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Abstract

The recent concept of large-scale multiple-input multiple-output (MIMO) systems has attracted
substantial research attention and been regarded as a promising technique for next-generation
wireless communications networks. Combined with the cost of analog radio-frequency chains it
necessitates to work on the use of efficient antenna selection (AS) schemes. Signal-to-noise ratio
(SNR) optimal transmit antenna selection and beamforming for a MIMO system that consists of
a large number of transmit antennas has been considered in this work. We examine an algorithm
that has polynomial complexity and solves the transmit AS problem for maximum-SNR joint
beamforming with two receive antennas and under a total power constraint. Furthermore, this
thesis works on the beamforming vector approximation under a per-antenna-element power
constraint on the transmitter, a problem which has not been efficiently solved so far and many
suboptimal algorithms have been produced to tackle this problem. Some of them are examined
and compared in this thesis.
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Chapter 1

Introduction

1.1 Motivation and related work

Considering the cost and complexity of the analog RF chains connected to the antenna elements
at both sides of a multiple-input multiple-output system its straight forward to point out the
necessity of antenna selection schemes as this cost is a limiting factor of the antennas that may
operate in practice[1]-[3]. The need for AS algorithms that efficiently select the antennas has
has been growing since the increas in the investigation of large-scale multiple antenna wireless
systems [4],[5], often called massive MIMO with hundreds of low-power antennas that may be
collocated at the base-station site or distributed geographically.

With the antenna selection criteria being either capacity or signal-to-noise ratio, previous
works [6]-[21] to tackle the problem proposed suboptimal algorithms as the evaluation of the
metric of interest demands an exhaustive search over all

(
N
K

)
possible combinations of antenna

selection sets, where N is the number of available transmit antennas and K is the number of
the of selected antennas to be occupied for transmission.

This thesis examines and focuses in the antenna selection algorithm, developed and proposed
in [22], for the case of M = 2 receive antennas and an arbitrary number of K selected transmit
antennas. This algorithm identifies a polynomial number of candidate antenna selection sets
for the maximum-SNR joint beamforming problem which interestingly enough, gives the same
candidate solution subset for unit-norm beamforming (total power constraint scenario) and per-
antenna-element power constraint scenario. For the latter, no efficient solver exists regarding
the beamforming vector approximation, a problem that has been tackled by various suboptimal
iterative algorithms.

Applying those algorithms to approach the per-antenna-element power constraint case, we
test their performacnce towards the bit error rate metric, as well as, the complexity of each one
of them. Such iterative algorithms that were examined in this thesis include cyclic maximization
[23],[24] and gradient projection [25].



1.2 Thesis Outline

The thesis is organized as follows :

• Chapter 2 determines the properties of the signal model and introduces the reader to the
maximum-SNR joint beamforming transmit antenna selection problem.

• Chapter 3 presents the antenna selection methods for the cases where we have one or two
receive antennas occupied and computes the optimal beamforming vector for each case,
under both per-antenna-element and total power constraints.

• Chapter 4 describes and tests algorithms that are produced to tackle the suboptimal
beamforming approximation problem considering the per-antenna-element power con-
straint case.

• In Chapter 5, we test the performance of the suggested algorithms towards the bit error
rate versus the total number of available transmit antennas N . We also compare the
complexity of all the algorithms discussed in this thesis that are used for the beamforming
approximation regarding the per-antenna-element power constraint scenario.

• Finally, Chapter 6 has a conclusion, and some suggestions for future work.



Chapter 2

Signal Model and Problem Statement

2.1 Signal Model

Considering a point-to- point MIMO downlink system from a base station with N transmit
antennas to a mobile terminal with M receive antennas and assuming the channel between to
be flat fading we denote the M ×N complex baseband matrix:

G = [g1 g2 . . . gM ]H (2.1)

where gHm is a complex row vector with the channel coefficients between the N transmit anten-
nas and the mth (m = 1, 2, . . . ,M) receive antenna.

Based on receiver (who has knowledge of G) feedback the transmitter selects K out of N
antennas and applies either a per-antenna-element or total power constraint to beamform and
transmit the symbol x ∈ C. In other words we define the beamforming vector w ∈ WN , subject
to the constraint ‖w‖0 = K where

WN =
{
w ∈ CN : |wn| ≤ 1, n = 1, 2, . . . , N

}
or

WN =
{
w ∈ CN :‖w‖ ≤ 1

} (2.2)

for per-antenna element or total, respectively, power constrainted beamforming.

The downconverted and pulse-matched filter received vector
of size M × 1 is

y
∆
= Gwx+ n, (2.3)

where n ∈ CM is a zero-mean additive colored complex noise vector with autocorrelation matrix
RM×M . We consider the minimum-mean-square-error (MMSE) filter being the maximum-SNR
filter

f
∆
= R−1Gw. (2.4)

Lemma 1. Since y represents an unknown vector signal in colored vector noise, the maximum-
SNR filter is the minimum-mean-square-error (MMSE) filter.

The proof of Lemma 1 can be found in appendix A.1. Considering the output of the filter f
given above we get
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fHy =
(
R−1Gw

)H
(Gwx+ n)

= R−
1
2

(
R−

1
2

)H
(Gw)H (Gw)x+ wHGHR−1n

=
∥∥∥R− 1

2Gw
∥∥∥2

x+ wHGHR−1n

(2.5)

whose output SNR is

E

{∣∣∣∣∥∥∥R− 1
2Gw

∥∥∥2

x

∣∣∣∣2
}

E
{
|wHGHR−1n|2

} =

∥∥∥R− 1
2Gw

∥∥∥4

E
{
|x|2
}

∥∥(Gw)HR−1
∥∥2
E
{
|n|2
} =

∥∥∥R− 1
2Gw

∥∥∥4

E
{
|x|2
}

∥∥∥(Gw)H R−1

∥∥∥2

R

=

∥∥∥R− 1
2Gw

∥∥∥4

E
{
|x|2
}

∥∥∥(Gw)H R−
1
2

∥∥∥2 =

∥∥∥R− 1
2Gw

∥∥∥4

E
{
|x|2
}

∥∥∥(R−
1
2Gw)H

∥∥∥2 =

∥∥∥R− 1
2Gw

∥∥∥4

E
{
|x|2
}

∥∥∥(R−
1
2Gw

∥∥∥2

= E
{
|x|2
}
‖Hw‖2 ,

where H = R−
1
2G is the M ×N transformed channel matrix. It is easy to observe how the

predetection SNR is proportional to the beamforming vector w. We can jump to equivalent
conclusions considering the importance of the beamforming vector w, working on the detection
of x at (2.5).

Let x = ±
√
Po with Po being the total transmit SNR

Po =
E{|x|2}‖w‖2

σ2
n

.

Setting Y = Re{fHy} =
∥∥∥R− 1

2Gw
∥∥∥2

x+ Re{fHn},

and z = Re{fHn}, we decide x =
√
Po when Y ≥ 0.

We take a moment, to present a statistical analysis of z in order to proceed on the Error Prob-
ability.

n = nR + jnI ∼ CN (0, N0IM) and f = fR + fI ∈ CM .

