
COLLECTION, UNIFICATION AND PRESENTATION

OF ALTERNATIVE TOURISM DATA

By

Evangelos-Achileios N. Vatikiotis

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DIPLOMA DEGREE OF

ELECTRICAL AND COMPUTER ENGINEERING

Chania February 2019

THESIS COMMITTEE

Associate Professor Antonios Deligiannakis (Supervisor)

Associate Professor Mania Aikaterini

Associate Professor Samoladas Vasileios

Περίληψη

Ο εναλλακτικός τουρισμός αποτελεί ένα συνεχώς αναπτυσσόμενο ρεύμα στο χώρο του

τουρισμού και αναφέρεται στο σύνολο μορφών τουρισμού και δραστηριοτήτων, οι οποίες

προσελκύουν ανθρώπους με συγκεκριμένα ενδιαφέροντα. Χαρακτηριστικά παραδείγματα

εναλλακτικού τουρισμού αποτελούν ο αγροτουρισμός, ο οικοτουρισμός, ο πολιτιστικός

τουρισμός κ.α. Σκοπός της διπλωματικής εργασίας είναι η σχεδίαση και η υλοποίηση μιας

διαδικτυακής εφαρμογής, η οποία συλλέγει, διαχειρίζεται και αναπαριστά τοποθεσίες

ενδιαφέροντος (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαPoints Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημα

υποστηρίζει την συλλογή δεδομένων για τοποθεσίες ενδιαφέροντος διαφόρων κατηγοριών

μέσω τεχνικών διαδικτυακής εξόρυξης (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαweb scraping), την ενοποίηση τους με την έννοια

της κληρονομικότητας καθώς και την αναπαράσταση των τοποθεσιών ενδιαφέροντος μέσω

της εφαρμογής. Τέλος, η διαδικτυακή εφαρμογή προσφέρει στους χρήστες την δυνατότητα

να εξερευνήσουν νέα σημεία ενδιαφέροντος αθλητικού τουρισμού, καθώς και την

δυνατότητα να συμβάλουν στην αξιολόγηση τους.

Abstract

Alternative tourism is a constantly growing trend in the tourism sector and refers to
all forms of tourism that attract people with special interests. Typical examples of
alternative tourism are agrotourism, ecotourism, cultural tourism and others. The
purpose of the diploma thesis is to design and implement a web application that
collects, manages and presents Points of Interest related to athletic and active
tourism. In particular, the system supports three operations related to athletic or
active tourism. Firstly, it supports the collection for points of interest of various
categories through web scraping techniques. Secondly it implements their
Unification using the concept of inheritance. Last but not least, it presents the
Points of Interest and offers to users the opportunity to explore new points of
interest in sports tourism, as well as the ability to contribute to their evaluation.

Table of Contents

1 Introduction.. 9

2 Important Terms... 11

2.1 Web Scraping...11

2.1.1 Methods of Web Scraping...12

2.1.2 Software and Tools..14

2.2 Web Services...15

2.3 Representational State Transfer (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαREST)..16

2.3.1 RESTful Web Services..16

2.4 Single Page Applications (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαSPAs)..17

2.5 State of the Art for Web Applications..17

3 Implementation Technologies...19

3.1 Spring Framework..19

3.1.1 Inversion of Control and Dependency Injection...19

3.1.2 Spring Modules...20

3.2 Spring Boot..23

3.3 AngularJS..23

3.3.1 AngularJS Core Features..24

3.4 Data Persistence..27

4 System Architecture..28

5 Functional Specification..30

5.1 Technical Requirements...30

5.1.1 Model..30

5.1.2 Scraping Application..31

5.1.3 Client Side Application...31

5.1.4 Server Side...32

5.2 Use Cases...32

6 Implementation...59

6.1 Model...59

6.2 Scraping Application..63

6.2.1 Architecture...64

6.2.2 Scraping Process..65

6.3 Web Infrastructure...66

6.3.1 Architecture...66

6.3.2 RESTful Web Services..67

6.3.3 Client Side Application...68

6.4 Recommendation System..70

7 GUI... 71

7.1 Wireframes..71

7.2 User Interface..83

7.3 Evaluation..89

8 Conclusions and Future Work..92

9 Bibliography..94

Page 2 | 95

Page 3 | 95

List of Figures

1. Figure 2.1: Web crawler vs web scraper[Web Scraping and Web Crawling –

Author: Santosh Kalwar]...12

2. Figure 2.2: Synchronous vs Asynchronous client-server communication.....18

3. Figure 3.1: Spring Modules..20

4. Figure 3.2: HTTP Request workflow in Spring framework............................21

5. Figure 3.3: AngularJS Workflow..24

6. Figure 3.4: AngularJS features...25

7. Figure 3.5: Possible angularJS global state...26

8. Figure 4.1: System Architecture...28

9. Figure 5.1: Guest only Use Cases..33

10. Figure 5.2: Guest and User common Use Cases group 1.............................33

11. Figure 5.3: Guest and User common Use Cases group 2.............................34

12. Figure 5.4: Guest and User common Use Cases group 3.............................34

13. Figure 5.5: Guest and User common Use Cases group 4.............................34

14. Figure 5.6: User only Use Cases group 1...35

15. Figure 5.7: User only Use Cases group 2...35

16. Figure 6.1: POIs Entity Relationship..60

17. Figure 6.2: Application Entity Relationship..62

18. Figure 6.3: Scraping Application Architecture...64

19. Figure 6.4: Overall System Architecture...67

20. Figure 7.1: Web Application Sitemap..71

21. Figure 7.2: Guest Template..72

22. Figure 7.3: Logged in user Template..73

Page 4 | 95

23. Figure 7.4: Logged in user action...73

24. Figure 7.5: Login and Register pages wireframes..74

25. Figure 7.6: Map page wireframe..74

26. Figure 7.7: Map clicking on POI action wireframe...75

27. Figure 7.8: Finder page wireframe..75

28. Figure 7.9: Filtering Dropdown button oprions...76

29. Figure 7.10: Sorting dropdown button options..76

30. Figure 7.11: Kitesurfing POI details wireframe...77

31. Figure 7.12: Scuba-diving school details page wireframe............................78

32. Figure 7.13: Scuba-diving site details page wireframe.................................79

33. Figure 7.14: Add to personal map action..80

34. Figure 7.15: Personal map page wireframe...81

35. Figure 7.16: Clicking on POI action personal map page wireframe..............81

36. Figure 7.17: Edit notes and remove POI actions wireframes.......................82

37. Figure 7.18: Profile page wireframe...82

38. Figure 7.19: Edit personal info wireframe...83

39. Figure 7.20: Main map page...84

40. Figure 7.21: Spot finder page...85

41. Figure 7.22: Kitesurfing details page..86

42. Figure 7.23: Scuba-diving spot details page..87

43. Figure 7.24: Scuba-diving school dtails page...87

44. Figure 7.25: Login page...88

45. Figure 7.26: Profile page..88

46. Figure 7.27: Personal map page..89

Page 5 | 95

Page 6 | 95

List Of Tables

Table 1: Use Case 1: View all POIs on map..35

Table 2: Use Case 2: View only POIs from the selected categories..........................37

Table 3: Use Case 3: Explore POIs on main map...38

Table 4: Use Case 4: View POI short explanation and rating....................................39

Table 5: Use Case 5: Transfer on specific location..40

Table 6: Use Case 6: Cluster click...41

Table 7: Use Case 7: View all POIs in a list...42

Table 8: Use Case 8: View POI details..43

Table 9: Use Case 9: View weather map...44

Table 10: Use Case 10: Search for POI..45

Table 11: Use Case 11: View POI’s average rating and number of ratings................46

Table 12: Use Case 12: Register...47

Table 13: Use Case 13: Login...48

Table 14: Use Case 14: Rate POI...49

Table 15: Use Case 15: Add POI to favourites..50

Table 16: Use Case 16: Edit notes on favourite POI...51

Table 17: Use Case 17: Remove POI from favourites...52

Table 18: Use Case 18: View all favourite POIs..53

Table 19: Use Case 19: View favourite POI’s short explanation and notes...............54

Table 20: Use Case 20: Change Password...55

Table 21: Use Case 21: Edit Interests...56

Table 22: Use Case 22: Update profile picture..57

Table 23: Use Case 23: Add Comment on specific POI..58

Page 7 | 95

Table 24: POIs Relational Schema..61

Table 25: The Database Relational Schema...63

Table 26: Evaluation Outcome..90

Page 8 | 95

1 Introduction

Alternative tourism is a constantly growing trend in the tourism sector and refers to all

forms of tourism that attract people with special interests. Typical examples of

alternative tourism are agrotourism, ecotourism, cultural tourism and others. The

purpose of the diploma thesis is to design and implement a web application that

collects, manages and presents Points of Interest related to athletic and active

tourism.

Web applications have changed almost every aspect of modern life. Among other

things, along with GPS technology and interactive maps, they have changed the way

people navigate and search for specific locations with certain properties. This has led

to the rise of importance for what is called the Points of Interest (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαPOIs). In particular,

tons of applications have been developed based on POIs. A POI is a specific point

location that someone may find useful or interesting.

The way people interact with the web has led to the fed and massive growth of POIs

existence across web. According to Google [1] google-maps platform contains over

150 millions of registered POIs and serves over a billion of monthly active users.

Beside google tons of other applications have been implemented based on POIs.

The primary intention of the current thesis is to build a big POI Database for

activities. Beside the collection of the various POIs, which is referred to as scraping,

the intentions of the current thesis include the implementation of services to support

both B2B and B2C services based on the collected POIs.

In more detail, the current thesis discusses the design and implementation of a

System that performs three tasks. The first task is to design and implement an

application that performs collection and modeling of data related to specific POIs

from the web referring to specific categories. In view of the fact that POIs may reside

in different categories, unification is also an aspect that has to be taken into

consideration. The second task is to use server-side logic that is able to support both

B2C and B2B services and persist the POIs model among with other entities of the

Page 9 | 95

system. The third task conforms to designing and implementing a state of the art

web application in order for users to interact with the collected POIs.

Scalability is a very important aspect for our system. In particular it is important for all

the parts of our system parts to be able to scale in terms of supporting new POIs,

POI categories and supporting any future functionality needed. Firstly, the Scraping

Application must be able to scrape, model and persist new POIs of new categories

effectively. On the other hand, the rest of the system must be able to extend easily in

order to support new POIs and categories as well as conform with future

requirements.

