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Abstract 

We live in an era where the rapid growth of data streams both in complexity and velocity 

introduce new challenges on a daily basis. These streams can be infinite, emit data at high-speeds 

and can be generated by non-stationary distributions, thus a modern approach is required when 

performing complex queries over such streams. Since modern Big Data stream processing 

frameworks are evolving rapidly, high-level languages and abstractions are necessary in order to 

provide support for increasingly complex queries. Query processing however, requires a high-

level language be translated into a set of low-level data manipulation operations and on top of 

that producing an optimal plan for the given query can be extremely difficult as it requires 

minimizing costs based on available statistics. The objective of query optimization is to maximize 

(or minimize) metrics like throughput and latency which are vital to the performance of a stream 

processing system but in order to do so effectively a framework needs to track a wide variety of 

performance metrics of components inside and outside its cluster. Metrics can include the health 

and utilization of the stream pipeline operators, network speed and performance, hardware 

statistics of each cluster node and finally information about incoming data streams like skew, 

throughput and tuple size. 

 In this thesis we propose a high-level real-time query optimization platform that collects 

various statistics from modern stream processing frameworks and based on the requested 

queries each one is assigned on the most suitable framework. Such strategies aim to combine 

the metrics and statistics collected by our platform, both past and present, in order to correctly 

match queries to available frameworks. Our proposed platform consists of three main modules, 

the first of which is responsible for gathering available metrics from resource managers and 

available frameworks. The second module consists of a data ingestion Kafka Streams application 

that allow us to perform distributed sampling over incoming data streams and provide us with 

information related to incoming data streams, like skew and throughput. Finally, based on the 

available metrics each query is assigned to a framework running a pipeline designed on Apache 

Beam, a framework allowing us to write high-level code that can be executed in a variety of Big 

Data frameworks with ease. 

 Experimental results prove that the gathered statistics improve query assignments as well 

as overall performance metrics like throughput and latency. Furthermore, increasing the 

parallelism level of frameworks yields better results as higher rates of data can be ingested by 

the stream processing frameworks. Finally, experimental evaluation shows that different 

strategies may work better under certain conditions. 
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1. Introduction 

In the current day and age, the volume and velocity of generated information is increasing 
rapidly and on a daily basis while demands for accurate and real-time analytics are becoming 
more and more necessary. Sources that produce high speed data streams can be financial 
transactions, IoT sensors, click streams and various embedded systems all of which produce data 
that needs to be cleansed, stored and finally processed in order to extract valuable information. 
To perform a task like that a number of stream processing frameworks and middleware are used 
in order to provide guarantees over the speed and correctness of the various computations. 
 Stream processing frameworks are developed with having in mind unbounded data 
sources that emit data at varying rates and volumes. Processing of ingested data is done in a fully 
distributed environment with semantics that include various fault tolerant mechanisms and 
fallback scenarios in order to ensure that data is never lost. Due to the size and speed of such 
data streams as well as the distributed nature of the stream processing frameworks, queries 
usually consist of simple transformations that execute one-pass algorithms over incoming data 
before sending the results downstream. Environments like these usually express queries in the 
form of a directed acyclic graph (DAG) with stream operators as nodes and data streams as 
edges. The process of translating user code to a DAG can be a complex and lengthy process that 
involves multiple optimization steps and techniques as in order to maximize the efficiency of a 
stream processing pipeline an optimizer needs to take into account available statistics and metrics 
of both incoming and outgoing data. Finally, depending on the architecture of each framework 
each query can be translated into different low-level operations which best suit their available 
resources and statistics, which can result into the same query being executed faster and more 
efficiently in some frameworks under specific circumstances (e.g. skewed data).  
 A stream processing framework can gather statistics from incoming streams like 
throughput and latency as well as estimates about the distribution of data. Sampling mechanisms 
can also be employed in order produce summaries of incoming data that can provide information 
like skewness and cardinality. Furthermore, most stream processing frameworks and resource 
managers provide information for each of their nodes that can include hardware and network 
statistics which in turn helps users determine the quality and performance of their distributed 
algorithms. Depending on the framework a variety of statistics can be acquired for stream 
operators and their parallel instances that usually includes latency, throughput, rate of incoming 
and outgoing tuples and backpressure status, all of which can usually be provided for each 
operator instance or operator task. In conclusion, each stream processing framework handles 
queries differently depending on its architecture, the work load and available statistics which 
results in some queries performing significantly better on specific frameworks. 
 What we propose is a platform that assigns queries to a number of stream processing 
frameworks in order to increase performance based on available metrics and statistics. Since 
Apache Beam was used to generate high-level code that can be then ran on a variety of 
frameworks, also known as runners, for this thesis three stream processing frameworks were 
used in order to demonstrate our platform’s capabilities: Apache Spark, Apache Flink and Apache 
Apex. The first part of our platform consists of an application that monitors every available 
framework and resource manager with the goal of collecting statistics and metrics from various 
public APIs, a process which will play a vital role later on with query assignments. The second 
part of the pipeline consists of a Kafka Streams distributed application with queryable state that 
acts as an ingestion mechanism which can also perform sampling on incoming data streams. 
More specifically this application monitors the size and speed of incoming data streams but also 
performs various normality tests over the ingested data stream all of which can be accessed via 
a REST API from other parts of the pipeline. When a new query arrives, our platform decides 
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what the most suitable framework will be, based on available statistics, and assigns the query to 
the respective framework. The third and final part of our platform consists of Apache Beam 
pipelines that run separately on all of our frameworks and each time a query is assigned to one 
of them data streams from the Kafka application are redirected to that pipeline. Furthermore, the 
act of assigning queries to frameworks consists of gathering some available at the time statistics 
into a multi-dimensional vector and then performing nearest neighbor queries in order to retrieve 
vectors of similar past queries that yielded the optimal results. Finally, when a number of similar 
past queries have been found one can chose to execute the query on the framework that yielded 
the best results according to their use case, i.e. the query that maximized (or minimized) their 
desired performance metrics.  
 

1.1 Thesis Outline 

 In chapter 2, a description of the Apache Kafka middleware and the Kafka Streams 

application are given, briefly explaining their key features that will play a vital role in our proposed 

platform. Moreover, the distributed nature and stateful operations will also be discussed and 

compared with features that similar frameworks provide.  

 

 In chapter 3, the dataflow model is briefly explained along with some of its strengths and 

weaknesses. Furthermore, an introduction to Apache Beam will cover concepts that will be used 

when developing pipelines for other stream processing frameworks, also some core 

transformations and operators will be discussed. 

 

 During chapter 4 we will expand on how our platform collects statistics and other vital 

information in order to efficiently assign queries to available frameworks. During this chapter we 

will also explain how individual subsystems are combined in order to create a platform for efficient 

cross platform query optimization. More specifically, we explain how the Kafka Streams 

application performs distributed sampling efficiently, what statistics are collected and how 

decision-making is affected. Furthermore, we explain how decision-making works and more 

specifically the clustering algorithm that is used to find past queries with similar statistics that 

performed well in order to assign each query to the best available framework. Finally, we discuss 

about how the queries are implemented on Apache Beam and how our platform leverages Kafka 

pub/sub distributed queues to deliver data-streams and queries to the optimal at the time 

framework. 

 

 Chapter 5 consists of experimental evaluations and results from various work-loads, 

frameworks and degrees of parallelism. Results show how throughput and latency change for 

varying degrees of parallelism and work-load. Lastly, we provide an example of Apache Beam 

direct-runner and how it enables the integration of more specialized hardware into stream 

processing pipelines with minimal effort. 

