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Abstract

In this thesis, a complete note onset estimation and pitch detection system is
presented, tuned for guitar music signals. The goal of this system is to first
estimate the point in time that a single note was played and then attribute
a frequency to it. This task is then extended to a sequence of played notes.
Various onset and pitch estimation algorithms were tested and compared,
taking into account both their efficiency to complete the task, accurate tran-
sciption of the signal, as well as their computational complexity timewise,
thus achieving processing time less than or equal to the duration of the mu-
sic signal.
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1 Introduction

The goal of this thesis is to perform time and frequency estimation on guitar
signals. This translates to finding the points in time that notes wree played
in the signal, and then finding which notes were played. The whole system
was designed under the constraint that the processing time is less than or
equal to the duration of the music signal.

In Chapter 2, the mechanics of generating a sound through a string will be
studied, followed by a short analysis of the ways a musical signal can be
represented in the Time and Frequency field.

In Chapter 3 some frequently used techniques on sound proccessing will be
described, individually, so that they can be viewed as ”black boxes” for the
rest of the thesis.

� Frequecy Filtering : Attenuation, amplification or complete removal of
subsets of frequencies.

� Short Time Fourier Transform : A simple alteration of the Fourier
Transform which allows monitoring of the spectral changes of the signal
over time.

� Linear Least Squared : A popular technique used to fit a mathematical
linear model to a set of real data.

In Chapter 4 the complete system is presented, which performs the following
tasks.

� Preprocessing of the signal, using techniques from Chapter 3.

� Onset Detection : Creation of the Onset Detection Function, followed
by Peak-Picking the correct onset times.

� Pitch Detection : Estimation of the fundamental frequency of picked
onsets, followed by an octave correction method.

Lastly, in Chapter 5 the results of the system applied on a guitar signal I
recored are shown, followed by possible future work and improvements.
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2 The Guitar Signal

2.1 Physics of the instrument

A guitar string is a string fixed at both ends which is elastic and can vibrate.
These vibrations are called standing waves, and they satisfy the relationship
between wavelength and frequency that comes from the definition of waves:

v = fλ

where v is the speed of the wave, f is it’s frequency and λ is the wavelength.
Once the string is plucked, it will freely vibrate at it’s fundamental fre-

quency, which is a function of the tension of the string. The fundamental
frequency is only one of the ones that coexist at the string, and is actually
the lowest one in frequency. Any wave with wavelength that satisfies the
wave equation, with nodes at it’s end can exist at the string.
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Figure 2.1: String Overtones[1]
Figure 2.1 shows some of the coexisting harmonics on a guitar string. The

first wave, the fundamental, comes from the string vibrating with one big arc
from bottom to top, satisfying the condition I = λ/2 where I is the length of
the freely vibrating string, and λ the wavelength. The first harmonic comes
from vibration with a node in the center wich satisfies I = λ and each higher
frequency wave will fit an additional half wavelength on the string, satisfying

2



the conditions I = 3λ/2, I = 4λ/2 etc, with a theoretical infinite number of
harmonic waves.

These waves coexists on the string, and the magnitude of each harmonic,
as well as the ratios between them follow no pattern. The content of ratios
between them will change between instruments, strings, even the same string
plucked at a different way. This seemingly random content of harmonics,
along with the timbre of the instrument, is what gives an instrument it’s
characteristic sound. Timbre is the perception of the sound, depending to
the way it was created, such as through strings, percussion, choir etc. The
sum of these waves constitutes a musical note, which are most commonly are
represented in a music sheet.

Figure 2.2: Music Sheet
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2.2 Signal Representations

2.2.1 Real-Time Representation

The guitar signal can be viewed as an amplitude-varying function of time in
the real-time field. Figure 2.3 shows the temporal evolution of a few notes,
along with an ideal segmentation of one of them.
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Figure 2.3: Music Signal in real time

This is the most common representation of a music signal. In the current
state of music signals processing, this will most probably going to be a digital
signal, sampled at 44.1kHz.

s[n] =
[
s1 s2 s3 . . . sn

]
, fs = 44.1kHz

At this point it is important to precisely define the terms onset, attack,
transient and decay, since they lack precise definition, mostly due to the fact
that they change in sense according to the needs of the applications. For the
rest of this thesis, these terms will be defined as:

� Onset: The moment chosen to mark the beginning of a musical event,
i.e. the pluck of a guitar string.