In order to fulfill the System needs the implemented architecture completely

decouples the scraping logic from the web logic making it possible to integrate new

POIs to the web logic with minimum configuration.

It is intended for the whole System to grow big and support lots of POI categories,

thus the Agile methodology approach was chosen to design and implement the whole

System. In the Agile methodology software development and requirements

specification is a non-stopping procedure looking to satisfy the client, ourselves in the

particular situation. Thus versions of the System are designed, implemented and

evaluated in order to define the next’s version requirements. The current document

specifies the first version of the System which support only scuba-diving and

kitesurfing POIs. Its main goal, is to build a robust infrastructure characterized by

scalability.

The implemented application is deployed on a TUC server and can be accessed on

the following address: http://147.27.41.133/adventurer/

Page 10 | 95

http://147.27.41.133/adventurer/

2 Important Terms

This chapter specifies important terms that are used along the document to describe

the implemented framework. All of the following terms are state of the art methods for

handling and implementing specific operations. Section 2.1 describes the term of

web scraping and its importance for today's enterprises. Section 2.2, 2.3 and 2.4

discuss how modern web applications are built. In particular, section 2.2 describe the

term of web services, section 2.3 describes Representational State Transfer

specification and finally section 2.4 describes the state-of-the-art for today’s web

applications .

2.1 Web Scraping

International Data Corporation (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαIDC) forecasts that by 2025 the global datasphere will

grow to 163 zettabytes (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαthat is a trillion gigabytes). That’s ten times the 16.1ZB of

data generated in 2016. All this data will unlock unique user experiences and a new

world of business opportunities. [2]

While data grows in amount, variety, and importance, enterprises keep in track with

information from various sources and focus on data that matters the most. Several

terms introduced and became important due to data growth. Some of them are Web

Crawling, Web Scraping, Meta Data, Meta Data Analysis, Big Data, Data Mining and

others.

It is usual for Web Crawling and Web Scraping to be combined in order to collect Big

Data. Web Crawling is used for Web indexing and sources defining, whereas Web

Scraping is used for data extraction. The current thesis focuses on one of the

aforementioned Methodologies and more specifically on Web Scraping. Figure 2.1

describes the two processes.

Page 11 | 95

Data scraping, also known as web scraping, web extraction or harvesting, is a

technique to extract data from the WWW and save it to a file system or database for

later retrieval or analysis. Commonly, a web page may be reached utilizing the

Hypertext Transfer Protocol (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαHTTP). The page retrieval is accomplished either

manually by a user or automatically by a bot or web crawler. After page retrieval

scraping methods may take place.

Due to the fact that an enormous amount of heterogeneous data is constantly

generated on the WWW, web scraping is widely acknowledged as an efficient and

powerful technique for collecting big data [2].

2.1.1 Methods of Web Scraping

The methods of Web Scraping evolved together with the WWW. Not all listed

methods were available at the beginning. A programmer might use various methods

in order to make Requests and retrieve data from a Web Server in various formats.

The most common protocol for such a case would be the Hypertext Transfer Protocol

(Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαHTTP) or the HTTP Secure (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαHTTPS). After data retrieval the following methods

could be applied.

Manual Scraping

Page 12 | 95

Figure 2.1: Web crawler vs web scraper[Web Scraping and Web Crawling – Author:

Santosh Kalwar]

Manual Scraping is the process where a user uses a web browser to extract data

manually from web pages. Manual scraping is an option in specific situations where a

small amount of data is required. Manual scraping is not an effective way to extract

large amount of data, but in some cases may be useful.

HTML Parsing

Hypertext Markup Language (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαHTML) is the language for describing the structure of

Web Pages [4]. Assuming that an HTML document is available from a server

response, analysis on the structure of the document could show repeated HTML

elements. Then with further analysis, selecting specific HTML elements and their

value is possible.

DOM Parsing

The Document Object Model (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαDOM) introduced new ways of addressing HTML

Elements. Programs and scripts implementing DOM are able to access and update

the content, structure or style of HTML Elements dynamically. DOM parsing takes

advantage of those ways in order to access the data. DOM parsing is a very effective

way to perform Web Scraping because it enable many ways to access elements of a

Web page.

Screen Scraping

This technique is used for saving and reusing entire or parts of web pages. Screen

Scraping can be performed by just HTTP Programming or by combining it with DOM

Parsing.

Server Side APIs

Server side APIs is a way companies or some entity lets you interact with their

system. For instance, the Google Maps API is an interface for programmers to build

applications on the Google Maps platform. Another example is openweathermap API

which provides real time weather information in JSON or XML format. In most cases

Server Side APIs provide data in a well structured way for developers to manipulate

and manage them. Additionally, server side APIs include documentation explaining

developers how to perform their requests in order to collect these data.

APIs are used a lot nowadays and whole applications are based on live feed from

third party APIs offering B2B services.

Page 13 | 95

2.1.2 Software and Tools

Since the evolution of the WWW and the use of dynamic content, Web Scraping

processes are challenging and demanding. Furthermore, in view of the fact that Web

Scraping is crucial for B2B and B2C processes, a variety of applications,

programming frameworks and libraries have been published in order to keep in track

with the scraping requirements of today’s applications.

Web Scraping Cloud Applications, provide a user interface to the end user through a

Web Browser while the application back end resides on the cloud server. Such a

configuration limits the hardware requirements of end user to their minimum. As a

result, large projects can be created and big data retrieved without additional

hardware or extended internet bandwidth. Some available cloud related applications

for Web Scraping are: Dexi.io and Octoparse.

In Desktop Applications developed for Web Scraping Web data are downloaded,

parsed and saved locally. This process has considerable hardware and internet

requirements. Examples: ParseHub, Fminer.

Even though Ready built Web Scraping applications and tools are powerful and

capable of executing various tasks, in some cases a custom Web Scraping solution

might be necessary. In such a case developers can use generic functionality provided

by programming Libraries or Frameworks.

Scrapy

Scrapy is a web crawling framework for developer to write code to create spider,

which define how a certain site (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαor a group of sites) will be scraped. The biggest

feature is that it is built on Twisted, an asynchronous networking library. Using

Twisted Scrapy is using a non-blocking (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαasynchronous) code for concurrency, which

makes the spider performance very great [4].

Selenium

Selenium is a tool for writing automated tests for Web applications through scraping

and further processing. It is a good option because it is powerful and beginner

friendly. It also provides a test domain-specific language (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαSelenese) to write tests in a

number of popular programming languages, including C#, Groovy, Java, Perl, PHP,

Python, Ruby and Scala.

Jsoup

Page 14 | 95

Jsoup in an open source Java library for working with real-world HTML. It provides a

very convenient API for extracting and manipulating data, using the best of DOM,

CSS, and jquery-like methods. Jsoup implements the WHATWG HTML5

specification, and parses HTML to the same DOM as modern browsers do [6]. Jsoup

was one of the tools used to perform the scraping process.

Browser Extensions

Browser extensions like Outwit Hub or Web Scraper are also used but have limited

potentials in comparison with aforementioned technologies.

2.2 Web Services

Web Services enable machine to machine communication by providing messages

with machine readable content formats. Corresponding to Web applications, Web

Services provide machine readable content to clients and have become the leading

method to support client-side applications and communicate with other services.

Particularly, web services provide an API to rich clients or other web services to

interact with the system resources. Because of the machine readable content web

services are often used for both B2C and B2B services.

Service Oriented Architecture (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαSOA) and Resource Oriented Architecture (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαROA), are

both architectural design patterns and the corresponding distributed programming

paradigms. Both provide a conceptual methodology and development tools for

creating distributed web services [7]. Distributed web services are regularly

implemented nowadays to increase server side performance, fulfill the WWW needs

and face a range of challenges like handling numerous requests and large amount of

data in a reasonable time.

Representational State Transfer (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαREST) has gained widespread acceptance across

the Web as a simpler alternative to SOAP and Web Services Description Language

(Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαWSDL) based Web services. Key evidence of this shift in interface design is the

adoption of REST by mainstream Web 2.0 service providers including Yahoo,

Google, and Facebook who have deprecated or passed on SOAP and WSDL-based

interfaces in favor of an easier-to-use, resource-oriented model to expose their

services [7].

Page 15 | 95

2.3 Representational State Transfer (REST)

REST defines a loose client – server interaction whereas SOAP defines a more strict

way for client – server communication.

REST is a Resource Oriented Architecture (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαROA), therefore it is an architecture for

designing web services based on resources. It defines how resource states may be

addressed, processed and transferred over the HTTP protocol.

Web services implementing REST should fulfill some principles and guidelines.

Firstly, resources exposure to the “outside world” is done in directory structure URIs.

URIs are used in order to reference a system resource. In REST each system’s

resource state has its URI and each URI is used to retrieve, modify or delete

resource data [8].

Furthermore, REST uses HTTP methods explicitly as described in HTTP/1.1 version

of HTTP protocol. While each resource is linked with a URI, each CRUD operation is

linked with an HTTP method. Therefore, GET requests refer to read, POST to create,

PUT to update and DELETE to delete CRUD operations.

Combining URIs and HTTP methods as described, REST uses stateless interactions

between the server and the client. In these interactions HTTP requests hold all the

information needed by the server to execute the appropriate CRUD and

computational operations to generate the right response. To comply with security

issues the services consumers use expiring web tokens or API keys given by the

server and session storage happens on client side.

Last but not least, HTTP request/response payloads are transferred in XML or JSON

format.

2.3.1 RESTful Web Services

Web services must conform with all of the above conditions in order to be “RESTful”.

Because of the stateless and self defined requests REST makes the development a

lot simpler in comparison to SOAP. Both client – server communication is easier to

implement and load balancing is a lot simpler. Load balancing refers to efficiently

distributing incoming network traffic across a group of backend servers. Server

proxies just forward requests to RESTful services while in SOAP simple forwarding is

not enough as requests are not self defined.

Page 16 | 95

2.4 Single Page Applications (SPAs)

A Single Page Application (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαSPA) is composed of individual components that can be

replaced or updated independently without refreshing the whole page. In other

words, the entire page does not need to be reloaded on each user action, which

saves bandwidth as well as no loading of external files, like CSS files, every time the

page is loaded. The purpose behind this is to make the subsequent page loads very

fast, compared to traditional Request-Response cycle. SPAs are written in JavaScript

programming language, and support HTML5 and AJAX calls. [10]

Web applications could be built with just plain JavaScript which is often referred as

Vanilla JavaScript. The result would be a complex and difficult to maintain web

application. SPAs frameworks are used in order to make the make the development

and maintenance easier and more efficient. As a result, SPAs are getting a lot the

likes of developers and enterprises for building their web applications.

