dep dependent The remaining parts of the sentence
without the head

arg argument Subject and complements
predicate A predicate is the portion of a clause,

excluding the subject, that expresses
something about the subject

[is on the table] [the book] in
“The book is on the table”

obj object
 object of a verb
 object of an adjective
 surface subject in passives
 object of preposition not for

partitives or subsets
 object of an adverbial clause

complementizer

[saw] [the cat] in “I saw the cat”
[promised] [to help] in “I promised
to help you”
[happy] [to help] in “I was happy
to help”
[I] [was seen] in “I was seen by a
cat”
[by] [the tree] in “I was by the
tree”
[After] [left] in “After I left, I
ate”

dobj direct object
 a noun or pronoun that receives

the action of a transitive verb in
an active sentence

[burnt] [the toast] in “Terry burnt
the toast”
[visited] [Kara] in “Serena
visited Kara”

iobj indirect object
 verbs that involve giving

something to someone or
making something for someone.

 are usually placed directly
before the direct object. They

[gave] [you] in “I gave you a
cake”
[offered] Jim in “He offered him
a job”

Chapter 4

 - 103 -

usually answer the questions "to
what/whom?" or "for
what/whom?"

obj2 second object
 a noun or pronoun that comes

after the direct object in di-
transitive constructions

[give] [present] in “Give Mary a
present.”
[mailed] [contract] in “He mailed
John the contract”

objcomp object complement
 with some transitive verbs, the

direct object can be followed by
another noun or modifying
phrase called an object
complement.

[elected] [president] in “The
students elected him president”

empty use instead of “subj” relation when
subject is an expletive (existential) “it”
or “there”

[There] [trees] in “There are
trees”

clausal subordinating conjunctions (as, since,
because...) or relative pronouns (who,
which, that) usually introduce
dependent clauses

[name] [of] in “name of the
building”
[was seen] [by] in “I was seen by
a cat”

comp complement
 between a subject and a clausal

[age] [of] in “age of 12”
[the attack] [on] in “the attack on
the base”

agent agent
 the agent performs the action in

passive voice

[the dog] [the boy] in “The boy
was bitten by the dog”

mod generic modifier (use when modifier
does not fit in a case below)

[the cat] [ran] in “the cat that ran”
[ran] [with] in “I ran with new
shoes”

mod-nn noun compound modifier [cost-of-living] [adjustment]
“The cost of living went up, but
he didn't receive a cost-of-living
adjustment”

mod-det determiner [ate] [at] in “I ate at home”
mod-tmod temporal modifier [yesterday] in “Yesterday, Hillary

told him to leave the house”
mod-prep prepositional modifier [on] [cafeteria] in “on the

cafeteria”
mod-num numeric modifier [hundreds] [people] in “hundreds

of people”
conj conjunction

 used to annotate the type of
conjunction and the heads of the
conjuncts

[and] [player, coach, member] in
“the players, the coaches and the
other members of the team”
[or] [smile, laugh] in “John
smiled or Susan laughed”

Table 2: Definition of the OntoNL Grammatical Types

Chapter 4

 - 104 -

The grammatical relations are arranged in a hierarchy (figure 6), rooted with the most

generic relation, dep (dependent). We use a rich set of grammatical relations that provide

detailed information about syntactic relationships. When the relation between a head and

its dependent can be identified more precisely, relations further down in the hierarchy can

be used. For example, the dependent relation can be specialized to arg (argument), mod

(modifier) or conj (conjuction). The arg relation is further divided into the subj (subject)

relation and the comp (complement) relation, and so on. The definition of the OntoNL

hierarchy follows.

figure 6: The OntoNL grammatical relation hierarchy

-dep(introducer, head, dependent)

The most generic relation

-arg(head, dependent)

The relation between a head and an argument

-subj/dobj(head, dependent)

A specialization of the relation arg, which can instantiate either subjects or direct

objects.

-subj (head, dependent)

The relation between a predicate and its subject; where appropriate. The initial_gr

indicates the syntactic link between the predicate and subject before any GR-

changing process.

 subj(play, Vazeha) Vazeha plays in Panathinaikos

subj(employ, Paul) Paul was employed by IBM

Chapter 4

 - 105 -

-comp(head, dependent)

The most generic relation between a head and complement.

-obj(head, dependent)

The most generic relation between a head and object.

-dobj(head, dependent, initial_gr)

The relation between a predicate and its direct object – the first non-clausal

complement following the predicate which is not introduced by a

preposition.

dobj(play, ball) plays ball

dobj(give, George) give George the ball

-iobj(type, head, dependent)

The relation between a predicate and a non-clausal complement introduced

by a preposition. The type indicates the preposition introducing the

dependent.

 iobj(in, play, Barcelona) play in Barcelona

-obj2(head, dependent)

The relation between a predicate and the second non-clausal complement

in ditransitive constructions.

obj2(give, ball) give George the ball

-objcomp(head, dependent)

The relation between a predicate and a non-clausal complement introduced

by a direct object

objcomp(dyed, blonde) dyed his hair blonde.

-clausal(head, dependent)

The most generic relation between a head and a clausal complement.

-nscomp(type, head, dependent)

The relation between a predicate and a clausal complement which has no

overt subject. The type slot indicates the complementiser/preposition, if

any, introducing the dependent.

 nscomp(in, be, Paris) Mary is in Paris

-scomp(type, head, dependent)

Chapter 4

 - 106 -

The relation between a predicate and a clausal complement which has an

overt subject. The type slot indicates the complementiser/preposition, if

any, introducing the dependent.

 scomp(that, say, leave) I said that he left

 -agent(head, dependent)

The thematic relation of a situation that carries out the action in this

situation.

agent(submitted, by, Harry) It was submitted by Harry

-conj

The conjunction between two predicates.

-mod(head, dependent)

Modifier.

 -mod-nn(head, dependent)

 The noun compound modifier.

 -mod-det(head, dependent)

 Determiner.

 -mod-prep(head, dependent)

 The prepositional modifier

 -tmod(head, dependent)

 The temporal modifier.

 -mod-num (head, dependent)

The numeric modifier. Qualifies a number that serves to modify the meaning of a

NP

num(sheep, 3) Sam ate 3 sheep

The technique for producing typed dependencies is essentially based on rules – or patterns

– applied on phrase structure trees. The method is general, but requires appropriate rules

for each language and treebank representation. Here we present details only for Penn

Treebank English. The method for generating typed dependencies has two phases:

dependency extraction and dependency typing [MacCartney et. al, 2006]. In the

dependency extraction phase first, a sentence is parsed with a pos-tagger. Any Penn

Chapter 4

 - 107 -

Treebank tagger (trained on the Penn Treebank) could be used for the process described

here, but in practice we are using the Stanford Tagger, trained on the Penn Wall Street

Journal Treebank. The head of each constituent of the sentence is then identified, using

rules according to the Collins head rules [Collins, 1999], but modified to retrieve the

semantic head of the constituent rather than the syntactic head.

While heads chosen for phrase structure parsing do not really matter, retrieving sensible

heads is crucial for extracting semantically appropriate dependencies. For example, in

relative clauses, the Collins rule will choose as head the pronoun introducing the relative

clause. As all the other words in the relative clause will depend on the head, it makes

more sense to choose the verb as head when determining dependencies. In general, we

prefer content words as heads, and have auxiliaries, complementizers, etc. be dependents

of them. Another example concerns NPs with ambiguous structure or multiple heads

which are annotated with a flat structure in the Penn Treebank:

(NP the new phone book and tour guide)

Using the Collins rule, the head for this example is the word “guide”, and all the words in

the NP depend on it. In order to find semantically relevant dependencies, we need to

identify two heads, “book” and “guide”. We will then get the right dependencies (the noun

“book” still has primacy as a governing verb will link to it, but this seems reasonable):

nn(book, phone)

nn(guide, tour)

CC and(book, guide)

mod(book, new)

det(book, the)

It is essential in such cases to determine heads that will enable us to find the correct

dependencies.

Chapter 4

 - 108 -

I

want

the

man

who

scored

nsubj dobj

det ref

nsubj

Figure 7: An example of a typed dependency parse for the sentence “I want the man who
scored”

In the second phase, we label each of the dependencies extracted with a grammatical

relation which is as specific as possible. For each grammatical relation, we define one or

more patterns over the phrase structure parse tree (using the tree-expression syntax

defined by tregex [Levy and Andrew, 2006]. Conceptually, each pattern is matched

against every tree node, and the matching pattern with the most specific grammatical

relation is taken as the type of the dependency (in practice, some optimizations are used to

prune the search).

The OntoNL Synonyms and Sense Discoverer

An implementation framework for constructing and using natural language interfaces

cannot have previous knowledge about the structure and the information in a knowledge

repository. The repository has a specific way, based on a schema, to represent its contents.

This fact leads to the need of generalizing the words that a user may include in a request

to the set of synonyms that describe the sense of the word. The synonyms that correspond

to each sense of a word can be extracted by a thesaurus or a word ontology.

Many researchers have used WordNet [Miller, 1990] in information retrieval as a tool for

query expansion [Voorhees, 1994], [Smeaton and Berrut, 1995], computing lexical

cohesion [Stairmand, 1997], word sense disambiguation [Voorhees, 1993], and so on. In

Chapter 4

 - 109 -

WordNet, words are organized into taxonomies where each node is a set of synonyms (a

synset) representing a single sense. The logical structure of WordNet is shown in figure 7.

 word forms word forms word meanings (synsets)

Figure 8: Logical Structure of WordNet.

Word meanings are associated with word forms that can express them. We can see on the

figure that the relation between word forms and word meanings is m to n—word form can

have many meanings, and many word forms can refer to the same meaning. The former

phenomenon is called polysemy, the latter is called synonymy. Dealing with such an

ambiguity of natural language is the key challenge in automated natural language

processing. Each word meaning entry (also called synonym set, or synset), is accompanied

with on (called gloss), and list of word forms that can represent the synset in spoken or

written language.

 There are 4 different taxonomies based on distinct parts of speech (nouns, verbs,

adjectives, adverbs) and many relationships defined within each. For the synonym and

sense discovery we use only noun taxonomy with hyponymy/hypernymy (or is-a)

relations, which relates more general and more specific senses.

The similarity between word 1w and 2w in the WordNet taxonomy is defined as the

shortest path from each sense of 1w to each sense of 2w , as below [Resnik, 1995]

]
2

logmax[)2,1(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

D
N

wwsim p
path

Chapter 4

 - 110 -

where Np is the number of nodes in path p from 1w to 2w and D is the maximum depth of

the taxonomy.

We use in the OntoNL the WordNet for synonym and sense discovery for the linguistic

analysis and we use the taxonomy of nouns. It is one of our research issues to find ways to

efficiently use other taxonomies, and especially verbs and adjectives.

The OntoNL Language Model

Following the methodology and the algorithms described in the syntactic analysis

procedure the natural language parser concludes to a language model described in Figure

9 and Figure 10. The language model is described using a UML class diagram. Figure 9

shows the structure that contains the words that constitute the subject, the action verb and

the object. The object from the user request contains the actual information to be retrieved

from the repository. In conjunction with complement information from dependent clauses

there can be a transformation to a new sentence without loosing information, since there is

a specific grammar for response expressions, where the object will play the part of the

subject. Then, a second structure is produced, using a model diagram seen in Figure 10

with information coming from all steps during the linguistic disambiguation.

Figure 9: The syntactic structure of the independent clause

Chapter 4

 - 111 -

This structure contains information that helps the process of information retrieval with the

subject and its complements, the object and its complements and for each word, its synsets

and hyponyms from the WordNet.

In this model diagram there are classes representing the grammatical relations that are

connected with associations. What we see is that there are lists of words that constitute the

basic sentence structures, like the subject and the object and there are complements and

special cases of objects that predicate them. The OntoNL Expressions is the general class

that summarizes the cases of possible grammatical dependencies inside an utterance. It

consists of a Subject Part and possibly of a Verb Phrase Group. The Subject Part consists

of one or more Simple Subjects that are connected with a BooleanOr operator and the

Subject Complement Class. Certain intransitive verbs, called linking verbs, connect a

subject complement to the subject. These complements complete the meaning of the

subject. Some linking verbs are: (appear, become, seem, feel, grow, act, look, taste,

smell, sound, get, be (in all its forms). The Verb Phrase Group is an abstract class and has

an IS-A relation with the Conjunctive and the Disjunctive Verb Phrase Group. By this

way we distinguish the cases where the Subject Part can be described by more than one

verb phrases that are separated by Boolean Operators. The Verb Phrase Group consists of

one or more Verbs. The Verb consists of a unique Object Part, an abstract class of one or

more Objects. Again the Object Part has an IS-A relation with the Conjunctive and the

Disjunctive Object Part. That means that after the verb we can meet more than one object

parts joint with a Boolean AND or OR operator. The Object can be a Direct Object, an

Indirect Object, an Object Complement or a combination of these.

An example of the information contained in the language model for the sentence “The

player with shirt number 9 gave Milan the victory” is shown in figure 11.

Chapter 4

 - 112 -

Figure 10: The language model that derives from the linguistic analysis

- 113 -

figure 11: An instance of the Language Model for the sentence “The player with shirt number 9 gave Milan the victory”

Chapter 4

 - 114 -

Summary and Contributions

In this section we have presented in details the way the natural language interface

framework deals with syntactic and domain independent semantic disambiguities (using

the WordNet) of plain English words that constitute the user input. The disambiguation as

far as it concerns the English language domain is complete. The language model that is

produced by the linguistic analysis is easily extendable and is the result of a part of speech

tagging process, a grammatical relation analysis, a noun compound bracketing process

and a synonym and sense assignment with the help of a word ontology (Wordnet). The

result structure is a first step of the natural language processing that is domain

independent and can be used in any open domain question answering system using natural

language.

The syntactic disambiguation algorithm in the OntoNL is described with the UML activity

diagram (Figure 12). The steps are:

1. Parse the natural language expression from the Stanford Log-Linear Part-Of-

Speech Tagger.

2. Search for synonyms of the nouns using the WordNet

3. Search for noun n-grams

a. If yes, bracket the noun compounds

b. If no, continue

4. Annotate the grammatical relations

5. Build the language model.

Chapter 4

 - 115 -

Figure 12: The OntoNL Syntactic Disambiguation Procedure

The result of the design and development of the OntoNL Syntactic Disambiguator is a

component that fully explores the grammatical units and relations of the OntoNL natural

language expressions, is easily expandable and shows very good results in the

disambiguation. The noun compound bracketing mechanism is complete and succesfull

and the grammatical relation annotation mechanism is quite promising. While the

backbone of the hierarchy is quite similar to that in [Carroll et al., 1999], we use a number

of extensions and refinements to facilitate use in applications. Many NP-internal relations

play a very minor role in theoretically motivated frameworks, but are an inherent part of

corpus texts and can be critical in real-world applications.

Chapter 4

 - 116 -

The produced language model is a structure that contains information that helps the

process of information retrieval with the subject and its complements, the object and its

complements and for each word, its synsets and hyponyms from the WordNet.

The OntoNL syntactic disambiguator is a very important component of the framework

because it extracts from the natural language expression the subject and the constraints

that are then used for information search and retrieval. We could not proceed to the

semantic disambiguation without discriminate the units of the utterance that would matter

to be semantically disambiguate. The reason for not using an already developed syntactic

disambiguator is that we are not aware of a complete module for syntactic analysis that

deals with all the grammatical aspects needed for fully syntactically disambiguate English

Natural Language Expressions. The OntoNL NL Expressions may not capture all the

grammatical rules of English but the structures that have been designed and used are

easily expandable without the cost of remodeling the module.

 - 117 -

Chapter 5

Domain-Specific Semantic Disambiguation

in OntoNL
The purpose of semantic disambiguation in natural language processing, based on a

particular domain is to eliminate the possible senses that can be assigned to a word in the

discourse, and associate a sense which is distinguishable from other meanings (WordNet

gives only generic categories of senses and not domain specific. This domain specific

disambiguation is much more powerful).

Sources of Ambiguity

We have found two main factors, which affect an ambiguity of a query, the used

vocabulary and syntax and the contents of an ontology:

1. used vocabulary (i.e. ontology)

For example, if in the vocabulary the concept researcher is modelled through three

subconcepts: phDStudent, postDoc and professor, the query “ x ← researcher(x)”

can be (mis)interpreted as the information need for information resources about (i)

professors, or (ii) phDStudents, or (iii) postDocs or (iv) professors (this is called

Clarity), or

For a second example if we add the term “topic(y, TUC/MUSIC)” to the query “

x, y ← researcher(x) and project(y) and participate(x,y)” is redundant (i.e., its

adding does not change the list of results), this query can be (mis)interpreted as the

information need for information resources about (i) researchers and projects or

about (ii) researchers and projects and TUC/MUSIC (it is called Context Clarity)

and

Chapter 5

 - 118 -

2. the domain of the ontology (ontology repository)

For example, the query for a Chair in an ontology related to an academic area will

result in totally different results than the same query in an ontology related to an

industry organization about furnitures;

Consequently, in order to handle these situations we define two types of the ambiguity of

a query:

- the semantic ambiguity, as the characteristic of the used vocabulary (i.e. how many

interpretations can be assigned to the words of the given query);

- the content-related ambiguity, as the characteristics of the information repository

(i.e. how a query relates the subject of the query with its “neighbour’s”)

To become more precise we present different levels of disambiguation by using examples

from the domain of soccer:

1. The query contains generally keywords that can be resolved by using only the

ontology repository (ontological structures and semantics)

ex.1 “… players of soccer team Milan”

In this example, the words players and soccer team are matched to the corresponding

concepts of the domain ontology and the information that Milan is a soccer team comes

from the syntax of the natural language expression (object complement that follows a

direct object).

2. One of the subject or object part of the language model cannot be disambiguated by

using the ontology repository

ex.2 “… information about soccer team Milan”

In this example, the word soccer team is matched to the corresponding concept of the

domain ontology, but the system cannot resolve the ambiguity of the subject part of the

Chapter 5

 - 119 -

natural language expression, information. The system considers the word information as

an unresolved concept.

ex.4 “…the players of Barcelona”

In this example, the word players is matched to the corresponding concept of the domain

ontology but the system cannot resolve the ambiguity of the object part of the natural

language expression, Barcelona. Since the system cannot find a concept or a property of

the domain ontology that could be matched to the word Barcelona it “considers” is as a

concept instance.

3. Neither the subject nor the object part contains terms disambiguated using the

ontological structures

ex.6 “…information about Milan”

In this example neither the word information nor the word Milan are matched to the

ontological structures of the domain ontology. The system “considers” the word

information as an unresolved concept and the word Milan as an unresolved concept

instance.

In case that the OntoNL framework had access to the repository information the

ambiguities would be resolved according to the information of the repository. For

example, from the expression “… the players of Barcelona” from ex.4 if the OntoNL

applied queries to the repository about the subject (players) and the object part

(Barcelona) of the natural language expression it would get a list of the potential senses of

the two terms and it would construct accordingly queries to address again the repository

and retrieve the results. However, such a system would have bad performance because it

would need mechanisms to develop queries in the corresponding query language the

repository schema refers to.

The content-related ambiguity is how to relate the subject with the object if there is more

than one sense for either the keyword that describes the subject or the object, in the

repository. For example in the query “Give me the players of Barcelona” we can find the

instance Barcelona in the repository in more than one sense, (for example as a soccer team

Chapter 5

 - 120 -

and as a city). In this case the repository will “understand” that the user wants a list of

players’ names that are from city Barcelona or play for the soccer team Barcelona. We

need a mechanism to assign a value (weight) of relatedness between the concept soccer

players and all other concepts in the ontology in order to better rank candidate queries to

address the repository.

Our approach for query refinement uses as source of information the structure and the

content of the underlying ontology (vocabulary).

The semantic disambiguation algorithm includes the preprocessing of the ontologies

methodology and the semantic search methodology that address the domain ontology. If

the information from the ontology structures is enough for the disambiguation, then the

procedure concludes to a query with the disambiguated concepts. If the disambiguation is

not complete (keywords that cannot be matched to concepts of the ontology) we have

developed a methodology that finds strongly related concepts to the subject or object

concept of the query and concludes to a list of ranked queries.

The OntoNL Semantic Disambiguation Algorithm

For capturing semantic relatedness using ontologies that describe a domain, there is a need

for a preprocessing phase to help and guide the process. The preprocessing of the ontologies

serves two scopes; first to ensure meaningful matches between the natural language and the

ontology naming and second to calculate the relatedness measure value between the

concepts of the domain ontology, so to easily proceed to the semantic ranking. The input of

this procedure is the domain ontology and the output is two structures. One for the naming

conversions and one for the semantic relatedness measure values (see The OntoNL

Ontology-Driven Semantic Ranking section).

The naming conversion procedure is described by the UML activity diagram in figure 13:

Chapter 5

 - 121 -

Figure 13: The procedure for finding alternatives natural language names to ontological
concepts names

The strings that represent the user request for information may be described with multi-

word terms that lead to a tokenization need. The tokenization must capture naming

conventions used by database administrators, system integrators, programmers that are

responsible for the creation and maintenance of the ontologies and repositories. Multi-

word terms are parsed into tokens; by identifying common naming conventions used by

programmers with the presence of delimiters such as underscore, numbers, spaces, etc.

With this process for example, words such as SoccerTeam will be separated into Soccer

and Team.

Another matter that must be taken into account is that in the ontologies we may find

concept and relation names like TeamAddr, ShirtNumb. This leads to the need of

abbreviation expansion of terms like those by using domain-independent and domain-

specific vocabularies like BABEL [http://www.ciw.uni-karlsruhe.de/kopien/babel.html], a

glossary of Computer Oriented Abbreviations and Acronyms or TypFast

Chapter 5

 - 122 -

[http://www.topshareware.com/TypFast-transfer-3297.htm]. Thus, TeamAddr will be

expanded into TeamAddress, TeamsAddress, TeamAddressing, etc.

For the case were the ontological structures cannot fully disambiguate the terms of the

user query, we need to define the value of relatedness (similarity) between the concepts

that describe the domain, by assigning weight values, based on the characteristics

concerning the concepts and the relation types between this related concepts. This is a part

of the ontology preprocessing phase, but it is going to be fully described in a following

section.

According to the level of ambiguity as it was described in the previous subsection, we

present the methodology for the semantic search of the ontologies and the ontology

repository that conclude to the disambiguation. Next, we describe the entire semantic

disambiguation algorithm based on the different levels of ambiguities as they were

described in the beginning of the chapter.

SEMANTIC DISAMBIGUATION ALGORITHM
Program OntologyStructure SemanticDisambiguation (List, DoubleList)

List subjOper, objOper, Ambiguity, verbOper, ToOntoStruct;
LanguageModel LangModel;
OWLOntology DomOnto;
OntologyStructure ontoStruct;
Double relVal;
DoubleList SemRelMeas, ListNLStoOnto, ListNLOtoOnto;
String NLSubjTerm, NLObjTerm, string, related, conceptSName,
conceptOName, instances, oper, conceptS, conceptO;

Begin

For each term NLSubjTerm of LangModel do
 conceptSName = FindConceptMatching(DomOnto)
 oper = FindOperators(NLSubjTerm)
 subjOper.add(oper)
 If conceptSName != null
 ListNLStoOnto.add(conceptSName)
 else
 If NLSubjTerm.size() = 1 && subjOper.size() = 0
 Ambiguity.add(NLSubjTerm)
 Else If NLSubjTerm.size() > 1 & subjOper.size() = 0
 instances = ‘different’
 Ambiguity.add(NLSubjTerm)
 Else
 instances = ‘different’
 Ambiguity.add(NLSubjTerm)

For each term NLObjTerm of LangModel do

Chapter 5

 - 123 -

 conceptOName = FindConceptMatching(DomOnto)
 oper = FindOperators(NLObjTerm)
 objOper.add(oper)
 If conceptOName != null
 ListNLOtoOnto.add(conceptOName)
 else
 If NLObjTerm.size() != 1 && objOper.size() = 0
 Ambiguity.add(NLObjTerm)
 Else If NLObjTerm.size() = 1 & objOper.size() = 0
 instances = ‘different’
 Ambiguity.add(NLObjTerm)
 Else
 instances = ‘same’
 Ambiguity.add(NLObjTerm)

If Ambiguity.size()= 0
 relVal = 1
 For each term of ListNLStoOnto do
 ToOntoStruct.add(ListNLStoOnto(getTerm(i)))

 ToOntoStruct.add(relVal)
 ontoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()
 For each term of ListNLOtoOnto do
 ToOntoStruct.add(ListNLOtoOnto(getTerm(i)))
 ToOntoStruct.add(relVal)
 ontoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()
Else
 If ListNLStoOnto != null && ListNLOtoOnto == null
 For each term conceptS of ListNLStoOnto do

 string = ListNLStoOnto.get(concept)
 ToOntoStruct.add(string)

 relVal = 1
 ToOntoStruct.add(relVal)
 OntoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()
 related = SemRelMeas.getMostRelated(string)
 ToOntoStruct.add(related)
 relVal = SemRelMeas.getRelValue(string, related)
 ToOntoStruct.add(relVal)
 OntoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()

 If ListNLStoOnto == null && ListNLOtoOnto != null
 For each term conceptO of ListNLOtoOnto do
 string = ListNLOtoOnto.get(concept)
 ToOntoStruct.add(string)
 relVal = 1

 ToOntoStruct.add(relVal)
 OntoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()

 related = SemRelMeas.getMostRelated(string)
 toOntoStuct.add(related)
 relVal = SemRelMeas.getRelValue(string, related)

 ToOntoStruct.add(relVal)
 OntoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()

Chapter 5

 - 124 -

 If ListNLStoOnto != null && ListNLOtoOnto != null
 For each term conceptO of ListNLOtoOnto do

 string = ListNLOtoOnto.get(concept)
 related = SemRelMeas.getMostRelated(string)

 toOntoStuct.add(related)
 relVal = SemRelMeas.getRelValue(string, related)

 ToOntoStruct.add(relVal)
 OntoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()

End

Figure 14: The OntoNL Semantic Disambiguation procedure

Chapter 5

 - 125 -

In Figure 14 we present a UML activity diagram representing the OntoNL

Disambiguation Procedure. We explain the figure by a numbered list of actions based on

the three types of the OntoNL ambiguity. It is a general approach where the

disambiguation is based on an OWL repository. Before proceeding we need to mention

that every time we semantically search the repository we apply not only the exact word as

it was referred in the user query but all the synonym set provided by Wordnet.

Steps of the algorithm for the Semantic Disambiguation

1.

1.1. Search and match the query terms to the concepts and relations of the ontology.

1.2. Assign the terms that follow the matched concepts of the ontology as concept

instances.

1.3. Create a language model with the correspondence of the query terms to the subject

concept, the object/object complement concepts, relations and keywords and assign

the weight value 1 to the structure.

This structure is an enhanced language model with the structural and semantic

dependencies that derive from the ontological structures.

2.

2.1. The Subject Part consists of one word that cannot be matched with the concepts

of the domain ontology

2.1.1. Search for a number specified by the application of ontology concepts that

have the greatest relatedness value with the disambiguated term of the

request.

2.1.2. Create a list of instances of the language model like step 1.3 for each pair

of concepts from step 2.2.1. Assign the structure with the relatedness measure

value.

Chapter 5

 - 126 -

2.2. The object part consists of one word that cannot be matched with the concepts of

the domain ontology or

2.3. The object part consists of more than one word, and they are not separated with

any other words. We gather the words in one string that comprises the query term

to address the repository.

2.3.1. Search for a set of the strongest semantic related concepts to the concept of

the subject.

2.3.2. Create a list of instances of the language model like step 1.3 for each pair

of concepts from step 2.2.1. Assign the structure with the relatedness measure

value.

2.4. The user query contains more than one query term (many words), that are

separated with other words (we filter from a stop word file the in between the

terms words to cut the less significant ones).

2.4.1. Check for the existence of operators AND-OR between the query terms. If

there is an AND or OR between them consider that the concept the instances

belong cannot be different for each query that the system creates.

2.4.2. Do Steps 2.2.1 and 2.2.2 with step 2.3.1 as constraint.

2.4.3. If there is no AND or OR between them consider that the concept the

instances belong must be different for each query that the system creates.

2.4.4. Do Steps 2.2.1 and 2.2.2 with step 2.3.3 as constraint.

3. Create a query with the terms of the sentence connected with a Boolean AND and

queries with the term of the subject connected with Boolean OR to the terms of the

object.

The language model is described by the UML class diagram in figure 15. The semantic

disambiguation algorithm contributes in the Ontology Structure class. The class contains

two attributes: the class and the value. The class refers to the OWL Class and the value to

the OWL Class Instance.

Chapter 5

 - 127 -

The procedure of finding alternative, more natural language like names for the ontological

structures is an offline procedure and happens before the Ontology-Driven Semantic

Ranking, because the OntoNL Ontology-Driven Semantic Ranking is also an offline

procedure but needs the alternative names because the ranking contains a part that calculates

the related senses of the ontological concepts, so to function well the input must be as more

natural language like as possible.

Figure 15: The language model that derives from the syntactic and semantic analysis

Chapter 5

 - 128 -

The OntoNL Ontology-Driven Semantic Ranking

When a query cannot be disambiguated completely in the OntoNL Semantic

Disambiguation phase, OntoNL returns all the possible results ranked according to the

possibility that the user has requested them. To compute the ranking of possible results,

OntoNL borrows ideas and develops new ones from the research of Semantic Relatedness

of concepts in a semantic network. Semantic Relatedness using network representations is

a problem with a long history in artificial intelligence and psychology, starting from the

first approaches of Quillian [Quillian, 1968] and Collins [Collins, 1975], which used a

spreading activation approach. Although many measures of relatedness are defined in the

literature, they are seldom accompanied by an independent characterization of the

phenomenon they measure, but the worth of a relatedness measure is in its fidelity to

human behavior [Resnik, 1995].

A domain can be described by a set of core and domain ontologies. It is crucial to identify

more specific domains inside a domain, based on concepts and relationships of those

concepts. For doing that we must define the degree of relatedness between pairs of

concepts. This leads to a matrix containing a weight of relatedness between any two

concepts. Consider an nth row in this matrix and a function Fn(i) which takes the nth row

and returns the set of the largest values. Then this function defines a local association

cluster around the concept Cn. The clustering has the effect of reducing the size of a

domain by creating groups of more specific information from one or more ontologies to

search for semantic information.

Clustering techniques rely on the existence of some suitable similarity metric for objects

[Faloutsos, 1996], [Salton, 1989], [Steinbach et al., 2000], [Jain et al., 1988, 1999].

Clustering algorithms have been applied in many fields, like Marketing, for finding

groups of customers with similar behavior, Biology, for the classification of plants and

animals given their features, Libraries, for book ordering, Insurance, WWW, etc.

Clustering algorithms may be classified in the following categories; Exclusive Clustering,

Overlapping Clustering, Hierarchical Clustering and Probabilistic Clustering. In the first

Chapter 5

 - 129 -

case data are grouped in an exclusive way, so that if a certain datum belongs to a definite

cluster then it could not be included in another cluster. The second type uses fuzzy sets to

cluster data, so that each point may belong to two or more clusters with different degrees

of membership. In this case data will be associated to an appropriate membership value.

Instead a hierarchical clustering algorithm is based on the union between the two nearest

clusters. The algorithm starts with the assumption that every datum is a cluster and after a

few iterations it reaches the final clusters wanted. Finally, the last kind of clustering uses a

completely probabilistic approach.

The semantic relatedness clustering of the ontologies that describe a domain is based on a

methodology for weighting. We describe next a methodology that leads to a semantic

relatedness clustering in OWL ontologies.

All the research results presented in the literature so far [Rada et al, 1989], [Sussna, 1993,

1997], [Wu and Palmer, 1994], [Leacock and Chodorow, 1998], [Resnik, 1995], [Jiang

and Conrath, 1997], [Lin, 1998] were tested in specific ontologies like the WordNet and

the MeSH ontology that are well formed and contain synonym sets and glosses

(descriptions of a term meaning and it consists of a descriptive part and an example of use

case) that come with every synonym set. The methodologies that have been proposed are

not general and have not been tested in domain ontologies.

Another issue that arises is that all the previous approaches are symmetric, but we need a

measure to be asymmetric. Asymmetric relatedness denotes that the relatedness between

A and B is not necessarily the same as the relatedness between B and A. This is an

important aspect for natural language processing, since relations that are described with

natural language do not indicate mathematical rules. For example, the relatedness between

a father and his son is different and depends on the initial concept of consideration. The

difference is that the son inherits the facial characteristics of the father but the opposite is

not true.

We propose a method that can be used for computing semantic relatedness between

concepts that belong to an OWL domain ontology by using also information coming from

WordNet.

Chapter 5

 - 130 -

The measure will be based on the commonality (based on the semantic relations and the

conceptual distance) and the related senses.

All ontology concepts and their weights after the relatedness calculation are stored in the

system repository. Therefore, the ontology is ready to be used in the semantic

disambiguation processor.

We also must take into account the semantic relation of EquivalentClass. The

EquivalentClass of the source class (the class that was mapped from the ontological

structures to the subject of the natural language expression) has a similarity value 1 with

the source class so we also consider the relatedness measurement value of the equivalent

class with the remainder classes of the Ontology.

The commonality depends on the amount of the common information two concepts share.

We cannot use commonality like Resnik or Jiang and Conrath have used when dealing

with domain ontologies other than WordNet were there are no senses to count the

frequency of a word. We can accept partly that the distance from the most specific

common subsumer of the two concepts is a criterion that must be taken into account but

also the number of common relations. We do need to keep the measure asymmetric so it

will depend on the reference concept of which the relatedness to another concept we

calculate. The commonality depends on the amount of the common information two

concepts share. The commonality measure in general depends on two factors: The

position of the concepts relatively to the position of their most specific common subsumer

(how far is their common father) and the reciprocity of their properties (if the connecting

OWL ObjectProperties have also inverse properties because this denotes that they are

stronger related to each other). The position of the concepts relatively to the position of

their common subsumer will be examined by the conceptual distance and the specificity

measurement:

We first count the number of the common properties the two concepts share (numerator)

and divide it with the number of the initial concept (denominator), with the factor relOP1:

Chapter 5

 - 131 -

12
1

1 1 1 2
1

1
1

0 : (,)

n

in
i

i OP n
i

i
i

p
for p rel c c

p

=

=

=

> =
∑

∑
∑

, (24)

The value 1ip represents the fact that concept 1C is related to concept iC (value: 0 or 1 in

general). The value 12ip represents the fact that both concepts 1C and 2C are related to

concept iC (value: 0 or 1 in general). The basic idea of this measure is that concepts share

more common properties with other concepts that relate.

For example, in the domain of soccer and in the particular domain ontology of soccer

[http://elikonas.ced.tuc.gr/ontologies/] the concept PlayerObject has 20 Object

Properties: PhysicalCondition, SufferCondition, CauserOfRelation, ReceiveRelation,

PerformerOfRelation, ParticipantOfRelation, CommitRelation, PenalizedWithRelation,

ScoresRelation, Agent, AgentRef, Header, Relation, Property, DefinitionSB, Label,

AbstractionLevel, MediaOccurence, Object, ObjectRef.

The concept CoachObject has 13 Object Properties: OrderRelation, ProvideRelation,

Agent, AgentRef, Header, Relation, Property, DefinitionSB, Label, AbstractionLevel,

MediaOccurence, Object, ObjectRef.

The concept SoccerTeamObject has 18 Object Properties: AwardedRelation,

SoccerTeamObjectAgentOfRelation, AgainstRelation, SubstanceRelation,

ReceiveRelation, ParticipantOfRelation, ScoresRelation, Agent, AgentRef, Header,

Relation, Property, DefinitionSB, Label, AbstractionLevel, MediaOccurence, Object,

ObjectRef.

As we can see the PlayerObject concept shares 11 common Object Properties with the

CoachObject concept, but it shares 14 common Object Properties with the

SoccerTeamObject concept. Based on the common properties measure we claim that the

PlayerObject is more related to the SoccerTeamObject than with the CoachObject

Chapter 5

 - 132 -

We then count the number of the common properties the two concepts share that are

inverseOf properties (numerator) and divide it with the number of the common properties

the two concepts share (denominator)), with the factor relOP2:

12
1

12 2 1 2
1

12
1

0 : (,)

n

invin
i

i OP n
i

i
i

p
for p rel c c

p

=

=

=

> =
∑

∑
∑

, (25)

were the 12invip represents the fact that both concepts are inversely related.

The motivation for measuring the common inverseOf properties is to dissociate the

relatedness measure from the similarity measure. If we only counted the common

ObjectProperties then we would assign a great value of relatedness between siblings

(subclasses with common superclass) which are similar but not semantically related as the

OntoNL Framework defines.

For example, in the domain of soccer and in the particular domain ontology of soccer

[http://elikonas.ced.tuc.gr/ontologies/] the concept Goal has 17 Object Properties:

CauserRelation, ScoredByRelation, AgainstOfRelation, OnRelation,

PlacedKickResultOfRelation, SemanticPlace, EventRef, Event, SemanticTime, Header,

Relation, Property, DefinitionSB, Label, AbstractionLevel, MediaOccurence,

PerformerRelation.

The concept PlayerObject has 20 Object Properties: PhysicalCondition, SufferCondition,

CauserOfRelation, ReceiveRelation, PerformerOfRelation, ParticipantOfRelation,

CommitRelation, PenalizedWithRelation, ScoresRelation, Agent, AgentRef, Header,

Relation, Property, DefinitionSB, Label, AbstractionLevel, MediaOccurence, Object,

ObjectRef.

The concept Score has 11 Object Properties: ScoreOfRelation, SemanticPlace,

AttributeValuePair, SemanticTime, Header, Relation, Property, DefinitionSB, Label,

AbstractionLevel, MediaOccurence.

Chapter 5

 - 133 -

From the domain ontology we can retrieve the information that the concept Goal has 9

common Object Properties with the PlayerObject and 9 common properties with the

Score concept. The difference in this example is that from those 9 common properties

between the concept Goal and the concept PlayerObject, 2 of them are inverse

(Goal:CauserRelation PlayerObject:CauserOfRelation and

Goal:ScoredBy PlayerObject:CauserOfRelation). We claim that the concept Goal is

more related to the concept PlayerObject than to Score concept.

These two measures that concern the properties features relatedness are combined based

on a factor that shows the relative importance of these two measures (f values):

12 12
1 1

1 2 1 2

1 12
1 1

(,) () (),

n n

i invi
i i

prop n n

i i
i i

p p
rel c c f f

p p

= =

= =

= × + ×
∑ ∑

∑ ∑
 (26)

were 2 0f ≥ and 121 =+ ff .

The factors f1 and f2 take values based on the evaluation of the application of the OntoNL

framework in each domain of use. By defining the factors f1 and f2 we allow the dynamic

revision of the measure after the study of the domain ontology and the evaluation of the

results of the measure in the particular application.

The benefit of using this measure is that it is asymmetric. A consequence of this measure

is that when two concepts are quite close in the hierarchy ((c1 subclass of c2) or (c1 and c2

share common superclass)) they share more common relations (it captures the IS-A

semantic through object properties). The second part of the measure is very important

because it captures the concept relatedness in a way that cannot be expressed through IS-

A taxonomies.

We need to point that when we detect that a source concept-class is related via an

ObjectProperty with the target concept, the measure value becomes 1.

The conceptual distance measure is based on two factors; the path distance and the

specificity. The specificity of the concepts is based on their position in the ontology (the

Chapter 5

 - 134 -

leaf nodes are the most specific concepts in the hierarchy). The path distance counts the

minimal path of edges in a path from a concept to another. Within one conceptual domain,

the relatedness of a concept (c1) to another concept (c2) is defined by how closely they are

related in the hierarchy, i.e., their structural relations (IS-A relation). In the OntoNL, the

IS-A relations are implemented through the rdfs:subclassOf syntax of OWL. The

parameter that differentiates our measure from the classic measures of distance counting is

the change of direction that is combined with the specificity factor. We claim that when

the change of direction (from superclassing to subclassing) is close to the initial concept-

c1 (that is the subject of the natural language expression) of the pair we test the

relatedness, the two concepts are more related. When the direction of the path changes far

from the first concept then the semantics change quite as well (more specialization). Also

we take into account the place of the concepts in the hierarchy. The terms located higher

in the hierarchy have higher values of relatedness than located terms lower in the

hierarchy.

The value of distance can be measured with the following measure

1 2
1 2(,) (0,1]

2
C Cd dpathDist c c

D
+

= ∈
∗

where dc1 is the number of edges to go from the concept 1 to the closer common

superconcept (subsumer) and dc2 the number of edges to go from the concept 2 to the closer

common superconcept (subsumer). With D we count the maximum depth of the ontology.

The OntoNL disambiguation algorithm uses the relatedness of concepts of the domain

ontologies and not the similarity, so the measure excludes the cases were dC1 = 0, dC2 = 0

and dC1 + dC2 = 2. So, the path distance measure becomes

1 2 1 2, 1, 2 :C C C Cd d d d∀ ≥ + > 1 2
1 2(,) (0,1]

2
C Cd dpathDist c c

D
+

= ∈
∗

, (27)

We need to define a factor to determine the specificity of the concepts inside the ontology.

As we have already stated when the value of dC1 is close to the value of (dC1+dC2)/2 then the

relatedness must be decreased, because the initial concept C1 is specialized a lot in

comparison with the subsumer concept. So:

Chapter 5

 - 135 -

 1

1 2

2log (0,1],C

C C

d
d d

×
− ∈

+
 if 1 2

1 2
C C

C
d dd +

<

1
1

Cspecw =

0, if 1 2
1 2

C C
C

d dd +
≥

 (28)

We also propose a method of counting the specialization of the concept – c1 based on the

object properties of the subsume. We define the factor:

1
1

[0,)
#

C S
C

S

ObjP ObjPspec
ObjP
−

= ∈ ∞
(29)

were ObjPC1 is the number of Object Properties of the concept C1 and ObjPS is the number

of ObjectProperties of the subsumer concept. If the factor becomes 1 or greater then the

specialization is so big that we cannot count the relatedness based on the specificity. The

range of the specC1 is [0,)∞ . To limit the range in [0,1] we need to restrict the number of

ObjectProperties of the concept C1. We normalize the factor and we subtract it from 1, with

the restriction that the number of the ObjectProperties of the concept – c1 is at most 10

times the number of the ObjectProperties of the subsumer.

1

1
1

10 # : 2 1 log [0,1]
#C

C
C S spec

S

ObjPObjP ObjP w
ObjP

∀ ≤ × = − ∈ (30),

else
1

2 0
Cspecw = (31)

The conceptual distance measure then becomes

1 1 1 2(1 2 1 (,)) / 3CD specC specCrel w w pathDist c c= + + − (32)

Chapter 5

 - 136 -

Figure 16: Two figures with the same Conceptual Distance (1 2
6(,)

2 5
conceptualDist c c =

∗
)

and different specificity (
2 3log 0
3 3specw ×

= − =
+

and
2 1log log3 0.48
3 3specw ×

= − = ≈
+

respectively)

The amount of related senses measure is a measure that concerns the domain ontology

and the WordNet Ontology. As we have already mentioned, glosses are descriptions of a

word’s sense and it consists of a descriptive part and an example of use case. In case

where the domain ontology does not have descriptions of each concept-class we need to

extract this information from the WordNet. The measure is based on sets of each concept

that contain synonyms and nouns extracted from the descriptions used in the OWL

Chapter 5

 - 137 -

domain ontology or if there are no descriptions from the descriptive part of the glosses of

the concept:

1 2
1 2

1 2 1 2

(,)
| | \RS

S S
rel c c

S S S S
∩

=
∩ +

, (33)

were S1 is the description set of senses for concept c1 and S2 the description set of senses

for concept c2.

For example, we consider the terms football game and football player. After applying

the term football game in the WordNet and after pos-tagging the synonyms and the

descriptive parts of them we retrieve 6 different nouns: football (5 times), game (4 times),

teams (2 times), players (1 time), ball (3 times), and goal (2 times). After following the

same procedure for the term football player we retrieve 9 nouns: athlete (2 times),

football(1 time), football player(1 time), footballer(1 time), jock(1 time), person(1 time),

sports(1 time), player(2 times), participant(1 time) and game(1 time). The description set

of the football game is S1 = (football, game, teams, players, ball, goal). Accordingly, the

description set of the football player is S2 = (athlete, football, footballer, jock, person,

sports, player, participant, game). The equation (27) then becomes:

(RSrel football game, football player 3 1)
3 3 2

= =
+

Now we will try to measure the same measure also for the terms football game and

football coach. The description set of the football coach is S2 = (football, player,

manager, handler, athlete, team). The equation (27) then becomes:

(RSrel football game, football coach 3 1)
3 3 2

= =
+

We see that the amount of the related senses measure value is the same for the two pairs,

which is essentially correct since the two concepts (football players and football coaches)

participate jointly in a football game.

The overall relatedness measure is the following:

Chapter 5

 - 138 -

1 2 1 1 2 2 1 2 3 1 2(,) (,) (,) (,)OntoNL PROP CD RSrel c c w rel c c w rel c c w rel c c= × + × + × (34)

were 1 2 3 1 2 31, (, ,) 0w w w w w w+ + = > and 1 2 1 2 1 2(,), (,), (,) [0,1]PROP CD RSrel c c rel c c rel c c ∈ .

The range of values for the three factors 1w , 2w and 3w , will be discussed in details in the

evaluation chapter.

The measure is applied to all concepts of the ontology in the preprocessing phase and

constructs a NxN matrix, the OntoNL Semantic Ranking Matrix, were N is the total

number of concepts, with the relatedness values of each concept with all the other

concepts inside the disambiguation ontology.

Representation of the processed Natural Language

Interactions in OntoNL

After the syntactic and semantic disambiguation we have concluded to the subject of the

query specialized by additional description that forms the object or possible objects of the

query. We need a formal way to represent the query, a standardized query language that

will meet the specification of the ontology language (OWL) and will be easily mapped to

various forms of repository constructions. Although we could in principle use an internal

representation of the preprocessed NL interactions, we opted to use a representation that is

near to the languages used in the Semantic Web, so that when the repository is based on

OWL or RDF to be able to directly use it to access the repository.

OWL has been developed as a vocabulary extension of RDF (the Resource Description

Framework). The Resource Description Framework (RDF) is a flexible and extensible

way to represent information about World Wide Web resources and enables data to be

decentralized and distributed. It is used to represent, among other things, personal

information, social networks, metadata about digital artifacts, as well as to provide a

means of integration over disparate sources of information. A standardized query

language for RDF data with multiple implementations offers developers and end users a

Chapter 5

 - 139 -

way to write and to consume the results of queries across this wide range of information.

Used with a common protocol, applications can access and combine information from

across the Web.

Working on RDF query languages has been progressing for a number of years. Several

different approaches have been tried, ranging from familiar looking SQL-style syntaxes,

such as RDQL (http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/) and

Squish (http://ilrt.org/discovery/2001/02/squish/), through to path-based languages like

Versa (http://copia.ogbuji.net/files/Versa.html).

Among these approaches, those that emulate SQL syntactically have probably been the

most popular and widely implemented. This is perhaps surprising given the very different

models that lurk behind relational databases and RDF -- familiarity with syntax has no

doubt contributed to this success.

Query Formulation to SPARQL

In order to describe the mechanism that translates the disambiguated natural language

query to a SPARQL query for the disambiguation ontology, we first summarize the

information that the OntoNL system gathered after the semantic and syntactic

disambiguation procedures.

In this point we should remind the reader that even in an application of the system that

acts as a question answering system, we isolate the part of the query sentence that contains

the information to be processed and act as if it was a natural language expression.

The cases of possible natural language expressions represented in a class diagram are

presented in figure 13:

Chapter 5

 - 140 -

Figure 17: A class diagram representing the grammatical relationships in an OntoNL sentence

A user query can have one or more subjects with one or more specific attributes, the

object and its complement. Also, a query can consist of more than one subject and object

by using operators like OR and AND. We are going to present in table 3 the potential

interpretations from the ontological structures that can be assigned to the terms of the

subject and the object part. The term Class is the correspondent OWL Class in the

domain ontology that matched the word that the user used in his/her query and the Object

Property and Datatype Property are the correspondent OWL ObjectProperty and OWL

DatatypeProperty. In the presence of an operator that was detected inside the user query

we can consider that either one of the subject or object or both of them will be more than

one.

