
i

Technical University of Crete

Electrical and Computer Engineering

Cross-Platform Query Optimization on

Apache Beam

by Giorgos Stamatakis

Thesis Committee:

Prof. Antonios Deligiannakis (Supervisor)

Prof. Minos Garofalakis

Prof. Vasilis Samoladas

ii

Abstract

We live in an era where the rapid growth of data streams both in complexity and velocity

introduce new challenges on a daily basis. These streams can be infinite, emit data at high-speeds

and can be generated by non-stationary distributions, thus a modern approach is required when

performing complex queries over such streams. Since modern Big Data stream processing

frameworks are evolving rapidly, high-level languages and abstractions are necessary in order to

provide support for increasingly complex queries. Query processing however, requires a high-

level language be translated into a set of low-level data manipulation operations and on top of

that producing an optimal plan for the given query can be extremely difficult as it requires

minimizing costs based on available statistics. The objective of query optimization is to maximize

(or minimize) metrics like throughput and latency which are vital to the performance of a stream

processing system but in order to do so effectively a framework needs to track a wide variety of

performance metrics of components inside and outside its cluster. Metrics can include the health

and utilization of the stream pipeline operators, network speed and performance, hardware

statistics of each cluster node and finally information about incoming data streams like skew,

throughput and tuple size.

 In this thesis we propose a high-level real-time query optimization platform that collects

various statistics from modern stream processing frameworks and based on the requested

queries each one is assigned on the most suitable framework. Such strategies aim to combine

the metrics and statistics collected by our platform, both past and present, in order to correctly

match queries to available frameworks. Our proposed platform consists of three main modules,

the first of which is responsible for gathering available metrics from resource managers and

available frameworks. The second module consists of a data ingestion Kafka Streams application

that allow us to perform distributed sampling over incoming data streams and provide us with

information related to incoming data streams, like skew and throughput. Finally, based on the

available metrics each query is assigned to a framework running a pipeline designed on Apache

Beam, a framework allowing us to write high-level code that can be executed in a variety of Big

Data frameworks with ease.

 Experimental results prove that the gathered statistics improve query assignments as well

as overall performance metrics like throughput and latency. Furthermore, increasing the

parallelism level of frameworks yields better results as higher rates of data can be ingested by

the stream processing frameworks. Finally, experimental evaluation shows that different

strategies may work better under certain conditions.

iii

Acknowledgements

I would like to thank my supervisor Prof. Antonios Deligiannakis for the help and feedback he

eagerly provided as well as the rest of the thesis committee Prof. Vasilis Samoladas and Prof.
Minos Garofalakis for their support. I would also like to thank my friends and family for their
encouragement and support over the years.

iv

Table of contents
Abstract... ii

Acknowledgements .. iii

List of figures ... vi

1. Introduction ..1

1.1 Thesis Outline ...2

2. Apache Kafka ..3

2.1 Overview ...3

2.2 Records ..3

2.3 Topics ...3

2.4 Partitions ...4

2.5 Replication and fault-tolerance ..4

2.6 Producers ...4

2.7 Consumers ...5

2.8 Kafka Streams ..5

2.8.1 Architecture ...5

2.8.2 State stores ...6

3. Stream processing ..7

3.1 Apache Beam ...8

3.1.1 Overview ..8

3.1.2 Parallel Collections ..9

3.1.3 Transformations ...9

3.1.4 Beam I/O ..12

3.1.5 Windowing ..12

3.1.6 Watermarks and Triggers ...15

4. Platform implementation and metrics collection ...17

4.1 Kafka Streams topology ...17

4.1.1 Reservoir sampling ...18

4.2 Statistics and query assignment ..20

4.2.1 Metrics and statistics acquisition ...20

4.2.2 Query assignment ..23

4.3 Apache Beam pipeline and Runners ..24

5. Experimental Evaluation..28

v

5.1 Cluster Setup ...28

5.2 Scalability ..31

5.3 Strategy comparison ..35

6. Conclusions and Future Work ...39

vi

List of figures

Figure 1: A Kafka Topic with 3 partitions with new records being added.4

Figure 2: Two Kafka producers with two uneven consumer groups. ..5

Figure 3: A stream with two topics and two stream tasks. ...6

Figure 4: Two stream tasks with their dedicated local state stores. ...6

Figure 5: Event, Ingestion and Processing times. ..7

Figure 6: Transform chaining of an input parallel collection. ..10

Figure 7: Windowing and grouping in succession. ...13

Figure 8: Example of fixed time windows on three different streams. ..13

Figure 9: Fixed time windows. ...14

Figure 10: Example of a session time window. ..14

Figure 11: Kafka topics and the proposed Kafka Streams topology. ..18

Figure 12: Algorithm R pseudocode. ...18

Figure 13: Distributed Algorithm R pseudocode. ...19

Figure 14: Data skew of random variable x ...21

Figure 15: Examples of skewed distributions...22

Figure 16: Kurtosis of random variable x. ..22

Figure 17: Different values of Kurtosis...22

Figure 18: Overview of the Controller sub-module. ...23

Figure 19: Projections of 2 close circles and 2 distant squares projected in this paper surface. 24

Figure 20: Extraction of query IDs. ..25

Figure 21: CGBK and Join operations. ..25

Figure 22: The processing latency of the Kafka Streams application for different number of

parallel instances and input stream rates. ...31

Figure 23: Spark runner throughput for varying parallelism degrees and stream rates.32

Figure 24: Spark runner latency for different sets of parallelism degrees and stream rates.32

Figure 25: Flink Runner throughput for varying parallelism degrees and stream rates.33

Figure 26: Flink Runner latency for different sets of parallelism degrees and stream rates.33

Figure 27: Apex Runner throughput for varying parallelism degrees and stream rates.34

Figure 28: Apex Runner latency for different sets of parallelism degrees and stream rates.34

Figure 29: Strategy latencies under input stream rate of 500 msg/s. ...35

Figure 30: Strategy latencies under input stream rate of 2000 msg/s.36

Figure 31: Strategy latencies under input stream rate of 5000 msg/s.37

Figure 32: Average latency for each strategy under various stream rates.38

1

1. Introduction

In the current day and age, the volume and velocity of generated information is increasing
rapidly and on a daily basis while demands for accurate and real-time analytics are becoming
more and more necessary. Sources that produce high speed data streams can be financial
transactions, IoT sensors, click streams and various embedded systems all of which produce data
that needs to be cleansed, stored and finally processed in order to extract valuable information.
To perform a task like that a number of stream processing frameworks and middleware are used
in order to provide guarantees over the speed and correctness of the various computations.
 Stream processing frameworks are developed with having in mind unbounded data
sources that emit data at varying rates and volumes. Processing of ingested data is done in a fully
distributed environment with semantics that include various fault tolerant mechanisms and
fallback scenarios in order to ensure that data is never lost. Due to the size and speed of such
data streams as well as the distributed nature of the stream processing frameworks, queries
usually consist of simple transformations that execute one-pass algorithms over incoming data
before sending the results downstream. Environments like these usually express queries in the
form of a directed acyclic graph (DAG) with stream operators as nodes and data streams as
edges. The process of translating user code to a DAG can be a complex and lengthy process that
involves multiple optimization steps and techniques as in order to maximize the efficiency of a
stream processing pipeline an optimizer needs to take into account available statistics and metrics
of both incoming and outgoing data. Finally, depending on the architecture of each framework
each query can be translated into different low-level operations which best suit their available
resources and statistics, which can result into the same query being executed faster and more
efficiently in some frameworks under specific circumstances (e.g. skewed data).
 A stream processing framework can gather statistics from incoming streams like
throughput and latency as well as estimates about the distribution of data. Sampling mechanisms
can also be employed in order produce summaries of incoming data that can provide information
like skewness and cardinality. Furthermore, most stream processing frameworks and resource
managers provide information for each of their nodes that can include hardware and network
statistics which in turn helps users determine the quality and performance of their distributed
algorithms. Depending on the framework a variety of statistics can be acquired for stream
operators and their parallel instances that usually includes latency, throughput, rate of incoming
and outgoing tuples and backpressure status, all of which can usually be provided for each
operator instance or operator task. In conclusion, each stream processing framework handles
queries differently depending on its architecture, the work load and available statistics which
results in some queries performing significantly better on specific frameworks.
 What we propose is a platform that assigns queries to a number of stream processing
frameworks in order to increase performance based on available metrics and statistics. Since
Apache Beam was used to generate high-level code that can be then ran on a variety of
frameworks, also known as runners, for this thesis three stream processing frameworks were
used in order to demonstrate our platform’s capabilities: Apache Spark, Apache Flink and Apache
Apex. The first part of our platform consists of an application that monitors every available
framework and resource manager with the goal of collecting statistics and metrics from various
public APIs, a process which will play a vital role later on with query assignments. The second
part of the pipeline consists of a Kafka Streams distributed application with queryable state that
acts as an ingestion mechanism which can also perform sampling on incoming data streams.
More specifically this application monitors the size and speed of incoming data streams but also
performs various normality tests over the ingested data stream all of which can be accessed via
a REST API from other parts of the pipeline. When a new query arrives, our platform decides