2.5 State of the Art for Web Applications

The concept of dynamic web applications, where asynchronous client-server

communication is implemented, introduced a series of advantages and terms to Web

Development. Advantages like better UX, responsiveness and faster web

applications and terms like AJAX, SPAs, DOM and Web Services.

When referring to asynchronous client–server communication, client invokes

requests to the server based on user actions. In traditional web applications, user

used to wait for the response and the reload of the whole page to perform more

actions. In modern applications AJAX requests occur behind the scenes letting the

user make other actions while waiting for the response. The server response is in

machine readable format like XML or JSON and when it is retrieved it is consumed

by the client-side application which make corresponding UI changes. JavaScript is

used for creating the AJAX request, handle the response and make UI changes via

DOM manipulation.

Web development was driven by fast networking, hardware evolution, AJAX and the

ability to perform business logic on both the client side and the server side to building

Rich Internet Applications (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαRIAs). RIAs promote web applications as desktop

applications performing business logic operations on both the server and the client

side. While client side applications are implemented with SPAs frameworks, server

side applications are implemented with web services.

Page 17 | 95

Web services run on the server and provide SPAs with an API to interact with various

states of server resources. In greater detail, web services handle AJAX requests,

access resources and generate the appropriate response for the request in machine

readable format.

Figure 2.2 shows accordingly the traditional Client - Server communication cycle and

the modern SPA Client – Server communication cycle. [11]

Page 18 | 95

Figure 2.2: Synchronous vs Asynchronous client-server communication

3 Implementation Technologies

As follows the system’s core technologies are described. Section 3.1 describes the

Spring Framework, section 3.2 describes Spring Boot, Spring’s extension and section

3.3 describes AngularJS SPA framework. It is worth to mention that for the source

control management of our system multiple Git repositories were used hosted on

github.

3.1 Spring Framework

Spring is an open-source java based framework. It is used for implementing

lightweight, cross-platform and extensible J2EE architectures. It has become popular

to Java community as an alternative to the Enterprise JavaBeans (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαEJB) model.

Spring was originally created by Rod Johnson and was first described in his book

Expert One-on-One: J2EE Design and Development. Spring was created to address

the complexity of enterprise application development, and makes it possible to use

plain-vanilla JavaBeans to achieve things that were previously only possible with

EJBs. But Spring’s usefulness isn’t limited to server-side development. Any Java

application can benefit from Spring in terms of simplicity, testability, and loose

coupling [12].

Spring provides comprehensive programming functionality for developing J2EE

based applications. In particular, Spring’s Web component separates the

application’s logic into different architectural tiers. It requires minimal configuration

and enables developers use Spring modules at will, combining them in a way that

suites the application being developed.

3.1.1 Inversion of Control and Dependency Injection

The most identifying concept of Spring is the Inversion of Control (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαIoc). Under IoC

concept, framework’s code invokes application code and coordinating the overall

Page 19 | 95

https://github.com/

workflow, rather than application code invoking framework code. Spring

accomplishes IoC with Dependency Injection (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαDI). DI is based on just Java

construction methods and custom interfaces, rather than the use of framework

specific interfaces.

Instead of application code using framework APIs to resolve dependencies such as

configuration parameters and collaborating objects, application classes expose their

dependencies through methods or constructors that the framework can call with the

appropriate values at runtime, based on configuration. Dependency Injection is a

form of push configuration; the container "pushes" dependencies into application

objects at runtime. This is the opposite of traditional pull configuration, in which the

application object "pulls" dependencies from its environment [13].

3.1.2 Spring Modules

The Spring Framework consists of features organized into about 20 modules. These

modules are grouped into Core Container, Data Access/Integration, Web, AOP

(Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαAspect Oriented Programming), Instrumentation, Messaging, and Test layers.

Spring’s modules are presented in figure 3.1

[14]

Core Container

Core Container manages Bean creation and usage across the application. Core

Container is Spring’s coordinator, it is the portion of Spring that provides DI and

defines the “scope” of a bean across other beans. Spring provides several bean

scope configurations such as singletons, which scopes a single bean definition to a

Page 20 | 95

Figure 3.1: Spring Modules

single object instance per Spring IoC container or prototypes, which scopes a single

bean definition to any number of object instances.

Web/Remoting

Spring’s Web and Remoting components implement Spring’s MVC framework. It

comes in either a servlet-based framework for conventional web applications or a

portlet-based application for developing against Java Portlet API. The main way in

which portlet-based differs to servlet-based is that the request to the portal can have

two distinct phases the action phase and the render phase; for a single overall

request, the action phase is executed only once, but the render phase may be

executed multiple times. The current thesis is implemented based on the servlet-

based framework.

In Spring the HTTP request is a busy fellow. From the time it reaches the server, it

will make several stops, each time dropping off a bit of information and picking up

some more. Figure 3.2 shows all the stops the request makes [12].

Spring MVC, like many other web frameworks, is designed around the front controller

pattern where a central servlet, the DispatcherServlet, provides a shared algorithm

for request processing while actual work is performed by configurable, delegate

components[15].

Like any other Servlet, the DispatcherServlet needs to be declared and mapped to

appropriate methods. In fact, the Dispatcher has certain bean instances in his scope

defined in configuration. It uses HandlerMapping Bean to map the request to the right

Bean. The DispatcherServlet maps the request to singleton based controller beans.

Page 21 | 95

Figure 3.2: HTTP Request workflow in Spring framework

Web layer also provides several remoting options for building applications that

interact with other applications. Spring’s remoting capabilities include Remote

Method Invocation (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαRMI), Hessian, Burlap, JAX-WS, and Spring’s own HTTP invoker

[16].

Data Access/Integration

The goal of Spring Data repository abstraction is to significantly reduce the amount of

boilerplate code required to implement data access layers for various persistence

stores. Entity beans both enjoyed the rise and suffered the fall of EJB’s popularity. In

recent years, developers have traded in their heavyweight EJBs for simpler POJO-

based development. This presented a challenge to the Java Community Process to

shape the new EJB specification around POJOs. The result is JSR-220—also known

as EJB 3. The Java Persistence API (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαJPA) emerged out of the rubble of EJB 2’s

entity beans as the next-generation Java persistence standard. JPA is a POJO-based

persistence mechanism that draws ideas from both Hibernate and Java Data Objects

(Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαJDO), and mixes Java 5 annotations in for good measure. With the Spring 2.0

release came the premiere of Spring integration with JPA. The irony is that many

blame (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαor credit) Spring with the demise of EJB. But now that Spring provides

support for JPA, many developers are recommending JPA for persistence in Spring

based applications. In fact, some say that Spring-JPA is the dream team for POJO

development [15].

The Data Access/Integration layer or Spring Data consists among others of the JDBC

and ORM modules.

JDBC module is a JDBC-abstraction layer that removes a lot of boilerplate code to

get a connection, create a statement, process the result set, close a connection or

handle SQL error messages.

The ORM module provides integration layers for popular object-relational mapping

APIs, including JPA, JDO, and Hibernate. Using the ORM module you can use all of

these O/R-mapping frameworks in combination with all of the other features Spring

offers, such as the simple declarative transaction management feature [17].

Test

Automated testing has become a very important thing in application development.

Automated application testing and application development often go side by side,

referred to test-driven development, having test methods for each every feature and

functionality the application provides providing feedback for the whole application.

Page 22 | 95

Spring provides a component dedicated to testing Spring applications. It provides

functionality for both unit and integration testing methods to be implemented.

3.2 Spring Boot

Spring Boot is an open-source framework introduced in 2003. It is used for

developing Spring based applications with minimal configuration. Spring itself is

characterized by “lightweight” component code, but it requires “heavyweight” XML

and JavaBean configuration. Spring Boot reduces a lot Spring’s configuration. Using

annotations, starter dependencies and auto-configuration it provides a great way to

configure and bootstrap a Spring application.

Spring starter dependencies describe the functionality the application needs. Spring

Boot provides a big list of starter dependencies to configure specific functionality. As

follows some of Spring’s starter dependencies are described. Web starter

dependency auto-configures both an embedded tomcat server and spring MVC. Data

JPA starter dependency enables code written based on Hibernate and Object

Relational Model implementing the Java Persistence specification. Moreover, Starter

parent dependency, among other utilities, manages the versions of common

dependencies. This dependency management ensure compatibility across the

dependencies and let developers using spring omit version configuration for a variety

of supported dependencies.

Annotations on the other hand, are used for JavaBeans configuration. In Spring

beans used to be configured using boilerplate XML code.

3.3 AngularJS

AngularJS is an open-source framework packed with several utilities and services

typically needed in single-page web applications [18]. It provides functionality for

defining a tidy Model View Controller (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαMVC) architectural pattern. Applications written

in AngularJS are cross-browser compliant as AngularJS automatically handles

JavaScript code suitable for each browser [17].

In AngularJS the application’s logic gets divided in different components and sub-

components each one with it’s own tasks. It provides developers with options of

creating generic and reusable components in order to minimize the development

code and make maintenance a lot easier.

Page 23 | 95

AngularJS componentized structure specification decouples the view from the logic

using a two way data binding between the model and the view. In more detail,

AngularJS directives instantiated in the view, worry about displaying the referenced

model values and AngularJS worry about updating the model when the values

change. This enables developers work with the model, via angular controllers,

without worrying about how the data is displayed or entered [18].

Figure 3.3 shows the workflow of an application developed with AngularJS.

3.3.1 AngularJS Core Features

The core features of AngularJS are presented in figure 3.4 [19] and most of them are

described as follows in greater detail.

Page 24 | 95

Figure 3.3: AngularJS Workflow

Data binding

Data-binding in Angular apps is the automatic synchronization of data between the

model and view components. The way that Angular implements data-binding lets you

treat the model as the single-source-of-truth in your application. The view is a

projection of the model at all times. When the model changes, the view reflects the

change, and vice versa.

Templates

A template in AngularJS is HTML code that contains Angular-specific elements, the

directives. Angular combines the template with the model to render the dynamic view

a user sees on the browser.

Controllers and Directives

Controllers and directives is the way angular interlinks the template with the model in

order to render the page.