V = fHn =
M∑
i=1

f ∗i ni =
M∑
i=1

(
fR,i − jfI,i

) (
nR,i − jnI,i

)
=

M∑
i=1

(
fR,inR,i + fI,inI,i

)
+ j

M∑
i=1

(
fR,inI,i − fI,inR,i

)
= VR + jVI .

It is easily shown that VR, VI are real random Gaussian variables with E {VR} = E {VI} = 0.
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But z = Re
{
fHn

}
= VR −→ E {z} = E {VR} = 0.

Variance of z is derived from

E{V 2
R} = E


M∑
i1=1

(fR,i1nR,i1 + fI,i1nI,i1)
M∑
i2=1

(fR,i2nR,i2 + fI,i2nI,i2)


=

M∑
i1=1

(
f 2
R,iE

{
n2
R,i

}
+ f 2

I,iE
{
n2
I,i

})

=
N0

2

M∑
i1=1

(
f 2
R,i + f 2

I,i

)
=
N0

2
‖f‖2 .

Given that f = R−1Gw , R = N0IM we get:

V ar{z} =
R
∥∥R−1Gw

∥∥2

2
=

∥∥∥R−1
2Gw

∥∥∥2

2
.

To summarize, z = Re{fHn} ∼ N

0 ,

∥∥∥R−1
2Gw

∥∥∥2

2

.
For convenience we set a =

∥∥∥R−1
2Gw

∥∥∥ and continue to determine the Error probability

P
(
e|x =

√
Po

)
= P

(
Y < 0|x =

√
Po

)
= P

(
‖a‖2 x+ z < 0|x =

√
Po

)

= P
(
z < −‖a‖2

√
Po

)
= 1− P

(
z ≥ −‖a‖2

√
Po

)

= 1− P

 z

‖a‖
/√

2
≥ −‖a‖

2√Po
‖a‖

/√
2



= 1−Q
(
−
√

2 ‖a‖
√
Po

)
= Q

(
‖a‖

√
2Po

)

= Q

(∥∥∥R−1
2Gw

∥∥∥√2Po

)

= Q
(
‖Hw‖

√
2Po

)
.

Equivalently, for x = −
√
Po it is trivial to show the probability error has the same result and

if we assume that P (x = −
√
Po) = P (x =

√
Po) = 1

2
, then easily we conclude that the total

error probability is
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P (e) =
1

2
Q
(
‖Hw‖

√
2Po

)
+

1

2
Q
(
‖Hw‖

√
2Po

)
= Q

(
‖Hw‖

√
2Po

)
.

It is straightforward to see that the Error Propability is disproportionate to the beamforming
vector w.

2.2 Problem Statement

We now proceed to select K out of the N Base-station Antennas and maximize the beamforming
vector w for this selection. If we name I the subset of {1,2,. . . ,N} with the indices of the K
selected antennas and

S ∆
=
{
I ⊂ {1, 2, . . . , N} : |I| = K

}
=

{
I1, I2, . . . , I(NK)

}

the feasible set with all possible realizations of I, then we face the problem:

max
w∈WN
‖w‖0=K

‖Hw‖ = max
I∈S

max
w∈WK

∥∥H:,I w
∥∥ ,

(2.6)

dividing our problem into two nested ones. The antenna selection problem (outer maximization)
and the beamforming vector selection (inner maximization) for the particular antenna selection.

Given a fixed antenna selection I ∈ S the problem becomes:

w (I) , arg max
w∈WK

∥∥H:,I w
∥∥ .

(2.7)

If we were able to compute (2.7) for every possible I ∈ S,then the optimal beamformer would
be

wopt = w
(
Iopt
)

(2.8)

with Iopt being the optimal Antenna Selection subset, i.e.,

Iopt = argmax
I∈S

{
max
w∈WK

∥∥H:,I w
∥∥} . (2.9)

Under a per-antenna-element power constraint on the beamformer, i.e., when WK = {w ∈ Ck :
|wk| ≤ 1, k = 1, 2, . . . , K}, even for a fixed antenna selection I ∈ S , the problem of identyfying
the optimal beamforming vector( i.e., the solution of (2.7) ) is a UQP problem that has not
been efficiently solved so far. Suboptimal approaches to tackle this problem include semidefinite
relaxation and cyclic iterative algorithms.
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Lemma 2. Under a total power constraint on the beamforming vector w (WK = {w ∈ CK :
‖w‖ ≤ 1}), and for a fixed antenna selection I, the optimal beamforming vector w(I) is given
by the right singular vector of H:,I that corresponds to its principal singular value σmax

(
H:,I

)
simply called the “principal right singular vector ”.

Proof of Lemma 2 is relegated to Appendix A.2.

To optimally select the K transmit antennas, according to Lemma 2, we need to find K columns
of H that form the M × K submatrix with the maximum principal singular value. The ele-
ments of the optimal set I are the indices of the optimally selected antennas. Then, for these
optimal indices, the optimal unit-norm pruned beamforming vector is given by the principal
right singular vector of H:,I .

Assuming that a solver exists for (2.7) , a straightforward approach to solve (2.6) and iden-
tify the optimal set would lead us to an exhaustive search among all

(
N
k

)
cadinality-K subsets

of 1,2,...N . However, if the number of selected Transmit antennas K is a linear function of
the total number of transmit antennas N , then such a solver would be impractical even for
moderate values of N , since its complexity grows exponentially with N . Even when K is not
a function of N , when N is large enough (e.g. N=100) and K is greater than 5 then the
exhaustive search would be still too large to consider for practical implementation.

In the next chapter we present an efficient algorithm that, for any fixed number of receive
Antennas M ≤ 2 and any unrestricted number of selected transmit antennas K (even if K is
linear to N) identifies in time polynomial to N , a polynomial-size collection of antenna selec-
tion subsets I that includes the optimal one.For each antenna candidate subset we compute the
corresponding beamforming vector w via a UQP algorithm for the per-antenna-element power
constraint case or as the principal right singular vector for the total power one.The selected pair
( Antenna subset-beamforming vector) is determined through a polynomial exhaustive search
among the candidate pairs.
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Chapter 3

Optimal Transmit Antenna Selection

3.1 One Receive Antenna

We consider now the straight forward case of the problem with M = 1 receive antenna. Since
M = 1 then the transformed channel matrix becomes H = hH . For the case of a particular an-
tenna selection I with the K indices of the selected transmitted antennas it becomes H:,I = hHI .

3.1.1 Per Antenna Element Power Constraint

In this power constraint scenario where WK =
{
w ∈ CN : |wn| ≤ 1, n = 1, 2, . . . , N

}
, 2.6 be-

comes

w(I) = argmax
w∈WK

∣∣∣hHI w∣∣∣ = argmax
w∈WK

∣∣∣∣∣∣
K∑
k=1

h∗I(k)w(k)

∣∣∣∣∣∣ .
However, ∣∣∣∣∣∣

K∑
k=1

h∗I(k)w(k)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
K∑
k=1

|h∗I(k)|e−jθk |w(k)|ejφk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
K∑
k=1

|h∗I(k) w(k)| ej(φk−θk)

∣∣∣∣∣∣ ≤
K∑
k=1

∣∣h∗I(k)w(k)
∣∣

with equality that holds if θk = φk ∀k, where θk and φk are the arguments-phases of h(k),w(k)
respectively.
Now,

K∑
k=1

∣∣h∗I(k)w(k)
∣∣ =

K∑
k=1

|h∗I(k)| |w(k)| ≤
K∑
k=1

|h∗I(k)| =‖hI‖1

with equality if |w(k)| = 1 ∀k.

