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Abstract

In this work, we study the performance of multiple-input multiple-output
(MIMO) wireless systems. Specifically, we examine their capacity for dif-
ferent system scenaria and with different propagation models. The MIMO
systems analyzed include the single-user case where multiple antennas are
used and the multiuser case with two users present and a single antenna at
each of them and the base station. We examine the capacity properties in
the case of unknown and known propagation channel. In the case where
the latter is infeasible, we present ways to estimate the optimal power
allocation and approach the system capacity. To simulate communication
systems under various propagation environments, we use Neben’s MIMO-
bit which offers an integrated platform that fully takes into account the
antennas used at the transmitter and the receiver. We evaluate the ac-
curacy of simulation results provided by MIMObit using dipole antennas
created in its graphical user interface and in CST Microwave Studio. Fi-
nally, we make some capacity estimation comparisons using the channels
produced by MIMObit and Matlab.
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Chapter 1

Information Theory Background

Information theory is a fundamental part of communication theory as it studies the
transmission, processing, extraction, and utilization of information. We give a brief
description of some important quantities of information that will be used later in this
thesis.

1.1 Entropy

Entropy is defined for a random variable and can be interpreted as a measure of the
amount of uncertainty associated with the aforementioned random variable.

Entropy of a discrete random variable

Let X be a discrete random variable. The values that it takes on are depicted as xi
and the probability mass function as px. The entropy of X is defined as

H(X) := −
∑
i

px(xi) log2 px(xi) bits/symbol. (1.1)

The entropy of X depends only on the distribution of the random variable X and not
on the values that it takes on. It can also be seen that H(X) ≥ 0, since 0 ≤ px ≤ 1.

Binary Entropy

The entropy of a Bernoulli valued random variable X which takes on its values with
probabilities p and 1− p is called binary entropy and given by

H(p) := −p log2 p− (1− p) log2(1− p) bits/symbol. (1.2)

It can be shown that the binary entropy is maximized when X is uniformly dis-
tributed. In that way, the amount of uncertainty reaches a maximum. This is
demonstrated in Figure 1.1.

1
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Figure 1.1: Binary entropy.

Entropy of a continuous random variable

Let X be a continuous random variable with probability density function fx. The
differential entropy of X is defined as:

h(X) := −
∫ +∞

−∞
fX(x) log2 fX(x) dx bits/symbol. (1.3)

Note that, as in the discrete random variable case, the differential entropy depends
only on the probability density function of the random variable. One important
difference to consider is that the differential entropy can be negative.

Entropy of a Gaussian random variable

In this thesis, we mostly deal with continuous random variables that follow the normal
distribution. That is,

X ∼ N (µ, σ2), fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (1.4)

The differential entropy of X is

h(X) =
1

2
log2(2πeσ

2) bits/symbol. (1.5)

The proof is given in Chapter 6.

Entropy of a Gaussian random vector

A random vectorX = [X1, X2, ..., Xn]T is Gaussian if the random variablesX1, X2, ..., Xn

are jointly Gaussian. The mean vector is defined as µ =
[
E[X1], E[X2], ..., E[Xn]

]T
2



and the covariance matrix as Kx = E
[
(X − µ)(X − µ)T

]
. In general,

X ∼ N (µ, Kx), fX1,X2,...,Xn(x1, x2, ..., xn) =
e−

1
2
(X−µ)TKx

−1(X−µ)√
(2π)n det(Kx)

. (1.6)

The differential entropy of X is

h(X1, X2, ..., Xn) =
1

2
log2

[
(2πe)n det(Kx)

]
bits/symbol. (1.7)

The proof is given in Chapter 6.

Entropy of a complex Gaussian random variable

The random variable Z = X + jY , where X and Y are real i.i.d. Gaussian random
variables, is considered as a complex Gaussian random variable. In this thesis, we
deal with complex Gaussian random variables that are circularly symmetric, which
implies that ejφZ has the same distribution as Z for any real φ. Hence,

E[Z] = E[ejφZ] = ejφE[Z], (1.8)

E[Z2] = E[(ejφZ)2] = e2jφE[Z2]. (1.9)

Equation (1.8) leads to E[Z] = 0, which implies E[X] = 0 and E[Y ] = 0. Equation
(1.9) leads to E[Z2] = 0 which implies E[X2] = E[Y 2]. The proof of the latter is
given in Chapter 6. Taking into account these results, Z is circularly symmetric if X
and Y are i.i.d with zero mean and equal variance, i.e.,

X ∼ N (0, σ2), fX(x) =
1√

2πσ2
e−

x2

2σ2 , (1.10)

Y ∼ N (0, σ2), fY (y) =
1√

2πσ2
e−

y2

2σ2 . (1.11)

Since X and Y are independent, their joint PDF is the product of their PDFs, i.e.,

fZ(z) = fX(x)fY (y) =
1√

2πσ2
e−

x2

2σ2
1√

2πσ2
e−

y2

2σ2 =
1

2πσ2
e−

x2+y2

2σ2 (1.12)

=
1

2πσ2
e−
|z|2

2σ2 =
1

πσ2
z

e
− |z|

2

σ2z . (1.13)

The above result indicates that Z ∼ CN (0, σ2
z) where σ2

z = σ2
x + σ2

y = σ2 + σ2 = 2σ2.
Using the definition of differential entropy, it can be proved that

h(Z) = log2(πeσ
2
z) bits/symbol. (1.14)

3



Entropy of a complex Gaussian random vector

A random vector Z = [Z1, Z2, ..., Zn]T is complex Gaussian if the random variables
Z1, Z2, ..., Zn are jointly complex Gaussian. In this thesis, we deal with complex
Gaussian random vectors which are circularly symmetric, which implies that the

mean vector is µ =
[
E[Z1], E[Z2], ..., E[Zn]

]T
= 0, the pseudo-covariance matrix is

E[ZZT ] = 0, and the covariance matrix is Kz = E[ZZH ], i.e.,

Z ∼ CN (0, Kz), fZ1,Z2,...,Zn(z1, z2, ..., zn) =
e−Z

HKz
−1Z

πn det(Kz)
. (1.15)

Using the definition of differential entropy, it can be proved that

h(Z1, Z2, ..., Zn) = log2[(πe)
n det(Kz)] bits/symbol. (1.16)

Maximization of differential entropy

The normal distribution maximizes the differential entropy, under constraints of mean
and variance. Let gX be a Gaussian PDF with mean µ and variance σ2 and fX an
arbitrary PDF with the same mean and variance. The Kullback-Leibler distance
between the two probability density functions is defined as

DKL(f‖g) =

∫ +∞

−∞
fX log2

fX
gX

dx ≥ 0 (1.17)

which implies that
h(gX) ≥ h(fX). (1.18)

The proof is given in Chapter 6.

1.2 Mutual Information

The mutual information, denoted by I(X;Y ), is a measure of dependence between
random variables X and Y . Explicitly it measures the amount of information that X
contains about Y and vice versa. It is symmetric in X and Y and always nonnegative,
i.e.,

I(X;Y ) = I(Y ;X) ≥ 0. (1.19)

Formally, the mutual information is expressed as the Kullback-Leibler distance of the
product of the marginal distributions pX(x)pY (y) of the two random variables X and
Y from the random variables’ joint distribution pX,Y (x, y), i.e.,

I(X;Y ) = DKL(pX,Y ‖pXpY ). (1.20)

Generally, the Kullback-Leibler distance between two probability mass functions p
and q is defined as

DKL(p‖q) =
∑
x

pX log2

pX
qX
≥ 0. (1.21)

Therefore, the mutual information between X and Y is defined as

I(X;Y ) =
∑
x

∑
y

pX,Y log2

pX,Y
pXpY

bits/symbol. (1.22)

4
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Figure 1.2: Communication system.

Using equation (1.22), we conclude with the more meaningful result

I(X;Y ) = H(Y )−H(Y |X) bits/symbol. (1.23)

The proof is given in Chapter 6. This result shows that the mutual information
between X and Y is the reduction in uncertainty of Y when we know the random
variable X. By symmetry, it also follows that

I(X;Y ) = H(X)−H(X|Y ) bits/symbol. (1.24)

Another relation between mutual information and entropy is

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (1.25)

since it is known that

H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ). (1.26)

1.3 Channel Capacity

Channel capacity defines a tight upper bound on the rate at which information can
be reliably transmitted over a communication channel. Let X and Y be random
variables depicting the input and the output, respectively, of a channel. The capacity
is given by the maximum of the mutual information between the input and output of
the channel, where the maximization is with respect to the input distribution, i.e.,

C = max
fX

I(X;Y ) bits/symbol. (1.27)

Real AWGN channel

We consider the real AWGN channel where the output y is the sum of the input x
and zero-mean Gaussian noise w. For the input x, it is required that

E
{
x2
}
≤ P. (1.28)

The signal model is defined as

y = x+ w, w ∼ N (0, N). (1.29)

The capacity of the channel is the maximization of the mutual information between
the input x and the output y over all possible distributions on the input that satisfy
the power constraint, i.e.,

C = max
fx:E{x2}≤P

I(x; y), (1.30)

which implies that the capacity of the real AWGN channel is

C =
1

2
log2

(
1 +

P

N

)
=

1

2
log2

(
1 + SNR

)
bits/symbol. (1.31)

The proof is given in Chapter 6.