 

 Chapter 6 focuses on conclusions drawn from experimental results and possible future 

work. 
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2. Apache Kafka 

2.1 Overview 

Apache Kafka [1] is a distributed streaming platform originally open-sourced by LinkedIn 

and now one of the most popular Apache top level projects and is used in production by many 

companies due to its capabilities. Kafka enables applications to publish and subscribe to streams 

of records, similar to a message queue or enterprise messaging system while also providing fault-

tolerant record stores in a durable way without sacrificing its scalability or latency. Kafka is mostly 

used by applications that transform fast data streams, require reliable message passing and 

benefit from having a flexible ingestion mechanism while maintaining the ability to scale on 

demand. Kafka has a unique architecture that borrows heavily from that of a distributed message 

queue and a real-time streaming platform which in turn results in a unique design with familiar 

terms. Furthermore, Kafka is meant to be ran on a fully distributed environment spanning multiple 

servers, also known as brokers, that form a cluster with a Zookeeper instance acting as a 

coordinator. Finally, such clusters contain records grouped into arbitrary categories called topics 

which form the basic unit of a simple but powerful Pub/Sub system. 

2.2 Records 

A record is simply an array of bytes that consists of a key-value pair, a timestamp and 

metadata that contain information about its properties (e.g. size, offset, host). All records are 

stored durably and can be read deterministically in case of a failure but in order to maximize 

availability and performance within a cluster records can also be replicated (mirrored) and 

distributed to more than one brokers, effectively removing a single point of failure. It’s worth 

mentioning that although the key-value pair of each message can be set arbitrarily, a JSON-like 

schema can also be enforced if consistency of record values is necessary. Note that the integrity 

of each record, along with other security checks, is automatically handled by the Zookeeper 

instance and the Kafka broker(s) as each record contains the necessary metadata required for 

such checks. 

2.3 Topics 

Topics are groups of records with a unique id and configuration settings created by the 

user. Topic structure is similar to that of a distributed queue and thus a single topic exists on one 

or more brokers. Incoming records are stored in order by the broker(s) which take advantage of 

the append-only property of a distributed message queue. More specifically producers write 

records to the queue tail while consumers can pull records from the queue at a different pace 

which lays the foundation of scalable high throughput of a distributed message passing system. 
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2.4 Partitions 

 Kafka topics can be divided into partitions by splitting their data to disjoint sets and 

distributing them to multiple brokers, a process that allows a topic to be parallelized seamlessly 

and on demand. Although each topic can have a near infinite number of consumers, multiple 

partitions allow consumers to read a topic in parallel as each partition is sent only to a subset of 

the original consumers, a process which drastically increases system throughput. However, 

consumers of a topic with multiple partitions result in messages being read out-of-order, a problem 

which can’t be solved due the durable and distributed nature of this problem. Partitions are also  

Kafka’s way of providing fault tolerance and scalability since they can be distributed among 

different brokers that may lie on different servers which provides redundancy and allows for 

horizontal scaling. Finally, each message per partition has an offset value which acts as an 

ordering identifier within that partition in order to allow consumers to start and stop reading from 

an arbitrary position. 

 

 
Figure 1: A Kafka Topic with 3 partitions with new records being added. 

2.5 Replication and fault-tolerance 

 Kafka clusters also provide redundancy mechanisms that allow brokers to keep backups 

and be able to recover from failures. The unique combination of a record’s topic, partition id and 

offset are what allows brokers to correctly replicate partitions. In that case one broker becomes 

the leader and the rest of the brokers with the replicated partitions become followers. In case of 

failure a new leader is elected from an “in-sync” subset of brokers (caught up with the leader’s 

log) and seamlessly adopts the active consumers of the partition. The reason a new leader is 

elected only by in-sync replicas is because it’s necessary for all recently committed messages 

to also be available on the new leader. It’s also worth mentioning that message is considered 

committed only if it has been successfully copied to all in-sync replicas. 

 

2.6 Producers 

 Kafka, as a Pub/Sub system, consists of data producers and consumers that read and 
write key-value records to the available distributed queues. Producers send key-value pairs to a 
specific topic but are usually oblivious as to which partition received the records since by default 
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the message will be sent to a random partition in order to load balance incoming traffic. However, 
all records that share the same key will end up in the same partition, unless of course that key is 
null in which case the message will be sent to a random partition. The process of assigning a set 
of keys to a specific partition is done by the Kafka practitioner, a process that maps messages to 
partitions, which by default simply hashes the key based on the number of available partitions. 
  

2.7 Consumers 

 A Kafka consumer subscribes to one or more topics and can read messages from one or 
more topic partitions but a consumer instance is required for every topic partition. Each record in 
a partition contains an offset field which is a unique and monotonically increasing integer that’s 
used by the consumer to keep track of how much they have advanced in that specific topic. 
Consumers can group together and form consumer groups, a process in which multiple 
consumers read from a single topic and each partition is only consumed by a single member of 
the group. In case of a consumer failure the remaining members of the group will rebalance the 
partitions of the failed consumer. 
 

 
Figure 2: Two Kafka producers with two uneven consumer groups. 

 

2.8 Kafka Streams  

Kafka Streams simplifies development by building on the Kafka producer and consumer 
APIs while leveraging the capabilities of Kafka to offer data parallelism, coordination and fault 
tolerance. By applying stream processing techniques, a Kafka Streams application can 
seamlessly subscribe to a Kafka topic, consume the incoming stream and perform various stream 
transformations similar to those found in traditional stream processing frameworks like grouping, 
windowing, aggregations, joins and even custom transformations. 

  

2.8.1 Architecture 

Kafka Streams uses the concepts of partitions and tasks as units of its parallelism model 
based on Kafka topic partitions. More specifically each stream partition is a totally ordered 
sequence of data records and maps to a Kafka topic partition. A data record in the stream 
corresponds to a Kafka message from that topic. The data record keys determine the partitioning 
of data which is how data is routed to specific partitions within topics. A processor topology is 
scaled by breaking it into multiple tasks. More specifically, Kafka Streams creates a number of 
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tasks based on the number of input stream partitions with each task assigned a list of partitions 
from the input topics.  

The user can configure the number of threads used to parallelize processing within an 
application instance and each thread can execute tasks and their topologies independently. 
Starting more stream threads or more instances of the application means that the topology will be 
replicated and process a different subset of Kafka partitions, effectively parallelizing processing.  It 
is worth noting that there is no shared state between threads, therefore no inter-thread 
coordination is necessary. 

 
 

 
Figure 3: A stream with two topics and two stream tasks. 

 
 

2.8.2 State stores 

 Kafka Streams provides state stores, which can be used by stream processing 
applications to store and query data which is important capability when dealing with stateful 
operations. The Kafka Streams DSL automatically creates and manages such state stores when 
stateful operators such as join() or aggregate() or windowing are called. Every stream task in a 
Kafka Streams application can contain one or more local state stores that can be accessed via 
Kafka Streams APIs in order to store and query data. Kafka Streams offers fault-tolerance and 
automatic recovery for local state stores. 
 
 

 
Figure 4: Two stream tasks with their dedicated local state stores. 
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3. Stream processing 

 Batch processing frameworks like Hadoop MapReduce and Apache Spark are still widely 

adopted by businesses around the world as Data Analytics tools due to their high throughput, 

fault tolerant and easily scalable design. However, the demand for low latency and more complex 

computations is higher than ever as the need for real time results, data preservation and high 

result accuracy is increasing rapidly. In order to fill these demands various stream processing 

frameworks have been created that require less costly infrastructure, operate on per-tuple 

processing semantics, have stronger processing guarantees and produce more accurate and 

faster results. 