2

what the most suitable framework will be, based on available statistics, and assigns the query to
the respective framework. The third and final part of our platform consists of Apache Beam
pipelines that run separately on all of our frameworks and each time a query is assigned to one
of them data streams from the Kafka application are redirected to that pipeline. Furthermore, the
act of assigning queries to frameworks consists of gathering some available at the time statistics
into a multi-dimensional vector and then performing nearest neighbor queries in order to retrieve
vectors of similar past queries that yielded the optimal results. Finally, when a number of similar
past queries have been found one can chose to execute the query on the framework that yielded
the best results according to their use case, i.e. the query that maximized (or minimized) their
desired performance metrics.

1.1 Thesis Outline

 In chapter 2, a description of the Apache Kafka middleware and the Kafka Streams

application are given, briefly explaining their key features that will play a vital role in our proposed

platform. Moreover, the distributed nature and stateful operations will also be discussed and

compared with features that similar frameworks provide.

 In chapter 3, the dataflow model is briefly explained along with some of its strengths and

weaknesses. Furthermore, an introduction to Apache Beam will cover concepts that will be used

when developing pipelines for other stream processing frameworks, also some core

transformations and operators will be discussed.

 During chapter 4 we will expand on how our platform collects statistics and other vital

information in order to efficiently assign queries to available frameworks. During this chapter we

will also explain how individual subsystems are combined in order to create a platform for efficient

cross platform query optimization. More specifically, we explain how the Kafka Streams

application performs distributed sampling efficiently, what statistics are collected and how

decision-making is affected. Furthermore, we explain how decision-making works and more

specifically the clustering algorithm that is used to find past queries with similar statistics that

performed well in order to assign each query to the best available framework. Finally, we discuss

about how the queries are implemented on Apache Beam and how our platform leverages Kafka

pub/sub distributed queues to deliver data-streams and queries to the optimal at the time

framework.

 Chapter 5 consists of experimental evaluations and results from various work-loads,

frameworks and degrees of parallelism. Results show how throughput and latency change for

varying degrees of parallelism and work-load. Lastly, we provide an example of Apache Beam

direct-runner and how it enables the integration of more specialized hardware into stream

processing pipelines with minimal effort.

 Chapter 6 focuses on conclusions drawn from experimental results and possible future

work.

3

2. Apache Kafka

2.1 Overview

Apache Kafka [1] is a distributed streaming platform originally open-sourced by LinkedIn

and now one of the most popular Apache top level projects and is used in production by many

companies due to its capabilities. Kafka enables applications to publish and subscribe to streams

of records, similar to a message queue or enterprise messaging system while also providing fault-

tolerant record stores in a durable way without sacrificing its scalability or latency. Kafka is mostly

used by applications that transform fast data streams, require reliable message passing and

benefit from having a flexible ingestion mechanism while maintaining the ability to scale on

demand. Kafka has a unique architecture that borrows heavily from that of a distributed message

queue and a real-time streaming platform which in turn results in a unique design with familiar

terms. Furthermore, Kafka is meant to be ran on a fully distributed environment spanning multiple

servers, also known as brokers, that form a cluster with a Zookeeper instance acting as a

coordinator. Finally, such clusters contain records grouped into arbitrary categories called topics

which form the basic unit of a simple but powerful Pub/Sub system.

2.2 Records

A record is simply an array of bytes that consists of a key-value pair, a timestamp and

metadata that contain information about its properties (e.g. size, offset, host). All records are

stored durably and can be read deterministically in case of a failure but in order to maximize

availability and performance within a cluster records can also be replicated (mirrored) and

distributed to more than one brokers, effectively removing a single point of failure. It’s worth

mentioning that although the key-value pair of each message can be set arbitrarily, a JSON-like

schema can also be enforced if consistency of record values is necessary. Note that the integrity

of each record, along with other security checks, is automatically handled by the Zookeeper

instance and the Kafka broker(s) as each record contains the necessary metadata required for

such checks.

2.3 Topics

Topics are groups of records with a unique id and configuration settings created by the

user. Topic structure is similar to that of a distributed queue and thus a single topic exists on one

or more brokers. Incoming records are stored in order by the broker(s) which take advantage of

the append-only property of a distributed message queue. More specifically producers write

records to the queue tail while consumers can pull records from the queue at a different pace

which lays the foundation of scalable high throughput of a distributed message passing system.

4

2.4 Partitions

 Kafka topics can be divided into partitions by splitting their data to disjoint sets and

distributing them to multiple brokers, a process that allows a topic to be parallelized seamlessly

and on demand. Although each topic can have a near infinite number of consumers, multiple

partitions allow consumers to read a topic in parallel as each partition is sent only to a subset of

the original consumers, a process which drastically increases system throughput. However,

consumers of a topic with multiple partitions result in messages being read out-of-order, a problem

which can’t be solved due the durable and distributed nature of this problem. Partitions are also

Kafka’s way of providing fault tolerance and scalability since they can be distributed among

different brokers that may lie on different servers which provides redundancy and allows for

horizontal scaling. Finally, each message per partition has an offset value which acts as an

ordering identifier within that partition in order to allow consumers to start and stop reading from

an arbitrary position.

Figure 1: A Kafka Topic with 3 partitions with new records being added.

2.5 Replication and fault-tolerance

 Kafka clusters also provide redundancy mechanisms that allow brokers to keep backups

and be able to recover from failures. The unique combination of a record’s topic, partition id and

offset are what allows brokers to correctly replicate partitions. In that case one broker becomes

the leader and the rest of the brokers with the replicated partitions become followers. In case of

failure a new leader is elected from an “in-sync” subset of brokers (caught up with the leader’s

log) and seamlessly adopts the active consumers of the partition. The reason a new leader is

elected only by in-sync replicas is because it’s necessary for all recently committed messages

to also be available on the new leader. It’s also worth mentioning that message is considered

committed only if it has been successfully copied to all in-sync replicas.

2.6 Producers

 Kafka, as a Pub/Sub system, consists of data producers and consumers that read and
write key-value records to the available distributed queues. Producers send key-value pairs to a
specific topic but are usually oblivious as to which partition received the records since by default

5

the message will be sent to a random partition in order to load balance incoming traffic. However,
all records that share the same key will end up in the same partition, unless of course that key is
null in which case the message will be sent to a random partition. The process of assigning a set
of keys to a specific partition is done by the Kafka practitioner, a process that maps messages to
partitions, which by default simply hashes the key based on the number of available partitions.

2.7 Consumers

 A Kafka consumer subscribes to one or more topics and can read messages from one or
more topic partitions but a consumer instance is required for every topic partition. Each record in
a partition contains an offset field which is a unique and monotonically increasing integer that’s
used by the consumer to keep track of how much they have advanced in that specific topic.
Consumers can group together and form consumer groups, a process in which multiple
consumers read from a single topic and each partition is only consumed by a single member of
the group. In case of a consumer failure the remaining members of the group will rebalance the
partitions of the failed consumer.

Figure 2: Two Kafka producers with two uneven consumer groups.

2.8 Kafka Streams

Kafka Streams simplifies development by building on the Kafka producer and consumer
APIs while leveraging the capabilities of Kafka to offer data parallelism, coordination and fault
tolerance. By applying stream processing techniques, a Kafka Streams application can
seamlessly subscribe to a Kafka topic, consume the incoming stream and perform various stream
transformations similar to those found in traditional stream processing frameworks like grouping,
windowing, aggregations, joins and even custom transformations.