5



Complex AWGN channel

Dealing with complex random variables, the input x can take on any complex value
with an average power constraint of P per complex input value, i.e.,

y = x+ w, w ∼ CN (0, N). (1.32)

The best way to derive the capacity is to consider this complex channel as two real
AWGN channels. Each real component corresponds with SNR = (P/2)/(N/2) =
P/N in order to meet the overall SNR. We already know the capacity of the real
AWGN channel. Hence, the capacity of the complex AWGN channel is

C =
1

2
log2

(
1 +

P

N

)
+

1

2
log2

(
1 +

P

N

)
= log2

(
1 +

P

N

)
= log2

(
1 + SNR

)
. (1.33)

Alternatively, we can derive this formula by working directly with complex random
variables, i.e.,

C = max
fx:E{|x|2}≤P

I(x; y). (1.34)

The proof is given in Chapter 6.

6



Chapter 2

Single-user Case

In this chapter, we introduce the single user scenario where the communication is
performed between one transmitter and one receiver. We calculate the maximum
achievable rate of reliable communication based on the fading channel model assuming
that the transmitter and the receiver have one antenna each. Later on, we analyze
the performance of the system, in terms of capacity, when they both have multiple
antennas. We also take into account the scenario where the transmitter has multiple
antennas and the receiver a single antenna, and vice versa. To keep things simple, we
assume that not only the receiver, but also the transmitter can track the channel.

2.1 Single-input Single-output (SISO) System

SISO stands for a single-input single-output system, which practically means that
there is one single antenna at the transmitter and the receiver.

Fading channel

In wireless communications, the electromagnetic waves that propagate may be re-
flected, refracted, or diffracted. This causes constructive and destructive interference
of the multiple signal paths between the transmitter and receiver. In addition, the
propagating waves may also attenuate due to natural phenomena. As a result, the
transmitted signal experiences fading and the propagation environment is represented
by a fading channel coefficient h. This channel is an extention of the complex AWGN
channel. The only difference is that every input symbol is subject to a fading chan-
nel coefficient. This channel coefficient varies according to a distribution that best
approaches the propagation environment. In our study, we consider the Rayleigh fad-
ing distribution which is suited to situations where there are large numbers of signal
paths and reflections and no dominant propagation along the line of sight between
the transmitter and the receiver.

Slow-fading channel

In the slow-fading scenario, the channel state remains constant during the transmis-
sion of information, which means that every input symbol is subject to the same
fading coefficient. The signal model is defined as

y[m] = hx[m] + w[m], w[m] ∼ CN (0, N), (2.1)

7
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where m denotes time. The capacity of the SISO channel is

C = max
fx:E{|x|2}≤P

I(x; y) (2.2)

which implies that

C = log2

(
1 +

P |h|2

N

)
bits/symbol. (2.3)

The proof is given in Chapter 6.

Fast-fading channel

In the fast fading scenario, the channel state varies during the transmission of infor-
mation. For simplicity reasons, we assume that it varies in every transmitted symbol.
The signal model is defined as

y[m] = h[m]x[m] + w[m], w[m] ∼ CN (0, N). (2.4)

Each symbol experiences a different fade, where h[m] are i.i.d. across different time
instances m. Assuming L channel coefficients, we could calculate the capacity of each
channel state, so that the mean capacity would be

C =
1

L

L∑
m=1

log2

(
1 +

P |h[m]|2

N

)
bits/symbol. (2.5)

8



Waterfilling power allocation

If the transmitter had knowledge of the future channel states across time, the capacity
formula of the fast fading channel could be optimized. Considering L channel states
and a total power of LP , we can allocate more power when the channel gain (i.e.
|h[m]|) is good and less or even no power when the channel gain is poor. Hence, we
have

C = max
p1,...,pL

1

L

L∑
m=1

log2

(
1 +

pm|h[m]|2

N

)
(2.6)

subject to the power constraints

L∑
m=1

pm = LP, pm ≥ 0, m = 1, ..., L. (2.7)

We have to maximize a multivariable function subject to the constraint that another
multivariable function equals a constant. Thus we use the Lagrangian function.

L(λ, p1, p2, ..., pL) :=
L∑

m=1

log2

(
1 +

pm|h[m]|2

N

)
− λ

L∑
m=1

pm (2.8)

The new variable λ is called Lagrange multiplier. We need to calculate the power
vector which is defined as

p =


p1
p2
...
pL

 . (2.9)

We differentiate L with respect to the real vector p. Then we set the gradient of L
equal to the zero vector.

∇pL =


∂L
∂p1
∂L
∂p2
...
∂L
∂pL

 = 0. (2.10)

9



For simplicity, we are going to calculate only the first element of the vector. The
other elements can be calculated similarly.

∂L
∂p1

= 0 (2.11)

|h[1]|2
N

1 + p1|h[1]|2
N

− λ = 0 (2.12)

|h[1]|2
N

1 + p1|h[1]|2
N

= λ (2.13)

λ

(
1 +

p1|h[1]|2

N

)
=
|h[1]|2

N
(2.14)(

1 +
p1|h[1]|2

N

)
=
|h[1]|2

N

1

λ
(2.15)

p1|h[1]|2

N
=
|h[1]|2

N

1

λ
− 1 (2.16)

p1 =

(
1

λ
− N

|h[1]|2

)
. (2.17)

Hence, we get the following result

p =


(
1
λ
− N
|h[1]|2

)+(
1
λ
− N
|h[2]|2

)+
...(

1
λ
− N
|h[L]|2

)+

 (2.18)

where x+ := max(x, 0). To find the parameter 1
λ
, we use the power constraint of

equation (2.7) to obtain

1

λ
− N

|h[1]|2
+

1

λ
− N

|h[2]|2
+ ...+

1

λ
− N

|h[L]|2
= LP (2.19)

=⇒ 1

λ
=
LP + N

|h[1]|2 + N
|h[2]|2 + ...+ N

|h[L]|2

L
. (2.20)

We use the solution of (2.20) to find the power vector of (2.18). If any of the power
elements turns to be zero, we reallocate the power to the remaining channel states.
Practically, this means that we return to equation (2.20) and find the new parameter
1
λ
, without taking into account the channel states that correspond to zero power.

This is a repetitive process and is called the waterfilling algorithm. Note that all the
parameters stated in the procedure below (e.g., n, p) refer to local parameters that
change accordingly only in this local environment. What really matters is the output
parameter 1

λ
.

10
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Figure 2.3: Waterfilling power allocation.

Algorithm 1 Waterfilling

1: procedure Waterfilling
2: Input: n← N

|h[1]|2 ,
N
|h[2]|2 , ...,

N
|h[L]|2 , Ptotal ← LP , L

3: S ← summation of all elements in n
4: 1

λ
← Ptotal+S

L

5: p←
(
1
λ
− n

)+
6: Loop: check for zero elements in p
7: If true
8: set elements in n corresponding to zero power equal to zero
9: Z ← number of zero elements in n

10: S ← summation of all elements in n
11: 1

λ
← Ptotal+S

L−Z

12: p←
(
1
λ
− n

)+
13: goto line 6
14: else
15: Output: 1

λ

After finding the final value of 1
λ
, we substitute it in (2.18) to calculate the optimal

power vector. Hence, the capacity is proved to be

C =
1

L

L∑
m=1

log2

(
1 +

pm|h[m]|2

N

)
bits/symbol. (2.21)

An alternative approach that was tested and proved to give the same result regarding
the parameter 1

λ
is the following.
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Algorithm 2 Waterfilling

1: procedure Waterfilling
2: Input: n← N

|h[1]|2 ,
N
|h[2]|2 , ...,

N
|h[L]|2 , Ptotal ← LP , L

3: nmin ← minimum element in n
4: 1

λ
← nmin + Ptotal

L

5: p←
(
1
λ
− n

)+
6: Pallocated ← summation of all elements in p
7: While |Ptotal − Pallocated| > tolerance do . e.g. tolerance← 10−5

8: 1
λ
← 1

λ
+ Ptotal−Pallocated

L

9: p←
(
1
λ
− n

)+
10: Pallocated ← summation of all elements in p
11: end loop
12: Output: 1

λ

So far, we have considered the waterfilling power allocation, where the transmitter is
assumed to know the future channel states over time. In practice, the transmitter is
able to know only the distribution fh of the fading process.

Consider a virtual channel with significantly large length Lvirtual � 1, which means
Lvirtual i.i.d. channel states according to the known fading process. The transmitter
performs the waterfilling algorithm for that virtual channel subject to a power con-
straint of LvirtualP and stores the parameter 1

λ(fh)
. Then, it uses this parameter to

find the optimal power allocation for the actual transmission channel. Therefore, the
optimal power depends only on the current channel state of the actual transmission
channel and not on its future channel states, hence

P (h[m]) =

(
1

λ(fh)
− N

|h[m]|2

)+

, (2.22)

C =
1

L

L∑
m=1

log2

(
1 +

P (h[m])|h[m]|2

N

)
bits/symbol. (2.23)

Interestingly, we noticed that the total power constraint of LP is not met by the
summation of all power elements in equation (2.22). We estimated the distribution of
the total power for various numbers of transmissions subject to a power constraint of
LP = 200. Note that, if we increase the number of transmissions L, then we should
reduce the power P per channel state in order to keep the overall power constraint
of LP constant. The noise power N remains constant, so the average SNR reduces
when we increase the number of transmissions.

