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Abstract

Contemporary deep neural network architectures trained on massive datasets can provenly
achieve state-of-the-art performance across a wide variety of domains, from image and speech
recognition, to text processing, recommendation systems and fraud detection. With the ex-
plosion in the amount of data generated online entering its next phase, we are able to train
bigger and deeper neural nets which can dramatically increase performance but also training
time. What is more, most of the data is generated or received on different remote machines
and its massive nature implies prohibitive communication costs if all data is to be collected at
a single site. In view of these problems, much effort has been dedicated the past few years into
parallelizing the training procedure of such complex models. We introduce a novel method
for scaling up distributed training of deep neural networks using the Functional Geometric
Monitoring (FGM) communication protocol, a well studied technique that is used to moni-
tor complex continuous queries on high-volume, rapid distributed streams. This protocol is
suitable for classic learning with stationary environment properties, as well as non-stationary
ones with concept drift. Our goal is to minimize the prediction loss and network communica-
tion at the same time. We demonstrate empirically that the protocol achieves up to 95% less
network communication than todays’ cutting edge methods, while achieving high predictive
performance.
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1 Introduction

The rate by which data is generated online has taken on a surge the past few years, from traditional
time series and appliances measurements, to complex unstructured information like images, videos
and sound. Moreover, the data is frequently generated across multiple remote devices and compu-
tational machines with rapid pace, constituting its processing challenging, as their centralization
can become practically infeasible. Statistical analysis and machine learning (ML) algorithms are
key to transforming the seemingly uncorrelated data into valuable knowledge. Thus, it is of great
value to adapt the state-of-the-art learning techniques into the distributed data environments in
order to be able to harness their true potential.

Deep learning (DL) techniques have shown to have robust predictive performance but also
a perplexing and time consuming training process. Fortunately, the training of artificial neural
networks (ANN) utilize gradient descent methods for minimizing their loss, a fact that brings
into being opportunities to distribute their training procedure. Many studies have focused on
distributed deep learning, but very few have taken into account the overwhelming communication
costs that such a procedure requires. In this work, we focus on distributing the learning process
of convolutional neural networks (CNN) [32] and Extreme Learning Machines (ELM) [24, 25, 26,
27, 29, 30, 31], while minimizing the communication of the remote sites.

1.1 Related Work

1.1.1 Deep Learning

Deep learning and ANN learning in general, being a sub field of machine learning algorithms,
have recently drawn the attention of research and industry alike due to their great promise in the
field of data analysis. ANNs were originally developed in the late 80s, but it was only until recently
that were brought back into the forefront. This is a consequence of new training techniques, that
were able to alleviate some of their shortcomings, and also of the huge amount of data that is
currently accessible online. The well studied approaches to parallelizing/distributing the training
computation are model parallelism and data parallelism. In this study, we will focus solely on
data parallelism. The most intuitive and common distributed optimization methods for training
ANNs are the Synchronous and Asynchronous Distributed Stochastic Gradient Descent methods
[1, 2, 3, 4, 5, 6, 7, 8] or a combination of those two.

1.1.2 Monitoring non-linear functions on Distributed Streams

The trend in the information infrastructure of modern societies induce challenges in central-
izing data that is generated from multiple sources in a stream like fashion, as the massive nature of
data implies prohibitive communication costs if all data is to be centralized at a single processing
machine. Motivated by such needs, there has been significant research effort on monitoring complex
continuous queries on high-volume, rapid distributed streams. Sharfman [9, 10], introduced the
Geometric Method for monitoring non-linear functions over distributed streams by utilizing convex
analysis theory. Vasilis Samoladas and Minos Garofalakis [16] generalized this idea by monitoring
geometric constraints on distributed succinct summaries of streams, such as histograms, sketches,
or more generally, high-dimensional vectors.

1.2 Our Contribution
On this study we aim to introduce a general framework for the problem of distributed machine
learning, by utilizing the advancements in the field of distributed stream monitoring. We focus
on a supervised leaning task with ANNs as learning models, but the method requires minimum, if
any, alterations to be compatible with other parametric learning models.
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2 Preliminaries

In this section we formally introduce the distributed prediction task and dive our selves deeper into
previous research done on distributed neural network training, as well as on approximate query
monitoring on distributed data streams. We recall simple batch learning algorithms for training
neural networks.

2.1 Notation

We consider a distributed computing environment with a classic star network topology, comprised
of k remote sites/nodes and a central hub/coordinator. Each site has a copy of the neural model,
and has a subset of the whole data set or receives a data stream (for vanilla and online learning
setting respectively). The training is done solely on the k remote sites, and the coordinator is
responsible for synchronizing all the models into one global predictive model. Our goal is to
minimize the amount of communication needed between the nodes to reach to consensus, while
preserving the accuracy of the global model to competitive levels. We denote the parameters of the
neural network as w ∈ RD and the size of the mini-batch as m. We also assume that the total size
of the unified data set is M . Lastly, because we are mainly concerned about the communication
cost that these algorithms impose on the distributed network topology, we view this cost in terms
of total bytes transmitted.

2.2 Distributed training of ANNs utilizing gradient methods

Two of the most widely used architectures for distributively training neural networks are model
parallelism and data parallelism. In model parallelism, each processing machine is responsible for
the computations of only a part of a single ANN. For example each local site may be assigned with
the computations of a single layer. In data parallelism, each local site has a complete copy of the
neural network and a subset of the whole data set. The training takes place in each individual
copy and the models are combined in some way to come up with a single unified predictor. These
two methods however are not mutually exclusive, as they can be combined into a hybrid approach.
We however focus our study on data parallelism due to its fault tolerance properties, a property
that is of high importance in distributed settings, and its simplicity to implement. The topology
is completely identical to our star network topology, with k remote sites with a copy of the ANN
and a central hub that orchestrates the learning procedure.

2.2.1 Gradient methods

In optimization problems, the gradient method is an algorithm that solves problems of the form

minimize
x∈Rn

f(x),

with the search directions defined by the gradient of the function at the current point. The
gradient descent (GD) algorithm, being a gradient method, is one of the most popular algorithms
to perform optimization, and by far the most used algorithm to train neural networks. The training
of a neural network is equivalent to minimizing a loss function L(w) w.r.t the parameters w ∈ RD
of the network. This is accomplished by updating the parameters towards the opposite direction of
the gradient of the loss function ∇wL(w). GD can be be applied on the entire training set (Batch
GD), or stochastically point by point (SGD) in cases where the size of the data set is too large.
A common technique used to trained neural nets is a combination of those two techniques, the
mini-batch GD.
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For any mini-batch ofm training examples the update rule for the weights of the model becomes

w = w − α∇wL(x(i:i+m), y(i:i+m);w),

where a is the learning rate and each pair (x, y) is a training point along with its label. Other vari-
ants of this algorithm have been implemented over the past years that are more robust in training
neural networks like Momentum[], Adagrad[], Adadelta[], RMSProp[], Adam[], AdaMax[], Nadam[]
and AMSGrad[]. A more general update rule that encompasses all of those algorithms is of the form

w = w + ∆w(x(i:i+m), y(i:i+m)),

where ∆w({x, y}) is the update term of each variant of the mini-batch GD algorithm that utilizes
internally the learning rate a and the gradient ∇wL(x(i:i+m), y(i:i+m);w) is some way.

2.2.2 Synchronous Distributed SGD (S-DSGD)

In the S-DSGD setting, the technique that is used to combine the k models is parameter
averaging. Parameter averaging is done after each worker has fitted a mini-batch to its model,
a procedure that imposes the constraint that each worker should observe the same number of
examples with the rest. Assuming that the mini-batch is of size m, then the weight update rule
by a single machine is given by

Wt+1 = Wt −
α

km

km∑
i=1

∇Wt
Li,

where Li is the loss function suffered by the training example i. When we separate this formula
to k parallel workers the update rule becomes

Wt+1 =
1

k

k∑
i=1

W i
t =

1

k

k∑
i=1

(
Wt −

α

m

im∑
j=(i−1)m+1

∇Wt
Lj
)

= Wt −
α

km

km∑
i=1

∇Wt
Lj ,

a formula that is identical to the single machine setting. Regarding a mini-batch fit for each worker
as a round, then in each of these rounds the communication cost incurred by the messages that are
send from the workers to the hub is Θ(kD), and the communication cost incurred by the messages
send from the hub to the workers is again Θ(kD). Hence, the total communication cost of a single
round is Θ(2kD) bytes. Assuming that the entire data set is of size M and that each worker
fits m examples to its model per round, then the total number of rounds is d Mkme. Consequently,
the grand total communication cost of S-DSGD algorithm in terms of bytes is Θ(2DdMm e). The
algorithm of this distributed training process proceeds as follows:

1. The hub initializes the parameters of the ANN using any initialization technique.

2. Broadcast the parameters to each worker/local site.

3. Train each worker on a mini-batch subset of the data using mini-batch SGD.

4. All workers send their parameters to the hub were they are averaged.

5. While there is more data return to step 2.

Parameter averaging is usually performed after each iteration, or else after each site has observed
and fitted a single mini-batch. Although this approach improves dramatically the convergence
properties of the training process, it also introduces a considerable amount of overhead to the
network. Previous research on the subject [4], suggests that averaging once every 10 to 20 mini-
batches per worker can still perform well, exchanging the predictive performance for communication
gain. In addition, even though S-DSGD outperforms other distributed learning techniques in
terms of predicting accuracy, it suffers from the so called ’last-executor’ affect, meaning that a
synchronous system like this will always have to wait on the slowest executor before completing
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each iteration. This can be a problem when the total number of workers increases, making S-DSGD
a non viable solution in large distributed settings.

2.2.3 Asynchronous Distributed SGD (A-DSGD)

A conceptually similar approach to parameter averaging is the update-based data parallelism.
In this setting, only the updates of the parameters are send by the nodes instead of the parameters
themselves. Additionally, each site sends its update as soon as the fitting process completes, and
the hub immediately adds this term to the global weights. The hub then sends back to the site the
new updated parameters. Hence, the updates are done in an asynchronous manner. This gives an
update of the form

Wt+1 = Wt +
1

k

k∑
i=1

∆W i,

with ∆W i encompassing, as before, the update that the optimizer imposes after the observation
of a mini-batch by site i (i.e. for the vanilla DG optimizer, the update term for a worker i is
− α
m

∑m
j=1∇W iL(xij , y

i
j)). The communication cost is similar to the S-DSGD method.

A-DSGD, being an asynchronous method, gets rid the ’last-executor’ problem, thus gaining a
big advantage against S-DSGD in terms of data throughput, and hence execution speed. Workers
can also be tuned to apply their gradients after more than one mini-batch has been observed, just
as in S-DSGD, providing further throughput gains. On the downside, A-DSGD on its simplest
form can result to high staleness values for the gradients. This means that, as the calculation of
gradients take time, by the time a worker has finished these calculations and applies its results
to the global parameters, the parameters may have been updated a number of times. In realistic
scenarios this problem can slow down the predictor’s convergence significantly. Many variants of
A-DSGD try to alleviate this problem and have been shown to improve convergence over the naive
implementation of the A-DSGD algorithm, by utilizing some form of synchronization procedure
[6, 7].

2.2.4 S-DSGD A-DSGD variants

The S-DSGD and A-DSGD algorithms are the most commonly used methods when it comes
to distributively training neural networks, each of them having their advantages and their short-
comings. Many variants of those two algorithms have been formed over the last few years, some
of them involving hybrid implementations by combining the methods in various ways. For our
analysis we will stick to these two for simplicity. Concluding, S-DSGD, A-DSGD and their vari-
ants, can dramatically decrease the training time of ANNs, but they do not take into account the
communication costs that bring upon to the distributed network topology. Their communication
depends entirely upon the predefined number of mini-batches that a worker needs to observe before
its able to communicate with the network. There is not a true mechanism that actually defines
if communication is necessary. Michael Kamp [17] referred to these methods as "Static Averaging
Protocols". In the upcoming sections we discuss some protocols that are used to monitor dis-
tributed streams and see how Kamp utilized one to create the first "Dynamic Averaging Protocol"
for distributed learning.

2.3 Geometric monitoring for distributed data streams

Monitoring complex continuous queries on high-volume, rapid distributed streams is a com-
plex and a non-trivial problem. The Geometric Method for monitoring non-linear functions over
distributed streams, introduced by Sharfman [9, 10], is a communication protocol for distributed
topologies that tackles this problem efficiently, by utilizing convex analysis theory. Vasilis Samo-
ladas and Minos Garofalakis [12, 15, 16] generalized this method by monitoring geometric con-
straints on distributed succinct summaries of streams, such as histograms, sketches, or more gen-
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erally, high-dimensional vectors. On this section we do some background checking on the classic
Geometric Method (GM) that ignited a rich line of work in the distributed streaming domain.

2.3.1 Approximate Query Monitoring

We now present the Approximate Query Monitoring protocols used for monitoring complex
non-linear queries over distributed streams. We adopt the standard data model for distributed
streams, presented at section §2.1. At each site, a local stream is generated or received, denoted
as a very high dimensional vector V = RD. This vector can be a frequency vector of the stream
records or a linear sketch thereof. The succinct summary vector V gets updated at each site as
stream updates arrive. Let SSSi(t), i = 1...k denote the local state vectors. Every site communicates
with the central coordinator/hub, where users pose queries on the global stream. Without loss of
generality, assume that at time t the true global stream state is the average of the local stream
states, i.e., SSS(t) = 1

k

∑k
i=1SSSi(t).