So we conclude that we need arg
(
w (I)

)
= arg (hI) and the absolute values of all entries

of w(I) to be equal to 1 which results in

:
w (I) = ejarg(hI).
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3.1.2 Total Power Constraint

Under the total power constraint scenario where WK =
{
w ∈ CK :‖w‖ ≤ 1

}
, we obtain

w(I) = argmax
w∈WK

∣∣∣hHI w∣∣∣
with

∣∣hHI w∣∣ ≤‖hI‖ ‖w‖ ≤‖hI‖.
The first ( Cauchy-Schwarz) inequality holds when w and h are linearly dependent ⇒ w =
ah, a 6= 0.

The second inequality holds when ‖w‖ = 1 given the total power constraint ( ‖w‖ ≤ 1),

=⇒‖ahI‖ = 1⇒ |a| ‖hI‖ = 1⇔ |a| =
1

‖hI‖
.

It is easy from the above to denote that the optimal beamforming vector is the Maximal-
ratio-combining (MRC) vector :

wI =
hI

‖hI‖
and (2.9) becomes

Iopt = argmax
I∈S

∣∣∣∣hHI hI
‖hI‖

∣∣∣∣ = argmax
I∈S

‖hI‖ = argmax
I∈S

√∑
i∈I

|hi|2 .

3.1.3 Antenna selection

As shown from the above sections, in both scenarios (Total Power Constraint, Per-Antenna-
Element Power Constraint) the optimal set I is the one that consists of the indices correspond-
ing to the K largest elements of |h|.

For this purpose, we present the function select which as its name indicates, selects the K
largest ( in magnitude) elements of a vector:

select(u; k)
∆
= arg max
I⊂{1,2,...,N}
|I|=k

‖uI‖1 .

That is, select computes |u1|, |u2|, ..., |uN | and returns the indices of the largest K values . The
computational cost of select is O(N) [26], [27], linear in the number of available transmit an-
tennas N . We conclude that for both antenna power constraint scenarios, the optimal transmit
antenna selection when M = 1 receive antenna is occupied, is given by

I = select(h;K),

whose complexity is linear in the number of available transmit antennas N . Given the antenna
selection , optimal beamforming vector is then calculated/approximated for total power con-
straint and per antenna power constraint respectively. In the developments that follow when
M = 2, select is critical in obtaining in polynomial time a polynomial-size collection of antenna
subset candidates that include the optimal one.

In the next subsection we illustrate the BER versus the total number of available transmit
antennas for both power constraint scenarios, regarding the straightforward case of this section
where we occupy one antenna on the receiver.
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3.1.4 One receive antenna performance

Total Number of Transmit Antennas N
10 20 30 40 50 60 70 80 90 100

B
E

R

10-6

10-5

10-4

10-3

10-2

Per-Antenna-power Constraint (M=1)
Total Power Constraint (M=1)
Random selection (M=1)

Figure 3.1: Bit error rate versus total number of transmit antennas N for M = 1 receive
antennas and selection of K = 6 transmit antennas, for both per-antenna element and power
constraint scenarios.

Concluding with the straight forward scenario where we occupy one antenna on the receiver,
we present Fig. 3.1, where we consider both power constraint cases ( per-antenna, Total power
constraint) for transmissions in the presence of white noise, set the total transmit SNR to -3dB,
and plot the bit error rate as a function of the available transmit antennas N and compare
them against random antenna selection.
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3.2 Two Receive Antennas

When two antennas are occupied on the receiver (M = 2), the channel matrix becomes
H = [h1 h2]H and the problem of selecting the optimal subset Iopt becomes more challeng-
ing.In this subsection we show that this problem can be solved with O(N4) complexity for any
number of K selected antennas.

First we redefine the problem space by introducing the auxiliary
angles φ ∈ [0, π/2] and θ ∈ (−π, π] and defining the unit-norm vector

c(φ, θ)
∆
=

[
sin(φ)

ejθcos(φ)

]
. (3.1)

Angles φ and θ will help us identify a polynomial number of locally optimal antenna selection
sets I consisting the optimal solution of (2.6).

Since
∥∥c(φ, θ)

∥∥ = 1, from Cauchy-Schwarz Inequality, we get for any
vector a ∈ C2 ∣∣∣aHc(φ, θ)

∣∣∣ ≤‖a‖ ∥∥c(φ, θ)
∥∥ =‖a‖ . (3.2)

The equality above is achieved iff c(φ, θ) is collinear with a within a phase rotation such that
its first element is positive,i.e., if and only if

c(φ, θ) =
a

‖a‖
e−jarg(a1). (3.3)

Indeed we note that
∥∥c(φ, θ)

∥∥ = 1, that c is collinear with a, and that its

first element being
|a1| ejarg(a1)

‖a‖
e−jarg(a1) =

|a1|
‖a‖

is positive.

For any a ∈ C2 there always exists a pair of angles (φ, θ) ∈ Φ, where Φ
∆
= [0, π/2] × (−π, π],

such that (3.3) is satisfied. Therefore from (3.2) we obtain

‖a‖ = max
(φ,θ)∈Φ

∣∣∣aHc(φ, θ)
∣∣∣ . (3.4)

If we substitute a with H:,Iw in (3.4) then our optimization problem in (2.6) becomes

max
w∈WN
‖w‖0=K

‖Hw‖ = max
I∈S

max
w∈WK

max
(φ,θ)∈Φ

∣∣∣wHHH
:,Ic(φ, θ)

∣∣∣ . (3.5)

Defining u(φ, θ)
∆
= HHc(φ, θ) and changing the order of the maximizations in (3.5) we get:

max
(φ,θ)∈Φ

max
I∈S

max
w∈WK

∣∣∣wHuI(φ, θ)
∣∣∣ . (3.6)
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Similar to the previous subsection (M = 1) we tend to examine the two power constraint
scenarios and derive the optimal beamforming vector w for any pair of angles (φ, θ) and any
given antenna selection subset I.