After the semantic disambiguation phase (WordNet and Ontological Structures) the

different types of queries that have to be processed by OntoNL are:

Chapter 5

 - 141 -

 SUBJECT PART OPER. VERB OBJECT PART OPER.
1 Class or Datatype

Property

2 Class or Datatype
Property

AND/
OR

3 Class or Object -
Datatype Property

 1 Class or Object - Datatype
Property Value

4a Class or Object -
Datatype Property

AND/
OR

1 Class or Object - Datatype
Property Value

4b Class or Object -
Datatype Property

 1 Class or Object - Datatype
Property Value

AND/
OR

4c Class or Object -
Datatype Property

AND/
OR

1 Class or Object - Datatype
Property Value

AND/
OR

5 Value

6 Value AND/
OR

7 Value 1 Value [1, N]

8a Value AND/
OR

1 Value

8b Value 1 Value AND/
OR

8c Value AND/
OR

1 Value AND/
OR

Table 3: Types of user queries after the structural disambiguation from Ontologies

Figure 18 shows an example ontology which we will be using in order to explain the

construction of SPARQL queries for each one of the query types of Table 3. Figure 18

shows a total of 20 classes interconnected in a semantic network. The objective of this

example semantic network is to simulate a part of an ontology structure that our query

types will be using. Figure 1 shows the same sematic network of Figure 18 but structured

in a more “OWL” representation where the various properties are named. We consider

that the general ontology is located in the http://www.owl-ontologies.com/general.owl#

path.

- 142 -

Figure 18: A graphical view of a general OWL ontology with IS-A relations and Object Properties

Chapter 5

- 143 -

Figure 19: A graphical instance of the general OWL ontology as an IS-A hierarchy with
structures that show the ObjectProperties and the DatatypeProperties

SPARQL syntax depends on OWL ObjectProperties that link related OWL Classes. To

provide an automatic construction of SPARQL queries we need at any point to define the

path that leads from the subject part to the object part of the natural language expression

by taking into account the constraints that are declared from the keywords and the

relatedness value between the related classes of the ontology. The path connecting the

classes directed from the user expression is found by the following algorithm:

Chapter 5

 - 144 -

Given a connected graph G = (V, E), a weight d: E->R+ and a fixed vertex s in V, find a

optimized path from s to each vertex v in V. The optimized path is determined by the

highest normalized sum value of the weights of the related concepts.

The differentiation here is that the edges linking the classes of the ontology graph are the

objectProperties of the OWL syntax and the weight values are specified by the relatedness

measure calculation described earlier in this chapter.

In what follows we present the general algorithm of the OntoNL query representation of

domain-ontology disambiguated natural language expression in SPARQL.

OntoNL Query Representation Algorithm
Program String SPARQLRepr (List, List, DoubleList)
 List subjOper, objOper, Values, OptPath;
 Double relVal;
 DoubleList SemRelMeas, ListNLStoOnto, ListNLOtoOnto;
String Query, QueryTemplate, OntoSubjTerm, OntoObjTerm,
Begin
QueryTemplate=" PREFIX ins:<ontology_path>"
 "SELECT ?OntoSubjTermIDs "
 "WHERE {?OntoSubjTermIDs rdf:type ?OntoSubjTerm."
 If ListNLOtoOnto.size()=0 && subjOper.size()=0
 OntoSubjTerm = ListNLStoOnto.get(term)
 Query = QueryTemplate + "}";
 ElseIf ListNLOtoOnto.size()=0 && subjOper.size()!=0
 For all terms i of ListNLStoOnto
 OntoSubjTerm(i) = ListNLStoOnto.getTerm(i)
 Query = QueryTemplate + "}";
 Else
 OntoObjTerm = ListNLOtoOnto.get(term)
 relVal = ListNLOtoOnto.get(relatedness value)
 value = Values.get(not_Disambiguated_Term)
 If objOper.size()=0 && relVal=1
 Query = QueryTemplate +
 "{{?OntoSubjTerm ins:hasObjPropTo ?OntoObjTerm."
 "?OntoObjTerm ins:hasDataProp "value"}"
 ElseIf objOper.size()=0 && relVal!=1
 OptPath = findOptPath(OntoSubjTerm, OntoObjTerm)
 Query = QueryTemplate + "
 For all ObjProperties of OptPath
 "{{?OntoSubjTerm ins:OptPath.get(hasObjProp) ?OntoObjTerm . "
 "?OntoObjTerm ins:hasDataProp "value"}"

Chapter 5

 - 145 -

 Else
 If Values.size() = 1
 If relVal=1
 Query = QueryTemplate +
 "{{?OntoSubjTerm ins:hasObjPropTo ?First_Related_Class."
 "?First_Related_Class ins:hasDataProperty ?val1}UNION"
 "{{?OntoSubjTerm ins:hasObjPropTo ?Second_Related_Class."
 "?Second_Related_Class ins:hasDataProp ?val2}"
 "FILTER(?val1 = "value" || ?val2 = "value")"
 Else
 Query = QueryTemplate +
 For all ObjProperties of OptPath
 "{{?OntoSubjTerm ins:OptPath.get(hasObjProp) ?OntoObjTerm."
 "?OntoObjTerm ins:hasDataProp ?val1} UNION"
 "{{?OntoSubjTerm ins: OptPath.get(hasObjProp)
 "?Second_Related_Class ins:hasDataProp ?val2}"
 "FILTER(?val1 = "value" || ?val2 = "value")"
 Else
 For all terms of Values
 If relVal=1
 Query = QueryTemplate +"
 "{{?OntoSubjTerm ins:hasObjPropTo ?First_Related_Class."
 "?First_Related_Class ins:hasDataProp "value1"}UNION"
 "{{?OntoSubjTerm ins:hasObjPropTo ?Second_Related_Class."
 "?Second_Related_Class ins:hasDataProp "value2"}"
 Else
 Query = QueryTemplate +"
 For all ObjProperties of OptPath
 "{{?OntoSubjTerm ins: OptPath.get(hasObjProp)
 "?First_Related_Class ins:hasDataProperty "value1"}UNION"
 "{{?OntoSubjTerm ins: OptPath.get(hasObjProp)
 "?Second_Related_Class ins:hasDataProp "value2"}"
End

Next, we present a number of examples for each case of the table 3 as they find

correspondence in the ontology of figures 18, 19.

In the 1st query type of Table 3, were the user has asked for information that was matched

to an ontology class (for example Class_1 in figure 14), the query in SPARQL becomes:

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins: http://www.owl-ontologies.com/general.owl#

Chapter 5

 - 146 -

SELECT ?ClassInstancesIDs

WHERE { ?ClassInstancesIDs rdf:type ins: Class_1 };

This query returns the ids of the class’s instances. Since we have knowledge about the

exact ontology if we prefer instead of id values to receive values of the datatype properties

of all instances the query becomes (in a loop):

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?value1 ?value2

WHERE { ins: ClassInstanceID ins:hasDProperty1_1 ?value1 ;

 ins:hasDProperty1_2 ?value2 }

In case the keyword of the query was matched to a datatypeProperty (for example

hasDProperty4_1 of Class_4), the query becomes:

 PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?DataValue

WHERE { ins:class1ID ins:hasDProperty4_1 ?DataValue }

In the 2nd query type of Table 3, were the user has asked for more than one thing that

matched to ontology classes separated with an operator (and/or), we present to the user a

Boolean OR of the results the query in SPARQL becomes:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?Class1InstancesIDs ?Class2InstancesIDs

WHERE { ? Class1InstancesIDs rdf:type ins: Class1 .

Chapter 5

 - 147 -

 ? Class2InstancesIDs rdf:type ins: Class2 }

In case the keywords of the query were matched to dataProperties (for example in Class

3_2 and Class 1_2_2) then:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?DataValue1 ?DataValue2

WHERE {?Class3_2 ins:hasDProperty3_2_1 ?DataValue1 .

 ?Class1_2_2 ins:hasDProperty1_2_2_1 ?DataValue2 };

The Class3_2 and Class1_2_2 are variables and not the classes. So we do not need to

declare their exact names as they are in the ontology.

In the 3rd query type of Table 3, were the user has asked for information that corresponded

to a subject – class of the ontology, an object or object complement – class of the ontology

and a value that follows the object-class (Class_3_1 and Class_1_2 that are connected via

the objectProperty3_1_1 in figure 13), the query in SPARQL becomes:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?ClassInstancesIDs

WHERE { ?ClassInstancesIDs rdf:type ?Class_3_1 .

{{?Class_3_1 ins:hasOProperty3_1_1 ?Class_1_2 .

 ?Class_1_2 ins:hasDProperty1_2_1“Keyword”} UNION

 { ?Class_1_2 ins:hasOProperty1_2_1 ?Class_2_2 .

 ?Class_2_2 ins:hasDProperty2_2_1 “Keyword” } };

Chapter 5

 - 148 -

If the subject of the query is a datatype property (for example of the Class_3_1) then the

query becomes:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?DataValue

WHERE { ins:”Class3_1ID” ins:hasDProperty3_1_1 ?DataValue } ;

where the ID of the instance comes from the previous query.

If the object or object complement of the query is an object property (for example, the

objectProperty of the Class_1_2 of figure 14) then the keyword characterizes the object

property and the query becomes:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?ClassInstancesIDs

WHERE { ?ClassInstancesIDs rdf:type ?Class_3_1 .

?Class_3_1 ins:hasOProperty3_1_1 ?Class_1_2 .

?Class_1_2 ins:hasOProperty1_2_1 ?Class_2_2 .

{?Class_2_2 ins:hasDProperty2_2_1 “Keyword” UNION

 { ?Class_2_2 ins:hasOProperty3_2_1 ?Class_1_2 .

?Class_1_2 ins:hasDProperty1_2_1 “Keyword” }}}

In the 4th query type of Table 3, we can distinguish three different types of queries, based

on where the operator applies. We can meet a query like the 3rd query type with more than

one objects – classes, that are separated with and/or operators or we can meet a query with

one subject – class and multiple object/object complement – keyword pairs separated with

Chapter 5

 - 149 -

and/or operators or we can meet a query with more than one subjects – classes that are

separated with and/or operators and multiple object/object complement – keyword pairs

separated with and/or operators. In the first case (for example, Class_3_1, Class_2_2 and

Class_1_2 that are connected via the objectProperty3_1_1 in figure 13) the query in

SPARQL becomes:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?Class3_1InstancesIDs ?Class2_2InstancesIDs

WHERE { ?Class3_1 InstancesIDs rdf:type ?Class_3_1 .

 ?Class2_2 InstancesIDs rdf:type ?Class_2_2 .

?Class_3_1 ins:hasOProperty3_1_1 ?Class_1_2 .

?Class_2_2 ins:hasOProperty3_1_1 ?Class_1_2 .

{ {?Class_1_2 ins:hasDProperty1_2_1“Keyword”} UNION

 { ?Class_1_2 ins:hasOProperty1_2_1 ?Class_2_2 .

 ?Class_2_2 ins:hasDProperty2_2_1 “Keyword” }} };

In the second case we need to distinguish two cases: there is only one keyword for all the

classes AND/OR object-datatype properties or there are keywords for all the classes

AND/OR object/datatype properties. In the first case (for example, Class_1, and Class_3

(and/or) Class_2_1 in figure 14), the query in SPARQL becomes:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?Class1InstancesIDs

WHERE { ?Class1InstancesIDs rdf:type ?Class_1 .

{{ ?Class_1 ins:hasOProperty1_1 ?Class_2 .

Chapter 5

 - 150 -

 ?Class_2 ins:hasOProperty2_1_1 ?Class3 .

?Class_3 ins:hasDProperty3_1 ? value1 } UNION

{?Class_3 ins:hasOProperty3_1 ?Class_2_2_1_1 .

 ?Class_2_2_1_1 ins:hasDProperty2_2_1_1_1 ?value1}}} UNION

{{{?Class_1 ins:hasOProperty1_2 ?Class_2_1 .

?Class_2_1 ins:hasDProperty2_1_1 ?value2} UNION

{?Class_2_1 ins:hasOProperty2_1_1 ?Class_1_2_2_1 .

?Class_1_2_2_1 ins:hasDProperty1_2_2_1_1 ?value2}} }}

FILTER (?value1 = “Keyword” || ?value2 = “Keyword”)};

In the second case:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?Class1InstancesIDs

WHERE { ?Class1InstancesIDs rdf:type ?Class_1 .

{{ ?Class_1 ins:hasOProperty1_1 ?Class_2 .

 ?Class_2 ins:hasOProperty2_1_1 ?Class3 .

?Class_3 ins:hasDProperty3_1 “Keyword1” } UNION

{?Class_3 ins:hasOProperty3_1 ?Class_2_2_1_1 .

 ?Class_2_2_1_1 ins:hasDProperty2_2_1_1_1 “Keyword1”}}} UNION

{{{?Class_1 ins:hasOProperty1_2 ?Class_2_1 .

?Class_2_1 ins:hasDProperty2_1_1 “Keyword2”} UNION

{?Class_2_1 ins:hasOProperty2_1_1 ?Class_1_2_2_1 .

Chapter 5

 - 151 -

?Class_1_2_2_1 ins:hasDProperty1_2_2_1_1 “Keyword2”}} }} };

In the third case we assume that the objects/object complements refer to all the subjects

and we have a unique keyword for every object/object complement, (for example,

Class_3_1 (and/or) Class_2_2 and Class_1_2 (and/or) Class_4_1 in figure 14), so the

query in SPARQL becomes:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?Class3_1InstancesIDs ?Class2_2InstancesIDs

WHERE {

{

{ ?Class3_1InstancesIDs rdf:type ?Class_3_1 .

 ?Class2_2InstancesIDs rdf:type ?Class_2_2 .

?Class_3_1 ins:hasOProperty3_1_1 ?Class_1_2 .

?Class_2_2 ins:hasOProperty3_1_1 ?Class_1_2 .

?Class_1_2 ins:hasOProperty1_2_2 ?Class_4_1.

{ {?Class_4_1 ins:hasOProperty4_1_1 “Keyword”} UNION

 { ?Class_4_1 ins:hasOProperty4_1_1 ?Class_3_2 .

 ?Class_3_2 ins:hasDProperty3_2_1 “Keyword” ;

ins:hasDProperty3_2_2 “Keyword” }}}} UNION

{{ ?Class3_1InstancesIDs rdf:type ?Class_3_1 .

 ?Class2_2InstancesIDs rdf:type ?Class_2_2 .

?Class_3_1 ins:hasOProperty3_1_1 ?Class_1_2 .

?Class_2_2 ins:hasOProperty3_1_1 ?Class_1_2 .

Chapter 5

 - 152 -

{ {?Class_1_2 ins:hasDProperty1_2_1“Keyword”} UNION

 { ?Class_1_2 ins:hasOProperty1_2_1 ?Class_2_2 .

 ?Class_2_2 ins:hasDProperty2_2_1 “Keyword” }}}}};

In the 5th query type of Table 3, the disambiguation cannot be confronted and the only

information that we have is the grammatical position of the keyword inside the sentence

(subject). The query in SPARQL is:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?x

WHERE { ?x <http://www.owl-ontologies.com/general.owl#> ?z .

 FILTER regex (?z, "keyword", "i")}

In a more detailed expression of SPARQL we can determine that the keyword refers to an

instance of a class - the subject of the user query:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?ClassInstanceID

WHERE { ?ClassInstanceID rdf:type ins:ClassX .

 ?ClassX ins:hasDPropertyX ?z .

 FILTER regex (?z, "keyword", "i")}

The 6th query type of Table 3 is the exact same with the 7th with the difference that we

have more than one keywords in the subject that are separated with and/or operators. The

SPARQL query becomes:

Chapter 5

 - 153 -

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?x

WHERE { ?x <http://www.owl-ontologies.com/general.owl#> ?z .

 FILTER regex ((?z, "keyword1", "i") || (?z, "keyword2", "i")…)}

In a more detailed expression of SPARQL we can determine that the keywords refer to

class instances - the subjects of the user query:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?ClassInstanceID

WHERE { ?ClassInstanceID rdf:type ins:ClassX .

 ?ClassX ins:hasDPropertyX ?z .

 FILTER regex (?z, "keyword", "i"|| (?z, "keyword2", "i")…)}

In the 7th query type of Table 3, the syntactic analysis concluded to a schema with a

subject and one or more object/object complements but the semantic disambiguation using

the disambiguation ontology did not help by mapping the keywords to ontological

structures. So, the SPARQL query becomes:

PREFIX rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX ins:http://www.owl-ontologies.com/general.owl#

SELECT ?DataValue

WHERE { ins:”Class_X” ins:hasDPropertyX_X ?DataValue }

?Class_X ins:hasOPropertyX_X ?Class_X’ .

Chapter 5

 - 154 -

{?Class_X’ ins:hasDPropertyX’_X “Keyword” UNION

 { ?Class_X’ ins:hasOPropertyX’_X ?Class_X’’ .

?Class_X’’ ins:hasDPropertyX’’_X “Keyword” }}}

In the 8th query type of Table 3, we find again the grammatical relations as in the 9th query

with no semantic disambiguation. We distinguish again the three types of query based on

the operator application: the keywords – subjects are separated with and/or operators and

share common object/object complement or the subject is unique and we have multiple

objects/object complements – keywords separated with and/or or the combination of the

two previous approaches. We are not going to present the corresponded SPARQL queries

because of the level of ambiguity.

Summary

In this chapter we have presented the semantic ambiguity of a natural language expression

in the OntoNL Framework and an algorithm to confront with different levels of ambiguity

based on OWL Ontologies. We presented a brief overview of semantic relatedness

algorithms and we developed a new semantic relatedness measure for OWL ontologies.

We have presented the OntoNL ontology-driven semantic ranking methodology for

ontology concepts used for natural language disambiguation. The methodology uses

domain specific ontologies for the semantic disambiguation. The ontologies are processed

offline to identify the strength of the relatedness between the concepts. Strongly related

concepts lead to higher ranked pairs of results during disambiguation. The disambiguation

procedure is automatic and quite promising, since it is enhanced with information based

on the domain that the request refers to. It is easily reusable in many domains since the

only restrictions are the used language (English) and OWL as the standard language for

representing ontologies of a specific domain. The OntoNL semantic ranking methodology

depends on the OntoNL semantic relatedness measure for OWL domain ontologies. The

Chapter 5

 - 155 -

relatedness value computation is based on the following factors: the commonality (based

on the semantic relations and the conceptual distance) and the related senses.

The motivation of this work came from the absence of a general, domain-independent

Natural Language Interface Generator with good results in the Natural Language

Disambiguation process. The disambiguation process depends on the domain ontologies

and when necessary, the OntoNL Semantic Relatedness Measure is used to rank

ontological, grammatically-related concepts. We have developed a semantic relatedness

measure over OWL ontologies that is general, domain independent and covers the lack of

a systematic way for calculating asymmetric semantic relatedness of concepts.

Overall, we state that the semantic relatedness measure that leads to the ontology-based

semantic ranking of concepts for natural language disambiguation is quite complete and

shows very good results (see Chapter 7).

Also, we used the formal query language SPARQL to form the disambiguated queries.

We choose SPARQL (http://www.w3.org/TR/rdf-sparql-query/) as the query language to

represent the natural language queries after the syntactic and semantic disambiguation

since SPARQL is defined in terms of the W3C's RDF data model and works for any data

source that can be mapped into RDF.

In the next chapter we are going to present the implementation of a specific application in

the domain of soccer.

- 156 -

Chapter 6

Implementation of the OntoNL Framework

In this chapter we introduce the general architecture of the OntoNL and the description of

the implementation of the components that comprise the architecture. A specific

application in question answering for the domain of soccer has been developed and the

details of the implementation are presented afterwards. We conclude with an example of

using the specific question answering system where the data flow is presented.

The OntoNL Infrastructure

The parts of the platform that constitute the Natural Language Interface framework have

been discussed in detail, previously in sections 3, 4 and 5. Their implementation details

follow. The system infrastructure is depicted in Figure 20.

The OntoNL framework has five core modules for processing the natural language

information. These are presented separately with their implementation details.

The Linguistic Analysis Component

As we have presented in Chapter 4, in the Linguistic Analysis Component we have

developed a specific methodology to deal with syntactic ambiguities. This methodology is

a combination of word sense disambiguation techniques modified to serve best the needs

of a system for natural language interactions like the OntoNL system.

The Linguistic Analysis component consists of a sentence conversion mechanism, a part-

of-speech tagger, a noun compound detector, a typed-dependencies producer and a

module responsible for the synonyms and sense discovery using the word ontology,

WordNet.

Chapter 6

- 157 -

Figure 20: The OntoNL Infrastructure

For the request conversion mechanism, there is an effort to eliminate the first words that a

request or a question may have because, the words that do not contain semantics for the

retrieval of information from a repository. We distinguish 3 different types of requests and

questions in which we have a different approach when dealing with the information of the

utterance:

1. Requests for metadata (ex. Show me the goals scored in the game between

Italy and France)

Chapter 6

- 158 -

2. WH-questions (ex. What was the score in the game between Italy and

France?)

In the literature (http://www.eslgold.com/grammar/wh_questions.html) we find that

the wh-questions testify the subject of the request according to the type of input. We

present in what follows the semantics of request of each different type of wh-question.

When?
Where?
Who?
Why?
How?
What?

Which (one)?
Whose?
Whom?

How much?
How many?
How long?
How often?
How far?

What kind (of)?

Time
Place

Person
Reason
Manner

Object/Idea/Action
Choice of alternatives

Possession
Person (objective formal)
Price, amount (non-count)

Quantity (count)
Duration

Frequency
Distance

Description

3. Yes/No questions (ex. Were there any goals in the game between Italy and

France?)

In the input conversion mechanism we identify the type of the input and we use an

indicator to distinguish the three different types. After the conversion, the input becomes

like the one’s in the examples below:

• the goals scored in the game between Italy and France

• the score in the game between Italy and France

• any goals in the game between Italy and France

The grammatical dependencies (subject, object, verb, complements) of those converted

sentences have the semantics that we retrieve by interacting with the application-domain

ontology. This information enhances the OntoNL Language Model.

Chapter 6

- 159 -

For implementing the tagger we used the software provided by the Stanford Natural

Language Processing Group (http://nlp.stanford.edu/software/tagger.shtml). The tagger is

licensed under the GNU GPL. The main class

edu.stanford.nlp.tagger.maxent.MaxentTagger is a class for end users to part of speech

tag text using an already trained and saved maximum entropy tagger. We tag the modified

natural language expression through the Java API. We used the one from the two taggers

included in the distribution, a bi-directional dependency network tagger, with accuracy

97.24% on Penn Wall Street Journal. A MaxentTagger is made with a constructor taking

as argument the location of parameter files for a trained tagger. Alternatively, a

constructor with no arguments can be used, which reads the parameters from a default

location.

The choices we had were:

To tag a string of words and get a string of tagged words.

String taggedString = maxentTagger.tagString("Here's a tagged string.")

To tag a Sentence and get a TaggedSentence

Sentence taggedSentence=maxentTagger.tagSentence(Sentence sentence)

Sentence taggedSentence=maxentTagger.apply(Sentence sentence)

To tag a list of sentences and get back a list of tagged sentences

List taggedList=maxentTagger.process(List sentences)

Here is an example of using the static tagString method. The MaxentTagger can be

initialized using a static call init that takes in a trained model, which is loaded

immediately (takes a long time...); subsequent attempts to initialize the tagger will be no-

ops, therefore it is safe to call init ad infinitum. Otherwise the default trained model is

used. Then subsequent calls to tagString can be executed, passing in an untagged String; a

tagged String is returned, unless there was a serious problem in the Tagging machinery, in

which case null is returned.

Chapter 6

- 160 -

Example:

MaxentTagger.init("stanford-tagger/bidirectional/wsj0-18.holder");

String taggedString = MaxentTagger.tagString("Here's a tagged string.");

String taggedString2 = MaxentTagger.tagString("This is your life.");

The output is

Here's/JJ a/DT tagged/VBD string./NNP

and

This/DT is/VBZ your/PRP$ life./NN respectively.

The problem of dealing with noun compounds was discussed in Chapter 4 in detail. The

problem with applying lexical association to noun compounds is the enormous number of

parameters required one for every possible pair of nouns. This leads to the need of a vast

amount of memory space and to the severe data sparseness problem. We used the

following equation, for the dependency model and a given compound of w1, w2, w3 , that

gives the estimation of the ratio

()

()∑
∑

∈

∈

→→

→→
=

)(
3231

)(
3221

)(

)(

ii

ii

wcatst

wcatst
dep ttPttP

ttPttP
R

where t1, t2 and t3 are conceptual categories in a taxonomy or thesaurus, and the nouns

w1,…,wn are members of these categories. For a correct result we must sum over all

possible categories for the words in the compound. In any case, the estimation of

probabilities over concepts reduces the number of model parameters. Especially in our

case, the conceptual categories are extracted by the WordNet, (hyponyms).

In contrast with other methods we use a method to expand n-grams into all morphological

forms by the use of morphological tools [Minnen, et. al., 2001]. For example, if we have a

bigram ‘player scores’, then we create a list of all possible forms: ‘player scores’, ‘player

score’, ‘players score’, etc. Based on the successful performance of the dependency model

over the adjacency we adopt the use of it. The innovation in this work is that the domain

Chapter 6

- 161 -

ontologies used for every different domain constitute the training corpus. This may lead to

the conclusion that the test set is very limited in comparison to a linguistic corpus, but it is

more specific to the needs of the application. We are interested in the particular needs of

the user based on a specific domain. Since we use the noun compound bracketing

methodology to be more accurate when dealing with the user request’s ambiguities we use

as a test set the noun compounds that may appear in the exact user request and as a

training corpus the total of domain ontologies used.

Figure 21: The grammatical relation hierarchy

For the grammatical relationship detection, we first distinguished 8 different clause types

and then constructed an annotation scheme for locating grammatical relations. We used a

rich set of grammatical relations that provide detailed information about syntactic

relationships. When the relation between a head and its dependent can be identified more

precisely, relations further down in the hierarchy can be used. For example, the dependent

relation can be specialized to aux (auxiliary), arg (argument), or mod (modifier). The arg

relation is further divided into the subj (subject) relation and the comp (complement)

relation, and so on. The scheme is summarized in figure 21:

The method that we developed and implemented typed dependencies is essentially based

on rules – or patterns – applied on phrase structure trees. The method is general, but

requires appropriate rules for each language and treebank representation. Here we present

details only for Penn Treebank English. The method for generating typed dependencies

has two phases: dependency extraction and dependency typing. In the dependency

extraction phase first, a sentence is parsed with a phrase structure grammar parser. We

used the Stanford Parser [Klein and Manning, 2003], a high accuracy statistical phrase

Chapter 6

- 162 -

structure parser trained on the Penn Wall Street Journal Treebank. The head of each

constituent of the sentence is then identified, using pattern rules according to the Collins

head rules [Collins, 1999].

In the second phase, we label each of the dependencies extracted with a grammatical

relation which is as specific as possible. For each grammatical relation, we define one or

more patterns over the phrase structure parse tree (using the tree-expression syntax

defined by tregex [Levy and Andrew, 2006].

I

want

the

man

who

scored

nsubj dobj

det ref

nsubj

Figure 22: An example of a typed dependency parse for the sentence “I want the man who
scored”

For the synonyms and sense discovery we used the word ontology WordNet and in

particular we used the JWordNet API, a pure Java standalone object-oriented interface to

the WordNet database of lexical relationships. We provide a simple example of usage:

import edu.brandeis.cs.steele.wn.*;

/* This prints the senses of the noun 'dog' to the console. */
public class Main {
 static void main(String[] args) {
 DictionaryDatabase dictionary = new FileBackedDictionary();
 IndexWord word = dictionary.lookupIndexWord(POS.NOUN, "dog");
 Synset[] senses = word.getSenses();
 int taggedCount = word.getTaggedSenseCount();
 System.out.print("The " + word.getPOS().getLabel() + " " +
word.getLemma() + " has " + senses.length + " sense" +
(senses.length == 1 ? "" : "s") + " ");
 System.out.print("(");
 if (taggedCount == 0) {
 System.out.print("no senses from tagged texts");
 } else {
 System.out.print("first " + taggedCount + " from tagged
texts");

Chapter 6

- 163 -

 }
 System.out.print(")\n\n");
 for (int i = 0; i < senses.length; ++i) {
 Synset sense = senses[i];
 System.out.println("" + (i + 1) + ". " +
sense.getLongDescription());
 }
 }
}

The procedure of the linguistic analysis concludes to a structure that was also presented in

Chapter 4, the language model.

The Ontologies Processing Component

The Ontologies Processing Component is responsible for two main tasks, the

representation of the ontology in a more natural language way (naming conversions) and

the detection of semantic relatedness between the concepts of the ontology.

The first task includes the tokenization process and the abbreviation expansion of names.

To tokenize words, we find word boundaries in a multi-term word attribute using changes

in font, presence of delimiters, etc. The OntoNL CheckAbbreviation algorithm uses a

custom abbreviation dictionary, from the TypFast abbreviation expander

(http://www.topshareware.com/TypFast-download-3297.htm).

The second task includes the calculation of the relatedness measure value between the

concepts of the ontology. For implementing the measures we used the a part of the

GraphOnto API, the OWL API and the JWordNet API. For the first measure we retrieve

the object properties and we calculate their number and the number of inverse object

properties for each class inside the ontology (by using functions from the GraphOnto API

and the OWL API). By this way we can calculate the number of the common properties

and of the inverse properties two concepts share.

1 1
1 2 1 2

1 1

(,) () (),

n n

ijk invijk
i i

prop n n

ij ijk
i i

p p
rel c c f f

p p

= =

= =

= × + ×
∑ ∑

∑ ∑

Chapter 6

- 164 -

were 21 ff ≥ and 121 =+ ff .

The second measure we developed concerns the conceptual distance between two classes

in the ontology. The two factors we took into account were the path distance and the

specificity. For implementing this measure we again used the GraphOnto API and the

OWL API that provided us the functions of retrieving knowledge for the position and the

semantics of each class inside the ontology. The equation of the path distance is:

1 2
1 2 1 2 1 21, 1, 2 : (,) (0,1]

2
C C

C C C C
d dd d d d pathDist c c

D
+

∀ ≥ ≥ + > = ∈
∗

The specificity measure is described by the equation:

 1

1 2

2log (0,1],C

C C

d
d d

×
− ∈

+
 if 1 2

1 2
C C

C
d dd +

<

1
1

Cspecw =

0, if 1 2
1 2

C C
C

d dd +
≥

The equation for counting the specialization of the concept – c1 based on the object

properties of its subsumer is:

1

1
1

10 # : 2 1 log [0,1]
#C

C
C S spec

S

ObjPObjP ObjP w
ObjP

∀ ≤ × = − ∈ (31),

else
1

2 0
Cspecw = (32)

and the overall measure is:

1 1 1 2(1 2 1 (,)) / 3CD specC specCrel w w pathDist c c= + + − (33)

For the third measure, we used the JWordNet API and the part-of-speech tagger (Stanford

POS Tagger). The JWordNet provided the synonyms and the descriptions of each noun

and then by filtering the descriptions from the pos tagger we obtained the nouns and

completed the description set of each class. In the set we also include the initial noun –

class name. To remind the reader, the measure that calculates the amount of related senses

is

Chapter 6

- 165 -

1 2
1 2

1 2 1 2

(,)
| | \RS

S S
rel c c

S S S S
∩

=
∩ +

,

where S1 is the description set of senses for c1 and S2 the description set of senses for c2.

The Semantic Disambiguation Component

We next describe the Semantic Disambiguation Procedure as it was presented in Chapter

5, with an initial and limited pseudo code.

Program OntologyStructure SemanticDisambiguation (List, DoubleList)
List subjOper, objOper, Ambiguity, verbOper, ToOntoStruct;
LanguageModel LangModel;
OWLOntology DomOnto;
OntologyStructure ontoStruct;
Double relVal;
DoubleList SemRelMeas, ListNLStoOnto, ListNLOtoOnto;
String NLSubjTerm, NLObjTerm, string, related, conceptSName,
conceptOName, instances, oper, conceptS, conceptO;

Begin

For each term NLSubjTerm of LangModel do
 conceptSName = FindConceptMatching(DomOnto)
 oper = FindOperators(NLSubjTerm)
 subjOper.add(oper)
 If conceptSName != null
 ListNLStoOnto.add(conceptSName)
 else
 If NLSubjTerm.size() = 1 && subjOper.size() = 0
 Ambiguity.add(NLSubjTerm)
 Else If NLSubjTerm.size() > 1 & subjOper.size() = 0
 instances = ‘different’
 Ambiguity.add(NLSubjTerm)
 Else
 instances = ‘different’
 Ambiguity.add(NLSubjTerm)

For each term NLObjTerm of LangModel do
 conceptOName = FindConceptMatching(DomOnto)
 oper = FindOperators(NLObjTerm)
 objOper.add(oper)
 If conceptOName != null
 ListNLOtoOnto.add(conceptOName)
 else
 If NLObjTerm.size() != 1 && objOper.size() = 0
 Ambiguity.add(NLObjTerm)
 Else If NLObjTerm.size() = 1 & objOper.size() = 0
 instances = ‘different’

Chapter 6

- 166 -

 Ambiguity.add(NLObjTerm)
 Else
 instances = ‘same’
 Ambiguity.add(NLObjTerm)

If Ambiguity.size()= 0
 relVal = 1
 For each term of ListNLStoOnto do
 ToOntoStruct.add(ListNLStoOnto(getTerm(i)))

 ToOntoStruct.add(relVal)
 ontoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()
 For each term of ListNLOtoOnto do
 ToOntoStruct.add(ListNLOtoOnto(getTerm(i)))
 ToOntoStruct.add(relVal)
 ontoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()
Else
 If ListNLStoOnto != null && ListNLOtoOnto == null
 For each term conceptS of ListNLStoOnto do

 string = ListNLStoOnto.get(concept)
 ToOntoStruct.add(string)

 relVal = 1
 ToOntoStruct.add(relVal)
 OntoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()
 related = SemRelMeas.getMostRelated(string)
 ToOntoStruct.add(related)
 relVal = SemRelMeas.getRelValue(string, related)
 ToOntoStruct.add(relVal)
 OntoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()

 If ListNLStoOnto == null && ListNLOtoOnto != null
 For each term conceptO of ListNLOtoOnto do
 string = ListNLOtoOnto.get(concept)
 ToOntoStruct.add(string)
 relVal = 1

 ToOntoStruct.add(relVal)
 OntoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()

 related = SemRelMeas.getMostRelated(string)
 toOntoStuct.add(related)
 relVal = SemRelMeas.getRelValue(string, related)

 ToOntoStruct.add(relVal)
 OntoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()

 If ListNLStoOnto != null && ListNLOtoOnto != null
 For each term conceptO of ListNLOtoOnto do

 string = ListNLOtoOnto.get(concept)
 related = SemRelMeas.getMostRelated(string)

 toOntoStuct.add(related)
 relVal = SemRelMeas.getRelValue(string, related)

 ToOntoStruct.add(relVal)
 OntoStruct.add(ToOntoStruct)
 ToOntoString.removeAll()

End

Chapter 6

- 167 -

Steps of the OntoNL Disambiguation Algorithm

1.

1.1. Search and match the query terms to the concepts and relations of the ontology.

1.2. Assign the terms that follow the matched concepts of the ontology as concept

instances.

1.3. Create a language model with the correspondence of the query terms to the

subject concept, the object/object complement concepts, relations and keywords

and assign the weight value 1 to the structure.

This structure is an enhanced language model with the structural and semantic

dependencies that derive from the ontological structures.

2.

2.1. The Subject Part consists of one word that cannot be matched with the concepts

of the domain ontology

2.1.1. Search for a number specified by the application of ontology concepts that

have the greatest relatedness value with the disambiguated term of the

request.

2.1.2. Create a list of instances of the language model like step 1.3 for each pair

of concepts from step 2.2.1. Assign the structure with the relatedness measure

value.

2.2. The object part consists of one word that cannot be matched with the concepts of

the domain ontology or

2.3. The object part consists of more than one word, and they are not separated with

any other words. We gather the words in one string that comprises the query term

to address the repository.

Chapter 6

- 168 -

2.3.1. Search for a set of the strongest semantic related concepts to the concept of

the subject.

2.3.2. Create a list of instances of the language model like step 1.3 for each pair

of concepts from step 2.2.1. Assign the structure with the relatedness measure

value.

2.4. The user query contains more than one query term (many words), that are

separated with other words (we filter from a stop word file the in between the

terms words to cut the less significant ones).

2.4.1. Check for the existence of operators AND-OR between the query terms. If

there is an AND or OR between them consider that the concept the instances

belong cannot be different for each query that the system creates.

2.4.2. Do Steps 2.2.1 and 2.2.2 with step 2.3.1 as constraint.

2.4.3. If there is no AND or OR between them consider that the concept the

instances belong must be different for each query that the system creates.

2.4.4. Do Steps 2.2.1 and 2.2.2 with step 2.3.3 as constraint.

3. Create a query with the terms of the sentence connected with a Boolean AND and

queries with the term of the subject connected with Boolean OR to the terms of the

object.

The Query Formulation Component

In Chapter 5 we have presented the way the natural language queries after the

disambiguation phase are translated to SPARQL queries. In order to write the SPARQL

queries we used Jena [http://jena.sourceforge.net/]. Jena is a Java framework for building

Semantic Web applications. It provides a programmatic environment for RDF, RDFS and

OWL, SPARQL and includes a rule-based inference engine. Jena is open source and

grown out of work with the HP Labs Semantic Web Programme.

The Jena Framework includes:

Chapter 6

- 169 -

• A RDF API

• Reading and writing RDF in RDF/XML, N3 and N-Triples

• An OWL API

• In-memory and persistent storage

• SPARQL query engine

We used the javadoc to guide the implementation part.

http://jena.sourceforge.net/ARQ/javadoc/index.html

The package com.hp.hpl.jena.query is the main application package. The Query Class is a

class that represents the application query. It is a container for all the details of the query.

Objects of class Query are normally created by calling one of the methods of

QueryFactory methods which provide access to the various parsers.

The basic steps in making a SELECT query are outlined in the example below. A query is

created from a string using the QueryFactory. The query and model or RDF dataset to be

queried are then passed to QueryExecutionFactory to produce an instance of a query

execution.

In this example we show how to obtain results from the execution of a SPARQL query.

This is not necessary since as we discussed in Chapter 5 we use SPARQL to structure a

query interface between the Natural Language Interface generator and a knowledge

repository.

To capture the information we need in order to syntax the SPARQL queries we use the

GraphOnto API and the OWL API. These APIs provide us access to the structure and the

semantics of OWL ontologies.

import com.hp.hpl.jena.query.* ;

Model model= ... ;
String queryString= " " ;
Query query=QueryFactory.create(queryString);
QueryExecution qexec=QueryExecutionFactory.create(query, model);
try {
 ResultSet results=qexec.execSelect();

Chapter 6

- 170 -

 for (; results.hasNext();)
 {
 QuerySolution soln=results.nextSolution();
 RDFNode x=soln.get("varName");//Get a result variable by name
 Resource r=soln.getResource("VarR"); //Get a result variable -
must be a resource
 Literal l=soln.getLiteral("VarL"); //Get a result variable -
must be a literal
 }
} finally { qexec.close(); }

The Result Processing Component

The OntoNL infrastructure can manipulate results from knowledge bases but the format of

the results retrieved from a knowledge repository is application specific. It is proportional

to the type of content and service the knowledge repository provides and to the device that

the results are displayed.

If the format of the results is textual (data or metadata), we propose a way of presenting

them to the user in a natural language based manner. From the syntactic disambiguation

procedure we have concluded to a language model (see Chapter 4) were the grammatical

relationships have been identified. A nice way to present the results to the user is by

enhance the answer with a template message that will contain the subject of the query. For

example if the user query was “Give me the players of Milan” then a user friendly answer

will be “The players are …”.

A more appropriate message to the user will be the one that will distinguish the categories

of results retrieved by the repository. For example if the user query was “Give me the

players that participated in the game between Milan and Barcelona” the most appropriate

answer will be “The players that participated in the game between Milan and Barcelona

from Milan are … and from Barcelona are… ”. This second case is also tied to the

repository structure and its ability to provide such information.

If the repository offers audiovisual information then the results to display to the user are

video segments. The video segments must be provided initially as links to the server that

Chapter 6

- 171 -

contains the segments and then the user to download them and reproduce them in a media

player.

In case the request was of type that the answer is yes or no (Request Type 2: see Chapter

4) then we propose that the most appropriate reply would be the one that in the case of a

positive answer (yes) the retrieved results should also be presented to the users since the

system tries to avoid dialogues and wants to be fast and accurate. Other way the answer is

just a negative answer (no).

A Natural Language Interface to a Knowledge Repository can also be used as a service to

provide information in a more complicated system. In such a case, the information needed

it can be urls or xml documents. The repository and the goal of use of the interface in a

particular application will determine the format of the information exchange.

The device for the results to be displayed also makes a lot of difference. When we have as

a front end, a handheld device (mobile phones, PDAs) the display is very limited. From

previous applications [Karanastasi et. al, 2004] we have seen that the notion of ranking

receives a bigger importance when dealing with small devices. If the results are textual we

need to cut off the user friendly messages and present to the user as less detailed as it can

get the information he/she asked. In case the user needs more details we ought to provide

a service for further details of the presented information. If the results are video segments

we need to provide the user a link from where he/she can download the specific segment.

NL Query API and NL Ontology API

The OntoNL Framework provides support for Natural Language disambiguation in

knowledge repositories. The NL Query API takes as input a natural language query and

after the disambiguation outputs a number of weighted SPARQL queries, based on the

ontologies used for the disambiguation. It implements functions for the data transfer

between the framework and the repository.

The NL Ontology API consists of the total of functions used for manipulating the

ontologies that interfere with the system. It implements functions like insertOntology(),

Chapter 6

- 172 -

storeOntology(), getClasses() and a number of other functions responsible for accessing

the information about the structure and the semantics of the disambiguation ontologies.

Implementation of an Application in the domain of

Soccer

In order to test the OntoNL, we developed an application for the domain of soccer [Zwtos,

2007]. The overall architecture is shown in figure 4. The reference ontology we used is an

application of the he DS-MIRF ontological infrastructure [Tsinaraki et. al., 2006] and the

WordNet for the syntactic analysis. The repository for accessing the instances is the DS-

MIRF Metadata Repository [Tsinaraki et al, 2006].

Chapter 6

- 173 -

Figure 23: The Architectural Representation of the Application

Chapter 6

- 174 -

The DS-MIRF Ontological Infrastructure

The DS-MIRF ontological infrastructure [Tsinaraki et. al, 2004] is shown in Figure 24 and

includes:

• An OWL Upper Ontology that fully captures the MPEG-7 MDS and the MPEG-21

DIA Architecture, which is the cornerstone of the ontological infrastructure of the

DS-MIRF framework and the basis for interoperability between OWL and MPEG-

7/21.

Figure 24: The ontological Infrastructure

• A set of OWL Application Ontologies that provide additional functionality in

OWL that either makes easier for the user the use of the MPEG-7/21 (usually

constructs implied in the MPEG-7/21 text like the typed relationships) or supports

advanced multimedia content services (like, for example, semantic user

preferences). The Application Ontologies provide general-purpose constructs that

are either implied in the text of MPEG-7/21 (but missing in the syntax) or not

available in MPEG-7/21.

Chapter 6

- 175 -

An application ontology that contains a set of extensions for the MPEG-7 MDS

has been developed, which allows the full representation of typed relationships

that are literally described in the MPEG-7 MDS text but their features are not fully

captured in the MPEG-7 MDS syntax. An application ontology for the description

of semantic user preferences for multimedia content has also been developed, as

the MPEG-7/21 user preference descriptions allow keyword-only descriptions of

the semantics of the preferred content. The application ontology is based on a

semantic user preference model we have proposed that also allows for the explicit

specification of the boolean operators to be used in the different phases of

multimedia content search and filtering. The semantic user preference model

that extends the MPEG-7/21 user preferences is described next.

 The Domain Ontologies, which extend the Upper Ontology and the Application

Ontologies with domain knowledge. For example, consider sports ontologies that

extend the abstract semantic description capabilities of the MPEG-7 MDS. A

methodology has been developed for defining and integrating domain ontologies

in the DS-MIRF framework and ontologies for soccer and Formula 1 have been

developed in order to test the methodology proposed.

TypedRelationType

GraphRelationType BaseRelationType Sem anticRelationTypeSpatia lRelationType Tem poralRelationType

IdentityRelationType Equiva lentRelationType KeyRelationType AgentRelationType

RelationType
Upper O ntology

Figure 25: The OWL class hierarchy defined for the representation of typed relationships

MPEG-7 OWL Ontologies

The MPEG-7 standard sees the relationships as types. This fact leads the need of creating

an application ontology for the representation of typed relationships, which contains a set

of extensions for the MPEG-7 MDS that allow the full representation of typed

relationships that are described in the MPEG-7 MDS text but their features are not fully

Chapter 6

- 176 -

captured in the MPEG-7 MDS syntax [Tsinaraki, 2006]. The relationships are represented

in the MPEG-7 MDS as instances of the “RelationType” class. An OWL class hierarchy

has been defined rooted in the “TypedRelationType” (which is a subclass of the

“RelationType” class of the Upper Ontology).

Additional restrictions for the general-purpose relationships expressed in the Upper

Ontology and the typed relationship application ontology are usually needed (e.g. a ‘Goal’

event may be related to player instances as goal agents). In these cases, properties are

defined that permit relating relationships to the allowed domain-specific entities only.

 A subproperty of the “Relation” property (“Relation” links semantic entities with

relationships) is defined. As an example, assume that we would like to express the

restriction that goals should be scored only by players. The “ScoresRelation”

object property (subproperty of the “Relation” property), should be defined,

having the “PlayerObject” class as domain and as range the “AgentRelationType”

class [Tsinaraki et al, 2006].

PPllaayyeerrOObbjjeecctt

SSccoorreeddBByyRReellaattiioonn

RReellaattiioonn

rdfs:subpropertyOf

SSccoorreessRReellaattiioonn

rdfs:subpropertyOf

owl:inverseOf GGooaall

AAggeennttOOffRReellaattiioonnTTyyppee AAggeennttRReellaattiioonnTTyyppee

iinnvveerrssee iinnvveerrssee

Figure 26: The “ScoresRelation” and “ScoredByRelation” object properties

 The inverse property of the one defined above is defined in the domain of the

classes the individuals of which are capable of being targets of the relationship. If

the relationship used in the previous step is not directed, it becomes the range of

the newly-defined property. If the relationship used is directed, its inverse

relationship becomes the range of the property. Since the “AgentRelationType”

relationship is directed, in the example above, the “ScoredByRelation” object

property (inverse of the “ScoresRelation” property) should be defined, having the

“Goal” class as domain and as range the “AgentOfRelationType” class.

Chapter 6

- 177 -

These features are parameters that must be taken into account when measuring the

semantic relatedness of concepts inside the ontology. So Equation 26,

),()(),(

1

1
2

1

1
121

∑

∑

∑

∑

=

=

=

= ×+×= n

i
ijk

n

i
invijk

n

i
ij

n

i
ijk

prop

p

p
f

p

p
fccsim becomes

),()(),(

1

1
2

1

1
121

∑

∑

∑

∑

=

=

=

= ×+×= n

i
ij

n

i
invijk

n

i
ij

n

i
ijk

prop

p

p
f

p

p
fccsim

and we consider 2f = 1f because we are more interested of the inverse properties that are

subproperties of the Relation Property, since they model the relationships in MPEG-7.

Also, in the RelationType classes the datatypeProperty target and source act as the

intermediate objectProperties of the Classes that have ObjectProperties, inverse properties

that are also subproperties of the Relation Property. So, when the OntoNL system detects

an objectProperty with Range a SubClass of the RelationType Class it checks for the

domain of its inverse Property.