Controllers are JavaScript functions used to provide the model to the template. In

particular, when a Controller is attached to a DOM element via the ng-controller

directive, angular uses a constructor function to augment the application’s model and

provide the child $scope generated to the template. The child $scope is the local

state of the specified controller and can be accessed by the template. As the

Page 25 | 95

Figure 3.4: AngularJS features

application’s state, local state is a plain JavaScript object and may contain variables,

arrays, key – value pairs or functions.

Directives, as specified, are angular-specific elements. They are used by the

templates in order to access the model provided by controllers.

At a high level, directives are markers on a DOM element (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαsuch as an attribute,

element name, comment or CSS class) that tell AngularJS’s HTML compiler

(Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημα$compile) to attach a specified behavior to that DOM element or even transform the

DOM element and its children [17].

Model

The Model in AngularJS is a plain JavaScript object. The Model, as JavaScript

objects, may contain variables, arrays, key – value pairs or functions. The

application's model could be also referred as the state of the application defined in

$rootScope variable. $rootScope is arranged in hierarchical structure which mimics

the DOM structure of the application. On initialization, AngularJS instantiates the

application’s model or the application’s global state, the $rootScope. $rootScope is

the parent of all local states (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημα$scopes), that is the way AngularJS “knows” which

templates to change when the model state changes or vice versa, making both

dynamic DOM manipulation and UX more efficient.

As components may exist inside other components a possible application’s state

might look like figure 3.5 [20].

Page 26 | 95

Figure 3.5: Possible angularJS global state

Dependency Injection

Dependency Injection (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαDI) is a software design pattern that deals with how

components get hold of their dependencies. The AngularJS injector subsystem is in

charge of creating components, resolving their dependencies, and providing them to

other components as requested [21].

Services

Angular services are substitutable objects that are wired together using Dependency

Injection (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαDI). Services are used to organize business logic and share it across the

controllers. The Angular services are:

• Lazily instantiated - Angular only instantiates a service when an application

component depends on it.

• Singletons - Each component dependent on a service gets a reference to

the single instance generated by the service factory.

3.4 Data Persistence

For data persistence PostgreSQL was used. Postgres is an old time classic

Relational Database Management System (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαRDMS). Over the years PostgreSQL has

earned a strong reputation for reliability, robustness and performance.

PostgreSQL, also known as Postgres, was originally developed in 1986, by Michael

Stonebraker and his team at the University of California at Berkley (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαUCB). Today,

Postgres is an open-source Relational Database Management System (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαRDBMS)

managed primarily by EnterpriseDB and monitored by Postgres development

community. The code base takes regular contributions from the community and over

the years has become a powerful extensible system free to purchase and modify[22].

Postgres was not only chosen because it is great as a Relational Database, but it has

also added NoSQL support which may be an interesting feature for the scalability of

our system.

Page 27 | 95

4 System Architecture

The whole system is designed to collect information for POIs capable of hosting

certain experiences or types of activities, that our system supports, and provide these

information to rich clients in order to build beautiful Web Applications. This chapter

describes the overall system architecture, identifies its basic components and

specifies the functionality of the implemented components. The system architecture

is presented in Figure 4.1.

Page 28 | 95
Figure 4.1: System Architecture

Scraping Application

The Scraping Application is responsible for fetching and modeling suitable

information for our system. Modeling is an important aspect of the whole system

described in detail in chapter 5. Scraping Application defines the POIs model which

is persisted along the application. That way any new scraped POIs complying with

the POIs model can be integrated in our application with minimum configuration.

POIs Database

The POIs Database persists all the information-data the Scraping Application

gathers. In particular, it contains POIs in a pure state as gathered and handled by the

Scraping Application and provide an infrastructure for the Application Database.

Application Database

The Application Database is an “extension” of the POIs Database. It contains all POIs

that exist in POIs Database alongside with user-POIs relations like favourite POIs

and the rating performed from a user on a specific POI.

RESTful Web Services

RESTful Web Services have been developed to support the client side application.

The implemented web services run on the server and provide an API to clients like

described in Section 3.2.

Client

On the client side resides and runs a SPA framework that consumes the API

supported by the Web Services. As specified, the implemented client-side application

is just an example of the API consumeness.

Page 29 | 95

5 Functional Specification

This chapter describes the functional specification of the platform that have been

developed. Section 5.1 specifies the technical requirements that had to be fulfilled

while Section 5.2 discusses the functionality that had to be provided by our system in

the form of use cases. It is worth mentioning that the development process started

after the whole functional specification and design process were finished.

5.1 Technical Requirements

This section discusses the technical requirements that were identified and set for the

development of the whole system. While each of the following sections specify the

requirements of the system’s basic components Section 8 describes the

implementation of them.

A strong requirement that we set for our infrastructure is that the scraping logic

should be completely decoupled from web logic. The solution came with the

implemented Model specified in 5.1.1. Section 5.1.2 describes the requirements of

the Scraping Application. Section 5.1.3 describes the requirements of the Client Side

Application. Finally, section 5.1.4 describes the requirements our system’s backend.

5.1.1 Model

As mentioned the model is an important aspect of the whole system, as it is the

solution for the Scraping Application to co-exist with the rest of the system. The

Model consists of two basic entities the POI and the User. In order to fulfill the needs

of the system two requirements where specified:

• POIs should be easily extended, in terms of adding new POIs

Page 30 | 95

• It should support data scalability. In greater detail, User-POI relations should

be easily modeled and neither affected when adding new POIs nor when

defining relations between users and new POIs.

5.1.2 Scraping Application

The requirements that we have set for the current version of the Scraping Application

are to collect through scraping and persist the following:

• kitesurfing POIs

• scuba-diving dive sites

• scuba-diving schools

Another requirement specified as an outcome of a UI evaluation is the conversion of

geographic coordinates to address. Before the evaluation, we used to provide search

(Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαsee use case 10) via just POI name. After the evaluation and implementation of the

specified conversion, the current version supports search via either POI name or POI

address.

Last but not least, the scraping application should be able to implement new scraping

services easily in order to conform with the evolution of the whole system.

5.1.3 Client Side Application

The intention for the Client Side Application was to build a rich application that is in

line with the state of the art described in chapter 2.5. As a result, it should be a

desktop-like, responsive and cross-browser compliant application and fulfill all of the

following:

• The system must support two user roles (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαActors): The Guest user and the

signed-in user. The signed-in user will be referred as User and Guest user as

Guest.

• The System must support registration and the password should be encrypted

in the database.

• Basic authentication with password encryption is required for logging in.

• Actors must be able to interact with a dynamic map, see and search for POIs

they are interested in.

Page 31 | 95

• Users must be able to do more actions like rating or placing a POI to

favourites.

• Users must have a profile.

• User must be able to see all POIs in interactive maps.

• User must be able to see all POIs in a list. Furthermore, the user should be

able to apply meaningful filters and sorting on the POIs list.

• Each POI must have its details page where all of the POI's details should be

presented.

• User must be able to rate a POI and the POI’s average rating should be

provided properly.

• Users should be able to store their favourite POIs.

5.1.4 Server Side

The requirements that we have set for the backend of our system serving the client

side application are summarized below:

• Provide state-of-the-art standards.

• able to support the persistence of users, POIs and user-POI relations.

• expose restful web services for allowing the access of the data from external

applications.

• Perform efficient searching on data.

• Support scalability in terms of defining new services complying with the

evolution of the whole system.

5.2 Use Cases

A use case describes the system’s behavior under various conditions as the system

responds to a request from one of the actors, the Guest user and the logged in user.

Along the rest of the document the Guest User is referred to as Guest and the logged

in User is referred to as User.

Page 32 | 95

The actor initiates an interaction with the system to accomplish a goal. The system

responds appropriately.

This section describes the system’s behavior under its interaction with the actors. To

this end, we exploit the method of use cases as they have been described by Alistair

Cockburn [23]. For more understanding we present all of the use cases clustered in

form of use case diagrams. Figures 5.1, 5.2, 5.3, 5.4 and 5.5 present the common

use cases for both Guests and Users while figures 5.6 and 5.7 describe User only

use cases. For each use case a dedicated table describes the internal functionality.

Page 33 | 95

Figure 5.1: Guest only Use Cases

Figure 5.2: Guest and User common Use Cases group 1

Page 34 | 95

Figure 5.5: Guest and User common Use Cases group 4

Figure 5.3: Guest and User common Use Cases group 2

Figure 5.4: Guest and User common Use Cases group 3

Table 1: Use Case 1: View all POIs on map

Use Case 1: View all POIs on map

Context of Use The User wants see all POIs on a dynamic map

Scope System (Client Side Application)

Level Summary

Preconditions The System has load the application

Success End Conditions The User sees all available POIs on a dynamic map

Page 35 | 95

Figure 5.7: User only Use Cases group 2

Figure 5.6: User only Use Cases group 1

Failed End Conditions The User doesn’t see all available POIs on a dynamic map

Primary Actors

Secondary Actors

User

System (Client Side Application)

Trigger User selects to see the main map page from the navigation bar

Description Step Action

1 User clicks POIs on Map button from the navigation bar

Extensions Step Branching Action

Page 36 | 95

Table 2: Use Case 2: View only POIs from the selected categories

Use Case 2: View only POIs from the selected categories

Context of Use User wants to see only POIs he is interested in

Scope System (Client Side Application)

Level Summary

Preconditions The System has load the main map page

Success End Conditions User sees only POIs from the selected categories

Failed End Conditions 1. User does not see POIs

2. User does not see only POIs related to the selected categories

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger User selects a POI category

Description Step Action

1 The System shows all POIs related to selected categories

2 User selects/deselects a POI category

Extensions Step Branching Action

Page 37 | 95

Table 3: Use Case 3: Explore POIs on main map

Use Case 3: Explore POIs on main map

Context of Use User wants to explore Greece and interesting POIs through a dynamic

map

Scope System (Client Side Application)

Level Summary

Preconditions The System has loaded the main map page

Success End Conditions User explores Greece through a dynamic map

Failed End Conditions User is unable to explore Greece through the dynamic map

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger User uses the dynamic map’s interface to zoom in/out and move the map

Description Step Action

1 System loads the main map page

2 User triggers the dynamic’s map evnets

Extensions Step Branching Action

Page 38 | 95

Table 4: Use Case 4: View POI short explanation and rating

Use Case 4: View POI short explanation and rating

Context of Use User wants to see an overview of a specific POI

Scope System (Client Side Application)