3.2.1 Per Antenna Element Power Constraint

Under a per antenna element power constraint scenario the inner maximization in (3.6) becomes
as follows

w(φ, θ; I) = argmax
w∈WK

∣∣∣wHuI(φ, θ)
∣∣∣ = argmax

w∈WK

∣∣∣uHI (φ, θ) w
∣∣∣ = argmax

w∈WK

∣∣∣∣∣∣
K∑
k=1

u∗I(φ, θ; k)w(k)

∣∣∣∣∣∣
However, ∣∣∣∣∣∣

K∑
k=1

u∗I(φ, θ; k)w(k)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
K∑
k=1

∣∣u∗I(φ, θ; k)
∣∣ e−jθk ∣∣w(k)

∣∣ ejφk
∣∣∣∣∣∣ =

∣∣∣∣∣∣
K∑
k=1

|u∗I(φ, θ; k) w(k)| ej(φk−θk)

∣∣∣∣∣∣ ≤
K∑
k=1

∣∣u∗I(φ, θ; k)w(k)
∣∣ ,

with equality that holds if θk = φk ∀k where θk, φk are the arguments-phases of u(φ, θ; k),w(k)
respectively.
Now,

K∑
k=1

∣∣u∗I(φ, θ; k)w(k)
∣∣ =

K∑
k=1

|u∗I(φ, θ; k)| |w(k)| ≤
K∑
k=1

|u∗I(φ, θ; k)| =
∥∥uI(φ, θ)∥∥1

with equality if |w(k)| = 1 ∀k.

So we conclude that we need arg(w(I)) = arg(uI(φ, θ)) and the absolute values of all en-
tries of w(I) to be equal to 1.The vector that satisfies the above equalities is

w(φ, θ; I) = ejarg(uI(φ,θ)). (3.7)

Then the optimization problem in(3.6) becomes

max
(φ,θ)∈Φ

max
I∈S

∥∥uI(φ, θ)∥∥1
= max

(φ,θ)∈Φ
max
I∈S

∑
i∈I

|ui(φ, θ)| (3.8)

where, for any given (φ, θ) ∈ Φ, the inner maximization is achieved by the subset that consists
of the indices of the K largest elements of |u(φ, θ)|.
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3.2.2 Total Power Constraint

In the same manner, for any given pair of angles (φ, θ) ∈ Φ , and any given selection subset
I ∈ S we obtain

w(φ, θ; I) = argmax
w∈WK

|wHuI(φ, θ)| = argmax
w∈WK

|uHI (φ, θ) w|

with |uHI (φ, θ) w| ≤
∥∥uI(φ, θ)∥∥ ‖w‖ ≤∥∥uI(φ, θ)∥∥ .

The first ( Cauchy-Schwarz) inequality holds when w and u are linearly dependent ⇒ w =
a uI(φ, θ), a 6= 0.

The second inequality holds when ‖w‖ = 1 given the total power constraint ( ‖w‖ ≤ 1).

=⇒
∥∥a uI(φ, θ)∥∥ = 1⇒ |a|

∥∥uI(φ, θ)∥∥ = 1⇔ |a| =
1∥∥uI(φ, θ)∥∥.

Its easy from the above to denote that the optimal beamforming vector is the K × 1 size
Maximal-ratio-combining (MRC) vector :

w(φ, θ; I) =
uI(φ, θ)∥∥uI(φ, θ)∥∥ (3.9)

resulting in the value

max
w∈CK
‖w‖=1

|wHuI(φ, θ)| =
∥∥uI(φ, θ)∥∥ . (3.10)

Then the optimization problem becomes

max
(φ,θ)∈Φ

max
I∈S

∥∥uI(φ, θ)∥∥ (3.11)

Given a fixed pair of angles (φ, θ) the inner maximization is equivalent to

max
I∈S

∥∥uI(φ, θ)∥∥ = max
I∈S

√∑
i∈I

|ui(φ, θ)|2 ≡

max
I∈S

∥∥uI(φ, θ)∥∥1
= max
I∈S

∑
i∈I

|ui(φ, θ)|.
(3.12)

From both power constraint scenarios, we observe that the optimal set in (2.8) and (2.10), given
a fixed pair (φ, θ), is the one that consists of the indices of the K largest values of |u(φ, θ)|,i.e.,

I(φ, θ) = select(u(φ, θ);K) = select



u1(φ, θ)
u1(φ, θ)

...
u1(φ, θ

 ;K

 . (3.13)

That is for any given (φ, θ) ∈ Φ, the corresponding antenna selection subset I(φ, θ)is obtained
with complexity O(N).
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However we should explain why(φ, θ) simplifies the computation of the solution. We notice
that for any n = 1, 2, ..., N ,

|un(φ, θ)| = |HH
:,nc(φ, θ)| = |H∗1,nsin(φ) + H∗2,ne

jθcos(φ)|, (3.14)

i.e., every element of
∣∣u(φ, θ)

∣∣ is a continuous function, or a surface, of (φ, θ). When, due to
(2.13), we select the K largest elements of

∣∣u(φ, θ)
∣∣ at a given point (φ, θ) as function select

requires, we actually compare the surfaces
∣∣u1(φ, θ)

∣∣ , ∣∣u2(φ, θ)
∣∣ , . . . , ∣∣uN(φ, θ)

∣∣ at a point (φ, θ).
The optimal selection I ∈ {1, 2, . . . , N}in (2.5) is met if we scan the entire space Φ and collect
the locally optimal selection I(φ, θ) for any point (φ, θ).Due to the continuity of the surfaces∣∣un(φ, θ)

∣∣ we expect that in an area around (φ, θ), the selection subset I(φ, θ) will be retained
because either the sorting of the surfaces does not change, or the sorting of the surfaces changes
but the but the group of the K(number of selected antennas) surfaces with the higher value is
retained.

Hence, we expect the formation of regions in Φ within which the optimal selection subset I is
unique.In the sequel we determine all these regions ,show that their number is less than or equal
to 6

(
N
3

)
and present a polynomial-time algorithm that identifies the selection subsets I that

correspond to these regions.Once we have collected all candidate subsets,for the total-power-
constraint scenario, the solution is derived from a polynomial-time exhaustive search among
them.

Scanning the space Φ we observe that the selection subset I does not change unlesss two
surfaces intersect ( which implies that the sorting of the surfaces

∣∣u(φ, θ)
∣∣ changes). Therefore

to identify all regions that retain their selection subset I, it suffices to examine when two sur-
faces intersect.We not that this is a necessary, but not sufficient, condition for a change of I,
since the intersecting surfaces may correspond to elements of

∣∣u(φ, θ)
∣∣ that, before they inter-

sect neither of them belonged to I. In this case although the sorting of the surfaces changes,
the selection subset I does not.

Two surfaces, say
∣∣un(φ, θ)

∣∣ and
∣∣um(φ, θ)

∣∣, intersect when
∣∣un(φ, θ)

∣∣ =
∣∣um(φ, θ)

∣∣. We note
that, for any n,m ∈ {1, 2, . . . , N}, the intersection between them always exists, since all sur-

faces meet 0 for some (φ, θ). This holds, because for any surface
∣∣un(φ, θ)

∣∣ =
∣∣∣HH

:,nc(φ, θ)
∣∣∣

, we can always obtain a vector c(φ, θ) which is orthogonal to H:,n. As a result, the in-

tersection of two surfaces determines a curve on the (φ, θ)-plane whice we define as Ln,m
∆
={

(φ, θ) ∈ Φ :
∣∣un(φ, θ)

∣∣ =
∣∣um(φ, θ)

∣∣} .
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Figure 3.2: An illustration of intersection curves Ln,m, for n,m ∈ {1, 2, 3, 4} with n 6= m, and
formed regions, resulting from N = 4 surfaces.