Typically, a continuous query on the global Q(SSS(t)) is a highly complex, non-linear function of
the global stream state SSS. In order to reduce communication costs between the hub and the local
sites, the user can tolerate some small bounded error to the query answer. More precisely, the
coordinator does not possess the actual global stream state S(t), but a close estimate EEE(t) of it,
rendering an approximate query answer Q(EEE(t)), with guarantee that, for some user defined error
ε, at any time t it will be

Q(SSS(t)) ∈ (1± ε)Q(EEE(t)). (1)

This guarantee is respected by the local sites that periodically publish their updated local state
vectors SSSi to the hub. Let EEEi denote the local state vector last send by site i to the coordinator,
and let EEE = 1

k

∑k
i=1EEEi. Then, until the global estimate EEE is updated, and as long as the true

unknown global stream state SSS(t) lies inside the admissible region

A = {x ∈ V |Q(x) ∈ (1± ε)Q(EEE)}, (2)

no local site needs to communicate with the hub. Thus, the problem of approximately tracking the
continuous query Q(SSS(t)) can now be viewed as a problem of monitoring the geometric condition
SSS(t) ∈ A. When this condition is violated, it is necessary to update the estimate EEE, in order to
restore the system invariant of Eq. 1.

2.3.2 Geometric Monitoring Protocol

The Geometric Monitoring (GM) protocol is a general-purpose distributed algorithm for mon-
itoring the invariant of the Eq. 1. The protocol works in rounds, where each round starts when a
new estimate EEE is established at the hub, and lasts until the estimate is updated.

At the initial time of each round, Tinit, the coordinator has perfect system knowledge, that is,
each local state vector SSSi haw been transmitted to the coordinator by all nodes. Consequently,
S(Tinit) = 1

k

∑k
i=1EEEi = EEE. Then, the coordinator chooses a "good" safe zone Z ⊆ A, that is

based on EEE and is convex subset of A, with EEE ∈ Z, and transmits it to all sites.
At each local site, for every time t, the protocol maintains a drift vector XXXi(t), so that the

following drift invariant is satisfied:

1

k

k∑
i=1

XXXi(t) = SSS(t). (3)

A the beginning of each round, when t = Tinit, this can be achieved by selecting XXXi(Tinit) = EEE for
all sites i = 1, ..., k. As a local stream update arrives at some remote site i at time t, the invariant
is maintained by adding to XXXi the vector SSSi(t)−SSSi(t− 1). Also, at any node i and any time t we
refer to the quantity ∆∆∆i(t) as the delta vector, which is the actual change of the local stream state
of the site i since the last round. Hence, the delta vector of each site is actually ∆∆∆i(t) = XXXi(t)−EEE.
It is evident that at the start of each round the drift vector ∆∆∆i(t) is equal to the zero vector for
all i = 1, ..., k.
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Each local site monitors the local condition XXXi(t) ∈ Z. If this condition holds at every site,
then by convexity of Z and the drift invariant, it will also be the case that SSS(t) ∈ Z, and therefore,
SSS(t) ∈ A.

When a violation of the local conditionXXXi ∈ Z occurs, the site i signal the hub. In the simplest
protocol, the round ends; the coordinator notifies sites to transmit updates collected during the
round. This can be done by by shipping either every local state vector XXXi or every local delta
vector ∆∆∆i to the coordinator. Then, the coordinator updates EEE and starts a new round.

2.3.3 Performance

In order to analyze the communication cost, we will adopt a convenient notion of time; we
assume that time is discrete and that exactly one local state vector is updated at each time step.
In other words, after T time steps, the monitoring algorithm has processed exactly T local state
vector updates. Since we have already assumed that the total size of the unified data set is M , we
know that at each time T ≤M . To make the analysis more concrete we divide the communication
into two parts. These parts are the downstream cost Cdown of data messages from workers/local
sites to the coordinator/hub and the upstream cost Cup of data and control messages from the
hub to local sites. Lastly, we assume that the protocol at time T has performed n rounds, each
round lasting τr steps, r = 1, ..., n.

In downstream communication cost of round r, Cdownr , is essentially the cost of transmitting
some description of local stream data to the coordinator. This is done by flushing the new local
state vector to the coordinator, constituting the transmission cost of a single site to Θ(D). The
communication cost, therefore, depends on the dimensionality of the local state vector. In general,
it is possible to send the actual local stream updates unencoded, if the communication cost of
doing so is less. Therefore, Cdownr = O(min{τr, kD}), and over n rounds the total downstream
cost is O(T ). However, we will not endorse this technique on this study, as we want to utilize this
protocol for machine learning problems, where in some cases sending the training examples through
the network is prohibited due to security reasons (i.e. when we are dealing with private medical
data). Hence, Cdownr = O(kD) and the total downstream cost over n rounds is Cdownr = O(nkD)
for private-sensitive data in the machine learning scenario.

The upstream cost Cupr of round r is essentially the cost of shipping the vector EEE to each site,
i.e., Θ(D) bytes per site, since the local site can then both construct the safe zone according to
some pre-arranged algorithm and also initiate the local drift vector. Hence, the total upstream
cost of round r is Cupr = Θ(kD) and over n rounds Cup = O(nkD). Under high variability, skew
between local stream data, very different local stream rates, or other adversarial conditions, the
number of rounds n may grow to be large, making the communication cost quite large and heavy.

We know define the communication gain achieved by the GM protocol after the pass over the
whole distributed data set. In the naive setting, each worker sends its state vector to the co-
ordinator after every stream update, or after every mini-batch fitting, making the downstream
communication cost equal to DdMm e bytes and the upstream communication cost to 0 bytes. As a
result, the communication gain G of the GM protocol is defined as

C = DdM
m
e − Cdown − Cup. (4)

When the above metric is turned out to be positive, then the GM protocol provides an advantage
due to the reduced communication cost. Conversely, when it is negative then this is an indication
that the protocols’ use is detrimental. As Samoladas and Garofalakis mention at [], we can view
the downstream gain G0 = DdMm e−C

down ≥ 0 as some profit, and the Cup term as an investment
whose purpose is to increase profit.

Under normal circumstances and conditions, the total cost of n rounds is approximately
O(nkD). Therefore, we know have an intuition and good heuristic rule about what we can increase
the communication gain. Other things being equal, the communication gain of the GM protocol
increases when rounds last longer. Thus, the main objective is to minimize the number of rounds
of the protocol.
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2.3.4 Rebalancing in the GM protocol

By observing the algorithm of the GM protocol you may have noticed that when a local
violation happens at a remote site i, it is not necessarily the case that S 6∈ Z. This is because, in
all other remote sites j 6= i, is still the case that XXXj ∈ Z. To make thing more concrete, assume
that since the beginning of a round, all the stream updates have been sent to the remote site i,
whose drift vector XXXi does not belong in the convex set Z but it’s very close to its boundary.
Then, it is true that all the other drift vectors XXXj are still equal to EEE, for j 6= i. It is easy now
to recognize that incurring a communication cost of O(kD) of needlessly replacing Z at the first
local violation is potentially wasteful.

An improvement of the GM protocol that addresses situations like these are the rebalancing
protocols. These protocols are mostly heuristic and their goal is to adjust some of the drift vectors
in order to restore the local conditions at all sites with the hope of reducing the communication
cost further. The rebalancing protocol goes like this. Starting with the set B = {i}, the site with
that suffered a local violation, repeatedly add each new local site index to B (using any heuristic
rule), and at each step compute the mean state vector XXXB = 1

|B|
∑
j∈BXXXj for all nodes in B. If

XXXB ∈ Z, then reset the drift vector that for all the nodes that are in B to XXXB and continue the
round normally. If no such set B is found, in other words if |B| = k, then the round finishes.

The goal of the rebalancing procedures are to extent the lifetime of each round. There is not
any mathematical proof that this is always the case, but many empirical studies have shown that
such heuristic methods can deliver improved performance.

2.4 Communication-Efficient Distributed Online Prediction

Michael Kamp proposed at "Communication-Efficient Distributed Online Prediction by Dynamic
Model Synchronization" [17], a distributed online prediction algorithm for distributively training
linear online machine learning models. We will refer to this algorithm as DMS for "Dynamic
Model Synhronization". DMS utilizes the GM protocol and has been tested on a linear Passive
Aggressive model [22] and a rapidly drifting two-layer neural network using Passive Aggressive
updates. Experiments showed that the protocol can reduce the communication up to 90% compared
to the state-of-the-art static communication protocols like S-DSGD and A-DSGD.

2.4.1 The DMS protocol

The DMS protocol uses the same distributed setting that was introduced in section §2.1. The
core idea of DMS is to perform partial averaging of the models residing at the remote sites only
when their parameters have deviated "enough" from their previous average. Intuitively, there is no
need to perform model averaging, and suffer communication costs as a consequence of that, when all
models are already approximately equal. To that end DMS uses a simple measure to quantify the
affect of synchronizations. That measure is the variance of the current local model configuration
space, i.e., the real value V ar[SSS(t)] = 1

k

∑k
i=1 ||SSS(t) − E||22. The protocol accepts a user defined

positive threshold ∆. As long as the variance of the scattered models defined by the above equation
is below the the threshold ∆, then the topology remains silent. Else, synchronization is performed.
This is the basis of the DMS.

The algorithm decomposes the global condition V ar[SSS(t)] ≤ ∆ into a set of local conditions
that can be monitored at their respective remote sites without communication. At each time t,
each node i, for i=1,...,k, checks the local condition ||XXXi(t) −EEE||22 ≤ ∆, where XXXi(t) = wi(t) (see
[9, 13, 18, 14] for a more general description of this method). It is easily proven that if all local
conditions ||XXXi(t)−EEE||22 hold, then the global variance is bounded by ∆ [[17], Theorem 6], i.e.

1

k

k∑
i=1

||XXXi(t)−SSS(t)||22 ≤ ∆. (5)
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This follows directly from the fact that the current average vector SSS(t) minimizes the squared
distances to all XXXi, i.e.

1

k

k∑
i=1

||XXXi(t)−SSS(t)||22 ≤
1

k

k∑
i=1

||XXXi(t)−EEE||22 ≤ ∆. (6)

The DMS protocol goes exactly like the GM protocol that is discussed and analyzed in section
§2.3 with the succinct summary of the stream being the parameter vector of the predictor. The
algorithm of DMS is summarized in Algo. 1. We see that DMS also uses the simplest GM
rebalancing protocol described in §2.3.4.

Algorithm 1 Distributed Dynamic Synchronization Protocol
Initialization:

local models X1(1), ..., Xk(1)← random initialization technique
reference vector E ← 1

k

∑k
i=1Xi(1)

violation counter v ← 0
Round t at node i:
1: observe xt,i and provide service/ make a prediction
2: observe yt,i and update the local model
3: if t mod m = 0 and ||Xi(t)− E||22 > ∆ then
4: send wt,i to coordinator (violation)

At coordinator on violation:
1: let B be the set of nodes with violation
2: v ← v + |B|
3: if v = k then B ← [k], v ← 0
4: while B 6= [k] and 1

k

∑
j∈B ||Xj(t)− E||22 > ∆ do

5: augment B by augmentation strategy
6: receive models from nodes added to B
7: send model SSS(t) = 1

B

∑
j∈B Xj(t) to nodes in B

8: if B = [k] also set new reference vector E ← SSS(t)

2.4.2 DMS for decentralized Deep Learning

Kamp, proved on [20], both theoretically and experimentally, that DMS can be used not only
on convex objectives, but also on non-convex ones as well. More specifically, DMS was used to train
CNNs, a non-convex optimization problem, by distributed mini-batch SGD. Kamp proved that if
the loss function that we are trying to minimize is locally convex in an O(∆)-radius around the
current average, then Theorem 2 in Boley et al. [19] guarantees that for SGD, DMS has a predictive
performance similar to any static/periodically communicating protocol. We later on utilize DMS
as a benchmark against our implementation, that makes use of another communication protocol
which is a substantial improvement on the core ideas of GM.

2.5 Functional Geometric Monitoring for distributed data streams

Most work on GM has focused on the critical problem of choosing good safe zones for various
complex queries, as the protocol’s performance depends heavily on the quality of the safe zone.
A substantial improvement on the GM protocol is the Functional Geometric Monitoring (FGM)
protocol. The algorithm’s foundation on convexity provides substantial benefits in terms of per-
formance, scalability and robustness. The focus of this subsection is to present the basic principles
and protocol of FGM.
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2.5.1 Safe Functions

We start by examining the notion of a safe state in a monitoring algorithm. The system is in
a safe state as long as 1

k

∑k
i=1XXXi = SSS ∈ A. In the context of the GM protocol, system safety is

conservatively monitored by watching the conjunction of all local conditions ∧k
i=1XXXi ∈ Z, where

Z is a convex subset of the admissible region A. When this conjunction becomes false, the system
restores it, either by restarting a round or by rebalancing.

FGM on the other hand, employs a real function φ : V → R. Each remote site i, for i = 1, ..., k,
tracks its φ-value, or else the value of function φ on their state vectorXXXi as it gets updated. Then,
system safety is guaranteed as long as the global summation of those one-dimensional projections
sum ψ =

∑k
i=1 φ(XXXi) is non-negative.

Definition 1. (SAFE FUNCTION). A function φ : V → R is safe for admissible region A, if, for
all XXXi ∈ V, i = 1, ..., k,

k∑
i=1

φ(XXXi) ≥ 0⇒
∑k
i=1XXXi

k
∈ A.

Hence, the problem of watching a boolean conjunction in order to detect a violation has been
converted into a sum-monitoring problem. The introduction of safe functions offers significant
opportunities for improved distributed stream monitoring.

2.5.2 Safe Functions and convexity

The selection of a good safe function is of great importance as it can greatly affect the com-
munication efficiency of the system under the FGM protocol. Of course, not all safe functions for
a particular admissible region A is equally desirable. It should be the case that φ should take as
large values as possible, so that φ remains positive longer and prolong the rounds. Let φ1 ≤ φ2
denote pointwise-dominance, i.e.