� Attack: The time interval during which the amplitude of the signal is
still increasing without having reached it’s maximum value.

� Transient: The most defining characteristic of a music signal. A short
interval of time beginning with the onset and ending in an arbitrary
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manner, during which the signal behaves in a temporally quick, unpre-
dictable way.

� Decay: The part of the signal starting after the transient. It’s end can
be defined either as the point after which the energy of the music signal
is comparable to the energy of the noise, or more realistically as the
time interval during the previous note hardly being audible and the
next one being played.

2.2.2 Frequency Field Representation

Studying a music signal in the field of frequencies is a very common practice.
Since the harmonics of notes exist and specific and expected frequencies, a lot
of information can be easily extracted by studying them in this field, which
can be accessed by the Fourier Transformation.

The Fourier Transform decomposes any function into a sum of sinusoidal
basis functions. Each of these basis functions is a complex exponential of
a different frequency. The Fourier Transform therefore offers a unique way
of viewing any function - as the sum of simple sinusoids, and provides the
defining characteristics of these sinusoids, amplitude and phase at the corre-
sponding frequencies. It is the extension of the Fourier Series theory, which
will not be analysed further, on non-periodic signals, under the assumption
that the non-periodic signal being analysed is actually periodic outside the
window of observation.

Music signals fall well inside this category, since their assumed period is
hardly stable after the first few repetitions of the note, due to decay of the
force pulsing the string, as well as the undefinable state of the transient of
the note.

The mathematical expression for Fourier Transform is

S(f) = F{s[n]} =
N−1∑
n=0

s[n]e−j2πnk/N

where s[.] is the original signal, N the number of samples, S[.] the transformed
signal.

A musical note is a summation of harmonic waves, which means indi-
vidual sinusoidals of different phases and magnitude at different frequencies.
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Therefore the Fourier Transform decomposition offers directly the informa-
tion of each harmonic individually, making it an ideal tool for extracting
information from musical notes.
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3 Tools

3.1 Frequency Filtering

3.1.1 High-Pass Filtering

A very usefull practice when processing music signals, is high-passing the
lowest frequency content out of it.

The lowest harmonic that is expected to be present on a guitar signal is
the fundamental of the bassiest note. This frequency is 82Hz, the fundamen-
tal of e2 note. Any spectral component bellow that is just noise, so it can be
filtered out.

To perform High-Pass on a signal:

1. Perform FFT of the signal to get it’s power spectrum, with fft-points
next power of two of the samples of the signal for time efficiency.

2. Creating the frequencies vector corresponding the this N-fft point trans-
form.

3. Locate the index of the frequency corresponding the the cut-off fre-
quency.

4. Creating a new signal with completely cut-off frequencies below the
cut-off, and the same as the original above.

5. Create a conjugate symmetric vector of amplitudes needed for inverse
transform.

6. Perform inverse FFT.
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Figure 3.1: Power Spectrum Before/After high-passing.
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Figure 3.1 shows the power spectrum of a signal before and after it was
high-passed at a cut-off frequency of 70.

3.1.2 Low-Pass Filtering

Low-Pass filter is the complimentary filter to High-Pass. It works the same
way, with the difference that it removes the frequencies above a picked fre-
quency.

It was mentioned earlier that the digital sound signals are most likely go-
ing to be sampled at 44.1kHz. The reason behind this is that human hearing
spectrum is capped at approximately 22kHz. So according to Nyquist The-
orem, the sampling frequency must be the double of the maximum audible
frequency. Regardless of that, a big portion of these frequencies are practi-
cally useless for the signal generated by guitar strings. As was explained in
Section 2, each note has a fundamental frequency, as well as the harmonics
at integer multiples of it. A guitar will cover about four octaves at average,
and the highest fundamental frequency of such is going to be at the 1.3kHz
area. Also, even though theoretically the harmonics are infinite, the spectral
component of them will rapidly decrease. This results is no more than six
or seven harmonics having an affecting spectral component, or be audible at
all. That makes any frequencies above 9kHz, as stated, practically useless,
therefore they are completely removed.
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Figure 3.2: Power Spectrum Before/After low-passing.