We illustrate this in Figure 2.1 where we set N = 4 and consider an arbitrary 2 × 4 channel
matrix H, and plot curves Ln,m, for any n,m ∈ {1, 2, . . . , N} with n 6= m.

We now observe the regions that are formed. Within each region, the selection subset I remains
the same. We also observe that, in most cases, each region ‘’touches” an intersection of two or
three curves. That is, we can identify these regions by examining intersections between curves
Ln,m. In addition, we can concentrate only on three curve intersections and ignore intersections
of two curves, since the latter change the sorting of surfaces but do not generate a new subset
I that has not been generated by a neighboring three curve intersection.
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3.2.3 Polynomial-Complexity Antenna Selection Algorithm

As mentioned in the previous subsection we start by examining all three-curved intersections.
We observe that each such intersection corresponds to a three-surface intersection. Hence,
it suffices to examine when three surfaces, say

∣∣un(φ, θ)
∣∣ , ∣∣um(φ, θ)

∣∣ and
∣∣ul(φ, θ)∣∣ , where

n,m, l ∈ {1, 2, . . . , N} with n 6= m, m 6= l, n 6= l, intersect. That is, we have to find (φ, θ) that
satisfies: ∣∣un(φ, θ)

∣∣ =
∣∣um(φ, θ)

∣∣ =
∣∣ul(φ, θ)∣∣ (3.15)

By substituting u(φ, θ) with HHc(φ, θ) we get:∣∣∣HH
:,nc(φ, θ)

∣∣∣ =
∣∣∣HH

:,mc(φ, θ)
∣∣∣ =

∣∣∣HH
:,lc(φ, θ)

∣∣∣ (3.16)

Given two complex numbers a, b ∈ C with |a| = |b| we get a = ejλ b for some λ ∈ R.Then
equation (2.17) becomes: 

ejλ HH
:,nc(φ, θ) = HH

:,mc(φ, θ)

ejµ HH
:,nc(φ, θ) = HH

:,mc(φ, θ)

 (3.17)

or, equivalently, ejλ HH
:,n −HH

:,m

ejµ HH
:,n −HH

:,l

 c(φ, θ) =

[
0
0

]
(3.18)

for some λ, µ ∈ R. We define the 2× 2 matrix

A =

ejλ HH
:,n −HH

:,m

ejµ HH
:,n −HH

:,l

 . (3.19)

We note that c(φ, θ) belongs to the nullspace of matrix A. In order to obtain the unit norm
vector c we need N (A) 6= {0n×1} , which occurs when A is singular, .i.e, rank(A)=1 or,
equivalently, |A|=0.
So if A is singular which leads us to |A| = 0, we might obtain c(φ, θ), find the coordinates (φ, θ)
of the triple intersection point, and call function select for this particular point. To proceed
further we form

AH =
[
e−jλH:,n e−jµH:,n

]
−
[
H:,m H:,l

]
. (3.20)
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Lemma 3. Suppose A is an invertible square matrix and u,v are column vectors. Then the
matrix determinant lemma states that

det(A + uvT) = (1 + vTA−1u) det(A) .

Proof of Lemma 3 is available at appendix A.3.

In order to find the coordinates of the triple intersection point (φ, θ) we set the determinant of
the matrix −AH to zero. Utilizing Lemma 3 on the same matrix we obtain∣∣∣−AH

∣∣∣ = 0

⇔
(

1−
[
e−jλ e−jµ

] [
H:,m H:,l

]−1
H:,n

) ∣∣∣[H:,m H:,l

]∣∣∣ = 0.

(3.21)

We note that
∣∣∣[H:,m H:,l

]∣∣∣ 6= 0. That is because the columns of the matrix H:,m, H:,l are

linearly independent, i.e., the matrix is full rank.

We define the 2× 1 vector

d
∆
=
[
H:,m H:,l

]−1
H:,n (3.22)

and the scalar

D
∆
=

1−‖d‖2

2 |d1d2|
. (3.23)

Therefore , to find λ, µ ∈ R and solve for c(φ, θ) in (2.18), it suffices to solve[
e−jλ e−jµ

]
· d = 1 (3.24)

Given that
∥∥∥[e−jλ e−jµ

]∥∥∥ =
√∣∣e−jλ∣∣2 + |e−jµ|2 =

√
2, when we apply Cauchy-Schwarz In-

equality on (2.24) we get

∥∥∥∥[e−jλ e−jµ
]
d

∥∥∥∥ ≤ ∥∥∥∥[e−jλ e−jµ
]∥∥∥∥‖d‖

⇔ 1 ≤
√

2‖d‖

⇔‖d‖ ≥
1
√

2
,

which is a necessary condition for (3.24) to have a solution ( and, consequently for a triple
intersection to exist).If the latter is satisfied, then (3.24) becomes

e−jλ
[
1 e−j(µ−λ)

]
· d = 1⇔

[
1 e−j(µ−λ)

]
· d = ejλ (3.25)
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implying ∣∣∣∣[1 e−jψ
]
· d
∣∣∣∣ = 1 (3.26)

where ψ = µ− λ. We carry on, by solving (3.26) in order to obtain the values of ψ that make
matrix A singular.

∣∣∣∣[1 e−jψ
]
· d
∣∣∣∣ = 1⇒

∣∣∣∣[1 e−jψ
]
· d
∣∣∣∣2 = 12

⇔

∣∣∣∣∣∣
[
1 e−jψ

]
·

[
d1
d2

] ∣∣∣∣∣∣
2

= 1

⇔
∣∣∣d1 + e−jψd2

∣∣∣2 = 1.

⇔ |d1|2 +
∣∣∣e−jψd2

∣∣∣2 + 2Re
(
e−jψd1d

∗
2

)
= 1.

⇔ |d1|2 +
∣∣∣e−jψ∣∣∣︸ ︷︷ ︸

=1

|d2|2 + 2Re
(
e−jψ|d1d2|e−jangle(d1d

∗
2)
)

= 1.

⇔ |d1|2 + |d2|2︸ ︷︷ ︸
= ‖d‖2

+2 |d1d2|Re
(
e
−j
(
ψ+angle(d1d∗2)

))
= 1.