 Stream processing frameworks also support different notions of time for their incoming 

and outgoing tuples. Processing time is the “classic” notion used by most older frameworks where 

the incoming tuple is assigned the timestamp of the system clock in each operator, a simple 

solution that requires no coordination or synchronization between cluster nodes but can lead to 

non-deterministic results as late arrivals or out-of-order data isn’t taken into account at all. Event 

time on the other hand, aims to solve these issues by assigning each tuple the timestamp of its 

creation time (essentially the time when the event was produced by a device). Although this 

approach enables a framework to produce consistent results while handling late and out-of-order 

data the user must specify how the framework should extract the timestamp from each incoming 

tuple. Finally, there is also the notion of the ingestion time where each tuple is assigned a 

timestamp based on the time it entered the frameworks pipeline, a solution that doesn’t require 

further configuration but still doesn’t handle correctly out-of-order or late data. 

 

 

 
Figure 5: Event, Ingestion and Processing times. 

 

Windowing mechanisms are also an integral part of every stream processing framework 

as incoming unbounded data sometimes needs to be divided into buckers and processed as a 

whole before producing any results. The most simple and easier to understand type of windows 

is the Tumbling (or Fixed) window where incoming data is partitioned into buckets that don’t 

overlap every period and emitted at the end of each window as a set of tuples to the downstream 

operators. A window with a fixed period but also a sliding period is called a Sliding Window with 

the main difference being that on every sliding period a fixed window is applied to the incoming 
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data. Finally, Session Windows partition incoming data into unequal sized buckets after a set 

amount of time has passed between two events, this fixed amount of time is called a session gap.  

 Last, but not least, most streaming frameworks work out-of-the-box with various I/O 

connectors for distributed message queues and file systems designed specifically for streaming 

use cases. Compatibility with existing middleware like Kafka, ZeroMQ and RabitMQ for example 

is very important as they allow developers to focus on the core logic of their programs without the 

need to implement such connectors.  

3.1 Apache Beam 

Apache Beam is an open source, unified model for defining both batch and streaming 

data-parallel processing pipelines which can then be executed locally or by one of Beam’s 

supported distributed processing back-ends. Beam’s strength can be easily seen when 

processing Embarrassingly Parallel data processing tasks, in which the initial problem can be 

quickly decomposed into many smaller data bundles that will then be processed independently, 

and most importantly, in parallel. Beam can also be used for Extract, Transform, and Load (ETL) 

tasks and pure data integration, useful for moving data between different storage media and data 

sources, transforming data into a more desirable format or even loading data onto a new system. 

3.1.1 Overview 

Apache Beam provides a unified programming model that can represent and transform 

data sets of any size, whether they are produced by a bounded or an unbounded source [2]. It’s 

also worth noting that Beam uses the same classes to represent both bounded and unbounded 

data as well as the same transforms to operate on that data. By using transformations Beam can 

effectively and quickly read, process and save data, from and to, various distributed data sources 

and sinks. Finally, the operators responsible for such transformations form a Beam Pipeline which 

usually starts and ends with a distributed data source or sink. The Apache Beam Pipeline Runners 

translate the data processing pipeline defined by the user into an API compatible with the 

distributed processing back-end of the user’s choice. We should also mention that Beam provides 

the tools to build custom runners that can be executed on any platform capable of supporting a 

JVM provided that they implement various APIs ranging from the creation of PCollections to fault-

tolerant semantics. Although our experiments focused on Apache Spark [3], Apache Flink [4] and 

Apache Apex, Beam currently supports out of the box Runners that work with the following 

distributed processing back-ends: 

 

• Apache Apex 

• Apache Flink  

• Apache Gearpump  

• Apache Samza  

• Apache Spark  

• Google Cloud Dataflow 

• Direct runner (for debugging purposes)  
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Beam provides a number of abstractions that simplify the mechanics of large-scale distributed 

data processing for both batch and streaming data sources. A very important one is the Pipeline, 

which encapsulates the entire data processing task which starts with reading input data, 

transforming it and finally writing output data. A pipeline can also take extra arguments either to 

enrich user code or specify runner specific parameters (e.g. Memory options). However, runners 

can choose how to implement certain pipeline details in order to optimize things like 

transformation chains, I/O from distributed sources and even switch operator order in order to 

reduce data shuffling. 

3.1.2 Parallel Collections 

A Parallel Collection (PCollection) represents a potentially distributed, multi-element data 

set that a Beam pipeline operates on as Beam transforms use PCollections as inputs and outputs. 

Input data can originate from a static source like a text file, a continuously updating source or an 

in-memory relation inside the driver. External data sources require the use of a Beam-provided 

I/O adapter which connects to a file system in a fault-tolerant way and retrieves a collection of 

tuples which can then be transformed into a PCollection. Beam provides the tools for users to 

build their own I/O adapter but there is a wide variety of already implemented ones that work out 

of the box and support popular file-systems and message queues like HDFS, Apache Kafka, Zero-

MQ and S3. 

PCollections are similar to some distributed collections found in other programming 

languages have some unique characteristics. To start with, PCollections can’t be shared or 

reused between different pipelines and their elements must all share the same serializable type, 

whoever that may be. Moreover, a PCollection is immutable and once created can’t no elements 

can be added or modified, thus a transformation is the only way to process a PCollection. The 

accessibility of PCollection elements is also quite limited since random access is prohibited, 

instead a transformation considers every element individually. Furthermore, there is no upper or 

lower bound in a PCollection’s size whether it can fit inside the driver or needs to be distributed 

to remote machines. A PCollection can also be bounded or unbounded in size, meaning   

3.1.3 Transformations 

Transforms are the operations a pipeline executes in order to process input data by using 

function objects to process each element of one or more input PCollections. Depending on the 

pipeline runner, back-end and transform logic many different workers across a cluster may 

process the input elements. In such case, the partial transform being executed on each worker 

generates a set of output elements that are ultimately added to the final output PCollection that 

the transform produces. To invoke a transform, one must apply it to an input PCollection. Invoking 

multiple Beam transforms is similar to method chaining like the following example:  
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Figure 6: Transform chaining of an input parallel collection. 

The order of pipeline’s transforms determines the structure of the pipeline since the best 

way for someone to think of a pipeline is as a directed acyclic graph (DAG), where the nodes are 

PCollections and the edges are transforms. Beam provides some core transforms, each of which 

represents a different processing paradigm, but custom or composite transformations can also be 

created. 

 

 

 

ParDo (Parallel Do) is a Beam transform for generic parallel processing. The ParDo 

processing paradigm is similar to the Map phase of a standard Map-Reduce algorithm since it 

reads each element in the input PCollection, then performs some processing function on that 

element and finally emits zero or more elements to an output PCollection. ParDo is useful for a 

variety of data processing operations like filtering a data set as one can use ParDo to check each 

element in a PCollection and either output that element or discard it. ParDo can also be used for 

formatting or type-converting elements in a data set since if the input PCollection contains 

elements that are in a different format ParDo can be used to perform a conversion on each 

element and output the result to a new PCollection. Extracting parts of each element in a data set 

is also possible with ParDo. If there is a PCollection of records with multiple fields, for example, 

ParDo can be used to parse out just the necessary fields and create a new PCollection. Finally, 

ParDo is also used to perform computations on each element in a data set. ParDo can be used 

to perform simple or complex computations on every element, or certain elements, of a 

PCollection and output the results as a new PCollection. 

When applying a ParDo transform user code is provided in the form of a Do Function 

(DoFn) object which is a Beam SDK class that defines a distributed processing function. The 

DoFn object that is passed to ParDo contains the logic that gets applied to the elements in the 

input parallel collection. If a ParDo performs a ‘1-1’ mapping of input elements to output elements 

the use of the higher-level MapElements transform, which can accept an anonymous lambda 

function as well, is recommended. 

 

GroupByKey is a Beam transform for processing collections of key-value pairs (KVPs). 