Figure 3.2 shows the power spectrum of a signal before and after it was
low-passed at a cut-off frequency of 9kHz.
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3.2 Short Time Fourier Transform

The properties of Fourier Transform were discussed in Section 2 along with
how it’s well fitted for use on music signals. While it is a very suitable tool
for processing segments of the original signal, especially for pitch detection,
it hardly offers any usefull information for the overall signal. Music signals
are heavily time-varying, corresponding to the notes played at specific times,
and knowing the spectral characteristics of it in overall doesn’t really help
any aspect of the transcription problem. It does give an intuition of the
notes played throughout the signal, but neither the time or frequency in-
formation on the individual notes. We are interested in the time-varying
spectral characteristics of the signal, not the overall.

The Short Time Fourier Transform, STFT from now on, is a simple
alteration of the Fourier Transform that provides this option. STFT is a
time-frequency representation, essentially it divides a longer time signal into
shorter segments of equal length, overlapping or not, and then compute the
Fourier Transform separately on each segment. This way, the magnitude and
phase content of local sections of a signal can be monitored as they changes
over time.

STFT of s[n] is given by

Sk(m) =
∞∑
n=0

s[n]w(mh− n)e(−j2πnk)/N

where k = 0,1...N-1 is the frequency bin index, N the number of fft points,
w(n) a finite-length sliding window of observation and h the hop size between
consecutive transforms, and is shown in the following figure.
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Figure 3.3: STFT performed on a music signal.

Figure 3.3 shows the STFT of a music signal. The frequency content
corresponding to time, along with the colour describing the magnitude of the
signal in these frequencies.

The implementation of STFT is quite simple and the challenge of it is
picking the optimal parametres. Time and frequency information are in-
versely proportional, since picking a small window of observation will give
better time resolution but worse frequency resolution, and vice versa, for a
fixed computational capacity. This reflects heavily on the transcription algo-
rithm, since the two main issues to solve, onset detection and pitch detection
require good time resolution and good frequency resolution respectively. A
visual interpretation of this trade-off can be simply viewed as:
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Figure 3.4: STFT Trade-off

Figure 3.4 shows the difference in time/frequency resoultion of same com-
putantional capacity, varying with the length of observation window.

The steps to perform STFT are:

1. Choose appropriate window of observation length and hop size. In
this case, a window of 256 samples window with hop size 128 is used,
meaning overlapping consecutive windows of transforms.

2. Perform FFT on the first window, then repeat for every window per
hop.

3. Update STFT matrix’s column per consecutive transform.

The result of this is a matrix where each column contains the Fourier Trans-
form of a 5.8msec segment of the signal.

3.3 Linear least squared

Linear Least Squares, LS from now on, is another popular technique, used to
fit a mathematical or statistical, linear model to a set of real data, as shown
in the figure below.
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Figure 3.5: Linear Least Squares

As the name implies, this technique finds the line which most accurately
fits the blue data points by minimizing the overall square of the distances
of the points to the line. The distance between a data point and the linear
model can be either perpendicular of vertical, but in practice the vertical is
always minimized.

From a mathematical standpoint, if y = ax+b describes the linear model,
yi corresponds to the y coordinates of the data, and R2 is the 2-D Cartesian
Field , LS minimizes the equation

R2(a, b) =
n∑
i=1

[yi − (a+ bxi)]
2

This translates to finding the conditions for which the derivative of the value
we seek to minimize becomes zero, in reference to the variables of our model,
i.e, a,b, which in turn translates to sovling the following system of equations