⇔ cos
(
ψ + angle (d1d

∗
2)
)

=
1−‖d‖2

2 |d1d2|

⇔ ψ + angle (d1d
∗
2) = ± cos−1D

which results in two values of ψ tha make matrix A singular, i.e., two intersection points

ψ = −angle (d1d
∗
2)± cos−1D (3.27)

From the solution of (3.27), we can claim that |D| ≤ 1 is a necessary and sufficient condition
to make matrix A singular. If the condition is not satisfied, then no intersection point exists
between the three surfaces (and their corresponding curves). If the condition is satisfied though,

after computing ψ in (3.27), we can compute λ
∆
= arg

([
1 e−jψ

]
d
)

and µ = ψ + λ, matrix A

from(3.19), and c (φ, θ) as the unit-norm vector in the null space of A. Finally, from (3.1) we
can derive the coordinates of the intersection point (φ, θ). Since there are two values of ψ from
the solution that make A singular, we obtain two intersection points.
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For any combination of three surfaces, the above procedure, with complexity O(1), examines
if they intersect and, if so, computes the two intesection points (φ, θ) . Each intersection is a
vertex of six regions.Then function I = select

(
u (φ, θ) ;K

)
computes, with complexity O (N),

the indices of the K largest surfaces. We recall from (3.15) that, at the intersection point, all
three surfaces that intersect have the same value. If I contains the indices n,m, l of the three
surfaces that intersect or it does not contain either of them, then I is the common optimal
selection subset of for all six neighboring regions. Otherwise we have to consider three different
cases for the index among n,m, l that belongs or does not belong to I. Overall, for each com-
bination of three surfaces, we obtain at most 6 candidate sets I with complexity O (N). Since
the total number of surfaces is N, the overall number of candidate sets is upper bounded by 6

(
N
3

)
.

Finally, regarding the case where a region does not touch any intersection, we can see that
such a region touches a curve Ln,m which does not intersect with any other curve. For example,
in Figure 2.1, such a curve is L2, 3.Therefore, when we examine the three-surface intersections
as described before, we should mark the corresponding curves and, in the end, if a curve, say
Ln,m, is unmarked, then we should examine it separately as follows. We need to pick a point
on Ln,m by solving ∣∣∣HH

:,nc (φ, θ)
∣∣∣ =

∣∣∣HH
:,mc (φ, θ)

∣∣∣ (3.28)

or, equivalently, (
ejλH:,n −H:,m

)
c (φ, θ) = 0, (3.29)

for some λ ∈ R. Actually, we can set λ to zero, obtain c (φ, θ) as the unit-norm vector in
the null space of H:,n −H:,m, and from 3.1 uniquely determine the intersection point (φ, θ).
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We now present the algorithm 1 developed and proposed in [22], that computes the optimal
antenna selection subset (among N antennas) with complexity O

(
N4
)
, independently of the

selection paremeter K.

Input : H ∈ C2×N (channel matrix) ,K ∈ {1, 2, . . . , N} (desired selection)

S′ ← { } (set of candidates)

Ln,m ← 0 ∀n,m ∈ {1, 2, . . . , N} , n 6= m

for {j1, j2, j3} ⊆ {1, 2, . . . , N} : j1 6= j2, j2 6= j3, j1 6= j3

d←
[
H:,j1 H:,j3

]−1
H:,j2

D ←
1−‖d‖2

2 |d1d2|
if |D| ≤ 1 then

Lj1, j2 ← 1,Lj1, j3 ← 1,Lj2j3 ← 1

ψ ← −angle
(
d1d∗2

)
± cos−1D

λ← angle

([
1 e−jψ

]
d

)
µ← ψ + λ

c← null


ejλ HH

:,j2
−HH

:,j1

ejµ HH
:,j2
−HH

:,j3




u←
∣∣∣HHc

∣∣∣
I = select (u;K) if multiple entries equal to the Kth order element, include all in I

if |I| = K

S′ ← S′ ∪ {I}

elseif |I| = K + 1

I′ ← I − {j1, j2, j3}

S′ ← S′ ∪
{
I′ ∪ {j1, j2} , I

′ ∪ {j1, j3} , I
′ ∪ {j1, j3}

}
else

I′ ← I − {j1, j2, j3}

S′ ← S′ ∪
{
I′ ∪ {j1} , I

′ ∪ {j2} , I
′ ∪ {j3}

}
for {n,m} : Ln,m = 0, when a curve does not intersect with any other curve

c← null

([
HH

:,n −HH
:,m

])
u←

∣∣∣HHc
∣∣∣

I = select (u;K) if multiple entries equal to the Kth order element, include all in I

if |I| = K

S′ ← S′ ∪ {I}

else

S′ ← S′ ∪
{
I′ ∪ {m} , I′ ∪ {n}

}
Output : S′

1While the algorithm is the same with the one proposed at [22], corrections have been made considering the
lines where vectors c,u are being computed.
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3.2.4 Two receive antennas performance
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Figure 3.3: Bit error rate versus total number of transmit antennas N for M = 2 receive
antennas and selection of K = 6 transmit antennas, for both per-antenna element and power
constraint scenarios.

Regarding the bit error rate performance of this section’s case where M = 2 receive anten-
nas are occupied, we illustrate the results for total power constraint (optimal solution) and
per-antenna-element power constraint (suboptimal solution/approximation) and compare them
with random antenna selection. . We can derive from Fig 3.3 that the proposed solution for the
per-antenna constraint case offers performance that approaches that of the optimal algorithm
considering the total power constraint case.

For the per-antenna-element power constraint case performance to be obtained we used a
cyclic-iterative maximazation algorithm in order to achieve an approximate solution for the
beamforming vector. In the next chapter, we present and compare such algorithms for the
beamformer approximation problem.



Chapter 4

Beamforming Approximation
Algorithms

As mentioned in chapter 1, when we enforce a per-antenna-element power constraint on the
beamformer, and for any antenna selection I, i.e., when WK = {w ∈ Ck : |wk| ≤ 1, k =
1, 2, . . . , K}, we seek w that solves

w (I) , arg max
w∈WK

∥∥H:,I w
∥∥ . (4.1)

The problem of identyfying the optimal beamforming vector for the given maximization is a
UQP problem that has not been efficiently solved so far. In this work we approach this problem
by including semidefinite relaxation, cyclic-maximization as well as gradient projection iterative
algorithms.

4.1 Cyclic Maximization

Because no efficient solver exists for (4.1) we consider its relaxed version

max
w1,w2∈WK

wH
1 HH

:,IH:,Iw2. (4.2)

As shown in [34], for a fixed beamformer w2, the vector w1that maximizes (4.2) is given by

w1 = ej arg(HH
:,IH:,Iw2), while, for fixed w1, the optimal w2 becomes w2 = ej arg(HH

:,IH:,Iw1). Using
this observation, starting fron an initial beamforming vector w(0) = principal right singular
vector of H:,I we perform a cyclic maximization of the form

w(t+1) = ej arg(HH
:,IH:,Iw

(t)) (4.3)

and continue the iterative algorithm for a predefined number of steps or until
∥∥∥w(t+1) −w(t)

∥∥∥ ≤
e. In the simulations that follow we set e = 0.01 and the maximum number of iterations to
100.

4.2 Gradient Projection

In this section we ultilize the gradient projection algorithms proposed in [35],which tackle the
Unit-modulus Least Squares (ULS) optimization problem.

min
w∈CN

‖y −Aw‖2
2 (4.4)

We begin by redefining our UQP problem in order to transform it to the ULS scenario.

max
w∈CN

wHHH
:,IH:,Iw = max

w∈CN
wHRw (4.5)

where RN×N = HH
:,IH:,I , is easily shown to be a Hermitian and semi-positive definite matrix.
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The UQP formulation in (4.4) covers both maximization and minimization of quadratic forms
(one can obtain the minimization of the quadratic form in (4.4) by considering −R in lieu of
R). If R is not positive (semi)definite, we can make it so using the diagonal loading technique
(i.e. R ← R + λI where λ ≥ σn (R). Note that such a diagonal loading does not change the
solution of UQP as wH (R + λI)w = wHRw + λ‖w‖2

2.