∀xxx, φ1(xxx) ≤ φ2(xxx).

If both functions are safe for A, then φ2 is to be preferred as it is more probable to prolong the
rounds. The properties of maximal safe function such as φ2 are characterized by the following
theorem.

Theorem 1. . For any set A, if φ is safe for A, there exists a concave function ζ ≥ φ which is
also safe for A.

Based on the above theorem, the FGM protocol restricts its attention to safe functions that
are concave.

For any function φ, denote the level set of φ, as

L(φ) = {xxx ∈ V |φ(xxx) ≥ 0}.

For φ to be safe for some A, it is necessary that L(φ) ⊆ A. For a concave function ζ, this is also
sufficient

Proposition 1. . A concave function ζ is safe for A, if and only if, L(ζ) ⊆ A.

Proof. To prove sufficiency, assume L(φ) ⊆ A. By the definition of concave function, for any k ≥ 1,

ζ(

∑k
i=1XXXi

k
) ≥ 1

k

k∑
i=1

ζ(XXXi).

Then,
∑k
i=1 ζ(XXXi) ≥ 0 implies ζ(SSS) ≥ 0, and thus SSS ∈ L(ζ) ⊆ A.
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Furthermore, if ζ is concave, then the set Z = L(ζ) is closed and convex. Therefore, a concave
safe function ζ for an admissible region A can be thought of as a functional representation for a
convex safe zone L(ζ) ⊆ A. Thus, FGM is conceptually a generalization of standard GM. Below
follows the definition of the safe zone function.

Definition 2. (SAFE ZONE FUNCTION). Given an admissible region A and a reference point
EEE, a safe zone function ζ is a concave function which is safe for A, and ζ(A) > 0.

A good safe zone depends heavily on the quality of the safe zone function. Criteria for the
quality of a safe zone function are discussed in [15], where safe zone functions are used on the
context of a methodology for the compositional design of high-quality safe zones for complex
queries. The problem of designing or composing safe zone functions for particular queries can
become quite useful, especially in the context of machine learning problems.

2.5.3 The basic FGM protocol

The basic FGM protocol monitors the threshold condition

k∑
i=1

ζ(XXXi) ≥ 0, (7)

over the duration of the round.
At the beginning of a round, the coordinator/hub knows the current state of the system EEE = SSS.

It selects a safe zone function ζ for A, as defined by Eq. 2 and EEE. At each point in time, let
ψ =

∑k
i=1 ζ(XXXi). The round’s steps are:

1. At the beginning of a round, the coordinator ships ζ to every single one remote site/worker/local
site. It many cases it is sufficient to only shit the vector EEE. Local sites initialize their drift
vectors to EEE. Hence, at the start of a round it is the case that ψ = kζ(EEE).

2. After this, the hub initiates a number of subrounds, which are described below. A the end
of all subrounds, ψ ≤ εψkζ(EEE), for some small εψ.

3. At last, the hub ends the round by collecting all drift vectors XXXi and updating EEE.

The goal of each subround is to monitor the condition ψ ≥ 0 coarsely, with a precision of roughly
θ, performing as little communication as possible. In fact, in each subround the communication cost
is at most 3k one-word messages, k of which are upstream messages and the rest are downstream
messages. Subrounds are executed as follows:

1. A the beginning of a subround, the coordinator knows the values of ψ. It computes the
subround’s quantum θ = ψ

2k , ans ships it to each remote/local site. Additionally, the hub
initializes a counter c = 0. Each local site records its initial value zi = ζ(XXXi), where
2kθ =

∑k
i=0 zi, and initializes a counter ci = 0.

2. Each local site i maintains its local drift vector XXXi, as it processes stream updates. When
XXXi is updated, site i updates its counter

ci := max{ci, b
zi − ζ(XXXi)

θ
c}.

If this update increases the counter, the local site sends a message to the hub, with the
increase to ci.

3. When the hub receives a message with a counter increment from a local/remote site, it adds
the increment to its global counter c. If the global counter c exceeds k, the hub finishes the
subround by collecting all ζ(XXXi) from all local sites, recomputing ψ. If ψ ≤ εψkζ(EEE), the
subrounds end, else another soubround begins.
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The following statement guarantees the correctness of the protocol.

Proposition 2. During the execution of a subround, if c ≤ k then
∑k
i=1 ζ(XXXi) > 0.

Proof. At each point in time and for any site, it must be

zi − ζ(XXXi)

θ
− 1 < bzi − ζ(XXXi)

θ
c ≤ ci.

Summing both sides, we get 1
θ (2kθ−ψ)−k < c, which simplifies to

∑k
i=1 ζ(XXXi) > (k−c)θ ≥ 0.

2.5.4 Performance

We know turn our attention on the performance of the FMG protocol and how it compares
against the GM’s. Each round r incurs an upstream cost of Cupr = Θ(kD), in order to ship the
reference vector EEE to all sites. Recall that the duration of a round is denoted as τr and its equal to
the number of local stream updates during the round r. In general, the duration τr is much larger
in the FGM protocol, resulting in much better performance.

Each round in FGM is consisted by a number of subrounds. Therefore, we must account for
the cost of the protocol during subrounds. Each subround by itself costs only 3k+1 one-word
messages, as there are k messages to broadcast the quantum θ, k messages to centralize the ζ-
values to the coordinator at the end of the soubround, and up to k + 1 downstream messages
carrying counter increments. The actual number of subrounds within a round, denoted as q, is
in principle unpredictable. It has been shown however in [11], that if ψ is a decreasing function
of time (which is might not always be the case), then q is at most log2 1

εψ
. It practice though,

it turns out that for εψ = 0.01 the number of subrounds per round is always at most 10 and
almost always 7. In all cases, the total cost O(kq) of all subrounds in a round, was dominated by
the upstream cost Θ(kD). In principle, the cost O(kq) was less than Θ(kD) by several orders of
magnitude, even when the number of subrounds per round are high. This leads to fewer upstream
messages due to the reduced number of total rounds compared to GM, making the FGM a much
more communication efficient protocol for distributed stream monitoring. For more information
refer to [16].

2.5.5 Rebalancing

In GM, rebalancing can prolong a round, but at substantial extra cost, which sometimes may
exceed the resulting benefit. Rebalancing in FGM though we can rebalance a round without
incurring additional communication cost. The motivation to rebalance in FGM stems from the
fact that the boolean condition

∑k
i=1 ζ(XXXi) < 0 does not necessarily imply that ζ(S) < 0. This is

true due the concavity properties of the concave safe zone function ζ, or more specifically because
ζ(S) = ζ(

∑k
i=1XXXi
k ) ≥ 1

k

∑k
i=1 ζ(XXXi). Therefore, more often than not, the current safe zone function

ζ may still be useful, and we would like to avoid the overhead of shipping a new safe zone function
to the sites. FGM manages to avoid that overhead by a rebalancing protocol that changes the
monitored constraint, ψ ≥ 0, in a suitable manner.

Lets assume that the coordinator keeps a balance vector BBB. At the beginning of a round the
balance vector BBB is set to 000. During the duration of the round, sites update their drift vectors as
local stream updates arrive. However, with rebalancing allowed, it is possible for a site to flush its
current drift vector to the coordinator, during the round. When a flush occurs, the coordinator
updates the balance, by adding ∆XiXiXi = XXXi −EEE to it. After drift vector XXXi is flushed, it is reset
to XXXi. Let B ⊆ {1, ..., k} be the set designating sites which are in balance mode. Sites in B will
monitor a slightly different safe zone function; the only requirement on B is that B can be empty
only if BBB = 000. The invariant of Eq. 3 becomes

SSS = EEE +
1

k
BBB +

1

k

k∑
i=1

∆XXXi. (8)
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This can be rewritten as

SSS =
|B|
k

(EEE +
1

|B|
BBB +

1

|B|
∑
i∈B

∆XXXi) (9)

+
k − |B|
k

(
1

k − |B|
∑
i∈B

XXXi). (10)

To compute the safety condition in the presence of rebalance vectors, start with kζ(SSS) ≥ 0.
Notethat, by concavity, it is ζ(EEE + xxx + yyy) ≥ 1

2 (ζ(EEE + 2xxx) + ζ(EEE + 2yyy)). This property is used to
separate BBB from

∑
∆XXXi in Eq. 9; after some manipulation, we get the safety condition

|B|
2
ζ(EEE +

2BBB

|B|
) (11)

+
∑
i∈B

1

2
ζ(EEE + 2∆XXXi) (12)

+
∑
i 6∈B

ζ(XXXi) (13)

≥ 0. (14)

The inequality depicted above can be though of as the analog representation to the basic FGM
monitoring condition Eq. 7; notice that when B = ∅, it is identical to Eq. 7. For general B, the
left-hand inequality is consisted by the following three parts:

1. The item ψB = |B|
2 ζ(EEE + 2BBB

|B| ) is an information term that is known only to the coordinator,
and it is initially 0. The coordinator updates this term, when a site flushes its local drift
vector.

2. For each site that belongs to the set B, or else ∀i such that i ∈ B, the site’s contribution is
changed to

1

2
ζ(EEE + 2∆XXXi)

compared to Eq. 7.

3. For each site that does not belong in to set B, or else ∀i such that i 6∈ B, the site’s contribution
is the same as in Eq. 7, meaning that is equal to ζ(XXXi).

If we define ψ analogous ti its previous definition, then we can write ψ as

ψ =
∑
i∈B

1

2
ζ(EEE + 2∆XXXi) +

∑
i 6∈B

ζ(XXXi).

Then the global condition can summarized into the condition

ψB + ψ ≥ 0.

n order to monitor this condition, the only modification needed to FGM is in the selection of a
specific purposed value of the quantum θ at the beginning of each subround, so that

2kθ = ψ + ψB . (15)
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2.5.6 The rebalancing FGM protocol

The new protocol begins in the same manner as in the basic FGM protocol that was described
in subsection §2.5.3, with B = 0. Therefore ψ + ψB = ψ = kζ(EEE). At the end of all subrounds,
it is ψ < εψkζ(EEE). Where the basic protocol would start a new round, the rebalancing protocol
restores the invariant ψ + ψB ≥ 0 as follows:

1. The coordinator asks all sites to send their local drift vectors XXXi, and adds all sites to set B.

2. When the coordinator receives eachXXXi, it updatesBBB by adding each sites delta vectorXXXi−EEE
to it.

3. After XXXi is sent, the site i resets it to EEE, or else it makes its delta vector ∆XXXi equal to 000,
and the new contribution of the site to ψ is ζ(EEE)/2.

4. As soon as all drift vectors have been received, the coordinator recalculates ψ and ψB to
check if the condition ψ + ψB ≥ kζ(EEE) is restored. If the condition holds, then it starts a
subround with quantum θ = (ψ + ψB)/(2k).

5. If on the other the hand the condition does not hold, then it starts a new round by computing
and then shipping the new reference vector EEE to all sites.

2.5.7 Rebalancing protocol performance

The rebalancing manifested as above will cause additional downstream communication, but
incurs no upstream cost. In the simple distributed stream monitoring, the FGM rebalancing
protocol is considered to be conservative, since the total downstream cost can never exceed the
size of the streamed data. In the machine learning scenario this can be done by allowing the sites
to send the actual data points to the coordinator, if the data are not private-sensitive, instead of
the actual parameters when the communication of doing so is less. Even if the round’s duration is
not extended by much, there is no added overhead to overcome; therefore, the communication gain
G of a round can never decrease because of rebalancing. Quite the contrary, it is quite likely that
it will increase. For more information about the performance of the rebalancing protocol refer to
[16].

2.6 Data Stream and Concept Drift

We now present the two different online leaning scenarios that we will use in our experiments for
this study. In traditional centralized off-line machine learning we have a single stationary dataset
that we want to mine or built a model on it that describes it well. On the other hand, in online
machine learning the data is generated on the fly by some unknown distribution. In this case,
the trained model is updated incrementally whenever new data arrives, but it is usually the case
that the continuously generated data will stem from a dynamic environment, causing a change
to the characteristics of the data stream which may lead to the degradation of the predictor’s
performance. This challenging issue is known as concept drift (CD), in which statistical properties
of the input features and target classes or values may shift over time. We assume two learning
environments; a stationary one without CD (where the characteristics of the data points that are
continuously generated are always the same), and a dynamic one with CD.

According to Gama et al. [23], the basic concept drift based on Bayesian decision theory in the
classification problem for class output c and incoming data XXX is

P (c|XXX ) = P (c)
P (XXX|c)
P (XXX )

. (16)

Concept drift occurs when P (c|XXX ) changes; for instance, ∃XXX : P(0)(XXX , c) 6= P(1)(XXX , c), where P(0)

and P(1) are the joint distributions at times t(0) and t(1) respectively. Gama et al. categorized the
concept drift types as follows:
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1. Real Drift (RD) refers to the changes in the P (c|XXX ) term. The change in P (c|XXX ) may
be caused by a change in the class boundary (the actual number of classes) or the class
conditional probabilities (likelihood) P (XXX|c). The number of classes expanded and different
class of data that may come alternately are both known as recurrent context. A drift, where
new conditional probabilities replace the old ones while the number of classes remain the
same, is known as sudden drift.

2. Virtual Drift (VD) refers to the changes in the distribution of the continuously generated
data. This is caused by changes happening to P (XXX ). These changes may be due to incomplete
or partial feature representation of the current data distribution. The predictor is built with
additional data from the same environment without overlapping the true class boundaries.

3. Hybrid Drift (HD) happens when RD and VD happens at the same time.

We assume the training data come from S different concepts which we denote as CS . To express
a concept drift event, we use the symbol =⇒

V D
, where the subscript font shows the drift type. For

example, Concept 1 has virtual drift event to be replaced by Concept 2: CCC1 =⇒
V D

CCC2. Concept 1 has
real drift event to be replaced by Concept 1 and Concept 2 recurrently in the shuffled composition
CCC1 =⇒

RD
shuffled(CCC1,CCC2).