δR2

δa
= 0⇒ −2

n∑
i=1

[yi − (a+ bxi)] = 0

δR2

δbi
= 0⇒ −2

n∑
i=1

[yi − (a+ bxi)]xi = 0
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which is easily solved into

na+ b

n∑
i=1

xi =
n∑
i=1

yi

a
n∑
i=1

xi + b

n∑
i=1

x2
i =

n∑
i=1

xiyi

and into a single array problem

[
n

∑
xi∑

xi
∑
x2
i

]
×
[
a
b

]
=

[ ∑
yi∑
xiyi

]
⇒
[
a
b

]
=

[
n

∑
xi∑

xi
∑
x2
i

]−1

×
[ ∑

yi∑
xiyi

]

which in turns gives up the optimal variables a and b for the linear model.

a =

∑
xiyi −

∑
xi

∑
yi

n∑
x2
i −

∑
x2i
n

, b =
∑

yi −
a
∑
xi

n

It is worth mentioning that although this technique is mostly used to
fit linear models into non linear phenomena, in this case it will be used to
extract the ”slope function” of another function.
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4 System

4.1 Onset Detection

The Onset Detection subproblem has 2 phases. First a Detection Function is
derived from proccessing of the input signal. This function’s desired property
is to have high values at the points in time an onset occurs, while low on the
rest. After this function is formulated, the next task is to correctly pick the
points in time that correspond to onsets.

4.1.1 Preprocessing for Onset Detection

To create the Detection Function, some preprocessing is performed. Specif-
ically the signal is high-passed and low-passed, as described in the previous
section. The low cut frequency picked is 70Hz and the high cut at 9kHz.
Afterwards STFT is performed on the music signal. It was noted earlier that
the important aspect of performing STFT is the choice of parameters. At
this point, STFT is going to segment a 44.1Khz sampled signal into segments
of samples of our choice. So this will directly impact the localisation of the
onsets to be detected, or, in overall, the accuracy of the system. In this case,
256 sample segments are picked. This allows for a localisation accuracy of
approximately 6msecs on a 44.1kHz sampled signal. Also, the hop size of
consecutive transforms is picked at 128 samples, half the window size. This
means that there is a w/2 overlapse of samples between consecutive trans-
forms, allowing even better localisation of the events

Matrix s is defined, where each column holds 256 samples of the origi-
nal signal s[n] with an overlap of 128 samples. Then Fourier Transform is
performed on each column resulting in matrix S.

s =


s1 s129 s257 . . . sn−w+1

s2 s130 s258 . . . sn−w+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
s256 s384 s512 . . . sn


↓ F
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S =


S11 S12 S13 . . . S1q

S21 S22 S23 . . . S2q

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .
Sp1 Sp2 Sp3 . . . Spq

 ↓ Frequency

−→
Time

Each element of matrix S is a complex number describing the sinusoidal
at frequency k for frame of time m.

4.1.2 Onset Detection Function

Once the signal is ready for processing, the next goal is to create the De-
tection Function. The algorithm proposed makes use of both spectral and
phase content of the signal. Onsets are always going to create a burst in the
local spectral characteristics of the signal, but since guitar onsets are being
detected, it is not going to be enough. It’s a guitar’s desired property to have
good sound sustain, which translates to rich spectral component throughout
the signal. That is why the algorithm is also going to take advantage of the
phase discontinuations that occur during the transient part of the signal.

I. Spectral Component

Having performed STFT, the local spectral characteristics of the whole
signal can be monitored. By taking the difference between two consecutive
segment’s magnitude, the Spectral Difference Function can be defined.[2]

δSk(m) = |Sk(m)| − |Sk(m− 1)| ⇒

δS =


|S11| − 0 |S12| − |S11| . . . |S1q| − |S1,q−1|
|S21| − 0 |S22| − |S21| . . . |S2q| − |S2,q−1|
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|Sp1| − 0 |Sp2| − |Sp1| . . . |Spq| − |Sp,q−1|


This function is a measure of spectral changes in the signal, and since they
are directly assossiated with presence of an onset, it constitutes a detection
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function by itself, but not an efficient one. The following figure shows the
Spectral Difference function of a music signal at an arbitrary frequency.
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Figure 4.1: Spectral Difference - Guitar

It is noticeable that the moments of attacks on the music signal are loosely
related to peaks of Spectral Difference function, but still in no way resembles
a well defined, and well observable detection function.