Level Summary

Preconditions The System has loaded the main map page

Success End Conditions User sees a specific’s POI short explanation and rating

Failed End Conditions User does not see a specific's POI short explanation and rating

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger User clicks on a specific POI

Description Step Action

1 User clicks on a POI’s marker

2 The system shows the POI’s short explanation and rating in a pop

up window

Extensions Step Branching Action

Page 39 | 95

Table 5: Use Case 5: Transfer on specific location

Use Case 5: Transfer on specific location

Context of Use The user wants the map to be transferred on a specific location

Scope System (Client Side Application)

Level Summary

Preconditions The System has loaded the main map page

Success End Conditions The dynamic map gets transferred on a specific location

Failed End Conditions The dynamic map does not get transferred on a specific location

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger User texts on a provided input and submits

Description Step Action

1 User texts on provided search input

2 User submits the texted searched term

Extensions Step Branching Action

Page 40 | 95

Table 6: Use Case 6: Cluster click

Use Case 6: Cluster click

Context of Use User wants to see what is underneath a marker cluster

Scope System (Client Side Application)

Level Summary

Preconditions The System has loaded the main map page

Success End Conditions The map zooms in with center the cluster clicked

Failed End Conditions The map does not zoom in on cluster click

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger User clicks on a POI cluster

Description Step Action

1 User clicks on a marker cluster

2 The system makes the dynamic map to smoothly zoom in with

center the clicked cluster

Extensions Step Branching Action

Page 41 | 95

Table 7: Use Case 7: View all POIs in a list

Use Case 7: View all POIs in a list

Context of Use User wants to see all available POIs in a list

Scope System (Client Side Application)

Level Summary

Preconditions The System has loaded the application

Success End Conditions User sees POI Finder page

Failed End Conditions User does not see POI finder page

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger User selects to see the POI Finder page from the navigation bar

Description Step Action

1 User clicks POI Finder button from the navigation bar

Extensions Step Branching Action

Page 42 | 95

Table 8: Use Case 8: View POI details

Use Case 8: View POI details

Context of Use User wants to see the details of a specific POI

Scope System (Client Side Application)

Level Summary

Preconditions User has navigated to the POI details page

Success End Conditions User sees the POI details

Failed End Conditions User doesn’t see the POI details

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger Details link to POI details page

Description Step Action

1 User

Extensions Step Branching Action

Page 43 | 95

Table 9: Use Case 9: View weather map

Use Case 9: View weather map

Context of Use User wants to see a overview of the weather in a dynamic map

Scope System (Client Side Application)

Level Summary

Preconditions User has navigated to weather map page

Success End Conditions User sees the dynamic weather map

Failed End Conditions User does not see the dynamic weather map

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger User selects to see the weather map page

Description Step Action

Extensions Step Branching Action

Page 44 | 95

Table 10: Use Case 10: Search for POI

Use Case 10: Search for POI

Context of Use User wants to search for a specific POI

Scope System (Client Side Application)

Level Sub Function

Preconditions User has navigated to POI Finder Page

Success End Conditions User finds the POI

Failed End Conditions User does not find the POI

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger User types in the search input field

Description Step Action

Extensions Step Branching Action

Page 45 | 95

Table 11: Use Case 11: View POI’s average rating and number of ratings

Use Case 11: View POI’s average rating and number of ratings

Context of Use User wants to see a POI’s average rating and the number of the

performed ratings

Scope System (Client Side Application)

Level Summary

Preconditions User has navigated to proper view (POIs page, POI finder page, POI

details page)

Success End Conditions User sees the average rating and the number of ratings performed for a

specific POI

Failed End Conditions User doesn’t see the average rating and the ratings performed of a POI

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger

Description Step Action

Extensions Step Branching Action

Page 46 | 95

Table 12: Use Case 12: Register

Use Case 12: Register

Context of Use The user wants to register, so he can have full access to

the system’s functionality.

Scope System (Client Side Application)

Level Sub Function

Preconditions The User is not logged in the system

Success End Conditions The user registers successfully

Failed End Conditions The user could not register

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger User selects to register

Description Step Action

1 The System displays the register form

2 The user fills the form

3 The user submits the form

4 The system validates the submitted form

5 The system displays the first screen for logged in users

Extensions Step Branching Action

1 4a1. Submitted data is incorrect

2 4a2. The system informs the user that the filled form has invalid

data

Page 47 | 95

Table 13: Use Case 13: Login

Use Case 13: Login

Context of Use User wants to login

Scope System (Client Side Application)

Level Sub Function

Preconditions The user is not logged in

Success End Conditions The user logs in successfully

Failed End Conditions The user fails to log in

Primary,

Secondary Actors

User

System (Client Side Application)

Trigger The user selects to login

Description Step Action

1 The System displays the log in form

2 The user fills with his credentials the log in form

3 The user submits the form

4 The system validates the submitted form

5 The system displays the first screen for logged in users

Extensions Step Branching Action

1 4a1. Submitted data is incorrect

2 4a2. The system informs the user that the filled form has invalid

data

Page 48 | 95

Table 14: Use Case 14: Rate POI

Use Case 14: Rate POI

Context of Use User wants to add his personal rating on a specific POI

Scope System (Client Side Application)

Level Summary

Preconditions The User is logged in

Success End Conditions The User successfully rates a POI

Failed End Conditions The User fails to rate a POI

Primary,

Secondary Actors

Logged in User

System (Client Side Application)

Trigger User selects an amount of stars

Description Step Action

1 The system has loaded the average rating and the number of

ratings performed for a particular POI

2 The User selects an amount of stars

Extensions Step Branching Action

Page 49 | 95

Table 15: Use Case 15: Add POI to favourites

Use Case 15: Add POI to favourites

Context of Use User wants to add a specific POI to his personal favourites

Scope System (Client Side Application)

Level Summary

Preconditions The User is logged in

Success End Conditions The User successfully adds a particular POI to his personal favourites

Failed End Conditions The User fails to add the POI to his personal favourites

Primary,

Secondary Actors

Logged in User

System (Client Side Application)

Trigger User selects to add a specific POI to his personal favourites

Description Step Action

1 The system has loaded a page that gives the opportunity to the

user to add a specific POI to his favourites

2 The User selects to add the POI to his personal favourites

3 The system loads a form with an input field for the user to add

notes on that specific POI

4 The User add his notes on the POI and submits the form

Extensions Step Branching Action

1 3a1. The user aborts the procedure

Page 50 | 95

Table 16: Use Case 16: Edit notes on favourite POI

Use Case 16: Edit notes on favourite POI

Context of Use User wants to edit his notes on a favourite POI

Scope System (Client Side Application)

Level Summary

Preconditions User is logged in and has at least one favourite POI

Success End Conditions User successfully edits the notes on a POI

Failed End Conditions User fails to edit the notes on a favourite POI

Primary,

Secondary Actors

Logged in User

System (Client Side Application)

Trigger The User selects to edit the notes on a favourite POI

Description Step Action

1 The system has loaded the personal map page

2 The User selects to edit his notes on a favourite POI

3 The system loads a form with an input field filled with his notes

which he can edit

Extensions Step Branching Action

1 2a1. The User aborts the process

Page 51 | 95

Table 17: Use Case 17: Remove POI from favourites

Use Case 17: Remove POI from favourites

Context of Use User wants to remove a POI from his personal favourites

Scope System (Client Side Application)

Level Summary

Preconditions The User is logged in

Success End Conditions The User successfully removes the POI from his personal favourites

Failed End Conditions The User

Primary,

Secondary Actors

Logged in User

System (Client Side Application)

Trigger The User selects to remove a POI from his favourites

Description Step Action

1 The System has loaded the personal map page

2 The User selects a POI

3 The System renders the POI overview with the notes

4 The User chooses to remove this POI from his personal map

5 The System asks the user for confirmation in order to remove the

POI

6 The User confirms and the system removes the POI from his

personal map

Extensions Step Branching Action

1 The user aborts the process

Page 52 | 95

Table 18: Use Case 18: View all favourite POIs

Use Case 18: View all favourite POIs

Context of Use User wants to see all his personal favourite POIs on a dynamic map

Scope System (Client Side Application)

Level Summary

Preconditions The User is logged in

Success End Conditions The User sees a dynamic map with all his favourite POIs

Failed End Conditions The User doesn’t see any map or favourite POIs

Primary,

Secondary Actors

Logged in User

System (Client Side Application)

Trigger The User navigates to his personal map through the navigation bar

Description Step Action

Extensions Step Branching Action

Page 53 | 95

Table 19: Use Case 19: View favourite POI’s short explanation and notes

Use Case 19: View favourite POI’s short explanation and notes

Context of Use User wants to see the short explanation and his notes of a specific POI

Scope System (Client Side Application)

Level Summary

Preconditions The User is logged in

Success End Conditions The User sees the short explanation and his notes of a specific POI

Failed End Conditions The User doesn’t see either the short explanation or his notes of the POI

Primary,

Secondary Actors

Logged in User

System (Client Side Application)

Trigger The User selects a POI from his favourites

Description Step Action

1 The system loads the personal map page with all the User’s

favourite POIs

2 The User selects a POI

3 The System renders the selected POI’s short explanation and

notes

Extensions Step Branching Action

Page 54 | 95

Table 20: Use Case 20: Change Password

Use Case 20: Change Password

Context of Use User wants to change his password

Scope System (Client Side Application)

Level Summary

Preconditions The User is logged in

Success End Conditions The User successfully changes his password

Failed End Conditions The User fails to change his password

Primary,

Secondary Actors

Logged in User

System (Client Side Application)

Trigger The User selects to change his password

Description Step Action

1 The System has loaded the user’s profile page

2 The User selects to change his password

3 The System renders a form with his old password, his new

password and a field to repeat the new password

4 The User fills the form

5 The User submits the form

6 The System validates the form

7 The System changes the user’s password

Extensions Step Branching Action

1 6a1. Submitted data is incorrect

2 6a2. The system informs the user that the filled form has invalid

data

Page 55 | 95

Table 21: Use Case 21: Edit Interests

Use Case 21: Edit Interests

Context of Use User wants to edit his interests

Scope System (Client Side Application)

Level Summary

Preconditions The User is logged in

Success End Conditions The User successfully edits his interests

Failed End Conditions The User fails to edit his interests

Primary,

Secondary Actors

Logged in User

System (Client Side Application)