Not all machine learning algorithms are built to handle such dynamic environments. In fact,
most of them are build having a stationary one in mind. For the stationary distributed environment
we will train a Convolutional Neural Network (CNN) and for the dynamic one we will train an
Extreme Learning Machine (ELM), a one layer feedforward neural network that is able to adapt
on all the aforementioned drift scenarios. We now proceed on the next sections by describing those
two learners.

2.7 Convolutional Neural Networks (CNNs)
CNNs are an extension of deep artificial neural networks that are primarily used to classify,

cluster and recognize objects in images and video. The first successful applications of Convolutional
Networks were developed by Yann LeCun [32] in 1990’s. One of the best known CNN architectures
is the LeNet architecture that was used to read zip codes and digits among others. We will address
the problem of distributively training a LeNet architecture using an Adam optimizer. Because
Adam is a variation of the classic GD optimization methods, the training of a LeNet network can
be done by the S-DSGD A-DSGD algorithms. For the stationary distributed learning environment
we will train a LeNet network.

2.8 ELMs
One of the popular machine learning methods is Extreme Learning Machine (ELM), a Single-

Layer Feedforward Neural Network introduced by Huang [24]. ELM has gained popularity because
of its simplicity, learning speed, good generalization and its ability to adapt on many non-stationary
online learning scenarios.

2.8.1 ELM

Assuming that the classes are represented as C and the number of neurons of the single hidden
layer are L, then XM×dXM×dXM×d and YM×|C|YM×|C|YM×|C| are the input matrix and one-hot labels ofM examples respec-
tively, Ad×LAd×LAd×L and b1×Lb1×Lb1×L are the weights and biases of the hidden layer, ggg is any non-linear activation
function, βL×|C|βL×|C|βL×|C| the learnable output weight matrix and HM×LHM×LHM×L is the hidden layer matrix. The
output function of the ELM is formulated as

fL =

L∑
i=1

βiH(ai, bi, x), (17)

where HHH = g(XAXAXA + bbb). The parameters AAA and bbb of the hidden layer are initialized uniformly at
random within the range [−1, 1] and remain unchanged throughout the hole learning process. The
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solution of ELM training with the smallest error can be obtained when the output weight βββ is
approximated by

βββ = HHH†YYY , (18)

where HHH† is the pseudoinverse of HHH, also known as Moore-Penrose generalized inverse of HHH. The
ELM learning is simply equivalent to finding the smallest least-squares solution to βββ of the linear
system HHHβββ = YYY . Hence, ELM does not require using the backpropagation algorithm for training
which can sometimes be computationally demanding.

HHH† can be approximated by left pseudoinverse of HHH as

βββ = (HHHTHHH)−1HHHTYYY . (19)

The above equation is called the least squares solution to HβHβHβ = YYY . This method though cannot
can not address incremental learning in this simple form. For this reason, Liang et al. [30] proposed
an online learning adaptation of ELM named OS-ELM. The OS-ELM is capable of incremental
learning by using mini-batch fitting, with dynamic mini-batch size. More precisely, in OS-ELM,
if we have βββ(t−1) from HHH(t−1) filled by the m1 training data, and HHH(t) filled by m2 incremental
training data, then the output weights βββ(t) can be approximated by solving

βββ(t) =

([
HHH(t−1)
HHH(t)

]T [
HHH(t−1)
HHH(t)

])−1 [
HHH(t−1)
HHH(t)

]T [
YYY (t−1)
YYY (t)

]
. (20)

OS-ELM sequentially updates the least squares solution using the update rule

KKK(t) = KKK(t−1) +HHHT
(t)HHH(t) (21)

βββ(t) = βββ(t−1) +KKK−1(t)HHH
T
(t)(YYY (t) −HHH(t)βββ(t−1)), (22)

which can be shown to be identical to the Eq. 20.

Algorithm 2 OS-ELM
Require: XXX (t) ∈ [−1, 1]Rmt×d, YYY (t) ∈ [0, 1]Rmt×|C|, AAA(t), bbbL, KKK(t−1), βββ(t−1)
Ensure: βββ(t), KKK(t)

1: Compute HHH(t) = g(XXX (t)AAA(t) + bbbL)
2: if IncreaseHiddenNodes == TrueTrueTrue then
3: ∆AAAd×δL = RandomNumbers([−1, 1],Rδ×δL)
4: ∆bbbδL = RandomNumbers([−1, 1],RδL)
5: AAA(t) = [AAAt ∆AAAδ×δL]
6: bbbL = [bbbL ∆bbbδL]
7: ∆HHH(t) = g(XXX(t)∆AAAd×δL + ∆bbbδL)

8: KKK(t) =

[
HHH(t−1) 000
HHH(t) ∆HHH(t)

]T [
HHH(t−1) 000
HHH(t) ∆HHH(t)

]
9: βββ(t) = KKK−1(t)

[
HHH(t−1) 000
HHH(t) ∆HHH(t)

]T [
YYY (t−1)
YYY (t)

]
10: else
11: KKK(t) = KKK(t−1) +HHHT

(t)HHH(t)

12: βββ(t) = βββ(t−1) +KKK−1(t)HHH
T
(t)(YYY (t) −HHH(t)βββ(t−1))

13: end if
14: return βββ(t), KKK(t)

Although OS-ELM is capable of learning online, it does not address to online learning en-
vironments with concept drift. On the other hand, the AOS-ELM algorithm introduced by et
al.[31] utilizes the OS-ELM method and is capable of handling virtual, real and hybrid concept
drifts. AOS-ELM will be the method we are going to be using for our dynamic distribute learning
environment.
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AOS-ELM handles concepts drifts in a very simple and efficient way. If the data stream suddenly
suffers from VD, AOS-ELM assigns the random coordinates in the new concept space, or more
simply, it extends the parameters of each neuron with the appropriate random values. According
to interpolation theory from ELM point of view and Learning Principle I of ELM Theory [26],
the input weight and bias are independent of the training samples and their learning environment
through randomization. Their independence is not only in initial training stage, but also in any
sequential training stages. Thus, the method can adapt the input weights and biases on any
sequential stages in order to handle additional feature inputs. In case of RD, the method assigns
the equivalent projection coordinates in the new design space, or else it extends the output weight
vector βββ by the total number of the newly observed classes. According to universal approximation
theory [28], the AOS-ELM has the capability of handling real drift by modifying the output matrix
with zero block matrix concatenation to change the size matrix dimension without changing the
norm value. Zero block matrix means that the previous βββ(t−1) has no knowledge about the new
concept. ELM can approximate any complex decision boundary, as long as the output weights βββt
are kept minimum when the number of output classes are increased. Lastly, AOS-ELM can extend
the number of neurons in the hidden layer on the fly, for the purpose of increasing its predicting
accuracy, but will not be using this attribute in our experiments.

Algorithm 3 AOS-ELMVD
Require: XXX (t) ∈ [−1, 1]Rmt×d,

AAA(t−1) = Model(t−1) ···AAA
Ensure: AAA(t)

1: d(t−1) = SizeOfAttributes(Model(t−1))
2: d(t) = SizeOfAttributes(XXX (t))
3: if d(t) > d(t−1) then
4: δd = d(t) − d(t−1)
5: ∆AAAδd×L = RandomNumbers([−1, 1],Rδd×L)

6: AAA(t) =

[
AAA(t−1)

∆AAAδd×L

]
7: else
8: AAA(t) = AAA(t−1)
9: end if

10: return AAA(t)

Algorithm 4 AOS-ELMRD
Require: YYY (t) ∈ [0, 1]Rmt×|C|,

βββ(t−1) = Model(t−1) ··· βββ
Ensure: βββ(t−1)

1: m(t−1) = SizeOfClasses(Model(t−1))
2: m(t) = SizeOfClasses(YYY (t))
3: if m(t) > m(t−1) then
4: δm = m(t) −m(t−1)
5: ∆βββL×δm = 000
6: βββ(t−1) =

[
βββ(t−1) ∆βββ

]
7: end if
8: return βββ(t−1)

The AOS-ELM algorithm can be summarized in the following four pseudocodes. The first
one, Alg. 2, depicts the OS-ELM learning algorithm, and the pseudoalgorithms 3, 4 depict the
AOS-ELMVD, AOS-ELMRD algorithms that address the VD and RD scenarios respectively. By
putting together of these algorithms to Alg. 5 we get the AOS-ELM method that we will be using
to our experimental distributed environment.
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Algorithm 5 AOS-EML
Require: XXX (t) ∈ [−1, 1]Rmt×d, YYY (t) ∈ [0, 1]Rmt×|C|,

AAA(t−1) = Model(t−1) ···AAA
βββL = Model(t−1) ··· βββ
KKK(t−1) = Model(t−1) ···KKK
βββ(t−1) = Model(t−1) ··· βββ

Ensure: Model(t)
1: βββ(t−1) =AOS-ELMRD(YYY (t),Model(t−1))
2: AAA(t) =AOS-ELMVD(XXX (t),Model(t−1))
3: (β(t),KKK(t)) =OS-ELM(XXX (t),YYY (t),AAA(t), bbbL,KKK(t−1),βββ(t−1), IncreaseHiddenNodes)
4: Model(t) = SaveModel(AAA(t), bbbL,KKK(t), β(t))
5: return Model(t)

3 Distributed ANN training via the FGM protocol

We now present our approach to distributed ANN training that utilizes the FGM protocol. Our
method is a "Dynamic Averaging Protocol" that encourages communication between the workers
and the coordinator only when it deems necessary. Once again, we adopt the distributed setting
that we discussed in section §2.1, with the succinct summaries of the stream at each site being the
parameters of the local predictor, or else XXXi(t) = wi(t). The distributed protocol is identical to
the FGM protocol with some adjustments to the safe zone function, the averaging procedure and
the rebalancing method. We proceed by introducing the ML-FGM protocol for distributed ANN
training and ML aglorithms in general.

3.1 Admissible region and safe function for Learning

The DMS algorithm utilizes the safe zone condition of Eq. 6 to dynamically synchronize the
learners. We now borrow this safe zone and we modify it to a real safe zone function ζ : V → R,
in order to be applicable to the FGM protocol.The admissible region is the convex level set

A = {SSS ∈ RD | T − ||SSS −EEE||22 ≥ 0}, (23)

hence we construct the function φ : V → R that is safe for A as

φ(XXXi) =
1

k

(
T − ||XXXi −EEE||22

)
. (24)

Therefore, the coordinator monitors the condition

k∑
i=1

φ(XXXi) =
1

k

k∑
i=1

[
T − ||XXXi −EEE||22

]
≥ 0. (25)
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The safe function φ : V → R is safe for A because

0 ≤
k∑
i=1

φ(XXXi) = T − 1

k

k∑
i=1

||XXXi −EEE||22

≤ T − 1

k
||

k∑
i=1

XXXi −EEE||22

= T − ||1
k

k∑
i=1

XXXi −EEE||22

= T − ||SSS −EEE||22 =⇒ 1

k

k∑
i=1

XXXi ∈ A.

3.2 Safe zone function for Learning

In order to ensure that the variance of the distributed parametersXXXi is bounded by T , we need
to ensure the condition shown in Eq.25. We can ignore the positive scalar 1

k , as it does not alter
the level set. Consequently, the protocol will monitor the sign of the summation

k∑
i=1

ζ(XXXi(t)) =

k∑
i=1

(T − ||XXXi(t)−EEE||22).

It is easy to see that the function ζ(x) = T − ||xxx − EEE||22 is concave, positive for EEE and ζ > φ.
Function ζ is also safe for the admissible region A. Recall that a function ζ is safe for A, if and
only if, L(ζ) ⊆ A. To prove the sufficiency, assume L(ζ) ⊆ A. Because ζ is concave we have that

ζ(SSS) = ζ(
1

k

k∑
i=1

XXXi)

= T − ||1
k

k∑
i=1

XXXi −EEE||22

≤ T − 1

k

k∑
i=1

||XXXi −EEE||22

=
1

k

k∑
i=1

ζ(Xi).

Then,
∑k
i=1 ζ(XXXi) ≥ 0 implies that ζ(SSS) ≥ 0, and thus SSS ∈ L(ζ) ⊆ A. Moreover, in this specific

case it is true that Z = L(ζ) = A.
The local safe zone functions ζ(XXXi(t)) are quadratic functions, which means that small vari-

ations in the input may cause large variations to the output of the function. To ameliorate this
situation, we transform these functions to eikonal. An function ζ : V → R is eikonal, if and only
if, ||∇ζ|| = 1 at every point where it is differentiable. Fortunately, in our case these this can be
done quite easily by square rooting the two terms of our local safe zone functions ζ(XXXi(t)). Thus,
we are left with the following monitoring problem

k∑
i=1

ζ(XXXi(t)) ≥ 0, (26)

where
ζ(XXXi(t)) =

√
T − ||XXXi(t)−EEE||2. (27)
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Observe that the level set of the safe zone functions have not been altered, and the second norm
of their partial derivatives w.r.t XXXi(t) is 1. What is more, a nice consequence of ζ being eikonal, is
that it provides sufficient distance information from the convex subset Z of the admissible region
A. More precisely, the eikonal function ζ(XXXi(t)) is the signed distance function for the set Z. The
maximum value of ζ is ζ(EEE), meaning that as soon as Xi starts to deviate from EEE, towards any
direction, the value of ζ decreases and the variance between the models increases. The convex set
Z is considered to be maximal, according to Definition 11 in [15], as there is no convex subset
of A that is a superset of Z. Z is also maximum distance, according to Definition 5 in [15], as
dist(EEE, Z̄) = dist(EEE, Ā), where ·̄ = V − ·. This is obvious here as Z = A. For more information
about composing good safe zone functions you may refer to [15].