The conclusion after this analysis is that by using the weighted shortest path calculation

algorithm in the DS-MIRF ontologies we will not get the most accurate results because

strongly related Classes are not connected through objectProperties. We need a more

specialized way of dealing with this differentiation and this will be to detect the

objectProperties that are subProperties of the Relation Property. We will consider that this

objectProperty has as Range, the Domain of its inverse property and we will continue with

the path calculation.

The WordNet Ontology

The WordNet Ontology that is accessed by the OntoNL Infrastructure through the

JWordNet API was presented in Chapter 2: Related Research and Work pp.38.

Chapter 6

- 178 -

The DS-MIRF Metadata Repository

The DS-MIRF Metadata Repository (the logical architecture of the platform is depicted in

Figure 29) is a part of the DS-MIRF Framework, which is accessed by the end-users

through appropriate application interfaces. The application interfaces may provide the

end-users with multimedia content services like multimedia content retrieval, filtering and

delivery.

Retrieval and Filtering Support

The retrieval and filtering support in the DS-MIRF Metadata Repository is based on

semantic queries that may be specified by the end-users using appropriate query editors on

top of the DS-MIRF framework. The semantic queries may have implicit or explicit

boolean operators.

Figure 27: The DS-MIRF Metadata Repository

A semantic query with implicit boolean operators (Q) is described by the regular

expression of Expression 1, while a semantic query with explicit boolean operators (QB)

Chapter 6

- 179 -

is described by the regular expression of Expression 2. In both cases, pv is a preference

value in the range [-100, 100] and T a semantic entity (described as shown in Expression

3).

Q = (T pv)*
Expression 1: Formal syntax of a semantic query with implicit boolean operators (Q)

QB = (((T(OR T)*) pv) | (((T(AND T)*) pv))*

Expression 2: Formal syntax of a semantic query with explicit boolean operators (QB)

T = (Tid TType) | (Tid TType) AND ((EName (EAName EAValue)* (E)*)|(RType

RTarget [RSource] [RStrength])|(AName AValue)) (AND((EName (EAName EAValue)*
(E)*)| (RType RTarget [RSource] [RStrength])|(AName AValue)))*

Expression 3: Formal syntax of a semantic entity (T)

In the Table 4 below we see examples of queries using the formal syntax specified in

Expression 1 and Expression 2. The queries use either the general constructs provided by

MPEG-7/21 (queries 1, 2) or the MPEG-7/21 constructs and domain knowledge (queries

3, 4, 5 and 6).

Query Natural Language Description
1. (Zuninio, AgentObjectType) 100 Give me the segments where

Zuninio appears (not only as a
player!)

2. ((D, SemanticTimeType) AND (after, D1))
AND ((D1, SemanticTimeType) AND (Time,
11/6/2004)) 100)

Give me the segments referring to
time after 11/6/2004

3. ((Zuninio, AgentObjectType) AND
(exemplifies, Player)) 100

Give me the segments where the
player Zuninio appears

4. ((BGoal, EventType) AND ((exemplifies,
Goal) AND (agent, Barcelona)) 100)

Give me the segments where
Barcelona scores

5. ((ZGoal, EventType) AND ((exemplifies,
Goal) AND (agent, Zuninio) AND (patient,
Kahn)) 100)

Give me the segments where the
player Zuninio scores against Kahn

6. ((DLGoal, EventType) AND ((exemplifies,
Goal) AND (time D) AND (place, da-Luz)
AND ((D, SemanticTimeType) AND (Time,
4/7/2004)) AND ((da-Luz, SemanticPlace-

Give me the segments where a goal
takes place on 4/7/2004 in the
soccer stadium da Luz

Chapter 6

- 180 -

Type) AND (exemplifies, SoccerStadium)))
100)

Table 4: Semantic Query Examples

The OntoNL to DS-MIRF Communication Management

The OntoNL framework is a component that every repository can use to provide a natural

language interface to users to access its information. The OntoNL in order to maintain its

reusability and independence from application specific requirements provides the NL

Query API that receives a Natural Language expression and gives back a query

disambiguated based on the reference ontology the system used for disambiguation.

In each case, the repository needs to analyze the request coming from the OntoNL

disambiguation process (SPARQL query) using mappings from domain ontology concepts

to internal structures/data model in order to exploit its query/access mechanisms and

retrieve the required information. This procedure takes place in the DS-MIRF OntoNL

Manager (see figure 4).

The DS-MIRF OntoNL Manager provides the OntoNL component with the ontologies for

the disambiguation and the natural language expression for disambiguation. The NL

Ontology API receives the ontology-ies and continues with the processing of the

structures and the semantics. The NL Query API receives the natural language expression

and continues with the syntactic disambiguation.

The DS-MIRF follows a specific schema for queries. This Schema allows the

specification of queries that refer to: (a) multimedia content that satisfies specific criteria;

(b) semantic entities that satisfy specific criteria and can be used for the semantic

descriptions of multimedia con+tent; and (c) constructs of domain ontologies expressed

using MPEG-7 syntax. This is specified in the From attribute of the query form for the

DS-MIRF Metadata Repository.

Chapter 6

- 181 -

The query schema allows the explicit specification of boolean operators and preference

values for the query elements. Three subtypes of query types have been defined for the

representation of all the possible types of queries.

The WeightedMPEG7QueryType, which represents queries with explicit preference values

(WQ) that are formally, described using the regular expression syntax of (1).

WQ=(WQS pv)* (1)

pv is an explicit preference value and WQS is a query specification with explicit

preference values. The preference values are integers in the range [-100, 100], with default

value 10 [Tsinaraki et. al, 2006]. The query specification represents the user’s search and

filtering criteria, corresponds to the WHERE part of the SELECT-FROM-WHERE

languages.

The BooleanMPEG7QueryType, which represents queries with explicit boolean operators

(BQ) that are formally described using the regular expression syntax of (2).

BQ=WQS[NOT] ((AND|OR) WQS [NOT])* (2)

BQS is a query specification with explicit boolean operators.

The BooleanWeighedMPEG7QueryType, which represents queries with explicit

preference values and boolean operators (BWQ) that are formally described using the

regular expression syntax of (3).

BWQ=WQS pv ((AND|OR) WQS pv)* (3)

BWQS is a query specification with explicitly specified preference values and boolean

operators.

These three query types give to the DS-MIRF OntoNL Manager the initial specification of

how to translate the SPARQL Query to the query language of the repository. This query

has been expressed using OWL syntax (available at

http://elikonas.ced.tuc.gr/Queries/MP7QL_OWL.zip).

Chapter 6

- 182 -

<?xml version="1.0" encoding="UTF-8"?>
<!-- Show me penalties or red cards of France-->
<urn:Mpeg7Query xsi:type="urn:BooleanMpeg7QueryType"
xmlns:urn="urn:mpeg:mp7q:schema:2001"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <urn:QuerySpecification booleanOperator="AND"
xsi:type="urn:BooleanMPEG7QuerySpecificationType">
 <urn:SemanticPreferences booleanOperator="OR">
 <urn:SemanticBase booleanOperator="AND" xsi:type="urn:BooleanEventType">
 <urn:Relation booleanOperator="AND"
type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:exemplifies"
target="soccerevents#PenaltyKick"/>
 <urn:Relation booleanOperator="AND"
target="mundial06teams.xml#FranceNationalTeamObject"/>
 </urn:SemanticBase>
 <urn:SemanticBase booleanOperator="AND" xsi:type="urn:BooleanEventType">
 <urn:Relation booleanOperator="AND"
type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:exemplifies"
target="soccerevents#RedCard"/>
 <urn:Relation booleanOperator="AND"
target="mundial06teams.xml#FranceNationalTeamObject"/>
 </urn:SemanticBase>
 </urn:SemanticPreferences>
 </urn:QuerySpecification>
</urn:Mpeg7Query>

Figure 28: An example of the query “Show me penalties or red cards of France ” in the query
language of the repository.

System Flow

From a data flow perspective, the Natural Language Parser receives a natural language

query and proceeds the complete syntactic and at a first level, semantic disambiguation,

using the Stanford POS-Tagger, a syntactic analyzer, for applying grammar rules and

rules for noun compound bracketing, and WordNet, as a complete word ontology. The

output of the parser is a language model that needs to be fulfilled semantically, after

consulting the ontologies.

Chapter 6

- 183 -

The ontologies that are used for disambiguation are processed. It receives input graphs

codified into a standard OWL format. This module implements the preprocessing phase,

the tokenization, the abbreviation expansion and the clustering based on weight

assignment. The semantic disambiguation module implements the disambiguation

algorithm we proposed in Chapter 5.

After the disambiguation a list of one or more weighted query structures with information

about instances of the concepts that a user may have declared.

The OWL ontologies that we used for a specific application are an upper OWL ontology

fully capturing the MPEG-7 MDS [Tsinaraki et al., 2004] and a methodology for its

extension with domain knowledge has been developed in the context of the DS-MIRF

framework [Tsinaraki et al., 2003]. OWL/RDF metadata for audiovisual content

description are produced, which are transformed, using appropriate transformation rules,

to MPEG-7 compliant metadata, thus providing a basic level of MPEG-7 interoperability.

The weighted query structures are translated to SPARQL queries based on the structure of

the reference disambiguation ontologies and then they are applied to the DS-MIRF

OntoNL Manager, responsible for the translation of the query to the query language the

repository uses. In particular the DS-MIRF Metadata Repository is an MPEG-7 XML

repository contains XML Documents, which are MPEG-7 compliant audiovisual content

descriptions.

Chapter 6

- 184 -

Figure 29: OntoNL System Flow

Chapter 6

- 185 -

We are going to use an example query to describe the exact methodology and the data

transformation after the process in every module.

Let’s consider a user’s request in the context of FIFA World Cup 2006: “Give me the

goals scored in the soccer game between Italy and France”.

First the system cuts off the subject and the verb of the request and converts the rest of the

sentence to a new one with the object being the subject:

Give me the goals scored in the soccer game between Italy and France

The goals scored in the soccer game between Italy and France

The parser handles to syntactically analyze the sentence. The part of speech tagger assigns

the correct parts of speech to each word inside the sentence.

Figure 30: The part of speech assignment in the sentence the goals scored in the football game
between Italy and France

Chapter 6

- 186 -

After the pos tagging procedure the sentence has a bigram of nouns (football/NN

game/NN). The noun compound analysis to achieve the maximum accuracy needs the

synonym sets in the various senses of the two nouns. The parser receives all the synonyms

from the WordNet

football football, football game,

soccer, association football

game contest, competition

 activity

 diversion, recreation

 animal, animate being, beast, brute, creature, fauna

 occupation, business, job, line of work, line

 score

 meat

 scheme, strategy

 play, frolic, romp, gambol, camper

and the noun compound analysis component filters the nouns and their synonyms from the

reference ontology. The ontology has a Class with name:

SoccerGame

The noun compound analysis component assigns the brackets in the bigram and the

system considers the two nouns as one.

Chapter 6

- 187 -

The grammatical relationship annotator generates the typed dependencies following the

procedure that was described in Chapter 4, by following two phases, the dependency

extraction and dependency typing.

The dependency extraction is an enhancement of the pos tagging procedure. The head of

each constituent of the sentence is identified, but modified to retrieve the semantic head of

the constituent rather than the syntactic head.

The goals of the soccer game between Italy and France

(NP the new phone book and tour guide)

Using the Collins rule, the head for this example is the word “guide”, and all the words in

the NP depend on it. In order to find semantically relevant dependencies, we need to

identify two heads, “book” and “guide”. We will then get the right dependencies (the noun

“book” still has primacy as a governing verb will link to it, but this seems reasonable):

det(goals, the)

det(football game, the)

CC and(Italy, France)

prep(Italy, between)

prep(France, between)

prep(game, in)

In the second phase, we label each of the dependencies extracted with a grammatical

relation which is as specific as possible. For each grammatical relation, we define one or

more patterns over the phrase structure parse tree (using the tree-expression syntax

defined by tregex [Levy and Andrew, 2006]. Conceptually, each pattern is matched

against every tree node, and the matching pattern with the most specific grammatical

relation is taken as the type of the dependency (in practice, some optimizations are used to

prune the search).

The resulted phrase structure parse tree is the shown in figure 12

Chapter 6

- 188 -

Figure 31: An example of a typed dependency parse for the sentence “the goals scored in the
football game between Italy and France”

The synonyms and sense discovery procedure resulted in lists of senses and their

synonyms for all the nouns of the sentence. For example the noun goal:

goal :: (1) goal, end the state of affairs that a plan is intended to achieve and

that (when achieved) terminates behavior intended to achieve it

synonyms: content, cognitive content, mental object the sum or range of

what has been perceived, discovered, or learned

 (2) goal a successful attempt at scoring

synonyms: score the act of scoring in a game or sport

Chapter 6

- 189 -

(3) goal game equipment consisting of the place toward which players

of a game try to advance a ball or puck in order to score points

synonyms: game equipment equipment or apparatus used in playing a

game

(4) finish, destination, goal the place designated as the end (as of a race

or journey

synonyms: end either extremity of something that has length

The resulted structure of the syntactic analysis is an instance of the language model as it

was presented in Chapter 4.

- 190 -

Figure 32: The language model for the sentence “the goals scored in the football game between Italy and France”

Chapter 6

- 191 -

After the syntactic disambiguation the system proceeds with the semantic disambiguation.

The disambiguation algorithm checks for the type of ambiguity based on the analysis of

the ambiguities we made in Chapter 5. The algorithm returns an ambiguity type 2. In such

case, as already discussed the OntoNL system needs to propose to the system a number of

possible queries.

The systems component Ontology Processor from figure 4 has completed the tasks of

word tokenization, abbreviation expansion and context clustering after the input of the

reference ontologies for disambiguation. The semantic disambiguation procedure assigned

a measure showing the relatedness between the concepts/classes of the ontologies. The

algorithm for applying the measure was shown in detail in Chapter 5. In equation (26)

),()(),(

1

1
2

1

1
121

∑

∑

∑

∑

=

=

=

= ×+×= n

i
ijk

n

i
invijk

n

i
ij

n

i
ijk

prop

p

p
f

p

p
fccsim (26)

suggestively we applied 2f = 0.8 and 1f = 0.2, values that came up after the evaluation

(see Chapter 7) because we are more interested of the inverse properties that are

subproperties of the Relation Property, since they model the relationships in MPEG-7.

We also applied the three factors 1w =0.6, 2w =0.1 and 3w =0.3 of equation (31), in the

particular application (see Chapter 7)

CDRSCOMOntoNL simwsimwsimwsim ×+×+×= 321 (31)

If we check the relatedness value of the class Goal with all the other classes of the

ontology and choose the three greater values of relatedness the result is:

PlayerObject: 0.17647058823529413

SoccerTeamObject: 0.11764705882352941

GoalKeeperObject: 0.23529411764705882

The number of related classes of the subject that we can apply to the repository by

constructing the corresponding SPARQL queries is not standard. The best case for the

Chapter 6

- 192 -

author would be to observe the behavior of the system in the beginning of use in an

application and adjust the threshold of the resulted disambiguated queries and the values

of the factors of the equations for similarity.

We will demonstrate in this particular case the syntax of a query were the proposed class

of the class instances France and Italy is the SoccerTeam

PREFIX rdf: http://www.w3.org/2001/XMLSchema-instance#

PREFIX core1:file:/C:/owltool/ontologies/AV_MDS03/av_semantics#

PREFIX core2:file:/C:/owltool/ontologies/AV_MDS03/TypedRelationships#

PREFIX domain1:file:/C:/owltool/ontologies/AV_MDS03/soccer/socceragents#

PREFIX domain2:file:/C:/owltool/ontologies/AV_MDS03/soccer/soccertimes#

PREFIX domain3:file:/C:/owltool/ontologies/AV_MDS03/soccer/soccerobjects#

PREFIX domain4:file:/C:/owltool/ontologies/AV_MDS03/soccer/soccerplaces#

PREFIX domain5:file:/C:/owltool/ontologies/AV_MDS03/soccer/soccerstates#

PREFIX domain6:file:/C:/owltool/ontologies/AV_MDS03/soccer/soccerevents#

SELECT ?ScoredByRelation ?PlacedKickResultOfRelation ?AgainstOfRelation

WHERE { ?goal domain6:CauserRelation ?CauserRelationType ;

 Domain6:OnRelation ?ExperiencerRelationType .

 ?CauserRelationType core2:target ?value1 .

?ExperiencerRelationType core2:target ?value2

FILTER (?value1 = ”…#France” || ?value1 = “…#Italy” &&

?value2 = “…#Italy” || value2 = “…#France”)};

In what follows, a number of screenshots will be shown that demonstrate two different

implementations of the particular application.

Chapter 6

- 193 -

Figure 33: Screenshots of the OntoNL Framework for the domain of soccer.

Figure 34. Screenshots with the XML fragment that contains the information asked by the user

Chapter 6

- 194 -

In Figures 31 and 32 we see an extended implementation of the application were we see in

details the syntactic analysis and the mapping of the natural language to the ontology

structures. What we see is a graphical user interface that is comprised by a number of

views that have the role to navigate us through the whole procedure followed from natural

language to machine language and the retrieval of information. The options for inputting

the request is by either loading a file that contains a sentence or a text in the editor or

either write our request. The grammar structure of requests is of the format subject part-

verb-object part were the actual usable information for the system is contained in the

object part since the beginning of the requests is like “I would like you to give me”,

“Show me”, “Find me” that has no usable information. So we convert the sentence in a

new one where the object becomes the subject and the object complement the verb and

object of the new sentence. The first part of the natural language parsing is the part-of

speech tagging.

In the right column we proceed with the linguistic analysis. We first check for noun

compounds consulting the information from the ontologies and then we annotate the

converted sentence with the grammatical relations. By this procedure we get the subjects

objects and their complements and by clicking in any of these words we retrieve its

senses, synonyms and hyponyms from a word ontology, the WordNet. The lower part of

the tool contains two views that concern domain information. The domain disambiguation

view shows us how the significant parts of the sentence are mapped by using the

disambiguation ontology. After this translation we get the results that are represented

either by a pair of values of the container and the id that shows where to find documents

with the requested information either by MPEG-7 XML fragments that contain the

requested information either plain strings to be shown to the end user.

In figures 33 and 34 we see screenshots of an application of use of the OntoNL framework

for retrieving audio visual content in the domain of the FIFA World Cup 2006. In this

application we only include the request editor and the result view. This application also

included the option of inserting the request using speech, but this is not one of the

concerns of this work. The result view presents a list with the labels of the XML

Chapter 6

- 195 -

descriptions that comprise the requested information. The user can choose to see the

audiovisual content of the results, like in figure 17.

Summary

In this section we have presented the implementation of the OntoNL Framework and of a

particular application in the domain of soccer. The Soccer Application of the OntoNL

Framework has been demonstrated in various conferences and in the 2nd and 3rd Annual

Review of the DELOS II Network of Excellence (IST 507618). We concluded with the

system flow via an example. In the next section we are going to present the evaluation

framework we developed for evaluating the OntoNL Framework with the experimental

details and results.

Figure 35: Screenshot of an application of the OntoNL framework with use of a speech

recognizer for the input of the natural language request

Chapter 6

- 196 -

Figure 36: The multimedia object retrieved from the user selection

- 197 -

Chapter 7

Evaluation

One of the essential activities when providing a software system in general, is to evaluate

the system based on qualitative and quantitative measures. We have considered as a

starting point an existing standard, ISO 9126 [http://en.wikipedia.org/wiki/ISO_9126],

which is concerned primarily with the definition of quality characteristics to be used in the

evaluation of software products. ISO 9126 sets out six quality characteristics, which are

intended to be exhaustive. From this it follows that each quality characteristics is very

broad. We indicate two illustrative examples:

4.1 Functionality

A set of attributes that bear on the existence of a set of functions and their

specified properties. The functions are those that satisfy stated or implied needs.

Note:

This set of attributes characterises what the software does to fulfil needs, whereas

the other sets mainly characterise when and how it does so.

For the stated and implied needs in this characteristic, the note to the definition of quality

applies (see 3.6)

were

3.6 Note: In a contractual environment, needs are specified, whereas in other

environments, implied needs should be identified and defined (ISO 8402:1986, note 1)

Chapter 7

- 198 -

A second quality characteristic that will be important in what follows is usability:

4.3 Usability

A set of attributes that bear on the effort needed for use, and on the individual

assessment of such use, by a stated or implied set of users.

Notes:

1. “Users” may be interpreted as most directly meaning the users of interactive

software. Users may include operators, and users and indirect users who are

under the influence of or dependent on the use of the software. Usability must

address all of the different user environments that the software may affect, which

may include preparation for usage and evaluation of results.

2. Usability defined in this International Standard as a specific set of attributes of a

software product differs from the definition from an ergonomic point of view,

where other characteristics such as efficiency and effectiveness are also seen as

constituents of usability.

Taking into account information from the ISO 9126 Standard we can summarize and

broadly distinguish three kinds of evaluation, appropriate to three different goals.

1. Adequacy Evaluation

This is determination of the fitness of a system for a purpose---will it do what is

required, how well, at what cost, etc. Typically for a prospective user, it may be

comparative or not, and may require considerable work to identify a user's needs.

2. Diagnostic Evaluation

This is production of a system performance profile with respect to some

taxonimization of the space of possible inputs. It is typically used by system

Chapter 7

- 199 -

developers, but sometimes offered to end-users as well. It usually requires the

construction of a large and hopefully representative test suite.

3. Performance Evaluation

This is measurement of system performance in one or more specific areas. It is

typically used to compare like with like, whether two alternative implementations of a

technology, or successive generations of the same implementation. It is typically

created for system developers and/or R&D programme managers.

When systems have a number of identifiable components associated with stages in the

processing they perform, it is important to be clear as to whether we approach the system

as a whole, or try to evaluate each component independently. When considering

individual components, a further distinction between intrinsic and extrinsic evaluation

must be respected---do we look at how a particular component works in its own terms

(intrinsic) or how it contributes to the overall performance of the system (extrinsic).

Measures Description

1. Adequacy Evaluation

The Adequacy Evaluation can be divided in two further evaluations: the Expert-based

and the User-based evaluation. The Expert-based evaluation is performed by HCI

experts who evaluate the usability of the interfaces according to a defined set of heuristics.

These heuristics address mainly the Natural Language Interfaces usability. The user

interface (UI) can be critical to the success or failure of a computer system. The

development of UIs requires an iterative design and evaluation process involving users at

every stage.

Specifically, the most significant parts to be considered are:

• developing a UI in a flexible, iterative manner, working in close collaboration with

the users;

Chapter 7

- 200 -

• identifying who will use the system, the tasks they want to carry out and the

environment in which they will be working;

• creating a conceptual design;

• choosing the most appropriate interaction style;

• choosing appropriate interaction devices;

• using text, colour, images, moving images and sound effectively;

• evaluating the UI,

Optimized User Interface Design requires a systematic approach to the design process.

But, to ensure optimum performance, Usability Testing is required. This is what we call

User-based evaluation and is performed by the end users of the system. This empirical

testing permits expert and naïve users to provide data about what does work as anticipated

and what does not work. Only after the resulting repairs are made can a system be deemed

to have a user optimized interface.

HCI-expert users can define the form of the information provided to users (expert or naïve

users), who is most important and reasonable to be shown and the way to be presented

regardless of the graphical UI design.

As we presented in Chapter 6, an application of the OntoNL system has been

implemented that is as a question answering system for the domain of soccer, were naïve

users are the actual users of the system using a pc or a web-based user interface for

entering a request. We want to measure the satisfaction of users for the effectiveness of

applying their requests to the system using the web after presenting them the results.

2. Diagnostic Evaluation

The Diagnostic Evaluation is about testing the range of possible sentences that the

OntoNL system can parse and disambiguate linguistically. It is conducted by system

developers and it refers to the successfully parsing of natural language expressions and to

different categories of grammatical relations combinations that need to be disambiguated.

Chapter 7

- 201 -

Below we present the different categories of request types that the system disambiguates

and obtains results, through a class diagram and a description of the diagram.

Figure 37: The language model that describes the different categories of Natural Language
expressions that the OntoNL can parse

OntoNL Natural Language Expressions
SubjectPart

1 Subject VerbPhraseGroup ObjectPart

 1 Direct

Boolean

AND Boolean AND Indirect
 Object2

Verb

Boolean OR

1

Object

Subject

Complement Boolean AND

Object

Boolean OR
Figure 38: Syntax of the natural language expressions

3. Performance Evaluation

The performance evaluation can be distinguished to the quantitative and the qualitative

evaluation. We are interested in the qualitative performance.

Chapter 7

- 202 -

The qualitative performance evaluation concerns the performance of the relatedness

measure and the query formulation. How can we reason about computational measures of

semantic relatedness? Given a single measure, can we tell whether it is a good or a poor

one? Given two measures, can we tell whether one is better than the other?

Evaluation of semantic relatedness measures remains an open question [Agirre and Rigau,

1997, Resnik, 1995, Hirst and St-Onge, 1998]. In our survey of literature on the topic, we

have come across three prevalent approaches: mathematical analysis, comparison with

human judgement, and application-specific evaluation.

The first approach (see, e.g., [Wei, 1993, Lin, 1998]) consists in a (chiefly) theoretical

examination of mathematical properties of a measure, such as whether it is actually a

metric, whether it has singularities, whether its parameter-projections are smooth

functions, etc. Such analyses, in our opinion, may certainly aid the comparison of several

measures but perhaps not so much their individual assessment.

The second approach, comparison with human judgments of relatedness, does not appear

to suffer from the same limitations; in fact, it arguably yields the most generic assessment

of the 'goodness' of a measure; however, its major drawback lies in the difficulty of

obtaining such judgements (i.e., designing a psycholinguistic experiment, validating its

results, etc.). In his [1995] paper, Resnik presented a comparison of the ratings produced

by his measure simR (and a couple of others) with those produced by human subjects on a

set of 30 word pairs from an experiment by Miller and Charles [1991]. The fact that

others [Jiang and Conrath, 1997, Lin, 1998] followed his lead and employed the same

modestly sized dataset in their work appears to be a testament to the seriousness of the

problem.

Because of these deficiencies, we, generally, have to take sides with the remaining group

of researchers who have chosen to evaluate their measures in the framework of a

particular NLP application.

However, since the trend has been established and since we have also found a use for the

results in our application-specific evaluation, we decided to have the measures

implemented as part of the application-specific evaluation.

Chapter 7

- 203 -

Evaluation Results

1. Adequacy Evaluation

The adequacy evaluation addresses the evaluation of the usability of the interfaces

according to a defined set of heuristics. The graphical user interface that was evaluated is

the application of the OntoNL Framework in the domain of soccer (OntoNL2DS-MIRF)

as it was described in the implementation chapter and is presented in figure 39 and not the

OntoNL Component. This evaluation has as a starting point the ten heuristics of Nielsen

[Nielsen, 1994]. The evaluation comments are based on comments of an evaluation team of

three HCI experts, Prof. Tiziana Catarci, Dr. Yael Dubinsky and Dr. Stephen Kimani, from

the Department of Computer and Systems Science (Dipartimento di Informatica e

Sistemistica) of the University of Rome "La Sapienza" and the reflection on these

comments as was expressed by people who are involved in the development of this system.

Figure 39: Screenshot of the graphical user interface of the OntoNL Framework application for
the domain of soccer.

The useful comments that derive from the Adequacy Evaluation were taken into account for

further refinements of the application.

Chapter 7

- 204 -

1. Visibility of System Status

Description: The system should always keep users informed about what is going on,

through appropriate feedback within reasonable time.

Comments:

• In the current system, users should only press one button in order to continue with the

parsing of the question till reaching the final answer for their question. The users are not

interested with this parsing process (parsing tree, possible ambiguities, etc.) and this

information is being kept invisible to the user.

• The system is expected to provide progress information towards the final answer/s. The

case of progress information that relate to a series of questions/answers should be

considered.

2. Match between the System and the Real World

Description: The system should speak the users' language, with words, phrases and

concepts familiar to the user, rather than system-oriented terms. Follow real-world

conventions, making information appear in a natural and logical order.

Comments:

• Globally, the words that are used are familiar to users. Users expect answers to be

displayed in their (natural) language vs. XML data presentation, so maybe the XML

fragment should not be displayed.

• Users can start each question with phrases like “I would like to know…” and a more

straight forward approach i.e., how, what, when questions that is a better approach when the

system is being used extensively.

3. User control and freedom

Chapter 7

- 205 -

Description: Users often choose system functions by mistake and will need a clearly

marked "emergency exit" to leave the unwanted state without having to go through an

extended dialogue. Support undo and redo.

Comments:

• Options of delete, move up/down should be added assuming users are able to manipulate

their already asked questions set.

• Options of undo and redo should be added assuming users are able to manipulate the list of

results (answers).

4. Consistency and Standards

Description: Users should not have to wonder whether different words, situations, or

actions mean the same thing. Follow platform conventions.

No special comment.

5. Error prevention

Description: Even better than good error messages is a careful design which prevents a

problem from occurring in the first place. Either eliminate error-prone conditions or check

for them and present users with a confirmation option before they commit to the action.

Comments:

• Errors should be prevented, e.g., when high probability that the question cannot be parsed

correctly.

6. Recognition rather than recall

Description: Minimize the user's memory load by making objects, actions, and options

visible. The user should not have to remember information from one part of the dialogue

Chapter 7

- 206 -

to another. Instructions for use of the system should be visible or easily retrievable

whenever appropriate.

 Comments:

• Users are able to manipulate their already asked questions set. This way they will not

have to remember them and it will be available for reuse.

7. Flexibility and efficiency of use

Description: Accelerators -- unseen by the novice user -- may often speed up the

interaction for the expert user such that the system can cater to both inexperienced and

experienced users. Allow users to tailor frequent actions.

Comments:

• Experienced users are not provided with shortcuts.

8. Aesthetic and minimalist design

Description: Dialogues should not contain information which is irrelevant or rarely

needed. Every extra unit of information in a dialogue competes with the relevant units of

information and diminishes their relative visibility.

Comments:

• All areas in the current interface are useful and will be used by far by users.

9. Help users recognize, diagnose and recover from errors

Description: Error messages should be expressed in plain language (no codes), precisely

indicate the problem, and constructively suggest a solution.

Comments:

Chapter 7

- 207 -

• More error messages and confirmation dialogues should be added.

10. Help and documentation

Description: Even though it is better if the system can be used without documentation, it

may be necessary to provide help and documentation. Any such information should be

easy to search, focused on the user's task, list concrete steps to be carried out, and not be

too large.

Comments:

• On-line help should be provided for users in order to know which questions are

permitted, and how to manipulate series of questions/answers.

2. Diagnostic Evaluation

We are interested in the successful parsing of sentences with the syntax shown in figure 34.

Direct comparison between our system and other dependency parsers like Minipar [Lin,

1998] and the Link Parser [Sleator and Temperlay, 1993] is complicated by differences

between the annotation schemes targeted by each system, presumably reflecting variations

in theoretical and practical motivations. The systems do not always agree about which

words should be counted as the dependents of a particular sentence. Even when the systems

agree about whether two words are in a dependency relation, they may diverge about the

type of the dependency. Each system assigns dependency types from a different set of

grammatical relations and it is not straightforward to establish mappings between these sets.

Also, the names used for relations vary considerably, and the distinctions between different

relations may vary as well. Such differences make it difficult to directly compare the quality

of the three systems. The most salient difference between the schemes is the level of

granularity. Carroll’s scheme contains 23 grammatical relations, MiniPar 59, Link 106

and ours 22. Based on De Marneffe’s evaluation attempts [De Marneffe et. al, 2006] for the

Stanford Parser against Link and Minipar parsers, Lin [Lin, 1998] proposes two ways to

evaluate the correctness of a dependency parse against a gold standard. In the first method,

Chapter 7

- 208 -

one simply examines whether each output dependency also occurs in the gold standard,

while ignoring the grammatical type of the dependency; this method is therefore sensitive

only to the structure of the dependency tree. The second method also considers whether the

type of each output dependency matches the gold standard. But because the correctness of a

dependency parser must be evaluated according to the annotation scheme it targets, and

because each parser targets a different scheme, quantitative comparison is difficult.

To provide a qualitative comparison, we tagged, with the three taggers, fifteen sentences

chosen from the Brown Corpus. The sentences we examined (table 4) agree with the

language model we have developed for the OntoNL Framework. In what follows, we

present in figures 37, 38 and 39 the dependency graphs that are produced after the parsing

of the sentence “Bills on ports and immigration were submitted by Senator Brownback”.

We chose this sentence as an illustrative example because it is short but shows typical

structures like prepositional phrases, coordination and noun compounding. The dependency

graph is a tree, a singly rooted directed acyclic graph with no re-entrances. The graph

representing Minipar output collapses directed paths through preposition nodes. It also adds

antecedent links to ‘clone’ nodes between brackets. The graph for the Link Parser presents

the same collapsing of directed paths through preposition nodes.

Bills

submitted

[Bills] were Senator

Brownbackports

and immigration

s

obj be

by

personon

punc conj

Figure 40: Minipar’s dependency parse for the sentence “Bills on ports and immigration were
submitted by Senator Brownback”

Chapter 7

- 209 -

Bills submitted

were

Senator

Brownback

ports

and

immigration by

pl - subj pasv-part

on prep-after-part

comp-of-prep

cnoun-mod-pnoun

Figure 41: Link Parser’s dependency parse for the sentence “Bills on ports and immigration
were submitted by Senator Brownback”

submitted

Bills

cc

immigration

conj

and

ports

nsubj

by

Senator Brownbackon

prep agent

clausal

agent

Figure 42: OntoNL Parser’s dependency parse for the sentence “Bills on ports and immigration
were submitted by Senator Brownback”

Generally, the Stanford (the tagger, we also use in our system) and the Link tagger lead to

more accurate structures than Minipar [De Marneffe et. al, 2006]. The Stanford tagger was

Chapter 7

- 210 -

trained on the Penn Wall Street Journal Treebank and does a poor job at parsing questions,

though. This is easily explained by the fact that the parser is trained on the Wall Street

Journal section of the Penn Treebank in which not many questions occur. Minipar is

confused by punctuation (already mentioned in [Lin, 1998]) and is also confused by

conjunctions. Our parser behaves very well in conjunctions because of the strict language

model it follows. An advantage of the Minipar is its capacity to identify collocations. The

Link parser also has trouble with conjuction: it did not parse correctly sentences 6 and 15.

We evaluated our system on this sample of 15 sentences. We obtained a dependency

accuracy of about 80%. However it can be only considered as a rough estimate because of

the quite small sample size and the complexity of the sentence structure. Our objective

was to evaluate the OntoNL parsing mechanism in comparison with other well known

parsers in order to conclude to advantages and future refinements.

1 She lived and was given a name.
ID: cm05 | genre: scifi

2 He had better write a postcard to Walter.
ID: cn19 | genre: adventure

3 People came in and out all evening to see the baby.
ID: cp02 | genre: romance

4 Spencer said nothing.
ID: cp07 | genre: romance

5 They make us conformists look good.
ID: cp15 | genre: romance

6 A cookie with caramel filling and chocolate frosting won the cooking competition.
ID: ca30 | genre: reportage

7 Everywhere I went in Formosa I asked the same question
ID: cb23 | genre: editorial

8 The letters of the common soldiers are rich in humor.
ID: cf18 | genre: popularlore

9 This time he was making no mistake
ID: cg32 | genre: belleslettres

10 It usually turned out well for him
ID: cg60 | genre: belleslettres

11 The author of the anonymous notes seemed to be all-knowing.
ID: cn11 | genre: adventure

12 Below he could see the bright torches lighting the riverbank
ID: ck21 | genre: generalfiction

13 Beckworth handed the pass to the colonel.
ID: ck21 | genre: generalfiction

Chapter 7

- 211 -

14 Must Berlin remain divided?
ID: cb02 | genre: editorial

15 Old, tired, trembling the woman came to the cannery.
ID: cb08 | genre: editorial

Table 5: 15 sentences from the Brown Corpus, to compare outputs of Minipar, the Link Parser
and the OntoNL parser.

3. Performance Evaluation

The Performance Evaluation is comprised of the two parts of evaluation; the quantitative

and the qualitative evaluation. In this thesis we are going to deal with the qualitative

evaluation of specific processes of the OntoNL Framework. The qualitative evaluation

concerns measuring the effectiveness of the noun compound bracketing mechanism,

the semantic relatedness measure and an application-based evaluation of measures of

relatedness.

NOUN COMPOUND BRACKETING

In this section we describe the methodology of training the noun compound bracketing

algorithm we described in Chapter 4 and evaluating its accuracy by using two large OWL

domain ontologies freely available in the web, the Soccer Ontology

(http://www.music.tuc.gr/ontologies/mpeg7/mds/socccer/) and the Biopax-Level 2

Ontology (http://www.biopax.org/).

Method

In all the experimental work we will only consider English compound nouns. Nonetheless,

compounds appear in many other languages and there seems no reason why the same

techniques we used would work less well in these.

We also assume that the possible compound has been recognised from the surrounding

text based on the linguistic analysis as it was described in Chapter 4, so that the system is

presented with a sequence of nouns known to be a compound.

Chapter 7

- 212 -

Given an identified compound, it is simplest to define the parsing task as one of

bracketing. That is, the system must select the most likely binary bracketing of the noun

sequence, assuming that it is a compound noun.

According to most views of compounding, the composition of two or more nouns yields

an element with essentially the same syntactic behaviour as the original nouns. An n-word

compound noun acts exactly like a single noun, as do three word compounds and so forth.

To define the primary goal of the work in the OntoNL noun compound bracketing

mechanism we conclude to the next statement:

Problem Statement: Given a three word English compound noun predict whether the

most likely syntactic analysis is left-branching or right-branching.

Extracting a Test Set

Two test sets of syntactically unambiguous noun compounds was extracted from a 67

pages document describing molecular binding interactions, protein post-translational

modifications, basic experimental descriptions, and hierarchical pathways and a 115

official document from FIFA describing the rules of football in the following way.

Because the corpus is not tagged or parsed, a somewhat conservative strategy of looking

for unambiguous sequences of nouns was used. To distinguish nouns from other words we

used once again the Stanford Log-Linear Tagger to generate the set of words that can only

be used as nouns. Let’s call this set from now on N. All consecutive sequences of these

words were extracted, and the three word sequences used to form the test set. The result

was 98 test trigrams.

These triples were manually analysed using as context the entire article in which they

appeared. In some cases, the sequence was not a noun compound (nouns can appear

adjacent to one another across various constituent boundaries) and was marked as an

error. Other compounds exhibited what Hindle and Rooth (1993) have termed

SEMANTIC INDETERMINACY where the two possible bracketings cannot be

Chapter 7

- 213 -

distinguished in the context. The remaining compounds were assigned either a left-

branching or right-branching analysis. The number of each kind is shown in Table 6.

Type Number Proportion
Error

Indeterminate

Left-branching

Right-branching

7

11

52

28

7%

11%

53%

29%

Table 6: Test Set distribution

Conceptual Association

As we have described in Chapter 4, we use the term Conceptual Association in this study

to refer to association values computed between groups of words. We have used groups

consisting of all categories from the Roget’s II: The New Thesaurus

(http://www.bartleby.com/62/). By assuming that all words within a group behave

similarly, the parameter space can be built in terms of the groups rather than in terms of

the words.

Given two thesaurus categories t1 and t2, there is a parameter which represents the degree

of acceptability of the structure [n1 n2] where n1 is a noun appearing in t1 and n2 appears in

t2. By the assumption that words within a group behave similarly, this is constant given

the two categories.

Following Lauer and Dras (1944) we can formally write this parameter as Pr(t1 t2)

where the event t1 t2 denotes the modification of a noun in t2 by a noun in t1.

Training

To ensure that the test set is disjoint from the training data, all occurrences of the test noun

compounds have been removed from the training corpus.

Chapter 7

- 214 -

We are going to explore two types of training scheme. The first employs a pattern that

follows Pustejovsky (1993) in counting the occurrences of subcomponents. A training

instance is any sequence of four words w1w2w3w4 where 1 4,w w N∉ (N is a set of words

that can be used only as nouns) and 2 3,w w N∈ . Let 1 2(,)pcount w w be the number of

times a sequence w1w2w3w4 occurs in the training corpus with 1 4,w w N∉ .

The second type uses a window to collect training instances by observing how often a pair

of nouns co-occur within some fixed number of words. In this work, a variety of window

sizes are used.

In OntoNL we used a window to collect training instances by observing how often a pair

of nouns co-occurs within some fixed number of words. For window size 2n ≥ , let

1 2(,)ncount w w be the number of times a sequence n1w1…win2 occurs in the training

corpus where 2−≤ ni . The estimates are:

1 1 2 2

1 2 2

1 2
1 2

1 2 , 1 2

, 1 2

(,)1P() (,) () ()
(,)

n

n w t w t

w N w t

count w wt t count w w amb w amb w
amb w w

∈ ∈

∈ ∈

→ = ∑
∑

where amb(w) counts the number of categories w appears and N is a set of words that can

only be used as nouns. The amb(w) has the effect of dividing the evidence from a training

instance across all possible categories for the words. The first parameter of the

multiplication is used to ensure that the parameters for a head noun sum to unity. After the

calculation of the estimates, we continue by trying to make a right choice of all possible

analyses for three word compounds, which are the counting of a right or a left branching

analysis. So, for the adjacency model and a given compound of w1, w2, w3 the estimation

of the ratio is done by applying the equation

()

1 2
()

2 3
()

()
i i

i i

t cats w
adj

t cats w

P t t
R

P t t
∈

∈

→
=

→

∑
∑

Chapter 7

- 215 -

for the dependency model and a given compound of w1, w2, w3 the estimation of the ratio

is done by applying the equation

()

()∑
∑

∈

∈

→→

→→
=

)(
3231

)(
3221

)(

)(

ii

ii

wcatst

wcatst
dep ttPttP

ttPttP
R

where t1, t2 and t3 are conceptual categories in a taxonomy or thesaurus, and the nouns

w1,…,wn are members of these categories. If the ratio is >1 then we conclude to a left-

branching analysis. If it is <1 then a right branching analysis is chosen. If it is =1, the

OntoNL analyzer, based on Lauer (Lauer, 1995) guesses left-branching, a rare case for

conceptual association based on experimental results.

For a correct result we must sum over all possible categories for the words in the

compound. In any case, the estimation of probabilities over concepts reduces the number

of model parameters.

Results

In what follows, all evidence used to estimate the parameters of the model is collected in

one pass over the corpus and stored in a fast access data structure. Evidence is gathered

across the entire vocabulary, not just for those words necessary for analysing a particular

test set. Once trained in this way, the program can quickly analyse any compound,

restricted only by the lexicon and thesaurus. This demonstrates that the parsing strategy

can be directly employed using currently available hardware in broad coverage natural

language processing systems.

Six different training schemes have been used to estimate the parameters and each set of

estimates used to analyse the test set under both the adjacency and the dependency model.

The schemes used are the pattern that follows Pustejovsky (1993) in counting the

occurrences of subcomponents and windowed training schemes with window widths of 2,

3, 4, 5 and 10 words.

Chapter 7

- 216 -

45

50

55

60

65

70

75

80

85

Pattern 2 3 4 5 10

Training Scheme (integers denote window widths)

A
cc

ur
ac

y

Dependency Model
Adjacency Model

Figure 43: Accuracy of analysis of the test set under the dependency and the adjacency model
for the pattern training scheme that follows Pustejovsky (1993) in counting the occurrences of

subcomponents and for the windowed training schemes with window widths of 2, 3, 4, 5 and 10
words

The accuracy on the test set for all these experiments is shown in Figure 43. As can been

seen, the OntoNL dependency model is more accurate than the OntoNL adjacency model.

The proportion of cases in which the procedure was forced to guess, either because no

data supported either analysis, is quite low. For the pattern and two-word window training

schemes, the guess rate is less that 6% for both models. In the three-word window training

scheme, the guess rate is less that 2%. For all larger windows, neither model is ever forced

to guess.

In no case do any of the windowed training schemes outperform the pattern scheme. It

seems that additional instances admitted by the windowed schemes are too noisy to make

an improvement.

Lexical Association

Chapter 7

- 217 -

To determine the difference made by conceptual association, the pattern training scheme

has been retrained using lexical counts for both the dependency and adjacency model, but

only for the words in the test set. Accuracy and guess rates are shown in figure 4.

Conceptual association outperforms lexical association, presumably because of its ability

to generalize (see Figure 44).

50

55

60

65

70

75

80

85

Adjacency Dependency

Ac
cu

ra
cy

 (%
)

Lexical
Conceptual

Figure 44: Accuracy of analysis of the test set under the dependency and the adjacency model
for the pattern training scheme using lexical association and conceptual association

Using a Tagger

One problem with the training methods we presented previously is the restriction of

training data to nouns in N. Many nouns, especially common ones, have verbal or

adjectival usages that preclude them from being in N. Yet when they occur as nouns, they

still provide useful training information that the current system ignores. To test whether

using tagged data would make a difference, the freely available Stanford Log-Linear POS

Tagger (http://nlp.stanford.edu/software/tagger.shtml) was applied to the corpus. Since no

manually tagged training data is available for our corpus, the tagger's default rules were

used.

Chapter 7

- 218 -

55

60

65

70

75

80

85

90

Pattern 2 3 4

Training Scheme (integers denote window widths)

A
cc

ur
ac

y
(%

)
Tagged Dependency
Tagged Dependency
Dependency
Adjacency

Figure 45: Accuracy of analyzing the test set using a tagged corpus under the dependency and
the adjacency model for the pattern training scheme that follows Pustejovsky (1993) in

counting the occurrences of subcomponents and for the windowed training schemes with
window widths of 2, 3, and 4 words and comparison with the accuracy presented in figure 43.

Four training schemes have been used and the tuned analysis procedures applied to the

test set. Figure 45 shows the resulting accuracy, with accuracy values from figure 43

displayed with dotted lines. If anything, admitting additional training data based on the

tagger introduces more noise, reducing the accuracy. However, for the pattern training

scheme an improvement was made to the dependency model, producing the highest

overall accuracy of 84%.

Using Domain Ontologies

What we propose in this method is to use as corpus the nouns used for naming the

concepts of the domain ontolog, plus their synonyms and the descriptions of the concepts

inside the ontology. One problem with this approach is that in the absence of descriptions

we only have as training corpus the names of the concepts of the ontology which is a very

limited corpus with either excellent or very bad results. On the other hand when the

Chapter 7

- 219 -

domain ontology used for the semantic disambiguation is also used for the noun

compound bracketing mechanism there is no need to find relative to the domain corpuses

each time we want to use the OntoNL.

Figure 46: Accuracy of analyzing the test set using a tagged corpus and domain ontologies
under the dependency and the adjacency model for the pattern training scheme that follows

Pustejovsky (1993) in counting the occurrences of subcomponents and for the windowed
training schemes with window widths of 2 and 3 words and comparison with the accuracy

presented in figure 45.

Three training schemes have been used and the tuned analysis procedures applied to the

test set. Figure 46 shows the resulting accuracy, with accuracy values from Figure 45

displayed with dotted lines. What we see is that the resulting accuracy is better in all cases

and that the most significant improvement was in the dependency model with training

scheme of window width 2 (85,8% from 80,1%).

SEMANTIC RELATEDNESS MEASURE

A. Comparison with human ratings of semantic relatedness

Chapter 7

- 220 -

To assess our relatedness measure’s usefulness, we need to evaluate it against a “gold

standard” of object relatedness. To that end we designed a detailed experiment in which

human subjects were asked to assess the relatedness between pairs of objects. As

Budanitsky and Hirst [Budanitsky et. al, 2006] found in a study comparing WordNet

similarity measures human judgments give the best assessments of the “goodness” of a

measure. We found that the experiment described in [Miller and Charles, 1991], which

relies on human judgments, has become the benchmark in determining the similarity of

words in NLP research (see [Budanitsky et. al, 2006,] [Jarmasz et. al, 2003], [Lin, 1998],

[Resnik, 1995]). We reused their overall experimental design and adapted it to be usable

for complex objects in an ontology as follows: First, we had to find a number of suitable

object pairs from a number of ontologies. Then, we had to define an appropriate order in

which those pairs were going to be presented to the subjects, who assessed the similarity

of the pairs on a scale between zero (semantically unrelated) and one (highly related),

according to their “relatedness of meaning”.