Trigger The User selects to edit his interests

Description Step Action

1 The system has loaded the profile page

2 The User selects to edit his interests

3 The System renders a form with all the supported interests

4 The User chooses his interests

5 The User submits the form

6 The System validates the form

7 The System changes the user’s password

Extensions Step Branching Action

1 6a1. Submitted data is incorrect

2 6a2. The system informs the user that the filled form has invalid

data

Page 56 | 95

Table 22: Use Case 22: Update profile picture

Use Case 22: Update profile picture

Context of Use User wants to update his profile picture

Scope System (Client Side Application)

Level Summary

Preconditions The User is logged in

Success End Conditions The User successfully changes his profile picture

Failed End Conditions The User fails to change his profile picture

Primary,

Secondary Actors

Logged in User

System (Client Side Application)

Trigger The User selects to update his profile picture

Description Step Action

1 The System has loaded the profile page

2 The user selects to change his profile picture

3 The system renders a file input field

4 The User selects a picture

5 The User submits

6 The System changes the user’s profile picture

Extensions Step Branching Action

1 The User aborts the process

2 4a1. The selected picture is too big

3 4a2. The System informs the user that the selected picture is too

big

Page 57 | 95

Table 23: Use Case 23: Add Comment on specific POI

Use Case 23: Add Comment on specific POI

Context of Use User wants to add a comment on a specific POI

Scope System (Client Side Application)

Level Summary

Preconditions The User is logged in

Success End Conditions The User successfully adds a comment on a specific POI

Failed End Conditions The User fails to add a comment on a specific POI

Primary

Secondary Actors

Logged in User

System (Client Side Application)

Trigger The User submits the comment he typed on the comment input field

Description Step Action

1 The system has loaded the POI details page

2 The User fills the corresponding input field

3 The User submits the comment

4 The system adds the user’s comment to the POI’s details page

Extensions Step Branching Action

Page 58 | 95

6 Implementation

The functionality of the system and the architecture have been successfully

implemented as designed. This Section discusses the implementation of the whole

system. While chapter 6.1 describes both the POIs Model and the Application Model,

via Entity Relationship diagrams and describes how their persistence was

implemented via relational schemas. Chapter 6.3 describes the scraping application

and last but not least section 6.4 describes the web infrastructure.

6.1 Model

This section specifies the basic entities of the whole system and describes how these

were modeled and persisted.

Two entities have been identified in our system as basic entities, the POI and the

logged in user. In order for the scraping logic to be decoupled from the web logic, two

models are implemented. The POIs model containing all of the gathered POIs along

with their details and the Application model that extends the POIs model and

contains, along with the POIs the user specifications, the user-POIs relations, such

as rating.

This Section describes how the data persistence was implemented for both our

models.

POIs Database

As follows the implemented schema is presented via entity-relationship diagrams and

specified by the provided relational schemes for both the POIs and the Application

Databases. Figure 7.3 presents the ER diagram of the POIs Database.

Page 59 | 95

The ER diagram presented in 7.3 is translated in the relational schema presented in

table 7.1. In particular, each table of the database is given with its name, attributes,

Primary Keys (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαPKs) and Foreign Keys (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFKs). Primary keys are underlined, ex:

this_is_a_key and foreign keys are shown with (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK) beside them, ex:

this_is_a_foreign_key (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK). PKs are used to uniquely identify records of entities and

FKs are used to define relationships between the entities.

Page 60 | 95

Figure 6.1: POIs Entity Relationship

Table 24: POIs Relational Schema

Table Name Attributes

POI id, name, latitude, longitude, type

POI_scubadiving POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), name, latitude, longitude,

type, logged_dives, max_depth,

entry_type, water_environment_type,

salinity, primary_bottom_type and

description

POI_scubadiving_school POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), name, latitude, longitude,

type, address, contact details, email,

website, image

POI_kitesurfing POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), name, latitude, longitude,

type, water_type, level, features,

wave_type, water_hazards,

water_cleanness, water_best_tide,

beach_type, beach_size, beach_hazards,

beach_months_used, wind_type,

wind_best_direction, wind_main_direction

Image image_id, POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), image

You may have noticed that the POI’s abstract specification reside on all POI entities

along with their specific attributes. Though it is not a common practice when handling

inheritance, it is suitable in our situation. In greater detail, this is the way the

Application’s logic gets decoupled from the scraping logic. The Scraping application

performs the scraping process and persist the gathered data in schema presented

above. Attribute type in table POI refers to a specific POI category and thus the table

that store the POI details. That way the Application Database schema can easily

define relations on POIs via referring to one single table, the POI table. Last but not

least, all of the POI data can be acquired in many ways in a single query.

Application Database

Page 61 | 95

Like performed for the POIs Database Figure 7.4 presents the Application’s Database

ER diagram which gets translated to the Relational Schema presented in table 7.2.

Both figures show how the Application database extends the POIs database.

Page 62 | 95

Figure 6.2: Application Entity Relationship

Table 25: The Database Relational Schema

Table Name Attributes

POI id, name, latitude, longitude, type

POI_scubadiving POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), logged_dives, max_depth, entry_type,

water_environment_type, salinity,

primary_bottom_type, and description

POI_scubadiving_school POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), address, contact details, email, website,

image

POI_kitesurfing POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), water_type, level, features, wave_type,

water_hazards, water_cleanness, water_best_tide,

beach_type, beach_size, beach_hazards,

beach_months_used, wind_type, wind_best_direction,

wind_main_direction

Image image_id, POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), image

app_user username, password, email

interest Id, interest

app_user_interest user_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), interest_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), level

app_user_POI_comment comment_id, app_user_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), comment,

date

app_user_POI_report report_id, app_user_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), reason, date

app_user_POI_rate rating_id, user_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), rating, date

app_user_POI_favourite favourite_id, user_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), POI_id (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαFK), notes, date

6.2 Scraping Application

The Scraping application implements a multi-layered architecture in Java with the

Spring Boot framework (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαsee 4.2) and it gets executed from the terminal via an

executable JAR file. Section 7.1 describes the Application architecture and section

7.2 the process.

Page 63 | 95

6.2.1 Architecture

Figure 7.1 presents the overall Scraping Application Architecture.

Figure 6.3: Scraping Application Architecture

Coordinator

The coordinator based on runtime attributes calls the appropriate services to perform

the according operations. Depending on runtime arguments it supports 5 operations.

1) Perform kitesurfing POIs scraping

2) Perform scuba-diving dive sites scraping

3) Perform scuba-diving schools scraping

4) Perform scraping for all POI categories

5) For each POI perform coordinates to address conversion through scraping

the google’s Geocoding API and update all POIs

Page 64 | 95

Operation 5 was developed after the Web Application evaluation where it became

clear the need to provide address for each POI for better searching and user

experience.

Scraping Services

Scraping services execute all the scraping processes. They support methods for

acquiring information for kitesurfing POIs, scuba-diving schools and scuba-diving

dive sites. In particular, two web pages were targeted to gather the desired data,

http://www.kiteforum.com/ to acquire information for kitesurfing POIs and

https://www.scubaearth.com/ to gather information for scuba-diving dive sites and

schools.

Another implemented Scraping procedure is the conversion of all addresses for the

POIs that have been harvested through Google’s Geocoding API.

CRUD Services

The specified processes require create and update CRUD services which where

implemented for all the entities of the application defined in the POIs model.

POIs Model

Hibernate was used to implement the POIs Model (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαsee 6.1). Hibernate is an Object

Relational Mapping (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαORM) framework capable of mapping any type of relations

between entities and compatible with PostgreSQL.

Repositories

JPA repositories were used to access the POIs Database. Repository
Components are used to index and persist the data of the application. JPA
repositories provide a lot generic infrastructure and reduces a lot of boilerplate
code.

6.2.2 Scraping Process

An executable JAR file is provided to run the Scraping Application. Based on runtime

variables the coordinator “fires up” methods to either scrape kitesurfing POIs, scuba-

diving dive sites or scuba-diving schools. All of the above were implemented with

Jsoup (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαsee section 3.1.3). In more detail, Jsoup was used to obtain the web pages,

build their DOM like modern browsers do and perform DOM queries and CSS

selectors to targeted information. The gathered information are modeled and

persisted using Hibernate to model the Database Schema and JPA Repositories to

Page 65 | 95

https://www.scubaearth.com/
http://www.kiteforum.com/

access it. Last but not least there is a runtime option for converting geographical

coordinates to addresses for all the gathered POIs. It was implemented using

Spring’s RestTemplate to make synchronous HTTP request to Google’s servers and

consume the JSON response of the Geocoding API.

6.3 Web Infrastructure

This chapter describes the implemented logic for the web related part of the system.

Section 7.4.1 describes its architecture and advocates on some of the architectural

decisions that were made for the most important application aspects. Section 7.4.2

describes the RESTful Web Services which reside on server side whereas section

7.4.3 describes the client-side Application.

6.3.1 Architecture

The system adopts the Rich Internet Application and the state of the art principles

which promotes Web applications as desktop-like applications where business logic

is performed on both the server and the client side. The client side logic operates

within the web browser running on a user’s local computer or “smart” device, while

the server side logic operates on the web server hosting the application. To comply

with the above, web services were used on server side which provides an API to the

client side. The described architecture separates the server side from the client side

logic simplifying the development process and increases the system’s scalability,

maintainability and robustness. Figure 7.6 presents the Architecture of the

implemented Web infrastructure.

Page 66 | 95

6.3.2 RESTful Web Services

The Server Side of our System is based on Java programming language. Moreover,

it is worth to mention that we have made extensive use of the Spring Boot

Framework in order to tackle certain aspects of our backend.

The Server Side part of the developed framework provides RESTful Web Services to

the client-side while follows a multi-layered architectural pattern. The multi-layered

architectural pattern separates the client-server communication logic, the business

logic and the data access logic in three layers the Service layer, the Business Logic

layer and the Data layer. Thus, distinct components have been implemented

operating in the three layers. As follows all the layers are being described.

Page 67 | 95

Figure 6.4: Overall System Architecture

The reason of using REST was based on the following facts: (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαa) less network

bandwidth requirements compared to SOAP, (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαb) business logic reuse, (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαc) more

standardized operations that are well understood and operate consistently based on

HTTP GET, POST, PUT and DELETE methods, (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαd) development of human readable

and testable components, and (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαe) there is no requirement to use complex data

interchange formats like XML. To this end, we built a package of RESTful services

exposing all the functionality of our system and we created CRUD (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαcreate, retrieve,

update, delete) operations for every possible feature.