3.3 The basic FGM protocol for learning

We now introduce our approach for distributively training ANNs, and parametric machine
learning algorithms in general, in an online manner by using the basic FGM protocol without
rebalancing. In the beginning, the coordinator warms up the predictor by fitting some data to
it. These data could be centralized by the workers to the coordinator. After the warm-up, the
coordinator ships the parameters to all the sites. This procedure provides the same starting point
for all the workers. The size of the warm-up dataset can be tuned by the user, and its size can
affect the communication cost of the early rounds. If the warm-up dataset is "too" small, then the
communication cost of the early stages of the stream is likely to be big. Conversely, if the warm-up
dataset is somewhat "large", then the communication cost is expected to be quite small, as the
starting parameters may be closer to the optimal solution, thus reducing the variability of their
updates. In this study, we start evaluating the algorithm right after the warm-up procedure, at
the beginning of the first round, and we do not investigate for any further strategies for choosing
the optimal warm-up dataset size.

The basic FGM protocol for distributed machine learning is very similar to the one mentioned
in §2.5.3. In this particular case, the protocol monitors the threshold condition

∑k
i=1 ζ(XXXi(t)) ≥ 0,

with ζ(XXXi(t)) =
√
T − ||XXXi(t) − EEE||2 =

√
T − ||∆∆∆i(t)||2, where ∆∆∆i(t) is the local delta vector of

the parameters. This delta vector is nothing more than the summation of all the updates that
were incurred by the local optimizer, or any other learning update rule, since the beginning of the
round. In general, we could pick any safe zone function that we may think is good to monitor.
In this example, we picked this one to extend and compare against the work of Kamp in [17] and
[20]. The basic protocol for distributed training with arbitrary safe zone function and arbitrary
learning algorithm with update rule of the form wt = wt−1 + step ∗ update, can be summarized in
Alg. 6.

3.4 The averaging procedure for learning

In the "Static Averaging Protocols" like S-DSGD, the averaging procedure is quite simple. The
parameters of all the workers are added up and divided by the total number of workers at the end of
each round. In our approach though this may not always be the right course of action. In a stream
like setting, the rate by which each site receives data may be completely different than the rest of
them. In some adversarial conditions, it may the case that a site has not received any example.
In an even more extreme case, only one site may receive examples. To counter this problem, the
protocol divides the summation of the delta vectors, provided by all the sites, by the number of
sites that have a non-zero delta vector ∆X∆X∆Xi. This can also be observed in Alg. 6. Observe that
∆X∆X∆Xi = XXXi −EEE.
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Algorithm 6 ML-FGM
Require: ζ, εψ, m, BatchSize

Initialization at the coordinator:
1: Warming up the global learner and end up with parameters winit
2: Set containing the nodes that have updated their local parameters: U ← ∅
3: E ← winit, c← 0, ψ ← kζ(E), θ ← ψ

2k

4: send E and θ to all sites and start the first round

A. Site i on receiving E and θ at the start of a new round:
1: update the local model: XXXi ← E

2: quantum← θ, ci ← 0, zi ← ζ(E)

B. Site i on receiving θ at the start of a new subround:
1: ci ← 0, quantum← θ, zi ← ζ(XXXi)

C. Site i on observing data at at time t:
1: observe {xt,i, yt,i}
2: Augment batchi with the data point {xt,i, yt,i}
3: if size(batchi) == BatchSize then
4: update the local model XXXi by fitting to it the batchbatchbatchi
5: BatchesObservedi ← BatchesObservedi + 1

6: clear the mini-batch batchi
7: if BatchesObservedi mod m = 0 and b zi−ζ(XXXi)quantum c > ci then

8: Incrementi ← b zi−ζ(XXXi)quantum c − ci
9: ci ← b zi−ζ(XXXi)quantum c

10: send Incrementi to the coordinator

D. Coordinator on receiving an increment:
1: c← c+ Incrementi
2: if c > k

3: request and collect all ζ(XXXi) from all sites
4: ψ ←

∑k
i=1 ζ(XXXi)

5: if ψ ≤ εψkζ(EEE)

6: request and collect all ∆X∆X∆Xi from all sites
7: for each ∆X∆X∆Xi

8: if ∆X∆X∆Xi != 000 and i 6∈ U then
9: augment U with the site i

10: E ← E + 1
size(U)

∑k
i=1 ∆X∆X∆Xi

11: U ← ∅, c← 0, ψ ← kζ(E), θ ← ψ
2k

12: send E and θ to all sites and start a new round (code A)
13: else
14: c← 0, θ ← ψ

2k

15: send θ to all sites to start a new subround (code B)
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3.5 The rebalancing protocol for learning

Although the basic FGM protocol can perform much better than the GM, the gains can be
further increased by utilizing rebalancing methods. In this section we extend the basic FGM
protocol for machine learning with a simple rebalancing procedure.

The algorithm for rebalancing a round in the FGM protocol that is presented in §2.5.6, is a
valid rebalancing method for monitoring streams that are summarized into linear sketches. In the
machine learning case though, a slight modification is needed. In the vanilla rebalancing method,
each site sends its drift vector XXXi to the coordinator and resets it to EEE, or equivalently it sends
its delta vector ∆X∆X∆Xi to the coordinator and then sets it to the zero vector. When we are working
with predictors though, where XiXiXi represents the parameters, it would not make sense to revert XXXi

back to EEE, as we would discard the progress that was achieved so far and retrain the predictor
from EEE all over again.

To overcome this obstacle, we need to take a closer look at the safe zone function at hand. For
ζ(XXXi) =

√
T − ||XXXi − E||2 we have that

ζ(XXXi) =
√
T − ||XXXi −EEE||2

=
√
T − ||EEE + ∆X∆X∆Xi −EEE||2

=
√
T − ||∆X∆X∆Xi||2.

Suppose now that ∆X∆X∆Xj
i are the updates incurred to sites’ i parameter vector from the beginning of

the round up until the jth rebalance. Also, let ∆X∆X∆Xjt
i be the updates incurred to sites’ i parameter

vector from the beginning of the jth rebalance up until the current time t. Hence, at each time t it
is true that XXXi = EEE + ∆X∆X∆Xj

i + ∆X∆X∆Xjt
i . After rebalance j, we would ideally like to monitor only the

updates that happen from that time on wards at each site, meaning that for each site we would
like to measure the quantity

√
T − ||∆X∆X∆Xjt

i ||2. By analyzing this relation get

√
T − ||∆X∆X∆Xjt

i ||2 =
√
T − ||EEE + ∆X∆X∆Xjt

i −EEE||2
=
√
T − ||EEE + ∆X∆X∆Xj

i + ∆X∆X∆Xjt
i −EEE −∆X∆X∆Xj

i ||2
=
√
T − ||XXXi − (EEE + ∆X∆X∆Xj

i )||2.

Therefore, each site needs to be equipped with an extra parameter vector Ei = EEE + ∆X∆X∆Xj
i . At the

start of the round, all sites set their Ei to the newEEE. When the coordinator needs the delta vectors
to rebalance the round, then every site sends the vector XXXi −Ei as its delta vector, and then sets
its Ei equal toXXXi. With this simple trick, the sites do set their delta vectors to 000, without actually
changing their drift vector. This stabilizes the learning process in each site.

The only thing that remains is to form the ψ + ψB term to calculate the new quantum for
θ = ψ+ψB

2k . Considering our safe zone function and the fact that some remote sites may not receive
any examples the term when the rebalancing happens becomes

ψ + ψB =
|B|
2
ζ(EEE +

2BBB

|B|
) +

∑
i∈B

1

2
ζ(EEE + 2∆X∆X∆Xi) +

∑
i 6∈B

ζ(XXXi)

=
|B|
2
ζ(EEE +

2BBB

|B|
) +

1

2

∑
i∈B

ζ(EEE) + (k − |B|)
∑
i 6∈B

ζ(XXXi)

=
|B|
2
ζ(EEE +

2BBB

|B|
) +
|B|
2
ζ(EEE) + (k − |B|)ζ(EEE)

=
|B|
2
ζ(EEE +

2BBB

|B|
) + (

|B|
2

+ k − |B|)ζ(EEE)

=
|B|
2

(
√
T −

∥∥∥∥2BBB

|B|

∥∥∥∥
2

) + (
|B|
2

+ k − |B|)
√
T .

The final approach to our protocol that uses rebalancing methods for online distributed machine
learning, is depicted in Alg. 7.
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Algorithm 7 ML-FGM with rebalancing for ζ(Xi) =
√
T − ||Xi − E||2

Require: T , εψ, εreb, m, BatchSize

Initialization at the coordinator:
1: Warming up the global learner and end up with parameters winit
2: Set containing the nodes that have updated their local parameters: U ← ∅
3: E ← winit, c← 0, ψ ← k

√
T , θ ← ψ

2k , B ← 000, reb← 0
4: send E and θ to all sites and start the first round

A. Site i on receiving E and θ at the start of a new round:
1: update the local model: XXXi ← E
2: quantum← θ, ci ← 0, zi ←

√
T , Ei ← E

B. Site i on receiving θ at the start of a new subround:
1: ci ← 0, quantum← θ, zi ←

√
T − ||XXXi − Ei||2

C. Site i on receiving θ for rebalancing the current round:

1: ci ← 0, quantum← θ, Ei ←XXXi, zi ←
√
T

D. Site i on sending ∆X∆X∆Xi to the coordinator to rebalance the current round:
1: ∆X∆X∆Xi ←XXXi − Ei
2: send ∆X∆X∆Xi to the coordinator

E. Site i on observing data at at time t:
1: observe {xt,i, yt,i}
2: Augment batchi with the data point {xt,i, yt,i}
3: if size(batchi) == BatchSize then
4: update the local model XXXi by fitting to it the batchbatchbatchi
5: BatchesObservedi ← BatchesObservedi + 1
6: clear the mini-batch batchi
7: if BatchesObservedi mod m = 0 and b zi−

√
T+||XXXi−Ei||2
quantum c > ci then

8: Incrementi ← b zi−
√
T+||XXXi−Ei||2
quantum c − ci

9: ci ← b zi−
√
T+||XXXi−Ei||2
quantum c

10: send Incrementi to the coordinator

F. Coordinator on receiving an increment:
1: c← c+ Incrementi
2: if c > k
3: request and collect ζi =

√
T−||XXXi−Ei||2∀i 6∈ U and ζi = 1

2 (
√
T−||2(XXXi−Ei)||2)∀i ∈ U

4: ψ ←
∑k
i=1 ζi

5: if reb == 1
6: ψ ← ψ + size(U)

2 (
√
T − || 2B

size(U) ||2)

7: if ψ ≤ εψk
√
T

8: request and collect all ∆X∆X∆Xi from all sites (code D)
9: for each ∆X∆X∆Xi

10: B ← B + ∆X∆X∆Xi

11: if ∆X∆X∆Xi != 000 and i 6∈ U then
12: augment U with the site i
13: ψ ← size(U)

2 (
√
T − || 2B

size(U) ||2) + ( size(U)
2 + k − size(U))

√
T

14: if ψ ≥ εreb εψ k
√
T then

15: c← 0, θ ← ψ
2k , reb← 1

16: send θ to all sites in order to rebalance the current round (code C)
17: else
18: E ← E + 1

size(U)B

19: B ← 000, U ← ∅, c← 0, ψ ← k
√
T , θ ← ψ

2k , reb← 0
20: send E and θ to all sites and start a new round (code A)
21: else
22: c← 0, θ ← ψ

2k
23: send θ to all sites to start a new subround (code B)
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Algorithm 8 AOS-ELM Synchronization Module
Initialization at the coordinator:
1: AAA← RandomNumbers([−1, 1],Rd×L)
2: bbb← RandomNumbers([−1, 1],RL)
3: send AAA and bbb to all sites (code A)

A. Site i on receiving AAA and bbb at the before the start of the first round:
1: update the local model: AAAi ← AAA
2: update the local model: bbbi ← bbb

B. Site i on observing data data with concept drift at time t:
1: observe {xt,i, yt,i}
2: if NumOfAttr(xt,i) > NumOfRows(AAAi) and SizeOfClasses(yt,i) > NumOfCols(βββi)
3: d1← NumOfAttr(xt,i), d2← SizeOfClasses(yt,i)
4: send to the coordinator the increment to the attributes and classes d1, d2 (code D)
5: wait for the coordinator to send the new parameters ∆AAAd1×L in one or more messages

6: update the model when the coordinator responds: AAAi ←
[

AAAi
∆AAAd1×L

]
, βββi ← [βββi 000L×d2]

7: else if NumOfAttr(xt,i) > NumOfRows(AAAi)
8: d← NumOfAttr(xt,i)
9: send to the coordinator the increment to the attributes d (code D)

10: wait for the coordinator to send the new parameters ∆AAAd×L in one or more messages

11: update the model when the coordinator responds: AAAi ←
[

AAAi
∆AAAd×L

]
12: else if SizeOfClasses(yt,i) > NumOfCols(βββi)
13: d← SizeOfClasses(yt,i)
14: send to the coordinator the increment to classes d (code D)
15: wait for the coordinator for confirmation
16: update the model when the coordinator responds: βββi ← [βββi 000L×d]
17: resuming normal execution

C. Site i on receiving new attributes and classes increment the coordinator:
1: receive {∆AAAd1×L, d2}
2: if ∆AAAd1×L not empty

3: AAAi ←
[

AAAi
∆AAAd1×L

]
4: if d2 > 0
5: βββi ← [βββi 000L×d2]