In Figure 2.4, we plot the PDF of the total power. The plot shows that, for larger
number of transmissions L, it is more likely to get a total power close to the power
constraint. In any case, we noticed that the power constraint is on average satisfied,
when the number of transmissions (or, equivalently, the channel length) � 1. As a
result, it is meaningful to evaluate the performance of the following algorithms for
different number of transmissions and signal-to-noise ratios.

• Equal Power Allocation: Equation (2.5).

• Waterfilling using λ(h): Equation (2.21).
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Figure 2.4: PDF of power (SISO channel).

• Waterfilling using λ(fh)-Power Violation: Equation (2.23).

• Waterfilling using λ(fh)-Power Correction: Equation (2.23). When the to-
tal power is about to exceed the power constraint, we correct the power to the
appropriate channel state and allocate zero power to the remaining ones. Oth-
erwise, the remaining power is allocated to the last channel state. Thus, the
power constraint is satisfied.

Simulation results

We calculated 104 capacity values for each algorithm and plotted the CDF of them
for different signal-to-noise ratios and number of transmissions. In addition, we cal-
culated the mean capacity of these values. It is clear that as we increase the SNR,
the capacity performance of these algorithms tends to be the same. We define the
ergodic capacity of the fast fading channel as follows.

C = E
[

log2

(
1 +

P (h)|h|2

N

)]
bits/symbol, (2.24)

where

P (h) =

(
1

λ
− N

|h|2

)+

, E[P (h)] = P. (2.25)
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2.2 Multiple-input Multiple-output (MIMO) Sys-

tem

MIMO stands for a multiple-input multiple-output system, which practically means
that there are multiple antennas at the transmitter and the receiver.

Slow-fading channel

We calculate the capacity of each channel state, focusing on the slow fading scenario,
where the channel remains constant during the transmission of information. Assuming
nt transmit antennas and nr receive antennas, the signal model is defined as

y[m] = Hx[m] +w[m], w[m] ∼ CN (0, NInr), (2.26)

where we have
y1[m]
y2[m]

...
ynr [m]

 =


h11 h12 · · · h1nt
h21 h22
...

. . .

hnr1 hnrnt



x1[m]
x2[m]

...
xnt [m]

+


w1[m]
w2[m]

...
wnr [m]

 . (2.27)

Hence, we get

y1[m] = h11x1[m] + h12x2[m] + ...+ h1ntxnt [m] + w1[m], (2.28)

...

ynr [m] = hnr1x1[m] + hnr2x2[m] + ...+ hnrntxnt [m] + wnr [m]. (2.29)

Note that hij ∼ CN (0, 1) where i = 1, ..., nr and j = 1, ..., nt. We assume that all
elements in the channel matrix are i.i.d. according to that fading distribution.

Singular value decomposition (SVD)

The channel matrix H can be expressed in terms of its singular value decomposition.

H = UΣV H (2.30)

where Unr×nr ,V nt×nt are unitary matrices, which means that

UUH = UHU = I, (2.31)

V V H = V HV = I. (2.32)

Σnr×nt is a diagonal matrix of the form

Σ =



σ1
. . .

σr
0

. . .

0


. (2.33)
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The diagonal elements of Σ are nonnegative real numbers and are called singular
values of the matrix H , where

σ1 ≥ σ2 ≥ ... ≥ σr. (2.34)

Since the elements of matrix H are i.i.d., it holds that

r = rank(H) = min(nt, nr). (2.35)

The transmitter can perform pre-processing of the input symbols while the receiver
can perform post-processing of the output symbols. Pre-processing and post-processing
are based on the SVD of the channel matrix.

x̃[m] = V


x1[m]
x2[m]

...
xnt [m]

 , ỹ[m] = UH


y1[m]
y2[m]

...
ynr [m]

 . (2.36)

As a result, a new noise vector is also defined as

w̃[m] = UH


w1[m]
w2[m]

...
wnr [m]

 . (2.37)

We use the signal model defined in equation (2.26) and apply pre-processing to obtain

y[m] = Hx̃[m] +w[m] (2.38)

= UΣV Hx̃[m] +w[m] (2.39)

= UΣV HV x[m] +w[m] (2.40)

= UΣx[m] +w[m]. (2.41)

Then, we apply post-processing to obtain

UHy[m] = UHUΣx[m] +UHw[m], (2.42)

⇒ ỹ[m] = Σx[m] + w̃[m]. (2.43)

We just proved that a MIMO channel can be decomposed into a set of r parallel
channels. Note that since the matrix Σ has a maximum of r diagonal elements, we
can transmit r symbols at each time.ỹ1[m]

...
ỹr[m]

 =

σ1 . . .

σr


x1[m]

...
xr[m]

+

w̃1[m]
...

w̃r[m]

 . (2.44)

The parallel channels are defined as

ỹ1[m] = σ1x1[m] + w̃1[m], (2.45)

...

ỹr[m] = σrxr[m] + w̃r[m]. (2.46)
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Therefore, the capacity of the MIMO channel is the sum of capacities of each indi-
vidual channel, i.e.,

C =
r∑
i=1

log2

(
1 +

piσ
2
i

N

)
bits/symbol (2.47)

where the optimal power vector is given by the waterfilling algorithm

p =


(
1
λ
− N

σ2
1

)+(
1
λ
− N

σ2
2

)+
...(

1
λ
− N

σ2
r

)+

 (2.48)

subject to the power constraint

r∑
i=1

pi = P, pi ≥ 0, i = 1, ..., r. (2.49)

Fast-fading channel

For the fast-fading scenario, the signal model is defined as

y[m] = H [m]x[m] +w[m], w[m] ∼ CN (0, NInr). (2.50)

We have proved that each time the MIMO channel can be decomposed into a set
of parallel channels, where the power allocation to each of them is given by the
waterfilling algorithm. This can be considered as waterfilling over space, as we take
advantage of the MIMO system capabilities. Assuming L transmissions, we calculate
the capacity of each of them in order to calculate the mean capacity

C =
1

L

L∑
m=1

r∑
i=1

log2

(
1 +

pm,iσ
2
m,i

N

)
bits/symbol (2.51)

subject to the power constraint

L∑
m=1

r∑
i=1

pm,i = LP, pm,i ≥ 0, i = 1, ..., r m = 1, ..., L. (2.52)

Obviously that involves waterfilling over space and time. Using the same approach
discussed in the SISO case, we define the ergodic capacity of the fast-fading channel
as

C =
r∑
i=1

E
[

log2

(
1 +

P (σi)σ
2
i

N

)]
bits/symbol (2.53)

where

P (σi) =

(
1

λ
− N

σ2
i

)+

,

r∑
i=1

E[P (σi)] = P. (2.54)
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Simulation results

This time the PDF graph is narrower, Figure 2.7, in comparison with the one referring
to a SISO system. It is clear that as we increase the number of antennas involved in
the system, the range of values of the total power becomes negligibly small around
the power constraint. That is confirmed by Figure 2.8. We evaluated the performance
of the known four algorithms, including one in which each time only waterfilling over
space is performed. Regarding the algorithm which involves power correction, the
acceptable power is allocated to the parallel channels of the appropriate transmission
according to the waterfilling algorithm. Specifically, when the total power does not
exceed the power constraint, we refer to the last transmission. Otherwise, we refer to
the transmission at which the power violation occurs. We obtained 104 capacity values
and calculated the mean capacity of them. It is obvious that a MIMO M×N system is
equivalent with a N×M regarding capacity, when the transmissison channel is known
at the transmitter. In our case we tested a MIMO system with two transmit and four
receive antennas. Consider that an important feature of a MIMO system, when the
transmitter can track the channel and apply proper pre-processing, is not just the
optimal power allocation but the fact that the receiver can decode seperately a set
of independent transmitted symbols. That can be seen when we compare equations
(2.28) and (2.29) with (2.45) and (2.46).

2.3 Multiple-input Single-output (MISO) System

MISO stands for a multiple-input single-output system. Thus, we consider multiple
antennas at the transmitter and one antenna at the receiver.

Slow-fading channel

Assuming nt antennas at the transmitter and one antenna at the receiver, the signal
model is defined as

y[m] = hHx[m] + w[m], w[m] ∼ CN (0, N). (2.55)

The transmitter tracks the channel, so it performs pre-processing of the input vector
based on the transmission channel. The goal is to maximize the received power in
order to maximize capacity as well, since capacity is computed as

C = log2(1 + SNR) bits/symbol. (2.56)

We transmit one symbol at each time and we denote the optimal filter as f . The
system’s SNR is defined as

SNR =
E
{
|hHx[m]|2

}
E
{
|w[m]|2

} =
E
{
|hHfx[m]|2

}
E
{
|w[m]|2

} . (2.57)

The input symbol x[m] has a power constraint of P , so we need to maximize the
quantity hHf subject to that power constraint. The dot product of two vectors is
defined as

hHf = ‖h‖‖f‖ cos(θ) (2.58)
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where θ is the angle between the two vectors. The dot product between them is
maximized when the two vectors are collinear along the same direction, because in
that case we get

θ = 0 =⇒ cos(θ) = 1. (2.59)

Therefore,
f = ch, (2.60)

where c > 0. However, in order to have the total transmit power constraint satisfied,
we need to define the constant c as follows

c =
1

‖h‖
=⇒ f =

h

‖h‖
. (2.61)

The input vector after pre-processing at the transmitter is defined as

x̃[m] =
h

‖h‖
x[m]. (2.62)

Using the signal model in equation (2.55) we get

y[m] = hHx̃[m] + w[m] (2.63)

= hH
h

‖h‖
x[m] + w[m] (2.64)

=
‖h‖2

‖h‖
x[m] + w[m] (2.65)

= ‖h‖x[m] + w[m]. (2.66)

It was proved that a MISO system corresponds to an equivalent SISO. We could also
calculate directly the SNR in order to compute capacity.