Service Layer

Service layer uses the Controller components to define API endpoints. In more detail,

Controller components are the ones responsible for the configuration of the RESTful

API and its endpoints provided to the client-side.

Business Logic Layer

The Business Logic Layer, also known as Domain Layer, contains the business logic

of the application and separates it from the Data Layer and the Service Layer.

Business logic refers to both business objects as well as operations on the objects. In

more detail:

• The POI Management Module, is responsible for the POI entity management

and definition

• The User Management Module, is responsible for the Entity User

management and definition

• The UserPoiRelations Management Module, is responsible for the definition

and management of the user’s interaction on the POIs

Data Layer

The Data Layer accommodates the external Database of the system via Repository

Components. Repository Components are used to index and persist the data of the

application.

6.3.3 Client Side Application

The Implemented Client Side Application is just an example usage of the API

provided by the implemented server side web services. As the provided API is in

machine readable format any other can be based on that API.

Page 68 | 95

The Client Side of our System is based on JavaScript programming language.

Moreover through the extensive usage of the AngularJS framework the MVC

architecture described in chapter 7 was implemented. In particular AngularJS View,

Directive, Controller, Service, Configuration components were developed to fulfill the

needs of the application.

The main reason for using AngularJS is that it provides a great way for defining a

clean MVC architecture with code and component reuse.

The Client Side of the application is responsible for the interaction with the user. All

the actions performed by an individual using the system, are handled by the client

side logic, which undertakes the presentation of the information as well as the

communication with the server. In order to achieve a high level of decoupling

between the components forming the client logic we adopted the Model View

Controller (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαMVC) design pattern[24].

The usage of the MVC pattern introduces the separation of the responsibilities for the

visual display and the event handling behavior into different entities, named

respectively, View and Controller. Some of the advantages on this approach are: (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαa)

maximization of the code that can be tested with automation (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαWeb pages containing

HTML elements are hard to test), (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαb) code sharing between pages that require the

same behavior, and (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαc) separation of the business logic from the user interface to

make the code easier to understand and maintain.

In what follows, we describe the components of the client-side architecture (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαsee

Figure 7.1) in more detail, focusing on their objective and internal functionality.

Model

The Model refers to the business objects of the system. Client side business objects

refer server side business objects. Thus, when the system needs to present

information about the business object, the client side requests the respective

information. Similarly, Update, Create and Delete operations involve according

requests to the server side.

View

The Views are responsible for the presentation of information in the user interface.

Each view controls a number of widgets on the application’s graphical user interface.

It consists of several handlers that are responsible for listening user actions, as well

as HTML templates that define the presentation of the widgets.

Controller

Page 69 | 95

The Controller components are the modules that handles user actions and interaction

with the Views in order to perform changes on the interface. Furthermore, they

maintain the Model and change it appropriately. Every View has a dedicated

Controller managing, handling and propagating any changes to be performed on the

interface. In several cases Controller components manage other controllers in order

to crate complex widgets.

Router

The Router is used for deep-linking URLs to Controllers and Views. It maps the URL

of the client browsers to Views and Controllers providing a unique path to each

distinct interface without the need to reload the whole page. When URL changes, the

Router analyzes the new path and handles transition to the appropriate View.

6.4 Recommendation System

This chapter describes the implemented recommendation system. Up to this point it

is in a very early stage and not integrated in the whole system. It is presented and

described because it is an important component that has to be integrated to complete

the whole system. In more detail, it is a user-based collaborative filtering

recommendation system implemented with jaccard similarity [26].

Jaccard similarity is used for comparing the similarity of two sets and for sets A and B

is defined as follows:

In particular, it was used to find similar users to the logged in based on his interests,

favorites and reviews. The process of finding similar users to the logged in user is

based 40% on favourites, 40% on interests and 20% on reviews. The problem is that

it is desired to predict the user’s rating on various POIs based on the ratings of his

nearest neighbors, which are the most similar ones.

Page 70 | 95

7 GUI

This section presents the methodology followed for designing the user interfaces of

the web application, as well as the final product. Chapter 7.1 describes the designing

phase and chapter 7.2 presents the outcome of the graphical user interfaces as it

has been implemented. We used wireframes to design and specify the functionality of

each page. All of the pages of the application and their internal links are presented in

the sitemap are presented in figure 7.1.

7.1 Wireframes

Using Wireframes is a common approach to design an application’s UI. It is worth

mentioning that the development process started after the whole functional

specification and design process. Furthermore, inspiration was retrieved for

designing the web application’s wireframes from [24].

Page 71 | 95

Figure 7.1: Web Application Sitemap

Both the System and the UI support two end-user roles. Figure 7.2 presents the

templates designed for the Guest user and figure 7.3 presents the template designed

for the logged in user. Both consists of a navigation bar with internal links other

pages of the application and role-specific actions. Guest user is provided with links to

the login page and register page, whereas a logged in user is provided with a

dropdown button.

Page 72 | 95

Figure 7.2: Guest Template

For each wireframe the consists a possible action, a dedicated wireframe to the

referred action is presented. Figure 7.4 presents the logged in user’s action clicking

on <username> dropdown. The user is provided with an internal link to the profile

page and the option to log out.

Along the following lines are presented all the wireframes as they were initially

designed. We have separated them is the following categories the guest only

wireframes, common wireframes, which present common user-guest wireframes and

logged in user only wireframes.

Guest only wireframes

Page 73 | 95

Figure 7.4: Logged in user action

Figure 7.3: Logged in user Template

Figure 7.5 presents both the Login and Register pages wireframes.

Guest and logged in user common wireframes

All of the following figures present the common wireframes for both of our user roles.

For each on the right side is presented the Guest wireframe and the left side

presents the user wireframe. Figure 7.6 presents the Map page wireframe. The Map

in figure 7.6 is represents a dynamic interactive map like the well-known google-

maps.

All of the POIs presented in the mentioned interactive map are clickable. Figure 7.7

presents the on a POI click action performed by the end-user.

Page 74 | 95

Figure 7.5: Login and Register pages wireframes

Figure 7.6: Map page wireframe

Figure 7.8 presents the finder page.

Within Finder page reside a search input and two dropdown buttons, all of which

trigger user actions caught and handled by the application. The search input is

supposed to perform live searching responding on user input. The first dropdown is

supposed to perform filtering based on POI type selection and the second dropdown

is supposed to perform sorting based on the dropdown selection. Figure 7.9 presents

the options for the first dropdown button and figure 7.10 the options for the second.

Page 75 | 95

Figure 7.7: Map clicking on POI action wireframe

Figure 7.8: Finder page wireframe

Figures 7.11, 7.12 and 7.13 present the POI details wireframes page for each of the

POI categories suspported. As performed in other common user and guest

wireframes the right side represents the guest version of details page and the left the

logged in user version of details page.

Figure 7.11 presents the kitesurfing POI details page wireframe.

Page 76 | 95

Figure 7.10: Sorting dropdown button options

Figure 7.9: Filtering Dropdown button oprions

Page 77 | 95

Figure 7.11: Kitesurfing POI details wireframe

Figure 7.12 presents the scuba-diving school details page wireframe.

Last but not least, figure 7.13 presents the scuba-diving site details page wireframe.

Page 78 | 95

Figure 7.12: Scuba-diving school details page wireframe

For the logged in user version of all the POI details pages presented above the add

to personal map button is supposed to trigger an action and handled by our

application. Figure 7.14 presents how the on click action is handled. In particular on

add to personal map button click the applications renders a modal box in order for

the user to fill notes on the specific POI and add it to his personal map.

Page 79 | 95

Figure 7.13: Scuba-diving site details page wireframe

If a POI is already on personal map the button should be replaced with a heart.

Logged in user only wireframes

In the following lines all of the Logged user only wireframes are presented. By design

if a guest user tries to render a user only page he should be redirected to the login

page.

Figure 7.15 presents the personal map page wireframe in which all of the user

favourite POIs are presented along with their notes. Figure 7.16 presents how the

personal map page should handle the on POI click.

Page 80 | 95

Figure 7.14: Add to personal map action

Figure 7.17 presents both how edit notes and remove actions are handled, which are

triggered by the edit notes and remove buttons. They both, as presenting, render a

dedicated modal box.

Page 81 | 95

Figure 7.16: Clicking on POI action personal map page wireframe

Figure 7.15: Personal map page wireframe

Figure 7.18 presents the profile page wireframe.

In profile page reside three actions. The first is change password action, the second

is update profile picture action and the third is Edit personal info action. All of the

mentioned actions render a dedicated modal box.

Figure 7.19 presents how the application should handle the on edit button click.

Page 82 | 95

Figure 7.18: Profile page wireframe

Figure 7.17: Edit notes and remove POI actions wireframes

7.2 User Interface

This section presents the outcome of the graphical user interfaces as it has been

implemented. In greater detail, all the pages of the application are presented and

described.

Figure 7.20 presents the Main Map page, in which all of the POIs are presented via

the interactive google map. In this page the user is able to perform three major tasks.

Firstly, he is able to apply filters on the POI categories he is interested in from the

right side of the page. Secondly, he is able to navigate on the map and click on POIs

to see an overview of information about the specific POI or navigate to details page

to see all the information for that specific POI. If the user is logged in he is able to

add it in his personal map. Last but not least, he is able to search a specific location

and explore it via the input which resides above the map.

Page 83 | 95

Figure 7.19: Edit personal info wireframe

Figure 7.20: Main map page

The following figures present the details pages for all of our categories. Each one

describes how a POI of a category is presented. In all of them, reviews comments

and photos are presented the same way.

Figure 7.21 presents the spot finder page. In this page backend pagination is

performed. Backend pagination means that the application renders only one page of

data and if the user requests another page an ajax call is performed to fulfill the task.

In this page user is able to filter the POIs by categories, search for POIs via name or

address and sort the by name, category, rating score or by numbers of ratings.

Furthermore, each row is a link to the details page of the POI.

Page 84 | 95

Figure 7.21: Spot finder page

Figure 7.22 presents the details page for a kitesurfing POI. It contains valuable

information related to the kitesurfing activity, like information for the wind the water

and the beach for that specific location

Page 85 | 95

Figure 7.22: Kitesurfing details page

Figure 7.23 presents the scuba-diving POI details page, which just like kitesurfing

page contains valuable information for the scuba-diving activity on that specific spot.