The ontologies that we chose for our tests concern the domains of wine, pizza, the animal

koala, soccer, people with pets, images and travel information and they are all OWL

ontologies that can be found free in the web. The class hierarchies and the properties of

the ontologies can be found in the APPENDIX. Note that the subjects’ ability to relate to

the ontology content is crucial for the success of the experiment. Lord [Lord et. al, 2003],

for example, had to desist an evaluation with human subjects as experts in their

application domain (biology) are difficult to find.

From the ontologies we have selected a number of concepts that we thought would be

understandable to a general audience and combined them into pairs fulfilling the

following criteria:

• At least two pairs should be in close vicinity in the ontology-graph.

• At least two pairs should be far apart in the ontology-graph.

• At least one pair should consist of a concept and its descendant/specialization.

The rest of the processes were paired in a way such that the processes’ name, description,

attributes, or properties featured some relatedness.

Chapter 7

- 221 -

We have obtained relatedness judgments from 25 human subjects, 10 from the computer

science field that where shown the domain ontologies’ structure and 15 from the liberal arts

field that were used for the evaluation, for 85 pairs of concepts that we meet in the seven

OWL domain ontologies for different domains (APPENDIX). The main goal is to compare

the OntoNL sub-measures and the overall measure on how well they reflect human

judgments. The subjects had the opportunity during the evaluation, to see the properties and

the description (if any) of the concepts that they had to assess the relatedness.

The subjects were asked to assess the relatedness between two processes on a scale from 0

(semantically unrelated) to one (highly related). The users were asked to specify how they

had made the assessment: 1. by concept name, 2. by concept description, 3. by concept

properties, 4. a combination of 1-3, and 5. using other assessment method. This question

captures in respect to which features of the object the relatedness was observed by the

subjects – a notion that similarity researchers in the social sciences have found to be

central [Gentner D. and Medina, J., 1998]. Finally, the subjects could add some comments

on their assessment, that are crucial for determining the impact of influence of each

relatedness measure that constitute the OntoNL semantic relatedness measurement.

Chapter 7

- 222 -

Images Ontology

Pair

Humans
LibArts

Humans
CompScience

Overall relRS relCD relPROPdirect relPROPinverse

1 Video Text Image 0,36 0,42 0,378 0 0,6 1 0,2857
2 Image Text Image 0,71 0,68 0,701 0 0,8 1 0,425
3 Image Mosaic 0,65 0,64 0,647 0,775 0,625 1 0,5857
4 Video Segment Video Frame 0,54 0,48 0,522 0 0,5 1 0,425
5 Multimedia Still Region 0 0,2 0,06 0 0 0,3 0,125
6 Image Text Video Segment 0,18 0,04 0,138 0 0 0,3 0,2857
7 Video Moving Region 0,77 0,68 0,743 0 0,725 1 0,725
8 Video Still Region 0,29 0,32 0,299 0 0,3 0,3 0,325
9 Image Moving Region 0,33 0,24 0,303 0 0,3 0,66 0,2857
10 Image Still Region 0,72 0,74 0,726 0 0,775 1 0,625

Table 7: Human and computer ratings for the domain ontology Technical.owl

Chapter 7

- 223 -

People Ontology

Pair
Humans
LibArts

Humans
CompScience

Overall
relRS relCD relPROPdirect relPROPinverse

1 Person Grass 0,08 0,1 0,086 0 0,2 0,25 0,05
2 Publication Man 0,21 0,24 0,219 0,1435 0,25 1 0,2
3 Man Vehicle 0,12 0,24 0,156 0,01 0,32 0,75 0,15
4 Person Cat 0,28 0,36 0,304 0,1465 0,35 0,75 0,357
5 Person Cow 0,28 0,36 0,304 0,2233 0,25 0,75 0,357
6 Vegeterian Cow 0,62 0,84 0,686 0,6 0,9 1 0,428
7 Cow Leaf 0,94 0,82 0,904 0,6 0,9 1 0,8
8 Cat Owner Dog Liker 0,12 0,27 0,165 0 0,22 0,5 0,357
9 Newspaper Old Lady 0,08 0,54 0,218 0 0,5 0,75 0,1875
10 Woman Kid 0,75 0,88 0,789 0,425 0,825 1 0,5

Table 8: Human and computer ratings for the domain ontology People.owl

Chapter 7

- 224 -

Koala Ontology

Pair Humans
LibArts

Humans
CompScience relRS relCD relPROPdirect relPROPinverse

1 Animal Forest 0,87 0,75 0,0 0,645 0,0 0,0
2 Student Degree 0,94 0,75 0,166 0,925 0,0 0,0
3 Graduate Student University 0,88 0,5 0,0 0,925 0,6 0,0
4 Gender Degree 0,11 0,35 0,2 0,4 0,3 0,0
5 Gender Rainforest 0,04 0 0,0 0,0 0,0 0,0
6 Koala Dry Eucalypt Forest 0,84 0,75 0,0 0,0 0,0 0,0
7 Parent Student 0,76 0,9 0,0 0,0 1,0 0,0
8 Parent University 0,62 0,6 0,0 0,645 0,0 0,0
9 Student Koala 0,3 0,5 0,0 0,0 1,0 0,0
10 Koala Rain Forest 0,84 0,75 0,0 0,0 0,0 0,0

Table 9: Human and computer ratings for the domain ontology Koala.owl

Chapter 7

- 225 -

Pizza Ontology

Pair
Humans
LibArts

Humans
CompScience

Overall
relRS relCD relPROPdirect relPROPinverse

1 Margherita Meat Topping 0,2 0,1 0,17 0 0 0,33 0,33
2 Vegeterian Pizza Hot 0,43 0,68 0,505 0 0,72 0,625 0,33
3 Meaty Pizza Meat Topping 0,98 0,8 0,926 0 0,825 1 0,4286
4 Fish Topping Mild 0,5 0,6 0,53 0 0,662 0,625 0,33
5 FruttiDiMare Mild 0,5 0,1 0,38 0 0,15 0,625 0,33
6 Non Vegeterian Pizza Cajun 0,75 0,3 0,615 0 0,3 1 0,286
7 Ice Cream Pizza 0 0 0 0 0 0,75 0,363
8 Ice Cream Fruit Topping 0,68 0,1 0,506 0 0,2 0,825 0,2727
9 Country Pizza 0,6 0,1 0,45 0 0 0,825 0,4

10 TobascoPepper Sauce Hot 0,76 0,5 0,682 0 0,6 1 0,4286
Table 10: Human and computer ratings for the domain ontology Pizza.owl

Chapter 7

- 226 -

Wine Ontology

Pair Humans
LibArts

Humans
CompScience

Overall relRS relCD relPROPdirect relPROPinverse

Red Table Wine Red 0,98 0,6 0,866 0,625 0,66 1 0,18
Dessert Meal 0,68 0,65 0,671 0,33 0,663 1 0,125
Pinot White 0,14 0,11 0,131 0,33 0 0,5 0,18
Dry Wine Wine Sugar 0,04 0,7 0,238 0 0,6618 0,5 0,091
Table Wine Winery 0,24 0,6 0,348 0,33 0,6618 0,5 0,091
Merlot Dry 0,48 0,1 0,366 0,33 0 1 0,18
Ice Wine White 0,78 0,4 0,666 0,33 0,3 1 0,18
Juice Wine 0,18 0,04 0,138 0,0625 0 0,5 0,091
Meat Red Table Wine 0,84 0,73 0,807 0,625 0,6618 1 0,25
Fruits White Wine 0,92 0,73 0,863 0,625 0,7 1 0,25

Table 11: Human and computer ratings for the domain ontology Wine.owl

Chapter 7

- 227 -

Travel Ontology

Pair Humans
LibArts

Humans
CompScience

Overall relRS relCD relPROPdirect relPROPinverse

Accomondation Rating City 0,78 0,56 0,714 0,3 0,678 0,7 0,33
Budget Accomondation OneStar Rating 0,89 0,65 0,818 0,1 0,6 1 0,33
Hotel Activity 0,98 0,99 0,983 0,1 0,711 1 0,33
Family Destination Museums 0,85 0,88 0,859 0,3 0,9 1 0,66
Quiet Destination Surfing 0,25 0,1 0,205 0,1 0 0,33 0
Bed and Breakfast Sunbathing 0,11 0,05 0,092 0,1 0 0 0
Hotel Quiet Destination 0,89 0,97 0,914 0,25 0,652 1 0,66
Luxury Hotel Capital 0,91 0,97 0,928 0,6 0,758 0,75
Capital Safari 0,38 0,11 0,299 0 0,08 0,4285 0,33
BedandBreakfast Yoga 0,08 0,21 0,119 0 0,38 0 0

Table 12: Human and computer ratings for the domain ontology Travel.owl

Chapter 7

- 228 -

Soccer Ontology

Pair Humans
LibArts

Humans
CompScience

Overall relRS relCD relPROP relPROPinverse

1 Player Electronic Address Type 0,75 0,45 0,66 0 0,3333 1 0,017
2 Coach Soccer Team 0,8 0,65 0,755 0 0,625 0,875 0,5
3 Player Object Goal 0,9 0,75 0,855 0,48 0,58 1 0,2
4 Coach Object Whistle 0,21 0,1 0,177 0,24 0,5416 0,1 0,017
5 Half Time Referee 0,74 0,63 0,707 0,166 0,5948 0,666 0,5
6 Goal Post Goal 0,98 0,6 0,866 0,48 0,7833 0,666 0,5
7 Net Goalkeeper 0,87 0,68 0,813 0,224 0,7833 0,875 0,5
8 Goal Area Forward 0,89 0,74 0,845 0,48 0,625 0,666 0,5
9 Penalty Mark Penalty Period 0,92 0,6 0,824 0,8 0,5833 0,875 0,3
10 Soccer Field SpectatorSeats 0,78 0,6 0,726 0 0,625 0,88 0,5
11 Score Soccer Team 0,51 0,49 0,504 0,2 0,4945 0,5 0,017
12 Goal Offside Kick 0,72 0,68 0,708 0,166 0,6629 0,66 0,8
13 Block Goalkeeper Object 0,88 0,67 0,817 0,8 0,3201 0,88 0,3
14 Substitute PlayerObject 0,63 0,51 0,594 0,53 0,5219 0,666 0,17
15 Tournament SoccerTeamObject 0,6 0,48 0,564 0,21 0,4945 0,666 0,017
16 Flag Game 0,18 0,12 0,162 0,21 0,5625 0,083 0,017
17 Applause Yellow Card 0,5 0,52 0,506 0,63 0,6004 0,37 0,017
18 Chest Doctor 0,43 0,08 0,325 0 0,1458 0,37 0,017
19 Penalty Kick Red Card 0,84 0,78 0,822 0,08 0,7417 0,59 0,5
20 Offside Kick Player Object 0,64 0,54 0,61 0,21 0,741 0,77 0,5
21 Pass Spectator 0,14 0,08 0,122 0,08 0,1458 0,183 0,017

Chapter 7

- 229 -

22 Dribble Player Object 0,64 0,49 0,595 0,48 0,641 0,59 0,17
23 Foul Action PlayerObject 0,62 0,51 0,587 0 0,341 0,63 0,17
24 Assistant

Coach
Pre-Game Time 0,11 0,03 0,086 0 0,1875 0 0

25 Red Card Referee Object 0,87 0,62 0,795 0 0,5 0,8 0,17
Table 13: Human and computer ratings for the domain ontology about Soccer

Chapter 7

- 230 -

Our first objective was to investigate what are the values of the parameters f1, f2, w1, w2,

w3 for each ontology, and overall. Human subjects were used for the experiments. We

observed that the optimal values of these parameters strongly depend on the ontology.

Their optimal experimental values are shown in Table 14.

Ontology relPROP relOntoNL

 f1 f2 w1 w2 w3
Soccer Ontology 0,5 0,5 0,7 0,2 0,1
Wine Ontology 0,65 0,35 0,5 0,25 0,25
People Ontology 0,1 0,9 0,45 0,2 0,35
Pizza Ontology 0,65 0,35 0,5 0,27 0,23
Koala Ontology 0,99 0,01 0,25 0,65 0,1
Images Ontology 0,33 0,67 0,45 0,5 0,05
Travel Ontology 0,9 0,1 0,7 0,1 0,2

Table 14: The values of the relative weights f1 and f2 of eq. 26 and w1 (for relPROP), w2 (for relCD) and w3 (for
relRS) of eq. 36 for each one of the ontologies used for the specific experimentation

We observe that w1 and f1 are in general the most important of the weights, which implies

that the number of common properties of two concepts is a significant factor in

determining the relatedness. The conceptual distance measure (w2) and the related senses

measure (w3) seem to have also significant impact, but in almost all ontologies (except the

koala and images ontology for w2) the impact of each one of them was less than the

common properties measure. Among these two measures the related senses measure (w3)

had a stronger impact than the conceptual distance measure (w2) in two ontologies, while

the conceptual distance measure (w2) had a stronger impact in four ontologies. In Table 15

we present the humans (70% * relatedness measure value from the Liberal Arts Field

subjects plus 30% * relatedness measure value from the Computer Science Field subjects)

and the OntoNL measure ratings for each pair of the data set.

Using the optimal values for the parameters we studied how the computed relatedness

measure among two concepts was correlated with the relatedness perceived by the human

subjects. Table 16 shows the computed correlation coefficients between the system

computed relatedness measure and the human subjects evaluated relatedness. In Table 16

the column Pair describes the pairs of concepts that are being tested for their relatedness,

the column Subjects describes the semantic relatedness value that has been assigned by

Chapter 7

 - 231 -

the human subjects and the column relOntoNL contains the semantic relatedness value as it

was computed by the OntoNL Semantic Relatedness Measure.

Pair from Image Ontology Subjects relOntoNL
1 Video Text Image 0,378 0,3861386
2 Image Text Image 0,701 0,6766375
3 Image Mosaic 0,647 0,6763386
4 Video Segment Video Frame 0,522 0,5266375
5 Multimedia Still Region 0,06 0,0822375
6 Image Text Video Segment 0,138 0,1306886
7 Video Moving Region 0,743 0,7295875
8 Video Still Region 0,299 0,2925375
9 Image Moving Region 0,303 0,3341486
10 Image Still Region 0,726 0,7244375

Pair from People Ontology Subjects relOntoNL

1 Person Grass 0,086 0,0715
2 Publication Man 0,219 0,226225
3 Man Vehicle 0,156 0,162
4 Person Cat 0,304 0,29961
5 Person Cow 0,304 0,30649
6 Vegeterian Cow 0,686 0,60834
7 Cow Leaf 0,904 0,759
8 Cat Owner Dog Liker 0,165 0,211085
9 Newspaper Old Lady 0,218 0,2096875
10 Woman Kid 0,789 0,56125

Pair from Koala Ontology Subjects relOntoNL
1 Animal Forest 0,694 0,74525
2 Student Degree 0,931 0,88185

3 Graduate
Student University 0,766 0,74325

4 Gender Degree 0,182 0,34395
5 Gender Rainforest 0,028 0
6 Koala Dry Eucalypt Forest 0,785 0,70125
7 Parent Student 0,742 0,76525
8 Parent University 0,516 0,528
9 Student Koala 0,36 0,3465
10 Koala Rain Forest 0,813 0,35475

Chapter 7

 - 232 -

Pair from Pizza Ontology Subjects relOntoNL

1 Margherita Meat Topping 0,17 0,198
2 Vegeterian Pizza Hot 0,505 0,5013
3 Meaty Pizza Meat Topping 0,926 0,730716
4 Fish Topping Mild 0,53 0,4897
5 FruttiDiMare Mild 0,38 0,3873

6 Non Vegeterian
Pizza Cajun 0,615 0,61716

7 Ice Cream Pizza 0 0,42678
8 Ice Cream Fruit Topping 0,506 0,501862
9 Country Pizza 0,45 0,4695

10 TobascoPepper
Sauce Hot 0,682 0,685716

Pair from Travel Ontology Subjects relOntoNL

1 Accomondation
Rating City 0,714 0,6297

2 Budget
Accomondation OneStar Rating 0,818 0,7831

3 Hotel Activity 0,983 0,8053

4 Family
Destination Museums 0,859 0,8862

5 Quiet
Destination Surfing 0,205 0,2179

6 Bed and
Breakfast Sunbathing 0,092 0,01

7 Hotel Quiet Destination 0,914 0,8316
8 Luxury Hotel Capital 0,928 0,6841
9 Capital Safari 0,299 0,309055

10 BedandBreakfast Yoga 0,119 0,076

Pair from Soccer Ontology Subjects relOntoNL

1 Player Electronic Address
Type 0,66 0,6978567

2 Coach Soccer Team 0,755 0,71125
3 Player Object Goal 0,855 0,808
4 Coach Object Whistle 0,177 0,1965192

Chapter 7

 - 233 -

5 Half Time Referee 0,707 0,5901407
6 Goal Post Goal 0,866 0,65924
7 Net Goalkeeper 0,813 0,76531
8 Goal Area Forward 0,845 0,62758
9 Penalty Mark Penalty Period 0,824 0,7689167
10 Soccer Field SpectatorSeats 0,726 0,7144
11 Score Soccer Team 0,504 0,435082
12 Goal Offside Kick 0,708 0,6209728
13 Block Goalkeeper Object 0,817 0,7194252
14 Substitute PlayerObject 0,594 0,5888514
15 Tournament SoccerTeamObject 0,564 0,540662
16 Flag Game 0,162 0,18698
17 Applause Yellow Card 0,506 0,4173628
18 Chest Doctor 0,325 0,2634567
19 Penalty Kick Red Card 0,822 0,56304
20 Offside Kick Player Object 0,61 0,6893
21 Pass Spectator 0,122 0,1536467
22 Dribble Player Object 0,595 0,5598
23 Foul Action PlayerObject 0,587 0,4769919
24 Assistant Coach Pre-Game Time 0,086 0,0375
25 Red Card Referee Object 0,795 0,6159

Pair from Wine Ontology Subjects relOntoNL
1 Red Table Wine Red 0,866 0,67775
2 Dessert Meal 0,671 0,595125
3 Pinot White 0,131 0,2765
4 Dry Wine Wine Sugar 0,238 0,343875
5 Table Wine Winery 0,348 0,426375
6 Merlot Dry 0,366 0,439
7 Ice Wine White 0,666 0,514
8 Juice Wine 0,138 0,19405
9 Meat Red Table Wine 0,807 0,69045
10 Fruits White Wine 0,863 0,7

 Table 15: Human subjects and OntoNL measure ratings for the data set of different domains

Human Subjects Ratings
Measure relPROP relCD relRS relOntoNL

Soccer Ontology 0,910 0,594 0,329 0,943
Wine Ontology 0,832 0,644 0,830 0,976

People Ontology 0,906 0,937 0,949 0,984
Pizza Ontology 0,657 0,77 - 0,863

Chapter 7

 - 234 -

Koala Ontology 0,492 0,846 0,285 0,857
Images Ontology 0,964 0,953 0,273 0,997
Travel Ontology 0,946 0,891 0,612 0,973

Table 16: The values of the coefficients of correlation between human ratings of relatedness and four
computational measures; the three submeasures that constitute the OntoNL Semantic Relatedness Measure

and the overall OntoNL measure with relative weights of Table 6

The results are satisfactory and show that the average OntoNL measure correlation for

each ontology was almost always more than 0.9 and in 4 out of the 7 cases they were

more than 0.95. The average correlation was 0.94.

From our research we observed that the subjects with computer science background had

higher correlations with the system for the conceptual distance measure, while human

subjects from liberal arts had higher correlations in general for the related properties

measure. In all cases the calculated by the system weighted relatedness measure was

higher correlated with the human subject evaluations than the correlations of the partial

semantic measures (common properties, related senses, conceptual distance).

An observation mentioned above was the relatively large variability of the optimal

weights for each ontology. We decided to experiment with the same set of weights for all

the ontologies, to observe if the relatedness measures were drastically affected, and if they

are still satisfactory. Table 17 shows the common set of weights used for all the

experiments with all the ontologies.

relPROP relOntoNL
f1 f2 w1 w2 w3

OWL Domain
Ontologies 0,65 0,35 0,5 0,27 0,23

Table 17: The values of the relative weights f1 and f2 of relPROP and w1 (for relPROP), w2 (for relCD) and w3 (for
relRS) of the overall OntoNL Semantic Relatedness measure

Table 18 shows the correlations obtained between the systems computed values and the

human subject computed values (second column). For comparison reasons the first

column shows the correlations computed with different weights (copied from Table 16).

Table 18 shows that the results obtained, as expected, are worse than the results obtained

using different weights for each ontology. The average drop in correlation was 0.024,

while the maximum drop in one ontology was 0.06. In this case (Koala Ontology) the

Chapter 7

 - 235 -

average correlation dropped below 0.8 (to 0.798). For this ontology however, even with

its optimal weights the correlation was not very high (0.863).

Human Subjects Ratings
Measure relOntoNL relOntoNL’

Soccer Ontology 0,943 0,918
Wine Ontology 0,976 0,974

People Ontology 0,984 0,966
Pizza Ontology 0,863 0,863
Koala Ontology 0,857 0,798

Images Ontology 0,997 0,973
Travel Ontology 0,973 0,935

Table 18: The values of the coefficients of correlation between human ratings of relatedness and four
computational measures; the three submeasures that constitute the OntoNL Semantic Relatedness Measure

and the overall OntoNL measure with relative weights of Table 8

Result Analysis

At the experimentation process the subjects were asked to specify how they had made the

assessment: 1. by concept name, 2. by concept description, 3. by concept properties, 4. a

combination of 1-3, and 5. using other assessment method. This question captured in

respect to which features of the object the relatedness was observed by the subjects – a

notion that similarity researchers in the social sciences have found to be central [Gentner

D. and Medina, J., 1998]. Finally, the subjects could add some comments on their

assessment, that were crucial for determining the impact of influence of each relatedness

measure that constitute the OntoNL semantic relatedness measurement.

Parameters that we have found that affect the choice of weight are the following:

The language the ontology uses for its terminology. When ontologies are used directly

from their source (web) a major factor of the relRS parameter’s performance is the names

that are used to describe the ontologies. If the names for the concepts and the logical

relationships among the concepts used are near the “natural language” names the

performance of the system is significantly better.

The number of the properties over the concepts. When the concepts of the ontology

have a number of properties that specialize them over other concepts (the semantic

network has a significantly greater number of edges over nodes) then the parameter

Chapter 7

 - 236 -

relPROP can participate with a great value of influence in the overall OntoNL semantic

relatedness measure calculation.

The depth of the domain ontology. When the ontology is of a great depth then the

conceptual distance needs to be assigned with a big relative weight because the

information loss is significant over the inheritance.

Dealing with this uncertainty is crucial not only for the success application of the OntoNL

Framework but in ontology engineering tasks such as domain modeling, ontology

reasoning and concept mapping between ontologies.

To model this uncertainty that is dictated by the parameters discussed in the OntoNL

Semantic Relatedness measure, we have developed a new probabilistic model for

calculating the weight values of the measure.

To summarize, we have 5 weight values to calculate:

i. f1 for relOP1 (eq. 24)

ii. f2 for relOP2 (eq.25)

iii. w1 for relPROP (eq. 26)

iv. w2 for relCD (eq. 32)

v. w3 for relRS (eq. 33)

The overall measure is

1 2 1 1 2 2 1 2 3 1 2(,) (,) (,) (,)OntoNL PROP CD RSrel c c w rel c c w rel c c w rel c c= × + × + ×

with 1 2 3 1 2 31, (, ,) 0w w w w w w+ + = > and 1 2 1 2 1 2(,), (,), (,) [0,1]PROP CD RSrel c c rel c c rel c c ∈

The goal that we set is to achieve the best cross correlation with the human subjects

judgements. We cannot model the equation with this in mind because we do not want to

experiment each time of use of the measure in different domains. So we need to develop a

mechanism that will understand by the design where the ontology developer hid the

semantics.

Chapter 7

 - 237 -

We first determine the features of the OWL Ontology structure that we essentially can

state their impact in the OntoNL Semantic Relatedness Measure:

Feature 1

Let C be a set whose elements are called concepts or classes. Let NC ∈ were

{ },...3,2,1:=N , be the number of all Classes of the OWL Domain Ontology.

Feature 2

Let P be a set whose elements are called Object Properties. Let NP ∈ were

{ },...3,2,1:=N , be the number of all Object Properties of the OWL Domain Ontology.

Feature 3

Let CH be a class hierarchy, a set of classes. CH is a directed, transitive relation
CH C C⊆ × which is also called class taxonomy.),(is

C CCH is the set where Cs is a sub-

class of Ci. The number of subclasses (Cs) for a class Ci is defined as (),C
s iH C C

Feature 4

A specific kind of relations are attributes A. The function :att A C→ with

() :range A STRING= relates concepts with literal values.

The values of these features can be computed univocally in each case of ontologies we

used for the evaluation experiments.

The metrics we are proposing are not 'gold standard' measures of ontologies. Instead, the

metrics are intended to evaluate certain aspects of ontologies and their potential for

knowledge representation. Rather than describing an ontology as merely effective or

ineffective, metrics describe a certain aspect of the ontology because, in most cases, the

way the ontology is built is largely dependent on the domain in which it is designed.

Ontologies modeling human activities (e.g., travel or terrorism) will have distinctly

different characteristics from those modeling the natural (or physical) world (e.g. genomes

or complex carbohydrates.

Chapter 7

 - 238 -

The category of metrics we are interested in is the schema metrics that evaluates ontology

design and its potential for rich knowledge representation. Although we cannot know if

the ontology design correctly models the knowledge, we can provide metrics that indicate

the richness, width, depth, and inheritance of an ontology schema. The methodology for

computing the values of these metrics can easily be integrated in the Ontology Processor

module of figure 3.

The Ontology Metrics

Metric 1 (μ1): Object Property Richness:

This metric reflects the richness of properties in an OWL ontology. An ontology that

contains many object properties is richer than a taxonomy with only class-subclass

relationships. The number of object properties that are defined for each class can indicate

both the quality of ontology design and the amount of information pertaining to instance

data. In general we assume that the more slots that are defined the more knowledge the

ontology conveys.

Formally, the object property richness (PR) is defined as the average number of object

properties per class. It is computed as the number of properties for all classes (P) divided

by the number of classes (C).

P
PR

C
=

The result will be a real number representing the average number of object properties per

class, which gives insight into how much knowledge about classes is in the schema. An

ontology with a high value for the PR indicates that each class has a high number of

object properties on the average, while a lower value might indicate that less information

is provided about each class.

Chapter 7

 - 239 -

Metric 2 (μ2): Inverse Object Property Richness

This metric may not be a popular metric for evaluating ontologies but it is crusial for the

OntoNL Semantic Relatedness Measure. Formally, the inverse object property richness

(PRinv) is defined as the average number of inverse object properties per class (how many

object properties of the class have also inverse properties). It is computed as the number

of inverse properties for all classes (Pinv) divided by the number of classes (C).

inv
inv

P
PR

C
=

The result will be a real number representing the average number of inverse object

properties per class.

Metric 3 (μ3): Specificity Richness

This metric describes the specialization of information across different levels of the

ontology’s inheritance tree. This is a good indication of how well knowledge is grouped

into different categories and subcategories in the ontology using Object Properties. An

ontology that contains many relations other than class-subclass relations is richer than a

taxonomy with only class-subclass relationships.

This metric can be measured for the whole schema or for a subtree of the schema.

Formally, the specificity richness of the schema (SR) is defined as the sum of all inner

classes ∑
∈ inneri CC

 (all classes of the ontology except the leaf classes) of the number of

properties of the subclass Cs of a class Ci (()iS
C CCH

P ,), minus the number of properties of

the class Ci (
iCP) divided by the number of properties of the subclass Cs (()iS

C CCH
P ,). This

sum is divided by the number of the inner classes of the ontology.

()

inner

CinnerC C

C
CCHC is

C

C

C

P

P
CCH

P

SR
i j

i

iS
C

j

j

∑
∑

∈

∈

−

=

),(,

Chapter 7

 - 240 -

The result of the formula will be a real number representing the specialization of the

ontology by moving vertically in the hierarchy. An ontology with a high SR would be an

ontology that might reflect a very specialized type of knowledge that the ontology

represents. while an ontology with a low SR would be an ontology that represents a wide

range of general knowledge.

Metric 4 (μ4): Inheritance Richness:

This metric describes the distribution of information across different levels of the

ontology’s inheritance tree or the fan-out of parent classes. This is a good indication of

how well knowledge is grouped into different categories and subcategories in the

ontology. This measure can distinguish a horizontal ontology from a vertical ontology or

an ontology with different levels of specialization. A horizontal (or flat) ontology is an

ontology that has a small number of subclasses. In contrast, a vertical ontology contains a

large number of inheritance levels where classes have a small number of subclasses. This

metric can be measured for the whole schema or for a subtree of the schema.

Formally, the inheritance richness of the schema (IR) is defined as the average number of

subclasses per class.

(,)
i

C
S i

C C
H C C

IR
C

∈=
∑

The result of the formula will be a real number representing the average number of

subclasses per class. An ontology with a low IR would be of a vertical nature, which

might reflect a very detailed type of knowledge that the ontology represents. while an

ontology with a high IR would be of a horizontal nature, which means that ontology

represents a wide range of general knowledge.

Metric 5 (μ5): Readability

This metric indicates the existence of human readable descriptions in the ontology, such

as comments, labels, or captions. This metric can be a good indication if the ontology is

going to be queried and the results listed to users.

Chapter 7

 - 241 -

Formally, the readability (R) of a class c is defined as the sum of the number attributes

that are comments and the number of attributes that are labels the class has.

, : , :R A A rdfs comment A A rdfs label= = + =

The result of the formula will be an integer representing the availability of human-

readable information for the instances of the current class.

If the readability is equal to zero, then we define the readability as the average number of

classes with one-word string names per all the classes of the ontology.

, : _ _
, :

A A rdfs one word ID
R

A A rdfs ID
=

=
=

We should recall here that for the success definition of the ontology metrics we used the

feedback the users gave us at the evaluation process. It is under consideration the

definition of more or more accurate ontology metrics. To proceed with this we will need

extra experimentation data and knowledge of ontology engineering.

The OntoNL Semantic Relatedness Measure’s Weight Value Calculation

We are going to use methodologies from Linear Programming field in order to compute

the impact of each metric to the weights of the OntoNL Semantic Relatedness Measure. A

Linear Programming problem is a special case of a Mathematical Programming problem.

From an analytical perspective, a mathematical program tries to identify an extreme (i.e.,

minimum or maximum) point of a function 1 2(, ,...,)nf x x x , which furthermore satisfies a

set of constraints, e.g., 1 2(, ,...,)ng x x x b≥ . Linear programming is the specialization of

mathematical programming to the case where both, the function f - to be called the

objective function - and the problem constraints are linear.

The general form for a Linear Programming problem is as follows:

Objective Function:

Chapter 7

 - 242 -

1 2 1 1 2 2max/ min (, ,...,) : ...n n nf X X X c X c X c X= + + +

 Technological Constraints:

()1 1 2 2 ... , 1,...,i i in n ia X a X a X b i m+ + + ≤=≥ =

 Sign Restrictions:

() () ()0 0 , 1,...,j j jX or X or X urs j n≥ ≤ =

 where ``urs'' implies unrestricted in sign.

We are going to use the results that we have obtained empirically through experimentation

as training data to determine the exact weight values of the metrics that we think that

affect the parameters (f1, f2, w1, w2, w3) of the OntoNL Semantic Relatedness

Measurement. We observe that the optimal choice of f1, f2, w1, w2, w3 is affected by the

characteristics of the ontology structure and description and the ontology metrics defined

above. We should recall here that for the success definition of the ontology metrics we

also used the feedback the users gave us at the evaluation process. We can write that:

• f1 = f1(μ1, μ3) (the influence parameter of the relOP1 (see chapter 5)) to indicate that

f1 dependes on the ontology metrics μ1 (object property richness) and μ3

(specificity richness). This is because the ontology metric μ1 describes the plurality

of object properties of the domain ontology and the ontology metric μ3 describes

the specialization of information across different levels of the ontology’s

inheritance tree.

• f2 = f2(μ1, μ2, μ3) (the influence parameter of the relOP2 (see chapter 5)) is affected

by the ontology metrics μ1 (object property richness), μ2 (inverse object property

richness) and μ3 (specificity richness)

• w1 = w1(μ1, μ2, μ3) (the influence parameter of relOP (see chapter 5)) is affected by

the ontology metrics μ1 (object property richness), μ2 (inverse object property

richness) and μ3 (specificity richness)

Chapter 7

 - 243 -

• w2 = w2(μ1, μ3, μ4) (the influence parameter of relCD (see chapter 5)) is affected by

the ontology metrics μ1 (object property richness), μ3 (specificity richness) and μ4

(specificity richness)

• w3 = w3(μ4, μ5) (the influence parameter of relRS (see chapter 5)) is affected by the

ontology metrics μ4 (specificity richness) and μ5 (readability)

We want to determine the exact weight values (c values as they were presented in the

objective function of the Linear Programming Methodology) of the metrics that affect the

influence parameters (f1, f2, w1, w2, w3) of the OntoNL Semantic Relatedness

Measurement. To do that we have computed the ontology metrics (μ1: object property

richness, μ2: inverse object property richness, μ3: specificity richness, μ4: specificity

richness, μ5: readability) for the 7 OWL domain ontologies that we have used for

experimentation. Then we defined the objective functions to represent the problem as a

linear programming problem. Since we assume a linear dependency of the parameters f1,

f2, w1, w2, w3 from the ontology metrics we can write:

13131113111 :),(eccff −×+×=≡ μμμμ

232322212132122 :),,(ecccff −×+×+×=≡ μμμμμμ

333323213132111 :),,(ecccww −×+×+×=≡ μμμμμμ

444434314143122 :),,(ecccww −×+×+×=≡ μμμμμμ

55554545433 :),(eccww −×+×=≡ μμμμ

In these equations cij are constants and ei’s are error values. We will compute the values of

the parameters cij and ei so that the values computed for f1, f2, w1, w2, w3 for each one of

the ontologies that we will use for training is minimized. As training ontologies we will

use the ones that we described above (and shown in the APPENDIX). For each one of

these ontologies we have calculated the values of μ1, μ2, μ3, μ4 and μ5. We also used as

values for f1, f2, w1, w2, w3 the values that gave the maximum correlations for the concept

Chapter 7

 - 244 -

relatedness in the user experiments (table 14). The seven OWL Domain Ontologies that

were used for experimentation were (see APPENDIX for more details):

1.The Soccer Ontology

2. The Wine Ontology

3. The People Ontology

4. The Pizza Ontology

5. The Koala Ontology

6. The Images Ontology

7. The Travel Ontology

This gave us a system of 175 equations. We used a Linear Solver to compute the different

c values (the weight values of the ontology metrics that affect the influence parameters of

the OntoNL Semantic Relatedness Measure) and the errors e between the influence

parameters value computed by the linear solver for each of the ontologies and the

influence parameter value computed manually to achieve the best correlation with the

humans judgements, in order to minimize the objective functions to zero. By using this

methodology, when an OWL Domain Ontology enters the OntoNL Framework

automatically by calculating the values of the metrics and by multiplying them with the

corresponding c values we will get the values of the influence parameters of the OntoNL

Semantic Relatedness Measure.

The results of the linear programming procedure for each influence parameter of the

OntoNL Semantic Relatedness Measure are presented in Tables 19-23.

[The weight values definition problem for
f1.xls]

Name Original Value Final Value
c1 0 0,758196161
c3 0 0,435593623

e11 0 0,05333553
e12 0 -0,074884789
e13 0 0,130046084
e14 0 -0,086183898
e15 0 -0,002707919
e16 0 -0,004941855
e17 0 -0,014663153

Table 19: The values of the parameters that influence the metrics used for calculation of the
weight value f1 of the OntoNL Semantic Relatedness Measure and the minimized errors for each

one of the seven ontologies used for experimentation.

Chapter 7

 - 245 -

In table 19 we see the results that we have obtained from the linear solver for the objective

function 13311311 :),(eccf −×+×= μμμμ , were c1 and c3 values are the weight values

that we will use to multiply the computed ontology metrics μ1 and μ3 respectively in order

to define the influence parameter f1 of a domain ontology we want to process. The e11-

e17 values are the deviations from the human judgements for each one of the seven

ontologies used for experimentation.

[The weight values definition problem for f2.xls]
Name Original Value Final Value

c1 0 0,049345079
c2 0 0,840100697
c3 0 0,047572988

e21 0 0,136529522
e22 0 0,022606066
e23 0 -0,070313878
e24 0 0,022606066
e25 0 0,058533106
e26 0 -0,148934617
e27 0 -0,021026264

Table 20: The values of the parameters that influence the metrics used for calculation of the
weight value f2 of the OntoNL Semantic Relatedness Measure and the minimized errors for each

one of the seven ontologies used for experimentation.

In table 20 we see the results that we have obtained from the linear solver for the objective

function 23322113212 :),,(ecccf −×+×+×= μμμμμμ , were c1, c2 and c3 values are the

weight values that we will use to multiple the computed ontology metrics μ1, μ2 and μ3

respectively in order to define the influence parameter f2 of a domain ontology we want to

process. The e21-e27 values are the deviations from the human judgements for each one

of the seven ontologies used for experimentation.

[The weight values definition problem for w1.xls]
Name Original Value Final Value

c1 0 0,549347616
c2 0 0,310262499
c3 0 0,26487096

e31 0 0,06518881
e32 0 -0,066029702
e33 0 -0,117953097
e34 0 -0,066029702
e35 0 0,021163584
e36 0 -0,267102916

Chapter 7

 - 246 -

e37 0 -0,061115641
Table 21: The values of the parameters that influence the metrics used for calculation of the
weight value w1 of the OntoNL Semantic Relatedness Measure and the minimized errors for

each one of the seven ontologies used for experimentation.

In table 21 we see the results that we have obtained from the linear solver for the objective

function 33322113211 :),,(ecccw −×+×+×= μμμμμμ , were c1, c2 and c3 values are the

weight values that we will use to multiple the computed ontology metrics metrics μ1, μ2

and μ3 respectively in order to define the influence parameter w1 of a domain ontology we

want to process. The e31-e37 values are the deviations from the human judgements for

each one of the seven ontologies used for experimentation.

[The weight values definition problem for w2.xls]
Name Original Value Final Value

c1 0 0,363197897
c3 0 0,046685606
c4 0 0,245670362

e41 0 0,08867345
e42 0 0,016971459
e43 0 -0,043044046
e44 0 0,009254977
e45 0 -0,212717517
e46 0 -0,066789378
e47 0 0,207651054

Table 22: The values of the parameters that influence the metrics used for calculation of the
weight value w2 of the OntoNL Semantic Relatedness Measure and the minimized errors for

each one of the seven ontologies used for experimentation.

In table 22 we see the results that we have obtained from the linear solver for the objective

function 44433114312 :),,(ecccw −×+×+×= μμμμμμ , were c1, c3 and c4 values are the

weight values that we will use to multiple the computed ontology metrics metrics μ1, μ3

and μ4 respectively in order to define the influence parameter w2 of a domain ontology we

want to process. The e41-e47 values are the deviations from the human judgements for

each one of the seven ontologies used for experimentation.

[The weight values definition problem for w3.xls]
Name Original Value Final Value

c4 0 0,278023071
c5 0 0,315776889

e51 0 0,016872301
e52 0 -0,056071167
e53 0 -0,098853789

Chapter 7

 - 247 -

e54 0 -0,037958858
e55 0 0,064273687
e56 0 0,149284072
e57 0 -0,037546245

Table 23: The values of the parameters that influence the metrics used for calculation of the
weight value w3 of the OntoNL Semantic Relatedness Measure and the minimized errors for

each one of the seven ontologies used for experimentation.

In table 23 we see the results that we have obtained from the linear solver for the objective

function 55544543 :),(eccw −×+×= μμμμ , were c4 and c5 values are the weight values

that we will use to multiple the computed ontology metrics metrics μ4 and μ5 respectively

in order to define the influence parameter w3 of a domain ontology we want to process.

The e51-e57 values are the deviations from the human judgements for each one of the

seven ontologies used for experimentation.

From the results presented in the Tables 19-23 we can see the most important deviations

from the empirical results we obtained by experiment with the human subjects. For the

factor f1 we get the largest deviation for the ontology People since it is an ontology with a

small number of Object Properties in comparison to the Classes that it has.

For the factor f2 we get the largest deviations for the ontologies Soccer and Images

because of the little number of the inverse Object Properties for the Soccer Ontology and

the lack of Specificity Richness as it was defined earlier in the Metrics for the Images

ontology.

For the factor w1 we get the largest deviations for the ontologies People and Images

because of the reasons that influence the bad performance in the calculation of the values

of f1 and f2.

For the factor w2 we get the largest deviations for the ontologies Koala and Travel because

they are quite flat as domain ontologies, they do not have a large Inheritance Richness as

it was defined in the Metrics definition.

For the factor w3 we get the largest deviation for the ontologies Images because it does not

have descriptions, like comments and labels and because the names of the classes are

mainly two word strings, so the methodology of finding related senses using the WordNet

did not have good results.

Chapter 7

 - 248 -

In conclusion, the methodology of linear programming helped the determination of an

automatic way for calculating the influence parameters (f1, f2, w1, w2, w3) of the OntoNL

Semantic Relatedness Measure. The methodology showed that with the correct definition

of ontology metrics we get realistic results for the relatedness of concepts of a domain

ontology. The deviations from the human judgements were expected if we confront the

ontology metrics and the ontologies we used for experimentation. The methodology we

used to define those ontology metrics was based on the feedback of the users we used for

the experimentation. By using a more systematic way of extracting the knowledge and

experience of the users maybe could lead to a more accurate definition of ontology

metrics with even better results in comparison with human judgements.

B. An application-based evaluation of measures of relatedness

We have performed an application-based evaluation of the OntoNL Semantic Relatedness

Measure. The application used the OWL Ontology for the domain of soccer

(http://lamia.ced.tuc.gr/ontologies/AV_MDS03/soccer), because it is a large and very

specific ontology. Also, the context of the ontology is familiar with the users.

We first asked the users to submit requests. We gathered a total of 20 requests concerning

a disambiguation type 11 and 40 requests concerning a disambiguation type 22 of the

algorithm, after eliminating any duplicates. We distinguished the types of expressions

based on the OntoNL Language Model in 3 different types:

1. Subject Part

2. Subject Part – Conjuctive/Disjunctive/Plain Verb Phrase

3. Subject Part – Verb – Conjuctive/Disjunctive/Plain Object Part

We have presented to the human subjects, the resulted concepts related to the subject

concept of their request. The users replied the ranking position of their correct response in

1 The query contains generally keywords that can be resolved by using only the ontology

repository (ontological structures and semantics)
2 One of the subject or object part of the language model cannot be disambiguated by using the

ontology repository

Chapter 7

 - 249 -

mind and this experiment was conducted twice. Since our results are a ranked list, we use

a scoring metric based on the inverse rank of our results, similar to the idea of Mean and

Total Reciprocal Rank scores described in [Radev et al, 2002], which are used widely in

evaluation for information retrieval systems with ranked results. Hence our precision and

recall are defined as:

1

#
rankingPRECISION

requests
=
∑

(_)
#

n accepted rankingRECALL
requests

=

The precision is depended on the ranking position of the correct related concept to the

subject concept of the request. The recall is depended on the number of the related

concepts the algorithm returns. In Table 24 we present the precision and recall scores we

obtained for the two most complex datasets of request types for the disambiguation type

(2).

DataSet Precision Recall

(n = 3)

Recall

(n =5)

Recall

(n =8)

Subject Part –
Conjuctive/Disjunctive/Plain Verb Phrase (15 requests)

49% 60% 86,7% 100%

Subject Part –
Verb –
Conjuctive/Disjunctive/Plain Object Part (25 requests)

39,7% 52% 76% 92%

Total 44% 55% 80% 95%
Table 24: Quality metrics for the first iteration

What we see is that overall we gain more than 50% of the correct matches in the first three

hits and that the requests of type Subject Part – Conjuctive/Disjunctive/Plain Verb Phrase

had better precision and recall than the requests of type Subject Part – Verb –

Conjuctive/Disjunctive/Plain Object Part requests. This is because we use the verbs in this

application to disambiguate in a more sufficient way the RelationTypes modeled in the

OWL Domain Ontology for Soccer that is based on the MPEG-7 (see Chapter 6).

Chapter 7

 - 250 -

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10

rank position

nu
m

be
r o

f c
or

re
ct

 re
su

lts

1rst Iteration

Figure 47: The precision of the OntoNL measure to the user input for the requests of
disambiguation type (2)

DataSet Precision Recall

(n = 3)

Recall

(n =5)

Recall

(n =7)

Subject Part –
Conjuctive/Disjunctive/Plain Verb Phrase (10 requests)

47% 70% 90% 100%

Subject Part –
Verb –
Conjuctive/Disjunctive/Plain Object Part (10 requests)

46,1% 60% 100% -

Total 46,63% 65% 90% 100%
Table 25: Quality metrics for the second iteration

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

rank position

nu
m

be
r o

f c
or

re
ct

 re
su

lts

2nd Iteration

Figure 48: The precision of the OntoNL measure to the user input for the requests of
disambiguation type (2) for a second iteration

Chapter 7

 - 251 -

After this experiment we asked the users to submit new requests and we once again

gathered 20 requests of disambiguation type (2). In Table 25 we present the precision and

recall scores we obtained for the two most complex datasets of request types for the

disambiguation type (2) and for a second iteration of the experiment.

What we see here is that in total we gain a 65% of the correct matches in the first 3 results

of the OntoNL Disambiguation Procedure an a 90% in the first 5 results. The overall

conclusion that derives is that in a second iteration of tests the performance was better

because of the familiarity of the users using the system increased. In more details, the

request type Subject Part – Conjuctive/Disjunctive/Plain Verb Phrase has a better

precision but the request type Subject Part – Verb – Conjuctive/Disjunctive/Plain Object

Part has a better recall.

We also present the overall satisfaction of users with respect to the effectiveness of the

results compared against a keyword-based search (Figure 49). Overall, the performance

decreases a little as the complexity of the language model increases, but as shown in

Figure 49 , we get the correct results sooner and faster against a keyword-based search.

0%

20%

40%

60%

80%

100%

120%

1 hit 3 hits 10 hits

ef
fe

ct
iv

e
pe

rf
or

m
an

ce

subjPart subjPart+operator
subjPart+objPart subjPart+objPart+operator
keyword-based

Figure 49. The effectiveness of the NL2DL in the domain of soccer against a keyword-based search

Chapter 7

 - 252 -

Summary

In this section we have presented the OntoNL Evaluation Framework that is based on

three types of evaluation: the Adequacy, the Diagnostic and the Performance Evaluation.

After the description of these types we presented the evaluation results for each one of

them.

The adequacy evaluation addressed the evaluation of the usability of the interfaces

according to a defined set of heuristics. The graphical user interface that was evaluated is

the application of the OntoNL Framework in the domain of soccer as it was described in

the implementation chapter and is presented in figure 36. This evaluation had as a starting

point the ten heuristics of Nielsen [Nielsen, 1994].

The Diagnostic Evaluation was about testing the range of possible sentences that the

OntoNL system can parse and disambiguate linguistically. It was conducted by system

developers and it referred to the successful parsing of natural language expressions and to

different categories of grammatical relations combinations that need to be disambiguated.

The qualitative evaluation concerns measuring the effectiveness of the noun compound

bracketing mechanism, the semantic relatedness measure and an application-based

evaluation of measures of relatedness.

We evaluated our parser against the Minipar [Lin, 1998] and the Link Parser [Sleator and

Temperlay, 1993].The results were satisfactory and provided a basis for the parser

improvement. We also evaluated the OntoNL dependency model against the OntoNL

adjacency model for noun compound bracketing and conclude that the adjacency model is

superior and was used in the final model.

We presented the evaluation of the OntoNL Semantic Relatedness Measurement firstly by

a comparison with human ratings and secondly by using an application-based evaluation.