2.8.1 Architecture

Kafka Streams uses the concepts of partitions and tasks as units of its parallelism model
based on Kafka topic partitions. More specifically each stream partition is a totally ordered
sequence of data records and maps to a Kafka topic partition. A data record in the stream
corresponds to a Kafka message from that topic. The data record keys determine the partitioning
of data which is how data is routed to specific partitions within topics. A processor topology is
scaled by breaking it into multiple tasks. More specifically, Kafka Streams creates a number of

6

tasks based on the number of input stream partitions with each task assigned a list of partitions
from the input topics.

The user can configure the number of threads used to parallelize processing within an
application instance and each thread can execute tasks and their topologies independently.
Starting more stream threads or more instances of the application means that the topology will be
replicated and process a different subset of Kafka partitions, effectively parallelizing processing. It
is worth noting that there is no shared state between threads, therefore no inter-thread
coordination is necessary.

Figure 3: A stream with two topics and two stream tasks.

2.8.2 State stores

 Kafka Streams provides state stores, which can be used by stream processing
applications to store and query data which is important capability when dealing with stateful
operations. The Kafka Streams DSL automatically creates and manages such state stores when
stateful operators such as join() or aggregate() or windowing are called. Every stream task in a
Kafka Streams application can contain one or more local state stores that can be accessed via
Kafka Streams APIs in order to store and query data. Kafka Streams offers fault-tolerance and
automatic recovery for local state stores.

Figure 4: Two stream tasks with their dedicated local state stores.

7

3. Stream processing

 Batch processing frameworks like Hadoop MapReduce and Apache Spark are still widely

adopted by businesses around the world as Data Analytics tools due to their high throughput,

fault tolerant and easily scalable design. However, the demand for low latency and more complex

computations is higher than ever as the need for real time results, data preservation and high

result accuracy is increasing rapidly. In order to fill these demands various stream processing

frameworks have been created that require less costly infrastructure, operate on per-tuple

processing semantics, have stronger processing guarantees and produce more accurate and

faster results.

 Stream processing frameworks also support different notions of time for their incoming

and outgoing tuples. Processing time is the “classic” notion used by most older frameworks where

the incoming tuple is assigned the timestamp of the system clock in each operator, a simple

solution that requires no coordination or synchronization between cluster nodes but can lead to

non-deterministic results as late arrivals or out-of-order data isn’t taken into account at all. Event

time on the other hand, aims to solve these issues by assigning each tuple the timestamp of its

creation time (essentially the time when the event was produced by a device). Although this

approach enables a framework to produce consistent results while handling late and out-of-order

data the user must specify how the framework should extract the timestamp from each incoming

tuple. Finally, there is also the notion of the ingestion time where each tuple is assigned a

timestamp based on the time it entered the frameworks pipeline, a solution that doesn’t require

further configuration but still doesn’t handle correctly out-of-order or late data.

Figure 5: Event, Ingestion and Processing times.

Windowing mechanisms are also an integral part of every stream processing framework

as incoming unbounded data sometimes needs to be divided into buckers and processed as a

whole before producing any results. The most simple and easier to understand type of windows

is the Tumbling (or Fixed) window where incoming data is partitioned into buckets that don’t

overlap every period and emitted at the end of each window as a set of tuples to the downstream

operators. A window with a fixed period but also a sliding period is called a Sliding Window with

the main difference being that on every sliding period a fixed window is applied to the incoming

8

data. Finally, Session Windows partition incoming data into unequal sized buckets after a set

amount of time has passed between two events, this fixed amount of time is called a session gap.

 Last, but not least, most streaming frameworks work out-of-the-box with various I/O

connectors for distributed message queues and file systems designed specifically for streaming

use cases. Compatibility with existing middleware like Kafka, ZeroMQ and RabitMQ for example

is very important as they allow developers to focus on the core logic of their programs without the

need to implement such connectors.

3.1 Apache Beam

Apache Beam is an open source, unified model for defining both batch and streaming

data-parallel processing pipelines which can then be executed locally or by one of Beam’s

supported distributed processing back-ends. Beam’s strength can be easily seen when

processing Embarrassingly Parallel data processing tasks, in which the initial problem can be

quickly decomposed into many smaller data bundles that will then be processed independently,

and most importantly, in parallel. Beam can also be used for Extract, Transform, and Load (ETL)

tasks and pure data integration, useful for moving data between different storage media and data

sources, transforming data into a more desirable format or even loading data onto a new system.

3.1.1 Overview

Apache Beam provides a unified programming model that can represent and transform

data sets of any size, whether they are produced by a bounded or an unbounded source [2]. It’s

also worth noting that Beam uses the same classes to represent both bounded and unbounded

data as well as the same transforms to operate on that data. By using transformations Beam can

effectively and quickly read, process and save data, from and to, various distributed data sources

and sinks. Finally, the operators responsible for such transformations form a Beam Pipeline which

usually starts and ends with a distributed data source or sink. The Apache Beam Pipeline Runners

translate the data processing pipeline defined by the user into an API compatible with the

distributed processing back-end of the user’s choice. We should also mention that Beam provides

the tools to build custom runners that can be executed on any platform capable of supporting a

JVM provided that they implement various APIs ranging from the creation of PCollections to fault-

tolerant semantics. Although our experiments focused on Apache Spark [3], Apache Flink [4] and

Apache Apex, Beam currently supports out of the box Runners that work with the following

distributed processing back-ends:

• Apache Apex

• Apache Flink

• Apache Gearpump

• Apache Samza

• Apache Spark

• Google Cloud Dataflow

• Direct runner (for debugging purposes)

9

Beam provides a number of abstractions that simplify the mechanics of large-scale distributed

data processing for both batch and streaming data sources. A very important one is the Pipeline,

which encapsulates the entire data processing task which starts with reading input data,

transforming it and finally writing output data. A pipeline can also take extra arguments either to

enrich user code or specify runner specific parameters (e.g. Memory options). However, runners

can choose how to implement certain pipeline details in order to optimize things like

transformation chains, I/O from distributed sources and even switch operator order in order to

reduce data shuffling.

3.1.2 Parallel Collections

A Parallel Collection (PCollection) represents a potentially distributed, multi-element data

set that a Beam pipeline operates on as Beam transforms use PCollections as inputs and outputs.

Input data can originate from a static source like a text file, a continuously updating source or an

in-memory relation inside the driver. External data sources require the use of a Beam-provided

I/O adapter which connects to a file system in a fault-tolerant way and retrieves a collection of

tuples which can then be transformed into a PCollection. Beam provides the tools for users to

build their own I/O adapter but there is a wide variety of already implemented ones that work out

of the box and support popular file-systems and message queues like HDFS, Apache Kafka, Zero-

MQ and S3.

PCollections are similar to some distributed collections found in other programming

languages have some unique characteristics. To start with, PCollections can’t be shared or

reused between different pipelines and their elements must all share the same serializable type,

whoever that may be. Moreover, a PCollection is immutable and once created can’t no elements

can be added or modified, thus a transformation is the only way to process a PCollection. The

accessibility of PCollection elements is also quite limited since random access is prohibited,

instead a transformation considers every element individually. Furthermore, there is no upper or

lower bound in a PCollection’s size whether it can fit inside the driver or needs to be distributed

to remote machines. A PCollection can also be bounded or unbounded in size, meaning

3.1.3 Transformations

Transforms are the operations a pipeline executes in order to process input data by using

function objects to process each element of one or more input PCollections. Depending on the

pipeline runner, back-end and transform logic many different workers across a cluster may

process the input elements. In such case, the partial transform being executed on each worker

generates a set of output elements that are ultimately added to the final output PCollection that

the transform produces. To invoke a transform, one must apply it to an input PCollection. Invoking

multiple Beam transforms is similar to method chaining like the following example:

10

Figure 6: Transform chaining of an input parallel collection.

The order of pipeline’s transforms determines the structure of the pipeline since the best

way for someone to think of a pipeline is as a directed acyclic graph (DAG), where the nodes are

PCollections and the edges are transforms. Beam provides some core transforms, each of which

represents a different processing paradigm, but custom or composite transformations can also be

created.