Using the above steps we transform

max
w∈CN

wHRw→ min
w∈CN

wHRw

WE proceed by showing that following UQP problem

min
w̃∈CN+1

w̃HRw̃

subject to |w̃i|2 = 1, i = 1, . . . , N + 1; w̃N+1 = 1

where w̃ =

[
w
1

]
,

(4.6)

can be expressed as a ULS problem. To see this, we consider the square root decomposition of
a semi-positive definite matrix R = RH/2R1/2 and apply the following partioning

R1/2 = [A,−y] .

Consequently, we have

R = [A,−y]H [A,−y] =

[
AHA −AHy

−yHA ‖y‖2
2

]

and by expanding w̃HRw̃ we get

w̃HRw̃ =
[
wHe−jθ e−jθ

] [AHA −AHy

−yHA ‖y‖2
2

][
wHejθ

ejθ

]

= wHAHAw − yHAw −wHAHy +‖y‖2
2

=‖y −Aw‖2
2

transforming our initial UQP problem to the equivalent ULS. Given this equivalency, we present
the 2 algorithms proposed in [35] that approach the ULS/UQP problem, which we used to
achieve a suboptimal approach for our beamforming vector w.
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Algorithm 1:

Input : H ∈ C2×K (channel matrix) ,K ∈ {1, 2, . . . , N} (Desired Antenna Selection)

R← HHH

R← −R + λmax (R) IK

R1/2 = [A,−y]

Set r = 0, α =

β

λmax
(
AHA

), β ∈ (0, 1), w0 = e
j∠

(
A†y

)

Repeat

ζ(r+1) = w(r) + αAH
(
y −Aw(r)

)
wr+1 = e

j∠
(
ζ(r+1)

)

r = r + 1

until convergence

Algorithm 1 is nothing but a GP algorithm what is special isthat the projection step involves
a non-convex set the elementwise unit modulus constraint, in particular. In Algorithm 1, is
the step size along the opposite direction of the gradient. The motivation of Algorithm 1 is
simple: gradient descent has the advantage of scalability, and is able to exploit data (i.e.,A
and y) sparsity. These traits are well-suited for large-scale problems. In addition, projection
onto a unit modulus constraint admits a closed-form solution (cf. line 4 in Algorithm 1), and
the entire procedure can be carried out very efficiently. On the other hand, the concern is
that projection onto a non-convex set may in fact increase the cost value, and thus tends to be
problematic in terms of optimization.

Different from other approaches, the proposed algorithm keeps the unit-modulus constraint
and uses projected gradient descent instead of unconstrained gradient descent.
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Algorithm 2:

Input : H ∈ C2×K (channel matrix) ,K ∈ {1, 2, . . . , N} (Desired Antenna Selection)

R← HHH

R← −R + λmax (R) IK

R1/2 = [A,−y]

Set r = 0, , β ∈ (0, 1), w0 = e
j∠

(
A†y

)

Repeat

s(r+1) =
(
w(r)

)H
AHy

/∥∥∥Aw(r)
∥∥∥2
2

α(r+1) = β/λmax(|sr+1|2AHA)

ζ(r+1) = w(r) + αr+1
(
sr+1

)∗
AH

(
y − sr+1Aw(r)

)
wr+1 = e

j∠
(
ζ(r+1)

)

r = r + 1

until convergence

Algorithm 2 is a modified instance of Algorithm 1. However, considering the ULS problem
‖y −Aw‖2

2 and our beamforming trasmission case, we often desire a good beampattern that
concentrates power in the directions of interest. To that end, Algorithm 2 introduces an addi-
tional scaling variable s ∈ C to obtain

min
w∈CN

wHRw

subject to |wi|2 = 1, i = 1, . . . , N.
(4.7)

Variable s can be regarded as an ‘automatic normalization’ factor, which addresses the afore-
mentioned issue. Optimal s is computed and substituted as a function of w:

sopt =
wHAHy

‖Aw‖2 .

Using this equation its easy to determine the tuning of s in each iteration and insert it in
Algorithm 1, leading to Algorithm 2.
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Figure 5.1: Complexity towards the number of candidate antenna selection sets versus the total
number of transmit antennas N for M = 2 receive antennas and selection of K = 6 transmit
antennas.

At the beginning of our simulations and specifically in Fig.5.1 we present the complexity of the
Antenna Selection Algorithm (in terms of number of candidate AS sets) and plot it versus the
corresponding upper bound 6

(
N
3

)
, as well as the exhaustive search complexity

(
N
K

)
.
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Figure 5.2: Bit error rate versus total number of transmit antennas N for M ≤ 2 receive
antennas and selection of K = 6 transmit antennas.

For each one of those candidate sets, we implemented the suboptimal approaches examined in
chapter 3 regarding the beamforming vector approximation for the per-antenna-element power
constraint scenario.Each algorithm provided an approximation of the beamforming vector w,
which we use to calculate our BER metric. The same metric was computed and plotted for
the straight-forward case where M = 1 receive antenna, and the optimal total power constraint
scenario where M = 2.

The presented results are averages over 1000 i.i.d. Rayleigh channel realizations. We can ob-
serve from Fig.5.2 that the results of the iterative suboptimal Algorithms (Cyclic,GP) discussed
in chapter 3 considering the per antenna power constraint scenario match those of the opti-
mal algorithm corresponding to the total power constraint case. Achieving equivalent results,
regarding the bit error rate we now tend to examine the complexity of the three iterative aglo-
rithms discussed in chapter 3 to tackle the per-antenna-element power constraint suboptimal
problem.

In figures 5.3,5.4 that follow we illustrate the per-iteration complexity of each algorithm con-
sidering the number of multiplications and additions required for each instance. Finally, con-
sidering figures 5.5, 5.6 we present the average number of multiplications/additions required
by each algorithm to converge, thus the complexity required for each algorithm to provide the
approximation result of the beamforming vector w.
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Figure 5.3: Per-iteration complexity of each algorithm towards the number of real-value multi-
plications versus total number of transmit antennas N for M ≤ 2 receive antennas.
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Figure 5.4: Per-iteration complexity of each algorithm towards the number of real-value addi-
tions versus total number of transmit antennas N for M ≤ 2 receive antennas.
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Figure 5.5: Average complexity complexity of each algorithm towards the number of real-value
multiplications versus total number of transmit antennas N for M ≤ 2 receive antennas.
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Figure 5.6: Average complexity complexity of each algorithm towards the number of real-value
additions versus total number of transmit antennas N for M ≤ 2 receive antennas.
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Chapter 6

Conclusion

In this thesis, we have considered the problem of maximum-SNR transmit antenna selection
and beamforming for a MIMO system that consists of a large number N of transmit antennas.
We examined the algorithm that for M = 2 occupied antennas on the receiver provides a so-
lution to the antenna selection with quadratic complexity. It was shown that the solution is
provided in polynomial time in N , independently of the number K of selected antennas (i.e.,
even if K grows with N). Interestingly, the set of transmit antenna selection subsets that is
computed by this algorithm contains the optimal antenna subset for both total power constraint
and per-antenna-element power constraint scenarios. Moreover, under the per-antenna-element
constraint scenario,and given a fixed antenna selection, we considered the beamforming approx-
imation problem. We noted and examined the suboptimal nature of this ULS/UQP problem,
and tested various iterative suboptimal algorithms (Cyclic maximazation, Gradient projection)
to obtain a nearly-optimal solution for the beamforming vector. Finally, we provided insight
on the performance of each iterative algorithm examined , as well as the efficiency of each
one when applied to our case where we had to deal with a large number of antenna candidate
subsets and compute the beamforming vector for each one of them.
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Appendix A

A.1 Proof of lemma 1

The first step is to derive the maximum-SNR filter.