We concluded to the parameters that affect the choice of the weight value of each one of

the sub-measures developed to comprise the OntoNL measure and we used the evaluation

empirical results and Linear Programming to define the values of these weights by

defining ontology metrics that influence the weights of the OntoNL measure.

- 253 -

Chapter 8

Conclusions

In this thesis we presented the design and implementation of the OntoNL Framework, a

natural language interface generator for knowledge repositories, as well as a natural

language system for interactions with multimedia repositories which was built using the

OntoNL Framework.

It is well known that a problem with the natural language interfaces to information

repositories is the ambiguities of the requests, which may lead to lengthy clarification

dialogues. Due to the complexity of natural language, reliable natural language

understanding is an unaccomplished goal in spite of years of work in fields like Artificial

Intelligence, Computational Linguistics and other. The natural language understanding

could be approached by applying methods for consulting knowledge sources such as

domain ontologies. Ontologies are usually expressed in a formal knowledge

representation language so that detailed, accurate, consistent, sound, and meaningful

distinctions can be made among the classes (general concepts), properties (those concepts

may have), and the relations that exist among these concepts. A module dealing with

ontologies can perform automated reasoning using the ontologies, and thus provide

advanced services to intelligent applications such as: conceptual/semantic search and

retrieval, software agents, decision support, speech and natural language understanding

and knowledge management.

The methodology that we have developed is reusable, domain independent and works

with input only the OWL ontology that was used as a reference schema for constructing a

knowledge repository. The methodology depends on a semantic relatedness measure that

we have developed for domain ontologies that concludes to semantic ranking. The

semantic ranking is a methodology for ranking related concepts based on their

commonality, related senses, conceptual distance, specificity and semantic relations. This

Chapter 8

 - 254 -

procedure concludes to the natural language representation for information retrieval using

an ontology query language, the SPARQL. The SPARQL queries are ranked based on the

semantic relatedness measure value that is also used for the automatic construction of the

queries.

This methodology is integrated in the OntoNL Framework, a natural language interface

generator to knowledge repositories. We have presented the OntoNL Framework for

building natural language interfaces to semantic repositories, as well as the

implementation of a natural language interaction interface for semantic multimedia

repositories which was built using the OntoNL Framework. The application of the

OntoNL Framework addresses a semantic multimedia repository with digital audiovisual

content of soccer events and metadata concerning soccer in general, has been developed

and demonstrated in the 2nd and 3rd Annual Review of the DELOS II EU Network of

Excellence (IST 507618) (http://www.delos.info/).

The OntoNL Framework implements a software platform that automates to a large degree

the construction of natural language interfaces for knowledge repositories. To achieve the

applicability and reusability of the OntoNL Framework in many different applications and

domains, the supporting software is independent on the domain ontologies.

The software components of the OntoNL Framework address uniformly a range of

problems in sentence analysis each of which traditionally had required a separate

mechanism. A single architecture handles both syntactic and semantic analysis, handles

ambiguities at both the general and the domain specific environment. At the same time,

the Framework has been designed in a way to avoid dependencies with the information

repository so that it becomes reusable in different applications with different domain

semantics.

The OntoNL Software Engineering Framework has two major objectives. The first is to

minimize the cost of building natural language interfaces to information systems by

providing reusable software components that can be used in different application domains

and knowledge bases, and adapted with a small cost to a new environment. The second is

to do semantic processing, exploiting domain ontologies in order to reduce ambiguities in

Chapter 8

 - 255 -

a particular domain. The output of a natural language request is a ranked set of queries in

an ontology query language.

The Framework in a particular application environment has to be supplied with domain

ontologies (encoded in OWL) which are used for semantic processing. The user input in

an application environment is natural language requests and WH-questions (who, were,

what, etc.). The output for a particular input NL query is a set of one or more weighted

disambiguated to the specific domain queries, encoded in SPARQL. We choose SPARQL

as the query language to represent the natural language queries since SPARQL is defined

in terms of the W3C's RDF data model and will work for any data source that can be

mapped into RDF. If the environment uses a different type of repository than OWL-

SPARQL, a module has to be implemented that does the mapping from the SPARQL

encoded queries to the schema and query language that the environment uses (Relational

Schema-SQL, XML Schema-XQUERY, etc). Since this transformation is Schema

dependent it is not automated within the Framework software.

The main components of the OntoNL provide Linguistic Analysis and Ontology

Processing for Semantic Disambiguation. The Linguistic Analysis includes components

for POS tagging, Noun Compound Bracketing, Grammatical Relations Discovery, and

Synonym and Sense Discovery. To perform its functions it uses input from the WordNet

which provides information about word synonyms and the part of speech that a word is

(verb, noun, etc.). The Semantic Disambiguation Module of the OntoNL is responsible for

domain specific disambiguation and result ranking. The language model used in OntoNL

supports both the Linguistic Analyzer and the Ontology Processor.

Disambiguation in natural language processing is used to eliminate the possible senses

that can be assigned to a word in the discourse, and associate a sense which is

distinguishable from other meanings. However, WordNet gives only generic categories of

senses and not domain specific. Thus it is clear that much better semantic disambiguation

can be done when domain knowledge is available in the form of ontologies. The purpose

of the OntoNL Semantic Disambiguation Module is to use information of the OntoNL

Ontology Processor in the OntoNL Framework, in order to do semantic disambiguation of

the natural language queries. The input in the Ontology Processor is OWL Ontologies and

Chapter 8

 - 256 -

instances of the language model produced by the Syntactic Analyzer. The output is

disambiguated sentences expressed as queries in SPARQL, or in the case that complete

disambiguation is not possible, a set of ranked SPARQL queries.

In particular, the common types of ambiguity encountered in the OntoNL Framework are:

1. The natural language expression contains general keywords that can be resolved

by using only the ontology repository (ontological structures and semantics).

2. One of the subject or object part of the language model contains terms that cannot

be disambiguated by using the ontology repository.

3. Neither the subject nor the object part contains terms disambiguated by using the

ontological structures.

Figure 49 shows the general steps of the semantic disambiguation algorithm used in

OntoNL using UML Activity Diagram notation. The approach is general for any OWL

DL or Full domain ontology.

Figure 50. The OntoNL Semantic Disambiguation procedure

Chapter 8

 - 257 -

The input to the algorithm are instances of the language model, which include terms

extracted from the natural language input, their synonyms, and their tagging according to

the language model constructs. The algorithm searches to see if there is a correspondence

between the naming of the language model instance and the ontological structures. If there

is a complete match, a Relatedness Value measure is assigned with value 1 to indicate the

complete relevance of the sentence with the specific domain. If the disambiguation is not

complete (either in the Subject Part or the Object Part) the algorithm checks for the

number of the terms that show ambiguity. If the ambiguity is in theSubject Part then the

algorithm checks for a number specified by the application of ontology concepts that have

the greatest relatedness value with the disambiguated term of the request. If there is only

one term with an ambiguity in the Object Part then the algorithm checks and retrieve the

output of the OntoNL Ontologies Processor for a number, specified by the application, of

the most related concepts to the concept that comprise the subject or the object part (if the

ambiguity is in the object or the subject part respectively) of the expression. If in a part of

the expression are more than one terms with ambiguities the algorithm checks for

operators (or/and). In the existence of an operator the algorithm considers the terms to be

concept instances of the same concept of the domain ontology. In the absence of an

operator the algorithm considers the terms to be concept instances of a different ontology

concept. Then the algorithm searches for a number, specified by the application, of the

most related concepts to the concept that found a correspondence to the ontological

structures and assigns the relatedness measure, already calculated by the OntoNL

Ontologies Processor. The last activity of the algorithm is to enhance the Ontology

Structure class of the OntoNL Language Model (see figure 15) with the corresponding

ontology concepts to natural language terms in the class attribute and with the relatedness

measurement value the value attribute.

When a query cannot be disambiguated completely from the OntoNL Semantic

Disambiguation procedure, OntoNL uses a Semantic Relatedness Measure to suggest

weighted possible interpretations of the user request. . To that purpose, OntoNL borrows

and expands ideas from the research of Semantic Relatedness of concepts in semantic

networks. The Relatedness Matrix contains a weight of relatedness (Relatedness Measure)

Chapter 8

 - 258 -

between any two concepts. Intuitively, tightly interrelated concepts or clusters of concepts

in the ontology are more likely to be the object of the user natural language interactions.

The relatedness measure depends on the semantic relations defined by properties in OWL.

Properties can be used to state relationships between individuals (named ObjectProperties)

or from individuals to data values (named DatatypeProperties). Based on the semantic

relations when we detect that a source concept-class is immediately related via an

ObjectProperty with the target concept, the relatedness value is set to 1

The algorithm also takes into account the semantic relation of OWL:EquivalentClass. The

class that is OWL:EquivalentClass with a source class has a similarity (not relatedness)

value 1. In our computations, the classes related to the source class of the ontology are

also related with the same value to the equivalent class.

In all other cases the relatedness value computation is based on the following factors: the

commonality (based on the semantic relations and the conceptual distance) and the related

senses.

The commonality depends on the amount of the common information two concepts share.

The commonality measure has two factors: The position of the concepts relatively to the

position of their most specific common subsumer (how far is their common father) and the

reciprocity of their properties (if the connecting OWL ObjectProperties have also inverse

properties). The position of the concepts relatively to the position of their common

subsumer will be examined by the conceptual distance and the specificity measurement.

After the syntactic and semantic disambiguation, we have concluded to the subject of the

query, specialized by additional description that forms the object part or possible object

parts of the query. We need a formal way to represent the query, a standardized query

language that will meet the specification of the ontology language (OWL) and will be

easily mapped to various forms of repository constructions. Although we could in

principle use an internal representation of the preprocessed NL interactions, we opted to

use a representation that is near to the languages used in the Semantic Web, so that when

the repository is based on OWL or RDF to be able to directly use it to access the

repository. We choose SPARQL as the query language to represent the natural language

Chapter 8

 - 259 -

queries since SPARQL is defined in terms of the W3C's RDF data model and will work

for any data source that can be mapped into RDF.

To provide an automatic construction of SPARQL queries we need at any point to define

the path that leads from the subject part to the object part of the natural language

expression by taking into account the constraints that are declared from the keywords and

the relatedness value between the related classes of the ontology. In the OntoNL

Framework the edges linking the classes of the ontology graph are the objectProperties of

the OWL syntax and the weight values are specified by the relatedness measure

calculation.

In Chapter 6 we described the implementation of the OntoNL Framework and of an

application of the OntoNL Framework that addresses a semantic multimedia repository

with digital audiovisual content of soccer events and metadata concerning soccer in

general. The overall architecture is shown in figure 50. The OntoNL expects domain

ontology expressed in OWL. The reference ontologies we used is an application of the

DS-MIRF ontological infrastructure (Tsinaraki et alii 2004) and the WordNet for the

syntactic analysis. The repository for accessing the instances is the DS-MIRF Metadata

Repository (Tsinaraki et alii 2006).

The OntoNL Component provides the NL Ontology API and the NL Query API for

communication. The NL Query API contains functions to input a natural language query

and after the disambiguation outputs a number of weighted SPARQL queries, based on

the structures of the ontologies used for the disambiguation. It implements functions for

the data transfer between the Framework and the repository. The NL Ontology API

consists of the total of functions used for manipulating the ontologies that interfere with

the system.

The DS-MIRF OntoNL Manager provides the OntoNL component with the ontologies for

the disambiguation and the natural language expression for disambiguation. It is also

responsible for retrieving the user request, communicate with the repository, manage the

results, rank them based on any existing User Profile information and presented them to

the front end the user uses for interactions.

Chapter 8

 - 260 -

The output of the OntoNL is weighted SPARQL queries. To interface with DS-MIRF we

had to develop mappings of the SPARQL to the retrieval language of DS-MIRF which

intern uses XQuery to access semantic MPEG-7 multimedia content from the XML

DBMS.

NL
Query

API

OntoNL Component
NL

Ontology
API

DS-MIRF Data & Communication Management

Berkley DB
XML

MPEG7
XML

Descriptions

Search API Retrieve API

Multimedia
Content

WordNet

DS-MIRF OntoNL Manager

JWordNet API

Semantic
Disambiguation

Module

Query Formulator

Client Application

Linguistic Analysis
POS Tagger

Noun Compound
Bracketing

Grammatical Relations
Discovery

Synonym and Sense
Discovery

Ontology Processor
Abbreviation Expansion

Tokenization

Concept Relatedness
Calculation

Ontologies

DS-MIRF
Ontological

Infrastructure DS-MIRF NL API

Figure 51. NL2DL Infrastructure

A complete evaluation framework has been designed for the OntoNL generator. As far as

it concerns the OntoNL Semantic Relatedness Measure evaluation, the framework takes

into account a large number of parameters regarding the characteristics of the ontologies

involved and the types of users. We have focused our attention to the performance

experimentation in a generic way utilizing readily available ontologies in the web, not

carefully constructed by hand ontologies. As we discussed in the previous section the

three factors 1w , 2w and 3w ,of the overall OntoNL measure help of balancing among the

three sub-measure depending on the application ontology.

Chapter 8

 - 261 -

In order to assess the impact of each of the sub-measures we needed to evaluate it against

a “gold standard” of object relatedness. To that end we designed a detailed experiment in

which human subjects were asked to assess the relatedness between two objects.

Budanitsky and Hirst (2006) based on their study have found that comparing WordNet

similarity measures with human judgments give the best assessments of the “goodness” of

a measure. We have obtained relatedness judgments from 25 human subjects, 10 from the

computer science field that where shown the domain ontologies’ structure and 15 from the

liberal arts field that were used for the evaluation, for 85 pairs of concepts that we meet in

the seven OWL domain ontologies for different domains (APPENDIX).

The results we obtained were very satisfactory and showed the effectiveness of the

OntoNL Framework and especially the OntoNL Semantic Disambiguation Procedure. The

results showed that the average OntoNL measure correlation for each ontology was almost

always more than 0.9 and in 4 out of the 7 cases they were more than 0.95. The average

correlation was 0.94. The human subjects also evaluated the relatedness of the concepts

based on the semantic measure that we have developed (common properties, related

senses, and conceptual distance). The correlations of their evaluations with the system

computed measures were shown in Table 16, and were also satisfactory. From our

research we observed that the subjects with computer science background had higher

correlations with the system for the conceptual distance measure, while human subjects

from liberal arts had higher correlations in general for the related properties measure. In

all cases the calculated by the system weighted relatedness measure was higher correlated

with the human subject evaluations than the correlations of the partial semantic measures

(common properties, related senses, conceptual distance). We wanted to bound their

values and provide the complete measurement that would show good results regardless of

the OWL ontology used. We first determined the features of the OWL Ontology structure

that effect the OntoNL Semantic Relatedness Measure.

An observation was the relatively large variability of the optimal weights for each

ontology. We decided to experiment with the same set of weights for all the ontologies, to

observe if the relatedness measures were drastically affected, and if they are still

satisfactory. The results obtained, as expected, were worse than the results obtained using

Chapter 8

 - 262 -

different weights for each ontology. The average drop in correlation was 0.024, while the

maximum drop in one ontology was 0.06. In this case (Koala Ontology) the average

correlation dropped below 0.8 (to 0.798). For this ontology however, even with its optimal

weights the correlation was not very high (0.863).

To deal with the uncertainty of the different values of the weights according to the

application domain ontology we used a methodology from Linear Programming field and

we defined a number of Ontology Metrics so to compute the parameters of the ontologies

that define the values of the weights of the OntoNL Semantic Relatedness Measuure. In

our case we wanted to minimize the deviation of the results that we have obtained

empirically through experimentation with the calculated values of the decision variables

extracted from the Linear Solver. The results were satisfactory and showed that with more

research in determining metrics of influence of these decision variables we can obtain

more accurate results.

After this step we continued with an application-based evaluation of the OntoNL measure.

We chose to use for the application, the OWL Ontology for the domain of soccer

(http://lamia.ced.tuc.gr/ontologies/AV_MDS03/soccer), because it is a big and very

specific ontology. Also, the context of the ontology is familiar with the users.

As far as it concerns the evaluation of the natural language query representation to a query

language for retrieval of metadata, the experiments tested if the language model’s

components where successfully mapped to ontological structures (figure 47) and if the

semantic relatedness measure resulted in satisfactory matches (figure 48) for the domain

of soccer in a question answering system for the DS-MIRF Metadata Repository. We also

presented the overall satisfaction of users with respect to the effectiveness of the results

compared against a keyword-based search (figure 49). The conclusion that derived is that

in a second iteration of tests the users expressed a higher satisfaction because their

familiarity of using the system increased. The results that concerned ontological structures

and semantics (figures 47 and 48) were strongly dependent on the form of the specific

ontology. Overall, the performance decreases a little as the complexity of the language

model increases, but as shown in figure 49, we get the correct results sooner and faster

against a keyword-based search.

Chapter 8

 - 263 -

The research and development that was conducted in order to complete this thesis has

been published in the following conferences and journals:

1. A. Karanastasi, S. Christodoulakis: "The OntoNL Semantic Relatedness Measure for

OWL Ontologies", in the Proceedings of the Second IEEE International Conference

on Digital Information Management (IEEE ICDIM ‘07), 28-31 October 2007, Lyon,

France

2. A. Karanastasi, S. Christodoulakis: "Semantic Processing of Natural Language

Queries in the OntoNL Framework", in the Proceedings of the IEEE International

Conference on Semantic Computing (IEEE ICSC), 17-19 September 2007, Irvine,

CA

3. A. Karanastasi, S. Christodoulakis: “Ontology-Driven Semantic Ranking for Natural

Language Disambiguation in the OntoNL Framework”, in the Proceedings of the 4th

European Semantic Web Conference (ESWC), 3-7 June 2007, Innsbruck, Austria

4. A. Karanastasi, A. Zwtos, S. Christodoulakis: “The OntoNL Framework for Natural

Language Interface Generation and a Domain-specific Application”, in Proceedings

of the DELOS Conference on Digital Libraries, 13-14 February, Tirrenia, Pisa, Italy

2007

5. A. Karanastasi, A. Zwtos, S. Christodoulakis: “User Interactions with Multimedia

Repositories using Natural Language Interfaces: an Architectural Framework and its

Implementation”, in the Journal of Digital Information Management (JDIM), Volume

4 Issue 4, December 2006

6. A. Karanastasi, A. Zwtos, S. Christodoulakis: “User Interactions with Multimedia

Repositories using Natural Language Interfaces: an Architectural Framework and its

Implementation”, in Proceedings of the Fourth Special Workshop on Multimedia

Semantics (WMS06), June 19-21, 2006

7. S. Christodoulakis, A. Karanastasi, J. Koehler, K. Biatov, T. Catarci, S. Kimani:

“Natural Language and Speech Interfaces to Knowledge Repositories”, Poster on the

9th European Conference on Research and Advanced Technology for Digital

Libraries (ECDL 2005), September 2005, Vienna, Austria

Chapter 8

 - 264 -

8. A. Karanastasi, S. Christodoulakis: “OntoNL: An Ontology-based Natural Language

Interface Generator for Multimedia Repositories”, in Proceedings of the Seventh

International Workshop of the EU Network of Excellence DELOS on AUDIO-

VISUAL CONTENT AND INFORMATION VISUALIZATION IN DIGITAL

LIBRARIES (AVIVDiLib'05), May 2005

9. A. Karanastasi, F. Kazasis, S. Christodoulakis: “A Natural Language Model and a

System for Managing TV-Anytime Information in Mobile Environments”,

ACM/Verlag Personal and Ubiquitous Computing Journal, Volume 4, 2005

10. A. Karanastasi, F. Kazasis, S. Christodoulakis: "A Natural Language Model for

Managing TV-Anytime Information in Mobile Environments", In Proceedings of the

International Workshop on Ubiquitous Mobile Information and Collaboration

Systems (UMICS), Riga, Latvia, 7 - 8 June, 2004

11. A. Karanastasi, F. Kazasis, S. Christodoulakis: "A Natural Language Model and a

System for Managing TV-Anytime Information from Mobile Devices", In

Proceedings of the 9th International Conference on Applications of Natural Language

to Information Systems (NLDB), Manchester, United Kingdom, June 2004

12. F.G. Kazasis, N. Moumoutzis, N. Pappas, A. Karanastasi, S.Christodoulakis:

"Designing Ubiquitous Personalized TV-Anytime Services", In the proceedings of the

International Workshop on Ubiquitous Mobile Information and Collaboration

Systems (UMICS), lagenfurt/Velden, Austria, June 2003

The OntoNL component has been developed and with applications has been demonstrated

in the 2nd and 3rd Annual Review of the DELOS II EU Network of Excellence (IST

507618) (http://www.delos.info/). The developer of the OntoNL component is

Alexandros Zotos, graduate student of the Electronic and Computer Engineering

Department of the Technical University of Crete and member of the Laboratory of

Distributed Multimedia Information Systems and Applications. The application of the

OntoNL in the domain of soccer (OntoNL2DS-MIRF) has been evaluated by an

evaluation team of three HCI experts, Prof. Tiziana Catarci, Dr. Yael Dubinsky and Dr.

Stephen Kimani, from the Department of Computer and Systems Science (Dipartimento di

Informatica e Sistemistica) of the University of Rome "La Sapienza".

Chapter 8

 - 265 -

Future Directions

Based on a research that was conducted in 2001 by the Global Reach, 55% of the Internet

users are non-English speakers. but the 80% of the Internet and Digital Library resources

are in English (Bian, Chen, 2000). In order to allow unrestricted access to these data, the

availability of language processing tools, i.e. multilingual information retrieval,

multilingual display, multilingual text generation, translation memories, terminological

databases, lexicon servers and machine translation systems, is a prerequisite.

In the global economy, information systems are no longer utilized by users in a single

geographical region but all over the world. Information can be generated, stored,

processed, and accessed in several different languages. All of this reveals the importance

of research in multilingual information systems.

There are several essential components in multilingual information systems. These

components are namely multilingual resources, machine translation, cross-lingual

information retrieval, multilingual information extraction and summarization, and user

evaluations and studies.

Multilingual resources include corpora, lexicons, and ontology. Parallel and comparable

corpora are important for generating a statistical translation model to overcome the

limitations of a manually generated dictionary. In addition, annotated corpora and

lexicons have been widely used for many natural language processing tasks.

Unfortunately, the development of these resources requires much human intervention.

Ontology is an inventory of concepts organized insome internal structuring principle,

which is important in organizing and managing information.

Machine translation has over 50 years of history. It is defined as an automated process to

transform written text from one language to another. One approach is to convert the

source text into an abstract semantic representation. This semantic representation will be

used for producing the translated text in the target language. Another approach will be to

mainly base on a statistical model for word translations and word re-orderings. The model

Chapter 8

 - 266 -

parameters can be learned from a large parallel corpus. Recently, research on translating

named entities has become popular because it is useful in different information access

applications for which named entities play an important role. Automatic generation of

transliteration rules is also actively explored. Multilingual information retrieval is defined

as the process that takes queries in any language, searches a collection of objects—

including text, images, sound clips—and returns the most relevant objects. It involves

several major tasks, namely, query translation, indexing, and retrieval methods. One can

employ common information retrieval techniques for conducting indexing and retrieval.

Query translation is performed in a separate effort. Another approach is to develop a

framework that can deal with all these tasks in a more integrated manner. This is a vision

that can be approached by developing methodologies as the one’s described above and

integrating them in the OntoNL Framework.

- 267 -

REFERENCES

AGIRRE, E., RIGAU, G. 1997. A proposal for word sense disambiguation using conceptual distance. In

Recent Advances in Natural Language Processing: Selected Papers from RANLP'95, volume 136 of

Amsterdam Sudies in the Theory and History of Linguistic Science: Current Issues in Linguistic Theory,

chapter 2, pages 161-173. John Benjamins Publishing Company, Amsterdam/Phildadelphia, 1997.

AKT ONTOLOGY, http://akt.open.ac.uk/ocml/domains/akt-support-ontology/

ALLEN, J.F. 1994 Natural Language Understanding, Benjamin Cummings, 1987, Second Edition, 1994.

ALSHAWI.1992 The Core Language Engine. MIT Press, Cambridge, Massachusetts.

ALSHAWI,, H., CARTER, D., CROUCH, R., PULMAN, S., RAYNER, M., SMITH, A. CLARE 1992 – A

Contextual Reasoning and Cooperative Response Framework for the Core Language Engine. Final report,

SRI International, December 1992.

ANDERSON, J. R 1976. Language, Memory, and Thought. Lawrence Erlbaum and Associates, Hillsdale,

New Jersey.

ANDERSON, J. R. 1983. A Spreading Activation Theory of Memory. Journal of Verbal Learning and

Verbal Behavior,22(3), 261-95.

ASKJEEVES, http://askjeeves.com/, 2000.

BERK, L., 1999. English Syntax. From Word to Discourse, Oxford University Press.

BERGER, A. et al., 2000 Bridging the lexical chasm: Statistical approaches to answer-finding, in

Proceedings of SIGIR, 2000.

BERNERS-LEE, T., HENDLER, J., LASSILA, O. 2001. The Semantic Web. Scientific American, 284(5)

BLACKBURN, S. 1994. The Oxford Dictionary of Philosophy, Oxford University Press, Oxford, UK.

BOBROW, et al. 1977. GUS, a frame driven dialog system, Artificial Intelligence, 8:155-173.

BREESE, J. S., HECKERMAN, D., and KADIE, C. 1998. Empirical Analysis of Predictive Algorithms for

Collaborative Filtering, in Proc. of the 14th Conf. on Uncertainty in Artificial Intelligence, July, 1998.

BRESNAN, J. 2001. Lexical-Functional Syntax. Blackwell, Oxford.

BRICKLEY, D., GUHA, R. V. 2004 (eds.), “RDF Vocabulary Description Language 1.0: RDF Schema”,

W3C Recommendation, 10 Feb. 2004. (http://www.w3.org/TR/rdf-schema)

BRILL, E., et al. 2002 Data Intensive Question Answering”, Proceedings of TREC-10, NIST.

BROWN, G. YULE, G., Discourse Analysis, Cambridge, 1983.

 - 268 -

BURKE, R., et al., “Question Answering from Frequently-Asked Question files: experiences with the FAQ

Finder system”, Technical Report, University of Chicago Computer Science Department, June 1997

CALLAN, J., SMEATON, A. 2003. Personalization and recommender systems in digital li-braries.

Technical report, DELOS-NSF Workshop on Personalization and Recom-mender Systems in Digital

Libraries Further Contributors: Beaulieu M., Borlund P., Brusilovsky P., Chalmers M.,Lynch C.,Riedl J.,

Smyth B., Straccia, U., Toms E.

CARROLL, J., MINNEN, G., BRISCOE, T. 1999. Corpus annotation for parser evaluation. In Proceedings

of the EACL workshop on Linguistically Interpreted Corpora (LINC).

CHARNIAK, E., 2000. A Maximum-entropy-inspired parser. In Proceedings of NAACL-2000.

CHEN, H., LYNCH, K. J. 1992. Automatic construction of networks of concepts characterizing document

databases. IEEE Transactions on Systems, Man and Cybernetics, 22(5), 885-902.

CHEN, H., NG, T. 1995. An Algorithmic Approach to Concept Exploration in a Large Knowledge Network

(Automatic Thesaurus Consultation); Symbolic Branch-and-Bound vs. Connectionist Hopfield Net

Activation. Journal of the American Society for Information Science 46(5):348-369.

CHIA, C. 2002. The personalization challenge in public libraries: perspectives and prospects. Bertelsmann

Foundation, Gütersloh 2002.

CHOMSKY, N. 1981. Lectures on Government and Binding. Foris, Dordrecht.

CHOUEKA, Y., LUSIGNAN, S. 1985. Disambiguation by short contexts. Computers and the Humanities,

19, 147-158.

CIMIANO, P., HAASE, P., SURE, Y., VÖLKER, J., AND WANG, Y. 2006. Question answering on top of

the BT digital library. In Proceedings of the 15th international Conference on World Wide Web

(Edinburgh, Scotland, May 23 - 26, 2006). WWW '06. ACM Press, New York, NY, 861-862.

CRESTANI, F. 1997. Application of Spreading Activation Techniques in Information Retrieval. Artificial

Intelligence Review, 11(6): 453-482.

CRYSTAL, D. 1991. A Dictionary of Linguistics and Phonetics, 3rd ed. Blackwell, Oxford, UK

CODD, E.F. 1974. Seven Steps to RENDEZVOUS with the Casual User. In J. Kimbie and K. Koffeman,

editors, Data Base Management. North-Holland Publishers, 1974.

CODD, E.F. 1970 A Relational Model for Large Shared Data Banks. Communications of the ACM,

13(6):377–387, 1970.

COHEN, P., and KJELDSEN, R. 1987. Information Retrieval by Constrained Spreading Activation on

Semantic Networks. Information Processing and Management, 23(4):255-268.

 - 269 -

COLLINS, A., LOFTUS, E. 1975. A spreading activation theory of semantic processing. Psychological

Review, 82, 407-428.

COLLINS, M. 1999. Head-Driven Statistical Models for Natural Language Parsing. PhD Thesis, University

of Pensilvania.

DAVIDSON, D. 1969. Truth and meaning. In J. W. Davis et al., editors, Philosophical, pages 1--20.

Hingham, 1969.

DAVIDSON, D 1973. In defense of Convention T. In H. Leblanc, editor, Truth, Syntax and Modality, pages

76--85. North Holland, 1973

DAVIES, J., WEEKS, R., and KROHN, U. 2002. QuizRDF: SearchTechnology for the Semantic Web. In

Proceedings of the WWW2002 workshop on RDF & Semantic Web Applications, Hawaii, USA, 2002.

DELGADO, J., ISHII, N. 1999. Memory-Based Weighted-Majority Prediction for Recommender Systems,

ACM SIGIR’99 Workshop on Recommender Systems.

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY. 1989. Proceedings of the Second DARPA

Speech and Natural Language Workshop, Cape Cod, Massachusetts, October 1989

DOYLE, P. 1997. Natural language. AI Qual Summary.

http://www.cs.dartmouth.edu/%7Ebrd/Teaching/AI/Lectures/Summaries/natlang.html

DYER, M. G. 1983 In-depth Understanding, MIT Press

FALOUTSOS, C. 1996. Searching Multimedia Databases by Content, KluwerAcademic Publishers, 1996

FALLSIDE, D. 2001. “XML Schema Part 0: Primer”, W3C Recommendation,

(http://www.w3.org/TR/xmlschema-0/)

FROOGLE. http://froogle.google.com

GADAMER, H. G. 1960 Wahrheit und Methode, Tuebingen.

GALE, W.A.; CHURCH, K. W., YAROWSKY, David 1993. “A method for disambiguating word senses in

a large corpus.” Computers and the Humanities, 26, 415-439.

GENTNER, D., MEDINA, J. 1998. Similarity and the Development of Rules. Cognition 65, 1998: pp. 263-

297.

GINZBURG, J. 1995“Resolving questions I”, in Linguistics and Philosophy, Vol. 18(5), 459-527, 1995a.

GINZBURG, J. 1995 “Resolving questions II”, in Linguistics and Philosophy, Vol. 18(6), 567-609, 1995b.

GOLDMAN, S. A., WARMUTH, M. K., 1993 Learning Binary Relations Using Weighted Majority Voting,

ACM COLT 1993, USA, pp453-462.

 - 270 -

GOUGENHEIM, G., MICHEA, R. 1961. “Sur la détermination du sens d'un mot au moyen du contexte.” La

Traduction Automatique, 2(1), 16-17.

GRAESSER, A.C, FRANKLIN, S. P. 1990. QUEST: a cognitive model of question answering”, Discourse

Processes, 13, 279-303.

GREEN, et al., “BASEBALL: an automatic question answerer”, Proceedings of the Western Joint Computer

Conference, 1961.

GRICE, H. P. 1967 Logic and Conversation. William James Lectures, Harvard University, 1967 (Reprinted

in Grice 1989).

GRICE, H. P. 1975. Logic and conversation. In P. Cole, editor, Speech Acts, Syntax and Semantics, Vol III:

Speech Acts. Academic Press, New York, 1975.

GROSZ. B. J. 1983 TEAM: A Transportable Natural-Language Interface System. In Proceedings of the 1st

Conference on Applied Natural Language Processing, Santa Monica, California, pages 39–45.

GUARINO, N. 1999. ONTOSEEK: Content-based access to the Web, IEEE Intelligent Systems, pp. 70-80.

GUHA R., McCOOL, R., MILLER, E. 2003. Semantic Search. Proceedings of the WWW2003, Budapest.

HUNTER, J. 2001 Adding Multimedia to the Semantic Web - Building an MPEG-7 Ontology, International

Semantic Web Working Symposium (SWWS), Stanford, July 30 - August 1, 2001.

HEARST, M. A. 1991. Noun homograph disambiguation using local context in large corpora. Proceedings of

the 7th Annual Conf. of the University of Waterloo Centre for the New OED and Text Research, Oxford,

United Kingdom, 1-19.

HENDRIX, G., SACERDOTI, E., SAGALOWICZ, D., SLOCUM, J. 1978 Developing a Natural Language

Interface to Complex Data. ACM Transactions on Database Systems, 3(2):105–147, 1978.

HIRST, G., ST-ONGE, D. 1998 Lexical chains as representations of context for the detection and correction

of malapropisms. In Christiane Fellbaum, editor, WordNet: An Electronic Lexical Database, chapter 13,

pages 305-332. The MIT Press, Cambridge, MA, 1998.

HIZ, H. (ed.), Questions, Reidel, Holland, 1978.

IDE, N. VERONIS, G. 1998. Word Sense Disambiguation: the State of the Art. In Computational

Linguistics, 4(1), 1-40, 1998

ISO/IEC: 15938-3:2001: Information Technology – Multimedia content description interface – Part 3 visual

(2001) Version 1

JAIN, A.K., DUBES, R.C. 1988. Algorithms for Clustering Data, Prentice-Hall , 1988, ISBN 0-13-022278-X

 - 271 -

JAIN, A.K., MURPHY, M. N., FLYNN, P.J. 1999. Data Clustering: A Review, ACM Comp. Surveys, Vol.

31, No. 3, Sept. 99.

JACCARD, P. 1912. The Distribution of the Flora in the Alpine Zone. The New Phytologist, 11(2):37-50

JARMASZ, M., SZPAKOWICZ, S. 2003. Roget's Thesaurus and Semantic Similarity. International

Conference on Recent Advances in Natural Language Processing (RANLP2003). Borovets, Bulgaria,

2003.

JIANG, J. J., CONRATH, D. W. 1997. Semantic Similarity based on Corpus Statistics and Lexical

Taxonomy. In Proceedings of International Conference on Research in Computational Linguistics.

JOHNSON, T.1985. Natural Language Computing: The Commercial Applications. Ovum Ltd., London.

KAZASIS, F.G., MOUMOUTZIS, N., PAPPAS, N., KARANASTASI, A., CHRISTODOULAKIS, S. 2003.

Designing Ubiquitous Personalized TV-Anytime Services, In the proceedings of the International

Workshop on Ubiquitous Mobile Information and Collaboration Systems (UMICS), lagenfurt/Velden,

Austria, June 2003

KAPLAN, A. 1950. An experimental study of ambiguity and context. Mimeographed, 18pp, November

1950. [Published as: Kaplan, Abraham (1955). “An experimental study of ambiguity and context.”

Mechanical Translation, 2(2), 39-46.]

KARANASTASI, A., CHRISTODOULAKIS, S. 2007. The OntoNL Semantic Relatedness Measure for

OWL Ontologies", in the Proceedings of the Second IEEE International Conference on Digital

Information Management (IEEE ICDIM ‘07), 28-31 October 2007, Lyon, France

KARANASTASI, A., CHRISTODOULAKIS, S. 2007 Semantic Processing of Natural Language Queries in

the OntoNL Framework, in the Proceedings of the IEEE International Conference on Semantic

Computing (IEEE ICSC), 17-19 September 2007, Irvine, CA

KARANASTASI, A., CHRISTODOULAKIS, S. 2007 Ontology-Driven Semantic Ranking for Natural

Language Disambiguation in the OntoNL Framework, in the Proceedings of the 4th European Semantic

Web Conference (ESWC), 3-7 June 2007, Innsbruck, Austria

KARANASTASI, A., ZOTOS, A. CHRISTODOULAKIS, S. 2007 The OntoNL Framework for Natural

Language Interface Generation and a Domain-specific Application, in Proceedings of the DELOS

Conference on Digital Libraries, 13-14 February, Tirrenia, Pisa, Italy 2007

KARANASTASI, A., ZOTOS, A. CHRISTODOULAKIS, S. 2006. User Interactions with Multimedia

Repositories using Natural Language Interfaces: an Architectural Framework and its Implementation”, in

the Journal of Digital Information Management (JDIM), Volume 4 Issue 4, December 2006

 - 272 -

KARANASTASI, A., ZOTOS, A. CHRISTODOULAKIS, S. 2006 User Interactions with Multimedia

Repositories using Natural Language Interfaces: an Architectural Framework and its Implementation, in

Proceedings of the Fourth Special Workshop on Multimedia Semantics (WMS06), June 19-21, 2006

KARANASTASI, A., CHRISTODOULAKIS S., KOEHLER, J., BIATOV, K., CATARCI, T., KIMANI, S.

2005. Natural Language and Speech Interfaces to Knowledge Repositories, Poster on the 9th European

Conference on Research and Advanced Technology for Digital Libraries (ECDL 2005), September 2005,

Vienna, Austria

KARANASTASI, A., CHRISTODOULAKIS, S. 2005 OntoNL: An Ontology-based Natural Language

Interface Generator for Multimedia Repositories, in Proceedings of the Seventh International Workshop

of the EU Network of Excellence DELOS on AUDIO-VISUAL CONTENT AND INFORMATION

VISUALIZATION IN DIGITAL LIBRARIES (AVIVDiLib'05), May 2005

KARANASTASI, A., KAZASIS, F., CHRISTODOULAKIS, S. 2005. A Natural Language Model and a

System for Managing TV-Anytime Information in Mobile Environments, Special Issue on ACM Verlag

International Journal of Personal and Ubiquitous Computing, Volume9, Number 5, 262-272

KARANASTASI, A., KAZASIS, F., CHRISTODOULAKIS, 2004 A Natural Language Model for

Managing TV-Anytime Information in Mobile Environments, In Proceedings of the International

Workshop on Ubiquitous Mobile Information and Collaboration Systems (UMICS), Riga, Latvia, 7 - 8

June, 2004

KARANASTASI, A., KAZASIS, F., CHRISTODOULAKIS, S. 2004. A Natural Language Model for

Managing TV-Anytime Information from Mobile Devices. In Proceedings of the 9th International

Conference on Applications of Natural Language to Information Systems (NLDB), Manchester, UK, 2004

KELLER, F., LAPATA, M. 2003. Using the Web to obtain frequencies for unseen bigrams. Computational

Linguistics, 29:459–484.

KLEIN, D., MANNING C.D. 2003 Accurate Unlexicalized Parsing. In proceedings of the 41st meeting of he

association for computational linguistics.

KOUTSOUDAS, A. K. KORFHAGE, R. 1956. “M.T. and the problem of multiple meaning.” Mechanical

Translation, 2(2), 46-51.

LAUER, M. 1995. Designing Statistical Language Learners:Experiments on Noun Compounds. Ph.D. thesis,

Department of Computing Macquarie University NSW 2109 Australia.

LEACOCK, C., CHODOROW, M. 1998. Combining Local Context and WordNet Similarity for Word Sense

Identification. In WordNet: An Electronic Lexical Database. The MIT Press.

LEDOUX, K., GORDON, P. C., CAMBLIN, C. C., & SWAAB, T. Y. 2006. Coreference and lexical

repetition: Mechanisms of discourse integration. Memory & Cognition. Cognitive

 - 273 -

Neurology/Neuropsychology, Johns Hopkins University, 1629 Thames Street, Suite 350, Baltimore, MD

21231

LEE, J. H., LEE, Y. J., 1993 Information Retrieval based on Conceptual Distance in IS-A Hierarchies,

Journal of Documentation 49(2):188-207

LEHNERT, W. G. 1978. The Process of Question Answering, New Jersey.

LEHNERT, W. G. 1986. A conceptual theory of question answering. In B. J. Grosz, K. Sparck Jones, and B.

L. Webber, editors, Natural Language Processing, pages 651–657. Kaufmann, Los Altos, CA.

LEVINSON, S. C. 1983. Pragmatics. Cambridge University Press, 1983.

LIN, D. 1998. An Information-Theoretic Definition of Similarity. In Proceedings of the 15th International

Conference on Machine Learning, Madison, WI

LORD, P., STEVENS, R., BRASS, A., GOBLE, C. 2003 Investigating semantic similarity measures across

the Gene Ontology: the relationship between sequence and annotation. Bioinformatics, 19, 1275--1283

LYONS, J., 1995. Linguistic Semantics: An introduction, Cambridge University Press, Cambridge, UK.

MARCUS, M. 1980. A Theory of Syntactic Recognition for Natural Language. MIT Press.

MASTERMAN, M. 1961. Semantic message detection for machine translation, using an interlingua. 1961

International Conference on Machine Translation of Languages and Applied Language Analysis, Her

Majesty’s Stationery Office, London, 1962, 437-475.

MacCARTNEY, B., De MARNEFFE, M.C., MANNING, C., 2006. Generating Typed Dependency Parses

from Phrase Structure Parses, to appear at LREC-06

McCARTHY, J., 1987. Generality in Artificial Intelligence, Communication of the ASM. Vol. 30, No. 12,

pp,1030-1035.

McGUINNESS, D. L.,VAN HARMELEN, F. (eds.). 2004 OWL Web Ontology Language: Overview. W3C

Recommendation, 10 Feb. 2004. (http://www.w3.org/TR/owl-features).

McKEOWN, K., KUKICH, K., SHAW, J. 1994 Practical issues in automatic documentation generation. In

ANLP, pages 7--14.

MANOLA, F., MILLES, E. (eds.), 2004 RDF Primer. W3C Recommendation, 10 Feb. 2004.

(http://www.w3.org/TR/rdf-primer)

MELTON, J. 2006 SQL, XQuery, and SPARQL: What’s Wrong With This Picture? XTech 2006: “Building

Web 2.0” — 16-19 May 2006, Amsterdam, The Netherlands

MEYER, D. E., SCHVANEVELDT, R. W. 1971. Facilitation in recognizing pairs ofwords: Evidence of a

dependence between retrieval operations. Journal of Experimental Psychology, 90(2), 227-34.

 - 274 -

MILLER, G., BECKWITH, R., FELLBAUM, C., GROSS, D. and MILLER, K.J. 1990. Introduction to

WordNet: an on-line lexical database.'International Journal of Lexicography, 3(4), 235 – 244

MILLER, G., BECKWITH, R., FELLBAUM, C., GROSS, D., MILLER, K. 1993. Five papers on wordnet,

Technical report, Stanford University

MILLER, G. A. , CHARLES, W. G. 1991. Contextual Correlates of Semantic Similarity. Language and

Cognitive Processes 6, 1-28.

MILLER, P. H., 2000. Strong Generative Capacity: The Semantics of Linguistic Formalism. Number 46 in

Lecture Notes. CSLI Publications, Stanford, CA.

MINNEN, G., CARROLL, J., PEARCE, D. 2001. Applied morphological processing of English, Natural

Language Engineering, 7(3). 207-223

MOLDOVAN, D., et al. 2003. LCC Tools for Question Answering”, in Proceedings of TREC-11, NIST.

NAKOV, P., SCHWARTZ, A., WOLF, B., HEARST, M. 2005. Scaling up BioNLP: Application of a text

annotation architecture to noun compound bracketing. In Proceedings of SIG BioLINK.

NG, H. T., LEE, H. B. 1996. Integrating multiple knowledge sources to disambiguate word sense: An

examplarbased approach. Proceedings of the 34th Annual Meeting of the Association for Computational

Linguistics, 24-27 June 1996, University of California, Santa Cruz, California, 40-47.

NIELSEN, J. 1994. Heuristic Evaluation, In Nielsen, J. and Mack, R. L. (Eds.), Usability Inspection

Methods. John Wiley and Sons, New York, pp. 25-62.

O’HARA, K., ALANI, H;, SHADBOLT, N. 2002. Identifying Communities of Practices: Analyzing

Ontologies as Networks to Support Community Recognition, IFIP-WCC 2002, Montreal, Canada

 OLEARY D. 1998. Using AI in knowledge management: Knowledge bases and ontologies. IEEE Intelligent

Systems, May 1998.

OWL WEB ONTOLOGY LANGUAGE REFERENCE, http://www.w3.org/TR/owl-ref/

PEARL, J. 1988. Probabilistic Reasoning in Intelligent Systems: Neworkd of Plausible Inference. Morgan

Kaufman, San Mateo, CA.

PIERA, C. 1995. On Compounding in English and in Spanish." Evolution and Revolution in Linguistic

Theory. Campos, H. and P.Kempchinsky, (eds). Washington: Georgetown University Press.

PRAGER, J., CHU-CARROLL, J., CZUBA, K. 2002. Use of WordNet Hypernyms for Answering What-Is

Questions, Proceedings of TREC-10, NIST.

PUSTEJOVSKY, J., ANICK, P., BERGLER, S. 1993. Lexical semantic techniques for corpus analysis.

Computational Linguistics, 19(2):331–358.

 - 275 -

QUILLIAN, M. R. 1968. Semantic Memory. In Minsky, M. (Ed.), Semantic Information Processing. MIT

Press, Cambridge, MA.

QUIRK, R., GREENBAUM, S. 1973. A University Grammar of English. Longman.

RADEV, D., Qi, H., Wu, H., Fan, W. 2002 Evaluating Web-based Question Ansering Systems. Proceedings

of LREC, 2002

RATNAPARKHI, A. 1996 A Maximum Entropy Model for Part-of-Speech Tagging. In Proceedings of the

1st Conference on Empirical Methods in Natural Language Processing, EMNLP, Pennsylvania, May,

1996

RESNIK, P. 1989. Access to Multiple Underlying Systems in JANUS. BBN report 7142, Bolt Beranek and

Newman Inc., Cambridge, Massachusetts, September 1989.

RESNIK, P., HEARST, M. 1993. Structural Ambiguity and Conceptual Relations. In Proceedings of the

Workshop on Very Large Corpora:Academic and Industrial Perspectives, June 22, Ohio State University,

pp58-64

RESNIK, P. 1993. Selection and information: a class-based approach to lexical relationships. Ph.D. thesis,

University of Pennsylvania, UMI Order No. GAX94-13894.

RESNIK, P. 1995. Using information content to evaluate semantic similarity in a taxonomy. In Proceedings

of the l4th International Joint Conference on Artificial Intelligence (1JCAI- 95), pages 448-453.

RDF: Resource Description Framework (RDF): Concepts and Abstract Syntax, Recommendation, World

Wide Web Consortium, 2004-02-10; http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

RITCHEY, T. 1998. General Morphological Analysis: A general method for non-quantified modeling

ROCHA, C., SCHWABE, D., POGGI DE ARAGAO, P. 2004. A hybrid approach for searching in the

semantic web. In Proceedings of the 13th International World Wide Web Conference, New York, USA,

May 2004

SALEMBIER, P. 2001 MPEG-7 Multimedia Description Schemes, IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 11, No. 6, 2001

SALTON, G., BUCKLEY, C. 1988. Term-Weighting Approaches in Automatic Text Retrieval. Information

Processing and Management, 24(5):513-523

SALTON, G. 1989 Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information

by Computer, Addison-Wesley, 1989

SCHA, R.J.H. 1977 Philips Question Answering System PHILIQA1. In SIGART Newsletter, no.61. ACM,

New York, February 1977.

SCHANK, R. C., ABELSON, R. P. 1977. Scripts, Plans, Goals and Understanding, New Jersey.

 - 276 -

SHETH, A., BERTRAM, C., AVANT, D., HAMMOND, B., KOCHUT, K., WARKE, Y. 2002. Managing

Semantic Content for the Web. IEEE Internet Computing 6(4): 80-87, 2002

SIMMONS, R. F. 1965. Answering English questions by computer: a survey, in Communications of the

ACM, 8(1):53-70

SIMMONS, R. F., 1973 Semantic Networks: computation and use for understanding English sentences”, in

Schank, R. C. and Colby, K. M., Computer Models of Thought and Language, San Francisco.