SNR =
E
{
|hH h

‖h‖x[m]|2
}

E
{
|w[m]|2

} =
E
{∣∣‖h‖x[m]

∣∣2}
E
{
|w[m]|2

} =
E
{∣∣x[m]

∣∣2} ‖h‖2
E
{
|w[m]|2

} =
P‖h‖2

N
. (2.67)

An alternative approach could have been the singular value decomposition of the
channel vector. Pre-processing could be applied in the exact same way as we did
in the MIMO case. The only difference is that there is no need to apply any post-
processing since the matrix U = 1. The transmission channel is a vector so its
rank = 1. Hence, there is only one singular value

σ1 = ‖h‖. (2.68)

The equivalent representation of the channel model is

y[m] = σ1x[m] + w[m]. (2.69)

As a result, the capacity of the MISO channel is

C = log2

(
1 +

P‖h‖2

N

)
bits/symbol (2.70)

or, alternatively,

C = log2

(
1 +

Pσ2
1

N

)
bits/symbol. (2.71)
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Fast-fading channel

In this case, the channel does not remain constant during the transmission of infor-
mation. The signal model is defined as

y[m] = hH [m]x[m] + w[m], w[m] ∼ CN (0, N). (2.72)

Assuming L channel states, we calculate the capacity of each channel state so as to
calculate the mean capacity

C =
1

L

L∑
m=1

log2

(
1 +

pm‖h[m]‖2

N

)
bits/symbol (2.73)

subject to the power constraint

L∑
m=1

pm = LP, pm ≥ 0, m = 1, ..., L. (2.74)

The optimal power allocation involves waterfilling. We also define the ergodic capacity
of the fast-fading channel as

C = E
[

log2

(
1 +

P (h)‖h‖2

N

)]
bits/symbol (2.75)

where

P (h) =

(
1

λ
− N

‖h‖2

)+

, E[P (h)] = P. (2.76)

2.4 Single-input Multiple-output (SIMO) System

SIMO stands for a single-input multiple-output system. Hence, there is a single
antenna at the transmitter and multiple antennas at the receiver.

Slow-fading channel

Assuming one antenna at the transmitter and nr antennas at the receiver, the signal
model is considered as

y[m] = hx[m] +w[m], w[m] ∼ CN (0, NInr). (2.77)

The receiver can always track the channel, so it can perform post-processing of the
output vector based on the transmission channel. We need to choose the optimal
filter so as to maximize the received power and capacity as well. We denote this filter
as f . Hence, we get

fHy[m] = fH(hx[m] +w[m]) = fHhx[m] + fHw[m]. (2.78)

26



The system’s SNR is defined as

SNR =
E
{
|fHhx[m]|2

}
E
{
|fHw[m]|2

} . (2.79)

We need to maximize the quantity fHh, where the dot product between the two
vectors is defined as

fHh = ‖f‖‖h‖ cos(θ). (2.80)

We have already proved that the optimal filter is

f = ch (2.81)

where c > 0. In this case, there is no power constraint since the filter is applied at the
receiver. However, the SNR remains the same regardless the selection of the constant
c. Specifically, the signal power is considered as

E

{∣∣∣chHhx[m]
∣∣∣2} = E

{∣∣c‖h‖2x[m]
∣∣2} = c2‖h‖4E

{
|x[m]|2

}
= c2‖h‖4P (2.82)

whereas the noise power is

E

{∣∣∣chHw[m]
∣∣∣2} = E

{
(chHw[m])(chHw[m])H

}
= chHE

{
w[m]wH [m]

}
hc = chHNInrhc = c2‖h‖2N. (2.83)

Therefore, the SNR of the system is

SNR =
E
{
|fHhx[m]|2

}
E
{
|fHw[m]|2

} =
c2‖h‖4P
c2‖h‖2N

=
P‖h‖2

N
. (2.84)

The singular-value decomposition of the channel vector leads to the same result as
well. Post-processing could be applied in the same way as we did in the MIMO case.
This time there is no need to apply pre-processing since the matrix V = 1. The
transmission channel is a vector so its rank = 1, which means that there is only one
singular value

σ1 = ‖h‖. (2.85)

The equivalent representation of the channel model is

ỹ[m] = σ1x[m] + w̃[m]. (2.86)

As a result, the capacity of the SIMO channel is

C = log2

(
1 +

P‖h‖2

N

)
bits/symbol (2.87)

or, alternatively,

C = log2

(
1 +

Pσ2
1

N

)
bits/symbol. (2.88)
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Fast-fading channel

The signal model is

y[m] = h[m]x[m] +w[m], w[m] ∼ CN (0, NInr). (2.89)

We have proved that the capacities of a MISO system and a SIMO system are the
same, when the transmitter can track the channel. As a result the fast fading scenario
of a SIMO system is identical to that of a MISO.

2.5 Capacity Performance of MIMO Systems

In this section, we evaluate the capacity performance of MIMO systems in comparison
with SISO and SIMO systems. We do not take into account MISO systems, since
their capacity formula is identical to that of SIMO systems when the transmission
channel is known. Considering L = 20 transmissions, we used the Rayleigh fading
model and applied the waterfilling algorithm to the actual transmission channel using
λ(h). Calculating the mean capacity, we can clearly evaluate the benefits in capacity
of a MIMO system.
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Chapter 3

Multi-user Case

In this chapter, we study the multiuser scenario. The communication is performed
between multiple users and the base station. When the transmission is from the users
to the base station we define the uplink channel and when the transmission is from the
base station to the users we define the downlink channel. In the multiuser scenario, we
are interested in finding the maximum total rate and the maximum common rate at
which the users can simultaneously reliably communicate (i.e., uplink channel) or be
communicated to (i.e., downlink channel). These quantities are called sum capacity
and symmetric capacity of the channel respectively. In the multi-user scenario many
combinations of rates can occur and as a result we can define a capacity region. We
analyze the case where there is a single antenna at each user and at the base station.
To keep things simple, we assume that the channel state information is available at
the transmitter, which means that it can perfectly track the channel. We also mention
the capacity formula for the case where the transmitter cannot track the channel (i.e.,
no Tx CSI) in the fast-fading scenario.

3.1 Uplink Channel

In the uplink channel, the users transmit information to the base station. We consider
the fading channel model with two users, so that we can depict the capacity region.

Slow-fading channel

The base station receives the sum of the two signals transmitted by the users, so the
signal model is

y[m] = h1x1[m] + h2x2[m] + w[m], w[m] ∼ CN (0, N). (3.1)

Each input symbol xk[m] has an average power constraint of Pk where k = 1, 2 and
P1+P2 = P . Assuming that the base station can always decode the users’ data, there
are two available strategies that conclude to the same sum rate. The base station
first decodes the signal of user 1 and then the signal of user 2. In order to decode the
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signal transmitted from user 1, it first treats the signal of user 2 as interference. We
calculate the SNR of each user so as to define its rate.

SNRuser1 =
E
{
|h1x1[m]|2

}
E
{
|h2x2[m] + w[m]|2

} =
P1|h1|2

P2|h2|2 +N
. (3.2)

The proof is given in Chapter 6. When the base station successfully decodes the
signal of user 1, it subtracts it from the received signal so there is only the signal
transmitted from user 2 and the noise left in the system. This process is called
successive interference cancellation (SIC). When SIC is applied, it decodes the signal
transmitted from user 2. Hence, we get

SNRuser2 =
E
{
|h2x2[m]|2

}
E
{
|w[m]|2

} =
P2|h2|2

N
. (3.3)

The achievable rate pairs of the two users are defined as

R1 ≤ log2

(
1 +

P1|h1|2

P2|h2|2 +N

)
bits/symbol, (3.4)

R2 ≤ log2

(
1 +

P2|h2|2

N

)
bits/symbol. (3.5)

The sum rate achieved is

R1 +R2 ≤ log2

(
1 +

P1|h1|2

P2|h2|2 +N

)
+ log2

(
1 +

P2|h2|2

N

)
(3.6)

= log2

[(
1 +

P1|h1|2

P2|h2|2 +N

)(
1 +

P2|h2|2

N

)]
(3.7)

= log2

[(
P1|h1|2 + P2|h2|2 +N

P2|h2|2 +N

)(
P2|h2|2 +N

N

)]
(3.8)

= log2

(
P1|h1|2 + P2|h2|2 +N

N

)
(3.9)

= log2

(
1 +

P1|h1|2 + P2|h2|2

N

)
bits/symbol. (3.10)

Note that the base station can reverse the decoding order of the signals transmitted
by the two users. In this case, we have

SNRuser1 =
E
{
|h1x1[m]|2

}
E
{
|w[m]|2

} =
P1|h1|2

N
, (3.11)

SNRuser2 =
E
{
|h2x2[m]|2

}
E
{
|h1x1[m] + w[m]|2

} =
P2|h2|2

P1|h1|2 +N
. (3.12)
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Therefore, the achievable rates of the two users and the sum rate achieved are

R1 ≤ log2

(
1 +

P1|h1|2

N

)
bits/symbol, (3.13)

R2 ≤ log2

(
1 +

P2|h2|2

P1|h1|2 +N

)
bits/symbol, (3.14)

R1 +R2 ≤ log2

(
1 +

P1|h1|2

N

)
+ log2

(
1 +

P2|h2|2

P1|h1|2 +N

)
(3.15)

= log2

[(
1 +

P1|h1|2

N

)(
1 +

P2|h2|2

P1|h1|2 +N

)]
(3.16)

= log2

[(
P1|h1|2 +N

N

)(
P2|h2|2 + P1|h1|2 +N

P1|h1|2 +N

)]
(3.17)

= log2

(
P1|h1|2 + P2|h2|2 +N

N

)
(3.18)

= log2

(
1 +

P1|h1|2 + P2|h2|2

N

)
bits/symbol. (3.19)

We can now define the capacity region, Figure 3.1; the area that includes all possible
rate pairs. The two decoding strategies discussed above refer to the operation points
A and B respectively. All the other points on the line segment AB can be obtained
by time-sharing between those two points. In terms of sum rate, all operation points
on the line segment AB conclude to the same result. Depending on the power splits
related to the symbols transmitted by the two users, we can define various forms of
the pentagon. We explicitly analyze those forms when we distinguish cases for the
channel gains. In these cases, we also analyze the sum capacity and the symmetric
capacity as well.