E{n} = 0, R = E{nnH} = σ2I.

Considering filter f we have the filter-output SNR

SNR =
E
{∣∣fHGwx

∣∣2}
E
{
|fHn|2

} =

(
fHGw

) (
fHGw

)H
E
{
|x|2
}

fHR f
.

R is Hermitian: RH = (E
{
nnH

}
)H = E

{(
nnH

)H}
= E

{
nnH

}
= R.

R is Positive-definite: ∀a ∈ Cm − {0} , aHR a = aHσ2I a = σ2 ‖a‖2 > 0.

Therefore, R = R
1
2

(
R

1
2

)H
,
(
R

1
2

)H
= R

1
2 R,R

1
2 non singular

Let s = R
1
2 f ⇔ f = R−

1
2 s.

Then,

SNR =
(sHR−

1
2Gw)(wHGHR−

1
2 s)

‖s‖2 E{|x|2} ≤
‖s‖2

∥∥∥R− 1
2Gw

∥∥∥2

‖s‖2 E{|x|2} = E{|x|2}
∥∥∥R− 1

2Gw
∥∥∥2

with equality iff s = aR−
1
2Gw ⇔ R

1
2 f = aR−

1
2Gw

⇔ f = aR−1Gw, a 6= 0

The next step now is to show that the mimimum mean square error filter (MMSE) is a
maximum-SNR filter.

Filter output error e = fHy − x.

We denote Ry = E
{
yyH

}
.

The M × M matrix Ry is Hermitian and Positive-definite ( similar proof to the one above
for noise autocorrelation matrix R).

Then, f = argmin
f

E
{
|e|2
}
.
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E
{
|e|2
}

= E

{∣∣∣fHy − x∣∣∣2} = E

{(
fHy − x

)(
fHy − x

)H}

= E
{
fHyyHf

}
− fHE {yx∗} − E

{
yHx

}
f + E

{
|x|2
}

= fHRyf − fHE {yx∗} − E
{
yHx

}
f + E

{
|x|2
}
.

5f

[
E
{
|e|2
}]

= 2Ryf − 2E {yx∗} = 2
(
Ryf − E

{
(Gwx+ n)x∗

})

= 2
(
Ryf −GwE{|x|2} − E{x∗n}

)
= 2

(
Ryf −GwE{|x|2}

)
.

In order to achieve the minimum we get:

5f [E
{
|e|2
}

] = 0⇔ Ryf = GwE
{
|x|2
}
⇔ f = E

{
|x|2
}

R−1
y Gw.

Ry = E
{
yyH

}
= E

{
(Gwx+ n) (Gwx+ n)H

}

= E
{
Gwx x∗wHGH

}
+ E {Gwx}E

{
nH
}

︸ ︷︷ ︸
=0

+E {n}E
{
x∗wHGH

}
︸ ︷︷ ︸

=0

+E
{
nnH

}
︸ ︷︷ ︸

=R

= E
{
|x|2
}

Gw (Gw)H + R =⇒ R−1
y = R−1 −

R−1E
{
|x|2
}

Gw (Gw)H R−1

1 + (Gw)H R−1E
{
|x|2
}
Gw

.

To obtain the MMSE filter we determine
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R−1
y Gw = R−1 Gw −

E
{
|x|2
}

Gw R−1 (Gw)H

1 + E
{
|x|2
}

(Gw)H R−1Gw
R−1Gw

= R−1 Gw

1−
E
{
|x|2
}

Gw R−1 (Gw)H

1 + E
{
|x|2
}

(Gw)H R−1Gw



=
1

1 + E
{
|x|2
}

(Gw)H R−1Gw
R−1Gw,

providing the result

f =
E
{
|x|2
}

1 + E
{
|x|2
}

(Gw)HR−1Gw
R−1Gw.

Hence, the MMSE filter f is a maximum-SNR filter.

A.2 Proof of lemma 2

We begin with the statement that the singular values of a M ×N matrix X are the square
roots of the eigenvalues of the N ×N matrix X∗X (where ∗ stands for the transpose-conjugate
matrix if it has complex coefficients, or the transpose if it has real coefficients).

Hence, σi (H) =
√
λi(HHH)

We denote the N ×N matrix A = HHH

HHH =
(
HHH

)H
which means A is a hermitian matrix (real positive eigen values).

For an arbitrary complex valued vector w :‖w‖ = 1 it is applied that

λmax = max
‖w‖=1

wHAw

There exists unitary matrix U : UHAU = D⇒ A = UDUH ,

where D = diag(λ1, λ2, .., λN).

Let y = UHw. Since ‖w‖ = 1⇒‖y‖ = wH UHU︸ ︷︷ ︸
I

w =‖w‖ = 1 .
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Then, max
‖w‖=1

wHAw = max
‖y‖=1

yHD y =
∑N

i=1 λi|yi|2

∑N
i=1 λi|yi|2 ≤ λmax

∑N
i=1 |yi|2 = λmax‖y‖ = λmax

Hence, λmax(HHH) = max
‖w‖=1

wHHHHw = max
‖w‖=1

‖Hw‖2

⇒ max
‖w‖=1

‖Hw‖ =
√
λmax(HHH) = σmax(H),

meaning
∥∥H:,Iw

∥∥ ≤ σmax(H) with equality iff w corresponds to the “principal right singu-
lar vector” ( the one that corresponts to σmax(H:,I)).

A.3 Proof of lemma 3

First the proof of the special case where A = I, follows from the equality:(
I 0
vT 1

)(
I + uvT u

0 1

)(
I 0
−vT 1

)
=

(
I u
0 1 + vTu

)
.

The determinant of the left hand side is the product of the determinants of the three matrices.
Since the first and third matrix are triangle matrices with unit diagonal, their determinants
equal to 1. The determinant of the middle matrix is our desired value. The determinant of the
right hand side is simply (1 + vTu). So we have the result:

det(I + uvT) = (1 + vTu).

Then the general case can be found as:

det(A + uvT) = det(A) det(I + (A−1u)vT)

= (1 + vT(A−1u)) det(A).
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