ParDo (Parallel Do) is a Beam transform for generic parallel processing. The ParDo

processing paradigm is similar to the Map phase of a standard Map-Reduce algorithm since it

reads each element in the input PCollection, then performs some processing function on that

element and finally emits zero or more elements to an output PCollection. ParDo is useful for a

variety of data processing operations like filtering a data set as one can use ParDo to check each

element in a PCollection and either output that element or discard it. ParDo can also be used for

formatting or type-converting elements in a data set since if the input PCollection contains

elements that are in a different format ParDo can be used to perform a conversion on each

element and output the result to a new PCollection. Extracting parts of each element in a data set

is also possible with ParDo. If there is a PCollection of records with multiple fields, for example,

ParDo can be used to parse out just the necessary fields and create a new PCollection. Finally,

ParDo is also used to perform computations on each element in a data set. ParDo can be used

to perform simple or complex computations on every element, or certain elements, of a

PCollection and output the results as a new PCollection.

When applying a ParDo transform user code is provided in the form of a Do Function

(DoFn) object which is a Beam SDK class that defines a distributed processing function. The

DoFn object that is passed to ParDo contains the logic that gets applied to the elements in the

input parallel collection. If a ParDo performs a ‘1-1’ mapping of input elements to output elements

the use of the higher-level MapElements transform, which can accept an anonymous lambda

function as well, is recommended.

GroupByKey is a Beam transform for processing collections of key-value pairs (KVPs).

As a parallel reduction operation, analogous to the Shuffle phase of a Map-Reduce algorithms,

the input to GroupByKey is a collection of KVPs that represents a multimap, a collection that

contains multiple pairs with the same key. Given such a collection, one can use GroupByKey to

collect all of the values associated with each unique key in order to aggregate data that has

something in common.

11

 When using unbounded PCollections, one must use either non-global windowing or an

aggregation trigger (more in the following section) in order to perform a GroupByKey or

CoGroupByKey. This is because a bounded GroupByKey or CoGroupByKey must wait for all the

data with a certain key to be collected but with unbounded collections the data is unlimited and

windowing should allow grouping to operate on logical, finite bundles of data within these

unbounded data streams. Finally, when grouping by key all of the PCollections that need to be

grouped must use the same windowing strategy and window sizing in order to avoid conflicts.

CoGroupByKey performs a relational join of two or more key-value PCollections that

have the same key type. Using CoGroupByKey should be considered when multiple data sets

that provide information about related things need to be joined. When using unbounded

PCollections, one must use either non-global windowing or an aggregation trigger in order to

perform a CoGroupByKey. CoGroupByKey accepts multiple PCollections as input and produces

a KVP for each unique element in the key sets of the input PCollection tuples with an iterator of

all tuples that share the same key as a value. Finally, it’s worth mentioning that relational joins of

any kind can be implemented using a CoGroupByKey transform (including multi-way relational

joins).

Combine is a Beam transform for combining collections of elements or values in your

input data. Combine has variants that work on PCollections, and some that combine the values

for each key in PCollections of KVPs. When applying a Combine transform, one must provide the

function that contains the logic for combining the elements or values. That function should be

commutative and associative, as the function is not necessarily invoked exactly once on all values

with a given key. Because the input data may be distributed across multiple workers, the

combining function might be called multiple times to perform partial combining on subsets of the

value collection. Apache Beam also provides some pre-built combine functions for common

numeric combination operations such as sum, min, and max.

Flatten is a Beam transform for PCollection objects that store the same data type as

Flatten merges multiple PCollection objects into a single list of logical PCollections. When using

Flatten to merge PCollection objects that have a windowing strategy applied, all of the PCollection

objects must use a compatible windowing strategy and window sizing. This usually boils down

to the windows having the same length, step and trigger.

Partition is a Beam transform for PCollection objects that store the same data type.

Partition splits a single PCollection into a fixed number of smaller collections by dividing the

elements of a PCollection according to a user-provided partitioning function that the user provides.

The partitioning function contains the logic that determines how to split up the elements of the

input PCollection into each resulting partition PCollection. The number of partitions must be

determined at graph construction time which is usually done by passing the number of partitions

as a command-line option at runtime.

12

3.1.4 Beam I/O

 Apache Beam provides some extra tools in its API in order to allow for more complex

pipelines and user-friendly design.

Side inputs are an addition to the main input PCollection of a ParDo transform. A side

input is an additional input that a DoFn can access each time it processes an element in the input

PCollection. When someone specifies a side input, a view of some other data is created that can

then be read from within the ParDo transform’s DoFn while processing each element. Side inputs

are extremely useful if a ParDo needs to inject additional data when processing each element in

the input PCollection, but the additional data needs to be determined at runtime. Such values

might be determined by the input data, or depend on a different branch of the pipeline.

While ParDo always produces a main output PCollection they can also produce any

number of additional output PCollections. When a ParDo has multiple outputs, it returns all of the

output PCollections, including the main output, bundled together (similar to a Flatten transform

result).

When creating a pipeline, it is often needed to read or write data from some external

source, such as a remote distributed database. Beam provides read and write transforms for a

number of common data storage types but also allows users to implement their own read and

write transforms. Read transforms read data from a remote source and return a PCollection of

the data while write transforms write the data of a PCollection to an external data source. Some

common I/O adapters that work out of the box with Apache Beam are the ones for HDFS, S3 and

Kafka.

3.1.5 Windowing

Windowing is a technique used to subdivide a PCollection according to the timestamps of
its individual elements. Transforms that aggregate multiple elements, such as GroupByKey and
Combine process each PCollection as a succession of multiple, finite windows, though the entire
collection itself may be of unbounded size. However, when working with an unbounded data set,
it is impossible to collect all of the elements, since new elements are constantly being added and
may be infinitely many so when working with unbounded PCollections, windowing is especially
useful.

In the Beam model, any PCollection can be subdivided into logical windows. Each tuple
in a PCollection is assigned to one or more windows according to the PCollection’s windowing
function, and each individual window contains a finite number of elements. However, Beam’s
default windowing behavior is to assign all elements of a PCollection to a single, global window
and discard late data, even for unbounded PCollections. Before using a group transform such as
GroupByKey on an unbounded PCollection, one must perform some extra tasks like setting a
non-global windowing function and a non-default trigger which in turn allows the global window to
emit results under other conditions, since the default windowing behavior will never occur.

After setting the windowing function for a PCollection, the elements’ windows are used the
next time grouping transform is applied to that PCollection. Window grouping occurs on an as-
needed basis. If a windowing function is set using the Window transform, each element is
assigned to a window, but the windows are not considered until GroupByKey or Combine
aggregates across a window and key.

13

Figure 7: Windowing and grouping in succession.

In the above pipeline, an unbounded PCollection is created by reading a set of key/value

pairs using KafkaIO and then a windowing function is applied to that collection using the Window

transform. A ParDo is then applied to the collection and then later the result of that ParDo is

grouped using GroupByKey. The windowing function has no effect on the ParDo transform

because the windows are not actually used until they’re needed for the GroupByKey but

subsequent transforms are still applied to the result of the GroupByKey.

Beam provides several windowing functions, including:

• Fixed Time Windows

• Sliding Time Windows

• Per-Session Windows

• Single Global Window

• Calendar-based Windows

Fixed time windows are the simplest form of windowing. Using fixed time windows means
that given a timestamped PCollection each window will capture all elements with timestamps that
fall into a specified interval, usually defined by some time duration. A fixed time window represents
a sequence of non-overlapping time intervals in the input data stream whose elements are
bundled into parallel collections and emitted by default at the end of the time interval.

Figure 8: Example of fixed time windows on three different streams.

Sliding time windows represent time intervals in the data stream, but unlike fixed-time

windows, they can overlap. More specifically each window captures a set amount of data, usually
specified by a time duration, but at the end of that duration the window is offset by a fixed amount
of time which is the window period. Because multiple windows can overlap, most elements in a
data set will belong to more than one window.

14

Figure 9: Fixed time windows.

Session windows partition input elements in buckets based on a certain gap duration
between groups of elements. Session windowing applies on a per-key basis and is useful for data
that is irregularly distributed with respect to time. If data arrives after the minimum specified gap
duration time the start of a new window is initiated. This is extremely useful when measuring user
activity or want to produce as few windows as possible by creating a window after a certain time
has passed.

Figure 10: Example of a session time window.

The single global window is used by default, as all data in a PCollection is assigned to

that window, and late data is discarded. If user data set is of a fixed size, they can use the global

window default for their PCollection. The single global window with a default trigger generally

15

requires the entire data set to be available before processing which is not possible with

continuously updating data. To perform aggregations on an unbounded PCollection that uses

global windowing, users should specify a non-default trigger for that PCollection. Users are

advised to be cautious when using the global windowing strategy since, unlike computer memory,

streams may be infinite.