Symmetric case |h1| = |h2|

We consider the case where the two users experience the same channel gain (i.e.,
|h1| = |h2| = |h|). The sum rate achieved is

R1 +R2 ≤ log2

(
1 +

P1|h|2 + P2|h|2

N

)
(3.20)

= log2

(
1 +

(P1 + P2)|h|2

N

)
(3.21)

= log2

(
1 +

P |h|2

N

)
bits/symbol. (3.22)

In this scenario, all possible power splits between the two users lead to the same sum
rate, which it turns to be equivalent to the case where only one user transmits using
all the available power. Hence, the sum capacity is

Csum = log2

(
1 +

P |h|2

N

)
bits/symbol. (3.23)
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Figure 3.1: Capacity region of uplink channel.

We will depict the capacity region considering different power splits among the two
users. We depict the union bound of these regions in order to calculate the symmetric
capacity. Considering all possible power splits between the two users, we depict the
pentagons in one single figure. All possible pentagons form an isosceles triangle. Since
all possible rate pairs conclude to the same sum rate, these operation points lie on the
same line segment, which is the triangle’s hypotenuse. It’s also clearly understood
that the triangle is isosceles since the two users experience the same channel gain and
consequently the rate of each user is the same when it transmits with all the available
power.

Now, we will calculate the symmetric capacity considering the capacity region. A
line segment starting from the origin with slope 45◦ gives point C which refers to the
common rate achieved. Since the outer bound of all possible capacity regions is formed
by operation points A, B and the line segment which connects them, the maximum
common rate is achieved when point C lies on the aforementioned line segment. All
these cases conclude to the same result, regarding symmetric capacity. Considering
the case where point C lies on point A, we get that the symmetric capacity is

Csymmetric = log2

(
1 +

P1|h1|2

P2|h2|2 +N

)
= log2

(
1 +

P2|h2|2

N

)
bits/symbol. (3.24)

To calculate symmetric capacity, we have to calculate the power splits P1 and P2
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Figure 3.3: Capacity region of uplink channel (power splits).
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Figure 3.5: Symmetric capacity of uplink channel (|h1| = |h2|).
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among the two users. Hence, we get

R1 = R2 (3.25)

=⇒ log2

(
1 +

P1|h1|2

P2|h2|2 +N

)
= log2

(
1 +

P2|h2|2

N

)
(3.26)

which implies that

P2 =
−(|h2|2 + |h1|2)N +

√
(|h2|4 + 2|h2|2|h1|2 + |h1|4)N2 + 4P |h2|4|h1|2N

2|h2|4
, (3.27)

P1 = P − P2. (3.28)

The proof is given in Chapter 6. Considering the case where point C lies on point B,
we get that the symmetric capacity is

Csymmetric = log2

(
1 +

P1|h1|2

N

)
= log2

(
1 +

P2|h2|2

P1|h1|2 +N

)
bits/symbol. (3.29)

Working in the same way as before, we conclude that

P2 = P − P1, (3.30)

P2 = P −
−(|h1|2 + |h2|2)N +

√
(|h1|4 + 2|h1|2|h2|2 + |h2|4)N2 + 4P |h1|4|h2|2N

2|h1|4
. (3.31)

Any solution between those two is acceptable, i.e.,

P2 ∈
[
−(|h2|2 + |h1|2)N +

√
(|h2|4 + 2|h2|2|h1|2 + |h1|4)N2 + 4P |h2|4|h1|2N

2|h2|4
, (3.32)

P −
−(|h1|2 + |h2|2)N +

√
(|h1|4 + 2|h1|2|h2|2 + |h2|4)N2 + 4P |h1|4|h2|2N

2|h1|4

]
.

One of these solutions is P1 = P2 = P/2. In that case, point C lies in the middle of
the line segment AB.

Asymmetric case |h1| > |h2|

In this case, user 1 experiences a better channel gain than that of user 2. This time
the power splits between the two users do not lead to the same sum rate. The sum
rate is larger when user 1 gets more power in order to transmit in comparison with
the power that user 2 gets. Obviously, the best we can do is to give all the available
power to user 1. Hence, user 1 will be able to transmit at the maximum possible rate,
whereas user 2 will not transmit at all.

log2

(
1 +

P1|h1|2 + P2|h2|2

N

)
< log2

(
1 +

P |h1|2

N

)
bits/symbol. (3.33)

Hence, the sum capacity is

Csum = log2

(
1 +

P |h1|2

N

)
bits/symbol. (3.34)
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Figure 3.6: Union bound of uplink channel (|h1| > |h2|).

Considering all possible power splits between the two users, we depict the union
bound of the pentagons created in one single figure. Since the outer bound is formed
by operation point A, the maximum common rate is achieved when point C lies on
that point. Therefore, the symmetric capacity is

Csymmetric = log2

(
1 +

P1|h1|2

P2|h2|2 +N

)
= log2

(
1 +

P2|h2|2

N

)
bits/symbol (3.35)

where

P2 =
−(|h2|2 + |h1|2)N +

√
(|h2|4 + 2|h2|2|h1|2 + |h1|4)N2 + 4P |h2|4|h1|2N

2|h2|4
, (3.36)

P1 = P − P2. (3.37)

Asymmetric case |h1| < |h2|

Now, user 2 experiences a better channel gain than that of user 1. The best we can
do is to give all the available power to user 2. Hence, user 2 will be able to transmit
at the maximum possible rate, whereas user 1 will not transmit at all.

log2

(
1 +

P1|h1|2 + P2|h2|2

N

)
< log2

(
1 +

P |h2|2

N

)
bits/symbol. (3.38)
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Figure 3.7: Symmetric capacity of uplink channel (|h1| > |h2|).

Hence, the sum capacity is

Csum = log2

(
1 +

P |h2|2

N

)
bits/symbol. (3.39)

Considering all possible power splits between the two users, we depict the union
bound of the pentagons created in one single figure. Since the outer bound is formed
by operation point B, the maximum common rate is achieved when point C lies on
that point. Therefore, the symmetric capacity is

Csymmetric = log2

(
1 +

P1|h1|2

N

)
= log2

(
1 +

P2|h2|2

P1|h1|2 +N

)
bits/symbol (3.40)

where

P2 = P − P1, (3.41)

P2 = P −
−(|h1|2 + |h2|2)N +

√
(|h1|4 + 2|h1|2|h2|2 + |h2|4)N2 + 4P |h1|4|h2|2N

2|h1|4
. (3.42)

Fast-fading channel

In the fast-fading scenario, we are interested in calculating the sum capacity of the
system. Considering that the channel state of each user varies during the transmission
of information, we get the signal model

y[m] = h1[m]x1[m] + h2[m]x2[m] + w[m]. (3.43)
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Figure 3.9: Symmetric capacity of uplink channel (|h1| < |h2|).
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Tx CSI

Since the users can track the channel, we should have the user that experiences the
better channel gain transmit at each time. As a result, we get a communication
scenario identical to the single user scheme, i.e.,

Csum =
1

L

L∑
m=1

log2

(
1 +

pk,m|hk[m]|2

N

)
bits/symbol (3.44)

where k is selected to satisfy the following

|hk[m]|2 = max
i
|hi[m]|2, i = 1, 2, (3.45)

considering the power constraint

L∑
m=1

pk,m = LP, pk,m ≥ 0, k = 1, 2, m = 1, ..., L. (3.46)

We note that the optimal power allocation is given by the waterfilling algorithm. The
ergodic capacity of the fast-fading channel is

Csum = E
[

log2

(
1 +

Pk(hk)|hk|2

N

)]
bits/symbol (3.47)

where

Pk(hk) =

(
1

λ
− N

|hk|2

)+

, E[Pk(hk)] = P. (3.48)

Note that the index k denotes the user with the stronger channel gain at each time,
i.e.,

|hk|2 = max
i
|hi|2, i = 1, 2. (3.49)

No Tx CSI

In that case the users cannot track the channel. The ergodic capacity of the system
is

Csum = E
[

log2

(
1 +

P1|h1|2 + P2|h2|2

N

)]
bits/symbol (3.50)

where P1 = P2 = P/2. The best we can do is to have both users transmit with equal
power and that is confirmed by Figure 3.10.