SLEATOR, D., TEMPERLAY, D. 1993. Parsing English with a link grammar. In Third International

Workshop on Parsing Technologies.

SMEATON, A. F., BERRUT, C. 1995. Running TREC-4 experiments: A chronological report of query

expansion experiments carried out as part of TREC-4. In Proceedings of The Fourth Text Retrieval

Conference (TREC-4). NIST special publication.

SPARCK JONES, K. 1972 Exhaustivity and Specificity, Journal of Documentation, Volume 28 Number 1

1972 pp 11-21.

SPARCK JONES, K. 1983. Compound Noun Interpretation Problems. Computer Speech Processing. In

Fallside, F. and Woods, W. A., Prentice-Hall, NJ. pp 363-81.

SPERBER, D., WILSON, D. 1986 Relevance: Communication and Cognition. Blackwell, Oxford and

Harvard University Press, Cambridge MA.

STAIRMAND, M. A. 1997. Textual context analysis for information retrieval. In Proceedings of the 20th

Annual International A CM- SIGIR Conference on Research and Development in Information Retrieval,

pages 140-147.

STEINBACH, M., KARYPIS, G., KUMAR, V. 2000 A Comparison of Document Clustering Techniques, In

KDD Workshop on Text Mining.

THE PENN TREEBANK PROJECT, www.cis.upenn.edu/~treebank/

THE SITE OF THE TV-ANYTIME FORUM, http://www.tv-anytime.org

THOMPSON, B. H., THOMPSON, F. B. 1983 Introducing ASK, A Simple Knowledgeable System. In

Proceedings of the 1st Conference on Applied Natural Language Processing, Santa Monica, California,

pages 17–24, 1983.

TOUTANOVA, K., KLEIN, D., MANNING, C. D., SINGER, Y. 2003 Feature-Rich Part-of-Speech Tagging

with a Cyclic Dependency Network, In Proceedings of Human Language Technology, Edmonton,

Canada, 2003.

TOUTANOVA, K., MANNING, C. D. 2000 Enriching the Knowledge Sources Used in a Maximum Entropy

Part-of-Speech Tagger. In Proceedings of EMNLP, Hong-Kong, October, 2000.

 - 277 -

TSINARAKI, C., FATOUROU, E., CHRISTODOULAKIS, S. 2003. An Ontology-Driven Framework for

the Management of Semantic Metadata describing Audiovisual Information. In Proceedings of CAiSE,

Velden, Austria, 2003, pp 340-356

TSINARAKI, C., POLYDOROS, P., CHRISTODOULAKIS, S. 2004. Integration of OWL Ontologies in

MPEG-7 and TV-Anytime Compliant Semantic Indexing. In Proceedings of CAiSE 2004: 398-413.

TSINARAKI, C., POLYDOROS, P., CHRISTODOULAKIS, S. 2005. GraphOnto: A Component and a

User Interface for the Definition and Use of Ontologies in Multimedia Information Systems, In

Proceedings of AVIVDiLib 2005, Cortona, Italy, April 2005

TSINARAKI, C., CHRISTODOULAKIS, S. 2006. A Multimedia User Preference Model that supports

Semantics and its application to MPEG 7/21, In Proceedings of MMM 2006, Beijing, China, 4-6 January

2006.

YATES, B., NETO, B. 1999. Modern Information Retrieval. ACM Press, New Cork, USA, 1999.

VARGAS-VERA, M., MOTTA, E. 2004. AQUA – Ontology-based Question Answering System. Third

International Mexican Conference on Artificial Intelligence (MICAI-2004), Lecture Notes in Computer

Science 2972 Springer Verlag, 2004.

VOORHEES, E. M. 1993. Using wordnet to disambiguate word senses for text retrieval. In Proceedings of

the 16th Annual International ACM-SIGIR Conference on Research and Development in Information

Retrieval, pages 171-180.

VOORHEES, E. M. 1994. Query expansion using lexical-semantic relations. In Proceedings of the 17th

Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval,

pages 61-69.

WALTZ, D.L. 1978 An English Language Question Answering System for a Large Relational Database.

Communications of the ACM, 21(7):526–539, July 1978.

WARREN, D, PEREIRA, F. 1982 An Efficient Easily Adaptable System for Interpreting Natural Language

Queries. Computational Linguistics, 8(3-4):110–122, July-December 1982.

WEAVER, W. 1949. Translation. Mimeographed, 12 pp., July 15, 1949. Reprinted in Locke, William N. and

Booth, A. Donald (1955) (Eds.), Machine translation of languages. John Wiley & Sons, New York, 15-23.

WEIBE, J., MAPLES, J., DUAN, L., BRUCE, R. 1997. Experience in WordNet sense tagging in the Wall

Street Journal. ACL-SIGLEX Workshop “Tagging Text with Lexical Semantics: Why, What, and How?”

April 4-5, 1997, Washington, D.C., 8-11.

WEI, M. 1993 An analysis of word relatedness correlation measures. Master's thesis, University of Western

Ontario, London, Ontario, May 1993.

 - 278 -

WINOGRAD, T. 1972. Understanding Natural Language, NY Academic Press.

WILKS, Y., STEVENSON, M. 1996. The grammar of sense: Is word sense tagging much more than part-of-

speech tagging? Technical Report CS-96-05, University of SHEFFIELD, Sheffield, United Kingdom.

WILSON, D., SPERBER, D. 1986 On defining 'relevance', in Grandy and Warner (eds.), Philosophical

grounds of rationality, Oxford.

WOODS, W.A. 1968 Procedural Semantics for a Question-Answering Machine. In Proceedings of the Fall

Joint Computer Conference, pages 457–471, New York, NY, 1968. AFIPS.

WOODS, W. A., KAPLAN, R. M., WEBBER, B. N. 1972 The Lunar Sciences Natural Language

Information System: Final Report. BBN Report 2378, Bolt Beranek and Newman Inc., Cambridge,

Massachusetts.

XDM: XQuery 1.0 and XPath 2.0 Data Model (XDM), Candidate Recommendation, World Wide Web

Consortium, 2005-11-03; http://www.w3.org/TR/2005/CR-xpath-datamodel-20051103/

 - 279 -

APPENDIX
In what follows we present the owl ontologies that were used for the evaluation tests. The

figures are taken from the Protégé ontology editor and the GraphOnto ontology editor.

Images Ontology

An ontology for Images, image regions (SVG), videos, frames, segments, and what they

depict. Currently the default ontology for images in MINDSWAP's Photostuff tool.

Namespace: http://www.mindswap.org/~glapizco/technical.owl#
Location: http://www.mindswap.org/~glapizco/technical.owl

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#">
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
 <!ENTITY technical.owl "http://www.mindswap.org/~glapizco/technical.owl">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
]>
<rdf:RDF xml:base="&technical.owl;"
 xmlns:owl="&owl;"
 xmlns:rdf="&rdf;"
 xmlns:rdfs="&rdfs;">

<!-- Ontology Information -->
 <owl:Ontology rdf:about=""/>

<!-- Classes -->
 <owl:Class rdf:about="#DepictedThing"
 rdfs:label="Depicted Thing">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="http://xmlns.com/foaf/0.1/depiction"/>
 <owl:someValuesFrom rdf:resource="&owl;Thing"/>
 </owl:Restriction>
 </owl:equivalentClass>
 </owl:Class>

 <owl:Class rdf:about="#Image"
 rdfs:comment="The class of images"
 rdfs:label="Image">
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 <rdfs:subClassOf rdf:resource="http://xmlns.com/foaf/0.1/Image"/>
 </owl:Class>

 <owl:Class rdf:about="#ImagePart"
 rdfs:label="Image Part">
 <rdfs:comment>2D spatial regions of an image or video frame</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 </owl:Class>

 <owl:Class rdf:about="#ImageText"
 rdfs:label="Image Text">
 <rdfs:comment>Spatial regions of an image or video frame that correspond to text or

 - 280 -

captions</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#StillRegion"/>
 </owl:Class>

 <owl:Class rdf:about="#Mosaic"
 rdfs:label="Mosaic">
 <rdfs:comment>Mosaic or panaoramic view of a video segment</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#StillRegion"/>
 </owl:Class>

 <owl:Class rdf:about="#MovingRegion"
 rdfs:label="Moving Region">
 <rdfs:comment>2D spatio-temporal regions of video data</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 </owl:Class>

 <owl:Class rdf:about="#Multimedia"
 rdfs:comment="The class of multimedia resources"
 rdfs:label="Multimedia">
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 </owl:Class>

 <owl:Class rdf:about="#MultimediaContent"
 rdfs:comment="The class of multimedia data"
 rdfs:label="Multimedia Content">
 <rdfs:subClassOf rdf:resource="http://www.mindswap.org/~glapizco/simpleABC.owl#Actuality"/>
 </owl:Class>

 <owl:Class rdf:about="#Segment"
 rdfs:label="Segment">
 <rdfs:comment>The class of fragments of multimedia content</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 </owl:Class>

 <owl:Class rdf:about="#StillRegion"
 rdfs:label="Still Region">
 <rdfs:comment>2D spatial regions of an image or video frame</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 </owl:Class>

 <owl:Class rdf:about="#Video"
 rdfs:comment="The class of videos"
 rdfs:label="Video">
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 </owl:Class>

 <owl:Class rdf:about="#VideoFrame"
 rdfs:comment="Frame of a video"
 rdfs:label="VideoFrame">
 <rdfs:subClassOf rdf:resource="#MultimediaContent"/>
 </owl:Class>

 <owl:Class rdf:about="#VideoSegment"
 rdfs:label="Video Segment">
 <rdfs:comment>Temporal intervals or segments of video data</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#Segment"/>
 <rdfs:subClassOf rdf:resource="#Video"/>
 </owl:Class>

 <owl:Class rdf:about="#VideoSegmentsOrStillRegions"
 rdfs:label="VideoSegmentsOrStillRegions">
 <rdf:type rdf:resource="&owl;Thing"/>
 <owl:unionOf rdf:datatype="&rdf;XMLLiteral">
 <owl:Class rdf:about="#VideoSegment"></owl:Class>

 - 281 -

 <owl:Class rdf:about="#StillRegion"></owl:Class>
 </owl:unionOf>
 </owl:Class>

 <owl:Class rdf:about="#VideoText"
 rdfs:label="Video Text">
 <rdfs:comment>Spatio-temporal regions of video data that correspond to text or captions</rdfs:comment>
 <rdfs:subClassOf rdf:resource="#MovingRegion"/>
 </owl:Class>

 <owl:Class rdf:about="http://www.mindswap.org/~glapizco/simpleABC.owl#Actuality"/>
 <owl:Class rdf:about="http://xmlns.com/foaf/0.1/Image"/>

<!-- Annotation Properties -->
 <owl:AnnotationProperty rdf:about="&rdfs;comment"/>
 <owl:AnnotationProperty rdf:about="&rdfs;label"/>

<!-- Datatype Properties -->
 <owl:DatatypeProperty rdf:about="#endFrame"
 rdfs:label="endFrame">
 <rdfs:domain rdf:resource="#VideoSegment"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#frameNumber"
 rdfs:label="frameNumber">
 <rdfs:domain rdf:resource="#VideoFrame"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#hasDurationSeconds"
 rdfs:label="hasDurationSeconds">
 <rdfs:domain rdf:resource="#Video"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#hasTotalFrames"
 rdfs:label="hasTotalFrames">
 <rdfs:domain rdf:resource="#Video"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#startFrame"
 rdfs:label="startFrame">
 <rdfs:domain rdf:resource="#VideoSegment"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#svgOutline"
 rdfs:label="svgOutline">
 <rdfs:domain rdf:resource="#ImagePart"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="&owl;unionOf"/>

<!-- Object Properties -->
 <owl:ObjectProperty rdf:about="#depiction"
 rdfs:label="depiction">
 <rdfs:subPropertyOf rdf:resource="http://xmlns.com/foaf/0.1/depiction"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#depicts"
 rdfs:label="depicts">
 <owl:inverseOf rdf:resource="#depiction"/>
 <rdfs:subPropertyOf rdf:resource="http://xmlns.com/foaf/0.1/depicts"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#descriptor">
 <rdf:type rdf:resource="&owl;Thing"/>

 - 282 -

 <rdfs:domain rdf:resource="#MultimediaContent"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#frameOf"
 rdfs:label="frameOf">
 <rdfs:domain rdf:resource="#VideoFrame"/>
 <rdfs:range rdf:resource="#Video"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasRegion"
 rdfs:label="hasRegion">
 <rdfs:domain rdf:resource="#MultimediaContent"/>
 <rdfs:range rdf:resource="#ImagePart"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasSegment"
 rdfs:label="hasSegment">
 <rdfs:domain rdf:resource="#Video"/>
 <rdfs:range rdf:resource="#VideoSegment"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#regionOf"
 rdfs:label="regionOf">
 <rdfs:domain rdf:resource="#ImagePart"/>
 <rdfs:range rdf:resource="#MultimediaContent"/>
 <owl:inverseOf rdf:resource="#hasRegion"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#segmentOf"
 rdfs:label="segmentOf">
 <rdfs:domain rdf:resource="#VideoSegment"/>
 <rdfs:range rdf:resource="#Video"/>
 <owl:inverseOf rdf:resource="#hasSegment"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#visualDescriptor">
 <rdf:type rdf:resource="&owl;Thing"/>
 <rdfs:comment>Descriptor - applicable to images, videos, video segments, still regions and moving
regions.</rdfs:comment>
 <owl:subPropertyOf rdf:resource="#descriptor"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&owl;subPropertyOf"/>
</rdf:RDF>

 - 283 -

People Ontology

An ontology about people and information about their pets.

Namespace: http://owl.man.ac.uk/2005/07/sssw/people.html
Location: http://owl.man.ac.uk/2005/07/sssw/people.html

 <?xml version="1.0" ?>
- <rdf:RDF xmlns="file:/Users/seanb/Desktop/Cercedilla2005/hands-on/people.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:ns0="http://owl.man.ac.uk/2005/07/sssw/people#" xml:base="file:/Users/seanb/Desktop/Cercedilla2005/hands-
on/people.owl">

 <owl:Ontology rdf:about="file:/Users/seanb/Desktop/Cercedilla2005/hands-on/people.owl" />
 <owl:Class rdf:about="http://www.w3.org/2002/07/owl#Thing" />
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#haulage_worker">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
- <owl:equivalentClass>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#works_for" />

 </owl:onProperty>
- <owl:someValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#part_of" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#haulage_company" />

 </owl:someValuesFrom>
 </owl:Restriction>

 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#haulage_company" />
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:equivalentClass>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">haulage worker</rdfs:label>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#vehicle">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">vehicle</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#man">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#adult" />
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#male" />

 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">man</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#cat_owner">
- <owl:equivalentClass>

 - 284 -

- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#cat" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_pet" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">cat owner</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#animal">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#eats" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="http://www.w3.org/2002/07/owl#Thing" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">animal</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#sheep">
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">sheep</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#grass" />

 </owl:allValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#eats" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#woman">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#adult" />
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#female" />
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />

 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">woman</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#tabloid">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A newspaper. Tabloids are usually thought of

as more "down-market" than broadsheets.</rdfs:comment>
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">tabloid</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#broadsheet" />

 </owl:disjointWith>

 - 285 -

- <rdfs:subClassOf>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#newspaper" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#grownup">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">grownup</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#adult" />
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />

 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#male">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">male</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">The class of all male things.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#lorry_driver">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">lorry driver</rdfs:label>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#lorry" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#drives" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#cow">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Cows are naturally

vegetarians.</rdfs:comment>
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">cow</rdfs:label>
- <rdfs:subClassOf>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#vegetarian" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#quality_broadsheet">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
- <rdfs:subClassOf>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#broadsheet" />

 </rdfs:subClassOf>
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">quality broadsheet</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#plant">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">plant</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#animal_lover">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Someone who really likes

animals</rdfs:comment>
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">animal lover</rdfs:label>
- <owl:equivalentClass>
- <owl:Class>

 - 286 -

- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
- <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">3</owl:minCardinality>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_pet" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#haulage_truck_driver">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
- <owl:Restriction>
- <owl:someValuesFrom>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#haulage_company" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#part_of" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:someValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#works_for" />

 </owl:onProperty>
 </owl:Restriction>

- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#truck" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#drives" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">haulage truck driver</rdfs:label>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#bus_company">
- <rdfs:subClassOf>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#company" />

 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">bus company</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#old_lady">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#female" />
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#elderly" />

 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 - 287 -

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">old lady</rdfs:label>
- <rdfs:subClassOf>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
- <owl:Restriction>
- <owl:allValuesFrom>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#cat" />

 </owl:allValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_pet" />

 </owl:onProperty>
 </owl:Restriction>

- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_pet" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#cat">
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">cat</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#dog" />

 </owl:disjointWith>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#bicycle">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">bicycle</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A human propelled vehicle, with two

wheels</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#vehicle" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#giraffe">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#leaf" />

 </owl:allValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#eats" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">giraffe</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#van">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">van</rdfs:label>
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#vehicle" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#lorry">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">lorry</rdfs:label>
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#vehicle" />
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class>
- <owl:disjointWith>
- <owl:Class>

 - 288 -

- <owl:unionOf rdf:parseType="Collection">
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#part_of" />

 </owl:onProperty>
 </owl:Restriction>

 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#animal" />
 </owl:unionOf>
 </owl:Class>
 </owl:disjointWith>

- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#plant" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#part_of" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#plant" />

 </owl:Restriction>
 </owl:unionOf>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#cat_liker">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">cat liker</rdfs:label>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#likes" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#cat" />

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#pet">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">pet</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
- <owl:equivalentClass>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="http://www.w3.org/2002/07/owl#Thing" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#is_pet_of" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#broadsheet">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A newspaper. Broadsheets are usually

considered to be more "high-brow" than tabloids.</rdfs:comment>
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">broadsheet</rdfs:label>
- <rdfs:subClassOf>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#newspaper" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#dog_liker">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
- <owl:Restriction>

 - 289 -

- <owl:someValuesFrom>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#dog" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#likes" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">dog liker</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#driver">
- <rdfs:subClassOf>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#adult" />

 </rdfs:subClassOf>
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">driver</rdfs:label>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#vehicle" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#drives" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#newspaper">
- <rdfs:subClassOf>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#tabloid" />
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#broadsheet" />

 </owl:unionOf>
 </owl:Class>
 </rdfs:subClassOf>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">newspaper</rdfs:label>
- <rdfs:subClassOf>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#publication" />

 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">All newspapers are either broadsheets or

tabloids.</rdfs:comment>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#red_top">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">red top</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#tabloid" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#magazine">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
- <rdfs:subClassOf>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#publication" />

 </rdfs:subClassOf>
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">magazine</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#young">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">young</rdfs:label>
- <owl:disjointWith>

 - 290 -

 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#adult" />
 </owl:disjointWith>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#bus_driver">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#bus" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#drives" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">bus driver</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Someone who drives a bus.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#van_driver">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">van driver</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#drives" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#van" />

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">person</rdfs:label>
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#tiger">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">tiger</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#kid">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">kid</rdfs:label>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#young" />
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />

 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#dog">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">dog</rdfs:label>

 - 291 -

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#bone" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#eats" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#duck">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">duck</rdfs:label>
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#haulage_company">
- <rdfs:subClassOf>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#company" />

 </rdfs:subClassOf>
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">haulage company</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#grass">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">grass</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#plant" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#brain">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">brain</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#tree">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">tree</rdfs:label>
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#plant" />
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#bone">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">bone</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#publication">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">publication</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#female">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">female</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#white_thing">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">white thing</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#mad_cow">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A mad cow is a cow that has been eating the

brains of sheep.</rdfs:comment>
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">mad cow</rdfs:label>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#cow" />
- <owl:Restriction>
- <owl:someValuesFrom>

 - 292 -

- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#sheep" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#part_of" />

 </owl:onProperty>
 </owl:Restriction>

 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#brain" />
 </owl:intersectionOf>
 </owl:Class>
 </owl:someValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#eats" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#truck">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">truck</rdfs:label>
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#vehicle" />
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#bus">
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#vehicle" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">bus</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#pet_owner">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_pet" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">pet owner</rdfs:label>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#white_van_man">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#man" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#drives" />

 </owl:onProperty>
- <owl:someValuesFrom>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#van" />
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#white_thing" />

 </owl:intersectionOf>
 </owl:Class>
 </owl:someValuesFrom>

 - 293 -

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">white van man</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A white van man is a man who drives a white

van.</rdfs:comment>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#reads" />

 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#tabloid" />

 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#elderly">
- <rdfs:subClassOf>
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#adult" />

 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">elderly</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#dog_owner">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#person" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_pet" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#dog" />

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">dog owner</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#car">
 <rdfs:subClassOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#vehicle" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">car</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#leaf">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#part_of" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#tree" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">leaf</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#company">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">company</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#vegetarian">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A vegetarian is defined as an animal that eats

no other animals, or parts of animals.</rdfs:comment>

 - 294 -

- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#animal" />
- <owl:Restriction>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:complementOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#part_of" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />

 </owl:Restriction>
 </owl:complementOf>
 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#eats" />

 </owl:onProperty>
 </owl:Restriction>

- <owl:Restriction>
- <owl:allValuesFrom>
- <owl:Class>
 <owl:complementOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />

 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#eats" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">vegetarian</rdfs:label>
 </owl:Class>

- <owl:Class rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#adult">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">adult</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Things that are adult.</rdfs:comment>

 </owl:Class>
- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#reads">
 <rdfs:range rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#publication" />
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">reads</rdfs:label>

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#drives">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">drives</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_mother">
 <rdfs:range rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#woman" />
- <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_parent" />

 </rdfs:subPropertyOf>
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">has_mother</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_pet">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">has_pet</rdfs:label>
- <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#likes" />

 </rdfs:subPropertyOf>
 <rdfs:domain rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#person" />

 - 295 -

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Anyone that has a pet must like that
pet.</rdfs:comment>

 <rdfs:range rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />
- <owl:inverseOf>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#is_pet_of" />

 </owl:inverseOf>
 </owl:ObjectProperty>

- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#works_for">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">works_for</rdfs:label>

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#part_of">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">part_of</rdfs:label>
- <owl:inverseOf>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_part" />

 </owl:inverseOf>
 </owl:ObjectProperty>

- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_child">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">has_child</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#eats">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
- <owl:inverseOf>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#eaten_by" />

 </owl:inverseOf>
 <rdfs:domain rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#animal" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">eats</rdfs:label>

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#is_pet_of">
 <owl:inverseOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#has_pet" />
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">is_pet_of</rdfs:label>

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#likes">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">likes</rdfs:label>

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_father">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">has_father</rdfs:label>
 <rdfs:range rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#man" />
- <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_parent" />

 </rdfs:subPropertyOf>
 </owl:ObjectProperty>

- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_parent">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">has_parent</rdfs:label>

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#eaten_by">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">eaten_by</rdfs:label>
 <owl:inverseOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#eats" />
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#has_part">
 <owl:inverseOf rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#part_of" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">has_part</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:ObjectProperty>
- <ns0:elderly rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Minnie">
- <ns0:has_pet>
- <owl:Thing rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Tom">

 - 296 -

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Tom</rdfs:label>

 </owl:Thing>
 </ns0:has_pet>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Minnie</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdf:type rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#female" />

 </ns0:elderly>
- <ns0:duck rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Huey">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Huey</rdfs:label>

 </ns0:duck>
- <ns0:van rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Q123_ABC">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Q123 ABC</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A white van</rdfs:comment>
 <rdf:type rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#white_thing" />

 </ns0:van>
- <ns0:broadsheet rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#The_Times">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">The Times</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </ns0:broadsheet>
- <rdf:Description rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Joe">
- <ns0:has_pet>
- <ns0:dog rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Fido">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Fido</rdfs:label>

 </ns0:dog>
 </ns0:has_pet>

- <rdf:type>
- <owl:Restriction>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:maxCardinality>
 <owl:onProperty rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#has_pet" />

 </owl:Restriction>
 </rdf:type>

 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Joe</rdfs:label>
 <rdf:type rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#person" />
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </rdf:Description>
- <ns0:male rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Mick">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Mick is male and drives a white van. Due to

the axiom concerning drivers, we know that Mick must be a man, and is therefore a white van man. The axiom about the
reading material of a white van man then allows us to infer things about the Daily Mirror.</rdfs:comment>

 <ns0:drives rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#Q123_ABC" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Mick</rdfs:label>
- <ns0:reads>
- <owl:Thing rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Daily_Mirror">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Daily Mirror</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">The paper read by Mick (a white van

man).</rdfs:comment>
 </owl:Thing>
 </ns0:reads>
 </ns0:male>

- <ns0:cow rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Flossie">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Flossie</rdfs:label>

 </ns0:cow>
- <ns0:duck rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Dewey">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Dewey</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </ns0:duck>
- <owl:Thing rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Pete">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Pete</rdfs:label>

 </owl:Thing>

 - 297 -

- <ns0:tiger rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Fluffy">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Fluffy</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </ns0:tiger>
- <ns0:dog rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Rex">
 <ns0:is_pet_of rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#Mick" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Rex</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </ns0:dog>
- <ns0:duck rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Louie">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Louie</rdfs:label>

 </ns0:duck>
- <ns0:tabloid rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#The_Sun">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">The Sun</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </ns0:tabloid>
- <owl:Thing rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Spike">
 <ns0:is_pet_of rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#Pete" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Spike</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </owl:Thing>
- <ns0:person rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Walt">
 <ns0:has_pet rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#Huey" />
 <ns0:has_pet rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#Louie" />
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Walt</rdfs:label>
 <ns0:has_pet rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#Dewey" />

 </ns0:person>
- <ns0:person rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Fred">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Fred</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
- <ns0:has_pet>
- <ns0:cat rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Tibbs">
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Tibbs</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />

 </ns0:cat>
 </ns0:has_pet>
 </ns0:person>

- <owl:AllDifferent>
- <owl:distinctMembers rdf:parseType="Collection">
 <ns0:duck rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Dewey" />
 <ns0:dog rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Fido" />
 <ns0:cow rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Flossie" />
 <ns0:tiger rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Fluffy" />
 <ns0:person rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Fred" />
 <ns0:duck rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Huey" />
 <rdf:Description rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Joe" />
- <ns0:person rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Kevin">
 <ns0:has_pet rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#Fluffy" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Kevin</rdfs:label>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <ns0:has_pet rdf:resource="http://owl.man.ac.uk/2005/07/sssw/people#Flossie" />

 </ns0:person>
 <ns0:duck rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Louie" />
 <ns0:male rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Mick" />
 <ns0:elderly rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Minnie" />
 <ns0:van rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Q123_ABC" />
 <ns0:dog rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Rex" />
- <ns0:broadsheet rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#The_Guardian">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" />
 <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string">The Guardian</rdfs:label>

 </ns0:broadsheet>
 <ns0:tabloid rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#The_Sun" />

 - 298 -

 <ns0:broadsheet rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#The_Times" />
 <ns0:cat rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Tibbs" />
 <ns0:person rdf:about="http://owl.man.ac.uk/2005/07/sssw/people#Walt" />

 </owl:distinctMembers>
 </owl:AllDifferent>
 </rdf:RDF>

 - 299 -

Koala Ontology

Namespace: http://protege.stanford.edu/plugins/owl/owl-library/koala.owl
Location: http://protege.stanford.edu/plugins/owl/owl-library/koala.owl

 <?xml version="1.0" ?>
- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns="http://protege.stanford.edu/plugins/owl/owl-library/koala.owl#"
xml:base="http://protege.stanford.edu/plugins/owl/owl-library/koala.owl">

 <owl:Ontology rdf:about="" />
- <owl:Class rdf:ID="Female">
- <owl:equivalentClass>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasGender" />

 </owl:onProperty>
- <owl:hasValue>
 <Gender rdf:ID="female" />

 </owl:hasValue>
 </owl:Restriction>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:ID="Marsupials">
- <owl:disjointWith>
 <owl:Class rdf:about="#Person" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#Animal" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="Student">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#isHardWorking" />

 </owl:onProperty>
 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</owl:hasValue>

 </owl:Restriction>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#University" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasHabitat" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:ID="KoalaWithPhD">
 <owl:versionInfo>1.2</owl:versionInfo>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
- <owl:Restriction>

 - 300 -

- <owl:hasValue>
 <Degree rdf:ID="PhD" />

 </owl:hasValue>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasDegree" />

 </owl:onProperty>
 </owl:Restriction>

 <owl:Class rdf:about="#Koala" />
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:ID="University">
- <rdfs:subClassOf>
 <owl:Class rdf:ID="Habitat" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="Koala">
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">false</owl:hasValue>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#isHardWorking" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#DryEucalyptForest" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasHabitat" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Marsupials" />
 </owl:Class>

- <owl:Class rdf:ID="Animal">
 <rdfs:seeAlso>Male</rdfs:seeAlso>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasHabitat" />

 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality>

 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasGender" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:versionInfo>1.1</owl:versionInfo>
 </owl:Class>

- <owl:Class rdf:ID="Forest">
 <rdfs:subClassOf rdf:resource="#Habitat" />

 </owl:Class>
- <owl:Class rdf:ID="Rainforest">
 <rdfs:subClassOf rdf:resource="#Forest" />

 </owl:Class>

 - 301 -

- <owl:Class rdf:ID="GraduateStudent">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasDegree" />

 </owl:onProperty>
- <owl:someValuesFrom>
- <owl:Class>
- <owl:oneOf rdf:parseType="Collection">
 <Degree rdf:ID="BA" />
 <Degree rdf:ID="BS" />

 </owl:oneOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Student" />
 </owl:Class>

- <owl:Class rdf:ID="Parent">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Animal" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChildren" />

 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality>

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:subClassOf rdf:resource="#Animal" />
 </owl:Class>

- <owl:Class rdf:ID="DryEucalyptForest">
 <rdfs:subClassOf rdf:resource="#Forest" />

 </owl:Class>
- <owl:Class rdf:ID="Quokka">
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</owl:hasValue>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#isHardWorking" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Marsupials" />
 </owl:Class>

- <owl:Class rdf:ID="TasmanianDevil">
 <rdfs:subClassOf rdf:resource="#Marsupials" />

 </owl:Class>
- <owl:Class rdf:ID="MaleStudentWith3Daughters">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Student" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasGender" />

 </owl:onProperty>
- <owl:hasValue>
 <Gender rdf:ID="male" />

 </owl:hasValue>
 </owl:Restriction>

 - 302 -

- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChildren" />

 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</owl:cardinality>

 </owl:Restriction>
- <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Female" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChildren" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

 <owl:Class rdf:ID="Degree" />
- <owl:Class rdf:ID="Male">
- <owl:equivalentClass>
- <owl:Restriction>
 <owl:hasValue rdf:resource="#male" />
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasGender" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:equivalentClass>
 </owl:Class>

 <owl:Class rdf:ID="Gender" />
- <owl:Class rdf:ID="Person">
 <rdfs:subClassOf rdf:resource="#Animal" />
 <owl:disjointWith rdf:resource="#Marsupials" />

 </owl:Class>
- <owl:ObjectProperty rdf:ID="hasHabitat">
 <rdfs:range rdf:resource="#Habitat" />
 <rdfs:domain rdf:resource="#Animal" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:ID="hasDegree">
 <rdfs:domain rdf:resource="#Person" />
 <rdfs:range rdf:resource="#Degree" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:ID="hasChildren">
 <rdfs:range rdf:resource="#Animal" />
 <rdfs:domain rdf:resource="#Animal" />

 </owl:ObjectProperty>
- <owl:FunctionalProperty rdf:ID="hasGender">
 <rdfs:range rdf:resource="#Gender" />
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty" />
 <rdfs:domain rdf:resource="#Animal" />

 </owl:FunctionalProperty>
- <owl:FunctionalProperty rdf:ID="isHardWorking">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean" />
 <rdfs:domain rdf:resource="#Person" />
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty" />

 </owl:FunctionalProperty>
 <Degree rdf:ID="MA" />

 </rdf:RDF>

 - 303 -

Pizza Ontology

Namespace: http://www.co-ode.org/ontologies/pizza/2005/05/16/pizza.owl
Location: http://www.co-ode.org/ontologies/pizza/2005/05/16/pizza.owl

<?xml version="1.0" ?>

- <rdf:RDF xmlns="http://www.co-ode.org/ontologies/pizza/2005/05/16/pizza.owl#"
xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:dc="http://purl.org/dc/elements/1.1/" xml:base="http://www.co-ode.org/ontologies/pizza/2005/05/16/pizza.owl">

- <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://protege.stanford.edu/plugins/owl/protege" />
 <owl:versionInfo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">version 1.2</owl:versionInfo>
 <rdfs:comment xml:lang="en">A "final stage" that contains all constructs required for the various versions of the Pizza

Tutorial run by Manchester</rdfs:comment>
 <protege:defaultLanguage rdf:datatype="http://www.w3.org/2001/XMLSchema#string">en</protege:defaultLanguage>

 </owl:Ontology>
- <owl:Class rdf:ID="TomatoTopping">
- <owl:disjointWith>
 <owl:Class rdf:ID="SpinachTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="RocketTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="OliveTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="CaperTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="PetitPoisTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:ID="Mild" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:ID="hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:ID="ArtichokeTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="LeekTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="PepperTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDeTomate</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:ID="OnionTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="GarlicTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="AsparagusTopping" />

 - 304 -

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:ID="VegetableTopping" />

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:ID="MushroomTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="Rosa">
- <owl:disjointWith>
 <owl:Class rdf:ID="Napoletana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="LaReine" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="Cajun" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:ID="Capricciosa" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="AmericanHot" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="FruttiDiMare" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="QuattroFormaggi" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">Rosa</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:ID="Siciliana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="FourSeasons" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:ID="GorgonzolaTopping" />
 <owl:Class rdf:ID="MozzarellaTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:ID="Giardiniera" />

 </owl:disjointWith>

 - 305 -

- <owl:disjointWith>
 <owl:Class rdf:ID="Margherita" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#GorgonzolaTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:ID="Fiorentina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="UnclosedPizza" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="Veneziana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="Soho" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="Caprina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="SloppyGiuseppe" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="PolloAdAstra" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="Mushroom" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:ID="American" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:ID="NamedPizza" />

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:ID="PrinceCarlo" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="Parmense" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="SlicedTomatoTopping">
 <rdfs:label xml:lang="pt">CoberturaDeTomateFatiado</rdfs:label>
 <rdfs:subClassOf rdf:resource="#TomatoTopping" />
- <rdfs:subClassOf>

 - 306 -

- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:ID="SundriedTomatoTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#FruttiDiMare">
- <owl:disjointWith>
 <owl:Class rdf:about="#Siciliana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Napoletana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#GarlicTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#QuattroFormaggi" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#GarlicTopping" />
 <owl:Class rdf:ID="MixedSeafoodTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#American" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#NamedPizza" />

 </rdfs:subClassOf>

 - 307 -

- <owl:disjointWith>
 <owl:Class rdf:about="#Capricciosa" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MixedSeafoodTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Veneziana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PolloAdAstra" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#UnclosedPizza" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">FrutosDoMar</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Giardiniera" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Parmense" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Rosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Cajun" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="PizzaTopping">

 - 308 -

- <rdfs:subClassOf>
 <owl:Class rdf:ID="DomainConcept" />

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:ID="IceCream" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="PizzaBase" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDaPizza</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:ID="Pizza" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#American">
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#QuattroFormaggi" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#UnclosedPizza" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">Americana</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#Capricciosa" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Parmense" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Giardiniera" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
 <owl:disjointWith rdf:resource="#Rosa" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Napoletana" />

 </owl:disjointWith>

 - 309 -

- <owl:disjointWith>
 <owl:Class rdf:about="#PolloAdAstra" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Siciliana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#NamedPizza" />

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Cajun" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:ID="PeperoniSausageTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#PeperoniSausageTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Veneziana" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#SpinachTopping">
 <owl:disjointWith rdf:resource="#TomatoTopping" />

 - 310 -

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#PetitPoisTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#RocketTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#ArtichokeTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#GarlicTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#VegetableTopping" />

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:about="#LeekTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#MushroomTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#AsparagusTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDeEspinafre</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#OnionTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PepperTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#Pizza">
 <owl:disjointWith rdf:resource="#PizzaTopping" />
 <rdfs:label xml:lang="en">Pizza</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#IceCream" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:ID="hasBase" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#PizzaBase" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 - 311 -

- <owl:disjointWith>
 <owl:Class rdf:about="#PizzaBase" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#DomainConcept" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="#MushroomTopping">
- <owl:disjointWith>
 <owl:Class rdf:about="#LeekTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#SpinachTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#OnionTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#PepperTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#TomatoTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#AsparagusTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#RocketTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#GarlicTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#ArtichokeTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#VegetableTopping" />

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDeCogumelo</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#PetitPoisTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="HotSpicedBeefTopping">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:ID="Hot" />

 </owl:someValuesFrom>

 - 312 -

 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:ID="ChickenTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDeBifePicante</rdfs:label>
- <rdfs:subClassOf>
 <owl:Class rdf:ID="MeatTopping" />

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:ID="HamTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PeperoniSausageTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#PizzaBase">
- <owl:disjointWith>
 <owl:Class rdf:about="#IceCream" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Pizza" />
 <owl:disjointWith rdf:resource="#PizzaTopping" />
 <rdfs:label xml:lang="pt">BaseDaPizza</rdfs:label>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#DomainConcept" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="ValuePartition">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A ValuePartition is a pattern that describes a

restricted set of classes from which a property can be associated. The parent class is used in restrictions, and the
covering axiom means that only members of the subclasses may be used as values. The possible subclasses cannot be
extended without updating the ValuePartition class.</rdfs:comment>

 <rdfs:label xml:lang="pt">ValorDaParticao</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#DomainConcept" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#GarlicTopping">
 <rdfs:label xml:lang="pt">CoberturaDeAlho</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:ID="Medium" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#LeekTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#MushroomTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#OnionTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PetitPoisTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#SpinachTopping" />
 <owl:disjointWith rdf:resource="#TomatoTopping" />

 - 313 -

- <owl:disjointWith>
 <owl:Class rdf:about="#ArtichokeTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#AsparagusTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PepperTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#VegetableTopping" />

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:about="#RocketTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#Parmense">
- <owl:disjointWith>
 <owl:Class rdf:about="#Giardiniera" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#American" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:ID="ParmesanTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Veneziana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#UnclosedPizza" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PolloAdAstra" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#QuattroFormaggi" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 - 314 -

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Siciliana" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">Parmense</rdfs:label>
 <owl:disjointWith rdf:resource="#Rosa" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#AsparagusTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Capricciosa" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
 <owl:Class rdf:about="#NamedPizza" />

 </rdfs:subClassOf>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#TomatoTopping" />
 <owl:Class rdf:about="#AsparagusTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#ParmesanTopping" />
 <owl:Class rdf:about="#HamTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 - 315 -

- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Napoletana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Cajun" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#HamTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="#Cajun">
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Siciliana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Napoletana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PolloAdAstra" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#NamedPizza" />

 </rdfs:subClassOf>
 <rdfs:label xml:lang="pt">Cajun</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#QuattroFormaggi" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:ID="PrawnsTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#American" />
- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Rosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#UnclosedPizza" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>

 - 316 -

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:ID="TobascoPepperSauce" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Capricciosa" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Giardiniera" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#OnionTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Veneziana" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#OnionTopping" />
 <owl:Class rdf:ID="PeperonataTopping" />
 <owl:Class rdf:about="#PrawnsTopping" />
 <owl:Class rdf:about="#TobascoPepperSauce" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>

 - 317 -

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#PeperonataTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Parmense" />
 </owl:Class>

- <owl:Class rdf:ID="GoatsCheeseTopping">
- <rdfs:subClassOf>
 <owl:Class rdf:ID="CheeseTopping" />

 </rdfs:subClassOf>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#GorgonzolaTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDeQueijoDeCabra</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#ParmesanTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="FourCheesesTopping" />

 </owl:disjointWith>
 </owl:Class>

 - 318 -

- <owl:Class rdf:about="#Napoletana">
 <owl:disjointWith rdf:resource="#Cajun" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PolloAdAstra" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">Napoletana</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:ID="AnchoviesTopping" />
 <owl:Class rdf:about="#CaperTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#OliveTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#NamedPizza" />

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:about="#UnclosedPizza" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Rosa" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 - 319 -

- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Parmense" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#AnchoviesTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Capricciosa" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#FruttiDiMare" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Veneziana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Siciliana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Giardiniera" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#American" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#QuattroFormaggi" />

 </owl:disjointWith>
 </owl:Class>

 - 320 -

- <owl:Class rdf:about="#VegetableTopping">
- <owl:disjointWith>
 <owl:Class rdf:ID="FishTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="SauceTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#MeatTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDeVegetais</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:ID="HerbSpiceTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:ID="FruitTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#CheeseTopping" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#PizzaTopping" />
- <owl:disjointWith>
 <owl:Class rdf:ID="NutTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="JalapenoPepperTopping">
- <owl:disjointWith>
 <owl:Class rdf:ID="SweetPepperTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Hot" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:ID="GreenPepperTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#PepperTopping" />

 </rdfs:subClassOf>
 <rdfs:label xml:lang="pt">CoberturaDeJalapeno</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#PeperonataTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#FishTopping">
 <rdfs:subClassOf rdf:resource="#PizzaTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#MeatTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#VegetableTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#HerbSpiceTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#FruitTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#NutTopping" />

 - 321 -

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#CheeseTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDePeixe</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#SauceTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="#AnchoviesTopping">
 <rdfs:label xml:lang="pt">CoberturaDeAnchovies</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#PrawnsTopping" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#FishTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#MixedSeafoodTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="VegetarianPizzaEquivalent1">
 <rdfs:label xml:lang="pt">PizzaVegetarianaEquivalente1</rdfs:label>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Pizza" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
 <owl:Class rdf:ID="VegetarianTopping" />

 </owl:allValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment xml:lang="en">Any pizza that only has vegetarian toppings or no toppings is a VegetarianPizzaEquiv1.
Should be inferred to be equivalent to VegetarianPizzaEquiv2. Not equivalent to VegetarianPizza because PizzaTopping
is not covering</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:about="#AsparagusTopping">
- <owl:disjointWith>
 <owl:Class rdf:about="#ArtichokeTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#LeekTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 - 322 -

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">CoberturaDeAspargos</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#RocketTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#OnionTopping" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#VegetableTopping" />
 <owl:disjointWith rdf:resource="#SpinachTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PepperTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PetitPoisTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#MushroomTopping" />
 <owl:disjointWith rdf:resource="#TomatoTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#GarlicTopping" />

 </owl:Class>
- <owl:Class rdf:ID="SultanaTopping">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Medium" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">CoberturaSultana</rdfs:label>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#FruitTopping" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="#GorgonzolaTopping">
- <owl:disjointWith>
 <owl:Class rdf:about="#ParmesanTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#CheeseTopping" />

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 - 323 -

- <owl:disjointWith>
 <owl:Class rdf:about="#FourCheesesTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDeGorgonzola</rdfs:label>
 <owl:disjointWith rdf:resource="#GoatsCheeseTopping" />

 </owl:Class>
- <owl:Class rdf:about="#NutTopping">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">CoberturaDeCastanha</rdfs:label>
 <owl:disjointWith rdf:resource="#VegetableTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#MeatTopping" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#PizzaTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#FruitTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#SauceTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#HerbSpiceTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#FishTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#CheeseTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="HotGreenPepperTopping">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Hot" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">CoberturaDePimentaoVerdePicante</rdfs:label>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#GreenPepperTopping" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="#ChickenTopping">
- <owl:disjointWith>
 <owl:Class rdf:about="#PeperoniSausageTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 - 324 -

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">CoberturaDeFrango</rdfs:label>
 <owl:disjointWith rdf:resource="#HotSpicedBeefTopping" />
- <rdfs:subClassOf>
 <owl:Class rdf:about="#MeatTopping" />

 </rdfs:subClassOf>
- <owl:disjointWith>
 <owl:Class rdf:about="#HamTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="Spiciness">
 <rdfs:label xml:lang="pt">Tempero</rdfs:label>
 <rdfs:comment xml:lang="en">A ValuePartition that describes only values from Hot, Medium or Mild. NB Subclasses can

themselves be divided up into further partitions.</rdfs:comment>
- <owl:equivalentClass>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Hot" />
 <owl:Class rdf:about="#Medium" />
 <owl:Class rdf:about="#Mild" />

 </owl:unionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:subClassOf rdf:resource="#ValuePartition" />
 </owl:Class>

- <owl:Class rdf:about="#PrawnsTopping">
- <owl:disjointWith>
 <owl:Class rdf:about="#MixedSeafoodTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDeCamarao</rdfs:label>
 <rdfs:subClassOf rdf:resource="#FishTopping" />
 <owl:disjointWith rdf:resource="#AnchoviesTopping" />

 </owl:Class>
- <owl:Class rdf:ID="CheeseyPizza">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#CheeseTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>

 <owl:Class rdf:about="#Pizza" />
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:label xml:lang="pt">PizzaComQueijo</rdfs:label>
 <rdfs:comment xml:lang="en">Any pizza that has at least 1 cheese topping.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:ID="SpicyTopping">
 <rdfs:label xml:lang="pt">CoberturaTemperada</rdfs:label>
 <rdfs:comment xml:lang="en">Any pizza topping that has spiciness Hot</rdfs:comment>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#PizzaTopping" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 - 325 -

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Hot" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="#ArtichokeTopping">
- <owl:disjointWith>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#GarlicTopping" />
 <owl:disjointWith rdf:resource="#TomatoTopping" />
 <owl:disjointWith rdf:resource="#AsparagusTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#RocketTopping" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#VegetableTopping" />
 <owl:disjointWith rdf:resource="#MushroomTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PepperTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDeArtichoke</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#OnionTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#SpinachTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#LeekTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#PetitPoisTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="CajunSpiceTopping">
- <owl:disjointWith>
 <owl:Class rdf:ID="RosemaryTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Hot" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>

 - 326 -

 <owl:Class rdf:about="#HerbSpiceTopping" />
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">CoberturaDeCajun</rdfs:label>
 </owl:Class>

- <owl:Class rdf:about="#FruitTopping">
- <owl:disjointWith>
 <owl:Class rdf:about="#CheeseTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#HerbSpiceTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#SauceTopping" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#PizzaTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#MeatTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#VegetableTopping" />
 <owl:disjointWith rdf:resource="#FishTopping" />
 <owl:disjointWith rdf:resource="#NutTopping" />
 <rdfs:label xml:lang="pt">CoberturaDeFrutas</rdfs:label>

 </owl:Class>
- <owl:Class rdf:ID="ParmaHamTopping">
 <rdfs:label xml:lang="pt">CoberturaDePrezuntoParma</rdfs:label>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#HamTopping" />

 </rdfs:subClassOf>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="RedOnionTopping">
 <rdfs:label xml:lang="pt">CoberturaDeCebolaVermelha</rdfs:label>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#OnionTopping" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="NonVegetarianPizza">
- <owl:disjointWith>
 <owl:Class rdf:ID="VegetarianPizza" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">PizzaNaoVegetariana</rdfs:label>
 <rdfs:comment xml:lang="en">Any Pizza that is not a VegetarianPizza</rdfs:comment>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
- <owl:Class>
- <owl:complementOf>
 <owl:Class rdf:about="#VegetarianPizza" />

 </owl:complementOf>
 </owl:Class>

 <owl:Class rdf:about="#Pizza" />
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

 - 327 -

- <owl:Class rdf:about="#RosemaryTopping">
 <rdfs:label xml:lang="pt">CoberturaRosemary</rdfs:label>
 <owl:disjointWith rdf:resource="#CajunSpiceTopping" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
 <owl:Class rdf:about="#HerbSpiceTopping" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="#NamedPizza">
 <rdfs:subClassOf rdf:resource="#Pizza" />
 <rdfs:comment xml:lang="en">A pizza that can be found on a pizza menu</rdfs:comment>
 <rdfs:label xml:lang="pt">PizzaComUmNome</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="#Capricciosa">
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#QuattroFormaggi" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#TomatoTopping" />
 <owl:Class rdf:about="#HamTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#AnchoviesTopping" />
 <owl:Class rdf:about="#OliveTopping" />
 <owl:Class rdf:about="#PeperonataTopping" />
 <owl:Class rdf:about="#CaperTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Parmense" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#AnchoviesTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 - 328 -