3.1.6 Watermarks and Triggers

When collecting and grouping data into windows triggers are used in order to determine

when to emit the aggregated results of each window, usually referred to as a pane. Using Beam’s

default windowing configuration and default trigger, Beam outputs the aggregated result when it

estimates all data has arrived and discards all subsequent data for that window. The user can set

triggers for their PCollections to change this default behavior.

Beam provides a number of pre-built triggers that users can set.

• Event time triggers are Beam`s default triggers and operate on the event time, as indicated

by the timestamp on each data element.

• Processing time triggers operate on the processing time which is the time when the data

element is processed at any given stage in the pipeline.

• Data-driven triggers operate by examining the data as it arrives in each window, and firing

when that data meets a certain property.

• Composite triggers combine multiple triggers in various ways.

Triggers provide two additional capabilities compared to simply outputting at the end of a

window. Firstly, Beam is allowed to emit early results, before all the data in a given window has

arrived which is useful for speculative results. Triggers also allow processing of late data by

triggering after the event time watermark passes the end of the window. These capabilities allow

for better control of data and balance between different factors depending on the use case. One

can also set a trigger for an unbounded PCollection that uses a single global window for its

windowing function which can be useful when the pipeline needs to provide periodic updates on

an unbounded data set.

Event time triggers operates on event time and more specifically the AfterWatermark trigger

emits the contents of a window after the watermark passes the end of the window based on the

attached timestamps, which are a global progress metric, and is Beam’s notion of input

completeness within the pipeline at any given point. In addition, users can configure triggers that

fire if the pipeline receives data before or after the end of the window.

Processing time triggers operate on processing time and emit a window after a certain amount

of processing time has passed since data was received. The processing time is determined by

the system clock, rather than the data element’s timestamp. There is also the ability for triggering

early results from a window, particularly a window with a large time frame such as a single global

window.

16

Data-driven triggers provide one data-driven trigger which works on an element count which

means it fires after the current pane has collected at least N elements. This allows a window to

emit early results, which can be particularly useful when using a single global window.

It is important to note that if the number of elements don’t arrive, those elements will sit around

forever, therefore consider the use of a composite trigger to combine multiple conditions. This

allows for multiple firing conditions such as the arrival of a set number of elements or after some

time.

Finally, composite triggers allow the user to combine multiple triggers in order to form

composite triggers, and can specify a trigger to emit results repeatedly, at most once, or under

other custom conditions. Additional early or late firings can be added as well as a repeating trigger

which executes forever and any time the trigger’s conditions are met, it causes a window to emit

results and then resets and starts over.

Keywords like AfterFirst, AfterAll and orFinally can be used in order to control the trigger

firing flow. AfterFirst takes multiple triggers and emits the first time any of its argument triggers is

satisfied which is equivalent to a logical OR operation for multiple triggers. AfterAll takes multiple

triggers and emits when all of its argument triggers are satisfied. This is equivalent to a logical

AND operation for multiple triggers. Lastly, orFinally can serve as a final condition to cause any

trigger to fire one final time and never fire again.

Another important aspect of window triggering is the window accumulation mode which

controls what part of the window contents are emitted when a trigger fires. Since a trigger can fire

multiple times, the accumulation mode determines whether the system accumulates the window

panes as the trigger fires or simply discards them after firing. The user can set a window to

accumulate the panes that are produced when the trigger fires via accumulatingFiredPanes()

when they set the trigger or discard the fired panes by invoking discardingFiredPanes() on the

trigger. These modes are extremely important when using accumulators on windowed collections.

17

4. Platform implementation and metrics collection

 In this section we present the structure of the proposed platform and the structure of the

individual subsystems that our platform comprises of. More specifically we describe the process

of collecting and analyzing metrics from various stream processing frameworks and how they are

used to affect the decision making of queries. We also touch on the data preprocessing steps that

take place in the Kafka Streams application, its topology and communication mechanisms with

other parts of the platform. Finally, we present the Beam pipeline which was used to implement

five join queries in order to test the effectiveness of our decision-making algorithm in different

platforms by using Beam Runners. The goal of the proposed platform is to asses which queries

should be sent to the available frameworks in order to optimize throughput and latency.

4.1 Kafka Streams topology

 A Kafka Streams application is the first module of our pipeline and is mainly used for data

preprocessing and routing. The topology of the application is quite simplistic but requires a high

degree of parallelism with fault tolerant semantics and Kafka I/O adapters working out of the box,

a use case that suites well Kafka Streams.

The ingestion process begins with a set of incoming data streams of key-value pairs

entering the Kafka pipeline via a Kafka consumer, all of which are evenly load balanced across

the application parallel instances. Incoming tuples are then forwarded to a Kafka Streams

Transformer which keeps a local sample of tuple keys and immediately forwards the tuples to the

correct Kafka Topic according to the active queries at the processing time. We should also

mention that each beam runner has one dedicated topic for incoming tuples, therefore when a

new query arrives and it is decided that a specific framework must execute that query, Kafka

Streams simply routes incoming tuples to the corresponding topic. New queries are broadcasted

periodically to the application by a different module of our platform which is discussed in the

following section but the important think to note is that our Kafka Streams application reroutes

incoming traffic based on the incoming queries.

The application also contains a very simplistic REST API which can be used by the parallel

instances of the Kafka Streams application in order to exchange messages and requests. Since

the transformer can sample the keys of the stream partition it has been assigned, we can use the

REST API to combine the local samples from each transformer in order to produce a global

sample of the incoming data streams which can later be used to extract useful information about

the data skew and size. In order to achieve something like that we use a distributed sampling

algorithm with a reservoir that takes into account the size of the input streams and works in 2

passes, it can be found in the following section.

18

Figure 11: Kafka topics and the proposed Kafka Streams topology.

4.1.1 Reservoir sampling

 Reservoir sampling is a family of randomized algorithms for randomly choosing a sample

of 𝑘 items from a list S of 𝑛 items, where 𝑛 is either very large or unknown. After the sampling,

each item in the list should have equal probability of 𝑘/𝑛 being chosen. The original sampling

algorithm with a reservoir is called algorithm R [5] and is as follows:

Figure 12: Algorithm R pseudocode.

In many applications the amount of data needed from a small sample is too large and it is

desirable to distribute sampling tasks among many machines in parallel in order to speed up the

process, therefore a parallel version of the algorithm R is necessary. Without loss of generality,

let us assume there are two sub-streams of size 𝑚 and 𝑛 respectively where both 𝑚 and 𝑛 are

greater than 𝑘.

19

In the first step of the algorithm, workers process their own sub-streams in parallel, using the

standard algorithm R. When both workers finish their sub-stream traversal, two reservoir lists R

and S are created. In addition, both workers count the number of items in their own sub-streams

during the traversal, and thus m and n are known when R and S are available.

The following step required us to combine the two reservoir lists to get 𝑘 items out of them.

To achieve this, weights are assigned to items according to the sizes of their sub-stream and then

proceed to a second sampling phase. The second phase requires 𝑘 iterations for the sampling to

complete, as many as the number of maximum items that will be in the final sample. Every

iteration starts with generating a random number between 0 and 1 such that, with probability

𝑝 = 𝑚/(𝑚 + 𝑛), a random sample from reservoir list R is picked, and with probability 1 − 𝑝, a

random sample from reservoir list S is picked instead. At the end of the kth iteration a final reservoir

list for the entire stream has been created.

This algorithm is described as follows:

Figure 13: Distributed Algorithm R pseudocode.

In each iteration of the second phase any item in the entire stream has probability of 1/(𝑚 +

𝑛) being chosen, therefore any item has probability of 𝑘/(𝑚 + 𝑛) being chosen and thus the

algorithm generates 𝑘 random samples. The algorithm runs in 𝑂(𝑚𝑎𝑥(𝑚, 𝑛)) time since the

algorithm can pick at most 𝑚𝑎𝑥(𝑚, 𝑛) items at random from the two lists. The space complexity

is 𝑂(𝑘) because only a sample of at most 𝑘 items is kept in-memory at any time.