As a parallel reduction operation, analogous to the Shuffle phase of a Map-Reduce algorithms, 

the input to GroupByKey is a collection of KVPs that represents a multimap, a collection that 

contains multiple pairs with the same key. Given such a collection, one can use GroupByKey to 

collect all of the values associated with each unique key in order to aggregate data that has 

something in common.  
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 When using unbounded PCollections, one must use either non-global windowing or an 

aggregation trigger (more in the following section) in order to perform a GroupByKey or 

CoGroupByKey. This is because a bounded GroupByKey or CoGroupByKey must wait for all the 

data with a certain key to be collected but with unbounded collections the data is unlimited and 

windowing should allow grouping to operate on logical, finite bundles of data within these 

unbounded data streams. Finally, when grouping by key all of the PCollections that need to be 

grouped must use the same windowing strategy and window sizing in order to avoid conflicts. 

 

CoGroupByKey performs a relational join of two or more key-value PCollections that 

have the same key type. Using CoGroupByKey should be considered when multiple data sets 

that provide information about related things need to be joined. When using unbounded 

PCollections, one must use either non-global windowing or an aggregation trigger in order to 

perform a CoGroupByKey. CoGroupByKey accepts multiple PCollections as input and produces 

a KVP for each unique element in the key sets of the input PCollection tuples with an iterator of 

all tuples that share the same key as a value. Finally, it’s worth mentioning that relational joins of 

any kind can be implemented using a CoGroupByKey transform (including multi-way relational 

joins). 

 

Combine is a Beam transform for combining collections of elements or values in your 

input data. Combine has variants that work on PCollections, and some that combine the values 

for each key in PCollections of KVPs. When applying a Combine transform, one must provide the 

function that contains the logic for combining the elements or values. That function should be 

commutative and associative, as the function is not necessarily invoked exactly once on all values 

with a given key. Because the input data may be distributed across multiple workers, the 

combining function might be called multiple times to perform partial combining on subsets of the 

value collection. Apache Beam also provides some pre-built combine functions for common 

numeric combination operations such as sum, min, and max. 

 

Flatten is a Beam transform for PCollection objects that store the same data type as 

Flatten merges multiple PCollection objects into a single list of logical PCollections. When using 

Flatten to merge PCollection objects that have a windowing strategy applied, all of the PCollection 

objects   must use a compatible windowing strategy and window sizing. This usually boils down 

to the windows having the same length, step and trigger. 

 

Partition is a Beam transform for PCollection objects that store the same data type. 

Partition splits a single PCollection into a fixed number of smaller collections by dividing the 

elements of a PCollection according to a user-provided partitioning function that the user provides. 

The partitioning function contains the logic that determines how to split up the elements of the 

input PCollection into each resulting partition PCollection. The number of partitions must be 

determined at graph construction time which is usually done by passing the number of partitions 

as a command-line option at runtime. 
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3.1.4 Beam I/O 

 Apache Beam provides some extra tools in its API in order to allow for more complex 

pipelines and user-friendly design.  

Side inputs are an addition to the main input PCollection of a ParDo transform. A side 

input is an additional input that a DoFn can access each time it processes an element in the input 

PCollection. When someone specifies a side input, a view of some other data is created that can 

then be read from within the ParDo transform’s DoFn while processing each element. Side inputs 

are extremely useful if a ParDo needs to inject additional data when processing each element in 

the input PCollection, but the additional data needs to be determined at runtime. Such values 

might be determined by the input data, or depend on a different branch of the pipeline.  

While ParDo always produces a main output PCollection they can also produce any 

number of additional output PCollections. When a ParDo has multiple outputs, it returns all of the 

output PCollections, including the main output, bundled together (similar to a Flatten transform 

result). 

When creating a pipeline, it is often needed to read or write data from some external 

source, such as a remote distributed database. Beam provides read and write transforms for a 

number of common data storage types but also allows users to implement their own read and 

write transforms. Read transforms read data from a remote source and return a PCollection of 

the data while write transforms write the data of a PCollection to an external data source. Some 

common I/O adapters that work out of the box with Apache Beam are the ones for HDFS, S3 and 

Kafka. 

3.1.5 Windowing 

Windowing is a technique used to subdivide a PCollection according to the timestamps of 
its individual elements. Transforms that aggregate multiple elements, such as GroupByKey and 
Combine process each PCollection as a succession of multiple, finite windows, though the entire 
collection itself may be of unbounded size. However, when working with an unbounded data set, 
it is impossible to collect all of the elements, since new elements are constantly being added and 
may be infinitely many so when working with unbounded PCollections, windowing is especially 
useful. 

In the Beam model, any PCollection can be subdivided into logical windows. Each tuple 
in a PCollection is assigned to one or more windows according to the PCollection’s windowing 
function, and each individual window contains a finite number of elements. However, Beam’s 
default windowing behavior is to assign all elements of a PCollection to a single, global window 
and discard late data, even for unbounded PCollections. Before using a group transform such as 
GroupByKey on an unbounded PCollection, one must perform some extra tasks like setting a 
non-global windowing function and a non-default trigger which in turn allows the global window to 
emit results under other conditions, since the default windowing behavior will never occur. 

After setting the windowing function for a PCollection, the elements’ windows are used the 
next time grouping transform is applied to that PCollection. Window grouping occurs on an as-
needed basis. If a windowing function is set using the Window transform, each element is 
assigned to a window, but the windows are not considered until GroupByKey or Combine 
aggregates across a window and key.  
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Figure 7: Windowing and grouping in succession. 

In the above pipeline, an unbounded PCollection is created by reading a set of key/value 

pairs using KafkaIO and then a windowing function is applied to that collection using the Window 

transform. A ParDo is then applied to the collection and then later the result of that ParDo is 

grouped using GroupByKey. The windowing function has no effect on the ParDo transform 

because the windows are not actually used until they’re needed for the GroupByKey but 

subsequent transforms are still applied to the result of the GroupByKey. 

 
Beam provides several windowing functions, including: 
 

• Fixed Time Windows 

• Sliding Time Windows 

• Per-Session Windows 

• Single Global Window 

• Calendar-based Windows 
 

Fixed time windows are the simplest form of windowing. Using fixed time windows means 
that given a timestamped PCollection each window will capture all elements with timestamps that 
fall into a specified interval, usually defined by some time duration. A fixed time window represents 
a sequence of non-overlapping time intervals in the input data stream whose elements are 
bundled into parallel collections and emitted by default at the end of the time interval. 
 

 
Figure 8: Example of fixed time windows on three different streams. 

 
Sliding time windows represent time intervals in the data stream, but unlike fixed-time 

windows, they can overlap. More specifically each window captures a set amount of data, usually 
specified by a time duration, but at the end of that duration the window is offset by a fixed amount 
of time which is the window period. Because multiple windows can overlap, most elements in a 
data set will belong to more than one window.  
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Figure 9: Fixed time windows. 

 
 

Session windows partition input elements in buckets based on a certain gap duration 
between groups of elements. Session windowing applies on a per-key basis and is useful for data 
that is irregularly distributed with respect to time. If data arrives after the minimum specified gap 
duration time the start of a new window is initiated. This is extremely useful when measuring user 
activity or want to produce as few windows as possible by creating a window after a certain time 
has passed. 

 
Figure 10: Example of a session time window. 

 
 

The single global window is used by default, as all data in a PCollection is assigned to 

that window, and late data is discarded. If user data set is of a fixed size, they can use the global 

window default for their PCollection. The single global window with a default trigger generally 
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requires the entire data set to be available before processing which is not possible with 

continuously updating data. To perform aggregations on an unbounded PCollection that uses 

global windowing, users should specify a non-default trigger for that PCollection. Users are 

advised to be cautious when using the global windowing strategy since, unlike computer memory, 

streams may be infinite. 

 

3.1.6 Watermarks and Triggers 

When collecting and grouping data into windows triggers are used in order to determine 

when to emit the aggregated results of each window, usually referred to as a pane. Using Beam’s 

default windowing configuration and default trigger, Beam outputs the aggregated result when it 

estimates all data has arrived and discards all subsequent data for that window. The user can set 

triggers for their PCollections to change this default behavior.  