Spectral Difference alone is inadequate to perform onset detection, since
the guitar signal has high spectral component throughout the duration of a
note.

II.Phase Component

The STFT also provides the phase offset of the sinusoidals of which the
signal consists.
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Φ = S =


S11 S12 . . . S1m

S21 S22 . . . S2m

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .
Sk1 Sk2 . . . Skm

 =


Φ11 Φ12 . . . Φ1m

Φ21 Φ22 . . . Φ2m

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .
Φk1 Φk2 . . . Φkm


This is the wrapped phase, meaning that all phase points are constrained

to the range −π < Phase Offset < π radians, according to their offset.
When the actual phase is outside this range, the phase value is increased
or decreased by a multiple of 2π radians to put the phase value within this
range. This can be seen at the following figure.
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Figure 4.2: Wrapped Phase

The algorithm makes use of a transformation of wrapped phase, the
unwrapping of it. Unwrapping the phase means that instead of increas-
ing/decreasing by 2π in order to fit in a defined range, the phase jumps are
instead increased over a constant, π in the case. The following figure shows
this transformation, alongside the original guitar signal.
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During the steady state of a guitar note, or whenever the are no events
occuring in the signal, the unwrapped phase difference between consecutive
sets of frames is expected to be close to equal, as expressed by the equation
below.[3]

Φ(k,m)− Φ(k,m− 1) ' Φ(k,m− 1)− Φ(k,m− 2)

By moving all the terms on one side of the equation, Phase Deviation function
is defined as

δΦ(k,m) = Φ(k,m)− 2Φ(k,m− 1) + Φ(k,m− 2)

which for steady state parts of the signal is close to zero.

δΦ(k,m) ' 0⇒

Φ(k,m) ' 2Φ(k,m− 1)− Φ(k,m− 2)

18



This suggests that the phase of a sinusoidal can be calculated from the phases
of the 2 previous frames, given that the signal is on steady-state.

This function monitors the phase discontinuations, by taking for each
frame into consideration the previous two as well. On contrary to being
close to zero during steady parts of the signal, this function is going to
take large values during the frames of the transient part of the note, since
the sinusoidals creating it are by no means steady during that period. The
randomness of transient’s behaviour is going to create considerable differences
in the expected phase of consecutive frames of the same sinusoidal.

This way the Phase Deviation matrix is defined.

δΦ =


Φ11 Φ12 Φ13 . . . Φ1m−1

Φ21 Φ22 Φ23 . . . Φ2m−1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
Φk1 Φk2 Φk3 . . . Φkm−1

− 2


0 Φ11 Φ12 . . . Φ1m−1

0 Φ21 Φ22 . . . Φ2m−1

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
0 Φk1 Φk2 . . . Φkm−1



+


0 0 Φ11 . . . Φ1m−2

0 0 Φ21 . . . Φ2m−2

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 Φk1 . . . Φkm−2


Matrix δΦ calculates the deviation between the expected phase of a sinusoidal
based on previous frames and the actual measurement, given the signal is on
steady-state.

III. Combined Approach.[3]

During the steady state segments of the signal, the magnitude of the fre-
quencies is expected to stay approximately constant, and the phase, while
not constant is of expected value. By monitoring magnitude and phase si-
multaneously we can quantify the stationarity of the signal, and localize the
disruptions of it during the unexpectedness of the onset transient.
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Assuming polar form, the value of the kth bin of the STFT is predicted
to be

Ŝ(k,m) = |S(k,m− 1)|ejΦ̂(k,m)

where
Φ̂(k,m) = 2Φ(k,m− 1)− Φ(k,m− 2)

and in matrix form:

Ŝ =


|Ŝ(1, 1)|ejΦ̂(1,1) . . . |Ŝ(1, q)|ejΦ̂(1,q)

...
...

...
... |Ŝ(k,m)|ejΦ̂(k,m) ...
...

...
...

|Ŝ(p, 1)|ejΦ̂(p,1) . . . |Ŝ(p, q)|ejΦ̂(p,q)


So, Ŝk(m) is the predicted state of the kth bin for if there are no transients

present, taking into consideration the expected stability of the magnitude,
and the estimation of the phase according to the previous frames.