Implementing this distributed algorithm in a Kafka Streams application is quite simple as the

number of parallel workers is defined by the number of application parallel instances and the

stream samples and their respective sizes can be sent via the REST API of each instance. We

should also mention that each parallel instance is aware of other parallel instances and can

retrieve their IP and port on demand. At the moment the partial samples are gathered on the first

parallel instance where the second phase of the distributed algorithm takes place. Finally, the

sample can be made publicly available with the REST API for other parts of our platform to use.

20

4.2 Statistics and query assignment

In order for our platform to effectively assign queries to available frameworks a wide variety

of statistics and available metrics is taken into account. The Controller module is assigned that

task along with deciding what query each available framework will execute. We will now briefly

explain the metrics and statistics the Controller module is capable of collecting.

4.2.1 Metrics and statistics acquisition

To start with, most stream processing frameworks expose a REST API with some

available processing metrics which the user can query via GET and POST requests. Furthermore,

most stream processing frameworks also provide statistics for their operators as well as their

health, work load and processed tuples. Finally, resource managers (RMs) like YARN can also

provide useful information about the available frameworks usually regarding their allocated

resources like memory, available cores, CPU clocks and uptime. The full list of metrics provided

by the frameworks and RMs is the following:

➢ Apache Spark Master

• Job start, elapsed and end time.

• Number of Job attempts and current status.

• Statistics for each batch:

▪ ID and status.

▪ Start, elapsed and finish time.

▪ Input size.

▪ Active and completed output Ops.

▪ Scheduling, processing and total delay.

• Statistics for each executor:

▪ ID, port and activity status.

▪ Number of CPU cores, RAM size and disk usage.

▪ Number of active tasks and RDD blocks.

▪ GC time.

▪ Total Input, output and Shuffle R/W bytes.

▪ Total/Used on/off heap memory.

• Statistics for each Stage:

▪ ID and status.

▪ Number of active tasks.

▪ Input and output bytes.

▪ Shuffle R/W bytes and R/W records.

▪ Bytes spilled in disk.

▪ Names and values of accumulators.

• Statistics for each Streaming Receiver:

▪ Start, elapsed and finish time.

▪ Batch duration.

▪ Number of active, inactive, total, completed receivers.

21

▪ Number of active and completed batches.

▪ Average scheduling, processing and total delay time.

➢ Apache Flink Job Manager

• Job id, name and status.

• Start, elapsed and finish time.

• Statistics for each Job Plan Node (per stream operator):

▪ Node ID, status and operator name.

▪ Parallelism.

▪ Inputs, outputs and shipping strategy.

▪ Number of R/W records and bytes.

▪ Health and Backpressure status.

▪ Number of tasks.

▪ Accumulator values.

▪ Statistics for each operator task:

• Record throughput (avg, min, max, 75th and 99th percentiles)

• Byte throughput (avg, min, max, 75th and 99th percentiles)

• Record latency (avg, min, max, 75th and 99th percentiles)

➢ YARN Master

• Application start, elapsed and finished time.

• Application progress, priority and requested resources.

• Container memory size, cores and virtual cores.

• Node CPU clocks, memory size, running application and its requested resources.

• UI address.

• User id, name and history.

Although RMs and stream processing frameworks can provide a variety of useful metrics

sometimes they are not enough. Our platform produces also provides some metrics data

normality metrics generated from the Kafka Streams sampling routines as discussed in the

previous section. More specifically, the skewness and kurtosis of incoming tuple keys are

calculated and taken into account when assigning queries.

In statistics, skewness is a measure of the asymmetry of the probability distribution of a

random variable about its mean. The skewness value can be positive, negative, or even undefined

and f skewness is 0 the data are perfectly symmetrical.

Figure 14: Data skew of random variable x

22

Figure 15: Examples of skewed distributions.

Kurtosis provides information about the height and sharpness of the central peak,

relative to that of a standard bell curve.

Figure 16: Kurtosis of random variable x.

Figure 17: Different values of Kurtosis.

Finally, Apache Kafka and Apache beam both provide metrics related to their work-load

like tuple latency and throughput. However, Beam relies on the underlying runner to provide

available metrics to the user meaning that some runners can’t provide pipeline metrics in real-

time and sometimes such metrics are not supported by the runner entirely.

23

Figure 18: Overview of the Controller sub-module.

4.2.2 Query assignment

 After gathering various statistics and metrics our proposed platform is capable assigning

queries to available frameworks based on a strategy. Although there are many ways to assign

queries to frameworks, especially given the volume of available metrics, we propose and evaluate

three.

Firstly, the Round Robin strategy simply assigns incoming queries to frameworks in a

round robin fashion without taking into consideration any of the available metrics. The second

proposed strategy consists of every query being sent to the Apache Flink framework, again

without considering any available metric. Finally, a strategy which considers the value of every

metric collected by our platform and also takes into account previously executed queries is the

LSH strategy. LSH stands for Locality Sensitive Hashing [6] which is a technique that allows one

to find similar entries in large datasets and has been successfully applied to various fields such

as biology, weather forecasting, video editing and more. This strategy aims to match new queries

to frameworks that have previously executed the same queries while having similar metrics and

statistics (e.g. similar skewness and latency). This strategy, however, requires us to keep a list of

previously executed queries and their respective statistics.

LSH is based on the idea that if two multi-dimensional points are close together then after

a “projection” operation these two points will remain close together. More specifically, a random

projection maps a data point from a high-dimensional space to a lower-dimensional subspace.

The projection operation can be a simple scalar projection given by ℎ(�⃗�) = �⃗� ∙ 𝑥 where �⃗� is a high

dimensional vector and 𝑥 is a vector with components selected from the random Gaussian

distribution ~𝑁 (0,1). This scalar projection is then quantized into a set of hash bins, with the

intention that nearby items in the original space will fall into the same bin.

24

The resulting full hash function is:

ℎ𝑥,𝑏(�⃗�) = ⌊
𝑥 ∙ �⃗� + 𝑏

𝑤
⌋

In the previous formula w is the width of each quantization bin and b is a uniformly distributed

variable between 0 and w.

Figure 19: Projections of 2 close circles and 2 distant squares projected in this paper surface.

 In order to implement LSH we need to convert the list of statistics for each previous query

to a multi-dimensional vector with each statistic occupying exactly one component of this vector.

Furthermore, frameworks can have different vector sizes since most some frameworks provide

more statistics than others, therefore each framework must keep a list of their past queries and

their respective metrics. When a new query arrives, the Controller module uses LSH to perform

a k-NN search of the current query with a vector of the current statistics in every framework list in

order to retrieve similar queries. If more than one results are returned our proposed strategy

dictates that we pick the one that has the minimum latency.

4.3 Apache Beam pipeline and Runners

 In order to test the effectiveness of our query assignment strategies we created a simple

pipeline on Apache Beam which can execute 5 similar queries. The pipeline begins by reading

data from two Kafka topics that contain tuples from two different data streams. Incoming tuples

contain key-value pairs that consist of the join key, their respective values and a list of queries

this tuple belongs in. We then split this tuple into multiple ones based on the number of its query

IDs and create a composite key on each one that consists of its query ID and the original join key

followed by the original tuple value. The following figure provides a good example.

25

Figure 20: Extraction of query IDs.

After that, the two data stream results are windowed using the same window function in

order to produce finite batches of data. After that a CoGroupByKey (CGBK) transform takes place

that groups all key-value pairs with the same composite key together with a DoFn that provides

access to all sets of values sharing the same composite key, thus simplifying the process of

implementing the JOIN queries tremendously. After isolating the set of values per unique

composite key we apply a Join algorithm based on the query ID derived from the composite key.

Finally, after the correct query is executed the key-value pairs are emitted to a Kafka sink.

Figure 21: CGBK and Join operations.