 

Beam provides a number of pre-built triggers that users can set. 

 

• Event time triggers are Beam`s default triggers and operate on the event time, as indicated 

by the timestamp on each data element. 

• Processing time triggers operate on the processing time which is the time when the data 

element is processed at any given stage in the pipeline. 

• Data-driven triggers operate by examining the data as it arrives in each window, and firing 

when that data meets a certain property. 

• Composite triggers combine multiple triggers in various ways. 

 

Triggers provide two additional capabilities compared to simply outputting at the end of a 

window. Firstly, Beam is allowed to emit early results, before all the data in a given window has 

arrived which is useful for speculative results. Triggers also allow processing of late data by 

triggering after the event time watermark passes the end of the window. These capabilities allow 

for better control of data and balance between different factors depending on the use case. One 

can also set a trigger for an unbounded PCollection that uses a single global window for its 

windowing function which can be useful when the pipeline needs to provide periodic updates on 

an unbounded data set. 

Event time triggers operates on event time and more specifically the AfterWatermark trigger 

emits the contents of a window after the watermark passes the end of the window based on the 

attached timestamps, which are a global progress metric, and is Beam’s notion of input 

completeness within the pipeline at any given point. In addition, users can configure triggers that 

fire if the pipeline receives data before or after the end of the window. 

Processing time triggers operate on processing time and emit a window after a certain amount 

of processing time has passed since data was received. The processing time is determined by 

the system clock, rather than the data element’s timestamp. There is also the ability for triggering 

early results from a window, particularly a window with a large time frame such as a single global 

window. 
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Data-driven triggers provide one data-driven trigger which works on an element count which 

means it fires after the current pane has collected at least N elements. This allows a window to 

emit early results, which can be particularly useful when using a single global window. 

It is important to note that if the number of elements don’t arrive, those elements will sit around 

forever, therefore consider the use of a composite trigger to combine multiple conditions. This 

allows for multiple firing conditions such as the arrival of a set number of elements or after some 

time. 

Finally, composite triggers allow the user to combine multiple triggers in order to form 

composite triggers, and can specify a trigger to emit results repeatedly, at most once, or under 

other custom conditions. Additional early or late firings can be added as well as a repeating trigger 

which executes forever and any time the trigger’s conditions are met, it causes a window to emit 

results and then resets and starts over. 

Keywords like AfterFirst, AfterAll and orFinally can be used in order to control the trigger 

firing flow. AfterFirst takes multiple triggers and emits the first time any of its argument triggers is 

satisfied which is equivalent to a logical OR operation for multiple triggers. AfterAll takes multiple 

triggers and emits when all of its argument triggers are satisfied. This is equivalent to a logical 

AND operation for multiple triggers. Lastly, orFinally can serve as a final condition to cause any 

trigger to fire one final time and never fire again. 

Another important aspect of window triggering is the window accumulation mode which 

controls what part of the window contents are emitted when a trigger fires. Since a trigger can fire 

multiple times, the accumulation mode determines whether the system accumulates the window 

panes as the trigger fires or simply discards them after firing. The user can set a window to 

accumulate the panes that are produced when the trigger fires via accumulatingFiredPanes() 

when they set the trigger or discard the fired panes by invoking discardingFiredPanes() on the 

trigger. These modes are extremely important when using accumulators on windowed collections. 
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4. Platform implementation and metrics collection 

 In this section we present the structure of the proposed platform and the structure of the 

individual subsystems that our platform comprises of. More specifically we describe the process 

of collecting and analyzing metrics from various stream processing frameworks and how they are 

used to affect the decision making of queries. We also touch on the data preprocessing steps that 

take place in the Kafka Streams application, its topology and communication mechanisms with 

other parts of the platform. Finally, we present the Beam pipeline which was used to implement 

five join queries in order to test the effectiveness of our decision-making algorithm in different 

platforms by using Beam Runners. The goal of the proposed platform is to asses which queries 

should be sent to the available frameworks in order to optimize throughput and latency. 

4.1 Kafka Streams topology 

 A Kafka Streams application is the first module of our pipeline and is mainly used for data 

preprocessing and routing. The topology of the application is quite simplistic but requires a high 

degree of parallelism with fault tolerant semantics and Kafka I/O adapters working out of the box, 

a use case that suites well Kafka Streams.  

The ingestion process begins with a set of incoming data streams of key-value pairs 

entering the Kafka pipeline via a Kafka consumer, all of which are evenly load balanced across 

the application parallel instances. Incoming tuples are then forwarded to a Kafka Streams 

Transformer which keeps a local sample of tuple keys and immediately forwards the tuples to the 

correct Kafka Topic according to the active queries at the processing time. We should also 

mention that each beam runner has one dedicated topic for incoming tuples, therefore when a 

new query arrives and it is decided that a specific framework must execute that query, Kafka 

Streams simply routes incoming tuples to the corresponding topic. New queries are broadcasted 

periodically to the application by a different module of our platform which is discussed in the 

following section but the important think to note is that our Kafka Streams application reroutes 

incoming traffic based on the incoming queries. 

The application also contains a very simplistic REST API which can be used by the parallel 

instances of the Kafka Streams application in order to exchange messages and requests. Since 

the transformer can sample the keys of the stream partition it has been assigned, we can use the 

REST API to combine the local samples from each transformer in order to produce a global 

sample of the incoming data streams which can later be used to extract useful information about 

the data skew and size. In order to achieve something like that we use a distributed sampling 

algorithm with a reservoir that takes into account the size of the input streams and works in 2 

passes, it can be found in the following section. 
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Figure 11: Kafka topics and the proposed Kafka Streams topology. 

 

4.1.1 Reservoir sampling 

 Reservoir sampling is a family of randomized algorithms for randomly choosing a sample 

of 𝑘 items from a list S of 𝑛 items, where 𝑛 is either very large or unknown. After the sampling, 

each item in the list should have equal probability of 𝑘/𝑛 being chosen. The original sampling 

algorithm with a reservoir is called algorithm R [5] and is as follows:  

 

 

 
Figure 12: Algorithm R pseudocode. 

 

In many applications the amount of data needed from a small sample is too large and it is 

desirable to distribute sampling tasks among many machines in parallel in order to speed up the 

process, therefore a parallel version of the algorithm R is necessary. Without loss of generality, 

let us assume there are two sub-streams of size 𝑚 and 𝑛 respectively where both 𝑚 and 𝑛 are 

greater than 𝑘.  
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In the first step of the algorithm, workers process their own sub-streams in parallel, using the 

standard algorithm R. When both workers finish their sub-stream traversal, two reservoir lists R 

and S are created. In addition, both workers count the number of items in their own sub-streams 

during the traversal, and thus m and n are known when R and S are available. 

The following step required us to combine the two reservoir lists to get 𝑘 items out of them. 

To achieve this, weights are assigned to items according to the sizes of their sub-stream and then 

proceed to a second sampling phase. The second phase requires 𝑘 iterations for the sampling to 

complete, as many as the number of maximum items that will be in the final sample. Every 

iteration starts with generating a random number between 0 and 1 such that, with probability  

𝑝 =  𝑚/(𝑚 + 𝑛), a random sample from reservoir list R is picked, and with probability 1 − 𝑝, a 

random sample from reservoir list S is picked instead. At the end of the kth iteration a final reservoir 

list for the entire stream has been created.  

This algorithm is described as follows: 

 

 

Figure 13: Distributed Algorithm R pseudocode. 