We may then consider the measured values from S which in polar form
are

Sk(m) = |Sk(m)|ejΦk(m)

where |Sk(m)| and Φk(m) correspond to the magnitude and phase of current
frame.

S =


|S(1, 1)|ejΦ(1,1) . . . |S(1, q)|ejΦ(1,q)

...
...

...
... |S(k,m)|ejΦ(k,m) ...
...

...
...

|S(p, 1)|ejΦ(p,1) . . . |S(p, q)|ejΦ(p,q)


The predicted and measured values are shown in the next figure.

20



ℜ [S
k
(m]

-1  -0.5 0   0.5 1   

ℑ
 [S

k
(m

)]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Measured
Predicted

The difference between Ŝk(m) and Sk(m) is the stationarity deviation of
the signal, and the best way to measure it is the Euclidean Distance between
them, as defined by

Γ(k,m) =
∣∣∣Ŝ(k,m)− S(k,m)

∣∣∣
=
∣∣∣|S(k,m− 1)|ejΦ̂(k,m) − |S(k,m)|ejΦ(k,m)

∣∣∣
=
∣∣∣|S(k,m−1)|cos(Φ̂(k,m))+|S(k,m−1)|jsin(Φ̂(k,m))−|S(k,m)|cos(Φ(k,m))−|S(k,m)|jsin(Φ(k,m))

∣∣∣
=

√
[|S(k,m− 1)|cos(Φ̂(k,m)) + |S(k,m− 1)|jsin(Φ̂(k,m))]2 − [|S(k,m)|cos(Φ(k,m))− |S(k,m)|jsin(Φ(k,m))]2

=

√
|S(k,m− 1)|2 − 2|S(k,m− 1)||S(k,m)|(cos(Φ̂(k,m))cos(Φ(k,m)) + sin(Φ̂(k,m))sin(Φ(k,m))) + |S(k,m)|2

=

√
|S(k,m− 1)|2 − 2|S(k,m− 1)||S(k,m)|cos(Φ̂(k,m)− Φ(k,m)) + |S(k,m)|2

=
√
|S(k,m− 1)|2 − 2|S(k,m− 1)||S(k,m)|cos(δΦ(k,m)) + |S(k,m)|2
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In case of δΦk(m) = 0

Γ(k,m) =
√
|S(k,m− 1)|2 − 2|S(k,m− 1)||S(k,m)|+ |S(k,m)|2 ⇒

Γ(k,m) =
∣∣|S(k,m− 1)| − |S(k,m)| = |δS(k,m)|

which means that when the phase prediction is good, then the spectral
difference alone is taken into account.

Once the Euclidean Distances have been calculated, the Onset Detection
Function as summation of Γk across frequencies k.

Γ(m) =

p∑
k=1

Γ(k,m)

n
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Figure 4.4: Detection Function
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4.1.3 Peak-Picking

Once the detection function Γ(m) has been formed, the next step is to decide
which values of it correspond to onsets. Apparently, that translates to pick-
ing the peaks of the detection function. To do so effectively, some processing
of the Detection Function will be performed.

First a median filter is applied to the detection function.

m
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Γ(m)→ median(Γ(m : m+ 5)),m ∈ {1, 2.....q}
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Figure 4.5: Median Filtering

Figure 4.5 shows the detection function before (up) and after (bottom)
median filtering.

resulting in a smoothed Detection Function. The length of the median filter
is 5 frames, approximately 30msec.

Afterwards, LS which was described in Section 2 is going to be applied
in the smoothed Detection Function on length of 7 frames, approximately
40msec.
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The offset factor is ignored, and the slope of the regressed line is used as
the new Detection Function.
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Figure 4.6: Slope of Detection Function

Figure 4.6 shows the smoothed Detection Function before (up) and after
(bottom) applying LS.

Comparing it the original Detection Function Γ(m), it’s obvious that the
peaks of real onsets are heavily attenuated while the rest of the function is
close to zero or noise level.