3.2 Downlink Channel

In the downlink channel, the base station transmits information to the users. We
consider again the fading channel model with two users present. In this communi-
cation scenario, we first have to discriminate cases regarding the channel gains, to
depict the capacity region.
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Figure 3.10: Sum capacity of fast-fading uplink channel (no Tx CSI).

Slow-fading channel

The base station transmits the sum of the two signals intended for user 1 and user 2,
i.e., x[m] = x1[m] + x2[m]. We also assume an average power constraint of P1 and P2

per input symbol x1[m] and x2[m] respectively where P1 +P2 = P . The signal model
is defined as

yk[m] = hkx[m] + wk[m], wk[m] ∼ CN (0, N), k = 1, 2. (3.51)

Asymmetric case |h1| ≥ |h2|

Without loss of generality, we assume that user 1 experiences a better or equaly strong
channel gain in comparison with that of user 2. In that case user 1 can always decode
the data intended for user 2, subtract it from the received signal and then decode its
own data. User 2 can only treat the signal intended for user 1 as interference so as
to decode its signal. Using the signal model introduced before, we get

y1[m] = h1x[m] + w1[m] = h1x1[m] + h1x2[m] + w1[m], (3.52)

y2[m] = h2x[m] + w2[m] = h2x1[m] + h2x2[m] + w2[m]. (3.53)

Therefore, at first stage, the SNR of each user is calculated as

SNRuser1 =
E
{
|h1x2[m]|2

}
E
{
|h1x1[m] + w1[m]|2

} =
P2|h1|2

P1|h1|2 +N
=

P2

P1 + N
|h1|2

, (3.54)

43



R2

R1

log2

(
1 + P2|h2|2

P1|h2|2+N

)

log2

(
1 + P1|h1|2

N

)

D
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SNRuser2 =
E
{
|h2x2[m]|2

}
E
{
|h2x1[m] + w1[m]|2

} =
P2|h2|2

P1|h2|2 +N
=

P2

P1 + N
|h2|2

. (3.55)

Since the SNR of user 1 is greater or equal than that of user 2, we proved that
only user 1 can perform successive interference cancellation. Therefore user 1 can
eventually have an SNR of

SNRuser1 =
E
{
|h1x1[m]|2

}
E
{
|w1[m]|2

} =
P1|h1|2

N
. (3.56)

In any case, i.e., |h1| > |h2| or |h1| = |h2|, the achievable rate pairs are

R1 ≤ log2

(
1 +

P1|h1|2

N

)
bits/symbol, (3.57)

R2 ≤ log2

(
1 +

P2|h2|2

P1|h2|2 +N

)
bits/symbol. (3.58)

When |h1| = |h2|, all possible rate pairs lead to the same sum rate, because at this
scenario we get the same rate pairs as in the symmetric case of the uplink channel.
However, when |h1| > |h2|, it’s obvious that the best we can do is to have the base
station transmit only to the user which experiences the better channel gain. In any
case the sum capacity is

Csum = log2

(
1 +

P |h1|2

N

)
bits/symbol. (3.59)
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Depending on the power splits related to the symbols transmitted by the base station,
we can define various forms of the rectangle. The same approach was applied at the
uplink channel as well. Regarding symmetric capacity, a line segment starting from
the origin with slope 45◦ gives point C which refers to the common rate achieved.
Obviously the outer bound is formed by point D, and the maximum common rate is
achieved when point C lies on point D.

Csymmetric = log2

(
1 +

P1|h1|2

N

)
= log2

(
1 +

P2|h2|2

P1|h2|2 +N

)
bits/symbol. (3.60)

In order to calculate this quantity we have to calculate the power splits P1 and P2,
where P1 + P2 = P , among the two users in the same way as we did in the uplink
channel.

P1 =
−(|h1|2 + |h2|2)N +

√
(|h1|4 + 2|h1|2|h2|2 + |h2|4)N2 + 4P |h1|4|h2|2N

2|h1|2|h2|2
, (3.61)

P2 = P − P1. (3.62)

Asymmetric case |h1| < |h2|

In that case, user 2 can perform successive interferce cancellation in order to decode
its own signal. We work in the same way as we did before. Hence, the achievable rate
pairs of the two users are

R1 ≤ log2

(
1 +

P1|h1|2

P2|h1|2 +N

)
bits/symbol, (3.63)

R2 ≤ log2

(
1 +

P2|h2|2

N

)
bits/symbol. (3.64)

Obviously, in order to maximize the sum rate we have the base station transmit to
user 2 only. Hence, the sum capacity is

Csum = log2

(
1 +

P |h2|2

N

)
bits/symbol. (3.65)

Considering different power splits among the two users, we depict the union bound of
the rectangles created. Regarding symmetric capacity, the maximum common rate is
achieved when point C lies on point E and equals

Csymmetric = log2

(
1 +

P1|h1|2

P2|h1|2 +N

)
= log2

(
1 +

P2|h2|2

N

)
bits/symbol. (3.66)

Then, we have to equalize the rate pairs in order to calculate the power splits P1 and
P2, which lead to symmetric capacity.

P2 =
−(|h2|2 + |h1|2)N +

√
(|h2|4 + 2|h2|2|h1|2 + |h1|4)N2 + 4P |h1|4|h2|2N

2|h1|2|h2|2
, (3.67)

P1 = P − P2. (3.68)
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Figure 3.12: Union bound of downlink channel (|h1| ≥ |h2|).
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Fast-fading channel

In that case we calculate the sum capacity of the system. Since the channel does not
remain constant during the transmission of information, the signal model is defined
as

yk[m] = hk[m]x[m] + wk[m], wk[m] ∼ CN (0, N), k = 1, 2. (3.69)

Tx CSI

Since the base station can track the channel, the best we can do is to have the base
station transmit only to the user which experiences the stronger channel gain. Hence,
this communication scenario is identical to the single-user case and the sum capacity
is

Csum =
1

L

L∑
m=1

log2

(
1 +

pm|hk[m]|2

N

)
bits/symbol (3.70)

where k is selected to satisfy the following

|hk[m]|2 = max
i
|hi[m]|2, i = 1, 2, (3.71)

subject to the power constraint

L∑
m=1

pm = LP, pm ≥ 0, m = 1, ..., L. (3.72)

We note that the optimal power allocation is given by the waterfilling algorithm. We
also define the ergodic capacity of the fast fading channel as

Csum = E
[

log2

(
1 +

P (hk)|hk|2

N

)]
bits/symbol, (3.73)

where

P (hk) =

(
1

λ
− N

|hk|2

)+

, E[P (hk)] = P. (3.74)

Note that the index k denotes the user with the stronger channel gain at each time,
i.e.,

|hk|2 = max
i
|hi|2, i = 1, 2. (3.75)

No Tx CSI

In that case the transmitter can not track the channel. The capacity formula as de-
scribed in the corresponding chapter of “Fundamentals of Wireless Communication”
by David Tse and Pramod Viswanath is considered to be

Csum = E
[

log

(
1 +

P |h|2

N

)]
. (3.76)
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Chapter 4

MIMObit

Neben’s MIMObit is a software tool, appropriate for analyzing MIMO signal process-
ing algorithms. It models the propagation of electromagnetic waves under various
types of environments. Therefore, we are able to model the fading channel introduced
in Chapter 2 where the channel coefficients vary according to a distribution depend-
ing on the propagation environment and the antenna system used in MIMObit. We
simulated the communication between one transmitter and one receiver where each
of them is equipped with a dipole antenna. The dipoles were designed in MIMObit
and Microwave Studio where the latter is an electromagnetics tool by Computer Sim-
ulation Technology (CST). We evaluated the accuracy of simulation results provided
by MIMObit, when using dipoles with the same technical characteristics designed
in both tools. We also calculated the capacity regarding SISO, SIMO and MIMO
systems using the channel coefficients produced by MIMObit and Matlab.

4.1 Communication Setup

We need to define five components (i.e., transmitter, propagation environment, re-
ceiver, frequency, time) in order to run a simulation in MIMObit. Any parameter
that is not mentioned in each of these components is considered to have its default
value depicted on the corresponding figures. For further information about the exact
functionality of certain parameters, refer to the software’s manual.

Transmitter

This component refers to the transmitter’s specifications. The location of the trans-
mitter in the three dimensional space is specified by the notation (0, 0, 10) where
(x, y, z) refers to length, width, and height, respectively, in meters. The total avail-
able power of the transmitted signal is 30 dBm and uniformly distributed over the
signal bandwidth which is 1 MHz. The source impedance of the antenna Ant. Zin is
defined at the dipole’s creation, while the transmitter’s impedance is fixed properly
so as to achieve the maximum radiation efficiency depending on the antenna used.
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Figure 4.1: Application.

Figure 4.2: Main graphical user interface.
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Figure 4.3: Transmitter.

Figure 4.4: Receiver.

Propagation environment

MIMObit offers a variety of propagation environments to choose where only two of
them are deterministic. These are the Line of Sight and the 2-Ray model. All other
propagation environments are random, which means that we produce different channel
coefficients every time we run a simulation under the same communication setup.

Receiver

The receiver’s specifications are almost identical to those of the transmitter. The
receiver is considered to be 100 m away of the transmitter and 1.5 m above the
ground.
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Figure 4.5: Frequency.

Frequency

This component refers to the frequencies at which we simulate our communication.
Hence, we get a channel coefficient for every simulation frequency and for every com-
bination of antennas at the transmitter and the receiver, regarding the deterministic
propagation environments. For random evironments, we have the option to choose
the number of channel coefficients in order to best approach the distribution that
describes those environments.