In each iteration of the second phase any item in the entire stream has probability of 1/(𝑚 +

𝑛) being chosen, therefore any item has probability of 𝑘/(𝑚 + 𝑛) being chosen and thus the 

algorithm generates 𝑘 random samples. The algorithm runs in 𝑂(𝑚𝑎𝑥(𝑚, 𝑛)) time since the 

algorithm can pick at most 𝑚𝑎𝑥(𝑚, 𝑛) items at random from the two lists. The space complexity 

is 𝑂(𝑘) because only a sample of at most 𝑘 items is kept in-memory at any time.  

Implementing this distributed algorithm in a Kafka Streams application is quite simple as the 

number of parallel workers is defined by the number of application parallel instances and the 

stream samples and their respective sizes can be sent via the REST API of each instance. We 

should also mention that each parallel instance is aware of other parallel instances and can 

retrieve their IP and port on demand. At the moment the partial samples are gathered on the first 

parallel instance where the second phase of the distributed algorithm takes place. Finally, the 

sample can be made publicly available with the REST API for other parts of our platform to use. 
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4.2 Statistics and query assignment 

In order for our platform to effectively assign queries to available frameworks a wide variety 

of statistics and available metrics is taken into account. The Controller module is assigned that 

task along with deciding what query each available framework will execute. We will now briefly 

explain the metrics and statistics the Controller module is capable of collecting. 

4.2.1 Metrics and statistics acquisition 

To start with, most stream processing frameworks expose a REST API with some 

available processing metrics which the user can query via GET and POST requests. Furthermore, 

most stream processing frameworks also provide statistics for their operators as well as their 

health, work load and processed tuples. Finally, resource managers (RMs) like YARN can also 

provide useful information about the available frameworks usually regarding their allocated 

resources like memory, available cores, CPU clocks and uptime. The full list of metrics provided 

by the frameworks and RMs is the following: 

 

➢ Apache Spark Master 

• Job start, elapsed and end time. 

• Number of Job attempts and current status. 

• Statistics for each batch: 

▪ ID and status. 

▪ Start, elapsed and finish time. 

▪ Input size. 

▪ Active and completed output Ops. 

▪ Scheduling, processing and total delay. 

• Statistics for each executor: 

▪ ID, port and activity status. 

▪ Number of CPU cores, RAM size and disk usage. 

▪ Number of active tasks and RDD blocks. 

▪ GC time. 

▪ Total Input, output and Shuffle R/W bytes. 

▪ Total/Used on/off heap memory. 

• Statistics for each Stage: 

▪ ID and status. 

▪ Number of active tasks. 

▪ Input and output bytes. 

▪ Shuffle R/W bytes and R/W records.  

▪ Bytes spilled in disk. 

▪ Names and values of accumulators. 

• Statistics for each Streaming Receiver: 

▪ Start, elapsed and finish time. 

▪ Batch duration. 

▪ Number of active, inactive, total, completed receivers. 
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▪ Number of active and completed batches. 

▪ Average scheduling, processing and total delay time. 

➢ Apache Flink Job Manager 

• Job id, name and status. 

• Start, elapsed and finish time. 

• Statistics for each Job Plan Node (per stream operator): 

▪ Node ID, status and operator name. 

▪ Parallelism. 

▪ Inputs, outputs and shipping strategy. 

▪ Number of R/W records and bytes. 

▪ Health and Backpressure status. 

▪ Number of tasks. 

▪ Accumulator values. 

▪ Statistics for each operator task: 

• Record throughput (avg, min, max, 75th and 99th percentiles) 

• Byte throughput (avg, min, max, 75th and 99th percentiles) 

• Record latency (avg, min, max, 75th and 99th percentiles) 

➢ YARN Master 

• Application start, elapsed and finished time. 

• Application progress, priority and requested resources. 

• Container memory size, cores and virtual cores. 

• Node CPU clocks, memory size, running application and its requested resources. 

• UI address. 

• User id, name and history. 

 

 

Although RMs and stream processing frameworks can provide a variety of useful metrics 

sometimes they are not enough. Our platform produces also provides some metrics data 

normality metrics generated from the Kafka Streams sampling routines as discussed in the 

previous section. More specifically, the skewness and kurtosis of incoming tuple keys are 

calculated and taken into account when assigning queries. 

In statistics, skewness is a measure of the asymmetry of the probability distribution of a 

random variable about its mean. The skewness value can be positive, negative, or even undefined 

and f skewness is 0 the data are perfectly symmetrical.  

 

 
Figure 14: Data skew of random variable x 
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Figure 15: Examples of skewed distributions. 

 

 

Kurtosis provides information about the height and sharpness of the central peak, 

relative to that of a standard bell curve. 

 

 
Figure 16: Kurtosis of random variable x. 

 

 
Figure 17: Different values of Kurtosis. 

 

Finally, Apache Kafka and Apache beam both provide metrics related to their work-load 

like tuple latency and throughput. However, Beam relies on the underlying runner to provide 

available metrics to the user meaning that some runners can’t provide pipeline metrics in real-

time and sometimes such metrics are not supported by the runner entirely. 
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Figure 18: Overview of the Controller sub-module. 

 

4.2.2 Query assignment 

 After gathering various statistics and metrics our proposed platform is capable assigning 

queries to available frameworks based on a strategy. Although there are many ways to assign 

queries to frameworks, especially given the volume of available metrics, we propose and evaluate 

three.  

Firstly, the Round Robin strategy simply assigns incoming queries to frameworks in a 

round robin fashion without taking into consideration any of the available metrics. The second 

proposed strategy consists of every query being sent to the Apache Flink framework, again 

without considering any available metric. Finally, a strategy which considers the value of every 

metric collected by our platform and also takes into account previously executed queries is the 

LSH strategy. LSH stands for Locality Sensitive Hashing [6] which is a technique that allows one 

to find similar entries in large datasets and has been successfully applied to various fields such 

as biology, weather forecasting, video editing and more. This strategy aims to match new queries 

to frameworks that have previously executed the same queries while having similar metrics and 

statistics (e.g. similar skewness and latency). This strategy, however, requires us to keep a list of 

previously executed queries and their respective statistics. 

LSH is based on the idea that if two multi-dimensional points are close together then after 

a “projection” operation these two points will remain close together. More specifically, a random 

projection maps a data point from a high-dimensional space to a lower-dimensional subspace. 

The projection operation can be a simple scalar projection given by ℎ(�⃗� ) = �⃗� ∙  𝑥  where �⃗�  is a high 

dimensional vector and 𝑥  is a vector with components selected from the random Gaussian 

distribution ~𝑁 (0,1). This scalar projection is then quantized into a set of hash bins, with the 

intention that nearby items in the original space will fall into the same bin.  
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The resulting full hash function is:  

 

ℎ𝑥,𝑏(�⃗� ) =  ⌊
𝑥  ∙ �⃗�  + 𝑏 

𝑤
⌋ 

 

 

In the previous formula w is the width of each quantization bin and b is a uniformly distributed 

variable between 0 and w.  

 

 
Figure 19: Projections of 2 close circles and 2 distant squares projected in this paper surface. 

 

 In order to implement LSH we need to convert the list of statistics for each previous query 

to a multi-dimensional vector with each statistic occupying exactly one component of this vector. 

Furthermore, frameworks can have different vector sizes since most some frameworks provide 

more statistics than others, therefore each framework must keep a list of their past queries and 

their respective metrics. When a new query arrives, the Controller module uses LSH to perform 

a k-NN search of the current query with a vector of the current statistics in every framework list in 

order to retrieve similar queries. If more than one results are returned our proposed strategy 

dictates that we pick the one that has the minimum latency. 

4.3 Apache Beam pipeline and Runners 

 In order to test the effectiveness of our query assignment strategies we created a simple 

pipeline on Apache Beam which can execute 5 similar queries. The pipeline begins by reading 

data from two Kafka topics that contain tuples from two different data streams. Incoming tuples 

contain key-value pairs that consist of the join key, their respective values and a list of queries 

this tuple belongs in. We then split this tuple into multiple ones based on the number of its query 

IDs and create a composite key on each one that consists of its query ID and the original join key 

followed by the original tuple value. The following figure provides a good example. 
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Figure 20: Extraction of query IDs. 