Information about the number of tuples and their time spent inside our platform is also

sent to the Controller module via an intermediate Kafka topic periodically. The following Join

Algorithms where implemented in the Beam pipeline and perform a relational join between the

relations R and S:

26

Inner Join

 For each tuple r in R do

 For each tuple s in S do

 If r.key = s.key:

 output the tuple <r,s>

Full Outer Join

 If S is empty:

 For each tuple r in R do

 output the tuple <r,null>

 Else if R is empty:

 For each tuple s in S do

 output the tuple <null,s>

 Else:

 For each tuple r in R do

 For each tuple s in S do

 If r.key = s.key:

 output the tuple <r,s>

Stream Semi Join

 For each tuple r in R do

 For each tuple s in S do

 If r.key = s.key:

 output the tuple <r,null>

Left Outer Join

 For each tuple r in R do

 For each tuple s in S do

 If r.key = s.key:

 output the tuple <r,s>

 Else:

 output the tuple <r,null>

27

Right Outer Join

 For each tuple s in S do

 For each tuple r in R do

 If r.key = s.key:

 output the tuple <r,s>

 Else

 output the tuple <null,s>

28

5. Experimental Evaluation

 In this chapter we present the results of our experiments and evaluate the performance of
the Apache Beam Runners that were used. The framework group consists of Apache Spark,
Apache Flink and Apache Apex, three frameworks that can handle streaming workloads under
Apache Beam dataflow [7] pipelines. We start by analyzing the settings and parameters that were
used to create a small cluster for each framework with the assistance of YARN and Flink’s Job
Manager. Moreover, we describe how our Kafka Streams application was designed and deployed
in order to handle the input data streams without problems.
 Our distributed experiments provide results for throughput and latency for many scenarios
that involve two data streams with tuples from the public dataset of Fares and Taxis [8]. The first
scenario tests the scalability of our Kafka Streams’ application latency for various numbers of
parallel instances. Scalability, experiments are also carried out for each framework (Spark, Flink
and Apex) and provide results for the latency and throughput of each framework for varying
degrees of parallelism and input stream rates.
 Finally, throughput and latency experimental results are shown for each strategy for
constant degree of parallelism and varying input stream rates. This group of experiments can help
us draw conclusions regarding the effectiveness of our proposed strategies and how well each
framework performed.

5.1 Cluster Setup

 In order to run our experiments a small cluster for each framework has to be created. The

high-level API of Apache Beam [9] generates a pipeline that can be ran n Apache Flink, Apache

Spark and Apache Apex [10] as well as pass extra arguments to the underlying distributed

backends like memory size and the number of CPUs to use. Apache Flink has its own Job

Manager [11] that controls the number of task-slots each application receives in order to execute

its pipeline. Apache Spark and Yarn use YARN [12] as a resource manager and their configuration

settings go through the YARN master before any container is started. All of the Flink, Spark and

Apex configuration properties (like memory size) are provided through the Beam high-level API

as program arguments.

 Regarding the framework-specific configurations it’s important to mention that in order for

Apache Spark (in streaming mode) to achieve a stable rate of incoming and outgoing records the

batch size was increased to 5 seconds. Furthermore, the time spent reading incoming data in the

pipeline sources were increased to 20% of the total batch time and the Spark cache was disabled

entirely. Finally, the backpressure mechanisms were activated in order to stabilize the latency

fluctuations when under high load. The reason we had to intervene and change some of Spark’s

internals was because the Kafka consumer and producers were performing poorly with the default

settings which is expected since Apache Spark is not a pure streaming platform.

 During the experiments a predefined set of queries was executed. Although that set was

randomly generated with each query having an equal probability of being chosen that list was

kept the same during different experiments to ensure fairness. That list contains a total of 135

queries, each with 20 seconds of execution time, and begins with a set of all 5 queries being

sequentially executed 3 times in every framework regardless our strategy in order to warm up the

platform, gather some initial statistics and allow the streaming frameworks to start processing

incoming streams smoothly. Following this set of warm-up queries 3 additional sets of queries

29

have to be assigned to the available at the time frameworks based on a predefined strategy. The

1st set contains 15 queries and each one will be executed once in a framework that will be decided

by the strategy at the time of arrival while the rest of the frameworks stay inactive. The 2nd set

consists of 45 queries but unlike the 1st set these queries are assigned three at a time which

means that every framework will be assigned exactly one query each time. The 3rd and final set

consists of 75 queries that will have to be assigned 5 at a time which means that one or more

frameworks will be assigned multiple queries at a time. All queries are executed for 20 seconds.

Information about the framework-specific configuration properties:

➢ Apache Beam (version 2.10.0)

• --embeddedExecution=false (Apex only)

• --readTimePercentage=0.2 (Spark only)

• --batchIntervalMillis=5000 (Spark only)

• --cacheDisabled=true (Spark only)

➢ Apache Spark (version 2.3.0)

• spark.streaming.backpressure.enabled=true

• spark.scheduler.listenerbus.eventqueue.capacity=100000

• spark.executor.heartbeatInterval=20

• spark.memory.fraction=0.6

• spark.executor.extraJavaOptions=-XX:+UseCompressedOops -XX:+UseG1GC

➢ Apache Apex (version 3.6.0)

• apex.application.*.operator.*.attr.TIMEOUT_WINDOW_COUNT=1200

➢ Apache Flink (version 1.6.0)

• --filestToStage was explicitly set to the fat jar of Flink Runner.

Windowing configuration options in Beam pipelines:

• Window length: 5 sec.

• Window strategy: Fixed time window.

• Window allowed delay: 0 sec.

• Window trigger: Event Time trigger.

The following tables contains information about the nodes used in the experiments followed

by a list of the Kafka topics.

Table 1: YARN containers and Flink resources used in the distributed experiments.

Nodes CPU Model CPU cores (per Node) RAM (per Node)

1 Job Manager Intel Xeon E5-2430 4 2GB

4 Task Managers Intel Xeon X3323 4 4GB

8 YARN Containers Intel Xeon X3323 4 4GB

30

Table 2: Topics used during experimental evaluation.

Name Partitions Description

Spark 1 16 Streamed relation A of Apache Spark (used in JOINs).

Spark 2 16 Streamed relation B of Apache Spark (used in JOINs).

Flink 1 16 Streamed relation A of Apache Flink (used in JOINs).

Flink 2 16 Streamed relation B of Apache Flink (used in JOINs).

Apex 1 16 Streamed relation A of Apache Apex (used in JOINs).

Apex 2 16 Streamed relation B of Apache Apex (used in JOINs).

Data 1 6 Incoming data stream with information about taxis.

Data 2 6 Incoming data stream with information about fares.

Queries 16 Join queries that will be assigned to a framework.

Output 48 Topic used by every framework as a sink.

Latency 1 Beam sink for latency metrics.

Throughput 1 Beam sink for throughput metrics.

31

5.2 Scalability

In this section we perform experiments with varying degrees of parallelism in the Kafka

Streams application and all of the Apache Beam runners to prove the scalability of our modules.

The notation [𝑥, 𝑦] implies a set of parallelism degree and input stream rate respectively.

Figure 22: The processing latency of the Kafka Streams application for different number of parallel instances and

input stream rates.

7

10

12

13

7

8

11

12

6

7

8

11

5

6

7 7

0

2

4

6

8

10

12

14

500 1000 2000 5000

P
ro

ce
ss

 L
at

en
cy

 (
m

s)

Input Stream Rate (msg/s)

Kafka Streams Process Latency

1 4 8 16

32

Figure 23: Spark runner throughput for varying parallelism degrees and stream rates.

Figure 24: Spark runner latency for different sets of parallelism degrees and stream rates.

500

998

1496

1995

0

500

1000

1500

2000

2500

[4,500] [8,1000] [12,1500] [16,2000]

T
h

ro
u

gh
p

u
t

(m
sg

/s
ec

)

[Parallelism, Rate]

Spark Runner Ingestion Rate

2000

4000

6000

8000

10000

12000

14000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

L
at

en
cy

(m
s)

Time(sec)

Spark Runner Latency

[4,500] [8,1000] [12,1500] [16,2000]

33

Figure 25: Flink Runner throughput for varying parallelism degrees and stream rates.

Figure 26: Flink Runner latency for different sets of parallelism degrees and stream rates.

6247

12499

16749

24989

0

5000

10000

15000

20000

25000

30000

[4,6250] [8,12500] [12,16750] [16,25000]

T
h

ro
u

gh
p

u
t

(m
sg

/s
ec

)

[Parallelism, Rate]

Flink Ingestion Rate

2000

2500

3000

3500

4000

4500

5000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

L
at

en
cy

(m
s)

Time(sec)

Flink Runner Latency

[4,6250] [8,12500] [12,18750] [16,25000]

34

Figure 27: Apex Runner throughput for varying parallelism degrees and stream rates.

Figure 28: Apex Runner latency for different sets of parallelism degrees and stream rates.