In more detail, it contains information about the water like among others max depth

and the primary bottom type.

Page 86 | 95

Figure 7.23: Scuba-diving spot details page

Figure 7.24 presents the scuba-diving school details page. It contains information

about the address, contact info and possibly a website.

Figure 7.24: Scuba-diving school dtails page

Page 87 | 95

Figure 7.25 presents the login page.

Figure 7.25: Login page

Figure 7.26 presents the profile page where user is able to edit his personal info and

interests, change his password and update his profile picture.

Figure 7.26: Profile page

Page 88 | 95

Figure 7.27 presents the personal map page which can be accessed only if the user

is logged in.

Figure 7.27: Personal map page

7.3 Evaluation

The GUI evaluation is an important process which specifies the effectiveness of the

interface as well as the satisfaction of the User Experience (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαUX). Enterprises and UX

experts use various techniques to evaluate a GUI. Some of the most popular

methods are the the heuristics and the think aloud evaluation methodologies.

Heuristic evaluations are performed by UX experts and determine weather or not the

implemented interface fulfills global rules. Think aloud approach, on the other hand,

specifies a series of tasks that some individuals must actualize on the platform. Both

the individuals and the series of tasks should be selected carefully with ultimate goal

of providing feedback for their UX. While the individuals try to complete the specified

tasks they should, as specified by the name of the approach, be thinking aloud.

Think aloud was chosen to perform the evaluation of the implemented UI.

Specifically, three (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημα03) individuals were chosen a twenty seven (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημα27) years old

kitesurfer, a thirty (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημα30) years old web designer UX expert and a fifty (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημα50) years old

individual. The 27 year old kitesurfer was chosen due to his familiarity with the

Page 89 | 95

website’s content. The web designer was chosen because he can provide feedback

related to UI groundrules and the 50 year old was chosen to observe how a non-

familiar user to web technologies would behave.

The evaluation outcome was pretty satisfying. All the users found their workarounds,

fulfilled all the specified tasks and provided the valuable feedback. The evaluation

clarified that most of the pages should provide a clearer overview of he content and

the functionality they provide. In greater detail, all the reported issues are presented

in table 26.

Table 26: Evaluation Outcome

ID Reported Issue Recommendation Importance

01 Use more distinct, consistent and

clear buttons.

Make a button component

and use it across the UI

high

02 On user registration the application

should suggest the user to set his

personal info and improve his UX

After successful user

registration the application

should guide the user to set

his profile

high

03 The my profile menu should be more

prominent.

This could be achieved by

using a different colour or a

bigger font.

high

04 Users landing on the application

don’t understand the functionality

and the options it provides.

A home page or an About

page should be developed

informing users about the

available functionalities of the

application. This will enhance

user understanding about the

available options of the

application and the tasks that

they can perform

high

05 Some users needed guidance when

interacting with the application and

more specifically with the map. The

fact that the pins on the map are

Add a text on the top of the

page inviting users to click on

the spot of their preference to

get more information about it.

high

Page 90 | 95

clickable areas was not clear

06 When using the free -text area, the

zoom functionality could be

improved. Two users could not

identify the POI that they have

searched for

Zoom more high

07 My profile page is deficient. Users

should see a clear overview of their

interests and their level in each

interest. Moreover, users could also

see an overview of their actions

across the application

• Unify the edit interests

pop-up with my profile

page.

• Add info based on the

user interaction with

the system. In greater

detail, a nice to have

would be for the user

to be able to see all

his reviews and

comments

• Consider unifying the

my map page to my

profile, under my

favourites

medium

08 Some of the POIs include images

and a carousel to present them, both

are not intuitive enough

Make the carousel accessible

from both the map page and

the spot finder page.

medium

Page 91 | 95

8 Conclusions and Future Work

The Agile approach was chosen because a constantly scaling robust and

maintainable system was desired to be implemented. Thus, the following

requirements reside on the Agile backlog.

System Requirements

Up to this point we have almost decoupled the scraping and web components. The

intention is to completely decouple those and integrate an independent

recommendation. As a result, the system would have four separate sub-systems the

scraping, the web services, the client side application and the recommendation

system that could be scaled independently.

Server proxy integration

Rest empowers multiple networking configurations and simplifies request proxying.

As a result, a server proxy integration would enable the various server side sub-

systems run on different machines withou the client side knowing anything about it.

Security

Security is an important aspect of web applications and has to be in line with its state

of the art. Furthermore, the system needs to have different user roles with different

privileges and rights. As a result, the integration of a security system and user roles is

important.

Test driven development

As the system scales the maintenance becomes really hard. Thus, automated
tests guarantee a robust system. Test driven development specifies an
approach in which each process has its automated test which as specified
guarantees that it works properly. Thus, tests have to be written for both the
implemented functionality and for each new process.

Weather Information Integration

Page 92 | 95

Weather information are very important for outdoor activities. Furthermore, there are

plenty of web services on the www that serve both real-time weather data and

forecast for specific locations. Some examples are openweathermap and windy

which both provide an API to consume such data. A live weather and a weather

forecast presentation would be a very nice to have.

Last but not least, all of the issues specified by the evaluation process must be

implemented and the UI should be reevaluated.

Page 93 | 95

https://www.windy.com/
https://openweathermap.org/

9 Bibliography

[1] G. M. Platform, “Places.” [Online]. Available: https://cloud.google.com/maps-
platform/places/.

[2] D. Reinsel, J. Gantz, and J. Rydning, “Data Age 2025 : Don 't Focus on Big
Data; Focus on the Data That’s Big Data Age 2025 :,” IDC White Pap. Spons.
by Seagate, no. April, pp. 1–25, 2017.

[3] D. Brown, Encyclopedia of Big Data Technologies. 2018.

[4] W3C, “HTML Definition.” [Online]. Available: https://www.w3.org/.

[5] P. B. Informatics, “Term paper submitted in partial fulfillment of the
requirements Web Scraping Data Extraction from websites,” 2018.

[6] J. Hedley, “jsoup: Java HTML Parser.” [Online]. Available: https://jsoup.org.

[7] K. Wagh and R. Thool, “A Comparative Study of SOAP Vs REST Web
Services Provisioning Techniques for Mobile Host,” J. Inf. Eng. Appl., vol. 2,
no. 5, pp. 12–16, 2012.

[8] A. Rodriguez, “Restful web services: The basics,” Online Artic. IBM Dev. Tech.
Libr., no. November, pp. 1–11, 2008.

[9] S. Framework, “Understanding REST.” [Online]. Available:
https://spring.io/understanding/REST.

[10] M. A. Jadhav, B. R. Sawant, and A. Deshmukh, “Single Page Application using
AngularJS,” Int. J. Comput. Sci. Inf. Technol., vol. 6, no. 3, pp. 2876–2879,
2015.

[11] K. Zoukas, “Searching Flight System,” 2018.

[12] T. E. rai. Walls, CWalls, C. (Points Of Interest) αθλητικού τουρισμού. Συγκεκριμένα, το σύστημαn.d.). Spring in Action, Spring in Action, Third
Edition. .

[13] J. Wiley, A. Context, and R. Management, Table_of_Contents, vol. 137, no. 2.
2014.

[14] “Spring Modules.” [Online]. Available: http://techmyguru.com/spring.

[15] S. Framework, “Spring Documentation.” [Online]. Available:
https://docs.spring.io/spring/docs/current/spring-framework-reference/
web.html#mvc-servlet-context-hierarchy.

Page 94 | 95

[16] T. Dalgleish et al., “Learning Spring Boot,” J. Exp. Psychol. Gen., vol. 136, no.
1, pp. 23–42, 2007.

[17] D.-I. E. Makris, “Design and Implementation of a Platform for the Development
and Management of Learning Experiences in Location-Based Mobile Games,”
2015.

[18] P. Kozlowski and P. B. Darwin, Mastering Web Application Development with
AngularJS. 2013.

[19] B. Cochior, “AngularJS at AIESEC Academy,” 2015. [Online]. Available: https://
www.slideshare.net/bogdancochior/angularjs-at-aiesec-academy-15.

[20] Accelebrate, “Effective Strategies for Avoiding Watches in AngularJS,” 2014.
[Online]. Available: https://www.accelebrate.com/blog/effective-strategies-
avoiding-watches-angularjs/.

[21] AngularJS, “Services.” [Online]. Available:
https://docs.angularjs.org/guide/services.

[22] P. Shaw, “Postgres,” 2013.

[23] A. Cockburn, “Writing Effective test cases,” pp. 1999–2000, 2000.

[24] T. Reenskaug, The Model-View-Controller (MVC) Its Past and Present. 2003.

[25] F. S. Systems and M. Farouk, Infrastructure Software Modules for

Enterprises. .

[26] A. Felfernig, M. Jeran, G. Ninaus, F. Reinfrank, S. Reiterer, and M. Stettinger,

Basic Approaches in Recommendation Systems

Page 95 | 95

	1 Introduction
	2 Important Terms
	2.1 Web Scraping
	2.1.1 Methods of Web Scraping
	2.1.2 Software and Tools

	2.2 Web Services
	2.3 Representational State Transfer (REST)
	2.3.1 RESTful Web Services

	2.4 Single Page Applications (SPAs)
	2.5 State of the Art for Web Applications

	3 Implementation Technologies
	3.1 Spring Framework
	3.1.1 Inversion of Control and Dependency Injection
	3.1.2 Spring Modules

	3.2 Spring Boot
	3.3 AngularJS
	3.3.1 AngularJS Core Features

	3.4 Data Persistence

	4 System Architecture
	5 Functional Specification
	5.1 Technical Requirements
	5.1.1 Model
	5.1.2 Scraping Application
	5.1.3 Client Side Application
	5.1.4 Server Side

	5.2 Use Cases

	6 Implementation
	6.1 Model
	6.2 Scraping Application
	6.2.1 Architecture
	6.2.2 Scraping Process

	6.3 Web Infrastructure
	6.3.1 Architecture
	6.3.2 RESTful Web Services
	6.3.3 Client Side Application

	6.4 Recommendation System

	7 GUI
	7.1 Wireframes
	7.2 User Interface
	7.3 Evaluation

	8 Conclusions and Future Work
	9 Bibliography