 

 

After that, the two data stream results are windowed using the same window function in 

order to produce finite batches of data. After that a CoGroupByKey (CGBK) transform takes place 

that groups all key-value pairs with the same composite key together with a DoFn that provides 

access to all sets of values sharing the same composite key, thus simplifying the process of 

implementing the JOIN queries tremendously. After isolating the set of values per unique 

composite key we apply a Join algorithm based on the query ID derived from the composite key. 

Finally, after the correct query is executed the key-value pairs are emitted to a Kafka sink.  

 

 

 
Figure 21: CGBK and Join operations. 

 

 

Information about the number of tuples and their time spent inside our platform is also 

sent to the Controller module via an intermediate Kafka topic periodically. The following Join 

Algorithms where implemented in the Beam pipeline and perform a relational join between the 

relations R and S: 
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Inner Join 

  For each tuple r in R do 

     For each tuple s in S do 

        If r.key = s.key: 

           output the tuple <r,s> 

 

Full Outer Join 

 If S is empty: 

    For each tuple r in R do 

       output the tuple <r,null> 

 Else if R is empty: 

    For each tuple s in S do 

       output the tuple <null,s> 

 Else:  

     For each tuple r in R do 

      For each tuple s in S do 

           If r.key = s.key: 

            output the tuple <r,s> 

 

 

Stream Semi Join  

   For each tuple r in R do 

     For each tuple s in S do 

        If r.key = s.key: 

           output the tuple <r,null> 

 

Left Outer Join 

   For each tuple r in R do 

     For each tuple s in S do 

        If r.key = s.key: 

           output the tuple <r,s> 

  Else: 

     output the tuple <r,null>   
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Right Outer Join 

  For each tuple s in S do 

     For each tuple r in R do 

        If r.key = s.key: 

           output the tuple <r,s> 

  Else 

     output the tuple <null,s> 
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5. Experimental Evaluation 

 In this chapter we present the results of our experiments and evaluate the performance of 
the Apache Beam Runners that were used. The framework group consists of Apache Spark, 
Apache Flink and Apache Apex, three frameworks that can handle streaming workloads under 
Apache Beam dataflow [7] pipelines. We start by analyzing the settings and parameters that were 
used to create a small cluster for each framework with the assistance of YARN and Flink’s Job 
Manager. Moreover, we describe how our Kafka Streams application was designed and deployed 
in order to handle the input data streams without problems.  
 Our distributed experiments provide results for throughput and latency for many scenarios 
that involve two data streams with tuples from the public dataset of Fares and Taxis [8]. The first 
scenario tests the scalability of our Kafka Streams’ application latency for various numbers of 
parallel instances. Scalability, experiments are also carried out for each framework (Spark, Flink 
and Apex) and provide results for the latency and throughput of each framework for varying 
degrees of parallelism and input stream rates.  
 Finally, throughput and latency experimental results are shown for each strategy for 
constant degree of parallelism and varying input stream rates. This group of experiments can help 
us draw conclusions regarding the effectiveness of our proposed strategies and how well each 
framework performed. 

5.1 Cluster Setup 

 In order to run our experiments a small cluster for each framework has to be created. The 

high-level API of Apache Beam [9] generates a pipeline that can be ran n Apache Flink, Apache 

Spark and Apache Apex [10] as well as pass extra arguments to the underlying distributed 

backends like memory size and the number of CPUs to use. Apache Flink has its own Job 

Manager [11] that controls the number of task-slots each application receives in order to execute 

its pipeline. Apache Spark and Yarn use YARN [12] as a resource manager and their configuration 

settings go through the YARN master before any container is started. All of the Flink, Spark and 

Apex configuration properties (like memory size) are provided through the Beam high-level API 

as program arguments.  

 Regarding the framework-specific configurations it’s important to mention that in order for 

Apache Spark (in streaming mode) to achieve a stable rate of incoming and outgoing records the 

batch size was increased to 5 seconds. Furthermore, the time spent reading incoming data in the 

pipeline sources were increased to 20% of the total batch time and the Spark cache was disabled 

entirely. Finally, the backpressure mechanisms were activated in order to stabilize the latency 

fluctuations when under high load. The reason we had to intervene and change some of Spark’s 

internals was because the Kafka consumer and producers were performing poorly with the default 

settings which is expected since Apache Spark is not a pure streaming platform.  

 During the experiments a predefined set of queries was executed. Although that set was 

randomly generated with each query having an equal probability of being chosen that list was 

kept the same during different experiments to ensure fairness. That list contains a total of 135 

queries, each with 20 seconds of execution time, and begins with a set of all 5 queries being 

sequentially executed 3 times in every framework regardless our strategy in order to warm up the 

platform, gather some initial statistics and allow the streaming frameworks to start processing 

incoming streams smoothly. Following this set of warm-up queries 3 additional sets of queries 
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have to be assigned to the available at the time frameworks based on a predefined strategy. The 

1st set contains 15 queries and each one will be executed once in a framework that will be decided 

by the strategy at the time of arrival while the rest of the frameworks stay inactive. The 2nd set 

consists of 45 queries but unlike the 1st set these queries are assigned three at a time which 

means that every framework will be assigned exactly one query each time. The 3rd and final set 

consists of 75 queries that will have to be assigned 5 at a time which means that one or more 

frameworks will be assigned multiple queries at a time. All queries are executed for 20 seconds. 

 

  

Information about the framework-specific configuration properties: 

 

➢ Apache Beam (version 2.10.0) 

• --embeddedExecution=false (Apex only) 

• --readTimePercentage=0.2 (Spark only) 

• --batchIntervalMillis=5000 (Spark only) 

• --cacheDisabled=true (Spark only) 

➢ Apache Spark (version 2.3.0) 

• spark.streaming.backpressure.enabled=true 

• spark.scheduler.listenerbus.eventqueue.capacity=100000 

• spark.executor.heartbeatInterval=20 

• spark.memory.fraction=0.6 

• spark.executor.extraJavaOptions=-XX:+UseCompressedOops -XX:+UseG1GC 

➢ Apache Apex (version 3.6.0) 

• apex.application.*.operator.*.attr.TIMEOUT_WINDOW_COUNT=1200 

➢ Apache Flink (version 1.6.0) 

• --filestToStage was explicitly set to the fat jar of Flink Runner. 

 

Windowing configuration options in Beam pipelines: 

• Window length: 5 sec. 

• Window strategy: Fixed time window. 

• Window allowed delay: 0 sec. 

• Window trigger: Event Time trigger. 

 

 

The following tables contains information about the nodes used in the experiments followed 

by a list of the Kafka topics. 

 
Table 1: YARN containers and Flink resources used in the distributed experiments. 

Nodes CPU Model CPU cores (per Node) RAM (per Node) 

1 Job Manager Intel Xeon E5-2430 4 2GB 

4 Task Managers Intel Xeon X3323 4 4GB 

8 YARN Containers Intel Xeon X3323 4 4GB 
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Table 2: Topics used during experimental evaluation. 

Name Partitions Description 

Spark 1 16 Streamed relation A of Apache Spark (used in JOINs). 

Spark 2 16 Streamed relation B of Apache Spark (used in JOINs). 

Flink 1 16 Streamed relation A of Apache Flink (used in JOINs). 

Flink 2 16 Streamed relation B of Apache Flink (used in JOINs). 

Apex 1  16 Streamed relation A of Apache Apex (used in JOINs). 

Apex 2 16 Streamed relation B of Apache Apex (used in JOINs). 

Data 1 6 Incoming data stream with information about taxis. 