The next step is to apply a small threshold to the function, removing the
low values and keeping only the highest among the ones in close temporal
positions.
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{
Γ(m) if Γ(m) > threshold

0 if Γ(m) ≤ threshold
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Figure 4.7: Picked Peaks

Figure 4.7 shows the Detection Function before (up) and after (bottom)
applying the threshold.

The resulting function has values different than 0 at the indexes of frames
that are decided to be onsets, and 0 on the rest. Afterwards, the number
of frames get transformed back to their corresponding samples, resulting at
knowing exactly the time at which the notes were played.

The result of peak picking can be seen in the following figure
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Figure 4.8: Picked Peaks

Figure 4.8 shows the original signal (above) and the picked peaks decided
to be onsets(bottom).
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4.2 Pitch Detection

Once the points in time where a note was played, i.e an onset, have been
estimated, the next task is to attribute a frequency to them, to define which
note was played.

4.2.1 Pitch Detection

For each onset picked, a vector containing fs/10 = 4410 samples is created.

∀i ∈ onsets, x = s[i : i+ fs/10]

While a guitar note will most probably longer, a segment of 4410 samples is
enough for calculating the fundamental frequency. The pick of this length
also decides how many notes/second can be effectively identified, in this case
10notes/second.

Autocorrelation function, ACF from now on, takes an input function, x(t),
and cross-correlates it with itself; that is each element is multiplied by a
shifted version of x(t), and the results summed to get a single autocorrelation
value. [4]

rxx(τ) =
∑

x[j]x[j + τ ]

A guitar note is not a periodic signal, but strong periodicity is expected

around the fundamental frequency of the note.
The problem that arises with ACF is it’s computational difficulty. This

function has to compare itself with all the delayed versions of itself for dif-
ferent values of τ , for every onset. Although ACF is a time domain method,
frequency transformation can be used for computational efficiency, tackling
the above problem.

According to the Wiener-Khinchin theorem, the ACF of a signal can be
defined as the inverse Fourier Transform of the Power Spectral Density as

rxx(τ) =
∑
PSD

(f)ej2πτf (1)

PSD(f) = F{x[n]}F∗{x[n]} = |X2(f)| (2)
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(1)
(2)−→ rxx(τ) =

fs/20∑
f=1

|X2(f)|ej2πτf

which suggests that the autocorrelation of the signal is the inverse Fourier
Transform of the signal’s power spectrum.
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Figure 4.9: ACF of a guitar note.

Figure 4.9 shows 10msec of a e3 note (above)and it’s autocorrelation(below).
The ACF takes maximum value at for τ = 268, meaning that the fundamen-
tal of the signal needs that number of samples to complete it’s first period.
By dividing the sampling rate fs with this number of samples, the fundamen-
tal frequency is calculated, which in this case is 164Hz, the fundamental of
e3.

ff = fs/argmax{rxx}
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4.2.2 Pitch Refinement

While ACF is a very reliable way to calculate the fundamental frequency,
there are cases where it may fail, such as bad localisation of an onset or, in
rare cases, stronger periodicity observed around a harmonic instead of the
fundamental. While it’s very unlikely that a wrong note will be decided,
there is the possibility of picking wrong octave of a correct note. To tackle
this problem, a Pitch Refinement algorithm is applied on every onset.

First an array of 36 prerecorded notes is created.

y =


y11 y12 . . . y1,36

y21 y22 . . . y2,36

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
y4410,1 y4410,2 . . . y4410,36


Each column is of y holds 0.1sec of a guitar note. Then Fourier Transform
is applied to each of those notes, resulting at a Spectral Envelop Y

Y = |F{y}| =


Y11 Y12 . . . Y1,36

Y21 Y22 . . . Y2,36

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Y4410,1 Y4410,2 . . . Y4410,36


Afterwards, Fourier Transform is performed for each onset and compared
with the transforms of the prerecorded notes, each being a column on S.