Time

The time component is useful in order to generate different time instances regarding
the function of the transmitter and the receiver at the corresponding temporal sec-
tion. We can relate the time instances to different experiments incorporated in one
single simulation. Note that these instances are not related to the behaviour of the
random propagation environments, so we did not take into account this option for
our simulations.

4.2 Dipole Antennas

MIMObit offers the ability to design custom dipoles and use them at the transmitter
and the receiver. The dipole’s characteristics are depicted in the corresponding figure.
Note that the dipole’s length specifies its operating frequency. To make this clear, we
use the fundamental equation

c = λf (4.1)
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Figure 4.6: Time.

Figure 4.7: Dipole.
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where c = 3 · 108 meters/second and refers to the speed of light while λ refers to
the wavelength which is the distance from crest to crest or trough to trough on the
propagating wave. To get the maximum of the total radiated power for a specific
frequency, we need to have the dipole’s length half-wavelength long. For instance, to
design a dipole for the frequency of 2500 MHz, we get

c = λf =⇒ λ =
c

f
=⇒ λ =

3 · 108 meters / second

25 · 108 second−1
= 0.12 meters. (4.2)

As a result, we need to use a dipole of 6 cm long. However, simulation results
indicate that the desired resonant frequency is not exactly that calculated with the
aforementioned formula. The dipole’s diameter is 2 mm and its source (or load)
impedance is 50 Ohms. Note that we also define the frequencies at which we simulate
the dipole’s performance. These frequencies should be exactly the same with those
specified in the frequency component.

Dipole’s comparison

The antenna comparison mainly involves a single dipole antenna designed in MIMObit
and CST Microwave Studio. The antenna’s technical characteristics used are the
following.

• Length = 6cm.

• Diameter = 2mm.

• Conductivity = 5.96× 107 Siemens/meter.

• Center-fed dipole.

• Source voltage = 1 Volt.

• Source impedance = 50 Ohms.

• Simulation frequencies = 2000 : 100 : 3000 MHz.

We mention that, to get the best performance matching between the two dipoles, the
same orientation needs to be applied at the design stage. In addition, the circuit of
the feeder does not have to be considered at the appropriate stage in CST Microwave
Studio, because in MIMObit only the dipole itself is designed. In order to get the
appropriate files from CST-MWS and import them to MIMObit, there is a certain
procedure that has to be applied which is mentioned in section 10.2.1 (Exporting From
CST-MWS) and 10.2.2 (Importing from CST-MWS) of MIMObit 2 User’s Manual.
The files that need to be imported in MIMObit are the s-parameters file and the
far-field radiation files. Regarding the latter, they need to have the following name
notation “AnyName P1 F2000.txt” for port 1 at 2000 MHz. In the case where we
tested one dipole antenna, we needed eleven such files where each of them corresponds
to the combination between port 1 and each simulation frequency. MIMObit uses
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these files in order to produce another one with a “*.lab” extension, which refers
to the antenna finally attached to the transmitter and the receiver. Note that this
file is also created when we design dipoles in MIMObit. The figures referring to the
dipole’s performance are produced by MIMObit using the “*.lab” file at the “Plot
Lab file” option in the “Antennas” menu, whereas those referring to the channel
coefficients are produced by MIMObit in the “*.Htotalresults.dat” file considering the
communication setup already discussed. For experimental reasons, we also tested the
channel coefficients produced using a dipole array including two dipoles at a distance
of 96 cm along the x-axis and a single dipole with the aforementioned technical
characteristics designed in both MIMObit and CST-MWS. These cases involve MISO
and SIMO systems.

4.3 Simulation Results

Besides the dipole’s comparison, we also calculated the capacity of SISO, SIMO and
MIMO systems using the channel coefficients produced by MIMObit. When multiple
dipole antennas are used for the SIMO or MIMO cases, they were designed in MI-
MObit and the distance between them is considered to be λ/4 = 3 cm and λ/2 = 6
cm along the x-axis. The propagation environment used is the independent isotropic
distribution (i.i.d. 3D), which involves a lot of scattering and the power arrives at
the receiver uniformly from all angles and polarizations. However, the channel co-
efficients do not follow the Rayleigh fading distribution, because in MIMObit the
antenna system and the propagation environments are physically connected. This is
not a MIMObit’s shortcoming, but rather an approach to real-world channels. Taking
into account only the frequency of 2500MHz and assuming L = 500 transmissions,
we computed the capacity of the system applying the waterfilling algorithm using
λ(h). We estimated the SNR of each system separately, considering the channel gains
produced by MIMObit, to estimate the overall SNR by averaging the individual SNR
values, Figure 4.20. In terms of comparisons, we also evaluated the capacity perfor-
mance considering the Rayleigh fading model in Matlab, using the SNR estimation
referring to the case where the distance between the dipole antennas is 6 cm, Figure
4.21.

56



2000 2200 2400 2600 2800 3000
1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−3

f (MHz)

T
o

ta
l 
R

a
d

ia
te

d
 P

o
w

e
r 

(W
)

Lab File: MIMObit_Dipole.lab

 

 

TRP Excitation Vector :1 −

2000 2200 2400 2600 2800 3000
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

−3

f (MHz)

T
o

ta
l 
R

a
d
ia

te
d

 P
o
w

e
r 

(W
)

Lab File: CST_Dipole.lab

 

 
TRP Excitation Vector :1 −

Figure 4.8: Dipole’s total radiated power.
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Figure 4.9: Dipole’s s-parameters.
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Figure 4.10: Dipole’s radiation efficiency.
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Figure 4.11: Dipole’s mean effective gain.
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Figure 4.12: Dipole’s active E-field gain (2200 MHz).
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Figure 4.13: Dipole’s directive gain (2200 MHz).
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Figure 4.14: Channel gain vs frequency (line of sight - SISO).
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Figure 4.15: Channel gain vs frequency (line of sight - MISO).
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Figure 4.16: Channel gain vs frequency (line of sight - SIMO).
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Figure 4.17: Channel gain vs frequency (2 Ray - SISO).
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Figure 4.18: Channel gain vs frequency (2 Ray - MISO).
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Figure 4.19: Channel gain vs frequency (2 Ray - SIMO).
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Figure 4.20: Capacity vs number of antennas (MIMObit).
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Figure 4.21: Mean capacity vs number of antennas (Matlab).
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Chapter 5

Conclusions and Future Work

In this work, we mainly focused on the signal models of wireless communication sce-
narios in order to define the maximum achievable rate of reliable communication, that
is, the system’s capacity. Information theory is a fundamental part of this analysis,
so we refered to all important quantities that are needed as background knowledge.
Taking into account the communication scenario where the transmission channel is
known to both the transmitter and the receiver, we optimized the capacity formula
using the waterfilling power allocation. We evaluated the capacity performance of
a MIMO system, where multiple antennas are used at both the transmitter and the
receiver regarding the single-user case. In addition, the multiuser scenario with two
users present was analyzed. To this end, we assumed a single antenna available at
the users and the base station. In the multiuser case, we defined the capacity region,
the sum capacity, and the symmetric capacity of the system.

We also evaluated MIMObit’s capabilities regarding the accuracy of simulation
results when using dipoles designed in its graphical user interface and in CST Mi-
crowave Studio. In addition, we made an effort to define the fading channel model
which involves the communication between one transmitter and one receiver, using the
channel coefficients produced by MIMObit. The capacity considering SISO, SIMO,
and MIMO systems was calculated taking into account a real communication system.

However, there is still work to be done including the communication scenarios at
which the transmission channel and the channel fading distribution are not known
at the transmitter. Obviously, that involves a degrade in capacity performance as
the waterfilling power allocation can not be applied. In addition a different receiver
architecture has to be considered in MIMO cases as long as with the optimal pre-
processing and post-processing done by the transmitter and the receiver, respectively.
We also mention that the multiuser scenario can be further extended including the
cases at which there are multiple antennas available at both the users and the base
station.
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Chapter 6

Appendix

Proposition 1
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∫ +∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 (x− µ)2 dx

=
1

2
log2(2πσ

2)

∫ +∞

−∞
fX(x) dx +

1

2σ2 ln 2

∫ +∞

−∞
(x− µ)2fX(x) dx

=
1

2
log2(2πσ

2) · 1 + 1

2σ2 ln 2
E
{
(X − µ)2

}
=

1

2
log2(2πσ

2) +
σ2

2σ2 ln 2

=
1

2
log2(2πσ

2) +
1

2
log2(e)

=
1

2
log2(2πeσ

2)
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Proposition 2

h(X1, ..., Xn) = −
∫ +∞

−∞

e−
1
2
(X−µ)TKx

−1(X−µ)√
(2π)n det(Kx)

log2

(
e−

1
2
(X−µ)TKx

−1(X−µ)√
(2π)n det(Kx)

)
dx

= −
∫ +∞

−∞

e−
1
2
(X−µ)TKx

−1(X−µ)√
(2π)n det(Kx)

[
log2

1√
(2π)n det(Kx)