Data 2 6 Incoming data stream with information about fares. 

Queries 16 Join queries that will be assigned to a framework. 

Output 48 Topic used by every framework as a sink. 

Latency 1 Beam sink for latency metrics. 

Throughput 1 Beam sink for throughput metrics. 
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5.2 Scalability 

In this section we perform experiments with varying degrees of parallelism in the Kafka 

Streams application and all of the Apache Beam runners to prove the scalability of our modules. 

The notation [𝑥, 𝑦] implies a set of parallelism degree and input stream rate respectively. 

 

 

 
Figure 22: The processing latency of the Kafka Streams application for different number of parallel instances and 

input stream rates. 
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Figure 23: Spark runner throughput for varying parallelism degrees and stream rates. 

 

 
Figure 24: Spark runner latency for different sets of parallelism degrees and stream rates. 
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Figure 25: Flink Runner throughput for varying parallelism degrees and stream rates. 

 

 

 

 
Figure 26: Flink Runner latency for different sets of parallelism degrees and stream rates. 
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Figure 27: Apex Runner throughput for varying parallelism degrees and stream rates. 

 
 
 
 
 

 
Figure 28: Apex Runner latency for different sets of parallelism degrees and stream rates. 
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5.3 Strategy comparison 

 In this section we evaluate the performance of the three strategies, as discussed in the 

previous chapter, under input streams with different rates. The latency values of each strategy 

are determined by the framework the current query is assigned on, meaning that a strategy 

which changes frameworks quickly will also quickly change latency values as well. 

 

The strategies: 

• Round robin (RR) 

• Flink only (Flink) 

• Nearest Neighbor with Lowest Latency (NN-LL or NN)   

 

It’s important to note that the latency axes are in logarithmic scale and that the title of each 

graph has the format {Metric} – {Input stream rate in messages per second}. 

 

 

 
Figure 29: Strategy latencies under input stream rate of 500 msg/s. 
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Figure 9: Strategy latencies under input stream rate of 1000 msg/s. 

 

 

 
Figure 30: Strategy latencies under input stream rate of 2000 msg/s. 
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Figure 31: Strategy latencies under input stream rate of 5000 msg/s. 
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Figure 32: Average latency for each strategy under various stream rates. 

 

 
Figure 35: Average throughput for each strategy under various stream rates. 

25759 26644
53523

148821

3401 3476 3367 3443
1629

2716 3429 3400

1

10

100

1000

10000

100000

1000000

500 1000 2000 5000

L
at

en
cy

 (
m

s)

Input Stream  Rate (msg/s)

Average Latency

RR Flink NN

456

907

1744

2015

488

979

1993

4905

485

975

1990

4885

400

4000

500 1000 2000 5000

T
h

ro
u

gh
p

u
t 

(m
sg

/s
)

Input Stream Rate (msg/s)

Average Throughput

RR Flink NN



39 

6. Conclusions and Future Work 

 This thesis proposed a platform that for cross-platform query optimization that assigns 

queries to various frameworks based on a variety of available metrics and statistics.  

The first module of our platform consists of a Kafka Streams application where incoming 

data streams are sampled before being sent to a framework based on active queries and available 

statistics. Our Kafka Streams application is scalable, processes tuples at low-latency, has fault-

tolerant semantics and can easily aggregate information from its parallel instances. Experiments 

show that tuple processing latency decreases when more parallel instances are added to the 

Kafka Streams topology. 

 Another module of our platform is the Apache Beam dataflow pipeline which can 

seamlessly be executed on a number of distributed backends. The Beam pipeline contains the 

implementation of the join queries and will be executed on the backend of our choice. The Apache 

Beam runners carry out the task of transforming the high-level Beam pipeline to a DAG that will 

be executed on a distributed environment. However, not every runner performs well, especially 

when it comes to stream workloads. Experimental evaluation shows that the Spark runner 

performs poorly when faced with stream workloads since its stream ingestion rate doesn’t scale 

well and its latency although stable is still high. Apache Flink on the other hand performs quite 

well since the experiments show stable and low-latency under varying input stream rates while 

maintaining a high stream ingestion rate. Finally, Apache Apex performs better than Apache Flink 

on input streams with low rate but its performance gradually degrades as the input stream rates 

rise. However, it’s input stream ingestion rate is still on par with Apache Flink’s. 

The final module of our proposed platform is the Controller, an application that collects 

available metrics from frameworks, Kafka application instances and Resource managers in order 

to effectively assign queries to available frameworks. The proposed strategies provide some 

interesting results. The 1st strategy (round robin) is proven to be the worst one as it underperforms 

in both latency and throughput under every input stream rate and is therefore not recommended. 

The main reason behind the weak performance of the first strategy is that it takes no available 

metrics under consideration and therefore assigns queries to Apache Spark which is proven to 

be the worst Beam Runner for this set of queries. The 2nd strategy assigns queries only to Apache 

Flink while the 3rd uses locality sensitive hashing (LSH) to find previous queries that performed 

well under similar circumstances. Although the 2nd strategy doesn’t take into account any of the 

available metrics it still performs quite well, especially on higher input stream rates. However, the 

3rd strategy exhibits lower latency values on lower input stream rates while maintaining almost the 

same performance with the 2nd strategy on higher input stream rates, therefore the 2nd strategy is 

recommended.  

 Although our proposed platform performed well and experiments showed its advantages, 

it is important to acknowledge that there are things that can be improved in future work. Starting 

with the number of Apache Beam runners, in the future we could experiment with more 

frameworks and see if they produce better results. We could also expand the set of queries since 

currently the number of supported queries is still low. Furthermore, we could also gather more 

metrics either from stream samples or from framework and resource manager APIs. On that note, 

the distributed stream sampling algorithm can be improved by using a more modern sampling 

algorithm with better time and space complexity. Finally, the workload assessment and the 
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decision-making of the query assignments can be significantly improved by implementing a more 

sophisticated algorithm and maintaining a different model. 

 

 

 

 

  



41 

References 
 

[1]  "Apache Kafka," [Online]. Available: kafka.apache.org. 

[2]  "Beam Guide," [Online]. Available: https://beam.apache.org/documentation/programming-

guide/. 

[3]  Zaharia, Matei & Chowdhury, Mosharaf & J. Franklin, Michael & Shenker, Scott & Stoica, 

Ion. (2010). Spark: Cluster Computing with Working Sets. Proceedings of the 2nd USENIX 

conference on Hot topics in cloud computing. 10. 10-10. 

[4]  Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., & Tzoumas, K. (2015). 

Apache Flink™: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull., 

38, 28-38. 

[5]  J. S. VITTER, "Random Sampling with a Reservoir," ACM Transactions on Mathematical 

Software, Vol. 11, pp. 37-57, March 1985.  

[6]  M. C. Malcolm Slaney, "Locality-Sensitive Hashing for Finding Nearest Neighbors," IEEE 

SIGNAL PROCESSING MAGAZINE, pp. 128-131, March 2008.  

[7]  T. Akidau, "The Dataflow Model".Proceedings of the VLDB Endowment, Vol. 8, No. 12.  

[8]  Kaggle, [Online]. Available: https://www.kaggle.com/dster/nyc-taxi-fare-bigquery-dataset. 

[9]  "Apache Beam Documentation," Apache Software Foundation, [Online]. Available: 

https://beam.apache.org/documentation/. 

[10]  "Apache Apex Documentation," Apache Software Foundation, [Online]. Available: 

https://apex.apache.org/docs.html. 

[11]  "Apache Flink Documentation," Apache Software Foundation, [Online]. Available: 

https://ci.apache.org/projects/flink/flink-docs-stable/release-notes/flink-1.6.html. 

[12]  "YARN Documentation," [Online]. Available: https://yarnpkg.com/lang/en/docs/. 

 

 

 