1496

2996

3999

5908

0

1000

2000

3000

4000

5000

6000

7000

[4,1500] [8,3000] [12,4000] [16,6000]

Sp
ar

k
 I

n
ge

st
io

n
 R

at
e

[Parallelism, Rate]

Apex Ingestion Rate

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

L
at

en
cy

(m
s)

Time(sec)

Apex Runner Scalability - Latency

[4,1500] [8,3000] [12,4000] [16,6000]

35

5.3 Strategy comparison

 In this section we evaluate the performance of the three strategies, as discussed in the

previous chapter, under input streams with different rates. The latency values of each strategy

are determined by the framework the current query is assigned on, meaning that a strategy

which changes frameworks quickly will also quickly change latency values as well.

The strategies:

• Round robin (RR)

• Flink only (Flink)

• Nearest Neighbor with Lowest Latency (NN-LL or NN)

It’s important to note that the latency axes are in logarithmic scale and that the title of each

graph has the format {Metric} – {Input stream rate in messages per second}.

Figure 29: Strategy latencies under input stream rate of 500 msg/s.

500

5000

50000

500000

0

3
0

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

3
9

0

4
2

0

4
5

0

4
8

0

5
1

0

5
4

0

5
7

0

6
0

0

6
3

0

6
6

0

6
9

0

7
2

0

7
5

0

7
8

0

8
1

0

8
4

0

8
7

0

9
0

0

L
at

en
cy

(m
s)

Time (sec)

Latency - 500 msg/s

RR Flink NN-LL

36

Figure 9: Strategy latencies under input stream rate of 1000 msg/s.

Figure 30: Strategy latencies under input stream rate of 2000 msg/s.

500

5000

50000

500000

0

3
0

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

3
9

0

4
2

0

4
5

0

4
8

0

5
1

0

5
4

0

5
7

0

6
0

0

6
3

0

6
6

0

6
9

0

7
2

0

7
5

0

7
8

0

8
1

0

8
4

0

8
7

0

9
0

0

L
at

en
cy

(m
s)

Time (sec)

Latency - 1000 msg/s

RR Flink NN-LL

500

5000

50000

500000

0

3
0

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

3
9

0

4
2

0

4
5

0

4
8

0

5
1

0

5
4

0

5
7

0

6
0

0

6
3

0

6
6

0

6
9

0

7
2

0

7
5

0

7
8

0

8
1

0

8
4

0

8
7

0

9
0

0

L
at

en
cy

(m
s)

Time (sec)

Latency - 2000 msg/s

RR Flink NN-LL

37

Figure 31: Strategy latencies under input stream rate of 5000 msg/s.

500

5000

50000

500000

0

3
0

6
0

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

3
9

0

4
2

0

4
5

0

4
8

0

5
1

0

5
4

0

5
7

0

6
0

0

6
3

0

6
6

0

6
9

0

7
2

0

7
5

0

7
8

0

8
1

0

8
4

0

8
7

0

9
0

0

L
at

en
cy

(m
s)

Time (sec)

Latency - 5000 msg/s

RR Flink NN-LL

38

Figure 32: Average latency for each strategy under various stream rates.

Figure 35: Average throughput for each strategy under various stream rates.

25759 26644
53523

148821

3401 3476 3367 3443
1629

2716 3429 3400

1

10

100

1000

10000

100000

1000000

500 1000 2000 5000

L
at

en
cy

 (
m

s)

Input Stream Rate (msg/s)

Average Latency

RR Flink NN

456

907

1744

2015

488

979

1993

4905

485

975

1990

4885

400

4000

500 1000 2000 5000

T
h

ro
u

gh
p

u
t

(m
sg

/s
)

Input Stream Rate (msg/s)

Average Throughput

RR Flink NN

39

6. Conclusions and Future Work

 This thesis proposed a platform that for cross-platform query optimization that assigns

queries to various frameworks based on a variety of available metrics and statistics.

The first module of our platform consists of a Kafka Streams application where incoming

data streams are sampled before being sent to a framework based on active queries and available

statistics. Our Kafka Streams application is scalable, processes tuples at low-latency, has fault-

tolerant semantics and can easily aggregate information from its parallel instances. Experiments

show that tuple processing latency decreases when more parallel instances are added to the

Kafka Streams topology.

 Another module of our platform is the Apache Beam dataflow pipeline which can

seamlessly be executed on a number of distributed backends. The Beam pipeline contains the

implementation of the join queries and will be executed on the backend of our choice. The Apache

Beam runners carry out the task of transforming the high-level Beam pipeline to a DAG that will

be executed on a distributed environment. However, not every runner performs well, especially

when it comes to stream workloads. Experimental evaluation shows that the Spark runner

performs poorly when faced with stream workloads since its stream ingestion rate doesn’t scale

well and its latency although stable is still high. Apache Flink on the other hand performs quite

well since the experiments show stable and low-latency under varying input stream rates while

maintaining a high stream ingestion rate. Finally, Apache Apex performs better than Apache Flink

on input streams with low rate but its performance gradually degrades as the input stream rates

rise. However, it’s input stream ingestion rate is still on par with Apache Flink’s.

The final module of our proposed platform is the Controller, an application that collects

available metrics from frameworks, Kafka application instances and Resource managers in order

to effectively assign queries to available frameworks. The proposed strategies provide some

interesting results. The 1st strategy (round robin) is proven to be the worst one as it underperforms

in both latency and throughput under every input stream rate and is therefore not recommended.

The main reason behind the weak performance of the first strategy is that it takes no available

metrics under consideration and therefore assigns queries to Apache Spark which is proven to

be the worst Beam Runner for this set of queries. The 2nd strategy assigns queries only to Apache

Flink while the 3rd uses locality sensitive hashing (LSH) to find previous queries that performed

well under similar circumstances. Although the 2nd strategy doesn’t take into account any of the

available metrics it still performs quite well, especially on higher input stream rates. However, the

3rd strategy exhibits lower latency values on lower input stream rates while maintaining almost the

same performance with the 2nd strategy on higher input stream rates, therefore the 2nd strategy is

recommended.

 Although our proposed platform performed well and experiments showed its advantages,

it is important to acknowledge that there are things that can be improved in future work. Starting

with the number of Apache Beam runners, in the future we could experiment with more

frameworks and see if they produce better results. We could also expand the set of queries since

currently the number of supported queries is still low. Furthermore, we could also gather more

metrics either from stream samples or from framework and resource manager APIs. On that note,

the distributed stream sampling algorithm can be improved by using a more modern sampling

algorithm with better time and space complexity. Finally, the workload assessment and the

40

decision-making of the query assignments can be significantly improved by implementing a more

sophisticated algorithm and maintaining a different model.

41

References

[1] "Apache Kafka," [Online]. Available: kafka.apache.org.

[2] "Beam Guide," [Online]. Available: https://beam.apache.org/documentation/programming-

guide/.

[3] Zaharia, Matei & Chowdhury, Mosharaf & J. Franklin, Michael & Shenker, Scott & Stoica,

Ion. (2010). Spark: Cluster Computing with Working Sets. Proceedings of the 2nd USENIX

conference on Hot topics in cloud computing. 10. 10-10.

[4] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., & Tzoumas, K. (2015).

Apache Flink™: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull.,

38, 28-38.

[5] J. S. VITTER, "Random Sampling with a Reservoir," ACM Transactions on Mathematical

Software, Vol. 11, pp. 37-57, March 1985.

[6] M. C. Malcolm Slaney, "Locality-Sensitive Hashing for Finding Nearest Neighbors," IEEE

SIGNAL PROCESSING MAGAZINE, pp. 128-131, March 2008.

[7] T. Akidau, "The Dataflow Model".Proceedings of the VLDB Endowment, Vol. 8, No. 12.

[8] Kaggle, [Online]. Available: https://www.kaggle.com/dster/nyc-taxi-fare-bigquery-dataset.

[9] "Apache Beam Documentation," Apache Software Foundation, [Online]. Available:

https://beam.apache.org/documentation/.

[10] "Apache Apex Documentation," Apache Software Foundation, [Online]. Available:

https://apex.apache.org/docs.html.

[11] "Apache Flink Documentation," Apache Software Foundation, [Online]. Available:

https://ci.apache.org/projects/flink/flink-docs-stable/release-notes/flink-1.6.html.

[12] "YARN Documentation," [Online]. Available: https://yarnpkg.com/lang/en/docs/.