+ log2 e
− 1

2
(X−µ)TKx

−1(X−µ)
]
dx

= −
∫ +∞

−∞

e−
1
2
(X−µ)TKx

−1(X−µ)√
(2π)n det(Kx)

log2
1√

(2π)n det(Kx)
dx

−
∫ +∞

−∞

e−
1
2
(X−µ)TKx

−1(X−µ)√
(2π)n det(Kx)

log2 e
− 1

2
(X−µ)TKx

−1(X−µ) dx

= −
∫ +∞

−∞

e−
1
2
(X−µ)TKx

−1(X−µ)√
(2π)n det(Kx)

log2
1√

(2π)n det(Kx)
dx

−
∫ +∞

−∞

e−
1
2
(X−µ)TKx

−1(X−µ)√
(2π)n det(Kx)

ln e−
1
2
(X−µ)TKx

−1(X−µ)

ln 2
dx

= −
∫ +∞

−∞

e−
1
2
(X−µ)TKx

−1(X−µ)√
(2π)n det(Kx)

dx log2
1√

(2π)n det(Kx)

+

∫ +∞

−∞

e−
1
2
(X−µ)TKx

−1(X−µ)√
(2π)n det(Kx)

(X − µ)TKx
−1(X − µ)

2 ln 2
dx

=
1

2
log2[(2π)

n det(Kx)]

∫ +∞

−∞
fX(x) dx +

1

2 ln 2

∫ +∞

−∞
fX(x)(X − µ)TKx

−1(X − µ) dx

=
1

2
log2[(2π)

n det(Kx)] · 1 +
1

2 ln 2
E
{
(X − µ)TKx

−1(X − µ)
}

=
1

2
log2[(2π)

n det(Kx)] +
1

2 ln 2
E
{
tr
[
(X − µ)TKx

−1(X − µ)
]}

=
1

2
log2[(2π)

n det(Kx)] +
1

2 ln 2
E
{
tr
[
(X − µ)(X − µ)TKx

−1]}
=

1

2
log2[(2π)

n det(Kx)] +
1

2 ln 2
tr
[
E
{
(X − µ)(X − µ)T

}
Kx
−1]

=
1

2
log2[(2π)

n det(Kx)] +
1

2 ln 2
tr
[
KxKx

−1]
=

1

2
log2[(2π)

n det(Kx)] +
1

2 ln 2
tr
[
I
]

=
1

2
log2[(2π)

n det(Kx)] +
1

2 ln 2
n

=
1

2

[
log2[(2π)

n det(Kx)] + n log2 e
]

=
1

2

[
log2[(2π)

n det(Kx)] + log2 e
n
]

=
1

2
log2

[
(2πe)n det(Kx)

]
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Proposition 3

E[Z2] = 0

E[(X + jY )2] = 0

E[X2 + jXY + jY X − Y 2] = 0

E[X2] + jE[XY ] + jE[Y X]− E[Y 2] = 0

E[X2] + jE[X]E[Y ] + jE[Y ]E[X]− E[Y 2] = 0

E[X2] = E[Y 2]

Proposition 4

DKL(f‖g) =

∫ +∞

−∞
fX log2

fX
gX

dx ≥ 0

=

∫ +∞

−∞
fX log2 fX dx−

∫ +∞

−∞
fX log2 gX dx ≥ 0

= −h(fX)−
∫ +∞

−∞
fX log2 gX dx ≥ 0

= −h(fX)−
∫ +∞

−∞
fX log2

1√
2πσ2

e−
(x−µ)2

2σ2 dx ≥ 0

= −h(fX)−
∫ +∞

−∞
fX log2

1√
2πσ2

dx−
∫ +∞

−∞
fX log2 e

− (x−µ)2

2σ2 dx ≥ 0

= −h(fX) +
1

2
log2(2πσ

2)

∫ +∞

−∞
fX dx+

log2(e)

2σ2

∫ +∞

−∞
fX(x− µ)2 dx ≥ 0

= −h(fX) +
1

2
log2(2πσ

2) +
log2(e)

2σ2
σ2 ≥ 0

= −h(fX) +
1

2
log2(2πσ

2) +
1

2
log2(e) ≥ 0

= −h(fX) +
1

2
log2(2πeσ

2) ≥ 0

= −h(fX) + h(gX) ≥ 0
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Proposition 5

I(X;Y ) =
∑
x

∑
y

pX,Y log2

pX,Y
pXpY

=
∑
x

∑
y

pX,Y log2

pX,Y
pX
−
∑
x

∑
y

pX,Y log2 pY

=
∑
x

∑
y

pY |X pX log2

pY |X pX
pX

−
∑
x

∑
y

pX,Y log2 pY

=
∑
x

∑
y

pY |X pX log2 pY |X −
∑
x

∑
y

pX,Y log2 pY

=
∑
x

pX
∑
y

pY |X log2 pY |X −
∑
y

log2 pY
∑
x

pX,Y

= −
∑
x

pXH(Y |X = x)−
∑
y

pY log2 pY

= −H(Y |X) +H(Y )

Proposition 6

Expanding the formula of the mutual information

I(x; y) = h(y)− h(y|x)

= h(y)− h(x+ w|x)

= h(y)− h(w|x)

= h(y)− h(w).

The output y has a constraint of

E
{
y2
}
≤ E

{
(x+ w)2

}
≤ E

{
x2 + 2xw + w2

}
≤ E

{
x2
}

+ 2E {x}E {w}+ E
{
w2
}

≤ E
{
x2
}

+ E
{
w2
}

≤ P +N.

Hence, h(y) is maximized when y is chosen to be N (0, P +N). That is achieved by
choosing the input x to be N (0, P ). Finally we get

max
E{x2}≤P

I(x; y) = h(y)− h(w)

=
1

2
log2(2πe(P +N))− 1

2
log2(2πeN)

=
1

2
log2

(
1 +

P

N

)
.
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Proposition 7

Expanding the formula of the mutual information

I(x; y) = h(y)− h(y|x)

= h(y)− h(x+ w|x)

= h(y)− h(w|x)

= h(y)− h(w).

The output y has a constraint of

E
{
|y|2
}
≤ E

{
(x+ w)(x+ w)∗

}
≤ E

{
(x+ w)(x∗ + w∗)

}
≤ E {xx∗ + xw∗ + wx∗ + ww∗}
≤ E {xx∗}+ E {x}E {w}∗ + E {w}E {x}∗ + E {ww∗}
≤ E

{
|x|2
}

+ E
{
|w|2

}
≤ P +N.

Hence, h(y) is maximized when y is chosen to be CN (0, P +N). Finally we get

max
E{|x|2}≤P

I(x; y) = h(y)− h(w)

= log2(πe(P +N))− log2(πeN)

= log2

(
1 +

P

N

)
.

Proposition 8

Expanding the formula of the mutual information

I(x; y) = h(y)− h(y|x)

= h(y)− h(x+ w|x)

= h(y)− h(w|x)

= h(y)− h(w).

The output y has a constraint of

E
{
|y|2
}
≤ E

{
(hx+ w)(hx+ w)∗

}
≤ E

{
(hx+ w)(x∗h∗ + w∗)

}
≤ E {hxx∗h∗ + hxw∗ + wx∗h∗ + ww∗}
≤ hE {xx∗}h∗ + hE {x}E {w}∗ + E {w}E {x}∗ h∗ + E {ww∗}
≤ E

{
|x|2
}
|h|2 + E

{
|w|2

}
≤ P |h|2 +N.
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Hence, h(y) is maximized when y is chosen to be CN (0, P +N). Finally we get

max
E{|x|2}≤P

I(x; y) = h(y)− h(w)

= log2(πe(P |h|2 +N))− log2(πeN)

= log2

(
1 +

P |h|2

N

)
.

Proposition 9

SNRuser1 =
E
{
|h1x1|2

}
E
{
|h2x2 + w|2

}
=

E
{

(h1x1)(x
∗
1h
∗
1)
}

E
{

(h2x2 + w)(x∗2h
∗
2 + w∗)

}
=

E {h1x1x∗1h∗1}
E {h2x2x∗2h∗2 + h2x2w∗ + wx∗2h

∗
2 + ww∗}

=
h1E {x1x∗1}h∗1

h2E {x2x∗2}h∗2 + h2E {x2}E {w}∗ + E {w}E {x2}∗ h∗2 + E {ww}∗

=
E
{
|x1|2

}
|h1|2

E
{
|x2|2

}
|h2|2 + E

{
|w|2

}
=

P1|h1|2

P2|h2|2 +N

Proposition 10

R1 = R2

log2

(
1 +

P1|h1|2

P2|h2|2 +N

)
= log2

(
1 +

P2|h2|2

N

)
P1|h1|2

P2|h2|2 +N
=
P2|h2|2

N

P1|h1|2N = P 2
2 |h2|4 + P2|h2|2N

P 2
2 |h2|4 + P2|h2|2N − (P − P2)|h1|2N = 0

P 2
2 |h2|4 + P2(|h2|2N + |h1|2N)− P |h1|2N = 0

The aforementioned formula refers to a quadratic equation, where the only unknown
variable is P2. The discriminant is the following

∆ = (|h2|2N + |h1|2N)2 − 4[|h2|4(−P |h1|2N)]

∆ = |h2|4N2 + 2|h2|2N |h1|2N + |h1|4N2 + 4P |h2|4|h1|2N.
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We get two solutions where only one is acceptable since the other is negative. The
acceptable one is the following

P2 =
−(|h2|2N + |h1|2N) +

√
|h2|4N2 + 2|h2|2N |h1|2N + |h1|4N2 + 4P |h2|4|h1|2N

2|h2|4
,

P2 =
−(|h2|2 + |h1|2)N +

√
(|h2|4 + 2|h2|2|h1|2 + |h1|4)N2 + 4P |h2|4|h1|2N

2|h2|4
.

Hence, the power that user 1 gets is considered to be

P1 = P − P2.
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