D. Coordinator on receiving attribute and classes increments by site i:
1: receive {d1, d2}
2: if d1 > NumOfRows(AAA) and d2 > NumOfCols(βββ)
3: d1← d1−NumOfRows(AAA), d2← d2−NumOfCols(βββ)
4: ∆AAAd1×L ← RandomNumbers([−1, 1],Rd1×L)

5: AAA←
[

AAA
∆AAAd1×L

]
, βββ ← [βββ 000L×d2]

6: send to all sites j 6= i the tuple {∆AAAd1×L, d2} to update their models (code C)
7: send a response to site i with the tuple {∆AAAd1×L, d2} to update its model
8: else if d1 > NumOfRows(AAA)
9: d1← d1−NumOfRows(AAA)

10: ∆AAAd1×L ← RandomNumbers([−1, 1],Rd1×L)

11: AAA←
[

AAA
∆AAAd1×L

]
12: send to all sites j 6= i the new weights ∆AAAd1×L to update their models (code C)
13: send a response to site i with the new weights ∆AAAd1×L to update its model
14: else if d2 > NumOfCols(βββ)
15: d2← d2−NumOfCols(βββ)
16: βββ ← [βββ 000L×d2]
17: send to all sites the increment d2 to update their models (code C)
18: send a response to site i with the increment d2 to update its model
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3.6 The applicability of FGM in machine learning

The proposed framework is suited for any parametric machine learning algorithm that has an
update rule of some kind. Our approach provides the ability to incorporate any of the aforemen-
tioned optimizers in §2.2.1, as well as more general update rules like 21 and 22. However, we need
to slightly modify the distributed algorithms in order to be able to account for the internal changes
of AOS-ELM that happen during the detection of CD. DMS and ML-FGM stay exactly the same,
with the addition of the Alg. 8. We assume, for simplicity, that after a single point with CD has
been observed, all the next points respect this change. Finally, the parameters that need to be
tracked are the matrix KKK and the vector βββ. Hence, the algorithm tracks the vector Ŵ̂ŴW ∈ RL2+L|C|

with Ŵ̂ŴW = K̂̂K̂K⊕ β̂̂β̂β, where K̂̂K̂K and β̂̂β̂β are the flattened vectors of matrixKKK and vector βββ respectively.

4 Experimental Results

In this section we investigate the practical performance of distributed machine learning via the
FGM protocol against the state-of-the-art dynamic learning protocols. The DMS algorithm has
been experimentally proven to be much more communication efficient than any static averaging
protocol like S-DSGD and A-DSGD. Thus, our main goal is to empirically confirm the commu-
nication gains against DMS. Our experiments will be conducted on two distinct online learning
scenarios, a distributed stream with no concept drift where we will train a CNN classifier, and a
distributed stream with concept drift where we will train an AOS-ELM classifier.

4.1 CNN training on static distributed streams

We start with the problem of tracking a static and rapid distributed stream, for the purpose of
classifying the data using a CNN. The dataset that we used for this experiment is the MNIST data
set. MNIST data set is a balanced data set that contains numeric handwriting (digits from 0 to
9) with size 28× 28 pixels in a gray scale image. The data set has been divided to 60000 examples
for training, and 10000 examples for testing the accuracy of the classifier. However, the regular
MNIST dataset is not big enough to simulate a big data stream. For that reason, we developed
an extended version of the MNIST, with larger number of examples, by using a very common
technique in deep learning called data augmentation.

It is generally the case, especially in biomedical problems, that the size of the data set is not
big enough for a predictor to learn any valuable patterns or underlined information in the data. To
overcome this problem, a widely used technique on image data sets is Data Augmentation (DA),
where you randomly apply transformation on the images to come up with a much bigger number
of training examples. A CNN can robustly classify objects even if they are placed in different
orientations, and for this reason is said to have the property called invariance. More specifically,
a CNN can be invariant to translation, rotation, illumination, image noise or distortion, size and
viewpoint or even a combination of the above. Utilizing this technique, we augmented the MNIST
data set, calling it AMNIST, by using random distortion, image cropping, shear and image skew
in any random combination. The resulting training set finally has 2220000 training examples. For
the testing we use the regular test data set of MNIST.

Figure 1: CNN architecture.

27



For the CNN we used a modified LeNet architecture with two convolutional layers and one
hidden layer. The first convolutional layer is consisted of 32 5 × 5 filters with padding "SAME"
and stride 2× 2. The outputs are passed through ReLU activation functions and then straight to
a max pooling layer. The second convolutional layer has the same architecture, with the difference
that it uses 64 5× 5 filters. The hidden layer has 256 neurons with ReLU activation functions and
a dropout layer. Finally, the output layer has 10 outputs, one of each class, with a softmax output
function. The architecture of the CNN used in our experiments can be seen on figure 1.

Figure 2: CNN accuracy and Sites for various DMS and ML-FGM setups.

We run experiments for thresholds (T input) 8e − 4, 8e − 3, 8e − 2, for 1, 2 and 3 observed
batches per site (b input, which is the number of batches that must be observed by each node
before it checks for a violation) and for 4, 8, 16, 32 and 64 remote sites (k input). Hence, we
run a total of 45 experiments per dynamic averaging protocol. All mini-batch sizes were chosen
to have a size of 64 data points. The learnable parameters were send within the network as there
where, without any compression. Of course, compressing the parameters would reduce the total
communication of the protocols, but we do not delve to compression or encryption methods in this
study. We also assume that all site sampling rates are the same. We simulate this scenario by
randomly assigning each mini-batch of the whole data set to a single site.

Fig 2. shows the predictive accuracy of the global CNN against the number of sites for various
DMS and ML-FGM setups. Fig 3 presents the total communication of DMS and ML-FGM against
the number of sites for the respective setups, and Fig.4 depicts the total communication of the
distributed topologies for various variance thresholds of the same experiments. We observe that the
predictive accuracy of the global CNN is approximately the same for the two distributed protocols.
However, this accuracy is attained by the proposed communication protocol with substantially less
communication. The communication gain of ML-FGM against DMS increases with the number
of distributed sites (as shown in Fig.3), achieving a reduction of over 56% in communication for
4 distributed sites, and reaching up to 89% for 64 distributed sites. The mean communication
reduction of all the experiments is close to 77%. It is evident from figures 3 and 4, that ML-
FGM’s communication scales much better than DMS’s, as the number of remote nodes increases
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and the threshold for the monitored variance of the distributed CNNs decreases. Moreover, these
remarkable improvements in communication efficiency come at almost no cost. More specifically,
the CNN’s classification accuracy trained by ML-FGM is only worse by 0.106%. Lastly, we can see
on Fig. 5 the cummulative communication incurred per fitted batch in the network for 32 remote
sites, along with the total number of rounds per number of sites, by the two dynamic averaging
protocols with b = 1 observed batches and threshold T = 8e− 4. It is evident, that the proposed
method’s communication scales much better than DMS’s, as it performs fewer synchronization
rounds.

Figure 3: Total communication and Number of Sites for various DMS and ML-FGM setups with
a CNN learner.
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Figure 4: Total communication and Thresholds for various DMS and ML-FGM setups with a CNN
learner.

For our second experiment, we tried to simulate an ill-posed distributed setting scenario by
assuming different sampling rates for each remote site. In a realistic scenario, it is probable that
the data rates of local streams are significantly different. For that reason, we conducted the same
experiments as before, with the difference that 90% of the data are observed by just the 25% of
the nodes. The results are depicted in figures 6 and 7. As it turns out, the communication gain
of ML-FGM under these circumstances is even greater, achieving a reduction in communication
ranging from 63% for 4 sites to 95% for 64 sites. The difference in terms of classification accuracy is
a little bit bigger, with ML-FGM being worse by just 0.466%. Tables 1, 2, 3 and 4, at the Appendix
section, provide more thorough and detailed information for all the aforementioned experiments.

Figure 5: Cumm. communication/batch and number of rounds/sites with a CNN learner, with 32
remote sites for the left figure and b = 1 observed batches per site and threshold 8e− 4 for both.
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Figure 6: Total communication and Number of Sites for various DMS and ML-FGM setups with
a CNN learner and different site sampling rates.

Figure 7: Total communication and Thresholds for various DMS and ML-FGM setups for a CNN
learner and different site sampling rates.
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4.2 AOS-ELM training on distributed streams with concept drift

We follow up with the problem of tracking a rapidly drifting distributed stream, for the purpose
of classifying the data using an AOS-ELM classifier. The data set that we used for this experiment
is once again the MNIST data set. In order to simulate CD, we build six separate data sets C1, C2,
C1C2, C3, C4 and C5. All six data sets are augmented MNIST data sets with 1000000 training
examples and 20000 testing examples each. The C1 data set consist the digits from 0 through 5,
C2 consists the rest (6 through 9) and C1C2 consists all of them. The remaining three data sets
have the analogous digit distribution, but the features are no longer 784, but rather 928. Each
example has its original 784 pixel/features and also consists additional attributes from the 9 × 9
bins histogram of oriented gradients (HOG) of grey-level image features [33]. Thus we define the
following six different stream concepts:

• C1C1C1 is MNIST[Xgrey] class (0-5)

• C2C2C2 is MNIST[Xgrey] class (6-9)

• C1C2C1C2C1C2 is MNIST[Xgrey] class (0-9)

• C3C3C3 is MNIST[XgreyXHOG] class (0-5)

• C4C4C4 is MNIST[XgreyXHOG] class (6-9)

• C5C5C5 is MNIST[XgreyXHOG] class (0-9)

With this concepts in our possession, we now define the following four CD experiments:

• Experiment 1 - VD
C1C2C1C2C1C2 =⇒

V D
C5C5C5

• Experiment 2 - RD (recurring context)
C1C1C1 =⇒

RD
C1C2C1C2C1C2

• Experiment 3 - RD (sudden drift)
C1C1C1 =⇒

RD
C2C2C2

• Experiment 4 - HD
C1C1C1 =⇒

HD
C5C5C5

The hidden layer of AOS-ELM has 256 neurons and uses a hyperbolic tangent activation
function. We run the four aforementioned CD scenarios for threshold T = 9e + 7, for 1, 2 and 3
observed batches per site (b input) and for 4, 8, 16, 32 and 64 remote sites (k input). Hence, we
run a total of 60 experiments per dynamic averaging protocol. All mini-batch sizes were chosen to
have a size of 64 data points. The results are depicted on figures 9 through 10.

Figure 8: CNN architecture.
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Figure 9: AOS-ELM accuracy and sites for various DMS and ML-FGM setups and CD scenarios.

ML-FGM achieves a huge reduction in network communication against DMS. Our proposed pro-
tocol attains a 41% reduction in network communication for 4 sites, and up to 97% for 64 sites. In
our surprise, this reduction in communication comes without any cost in classification accuracy.
On the contrary, the classification accuracy of the AOS-ELM, trained by the ML-FGM averag-
ing protocol, has been increased by 0.235%. Lastly, we plot for a single experiment, with CD
C1C1C1 =⇒

RD
C2C2C2, 32 remote sites, threshold T = 9e + 7 and b = 1, the cumulative communication

incurred to the network by each fitted batch on Fig.11, along with the total number of rounds
per number of remote sites for the same settings, and the evolution of accuracy per fitted batch
on Fig.12 for each of the two protocols. We observe, yet again, that the communication of the
ML-FGM protocol scales much better than DMS’s. On Fig.12 we can perceive that the accuracy
of the AOS-ELM classifier trained by ML-FGM rises faster than the one trained by DMS, even
after the concept drift that is happening on batch 16000. We believe that this is due to the nature
of the AOS-ELM training. The parameters are trained by online least squares fit, and the sparser
averaging of AOS-ELM yields better accuracy, as the distributed classifiers are trained on more
data before each synchronization, yielding distributed parameters that are more similar to each
other, thus computing better averages during the end of each ML-FGM round.
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Figure 10: Total communication and number of sites for various DMS and ML-FGM setups and
CD scenarios, with an AOS-ELM classifier.

Figure 11: Cumulative communication per batch and rounds/batch with an AOS-ELM classifier,
32 remote sites for the left figure, and b=1 observed batches per site and threshold 9e + 7. The
concept drift happens in batch 16000.
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Figure 12: Accuracy per batch for DMS and ML-FGM with an AOS-ELM classifier, 32 remote
sites, b=1 observed batches per site and threshold 9e + 7. The concept drift happens in batch
16000.

Once again, for our second experiment, we tried to simulate an ill-posed distributed setting
scenario by assuming different sampling rates for each remote site. We conducted the experiment
4 (with CD C1C1C1 =⇒

HD
C5C5C5), again with the difference that 90% of the data are observed by just

the 25% of the nodes. The results are depicted in figures 13 through 14. It turns out that the
communication gain of ML-FGM under these circumstances is once again even greater, achieving
a reduction in communication ranging from 68% for 4 sites to 98% for 64 sites, as opposed to
41% to 97% communication reduction for the uniform case. In terms of classification accuracy the
AOS-ELM classifier trained by ML-FGM performs worse by just 0.259%.

Figure 13: AOS-ELM accuracy and sites for various DMS and ML-FGM setups scenarios and
different site sampling rates and hybrid drift.

Figure 14: Total communication and number of sites for various DMS and ML-FGM setups, with
an AOS-ELM classifier and different site sampling rates and hybrid drift.
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5 Conclusion and Future Work

Static averaging protocols are the de facto methods in decentralized deep learning. Although
these algorithms tend to work quite well, none of them take into account the communication
they incur to the distributed topologies. Our proposed dynamic averaging protocol, ML-FGM,
achieves high predictive performance, yet requires substantially less communication than any other
contemporary static or dynamic averaging protocol. At the same time, it is applicable to traditional
(static) learning scenarios, but also to non-static ones with concept drift. Moreover, the method
treats the underlying learning algorithm and the optimizer as black-boxes.