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#HamTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#PeperonataTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Napoletana" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Giardiniera" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#UnclosedPizza" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 - 329 -

- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PolloAdAstra" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Rosa" />
 <owl:disjointWith rdf:resource="#American" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Veneziana" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Cajun" />
 <rdfs:label xml:lang="pt">Capricciosa</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#Siciliana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#Siciliana">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#ArtichokeTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Capricciosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>

 - 330 -

 <owl:disjointWith rdf:resource="#Cajun" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#UnclosedPizza" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#AnchoviesTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Napoletana" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#American" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#HamTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Rosa" />
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <rdfs:subClassOf>

 - 331 -

- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#AnchoviesTopping" />
 <owl:Class rdf:about="#ArtichokeTopping" />
 <owl:Class rdf:about="#GarlicTopping" />
 <owl:Class rdf:about="#HamTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#OliveTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Veneziana" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Giardiniera" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Parmense" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PolloAdAstra" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">Siciliana</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#GarlicTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#QuattroFormaggi" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#Hot">
- <owl:disjointWith>
 <owl:Class rdf:about="#Mild" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#Spiciness" />
 <rdfs:label xml:lang="pt">Picante</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="#GreenPepperTopping">
- <owl:disjointWith>
 <owl:Class rdf:about="#PeperonataTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#JalapenoPepperTopping" />
 <rdfs:label xml:lang="pt">CoberturaDePimentaoVerde</rdfs:label>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#PepperTopping" />

 </rdfs:subClassOf>

 - 332 -

- <owl:disjointWith>
 <owl:Class rdf:about="#SweetPepperTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="ThinAndCrispyBase">
 <rdfs:subClassOf rdf:resource="#PizzaBase" />
- <owl:disjointWith>
 <owl:Class rdf:ID="DeepPanBase" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">BaseFinaEQuebradica</rdfs:label>

 </owl:Class>
- <owl:Class rdf:ID="VegetarianPizzaEquivalent2">
 <rdfs:comment xml:lang="en">An alternative to VegetarianPizzaEquiv1 that does not require a definition of

VegetarianTopping. Perhaps more difficult to maintain. Not equivalent to VegetarianPizza</rdfs:comment>
 <rdfs:label xml:lang="pt">PizzaVegetarianaEquivalente2</rdfs:label>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Pizza" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#FruitTopping" />
 <owl:Class rdf:about="#HerbSpiceTopping" />
 <owl:Class rdf:about="#NutTopping" />
 <owl:Class rdf:about="#SauceTopping" />
 <owl:Class rdf:about="#VegetableTopping" />
 <owl:Class rdf:about="#CheeseTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="#Veneziana">
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#SultanaTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Parmense" />
 <owl:disjointWith rdf:resource="#Rosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#QuattroFormaggi" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Cajun" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PolloAdAstra" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>

 - 333 -

 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:ID="PineKernels" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#CaperTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#OliveTopping" />
 <owl:Class rdf:about="#OnionTopping" />
 <owl:Class rdf:about="#PineKernels" />
 <owl:Class rdf:about="#SultanaTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>

 - 334 -

 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Capricciosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Napoletana" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#OnionTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#FruttiDiMare" />
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Giardiniera" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#UnclosedPizza" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Siciliana" />
 <rdfs:label xml:lang="pt">Veneziana</rdfs:label>
 <owl:disjointWith rdf:resource="#American" />
- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="CheeseyVegetableTopping">
 <rdfs:subClassOf rdf:resource="#VegetableTopping" />
 <rdfs:comment xml:lang="en">This class will be inconsistent. This is because we have given it 2 disjoint parents, which

means it could never have any members (as nothing can simultaneously be a CheeseTopping and a VegetableTopping).
NB Called ProbeInconsistentTopping in the ProtegeOWL Tutorial.</rdfs:comment>

 <rdfs:label xml:lang="pt">CoberturaDeQueijoComVegetais</rdfs:label>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#CheeseTopping" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="#PetitPoisTopping">
 <owl:disjointWith rdf:resource="#AsparagusTopping" />

 - 335 -

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#PepperTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#RocketTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#TomatoTopping" />
 <owl:disjointWith rdf:resource="#ArtichokeTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#OnionTopping" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#VegetableTopping" />
 <owl:disjointWith rdf:resource="#GarlicTopping" />
 <owl:disjointWith rdf:resource="#SpinachTopping" />
 <owl:disjointWith rdf:resource="#MushroomTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaPetitPois</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#LeekTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#SweetPepperTopping">
- <rdfs:subClassOf>
 <owl:Class rdf:about="#PepperTopping" />

 </rdfs:subClassOf>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#GreenPepperTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PeperonataTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#JalapenoPepperTopping" />
 <rdfs:label xml:lang="pt">CoberturaDePimentaoDoce</rdfs:label>

 </owl:Class>
- <owl:Class rdf:ID="SpicyPizza">
 <rdfs:label xml:lang="pt">PizzaTemperada</rdfs:label>
 <rdfs:comment xml:lang="en">Any pizza that has a spicy topping is a SpicyPizza</rdfs:comment>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Pizza" />

 - 336 -

- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#SpicyTopping" />

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="#Medium">
 <rdfs:subClassOf rdf:resource="#Spiciness" />
 <rdfs:label xml:lang="pt">Media</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="#FourCheesesTopping">
 <owl:disjointWith rdf:resource="#GoatsCheeseTopping" />
- <rdfs:subClassOf>
 <owl:Class rdf:about="#CheeseTopping" />

 </rdfs:subClassOf>
 <rdfs:label xml:lang="pt">CoberturaQuatroQueijos</rdfs:label>
 <owl:disjointWith rdf:resource="#GorgonzolaTopping" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#ParmesanTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#Giardiniera">
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#PeperonataTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#MushroomTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 - 337 -

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
 <owl:disjointWith rdf:resource="#Siciliana" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#LeekTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#American" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PolloAdAstra" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">Giardiniera</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Capricciosa" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#SlicedTomatoTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Cajun" />
- <owl:disjointWith>
 <owl:Class rdf:about="#UnclosedPizza" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Rosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Veneziana" />
- <rdfs:subClassOf>
- <owl:Restriction>

 - 338 -

 <owl:someValuesFrom rdf:resource="#PetitPoisTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Napoletana" />
- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Parmense" />
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#LeekTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#MushroomTopping" />
 <owl:Class rdf:about="#OliveTopping" />
 <owl:Class rdf:about="#PeperonataTopping" />
 <owl:Class rdf:about="#PetitPoisTopping" />
 <owl:Class rdf:about="#SlicedTomatoTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#QuattroFormaggi" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#IceCream">
- <rdfs:subClassOf>
 <owl:Class rdf:about="#DomainConcept" />

 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Pizza" />
 <owl:disjointWith rdf:resource="#PizzaBase" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>

 - 339 -

 <owl:ObjectProperty rdf:about="#hasTopping" />
 </owl:onProperty>

 <owl:someValuesFrom rdf:resource="#FruitTopping" />
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#PizzaTopping" />
 <rdfs:comment xml:lang="en">A class to demonstrate mistakes made with setting a property domain. The property

hasTopping has a domain of Pizza. This means that the reasoner can infer that all individuals using the hasTopping
property must be of type Pizza. Because of the restriction on this class, all members of IceCream must use the
hasTopping property, and therefore must also be members of Pizza. However, Pizza and IceCream are disjoint, so this
causes an inconsistency. If they were not disjoint, IceCream would be inferred to be a subclass of
Pizza.</rdfs:comment>

 <rdfs:label xml:lang="pt">Sorvete</rdfs:label>
 </owl:Class>

- <owl:Class rdf:about="#DomainConcept">
 <owl:disjointWith rdf:resource="#ValuePartition" />

 </owl:Class>
- <owl:Class rdf:about="#QuattroFormaggi">
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PolloAdAstra" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Veneziana" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Napoletana" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#American" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Cajun" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
- <owl:disjointWith>
 <owl:Class rdf:about="#UnclosedPizza" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Parmense" />
 <owl:disjointWith rdf:resource="#Siciliana" />
 <owl:disjointWith rdf:resource="#Capricciosa" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#FourCheesesTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Rosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>

 - 340 -

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#FourCheesesTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">QuatroQueijos</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Giardiniera" />
- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#UnclosedPizza">
 <owl:disjointWith rdf:resource="#Parmense" />
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#American" />
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PolloAdAstra" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Napoletana" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>

 - 341 -

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">An unclosed Pizza cannot be inferred to be
either a VegetarianPizza or a NonVegetarianPizza, because it might have other toppings.</rdfs:comment>

 <owl:disjointWith rdf:resource="#Rosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Giardiniera" />
 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
 <owl:disjointWith rdf:resource="#Cajun" />
 <owl:disjointWith rdf:resource="#Veneziana" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Capricciosa" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Siciliana" />
 <rdfs:label xml:lang="pt">PizzaAberta</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="#ParmesanTopping">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Mild" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">CoberturaDeParmesao</rdfs:label>
 <owl:disjointWith rdf:resource="#FourCheesesTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#GorgonzolaTopping" />
- <rdfs:subClassOf>
 <owl:Class rdf:about="#CheeseTopping" />

 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#GoatsCheeseTopping" />

 </owl:Class>
- <owl:Class rdf:about="#PolloAdAstra">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#CajunSpiceTopping" />
 <owl:Class rdf:about="#ChickenTopping" />
 <owl:Class rdf:about="#GarlicTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#RedOnionTopping" />
 <owl:Class rdf:about="#SweetPepperTopping" />

 - 342 -

 <owl:Class rdf:about="#TomatoTopping" />
 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Capricciosa" />
 <owl:disjointWith rdf:resource="#Rosa" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Veneziana" />
 <owl:disjointWith rdf:resource="#Napoletana" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#ChickenTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">PolloAdAstra</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#American" />
 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#RedOnionTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Siciliana" />
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Margherita" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Cajun" />
 <owl:disjointWith rdf:resource="#UnclosedPizza" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>

 - 343 -

 <owl:ObjectProperty rdf:about="#hasTopping" />
 </owl:onProperty>

 <owl:someValuesFrom rdf:resource="#SweetPepperTopping" />
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Parmense" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#GarlicTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Giardiniera" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#CajunSpiceTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#FruttiDiMare" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#Margherita">
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Parmense" />
 <owl:disjointWith rdf:resource="#Rosa" />
 <owl:disjointWith rdf:resource="#American" />
 <owl:disjointWith rdf:resource="#Napoletana" />
 <rdfs:label xml:lang="pt">Margherita</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <rdfs:subClassOf>

 - 344 -

- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#UnclosedPizza" />
- <owl:disjointWith>
 <owl:Class rdf:about="#SloppyGiuseppe" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Capricciosa" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Veneziana" />
 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
 <owl:disjointWith rdf:resource="#Cajun" />
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#PolloAdAstra" />
 <owl:disjointWith rdf:resource="#Giardiniera" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
 <owl:disjointWith rdf:resource="#Siciliana" />
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#SloppyGiuseppe">
 <owl:disjointWith rdf:resource="#Margherita" />
- <owl:disjointWith>

 - 345 -

 <owl:Class rdf:about="#Fiorentina" />
 </owl:disjointWith>

 <owl:disjointWith rdf:resource="#Giardiniera" />
 <owl:disjointWith rdf:resource="#Cajun" />
 <rdfs:label xml:lang="pt">SloppyGiuseppe</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#HotSpicedBeefTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#FruttiDiMare" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Mushroom" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#PolloAdAstra" />
 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
 <owl:disjointWith rdf:resource="#American" />
 <owl:disjointWith rdf:resource="#Veneziana" />
 <owl:disjointWith rdf:resource="#Parmense" />
 <owl:disjointWith rdf:resource="#UnclosedPizza" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#GreenPepperTopping" />
 <owl:Class rdf:about="#HotSpicedBeefTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#OnionTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Napoletana" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 - 346 -

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Siciliana" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#OnionTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Capricciosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#GreenPepperTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Rosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#Mushroom">
 <owl:disjointWith rdf:resource="#Capricciosa" />
 <owl:disjointWith rdf:resource="#SloppyGiuseppe" />
- <owl:disjointWith>
 <owl:Class rdf:about="#LaReine" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#PolloAdAstra" />
 <owl:disjointWith rdf:resource="#American" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Siciliana" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#MushroomTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Margherita" />
 <rdfs:label xml:lang="pt">Cogumelo</rdfs:label>
 <owl:disjointWith rdf:resource="#Cajun" />
- <owl:disjointWith>

 - 347 -

 <owl:Class rdf:about="#FourSeasons" />
 </owl:disjointWith>

 <owl:disjointWith rdf:resource="#Parmense" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
 <owl:disjointWith rdf:resource="#Rosa" />
 <owl:disjointWith rdf:resource="#UnclosedPizza" />
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Veneziana" />
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#MushroomTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Giardiniera" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Napoletana" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />

 </owl:Class>
- <owl:Class rdf:about="#LaReine">
 <owl:disjointWith rdf:resource="#PolloAdAstra" />
 <owl:disjointWith rdf:resource="#Napoletana" />
 <owl:disjointWith rdf:resource="#Giardiniera" />
 <owl:disjointWith rdf:resource="#Veneziana" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 - 348 -

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#HamTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Siciliana" />
 <rdfs:label xml:lang="pt">LaReine</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#HamTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#MushroomTopping" />
 <owl:Class rdf:about="#OliveTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#MushroomTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
 <owl:disjointWith rdf:resource="#UnclosedPizza" />
 <owl:disjointWith rdf:resource="#Margherita" />
 <owl:disjointWith rdf:resource="#American" />
 <owl:disjointWith rdf:resource="#Parmense" />
 <owl:disjointWith rdf:resource="#SloppyGiuseppe" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Mushroom" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
 <owl:disjointWith rdf:resource="#Rosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>

 - 349 -

 <owl:someValuesFrom rdf:resource="#TomatoTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Capricciosa" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Cajun" />
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PrinceCarlo" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="MeatyPizza">
 <rdfs:label xml:lang="pt">PizzaDeCarne</rdfs:label>
 <rdfs:comment xml:lang="en">Any pizza that has at least one meat topping</rdfs:comment>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Pizza" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MeatTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="#VegetarianPizza">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
- <owl:Class>
- <owl:complementOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MeatTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:complementOf>
 </owl:Class>

 - 350 -

- <owl:Class>
- <owl:complementOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#FishTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:complementOf>
 </owl:Class>

 <owl:Class rdf:about="#Pizza" />
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:label xml:lang="pt">PizzaVegetariana</rdfs:label>
 <rdfs:comment xml:lang="en">Any pizza that does not have fish topping and does not have meat topping is a

VegetarianPizza. Members of this class do not need to have any toppings at all.</rdfs:comment>
 <owl:disjointWith rdf:resource="#NonVegetarianPizza" />

 </owl:Class>
- <owl:Class rdf:about="#PeperonataTopping">
 <owl:disjointWith rdf:resource="#SweetPepperTopping" />
- <rdfs:subClassOf>
 <owl:Class rdf:about="#PepperTopping" />

 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#JalapenoPepperTopping" />
 <owl:disjointWith rdf:resource="#GreenPepperTopping" />
 <rdfs:label xml:lang="pt">CoberturaPeperonata</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Medium" />
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="#PrinceCarlo">
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
 <owl:disjointWith rdf:resource="#Mushroom" />
 <owl:disjointWith rdf:resource="#Capricciosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#FourSeasons" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#American" />
 <owl:disjointWith rdf:resource="#SloppyGiuseppe" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#RosemaryTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Margherita" />
 <rdfs:label xml:lang="pt">CoberturaPrinceCarlo</rdfs:label>
 <owl:disjointWith rdf:resource="#LaReine" />

 - 351 -

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Parmense" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#LeekTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Veneziana" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#ParmesanTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Cajun" />
 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#LeekTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#ParmesanTopping" />
 <owl:Class rdf:about="#RosemaryTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#UnclosedPizza" />
 <owl:disjointWith rdf:resource="#Rosa" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
 <owl:disjointWith rdf:resource="#Napoletana" />
 <owl:disjointWith rdf:resource="#Siciliana" />

 - 352 -

 <owl:disjointWith rdf:resource="#Giardiniera" />
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#PolloAdAstra" />

 </owl:Class>
- <owl:Class rdf:about="#FourSeasons">
 <owl:disjointWith rdf:resource="#Parmense" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#MushroomTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#UnclosedPizza" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#PeperoniSausageTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#SloppyGiuseppe" />
 <owl:disjointWith rdf:resource="#Napoletana" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#LaReine" />
 <owl:disjointWith rdf:resource="#Cajun" />
- <owl:disjointWith>
 <owl:Class rdf:about="#AmericanHot" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Siciliana" />
 <owl:disjointWith rdf:resource="#Veneziana" />
 <owl:disjointWith rdf:resource="#Giardiniera" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>
- <owl:Class>

 - 353 -

- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#AnchoviesTopping" />
 <owl:Class rdf:about="#CaperTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#MushroomTopping" />
 <owl:Class rdf:about="#OliveTopping" />
 <owl:Class rdf:about="#PeperoniSausageTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Capricciosa" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#AnchoviesTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">QuatroQueijos</rdfs:label>
 <owl:disjointWith rdf:resource="#Mushroom" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#PolloAdAstra" />
 <owl:disjointWith rdf:resource="#Rosa" />
 <owl:disjointWith rdf:resource="#American" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#PrinceCarlo" />
 <owl:disjointWith rdf:resource="#Margherita" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
 </owl:Class>

- <owl:Class rdf:about="#SauceTopping">
 <owl:disjointWith rdf:resource="#FishTopping" />
 <rdfs:subClassOf rdf:resource="#PizzaTopping" />
 <owl:disjointWith rdf:resource="#FruitTopping" />

 - 354 -

- <owl:disjointWith>
 <owl:Class rdf:about="#MeatTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#CheeseTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaEmMolho</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#HerbSpiceTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#VegetableTopping" />
 <owl:disjointWith rdf:resource="#NutTopping" />

 </owl:Class>
- <owl:Class rdf:about="#OnionTopping">
 <rdfs:label xml:lang="pt">CoberturaDeCebola</rdfs:label>
 <owl:disjointWith rdf:resource="#AsparagusTopping" />
 <owl:disjointWith rdf:resource="#MushroomTopping" />
 <owl:disjointWith rdf:resource="#ArtichokeTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#RocketTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#PetitPoisTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#LeekTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#GarlicTopping" />
 <owl:disjointWith rdf:resource="#SpinachTopping" />
 <rdfs:subClassOf rdf:resource="#VegetableTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Medium" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#TomatoTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#PepperTopping" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:about="#HerbSpiceTopping">
 <owl:disjointWith rdf:resource="#FishTopping" />
 <owl:disjointWith rdf:resource="#VegetableTopping" />
 <owl:disjointWith rdf:resource="#NutTopping" />
 <owl:disjointWith rdf:resource="#SauceTopping" />
 <rdfs:label xml:lang="pt">CoberturaDeErvas</rdfs:label>
- <owl:disjointWith>
 <owl:Class rdf:about="#MeatTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#CheeseTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#FruitTopping" />
 <rdfs:subClassOf rdf:resource="#PizzaTopping" />

 </owl:Class>
- <owl:Class rdf:ID="RealItalianPizza">
- <owl:equivalentClass>

 - 355 -

- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasCountryOfOrigin" />

 </owl:onProperty>
- <owl:hasValue>
 <Country rdf:ID="Italy" />

 </owl:hasValue>
 </owl:Restriction>

 <owl:Class rdf:about="#Pizza" />
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment xml:lang="en">This defined class has conditions that are part of the definition: ie any Pizza that has the
country of origin, Italy is a RealItalianPizza. It also has conditions that merely describe the members - that all
RealItalianPizzas must only have ThinAndCrispy bases.</rdfs:comment>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:about="#hasBase" />

 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#ThinAndCrispyBase" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">PizzaItalianaReal</rdfs:label>
 </owl:Class>

- <owl:Class rdf:about="#TobascoPepperSauce">
 <rdfs:subClassOf rdf:resource="#SauceTopping" />
 <rdfs:label xml:lang="pt">MolhoTobascoPepper</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Hot" />
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="#PeperoniSausageTopping">
 <owl:disjointWith rdf:resource="#HotSpicedBeefTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#HamTopping" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Medium" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#ChickenTopping" />
- <rdfs:subClassOf>
 <owl:Class rdf:about="#MeatTopping" />

 </rdfs:subClassOf>
 <rdfs:label xml:lang="pt">CoberturaDeCalabreza</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="#AmericanHot">
 <owl:disjointWith rdf:resource="#Veneziana" />
 <owl:disjointWith rdf:resource="#American" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>

 - 356 -

- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#HotGreenPepperTopping" />
 <owl:Class rdf:about="#JalapenoPepperTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#PeperoniSausageTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#HotGreenPepperTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#LaReine" />
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
 <owl:disjointWith rdf:resource="#Margherita" />
 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Giardiniera" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
 <owl:disjointWith rdf:resource="#UnclosedPizza" />
 <owl:disjointWith rdf:resource="#Capricciosa" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#Caprina" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#PeperoniSausageTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Mushroom" />

 - 357 -

 <owl:disjointWith rdf:resource="#PrinceCarlo" />
 <owl:disjointWith rdf:resource="#Napoletana" />
 <owl:disjointWith rdf:resource="#PolloAdAstra" />
 <owl:disjointWith rdf:resource="#Siciliana" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#JalapenoPepperTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#FourSeasons" />
 <rdfs:label xml:lang="pt">AmericanaPicante</rdfs:label>
 <owl:disjointWith rdf:resource="#SloppyGiuseppe" />
 <owl:disjointWith rdf:resource="#Rosa" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Cajun" />
 <owl:disjointWith rdf:resource="#Parmense" />

 </owl:Class>
- <owl:Class rdf:about="#Mild">
 <rdfs:subClassOf rdf:resource="#Spiciness" />
 <owl:disjointWith rdf:resource="#Hot" />
 <rdfs:label xml:lang="pt">NaoPicante</rdfs:label>

 </owl:Class>
- <owl:Class rdf:about="#Caprina">
 <owl:disjointWith rdf:resource="#American" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Veneziana" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#GoatsCheeseTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#SundriedTomatoTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#AmericanHot" />
 <owl:disjointWith rdf:resource="#Siciliana" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#GoatsCheeseTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#FourSeasons" />
 <owl:disjointWith rdf:resource="#PolloAdAstra" />
 <rdfs:label xml:lang="pt">Caprina</rdfs:label>
- <rdfs:subClassOf>

 - 358 -

- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#LaReine" />
 <owl:disjointWith rdf:resource="#Cajun" />
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#SundriedTomatoTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Parmense" />
 <owl:disjointWith rdf:resource="#Mushroom" />
 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
 <owl:disjointWith rdf:resource="#Margherita" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Soho" />

 </owl:disjointWith>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Napoletana" />
 <owl:disjointWith rdf:resource="#SloppyGiuseppe" />
 <owl:disjointWith rdf:resource="#Capricciosa" />
 <owl:disjointWith rdf:resource="#UnclosedPizza" />
 <owl:disjointWith rdf:resource="#Giardiniera" />
 <owl:disjointWith rdf:resource="#PrinceCarlo" />
 <owl:disjointWith rdf:resource="#Rosa" />

 </owl:Class>
- <owl:Class rdf:about="#RocketTopping">
 <rdfs:label xml:lang="pt">CoberturaRocket</rdfs:label>
 <rdfs:subClassOf rdf:resource="#VegetableTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#TomatoTopping" />
 <owl:disjointWith rdf:resource="#SpinachTopping" />
 <owl:disjointWith rdf:resource="#AsparagusTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#ArtichokeTopping" />
 <owl:disjointWith rdf:resource="#MushroomTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#PepperTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#OnionTopping" />

 - 359 -

 <owl:disjointWith rdf:resource="#GarlicTopping" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Medium" />

 </owl:Restriction>
 </rdfs:subClassOf>

- <owl:disjointWith>
 <owl:Class rdf:about="#LeekTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#PetitPoisTopping" />

 </owl:Class>
- <owl:Class rdf:ID="Country">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
- <owl:Class>
- <owl:oneOf rdf:parseType="Collection">
 <Country rdf:ID="America" />
 <Country rdf:ID="England" />
 <Country rdf:ID="France" />
 <Country rdf:ID="Germany" />
 <Country rdf:about="#Italy" />

 </owl:oneOf>
 </owl:Class>

 <owl:Class rdf:about="#DomainConcept" />
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:label xml:lang="pt">Pais</rdfs:label>
 <rdfs:comment xml:lang="en">A class that is equivalent to the set of individuals that are described in the enumeration - ie

Countries can only be either America, England, France, Germany or Italy and nothing else. Note that these individuals
have been asserted to be allDifferent from each other.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:about="#PepperTopping">
 <rdfs:subClassOf rdf:resource="#VegetableTopping" />
 <owl:disjointWith rdf:resource="#TomatoTopping" />
 <owl:disjointWith rdf:resource="#SpinachTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#LeekTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDePimentao</rdfs:label>
 <owl:disjointWith rdf:resource="#MushroomTopping" />
 <owl:disjointWith rdf:resource="#GarlicTopping" />
 <owl:disjointWith rdf:resource="#AsparagusTopping" />
 <owl:disjointWith rdf:resource="#RocketTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#PetitPoisTopping" />
 <owl:disjointWith rdf:resource="#ArtichokeTopping" />
 <owl:disjointWith rdf:resource="#OnionTopping" />

 </owl:Class>
- <owl:Class rdf:ID="SpicyPizzaEquivalent">
 <rdfs:label xml:lang="pt">PizzaTemperadaEquivalente</rdfs:label>
 <rdfs:comment xml:lang="en">An alternative definition for the SpicyPizza which does away with needing a definition of

SpicyTopping and uses a slightly more complicated restriction: Pizzas that have at least one topping that is both a
PizzaTopping and has spiciness hot are members of this class.</rdfs:comment>

- <owl:equivalentClass>

 - 360 -

- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Pizza" />
- <owl:Restriction>
- <owl:someValuesFrom>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#PizzaTopping" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Hot" />

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:someValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="#PineKernels">
 <rdfs:label xml:lang="pt">CoberturaPineKernels</rdfs:label>
 <rdfs:subClassOf rdf:resource="#NutTopping" />

 </owl:Class>
- <owl:Class rdf:about="#VegetarianTopping">
 <rdfs:label xml:lang="pt">CoberturaVegetariana</rdfs:label>
 <rdfs:comment xml:lang="en">An example of a covering axiom. VegetarianTopping is equivalent to the union of all

toppings in the given axiom. VegetarianToppings can only be Cheese or Vegetable or....etc.</rdfs:comment>
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#PizzaTopping" />
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#VegetableTopping" />
 <owl:Class rdf:about="#CheeseTopping" />
 <owl:Class rdf:about="#HerbSpiceTopping" />
 <owl:Class rdf:about="#FruitTopping" />
 <owl:Class rdf:about="#NutTopping" />
 <owl:Class rdf:about="#SauceTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

- <owl:Class rdf:about="#LeekTopping">
 <owl:disjointWith rdf:resource="#SpinachTopping" />
 <owl:disjointWith rdf:resource="#ArtichokeTopping" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Mild" />
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#AsparagusTopping" />
 <owl:disjointWith rdf:resource="#PetitPoisTopping" />

 - 361 -

 <owl:disjointWith rdf:resource="#GarlicTopping" />
 <owl:disjointWith rdf:resource="#OnionTopping" />
 <owl:disjointWith rdf:resource="#PepperTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#OliveTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#RocketTopping" />
- <owl:disjointWith>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">CoberturaDeLeek</rdfs:label>
 <owl:disjointWith rdf:resource="#MushroomTopping" />
 <rdfs:subClassOf rdf:resource="#VegetableTopping" />
 <owl:disjointWith rdf:resource="#TomatoTopping" />

 </owl:Class>
- <owl:Class rdf:about="#OliveTopping">
- <owl:disjointWith>
 <owl:Class rdf:about="#CaperTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#PetitPoisTopping" />
 <owl:disjointWith rdf:resource="#PepperTopping" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Mild" />
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">CoberturaDeAzeitona</rdfs:label>
 <owl:disjointWith rdf:resource="#OnionTopping" />
 <owl:disjointWith rdf:resource="#LeekTopping" />
 <owl:disjointWith rdf:resource="#GarlicTopping" />
 <owl:disjointWith rdf:resource="#ArtichokeTopping" />
 <owl:disjointWith rdf:resource="#MushroomTopping" />
 <owl:disjointWith rdf:resource="#AsparagusTopping" />
 <owl:disjointWith rdf:resource="#RocketTopping" />
 <owl:disjointWith rdf:resource="#SpinachTopping" />
 <owl:disjointWith rdf:resource="#TomatoTopping" />
 <rdfs:subClassOf rdf:resource="#VegetableTopping" />

 </owl:Class>
- <owl:Class rdf:ID="InterestingPizza">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
- <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</owl:minCardinality>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>

 <owl:Class rdf:about="#Pizza" />
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment xml:lang="en">Any pizza that has at least 3 toppings. Note that this is a cardinality constraint on the
hasTopping property and NOT a qualified cardinality constraint (QCR). A QCR would specify from which class the
members in this relationship must be. eg has at least 3 toppings from PizzaTopping. This is currently not supported in
OWL.</rdfs:comment>

 <rdfs:label xml:lang="pt">PizzaInteressante</rdfs:label>
 </owl:Class>

- <owl:Class rdf:about="#MixedSeafoodTopping">
 <rdfs:subClassOf rdf:resource="#FishTopping" />
 <owl:disjointWith rdf:resource="#AnchoviesTopping" />

 - 362 -

 <rdfs:label xml:lang="pt">CoberturaDeFrutosDoMarMistos</rdfs:label>
 <owl:disjointWith rdf:resource="#PrawnsTopping" />

 </owl:Class>
- <owl:Class rdf:about="#Soho">
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#OliveTopping" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#GarlicTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#OliveTopping" />
 <owl:Class rdf:about="#ParmesanTopping" />
 <owl:Class rdf:about="#RocketTopping" />
 <owl:Class rdf:about="#TomatoTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Parmense" />
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#GarlicTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#FourSeasons" />
 <owl:disjointWith rdf:resource="#Caprina" />
 <owl:disjointWith rdf:resource="#Rosa" />
 <owl:disjointWith rdf:resource="#UnclosedPizza" />
 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#ParmesanTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Veneziana" />
 <owl:disjointWith rdf:resource="#Napoletana" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 - 363 -

 <owl:disjointWith rdf:resource="#AmericanHot" />
 <owl:disjointWith rdf:resource="#LaReine" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#MozzarellaTopping" />

 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#RocketTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Mushroom" />
 <owl:disjointWith rdf:resource="#Capricciosa" />
 <owl:disjointWith rdf:resource="#Giardiniera" />
 <owl:disjointWith rdf:resource="#PolloAdAstra" />
 <owl:disjointWith rdf:resource="#Margherita" />
 <owl:disjointWith rdf:resource="#American" />
 <owl:disjointWith rdf:resource="#Siciliana" />
 <owl:disjointWith rdf:resource="#PrinceCarlo" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
 <owl:disjointWith rdf:resource="#Cajun" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Fiorentina" />

 </owl:disjointWith>
 <rdfs:label xml:lang="pt">Soho</rdfs:label>
 <owl:disjointWith rdf:resource="#SloppyGiuseppe" />

 </owl:Class>
- <owl:Class rdf:about="#HamTopping">
 <owl:disjointWith rdf:resource="#PeperoniSausageTopping" />
- <rdfs:subClassOf>
 <owl:Class rdf:about="#MeatTopping" />

 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#HotSpicedBeefTopping" />
 <rdfs:label xml:lang="pt">CoberturaDePresunto</rdfs:label>
 <owl:disjointWith rdf:resource="#ChickenTopping" />

 </owl:Class>
- <owl:Class rdf:about="#MeatTopping">
- <owl:disjointWith>
 <owl:Class rdf:about="#CheeseTopping" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#HerbSpiceTopping" />
 <owl:disjointWith rdf:resource="#VegetableTopping" />
 <owl:disjointWith rdf:resource="#FruitTopping" />
 <rdfs:label xml:lang="pt">CoberturaDeCarne</rdfs:label>
 <owl:disjointWith rdf:resource="#SauceTopping" />
 <owl:disjointWith rdf:resource="#NutTopping" />
 <rdfs:subClassOf rdf:resource="#PizzaTopping" />
 <owl:disjointWith rdf:resource="#FishTopping" />

 </owl:Class>
- <owl:Class rdf:about="#MozzarellaTopping">
 <owl:disjointWith rdf:resource="#GoatsCheeseTopping" />
 <owl:disjointWith rdf:resource="#FourCheesesTopping" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>

 - 364 -

 <owl:FunctionalProperty rdf:about="#hasSpiciness" />
 </owl:onProperty>

 <owl:someValuesFrom rdf:resource="#Mild" />
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">CoberturaDeMozzarella</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:onProperty rdf:resource="#hasCountryOfOrigin" />
 <owl:hasValue rdf:resource="#Italy" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#GorgonzolaTopping" />
 <owl:disjointWith rdf:resource="#ParmesanTopping" />
- <rdfs:subClassOf>
 <owl:Class rdf:about="#CheeseTopping" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:about="#SundriedTomatoTopping">
 <owl:disjointWith rdf:resource="#SlicedTomatoTopping" />
 <rdfs:subClassOf rdf:resource="#TomatoTopping" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Mild" />
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">CoberturaDeTomateRessecadoAoSol</rdfs:label>
 </owl:Class>

- <owl:Class rdf:about="#CaperTopping">
 <owl:disjointWith rdf:resource="#PetitPoisTopping" />
 <owl:disjointWith rdf:resource="#SpinachTopping" />
 <owl:disjointWith rdf:resource="#TomatoTopping" />
 <owl:disjointWith rdf:resource="#PepperTopping" />
 <rdfs:label xml:lang="pt">CoberturaDeCaper</rdfs:label>
 <owl:disjointWith rdf:resource="#RocketTopping" />
 <owl:disjointWith rdf:resource="#AsparagusTopping" />
 <owl:disjointWith rdf:resource="#OnionTopping" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Mild" />
- <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSpiciness" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#OliveTopping" />
 <owl:disjointWith rdf:resource="#GarlicTopping" />
 <owl:disjointWith rdf:resource="#MushroomTopping" />
 <rdfs:subClassOf rdf:resource="#VegetableTopping" />
 <owl:disjointWith rdf:resource="#LeekTopping" />
 <owl:disjointWith rdf:resource="#ArtichokeTopping" />

 </owl:Class>
- <owl:Class rdf:about="#CheeseTopping">
 <owl:disjointWith rdf:resource="#HerbSpiceTopping" />
 <owl:disjointWith rdf:resource="#VegetableTopping" />
 <rdfs:subClassOf rdf:resource="#PizzaTopping" />
 <owl:disjointWith rdf:resource="#NutTopping" />
 <owl:disjointWith rdf:resource="#MeatTopping" />
 <owl:disjointWith rdf:resource="#FishTopping" />
 <owl:disjointWith rdf:resource="#SauceTopping" />
 <rdfs:label xml:lang="pt">CoberturaDeQueijo</rdfs:label>

 - 365 -

 <owl:disjointWith rdf:resource="#FruitTopping" />
 </owl:Class>

- <owl:Class rdf:about="#Fiorentina">
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#GarlicTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Soho" />
 <owl:disjointWith rdf:resource="#LaReine" />
 <owl:disjointWith rdf:resource="#PrinceCarlo" />
 <owl:disjointWith rdf:resource="#Giardiniera" />
 <owl:disjointWith rdf:resource="#Rosa" />
 <owl:disjointWith rdf:resource="#FruttiDiMare" />
 <owl:disjointWith rdf:resource="#Cajun" />
 <owl:disjointWith rdf:resource="#American" />
 <owl:disjointWith rdf:resource="#PolloAdAstra" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#OliveTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="pt">Fiorentina</rdfs:label>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#SpinachTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Mushroom" />
 <owl:disjointWith rdf:resource="#Margherita" />
 <owl:disjointWith rdf:resource="#QuattroFormaggi" />
 <owl:disjointWith rdf:resource="#Caprina" />
 <rdfs:subClassOf rdf:resource="#NamedPizza" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#MozzarellaTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#FourSeasons" />
 <owl:disjointWith rdf:resource="#AmericanHot" />
 <owl:disjointWith rdf:resource="#UnclosedPizza" />
 <owl:disjointWith rdf:resource="#Siciliana" />
 <owl:disjointWith rdf:resource="#Veneziana" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
- <owl:allValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#ParmesanTopping" />

 - 366 -

 <owl:Class rdf:about="#TomatoTopping" />
 <owl:Class rdf:about="#MozzarellaTopping" />
 <owl:Class rdf:about="#SpinachTopping" />
 <owl:Class rdf:about="#GarlicTopping" />
 <owl:Class rdf:about="#OliveTopping" />

 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Capricciosa" />
 <owl:disjointWith rdf:resource="#Napoletana" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#TomatoTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Parmense" />
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#ParmesanTopping" />

 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#SloppyGiuseppe" />
 </owl:Class>

- <owl:Class rdf:about="#DeepPanBase">
 <rdfs:subClassOf rdf:resource="#PizzaBase" />
 <owl:disjointWith rdf:resource="#ThinAndCrispyBase" />
 <rdfs:label xml:lang="pt">BaseEspessa</rdfs:label>

 </owl:Class>
- <owl:ObjectProperty rdf:ID="isIngredientOf">
 <rdfs:comment xml:lang="en">The inverse property tree to hasIngredient - all subproperties and attributes of the properties

should reflect those under hasIngredient.</rdfs:comment>
- <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="hasIngredient" />

 </owl:inverseOf>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="#hasTopping">
 <rdfs:domain rdf:resource="#Pizza" />
- <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="isToppingOf" />

 </owl:inverseOf>
- <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="#hasIngredient" />

 </rdfs:subPropertyOf>
 <rdfs:range rdf:resource="#PizzaTopping" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="#isToppingOf">
 <rdfs:subPropertyOf rdf:resource="#isIngredientOf" />
 <rdfs:domain rdf:resource="#PizzaTopping" />
 <owl:inverseOf rdf:resource="#hasTopping" />
 <rdfs:range rdf:resource="#Pizza" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:about="#hasIngredient">
 <rdfs:comment xml:lang="en">NB Transitive - the ingredients of ingredients are ingredients of the whole</rdfs:comment>
 <owl:inverseOf rdf:resource="#isIngredientOf" />
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty" />

 - 367 -

 </owl:ObjectProperty>
- <owl:FunctionalProperty rdf:about="#hasSpiciness">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty" />
 <rdfs:range rdf:resource="#Spiciness" />
 <rdfs:comment xml:lang="en">A property created to be used with the ValuePartition - Spiciness.</rdfs:comment>

 </owl:FunctionalProperty>
- <owl:InverseFunctionalProperty rdf:ID="isBaseOf">
- <owl:inverseOf>
 <owl:InverseFunctionalProperty rdf:about="#hasBase" />

 </owl:inverseOf>
 <rdfs:subPropertyOf rdf:resource="#isIngredientOf" />
 <rdfs:domain rdf:resource="#PizzaBase" />
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty" />
 <rdfs:range rdf:resource="#Pizza" />
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty" />

 </owl:InverseFunctionalProperty>
- <owl:InverseFunctionalProperty rdf:about="#hasBase">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty" />
 <owl:inverseOf rdf:resource="#isBaseOf" />
 <rdfs:range rdf:resource="#PizzaBase" />
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty" />
 <rdfs:subPropertyOf rdf:resource="#hasIngredient" />
 <rdfs:domain rdf:resource="#Pizza" />

 </owl:InverseFunctionalProperty>
- <owl:AllDifferent>
- <owl:distinctMembers rdf:parseType="Collection">
 <Country rdf:about="#America" />
 <Country rdf:about="#England" />
 <Country rdf:about="#France" />
 <Country rdf:about="#Germany" />
 <Country rdf:about="#Italy" />

 </owl:distinctMembers>
 </owl:AllDifferent>
 </rdf:RDF>

 - 368 -

Wine Ontology

Namespace: http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine#
Description: Sample ontology used in the OWL specification documents.
Location: http://www.w3.org/TR/owl-guide/wine.rdf

><?xml version="1.0"?>
><!DOCTYPE rdf:RDF [
> <!ENTITY vin "http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#" >
> <!ENTITY food "http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#" >
> <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
> <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
>]>
>
><rdf:RDF
> xmlns = "http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#"
> xmlns:vin = "http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#"
> xml:base = "http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#"
> xmlns:food= "http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#"
> xmlns:owl = "http://www.w3.org/2002/07/owl#"
> xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
> xmlns:rdfs= "http://www.w3.org/2000/01/rdf-schema#"
> xmlns:xsd = "http://www.w3.org/2001/XMLSchema#">
>
> <owl:Ontology rdf:about="">
> <rdfs:comment>An example OWL ontology</rdfs:comment>
> <owl:priorVersion>
> <owl:Ontology rdf:about="http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine"/>
> </owl:priorVersion>
> <owl:imports rdf:resource="http://www.w3.org/TR/2003/PR-owl-guide-20031209/food"/>
> <rdfs:comment>Derived from the DAML Wine ontology at
> http://ontolingua.stanford.edu/doc/chimaera/ontologies/wines.daml
> Substantially changed, in particular the Region based relations.
> </rdfs:comment>
> <rdfs:label>Wine Ontology</rdfs:label>
> </owl:Ontology>
>
> <owl:Class rdf:ID="Wine">
> <rdfs:subClassOf rdf:resource="&food;PotableLiquid" />
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasMaker" />
> <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasMaker" />

 - 369 -

> <owl:allValuesFrom rdf:resource="#Winery" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn"/>
> <owl:someValuesFrom rdf:resource="&vin;Region"/>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:label xml:lang="en">wine</rdfs:label>
> <rdfs:label xml:lang="fr">vin</rdfs:label>
> </owl:Class>
>
> <owl:Class rdf:ID="Vintage">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasVintageYear"/>
> <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
> </owl:Restriction>
> </rdfs:subClassOf>

 - 370 -

> </owl:Class>
>
> <owl:Class rdf:ID="WineGrape">
> <rdfs:subClassOf rdf:resource="&food;Grape" />
> </owl:Class>
>
> <owl:Class rdf:ID="WhiteWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#White" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="WhiteTableWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#TableWine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#White" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="WhiteNonSweetWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#WhiteWine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Dry" />
> <owl:Thing rdf:about="#OffDry" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="WhiteLoire">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Loire" />
> <owl:Class rdf:about="#WhiteWine" />
> </owl:intersectionOf>
> </owl:Class>
>

 - 371 -

> <owl:Class rdf:about="#WhiteLoire">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#CheninBlancGrape" />
> <owl:Thing rdf:about="#PinotBlancGrape" />
> <owl:Thing rdf:about="#SauvignonBlancGrape" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>
>
> <owl:Class rdf:ID="WhiteBurgundy">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Burgundy" />
> <owl:Class rdf:about="#WhiteWine" />
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:about="#WhiteBurgundy">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#ChardonnayGrape" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>
>
> <owl:Class rdf:ID="WhiteBordeaux">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Bordeaux" />
> <owl:Class rdf:about="#WhiteWine" />
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:about="#WhiteBordeaux">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />

 - 372 -

> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#SemillonGrape" />
> <owl:Thing rdf:about="#SauvignonBlancGrape" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Region" />
>
> <owl:ObjectProperty rdf:ID="locatedIn">
> <rdf:type rdf:resource="&owl;TransitiveProperty" />
> <rdfs:domain rdf:resource="http://www.w3.org/2002/07/owl#Thing" />
> <rdfs:range rdf:resource="#Region" />
> </owl:ObjectProperty>
>
> <owl:ObjectProperty rdf:ID="adjacentRegion">
> <rdf:type rdf:resource="&owl;SymmetricProperty" />
> <rdfs:domain rdf:resource="#Region" />
> <rdfs:range rdf:resource="#Region" />
> </owl:ObjectProperty>
>
> <owl:Class rdf:ID="VintageYear" />
>
> <owl:DatatypeProperty rdf:ID="yearValue">
> <rdfs:domain rdf:resource="#VintageYear" />
> <rdfs:range rdf:resource="&xsd;positiveInteger" />
> </owl:DatatypeProperty>
>
> <VintageYear rdf:ID="Year1998">
> <yearValue rdf:datatype="&xsd;positiveInteger">1998</yearValue>
> </VintageYear>
>
> <owl:ObjectProperty rdf:ID="hasVintageYear">
> <rdf:type rdf:resource="&owl;FunctionalProperty" />
> <rdfs:domain rdf:resource="#Vintage" />
> <rdfs:range rdf:resource="#VintageYear" />
> </owl:ObjectProperty>
>
> <owl:ObjectProperty rdf:ID="madeFromGrape">
> <rdfs:subPropertyOf rdf:resource="&food;madeFromFruit" />
> <rdfs:domain rdf:resource="#Wine" />
> <rdfs:range rdf:resource="#WineGrape" />
> </owl:ObjectProperty>
>
> <owl:ObjectProperty rdf:ID="madeIntoWine">

 - 373 -

> <owl:inverseOf rdf:resource="#madeFromGrape" />
> </owl:ObjectProperty>
>
> <owl:ObjectProperty rdf:ID="hasWineDescriptor">
> <rdfs:domain rdf:resource="#Wine" />
> <rdfs:range rdf:resource="#WineDescriptor" />
> </owl:ObjectProperty>
>
> <owl:ObjectProperty rdf:ID="hasSugar">
> <rdf:type rdf:resource="&owl;FunctionalProperty" />
> <rdfs:subPropertyOf rdf:resource="#hasWineDescriptor" />
> <rdfs:range rdf:resource="#WineSugar" />
> </owl:ObjectProperty>
>
> <owl:ObjectProperty rdf:ID="hasBody">
> <rdf:type rdf:resource="&owl;FunctionalProperty" />
> <rdfs:subPropertyOf rdf:resource="#hasWineDescriptor" />
> <rdfs:range rdf:resource="#WineBody" />
> </owl:ObjectProperty>
>
> <owl:ObjectProperty rdf:ID="hasFlavor">
> <rdf:type rdf:resource="&owl;FunctionalProperty" />
> <rdfs:subPropertyOf rdf:resource="#hasWineDescriptor" />
> <rdfs:range rdf:resource="#WineFlavor" />
> </owl:ObjectProperty>
>
> <owl:ObjectProperty rdf:ID="hasColor">
> <rdf:type rdf:resource="&owl;FunctionalProperty" />
> <rdfs:subPropertyOf rdf:resource="#hasWineDescriptor" />
> <rdfs:domain rdf:resource="#Wine" />
> <rdfs:range rdf:resource="#WineColor" />
> </owl:ObjectProperty>
>
> <owl:ObjectProperty rdf:ID="hasMaker">
> <rdf:type rdf:resource="&owl;FunctionalProperty" />
> </owl:ObjectProperty>
>
> <owl:ObjectProperty rdf:ID="producesWine">
> <owl:inverseOf rdf:resource="#hasMaker" />
> </owl:ObjectProperty>
>
> <owl:Class rdf:ID="Zinfandel">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#ZinfandelGrape" />
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />

 - 374 -

> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:about="#Zinfandel">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Full" />
> <owl:Thing rdf:about="#Medium" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Moderate" />
> <owl:Thing rdf:about="#Strong" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Winery" />
>
> <owl:Class rdf:ID="WineDescriptor">
> <rdfs:comment>Made WineDescriptor unionType of tastes and color</rdfs:comment>