∀x, X = |F{x}|

Ydiff(:, n) = |Y(:, n)−X|, n ∈ 1, 2....36

When compared with the correct note’s spectrum, the spectral component
of Ydiff is expected to be minimum, while having a rich component in the
rest cases. This can be seen in the following figures.
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Figure 4.10: Spectral Envelop comparison

So, the correct match is choosen to be

Yresult = min{
∑
k∈fn

Ydiff(k, :)}

The summation is performed on a subset of frequencies, fn instead of the
whole spectrum. fn is the subset of frequencies where note harmonics are
expected to appear and is calculated as

fn = f0a
n

where f0 is a base frequency, a is the 12− th root of 2, and n the number of
semitones away from f0. The result can be seen in the following figure.
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Figure 4.11: Spectral Envelop Result

At this point, 2 possible results have been calculated for each onset, so a
decision rule must be applied. ACF is in overall more reliable, so it is going
to be the decisive metric, while Spectral Envelop comparison is more reliable
in the treble octave.

Octaves are defined as
octave1 : 80Hz < f < 160Hz
octave2 : 161Hz < f < 320Hz
octave3 : 321Hz < f < 640Hz

and the rule is

note =


ACF if ACF ∈ octave1 ∧ ACF 6= Yresult +−12

Yresult if ACF ∈ octave1 ∧ ACF = Yresult +−12

ACF if ACF ∈ octave2

Yresult if ACF ∈ octave3
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5 Results and Future work

5.1 Results

At this point, both Onset Detection and Pitch Detection have been com-
pleted. The onsets of the input signal have been have been decided, and
a final note has been applied to each one of them. The results are seen in
the following figures, where the signal contains the 6 initial notes studied
followed by a few more.
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5.2 Future work

While this system guarantees accurate transcription of the guitar signal,
Onset and Pitch Detection is just the basis of a realistic sound application.
Any guitar signal will most probably contain chords as well, while this system
is limited to detection of melodies consisting of single notes. Music signals are
also highly susceptible to noise which can greatly impact both the localisation
of the Onset and Pitch detection. Further work can be made, including but
not limited at:
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� Addition of a noise removal module : Music signals should always be
recorded with proper equipment, in a suitable environment. A guitar
microphone and a decent sound card are the minimum requirements,
with the recording taking place in a sound insulated space. Noise re-
moval is welcome even when these conditions are met, mandatory when
not.

1. Jashanpreet Kaur, Seema Baghla, Sunil Kumar. A Review: Audio
Noise Reduction and Various Techniques. International Journal
of Advances in Science Engineering and Technology, ISSN: 2321-
9009, Volume-3, Issue-3, July 2015

2. Guoshen Yu, Emmanuel Bacry, St´ephane Mallat. Audio Signal
Denoising with complex wavelets and Adaptive Block Attenua-
tion. Conference Paper in Acoustics, Speech, and Signal Process-
ing, 1988. ICASSP-88., 1988 International Conference May 2007

� Chord analysis : The randomness of the harmonic content of a note
makes pitch estimation of a single note a challenging task. This prob-
lem extends and is amplified in the case of chord estimation. Further
frequency analysis, as well as machine listening training has been used
for this purpse, albeit more research is required.

1. Nathan Lenssen. Applications of Fourier Analysis to Audio Sig-
nal Processing: An Investigation of Chord Detection Algorithms.
Claremont McKenna College Senior Thesis April 2013.

2. Alexander Sheh and Daniel P.W. Ellis. Chord Segmentation and
Recognition using EM-Trained Hidden Markov Models. Interna-
tional Symposium on Music Information Retrieval June 2012

� Further Information Extraction : While onset times and pitch of any
music signal is the minimum information required to transcribe a track,
more characteristics of the signal can be extracted such as tempo, note
duration (value), song classification etc. Knowledge of this information
is vital to extending the transcription to polyphonic signals, containing
more instruments than a single guitar. Pattern recognition algorithms
have effectively been used for this purpse.

1. Makarand Velankar, Dr. Parag Kulkarni. Pattern recognition for
computational music.Conference: Frontiers for research in speech
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and music. NIT, Rourkela. December 2017

2. Dan Ellis. Pattern Recognition Applied to Music Signals. Lab-
oratory for Recognition and Organization of Speech and Audio,
Columbia University, New York. July 2003

These additions applied to the current system would allow for tran-
scription of a polyphonic music signal in a noisy environment, with no
limitations to the musical content of the signal.
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