Although ML-FGM was experimentally proven to be successful, in terms of predictive accuracy
and network communication, it still has plenty of room for improvement. The core idea of all the
dynamic averaging protocols, like DMS and ML-FGM, is to monitor a non-linear query/function
on a distributed input. For example, in the machine learning problem we monitored the variance
of the distributed learnable parameters in order to measure the divergence of the distributed
learners. In reality, FGM provides us with the possibility of monitoring any non-linear function on
the distributed parameters, and the performance of ML-FGM depends vastly on the quality of the
safe zone function. Thus, a very interesting study could be to come up with a "good" safe zone,
by combining information and learning theory with methods for composing safe zones in [15].

Another study that could potentially improve the efficiency of ML-FGM, is the conception of
a good rebalancing strategy. Rebalancing could greatly improve the performance of the ML-FGM,
especially under cases of high stream variability where the value of the monitored query changes
rapidly, a case not so rare in real-world applications.

Finally, message compression would obviously reduce the number of bytes that are transferred
through the network, but it needs to be handled with care as the compression of gradient updates
could potentially degrade the learning procedure. Ergo, the integration of a smart compression of
the gradients would be an interesting and much needed addition to the ML-FGM protocol.
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Appendices

Appendix A Detailed experiment results

All the star network topologies are interconnected through TCP channels. In our experiments,
the CNN is consisted of 857738 learnable parameters, each one being a float number, giving a total
of 3.44MBytes. The AOS-ELM classifier has 192 learnable parameters, but the algorithm monitors
the vector Ŵ ∈ RL2+L|C| as discussed in §3.5. Hence, for |C| = 10 we have approximately a total
of 0.156 MBytes.To commute the communication of a singe TCP message we use the formula

TCP Size = Message Size+ 40
Message Size+ 1023

1024
,

where 40 is the TCP header in bytes. For example, the communication cost in terms of bytes, that
is posed to the network topology by a remote site for sending the weights of the aforementioned
CNN to the hub is, according to the above formula, 3.566 MBytes.

Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 8e-4 1 6430 10688 - 25720 255235689824 99.36
2 4 8e-4 2 5294 7848 - 21176 196724179888 99.38
3 4 8e-4 3 3899 3464 - 15596 116927031312 99.38
4 4 8e-3 1 1421 4212 - 5684 78479664256 99.24
5 4 8e-3 2 1250 3677 - 5000 69703280832 99.3
6 4 8e-3 3 1140 3328 - 4560 63582457184 99.33
7 4 8e-2 1 286 855 - 1144 15652016752 99.34
8 4 8e-2 2 279 833 - 1116 15254025984 99.37
9 4 8e-2 3 275 818 - 1100 15048168672 99.35
10 8 8e-4 1 2945 16129 - 23560 384095359120 99.14
11 8 8e-4 2 2116 11204 - 16928 287115990304 99.15
12 8 8e-4 3 1449 6402 - 11592 213570039200 99.13
13 8 8e-3 1 700 4885 - 5600 88992100176 99.06
14 8 8e-3 2 623 4288 - 4984 79282498624 98.92
15 8 8e-3 3 583 3986 - 4664 73889038240 99.06
16 8 8e-2 1 149 1036 - 1192 18410502736 99.1
17 8 8e-2 2 142 987 - 1136 17641968816 99.05
18 8 8e-2 3 137 948 - 1096 17038120784 98.95
19 16 8e-4 1 1466 18464 - 23456 447938512688 98.71
20 16 8e-4 2 990 12264 - 15840 330078358192 98.68
21 16 8e-4 3 660 7312 - 10560 279506062352 98.54
22 16 8e-3 1 371 5506 - 5936 101528802816 98.53
23 16 8e-3 2 330 4826 - 5280 94461033824 98.49
24 16 8e-3 3 302 4374 - 4832 84723986672 98.51
25 16 8e-2 1 79 1170 - 1264 20572003360 98.44
26 16 8e-2 2 79 1171 - 1264 21354260416 98.51
27 16 8e-2 3 75 1111 - 1200 21134678720 98.43
28 32 8e-4 1 798 18962 - 25536 496122827536 98.06
29 32 8e-4 2 553 12442 - 17696 403974224640 97.86
30 32 8e-4 3 381 7259 - 12192 360977468128 97.74
31 32 8e-3 1 210 6507 - 6720 135865779840 97.83
32 32 8e-3 2 184 5470 - 5888 136730369760 97.78
33 32 8e-3 3 164 4791 - 5248 116151511984 97.42
34 32 8e-2 1 49 1488 - 1568 26720272992 97.18
35 32 8e-2 2 47 1443 - 1504 28435748224 97.51
36 32 8e-2 3 44 1361 - 1408 31736322896 97.27
37 64 8e-4 1 558 19547 - 35712 626327578048 97.15
38 64 8e-4 2 315 12526 - 20160 643564494272 96.71
39 64 8e-4 3 253 6627 - 16192 620165354016 96.8
40 64 8e-3 1 123 7711 - 7872 223238417296 96.19
41 64 8e-3 2 107 6242 - 6848 265144052736 95.75
42 64 8e-3 3 94 5334 - 6016 212561272400 95.75
43 64 8e-2 1 34 2079 - 2176 39339321744 95.95
44 64 8e-2 2 29 1764 - 1856 42976127024 95.54
45 64 8e-2 3 27 1630 - 1728 51917186400 96.21

Table 1: CNN training via DMS with uniform site sampling rates.
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Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 8e-4 1 2563 14037 2560 10252 70294045696 99.19
2 4 8e-4 2 2225 7918 2057 8900 58752040668 99.18
3 4 8e-4 3 2132 5470 1545 8528 50449029368 99.27
4 4 8e-3 1 618 5781 971 2472 21793686228 99.37
5 4 8e-3 2 662 3835 817 2648 20283987920 99.26
6 4 8e-3 3 684 2884 701 2736 18993910864 99.29
7 4 8e-2 1 126 1763 264 504 5338646644 99.37
8 4 8e-2 2 127 1497 258 508 5270015620 99.21
9 4 8e-2 3 129 1305 247 516 5146492264 99.29
10 8 8e-4 1 974 9577 1784 7792 75673914912 99.02
11 8 8e-4 2 938 5063 1497 7504 66807970644 99.04
12 8 8e-4 3 921 3399 1155 7368 56954143984 98.99
13 8 8e-3 1 241 3428 564 1928 22068189784 99.04
14 8 8e-3 2 253 2254 547 2024 21930857892 99.06
15 8 8e-3 3 250 1551 485 2000 20146707092 99.02
16 8 8e-2 1 52 973 141 416 5270031252 99.1
17 8 8e-2 2 51 778 141 408 5242566896 99.01
18 8 8e-2 3 51 671 136 408 5105319732 99.1
19 16 8e-4 1 440 6112 1004 7040 79214818788 98.71
20 16 8e-4 2 421 2791 880 6736 71364299568 98.56
21 16 8e-4 3 434 1904 699 6944 62141765020 98.53
22 16 8e-3 1 118 2009 296 1888 22672074540 98.54
23 16 8e-3 2 124 1217 298 1984 23111116512 98.45
24 16 8e-3 3 122 869 284 1952 22232736936 98.66
25 16 8e-2 1 32 560 71 512 5599414100 98.43
26 16 8e-2 2 33 436 71 528 5654288924 98.4
27 16 8e-2 3 34 363 72 544 5764068136 98.44
28 32 8e-4 1 249 3764 520 7968 84320268248 97.71
29 32 8e-4 2 263 1614 492 8416 82782582276 97.63
30 32 8e-4 3 245 1019 370 7840 67411734144 97.54
31 32 8e-3 1 79 1210 157 2528 25801167388 97.58
32 32 8e-3 2 77 663 155 2464 25361841116 97.54
33 32 8e-3 3 78 473 151 2496 25032410744 97.52
34 32 8e-2 1 24 347 39 768 6807132808 97.34
35 32 8e-2 2 23 242 35 736 6258145916 97.44
36 32 8e-2 3 23 193 36 736 6367921428 97.4
37 64 8e-4 1 176 2432 286 11264 101228321220 95.93
38 64 8e-4 2 162 921 275 10368 95737937008 96.37
39 64 8e-4 3 159 501 168 10176 71583792488 96.15
40 64 8e-3 1 51 675 77 3264 27887232464 96.14
41 64 8e-3 2 53 347 78 3392 28545784604 96.09
42 64 8e-3 3 49 253 76 3136 27228236476 95.94
43 64 8e-2 1 16 186 18 1024 7246305560 95.36
44 64 8e-2 2 16 131 18 1024 7246270316 95.33
45 64 8e-2 3 16 108 18 1024 7246255268 95.86

Table 2: CNN training via ML-FGM with uniform site sampling rates.
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Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 8e-4 1 13690 3307 - 54760 243296325344 99.49
2 4 8e-4 2 12723 2014 - 50892 209563158864 99.53
3 4 8e-4 3 9105 893 - 36420 140340097648 99.47
4 4 8e-3 1 4146 4065 - 16584 117270138368 99.49
5 4 8e-3 2 3597 3469 - 14388 104438351536 99.45
6 4 8e-3 3 3288 3080 - 13152 95703132912 99.53
7 4 8e-2 1 644 1545 - 2576 30912908432 99.44
8 4 8e-2 2 633 1519 - 2532 30480607952 99.42
9 4 8e-2 3 609 1519 - 2436 30103202080 99.38
10 8 8e-4 1 6160 15371 - 49280 562251281312 99.38
11 8 8e-4 2 5441 8545 - 43528 387272660288 99.3
12 8 8e-4 3 5037 3120 - 40296 226127667968 99.43
13 8 8e-3 1 1457 9342 - 11656 202007731728 99.33
14 8 8e-3 2 1204 7915 - 9632 195468312928 99.2
15 8 8e-3 3 1016 5763 - 8128 154495866096 99.3
16 8 8e-2 1 275 1917 - 2200 35647617680 99.21
17 8 8e-2 2 270 1881 - 2160 35105526784 99.26
18 8 8e-2 3 260 1805 - 2080 34117411648 99.25
19 16 8e-4 1 2342 22466 - 37472 875044171552 99.18
20 16 8e-4 2 2003 11935 - 32048 586679452768 99.18
21 16 8e-4 3 1722 6586 - 27552 432101287408 99.09
22 16 8e-3 1 702 10389 - 11232 209281344880 99.11
23 16 8e-3 2 593 8517 - 9488 183803074400 99.11
24 16 8e-3 3 494 6956 - 7904 165344533632 99.04
25 16 8e-2 1 147 2190 - 2352 40025514256 98.77
26 16 8e-2 2 141 2115 - 2256 40649946368 98.79
27 16 8e-2 3 136 2023 - 2176 39030536064 98.74
28 32 8e-4 1 1075 24466 - 34400 956872339888 98.76
29 32 8e-4 2 799 13381 - 25568 879888532928 98.73
30 32 8e-4 3 657 7794 - 21024 667176316304 98.67
31 32 8e-3 1 329 9919 - 10528 222236611184 98.62
32 32 8e-3 2 301 8716 - 9632 211086006432 98.55
33 32 8e-3 3 257 7110 - 8224 192401024944 98.47
34 32 8e-2 1 85 2604 - 2720 48705827232 97.97
35 32 8e-2 2 85 2604 - 2720 53207236256 98.0
36 32 8e-2 3 80 2449 - 2560 54058110432 97.88
37 64 8e-4 1 630 24838 - 40320 1293489973552 98.26
38 64 8e-4 2 434 13467 - 27776 1266488230784 97.78
39 64 8e-4 3 375 7950 - 24000 1061035917808 98.01
40 64 8e-3 1 197 12224 - 12608 379868294832 97.64
41 64 8e-3 2 162 8887 - 10368 333866063536 97.52
42 64 8e-3 3 140 7217 - 8960 306706630608 97.44
43 64 8e-2 1 59 3656 - 3776 78555122304 96.73
44 64 8e-2 2 54 3339 - 3456 88038269792 96.72
45 64 8e-2 3 51 3150 - 3264 106613441616 96.74

Table 3: CNN training via DMS with different site sampling rates.
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Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 8e-4 1 2122 15177 2644 8488 65394650552 99.34
2 4 8e-4 2 2161 9623 2188 8644 59671586248 99.47
3 4 8e-4 3 2137 7689 1674 8548 52288096840 99.4
4 4 8e-3 1 625 7235 624 2500 17127645128 99.41
5 4 8e-3 2 613 5433 577 2452 16317859632 99.35
6 4 8e-3 3 621 4100 543 2484 15960984256 99.42
7 4 8e-2 1 103 1191 102 412 2799714240 99.26
8 4 8e-2 2 101 1127 100 404 2744815092 99.28
9 4 8e-2 3 102 1066 101 408 2772259680 99.29
10 8 8e-4 1 1164 10181 1337 9312 68619928792 99.25
11 8 8e-4 2 1135 6547 1197 9080 63980980028 99.29
12 8 8e-4 3 1071 5115 1083 8568 59095185640 99.26
13 8 8e-3 1 232 4044 401 1856 17347243484 99.04
14 8 8e-3 2 230 3050 385 1840 16853101004 99.07
15 8 8e-3 3 231 2356 368 1848 16413882316 99.03
16 8 8e-2 1 43 727 62 344 2854617460 98.99
17 8 8e-2 2 42 596 62 336 2827158320 99.0
18 8 8e-2 3 42 560 62 336 2827154624 99.0
19 16 8e-4 1 459 6277 844 7344 71474613132 99.0
20 16 8e-4 2 431 3881 787 6896 66808137484 98.89
21 16 8e-4 3 435 2899 738 6960 64337704860 98.95
22 16 8e-3 1 113 2223 219 1808 18170697176 98.56
23 16 8e-3 2 107 1520 210 1712 17347155244 98.51
24 16 8e-3 3 104 1182 202 1664 16743251788 98.59
25 16 8e-2 1 27 427 34 432 3293789680 98.36
26 16 8e-2 2 28 371 35 448 3403570408 98.49
27 16 8e-2 3 28 339 35 448 3403564868 98.49
28 32 8e-4 1 205 3600 452 6560 72023676036 98.16
29 32 8e-4 2 209 2141 455 6688 72791767196 98.26
30 32 8e-4 3 198 1493 426 6336 68399956012 98.16
31 32 8e-3 1 66 1165 107 2112 18884352808 97.71
32 32 8e-3 2 63 815 106 2016 18445077556 97.81
33 32 8e-3 3 61 640 102 1952 17786277408 97.74
34 32 8e-2 1 19 258 19 608 4062339012 97.38
35 32 8e-2 2 19 214 19 608 4062324360 97.46
36 32 8e-2 3 19 205 20 608 4172110824 97.41
37 64 8e-4 1 121 2137 240 7744 79050453524 97.03
38 64 8e-4 2 117 1166 233 7488 76634491524 96.98
39 64 8e-4 3 122 836 227 7808 76414722628 97.1
40 64 8e-3 1 43 630 56 2752 21519360644 96.25
41 64 8e-3 2 42 442 55 2688 21080076180 96.28
42 64 8e-3 3 43 357 56 2752 21519182524 96.26
43 64 8e-2 1 13 188 13 832 5489654432 95.48
44 64 8e-2 2 13 141 12 832 5270043208 95.85
45 64 8e-2 3 13 123 13 832 5489612748 96.08