 - 375 -

> <owl:unionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#WineTaste" />
> <owl:Class rdf:about="#WineColor" />
> </owl:unionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="WineTaste">
> <rdfs:subClassOf rdf:resource="#WineDescriptor" />
> </owl:Class>
>
> <owl:Class rdf:ID="WineColor">
> <rdfs:subClassOf rdf:resource="#WineDescriptor" />
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#White" />
> <owl:Thing rdf:about="#Rose" />
> <owl:Thing rdf:about="#Red" />
> </owl:oneOf>
> </owl:Class>
>
> <owl:Class rdf:ID="WineSugar">
> <rdfs:subClassOf rdf:resource="#WineTaste" />
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Sweet" />
> <owl:Thing rdf:about="#OffDry" />
> <owl:Thing rdf:about="#Dry" />
> </owl:oneOf>
> </owl:Class>
>
> <owl:Class rdf:ID="WineFlavor">
> <rdfs:subClassOf rdf:resource="#WineTaste" />
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Delicate" />
> <owl:Thing rdf:about="#Moderate" />
> <owl:Thing rdf:about="#Strong" />
> </owl:oneOf>
> </owl:Class>
>
> <owl:Class rdf:ID="WineBody">
> <rdfs:subClassOf rdf:resource="#WineTaste" />
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Light" />
> <owl:Thing rdf:about="#Medium" />
> <owl:Thing rdf:about="#Full" />
> </owl:oneOf>
> </owl:Class>
>
> <Region rdf:ID="USRegion" />
>
> <owl:Class rdf:ID="Tours">
> <owl:intersectionOf rdf:parseType="Collection">

 - 376 -

> <owl:Class rdf:about="#Loire" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#ToursRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:about="#Tours">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#CheninBlancGrape" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>
>
> <owl:Class rdf:ID="TableWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="SweetWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Sweet" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="SweetRiesling">
> <rdfs:subClassOf rdf:resource="#DessertWine" />
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:hasValue rdf:resource="#Full" />
> </owl:Restriction>

 - 377 -

> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Moderate" />
> <owl:Thing rdf:about="#Strong" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Riesling" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Sweet" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="StEmilion">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Strong" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#CabernetSauvignonGrape" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Bordeaux" />

 - 378 -

> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#StEmilionRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="SemillonOrSauvignonBlanc">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#White" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Medium" />
> <owl:Thing rdf:about="#Full" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#SemillonGrape" />
> <owl:Thing rdf:about="#SauvignonBlancGrape" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Semillon">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#SemillonOrSauvignonBlanc" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#SemillonGrape" />
> </owl:Restriction>

 - 379 -

> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="SauvignonBlanc">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#SemillonOrSauvignonBlanc" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#SauvignonBlancGrape" />
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Sauternes">
> <rdfs:subClassOf rdf:resource="#LateHarvest" />
> <rdfs:subClassOf rdf:resource="#Bordeaux" />
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#SauterneRegion" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:hasValue rdf:resource="#Medium" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#White" />
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Sancerre">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:hasValue rdf:resource="#Medium" />
> </owl:Restriction>

 - 380 -

> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#OffDry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Delicate" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#SauvignonBlancGrape" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Loire" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#SancerreRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="RoseWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Rose" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Riesling">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#White" />
> </owl:Restriction>

 - 381 -

> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#RieslingGrape" />
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="RedWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="RedTableWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#TableWine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="RedBurgundy">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#PinotNoirGrape" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Burgundy" />
> <owl:Class rdf:about="#RedWine" />

 - 382 -

> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="RedBordeaux">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#CabernetSauvignonGrape" />
> <owl:Thing rdf:about="#MerlotGrape" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Bordeaux" />
> <owl:Class rdf:about="#RedWine" />
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Port">
> <rdfs:subClassOf rdf:resource="#RedWine" />
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#PortugalRegion" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:hasValue rdf:resource="#Full" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Strong" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Sweet" />
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>

 - 383 -

>
> <owl:Class rdf:ID="PinotNoir">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#PinotNoirGrape" />
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="PinotBlanc">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#White" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#PinotBlancGrape" />
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="PetiteSyrah">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>

 - 384 -

> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Moderate" />
> <owl:Thing rdf:about="#Strong" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Medium" />
> <owl:Thing rdf:about="#Full" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#PetiteSyrahGrape" />
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Pauillac">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:hasValue rdf:resource="#Full" />
> </owl:Restriction>
> </rdfs:subClassOf>

 - 385 -

> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Strong" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#CabernetSauvignonGrape" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Medoc" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#PauillacRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Muscadet">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:hasValue rdf:resource="#Light" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Delicate" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#PinotBlancGrape" />

 - 386 -

> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Loire" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#MuscadetRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Meursault">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:hasValue rdf:resource="#Full" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#WhiteBurgundy" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#MeursaultRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Merlot">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:allValuesFrom>

 - 387 -

> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Moderate" />
> <owl:Thing rdf:about="#Delicate" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Light" />
> <owl:Thing rdf:about="#Medium" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#MerlotGrape" />
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Meritage">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#CabernetSauvignonGrape" />

 - 388 -

> <owl:Thing rdf:about="#CabernetFrancGrape" />
> <owl:Thing rdf:about="#MalbecGrape" />
> <owl:Thing rdf:about="#PetiteVerdotGrape" />
> <owl:Thing rdf:about="#MerlotGrape" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">2</owl:minCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <Region rdf:ID="MedocRegion">
> <locatedIn rdf:resource="#BordeauxRegion" />
> </Region>
>
> <owl:Class rdf:ID="Medoc">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Bordeaux" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#MedocRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Margaux">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Delicate" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>

 - 389 -

> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#MerlotGrape" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Medoc" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#MargauxRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <Region rdf:ID="LoireRegion">
> <locatedIn rdf:resource="#FrenchRegion" />
> </Region>
>
> <owl:Class rdf:ID="Loire">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#LoireRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="LateHarvest">
> <rdfs:subClassOf rdf:resource="#Wine" />
> <owl:disjointWith rdf:resource="#EarlyHarvest" />
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Sweet" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Moderate" />
> <owl:Thing rdf:about="#Strong" />

 - 390 -

> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>
>
> <owl:Class rdf:ID="ItalianWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#ItalianRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <Region rdf:ID="ItalianRegion" />
>
> <owl:Class rdf:ID="IceWine">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Medium" />
> <owl:Thing rdf:about="#Full" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Moderate" />
> <owl:Thing rdf:about="#Strong" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#LateHarvest" />
> <owl:Class rdf:about="#DessertWine" />
> <owl:Restriction>

 - 391 -

> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#White" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="GermanWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#GermanyRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Gamay">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#GamayGrape" />
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="FullBodiedWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:hasValue rdf:resource="#Full" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <Region rdf:ID="FrenchRegion" />
>
> <owl:Class rdf:ID="FrenchWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#FrenchRegion" />
> </owl:Restriction>
> </owl:intersectionOf>

 - 392 -

> </owl:Class>
>
> <owl:Class rdf:ID="EarlyHarvest">
> <rdfs:subClassOf rdf:resource="#Wine" />
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Dry" />
> <owl:Thing rdf:about="#OffDry" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>
>
> <owl:Class rdf:ID="DryWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="DryWhiteWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#DryWine" />
> <owl:Class rdf:about="#WhiteWine" />
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="DryRiesling">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#White" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Delicate" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>

 - 393 -

> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Light" />
> <owl:Thing rdf:about="#Medium" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Riesling" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="DryRedWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#DryWine" />
> <owl:Class rdf:about="#RedWine" />
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="DessertWine">
> <rdfs:subClassOf rdf:resource="#Wine" />
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#OffDry" />
> <owl:Thing rdf:about="#Sweet" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>
>
> <owl:Class rdf:ID="CotesDOr">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Moderate" />

 - 394 -

> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#RedBurgundy" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#CotesDOrRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Chianti">
> <rdfs:subClassOf rdf:resource="#ItalianWine" />
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#ChiantiRegion" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#SangioveseGrape" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Moderate" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Light" />

 - 395 -

> <owl:Thing rdf:about="#Medium" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>
>
> <owl:Class rdf:ID="CheninBlanc">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#White" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Moderate" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Full" />
> <owl:Thing rdf:about="#Medium" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Dry" />
> <owl:Thing rdf:about="#OffDry" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>

 - 396 -

> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#CheninBlancGrape" />
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Chardonnay">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#White" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Full" />
> <owl:Thing rdf:about="#Medium" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Strong" />
> <owl:Thing rdf:about="#Moderate" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#ChardonnayGrape" />
> </owl:Restriction>
> <owl:Restriction>

 - 397 -

> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <Region rdf:ID="CaliforniaRegion">
> <locatedIn rdf:resource="#USRegion" />
> </Region>
>
> <Region rdf:ID="TexasRegion">
> <locatedIn rdf:resource="#USRegion" />
> </Region>
>
> <owl:Class rdf:ID="CaliforniaWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#CaliforniaRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="TexasWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#TexasRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="CabernetSauvignon">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />

 - 398 -

> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Moderate" />
> <owl:Thing rdf:about="#Strong" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:allValuesFrom>
> <owl:Class>
> <owl:oneOf rdf:parseType="Collection">
> <owl:Thing rdf:about="#Medium" />
> <owl:Thing rdf:about="#Full" />
> </owl:oneOf>
> </owl:Class>
> </owl:allValuesFrom>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#CabernetSauvignonGrape" />
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="CabernetFranc">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Moderate" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>

 - 399 -

> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:hasValue rdf:resource="#Medium" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#CabernetFrancGrape" />
> </owl:Restriction>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Burgundy">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#BourgogneRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> </owl:Class>
>
> <Region rdf:ID="BourgogneRegion">
> <locatedIn rdf:resource="#FrenchRegion" />
> </Region>
>
> <Region rdf:ID="BordeauxRegion">
> <locatedIn rdf:resource="#FrenchRegion" />
> </Region>
>
> <owl:Class rdf:ID="Bordeaux">
> <owl:intersectionOf rdf:parseType="Collection">

 - 400 -

> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#BordeauxRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="Beaujolais">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Red" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:hasValue rdf:resource="#Light" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#Dry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Delicate" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:hasValue rdf:resource="#GamayGrape" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#madeFromGrape" />
> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#BeaujolaisRegion" />

 - 401 -

> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <Region rdf:ID="AustralianRegion" />
>
> <owl:Class rdf:ID="Anjou">
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasColor" />
> <owl:hasValue rdf:resource="#Rose" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasBody" />
> <owl:hasValue rdf:resource="#Light" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasFlavor" />
> <owl:hasValue rdf:resource="#Delicate" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <rdfs:subClassOf>
> <owl:Restriction>
> <owl:onProperty rdf:resource="#hasSugar" />
> <owl:hasValue rdf:resource="#OffDry" />
> </owl:Restriction>
> </rdfs:subClassOf>
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Loire" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#AnjouRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <owl:Class rdf:ID="AmericanWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#USRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>

 - 402 -

> <owl:Class rdf:ID="AlsatianWine">
> <owl:intersectionOf rdf:parseType="Collection">
> <owl:Class rdf:about="#Wine" />
> <owl:Restriction>
> <owl:onProperty rdf:resource="#locatedIn" />
> <owl:hasValue rdf:resource="#AlsaceRegion" />
> </owl:Restriction>
> </owl:intersectionOf>
> </owl:Class>
>
> <WineBody rdf:ID="Full" />
>
> <WineBody rdf:ID="Medium" />
>
> <WineBody rdf:ID="Light" />
>
> <WineColor rdf:ID="Red" />
>
> <WineColor rdf:ID="Rose" />
>
> <WineColor rdf:ID="White" />
>
> <WineFlavor rdf:ID="Strong" />
>
> <WineFlavor rdf:ID="Moderate" />
>
> <WineFlavor rdf:ID="Delicate" />
>
> <WineSugar rdf:ID="Dry" />
>
> <WineSugar rdf:ID="OffDry">
> <owl:differentFrom rdf:resource="#Dry"/>
> <owl:differentFrom rdf:resource="#Sweet"/>
> </WineSugar>
>
> <WineSugar rdf:ID="Sweet">
> <owl:differentFrom rdf:resource="#Dry"/>
> </WineSugar>
> <owl:AllDifferent>
> <owl:distinctMembers rdf:parseType="Collection">
> <vin:WineColor rdf:about="#Red" />
> <vin:WineColor rdf:about="#White" />
> <vin:WineColor rdf:about="#Rose" />
> </owl:distinctMembers>
> </owl:AllDifferent>
> <owl:AllDifferent>
> <owl:distinctMembers rdf:parseType="Collection">
> <vin:WineBody rdf:about="#Light" />
> <vin:WineBody rdf:about="#Medium" />
> <vin:WineBody rdf:about="#Full" />

 - 403 -

> </owl:distinctMembers>
> </owl:AllDifferent>
> <owl:AllDifferent>
> <owl:distinctMembers rdf:parseType="Collection">
> <vin:WineFlavor rdf:about="#Delicate" />
> <vin:WineFlavor rdf:about="#Moderate" />
> <vin:WineFlavor rdf:about="#Strong" />
> </owl:distinctMembers>
> </owl:AllDifferent>
> <owl:AllDifferent>
> <owl:distinctMembers rdf:parseType="Collection">
> <vin:WineSugar rdf:about="#Sweet" />
> <vin:WineSugar rdf:about="#OffDry" />
> <vin:WineSugar rdf:about="#Dry" />
> </owl:distinctMembers>
> </owl:AllDifferent>
> <Region rdf:ID="AlsaceRegion">
> <locatedIn rdf:resource="#FrenchRegion" />
> </Region>
> <Region rdf:ID="AnjouRegion">
> <locatedIn rdf:resource="#LoireRegion" />
> </Region>
> <Region rdf:ID="ArroyoGrandeRegion">
> <locatedIn rdf:resource="#CaliforniaRegion" />
> </Region>
> <Winery rdf:ID="Beringer" />
> <Winery rdf:ID="Bancroft" />
> <Chardonnay rdf:ID="BancroftChardonnay">
> <locatedIn rdf:resource="#NapaRegion" />
> <hasMaker rdf:resource="#Bancroft" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </Chardonnay>
> <Region rdf:ID="BeaujolaisRegion">
> <locatedIn rdf:resource="#FrenchRegion" />
> </Region>
> <WineGrape rdf:ID="CabernetFrancGrape" />
> <WineGrape rdf:ID="CabernetSauvignonGrape" />
> <Region rdf:ID="CentralCoastRegion">
> <locatedIn rdf:resource="#CaliforniaRegion" />
> </Region>
> <WineGrape rdf:ID="ChardonnayGrape" />
> <Winery rdf:ID="ChateauChevalBlanc" />
> <StEmilion rdf:ID="ChateauChevalBlancStEmilion">
> <hasMaker rdf:resource="#ChateauChevalBlanc" />
> </StEmilion>
> <Winery rdf:ID="ChateauDYchem" />
> <Sauternes rdf:ID="ChateauDYchemSauterne">
> <madeFromGrape rdf:resource="#SauvignonBlancGrape" />

 - 404 -

> <madeFromGrape rdf:resource="#SemillonGrape" />
> <hasFlavor rdf:resource="#Strong" />
> <hasMaker rdf:resource="#ChateauDYchem" />
> </Sauternes>
> <Winery rdf:ID="ChateauDeMeursault" />
> <Meursault rdf:ID="ChateauDeMeursaultMeursault">
> <hasFlavor rdf:resource="#Moderate" />
> <hasMaker rdf:resource="#ChateauDeMeursault" />
> </Meursault>
> <Winery rdf:ID="ChateauLafiteRothschild" />
> <Pauillac rdf:ID="ChateauLafiteRothschildPauillac">
> <hasMaker rdf:resource="#ChateauLafiteRothschild" />
> </Pauillac>
> <Margaux rdf:ID="ChateauMargaux">
> <hasMaker rdf:resource="#ChateauMargauxWinery" />
> </Margaux>
> <Winery rdf:ID="ChateauMargauxWinery" />
> <Winery rdf:ID="ChateauMorgon" />
> <Beaujolais rdf:ID="ChateauMorgonBeaujolais">
> <hasMaker rdf:resource="#ChateauMorgon" />
> </Beaujolais>
> <WineGrape rdf:ID="CheninBlancGrape" />
> <WineGrape rdf:ID="ZinfandelGrape" />
> <Chianti rdf:ID="ChiantiClassico">
> <hasBody rdf:resource="#Medium" />
> <hasMaker rdf:resource="#McGuinnesso" />
> </Chianti>
> <Region rdf:ID="ChiantiRegion">
> <locatedIn rdf:resource="#ItalianRegion" />
> </Region>
> <Winery rdf:ID="ClosDeLaPoussie" />
> <Sancerre rdf:ID="ClosDeLaPoussieSancerre">
> <hasMaker rdf:resource="#ClosDeLaPoussie" />
> </Sancerre>
> <Winery rdf:ID="ClosDeVougeot" />
> <CotesDOr rdf:ID="ClosDeVougeotCotesDOr">
> <hasMaker rdf:resource="#ClosDeVougeot" />
> </CotesDOr>
> <Winery rdf:ID="CongressSprings" />
>
> <Semillon rdf:ID="CongressSpringsSemillon">
> <hasMaker rdf:resource="#CongressSprings" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </Semillon>
> <Winery rdf:ID="Corbans" />
> <Riesling rdf:ID="CorbansDryWhiteRiesling">
> <locatedIn rdf:resource="#NewZealandRegion" />
> <hasMaker rdf:resource="#Corbans" />

 - 405 -

> <hasSugar rdf:resource="#OffDry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </Riesling>
> <SauvignonBlanc rdf:ID="CorbansPrivateBinSauvignonBlanc">
> <locatedIn rdf:resource="#NewZealandRegion" />
> <hasMaker rdf:resource="#Corbans" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Strong" />
> <hasBody rdf:resource="#Full" />
> </SauvignonBlanc>
> <SauvignonBlanc rdf:ID="CorbansSauvignonBlanc">
> <locatedIn rdf:resource="#NewZealandRegion" />
> <hasMaker rdf:resource="#Corbans" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Strong" />
> <hasBody rdf:resource="#Medium" />
> </SauvignonBlanc>
> <Winery rdf:ID="CortonMontrachet" />
> <WhiteBurgundy rdf:ID="CortonMontrachetWhiteBurgundy">
> <hasMaker rdf:resource="#CortonMontrachet" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Strong" />
> <hasBody rdf:resource="#Full" />
> </WhiteBurgundy>
> <Region rdf:ID="CotesDOrRegion">
> <locatedIn rdf:resource="#BourgogneRegion" />
> </Region>
> <Winery rdf:ID="Cotturi" />
> <Zinfandel rdf:ID="CotturiZinfandel">
> <locatedIn rdf:resource="#SonomaRegion" />
> <hasMaker rdf:resource="#Cotturi" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Strong" />
> <hasBody rdf:resource="#Full" />
> </Zinfandel>
> <Winery rdf:ID="DAnjou" />
> <Region rdf:ID="EdnaValleyRegion">
> <locatedIn rdf:resource="#CaliforniaRegion" />
> </Region>
> <Winery rdf:ID="Elyse" />
> <Zinfandel rdf:ID="ElyseZinfandel">
> <locatedIn rdf:resource="#NapaRegion" />
> <hasMaker rdf:resource="#Elyse" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Full" />
> </Zinfandel>
> <Winery rdf:ID="Forman" />
> <CabernetSauvignon rdf:ID="FormanCabernetSauvignon">

 - 406 -

> <locatedIn rdf:resource="#NapaRegion" />
> <hasMaker rdf:resource="#Forman" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Strong" />
> <hasBody rdf:resource="#Medium" />
> </CabernetSauvignon>
> <Chardonnay rdf:ID="FormanChardonnay">
> <locatedIn rdf:resource="#NapaRegion" />
> <hasMaker rdf:resource="#Forman" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Full" />
> </Chardonnay>
> <Winery rdf:ID="Foxen" />
> <CheninBlanc rdf:ID="FoxenCheninBlanc">
> <locatedIn rdf:resource="#SantaBarbaraRegion" />
> <hasMaker rdf:resource="#Foxen" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Full" />
> </CheninBlanc>
> <WineGrape rdf:ID="GamayGrape" />
> <Winery rdf:ID="GaryFarrell" />
> <Merlot rdf:ID="GaryFarrellMerlot">
> <locatedIn rdf:resource="#SonomaRegion" />
> <hasMaker rdf:resource="#GaryFarrell" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </Merlot>
> <Region rdf:ID="GermanyRegion" />
> <Winery rdf:ID="Handley" />
> <Winery rdf:ID="KalinCellars" />
> <Semillon rdf:ID="KalinCellarsSemillon">
> <hasMaker rdf:resource="#KalinCellars" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Strong" />
> <hasBody rdf:resource="#Full" />
> </Semillon>
> <Winery rdf:ID="KathrynKennedy" />
> <Meritage rdf:ID="KathrynKennedyLateral">
> <hasMaker rdf:resource="#KathrynKennedy" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Delicate" />
> <hasBody rdf:resource="#Medium" />
> </Meritage>
> <Winery rdf:ID="LaneTanner" />
> <PinotNoir rdf:ID="LaneTannerPinotNoir">
> <locatedIn rdf:resource="#SantaBarbaraRegion" />
> <hasMaker rdf:resource="#LaneTanner" />

 - 407 -

> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Delicate" />
> <hasBody rdf:resource="#Light" />
> </PinotNoir>
> <Winery rdf:ID="Longridge" />
> <Merlot rdf:ID="LongridgeMerlot">
> <locatedIn rdf:resource="#NewZealandRegion" />
> <hasMaker rdf:resource="#Longridge" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Light" />
> </Merlot>
> <WineGrape rdf:ID="MalbecGrape" />
> <Region rdf:ID="MargauxRegion">
> <locatedIn rdf:resource="#MedocRegion" />
> </Region>
> <Winery rdf:ID="Marietta" />
> <CabernetSauvignon rdf:ID="MariettaCabernetSauvignon">
> <locatedIn rdf:resource="#SonomaRegion" />
> <hasMaker rdf:resource="#Marietta" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </CabernetSauvignon>
> <RedTableWine rdf:ID="MariettaOldVinesRed">
> <locatedIn rdf:resource="#SonomaRegion" />
> <hasMaker rdf:resource="#Marietta" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </RedTableWine>
> <PetiteSyrah rdf:ID="MariettaPetiteSyrah">
> <locatedIn rdf:resource="#SonomaRegion" />
> <hasMaker rdf:resource="#Marietta" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </PetiteSyrah>
> <Zinfandel rdf:ID="MariettaZinfandel">
> <locatedIn rdf:resource="#SonomaRegion" />
> <hasMaker rdf:resource="#Marietta" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </Zinfandel>
> <Winery rdf:ID="McGuinnesso" />
> <Region rdf:ID="MendocinoRegion">
> <locatedIn rdf:resource="#CaliforniaRegion" />
> <adjacentRegion rdf:resource="#SonomaRegion" />
> </Region>

 - 408 -

> <WineGrape rdf:ID="MerlotGrape" />
> <Region rdf:ID="MeursaultRegion">
> <locatedIn rdf:resource="#BourgogneRegion" />
> </Region>
> <Winery rdf:ID="MountEdenVineyard" />
> <Chardonnay rdf:ID="MountEdenVineyardEdnaValleyChardonnay">
> <locatedIn rdf:resource="#EdnaValleyRegion" />
> <hasMaker rdf:resource="#MountEdenVineyard" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </Chardonnay>
> <PinotNoir rdf:ID="MountEdenVineyardEstatePinotNoir">
> <locatedIn rdf:resource="#EdnaValleyRegion" />
> <hasMaker rdf:resource="#MountEdenVineyard" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Strong" />
> <hasBody rdf:resource="#Full" />
> </PinotNoir>
> <Winery rdf:ID="Mountadam" />
> <Chardonnay rdf:ID="MountadamChardonnay">
> <locatedIn rdf:resource="#SouthAustraliaRegion" />
> <hasMaker rdf:resource="#Mountadam" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Strong" />
> <hasBody rdf:resource="#Full" />
> </Chardonnay>
> <PinotNoir rdf:ID="MountadamPinotNoir">
> <locatedIn rdf:resource="#SouthAustraliaRegion" />
> <hasMaker rdf:resource="#Mountadam" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </PinotNoir>
> <DryRiesling rdf:ID="MountadamRiesling">
> <locatedIn rdf:resource="#SouthAustraliaRegion" />
> <hasMaker rdf:resource="#Mountadam" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Delicate" />
> <hasBody rdf:resource="#Medium" />
> </DryRiesling>
> <Region rdf:ID="MuscadetRegion">
> <locatedIn rdf:resource="#LoireRegion" />
> </Region>
> <Region rdf:ID="NapaRegion">
> <locatedIn rdf:resource="#CaliforniaRegion" />
> </Region>
> <Region rdf:ID="NewZealandRegion" />
> <Winery rdf:ID="PageMillWinery" />
> <CabernetSauvignon rdf:ID="PageMillWineryCabernetSauvignon">

 - 409 -

> <locatedIn rdf:resource="#NapaRegion" />
> <hasMaker rdf:resource="#PageMillWinery" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </CabernetSauvignon>
> <Region rdf:ID="PauillacRegion">
> <locatedIn rdf:resource="#MedocRegion" />
> </Region>
> <Winery rdf:ID="PeterMccoy" />
> <Chardonnay rdf:ID="PeterMccoyChardonnay">
> <locatedIn rdf:resource="#SonomaRegion" />
> <hasMaker rdf:resource="#PeterMccoy" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </Chardonnay>
> <WineGrape rdf:ID="PetiteSyrahGrape" />
> <WineGrape rdf:ID="PetiteVerdotGrape" />
> <WineGrape rdf:ID="PinotBlancGrape" />
> <WineGrape rdf:ID="PinotNoirGrape" />
> <Region rdf:ID="PortugalRegion" />
> <Winery rdf:ID="PulignyMontrachet" />
> <WhiteBurgundy rdf:ID="PulignyMontrachetWhiteBurgundy">
> <hasMaker rdf:resource="#PulignyMontrachet" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </WhiteBurgundy>
> <WineGrape rdf:ID="RieslingGrape" />
> <Anjou rdf:ID="RoseDAnjou">
> <hasMaker rdf:resource="#DAnjou" />
> </Anjou>
> <Region rdf:ID="SancerreRegion">
> <locatedIn rdf:resource="#LoireRegion" />
> </Region>
> <WineGrape rdf:ID="SangioveseGrape" />
> <Region rdf:ID="SantaBarbaraRegion">
> <locatedIn rdf:resource="#CaliforniaRegion" />
> </Region>
> <Winery rdf:ID="SantaCruzMountainVineyard" />
> <CabernetSauvignon rdf:ID="SantaCruzMountainVineyardCabernetSauvignon">
> <locatedIn rdf:resource="#SantaCruzMountainsRegion" />
> <hasMaker rdf:resource="#SantaCruzMountainVineyard" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Strong" />
> <hasBody rdf:resource="#Full" />
> </CabernetSauvignon>
> <Region rdf:ID="CentralTexasRegion">
> <locatedIn rdf:resource="#TexasRegion" />

 - 410 -

> </Region>
> <Winery rdf:ID="StGenevieve" />
> <WhiteWine rdf:ID="StGenevieveTexasWhite">
> <locatedIn rdf:resource="#CentralTexasRegion" />
> <hasMaker rdf:resource="#StGenevieve" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> </WhiteWine>
> <Region rdf:ID="SantaCruzMountainsRegion">
> <locatedIn rdf:resource="#CaliforniaRegion" />
> </Region>
> <Winery rdf:ID="SaucelitoCanyon" />
> <Zinfandel rdf:ID="SaucelitoCanyonZinfandel">
> <locatedIn rdf:resource="#ArroyoGrandeRegion" />
> <hasMaker rdf:resource="#SaucelitoCanyon" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </Zinfandel>
> <Zinfandel rdf:ID="SaucelitoCanyonZinfandel1998">
> <locatedIn rdf:resource="#ArroyoGrandeRegion" />
> <hasVintageYear rdf:resource="#Year1998" />
> <hasMaker rdf:resource="#SaucelitoCanyon" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </Zinfandel>
> <Region rdf:ID="SauterneRegion">
> <locatedIn rdf:resource="#BordeauxRegion" />
> </Region>
> <WineGrape rdf:ID="SauvignonBlancGrape" />
> <Winery rdf:ID="SchlossRothermel" />
> <SweetRiesling rdf:ID="SchlossRothermelTrochenbierenausleseRiesling">
> <locatedIn rdf:resource="#GermanyRegion" />
> <hasMaker rdf:resource="#SchlossRothermel" />
> <hasSugar rdf:resource="#Sweet" />
> <hasFlavor rdf:resource="#Strong" />
> <hasBody rdf:resource="#Full" />
> </SweetRiesling>
> <Winery rdf:ID="SchlossVolrad" />
> <SweetRiesling rdf:ID="SchlossVolradTrochenbierenausleseRiesling">
> <locatedIn rdf:resource ="#GermanyRegion" />
> <hasMaker rdf:resource="#SchlossVolrad" />
> <hasSugar rdf:resource="#Sweet" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Full" />
> </SweetRiesling>
> <Winery rdf:ID="SeanThackrey" />
> <PetiteSyrah rdf:ID="SeanThackreySiriusPetiteSyrah">
> <locatedIn rdf:resource="#NapaRegion" />

 - 411 -

> <hasMaker rdf:resource="#SeanThackrey" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Strong" />
> <hasBody rdf:resource="#Full" />
> </PetiteSyrah>
> <Winery rdf:ID="Selaks" />
> <IceWine rdf:ID="SelaksIceWine">
> <locatedIn rdf:resource="#NewZealandRegion" />
> <hasMaker rdf:resource="#Selaks" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> <hasColor rdf:resource="#White" />
> </IceWine>
> <SauvignonBlanc rdf:ID="SelaksSauvignonBlanc">
> <locatedIn rdf:resource="#NewZealandRegion" />
> <hasMaker rdf:resource="#Selaks" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </SauvignonBlanc>
> <WineGrape rdf:ID="SemillonGrape" />
> <Winery rdf:ID="SevreEtMaine" />
> <Muscadet rdf:ID="SevreEtMaineMuscadet">
> <hasMaker rdf:resource="#SevreEtMaine" />
> </Muscadet>
> <Region rdf:ID="SonomaRegion">
> <locatedIn rdf:resource="#CaliforniaRegion" />
> </Region>
> <Region rdf:ID="SouthAustraliaRegion">
> <locatedIn rdf:resource="#AustralianRegion" />
> </Region>
> <Region rdf:ID="StEmilionRegion">
> <locatedIn rdf:resource="#BordeauxRegion" />
> </Region>
> <Winery rdf:ID="Stonleigh" />
> <SauvignonBlanc rdf:ID="StonleighSauvignonBlanc">
> <locatedIn rdf:resource="#NewZealandRegion" />
> <hasMaker rdf:resource="#Stonleigh" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Delicate" />
> <hasBody rdf:resource="#Medium" />
> </SauvignonBlanc>
> <Winery rdf:ID="Taylor" />
> <Port rdf:ID="TaylorPort">
> <hasMaker rdf:resource="#Taylor" />
> </Port>
> <Region rdf:ID="ToursRegion">
> <locatedIn rdf:resource="#LoireRegion" />
> </Region>
> <Winery rdf:ID="Ventana" />

 - 412 -

> <CheninBlanc rdf:ID="VentanaCheninBlanc">
> <locatedIn rdf:resource="#CentralCoastRegion" />
> <hasMaker rdf:resource="#Ventana" />
> <hasSugar rdf:resource="#OffDry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </CheninBlanc>
> <Winery rdf:ID="WhitehallLane" />
> <CabernetFranc rdf:ID="WhitehallLaneCabernetFranc">
> <locatedIn rdf:resource="#NapaRegion" />
> <hasMaker rdf:resource="#WhitehallLane" />
> <hasSugar rdf:resource="#Dry" />
> <hasFlavor rdf:resource="#Moderate" />
> <hasBody rdf:resource="#Medium" />
> </CabernetFranc>
> <DessertWine rdf:ID="WhitehallLanePrimavera">
> <locatedIn rdf:resource="#NapaRegion" />
> <hasSugar rdf:resource="#Sweet" />
> <hasFlavor rdf:resource="#Delicate" />
> <hasBody rdf:resource="#Light" />
> </DessertWine>
> <owl:AllDifferent>
> <owl:distinctMembers rdf:parseType="Collection">
> <vin:Winery rdf:about="#Bancroft" />
> <vin:Winery rdf:about="#ChateauChevalBlanc" />
> <vin:Winery rdf:about="#ChateauDYchem" />
> <vin:Winery rdf:about="#ChateauDeMeursault" />
> <vin:Winery rdf:about="#ChateauLafiteRothschild" />
> <vin:Winery rdf:about="#ChateauMargauxWinery" />
> <vin:Winery rdf:about="#ChateauMorgon" />
> <vin:Winery rdf:about="#ClosDeLaPoussie" />
> <vin:Winery rdf:about="#ClosDeVougeot" />
> <vin:Winery rdf:about="#CongressSprings" />
> <vin:Winery rdf:about="#Corbans" />
> <vin:Winery rdf:about="#CortonMontrachet" />
> <vin:Winery rdf:about="#Cotturi" />
> <vin:Winery rdf:about="#DAnjou" />
> <vin:Winery rdf:about="#Elyse" />
> <vin:Winery rdf:about="#Forman" />
> <vin:Winery rdf:about="#Foxen" />
> <vin:Winery rdf:about="#GaryFarrell" />
> <vin:Winery rdf:about="#KalinCellars" />
> <vin:Winery rdf:about="#KathrynKennedy" />
> <vin:Winery rdf:about="#LaneTanner" />
> <vin:Winery rdf:about="#Longridge" />
> <vin:Winery rdf:about="#Marietta" />
> <vin:Winery rdf:about="#McGuinnesso" />
> <vin:Winery rdf:about="#MountEdenVineyard" />
> <vin:Winery rdf:about="#Mountadam" />
> <vin:Winery rdf:about="#PageMillWinery" />

 - 413 -

> <vin:Winery rdf:about="#PeterMccoy" />
> <vin:Winery rdf:about="#PulignyMontrachet" />
> <vin:Winery rdf:about="#SantaCruzMountainVineyard" />
> <vin:Winery rdf:about="#SaucelitoCanyon" />
> <vin:Winery rdf:about="#SchlossRothermel" />
> <vin:Winery rdf:about="#SchlossVolrad" />
> <vin:Winery rdf:about="#SeanThackrey" />
> <vin:Winery rdf:about="#Selaks" />
> <vin:Winery rdf:about="#SevreEtMaine" />
> <vin:Winery rdf:about="#StGenevieve" />
> <vin:Winery rdf:about="#Stonleigh" />
> <vin:Winery rdf:about="#Taylor" />
> <vin:Winery rdf:about="#Ventana" />
> <vin:Winery rdf:about="#WhitehallLane" />
> </owl:distinctMembers>
> </owl:AllDifferent>
></rdf:RDF>

 - 414 -

Travel Ontology

Namespace: http://learn.tsinghua.edu.cn/homepage/2003214945/travelontology.owl
Description: Ontology for the domain of traveling with emphasis in the hotels’ description.
Location: http://learn.tsinghua.edu.cn/homepage/2003214945/travelontology.owl

 <?xml version="1.0" ?>
- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns="http://www.owl-ontologies.com/travel.owl#"
xml:base="http://www.owl-ontologies.com/travel.owl">

- <owl:Ontology rdf:about="">
 <owl:versionInfo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">1.0 by Holger Knublauch

(holger@smi.stanford.edu)</owl:versionInfo>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">An example ontology for tutorial

purposes.</rdfs:comment>
 </owl:Ontology>

- <owl:Class rdf:ID="Sunbathing">
- <rdfs:subClassOf>
 <owl:Class rdf:about="#Relaxation" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="Accommodation">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A place to stay for tourists.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:ID="QuietDestination">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:ID="Destination" />
- <owl:Class>
- <owl:complementOf>
 <owl:Class rdf:about="#FamilyDestination" />

 </owl:complementOf>
 </owl:Class>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A destination that is not frequented by noisy
families.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:ID="BackpackersDestination">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Destination" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasAccommodation" />

 </owl:onProperty>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#BudgetAccommodation" />

 </owl:someValuesFrom>
 </owl:Restriction>

- <owl:Restriction>
- <owl:someValuesFrom>
- <owl:Class>
- <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Sports" />
 <owl:Class rdf:about="#Adventure" />

 - 415 -

 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasActivity" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A destination that provides budget
accommodation and offers sport or adventure activities.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:ID="Sports">
- <owl:disjointWith>
 <owl:Class rdf:about="#Adventure" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Relaxation" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Sightseeing" />

 </owl:disjointWith>
- <rdfs:subClassOf>
 <owl:Class rdf:ID="Activity" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="Yoga">
- <rdfs:subClassOf>
 <owl:Class rdf:about="#Relaxation" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="BudgetAccommodation">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Accommodation" />
- <owl:Restriction>
- <owl:someValuesFrom>
- <owl:Class>
- <owl:oneOf rdf:parseType="Collection">
- <AccommodationRating rdf:ID="OneStarRating">
- <owl:differentFrom>
- <AccommodationRating rdf:ID="ThreeStarRating">
- <owl:differentFrom>
- <AccommodationRating rdf:ID="TwoStarRating">
 <owl:differentFrom rdf:resource="#OneStarRating" />
 <owl:differentFrom rdf:resource="#ThreeStarRating" />

 </AccommodationRating>
 </owl:differentFrom>

 <owl:differentFrom rdf:resource="#OneStarRating" />
 </AccommodationRating>
 </owl:differentFrom>

 <owl:differentFrom rdf:resource="#TwoStarRating" />
 </AccommodationRating>

 <AccommodationRating rdf:about="#TwoStarRating" />
 </owl:oneOf>
 </owl:Class>
 </owl:someValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasRating" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>

 - 416 -

 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Accommodation that has either one or two star
rating.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:ID="LuxuryHotel">
- <rdfs:subClassOf>
 <owl:Class rdf:about="#Hotel" />

 </rdfs:subClassOf>
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:hasValue rdf:resource="#ThreeStarRating" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasRating" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="FamilyDestination">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Destination" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasAccommodation" />

 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality>

 </owl:Restriction>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasActivity" />

 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</owl:minCardinality>

 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A destination with at least one accommodation
and at least 2 activities.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:ID="Beach">
 <rdfs:subClassOf rdf:resource="#Destination" />

 </owl:Class>
- <owl:Class rdf:ID="Hotel">
- <owl:disjointWith>
 <owl:Class rdf:about="#BedAndBreakfast" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Campground" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#Accommodation" />

 </owl:Class>
- <owl:Class rdf:ID="Museums">
- <rdfs:subClassOf>
 <owl:Class rdf:about="#Sightseeing" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="BudgetHotelDestination">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Destination" />
- <owl:Restriction>

 - 417 -

- <owl:someValuesFrom>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#BudgetAccommodation" />
 <owl:Class rdf:about="#Hotel" />

 </owl:intersectionOf>
 </owl:Class>
 </owl:someValuesFrom>

- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasAccommodation" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A destination with a hotel that is also a budget
accommodation.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:ID="City">
- <rdfs:subClassOf>
 <owl:Class rdf:about="#UrbanArea" />

 </rdfs:subClassOf>
- <rdfs:subClassOf>
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasAccommodation" />

 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#LuxuryHotel" />

 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="AccommodationRating">
- <owl:equivalentClass>
- <owl:Class>
- <owl:oneOf rdf:parseType="Collection">
 <AccommodationRating rdf:about="#OneStarRating" />
 <AccommodationRating rdf:about="#TwoStarRating" />
 <AccommodationRating rdf:about="#ThreeStarRating" />

 </owl:oneOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Consists of exactly three
individuals.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:ID="BedAndBreakfast">
 <owl:disjointWith rdf:resource="#Hotel" />
 <rdfs:subClassOf rdf:resource="#Accommodation" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Campground" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="Campground">
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:hasValue rdf:resource="#OneStarRating" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasRating" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#BedAndBreakfast" />
 <rdfs:subClassOf rdf:resource="#Accommodation" />
 <owl:disjointWith rdf:resource="#Hotel" />

 </owl:Class>

 - 418 -

- <owl:Class rdf:ID="Safari">
- <rdfs:subClassOf>
 <owl:Class rdf:about="#Adventure" />

 </rdfs:subClassOf>
- <rdfs:subClassOf>
 <owl:Class rdf:about="#Sightseeing" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="RuralArea">
 <rdfs:subClassOf rdf:resource="#Destination" />
- <owl:disjointWith>
 <owl:Class rdf:about="#UrbanArea" />

 </owl:disjointWith>
 </owl:Class>

- <owl:Class rdf:ID="RetireeDestination">
- <owl:equivalentClass>
- <owl:Class>
- <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Destination" />
- <owl:Restriction>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasAccommodation" />

 </owl:onProperty>
- <owl:someValuesFrom>
- <owl:Restriction>
 <owl:hasValue rdf:resource="#ThreeStarRating" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasRating" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:someValuesFrom>
 </owl:Restriction>

- <owl:Restriction>
- <owl:someValuesFrom>
 <owl:Class rdf:about="#Sightseeing" />

 </owl:someValuesFrom>
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasActivity" />

 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">A destination with at least one three star
accommodation and sightseeing opportunities.</rdfs:comment>

 </owl:Class>
- <owl:Class rdf:ID="Relaxation">
 <owl:disjointWith rdf:resource="#Sports" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Sightseeing" />

 </owl:disjointWith>
- <owl:disjointWith>
 <owl:Class rdf:about="#Adventure" />

 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="#Activity" />

 </owl:Class>
- <owl:Class rdf:ID="Capital">
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Museums" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasActivity" />

 </owl:onProperty>
 </owl:Restriction>

 - 419 -

 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#City" />

 </owl:Class>
- <owl:Class rdf:ID="Hiking">
 <rdfs:subClassOf rdf:resource="#Sports" />

 </owl:Class>
- <owl:Class rdf:ID="UrbanArea">
 <owl:disjointWith rdf:resource="#RuralArea" />
 <rdfs:subClassOf rdf:resource="#Destination" />

 </owl:Class>
- <owl:Class rdf:ID="BunjeeJumping">
- <rdfs:subClassOf>
 <owl:Class rdf:about="#Adventure" />

 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="Adventure">
 <owl:disjointWith rdf:resource="#Sports" />
 <rdfs:subClassOf rdf:resource="#Activity" />
- <owl:disjointWith>
 <owl:Class rdf:about="#Sightseeing" />

 </owl:disjointWith>
 <owl:disjointWith rdf:resource="#Relaxation" />

 </owl:Class>
 <owl:Class rdf:ID="Contact" />
- <owl:Class rdf:ID="NationalPark">
 <rdfs:subClassOf rdf:resource="#RuralArea" />
- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Campground" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasAccommodation" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

- <rdfs:subClassOf>
- <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Hiking" />
- <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasActivity" />

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

- <owl:Class rdf:ID="Town">
 <rdfs:subClassOf rdf:resource="#UrbanArea" />

 </owl:Class>
- <owl:Class rdf:ID="Sightseeing">
 <owl:disjointWith rdf:resource="#Sports" />
 <rdfs:subClassOf rdf:resource="#Activity" />
 <owl:disjointWith rdf:resource="#Relaxation" />
 <owl:disjointWith rdf:resource="#Adventure" />

 </owl:Class>
- <owl:Class rdf:ID="Farmland">
 <rdfs:subClassOf rdf:resource="#RuralArea" />

 </owl:Class>
- <owl:Class rdf:ID="Surfing">
 <rdfs:subClassOf rdf:resource="#Sports" />

 </owl:Class>
- <owl:ObjectProperty rdf:ID="isOfferedAt">
 <rdfs:range rdf:resource="#Destination" />
 <rdfs:domain rdf:resource="#Activity" />
- <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasActivity" />

 </owl:inverseOf>

 - 420 -

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:ID="hasRating">
 <rdfs:range rdf:resource="#AccommodationRating" />
 <rdfs:domain rdf:resource="#Accommodation" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:ID="hasActivity">
 <owl:inverseOf rdf:resource="#isOfferedAt" />
 <rdfs:range rdf:resource="#Activity" />
 <rdfs:domain rdf:resource="#Destination" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:ID="hasContact">
 <rdfs:range rdf:resource="#Contact" />
 <rdfs:domain rdf:resource="#Activity" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:ID="hasAccommodation">
 <rdfs:range rdf:resource="#Accommodation" />
 <rdfs:domain rdf:resource="#Destination" />

 </owl:ObjectProperty>
- <owl:ObjectProperty rdf:ID="hasPart">
 <rdfs:range rdf:resource="#Destination" />
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty" />
 <rdfs:domain rdf:resource="#Destination" />

 </owl:ObjectProperty>
- <owl:DatatypeProperty rdf:ID="hasCity">
 <rdfs:domain rdf:resource="#Contact" />
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />

 </owl:DatatypeProperty>
- <owl:DatatypeProperty rdf:ID="hasEMail">
 <rdfs:domain rdf:resource="#Contact" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty" />

 </owl:DatatypeProperty>
- <owl:FunctionalProperty rdf:ID="hasZipCode">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int" />
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty" />
 <rdfs:domain rdf:resource="#Contact" />

 </owl:FunctionalProperty>
- <owl:FunctionalProperty rdf:ID="hasStreet">
 <rdfs:domain rdf:resource="#Contact" />
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty" />

 </owl:FunctionalProperty>
 <RuralArea rdf:ID="Woomera" />
 <Town rdf:ID="Coonabarabran" />
 <LuxuryHotel rdf:ID="FourSeasons" />
 <NationalPark rdf:ID="BlueMountains" />
 <Capital rdf:ID="Canberra" />
 <Beach rdf:ID="BondiBeach" />
 <Beach rdf:ID="CurrawongBeach" />
 <NationalPark rdf:ID="Warrumbungles" />
 <RuralArea rdf:ID="CapeYork" />
- <Capital rdf:ID="Sydney">
 <hasAccommodation rdf:resource="#FourSeasons" />
 <hasPart rdf:resource="#BondiBeach" />
 <hasPart rdf:resource="#CurrawongBeach" />

 </Capital>
 <City rdf:ID="Cairns" />

 </rdf:RDF>

 - 421 -

Biopax-Level 2 Ontology

Namespace: http://www.biopax.org/release/biopax-level2.owl
Description
:

BioPAX Level 2 covers metabolic pathways, molecular interactions and protein
post-translational modifications and is backwards compatible with Level 1. Future
levels will expand support for signaling pathways, gene regulatory networks and
genetic interactions.

Location: http://www.biopax.org/release/biopax-level2.owl

 - 422 -

 - 423 -

Soccer Ontology
The Soccer Ontology is a domain ontology that is used for soccer in the context of
OntoNL. The ontology extends the Upper Ontology capturing the MPEG-7 MDS. Thus,
the soccer ontology classes are distinguished into agents (including persons, organizations
and person groups), events, times, places, objects and states.

Namespace: http://lamia.ced.tuc.gr/ontologies/avmds03/soccer
Description: Ontology for the domain of traveling with emphasis in the hotels’ description.
Location: http://lamia.ced.tuc.gr

Figure 52: The Hierarchy of the Soccer Event Classes

 - 424 -

Figure 53: The Hierarchy of the Referee Action Classes

Figure 54: The Hierarchy of the Game Action Classes, where Technical Stuff Actions and

Spectator Actions are expanded

Figure 55: The Hierarchy of the Game Action Classes, where Illegal Actions are expanded

Figure 56: The Hierarchy of the Player Action Classes, where Restart Actions are expanded

 - 425 -

Figure 57: The Hierarchy of the Player Action Classes, where Goal and Goalkeeper Actions are

expanded

Figure 58: The Hierarchy of the Player Action Classes, where Hitball and Reflection Actions are

expanded

 - 426 -

Figure 59: The Hierarchy of the Player Action Classes, where PlayerInteractions are expanded

Figure 60: The Hierarchy of the Soccer Time Classes

Figure 61: The Hierarchy of the Soccer Object Classes

 - 427 -

Figure 62: The Hierarchy of the Soccer Place Classes

Figure 63: The Hierarchy of the Soccer State Classes

 - 428 -

Figure 64: The Hierarchy of the Soccer Agent Classes

 - 429 -

Figure 65: The Hierarchy of the Soccer Action Pattern Classes

- 430 -