Table 4: CNN training via ML-FGM with different site sampling rates.
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Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 9e+7 1 3524 7220 14096 - 9660859592 98.05
2 4 9e+7 2 3161 2003 12644 - 5466585272 97.97
3 4 9e+7 3 2935 4123 11740 - 6582933080 97.74
4 8 9e+7 1 1834 9958 14672 - 16462400456 98.0
5 8 9e+7 2 1592 3483 12736 - 8482491656 97.45
6 8 9e+7 3 1547 4784 12376 - 9030737960 97.53
7 16 9e+7 1 1047 10616 16752 - 30002818376 97.89
8 16 9e+7 2 912 3895 14592 - 13600883720 97.19
9 16 9e+7 3 860 4847 13760 - 13374375176 97.56
10 32 9e+7 1 441 12106 14112 - 51662189960 97.94
11 32 9e+7 2 456 4454 14592 - 23768122376 97.98
12 32 9e+7 3 460 4884 14720 - 21476765192 97.63
13 64 9e+7 1 235 12220 15040 - 102117573896 96.74
14 64 9e+7 2 230 4380 14720 - 40686816776 97.11
15 64 9e+7 3 223 5160 14272 - 36452839688 96.33

Table 5: AOS-ELM training via DMS with CD 1 and uniform site sampling rates.

Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 9e+7 1 2301 8918 492 9204 3163770656 97.89
2 4 9e+7 2 2260 9237 608 9040 3184879200 97.97
3 4 9e+7 3 1958 9139 838 7832 2952776504 98.03
4 8 9e+7 1 877 6040 545 7016 2858284736 98.03
5 8 9e+7 2 877 6040 545 7016 2858284736 98.03
6 8 9e+7 3 933 6009 537 7464 2987362788 98.01
7 16 9e+7 1 381 3706 363 6096 2802013896 98.02
8 16 9e+7 2 381 3706 363 6096 2802013896 98.02
9 16 9e+7 3 381 3706 363 6096 2802013896 98.02
10 32 9e+7 1 178 1969 176 5696 2659555376 98.05
11 32 9e+7 2 214 2403 210 6848 3185911000 97.95
12 32 9e+7 3 174 1881 170 5568 2590028964 98.03
13 64 9e+7 1 89 986 83 5696 2627775212 97.92
14 64 9e+7 2 94 1035 89 6016 2786667120 98.05
15 64 9e+7 3 90 1014 86 5760 2677435480 97.94

Table 6: AOS-ELM training via ML-FGM with CD 1 and uniform site sampling rates.

Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 9e+7 1 3539 7292 14156 - 9624813488 97.37
2 4 9e+7 2 2715 2475 10860 - 5195198768 97.01
3 4 9e+7 3 2861 4228 11444 - 6552028304 97.35
4 8 9e+7 1 1760 10148 14080 - 16010579008 97.37
5 8 9e+7 2 1630 3359 13040 - 8252399488 97.41
6 8 9e+7 3 1537 4782 12296 - 8882691232 97.3
7 16 9e+7 1 878 11543 14048 - 27685668608 97.33
8 16 9e+7 2 777 4086 12432 - 13162228544 97.41
9 16 9e+7 3 770 5269 12320 - 12440451584 97.41
10 32 9e+7 1 461 12125 14752 - 53083424896 97.18
11 32 9e+7 2 429 4307 13728 - 22357800064 97.03
12 32 9e+7 3 447 4998 14304 - 21054563200 97.02
13 64 9e+7 1 226 12328 14464 - 95960987648 97.49
14 64 9e+7 2 205 4576 13120 - 41747525888 97.25
15 64 9e+7 3 219 5175 14016 - 34999175936 96.55

Table 7: AOS-ELM training via DMS with CD 2 and uniform site sampling rates.
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Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 9e+7 1 2499 9607 452 9996 3351149352 97.33
2 4 9e+7 2 2027 8849 707 8108 2926442332 97.44
3 4 9e+7 3 2027 8849 707 8108 2926442332 97.44
4 8 9e+7 1 914 5772 487 7312 2850184596 97.45
5 8 9e+7 2 947 6055 531 7576 2985425848 97.36
6 8 9e+7 3 914 5772 487 7312 2850184596 97.45
7 16 9e+7 1 394 3810 351 6304 2808124532 97.36
8 16 9e+7 2 394 3810 351 6304 2808124532 97.36
9 16 9e+7 3 398 3821 376 6368 2889008292 97.37
10 32 9e+7 1 189 2085 186 6048 2788074704 97.35
11 32 9e+7 2 196 2179 192 6272 2886506144 97.33
12 32 9e+7 3 189 2085 186 6048 2788074704 97.35
13 64 9e+7 1 87 972 82 5568 2546470488 97.33
14 64 9e+7 2 93 1012 87 5952 2713908272 97.38
15 64 9e+7 3 85 965 81 5440 2497213568 97.44

Table 8: AOS-ELM training via ML-FGM with CD 2 and uniform site sampling rates.

Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 9e+7 1 3668 7042 14672 - 9604839392 98.28
2 4 9e+7 2 2998 2120 11992 - 5319311936 98.27
3 4 9e+7 3 3014 3895 12056 - 6491031872 98.3
4 8 9e+7 1 1811 10185 14488 - 16196762464 98.29
5 8 9e+7 2 1569 3589 12552 - 8492753056 98.27
6 8 9e+7 3 1539 4727 12312 - 8801059168 98.3
7 16 9e+7 1 915 11403 14640 - 27559717568 98.3
8 16 9e+7 2 814 4123 13024 - 13319850752 98.3
9 16 9e+7 3 811 5019 12976 - 12466015424 98.31
10 32 9e+7 1 460 11839 14720 - 49095974656 98.29
11 32 9e+7 2 422 4525 13504 - 23523231232 98.27
12 32 9e+7 3 416 5202 13312 - 19279079680 98.29
13 64 9e+7 1 228 12093 14592 - 93078777344 94.54
14 64 9e+7 2 212 4562 13568 - 40967320064 98.23
15 64 9e+7 3 214 5343 13696 - 32743771136 98.1

Table 9: AOS-ELM training via DMS with CD 3 and uniform site sampling rates.

Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 9e+7 1 2156 9089 659 8624 3059376948 98.27
2 4 9e+7 2 2166 9051 647 8664 3064279144 98.24
3 4 9e+7 3 2176 9066 640 8704 3072187588 98.27
4 8 9e+7 1 1042 6097 390 8336 3048265296 98.29
5 8 9e+7 2 1045 6049 388 8360 3053226504 98.29
6 8 9e+7 3 1051 6103 381 8408 3059510040 98.3
7 16 9e+7 1 392 3697 337 6272 2765248180 98.27
8 16 9e+7 2 396 3660 332 6336 2772543760 98.27
9 16 9e+7 3 391 3684 338 6256 2762764116 97.8
10 32 9e+7 1 186 2019 181 5952 2735218472 98.25
11 32 9e+7 2 185 2033 182 5920 2730355372 98.25
12 32 9e+7 3 187 1967 179 5984 2735206032 98.25
13 64 9e+7 1 93 1059 90 5952 2744309688 98.23
14 64 9e+7 2 96 1018 87 6144 2774273068 98.24
15 64 9e+7 3 94 1039 89 6016 2754426564 98.23

Table 10: AOS-ELM training via ML-FGM with CD 3 and uniform site sampling rates.
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Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 9e+7 1 3411 7487 13644 - 9485744056 97.34
2 4 9e+7 2 2768 2381 11072 - 5183530792 97.34
3 4 9e+7 3 3524 2883 14096 - 6484024552 97.43
4 8 9e+7 1 1847 10011 14776 - 16425906408 97.45
5 8 9e+7 2 1478 3576 11824 - 8253410952 97.32
6 8 9e+7 3 1426 5137 11408 - 8646919944 97.24
7 16 9e+7 1 856 11656 13696 - 27124846216 97.49
8 16 9e+7 2 751 4239 12016 - 13393406920 97.26
9 16 9e+7 3 801 5118 12816 - 12708529480 97.42
10 32 9e+7 1 426 12178 13632 - 49271793672 96.89
11 32 9e+7 2 377 4662 12064 - 23852971656 96.88
12 32 9e+7 3 469 4730 15008 - 20931611784 97.07
13 64 9e+7 1 261 11653 16704 - 103291024648 96.65
14 64 9e+7 2 181 5061 11584 - 43249193224 96.42
15 64 9e+7 3 249 4676 15936 - 36696334600 97.27

Table 11: AOS-ELM training via DMS with CD 4 and uniform site sampling rates.

Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 9e+7 1 2164 8627 606 8656 3034176792 97.31
2 4 9e+7 2 2164 8627 606 8656 3034176792 97.31
3 4 9e+7 3 2164 8627 606 8656 3034176792 97.31
4 8 9e+7 1 809 5947 555 6472 2675229032 97.3
5 8 9e+7 2 1029 5931 388 8232 3013797088 97.29
6 8 9e+7 3 1029 5931 388 8232 3013797088 97.29
7 16 9e+7 1 385 3601 334 6160 2724167592 97.28
8 16 9e+7 2 385 3601 334 6160 2724167592 97.28
9 16 9e+7 3 385 3601 334 6160 2724167592 97.28
10 32 9e+7 1 182 1992 179 5824 2688515500 97.27
11 32 9e+7 2 193 2126 190 6176 2850806712 97.23
12 32 9e+7 3 164 1795 159 5248 2412710360 97.3
13 64 9e+7 1 92 1037 87 5888 2701142264 97.47
14 64 9e+7 2 83 983 82 5312 2475299000 97.24
15 64 9e+7 3 91 1018 87 5824 2681665536 97.19

Table 12: AOS-ELM training via ML-FGM with CD 4 and uniform site sampling rates.

Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 9e+7 1 8047 3525 32188 - 12473277688 97.32
2 4 9e+7 2 6331 1403 25324 - 8868771640 97.33
3 4 9e+7 3 7440 1572 29760 - 10351725352 97.28
4 8 9e+7 1 3632 10425 29056 - 20741746248 97.33
5 8 9e+7 2 3487 3374 27896 - 13234759656 97.38
6 8 9e+7 3 3718 4047 29744 - 12896195208 97.14
7 16 9e+7 1 1712 14293 27392 - 37131549832 97.33
8 16 9e+7 2 2093 4190 33488 - 19988428360 97.13
9 16 9e+7 3 1839 5157 29424 - 17387986888 97.39
10 32 9e+7 1 1203 13351 38496 - 61898783112 96.55
11 32 9e+7 2 1132 4863 36224 - 31111973640 96.34
12 32 9e+7 3 1064 5333 34048 - 25452742920 97.31
13 64 9e+7 1 524 14424 33536 - 105659001352 96.65
14 64 9e+7 2 620 4990 39680 - 49945980424 97.38
15 64 9e+7 3 615 5265 39360 - 41333160712 97.45

Table 13: AOS-ELM training via DMS with CD 4 and different site sampling rates.
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Exp Sites T b Rounds Subrounds Rebalances Safezones Bytes Accuracy
1 4 9e+7 1 1579 10556 988 6316 2550881072 97.48
2 4 9e+7 2 1735 11725 1093 6940 2807193780 97.34
3 4 9e+7 3 1765 12092 1169 7060 2890289704 96.93
4 8 9e+7 1 912 6915 508 7296 2871468268 97.04
5 8 9e+7 2 876 6789 519 7008 2796559840 97.45
6 8 9e+7 3 813 6617 534 6504 2659763492 96.34
7 16 9e+7 1 386 3814 294 6176 2630325144 96.9
8 16 9e+7 2 388 3826 271 6208 2584196728 97.13
9 16 9e+7 3 457 4224 298 7312 2990189548 97.29
10 32 9e+7 1 183 2247 174 5856 2673995392 96.46
11 32 9e+7 2 193 2315 171 6176 2757723356 96.8
12 32 9e+7 3 172 2092 156 5504 2477044080 97.24
13 64 9e+7 1 100 1342 98 6400 2967236676 96.05
14 64 9e+7 2 92 1225 90 5888 2731433448 96.28
15 64 9e+7 3 97 1279 97 6208 2897896628 96.69

Table 14: AOS-ELM training via ML-FGM with CD 4 and different site sampling rates.
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