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Abstract

Due to the stochastic nature of environmental loadings, a lot of interest is paid in the dis-
covery of possible damages of the involved equipment in modern industry. In wind turbine’s
blades, where access is difficult and expensive, the development of a smart structural health
monitoring system is essential. In the present paper, a large-scale composite wind turbine
blade model is designed and used for the detection of several damage scenarios. The process
which is presented here is mainly based on the development of monitoring techniques which
exploit the capabilities of artificial neural networks. These techniques can provide the exact
position of possible damages, under given external loading scenarios. Moreover, the use of
such methods decreases significantly the need of external intervention and at the same time
it increases the accuracy of the whole approach. The above processes are simulated using
the finite element method.
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Introduction

Wind turbines are large rotating machines which have the ability to harvest and convert
wind (kinetic) energy into mechanical power and subsequently to electricity through the use
of a suitable generator. However, these large systems consist of several smaller parts, i.e.
blades, joints, etc., which in turn are subjected to high wind or other loadings, as well as
other environmental phenomena which could possibly put at risk the integrity of the whole
structure. These residual forces can decrease significantly the lifetime of the critical compo-
nents of wind turbine structures, such as the wind turbine blades, causing partial failures or
even a total fail - sometimes catastrophic - of the whole system.
In the present investigation, a composite large-scale wind turbine blade model will be consid-
ered similar to the one presented in (Rentoumis et al., 2018). More specifically, a large-scale
wind turbine blade of span which equals to approximately 25m, is taken in consideration.
The location of installation is the Mount Panachaiko, Peloponnese, Greece. In order to as-
sess the integrity of the blade structure, a damage identification algorithm based on neural
networks is considered (Stavroulakis and Antes, 1998b).
The blade is hollow, which means that the outer geometry is formed by two separate shells;
one on the suction side and one on the pressure side. The design of the airfoil considers both
aerodynamic, as well as structural aspects. As for the aerodynamic considerations, they are
vital for the design of the outer shell of the wind turbine blade, while structural aspects are
considered for the design of the inner structure of the blade (Jensen, 2008).
The objective of the present paper is the development of a procedure for non-destructive
crack identification in wind turbine blades. This methodology can be applied to damage
identification, flaw detection,etc. Only static loads are considered here, while structural
analysis is based on a finite element model with several failure scenarios. The inverse is
solved by means of a back-propagation trained neural network. The training data are pro-
duced by the numerical model (psudoexperiments).
Identification problems belong to inverse problems, due to the fact that even if some input-
output data are available my measurements, the parameters values which are involved in the
system remain unknown. In fact, the output error identification problem, which is the case
here, is treated as an optimization problem for the difference between measurements and the
desired values of parameters. The classical optimization approach is not always advantageous
due to the nature of the problem. More specifically, for inverse problems, small variations of
a certain structural parameter may lead to either large or small variations in the structural
response depending on the position and/or the type of the parameter (Stavroulakis and
Antes, 1998b). Due to this, the problem is considered to be an ill-posed one (Natke, 1991).
Due to several nonlinearities, the arising optimization problem is usually nonconvex and
thus, the possibility of multiple mathematical solutions exists. In terms of optimization, this
corresponds to a problem with several local minima, and thus, the convergence of classical
optimization algorithms is not always guaranteed. In this case, soft computing techniques,
such as the neural network approach, which have the ability to overcome local minima, can
be adopted.
The methodology used here for the treatment of the inverse problem has been developed and
tested for the solution of crack identification problems in (Stavroulakis and Antes, 1998a).
In previous publications, a two-dimensional specimen is considered which contains an un-
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known crack. The unknown crack has been parametrized by a certain number of parameters,
namely, the length of a linear crack, and the coordinates of the middle point with respect to
the used global coordinate system. It is assumed that certain boundary displacements can be
measured for various static, time-periodic or time-history external loading. The direct me-
chanical problem is solved numerically by the BEM method, while the identification (inverse)
problem is treated by a neural network-based optimization technique. Details can be found
in the papers (Jensen, 2008), (Stavroulakis and Antes, 1998a, 1999a, 1999b), (Stavroulakis
et al. 2004). Recent investigations of our group present the defect identification of concrete
piles by using dynamic test loading and neural networks, see (Protopapadakis et al., 2016)
(Psychas et al., 2016).

1 Design of the airfoil -Principles

The design of the airfoil is the balanced output of two considerations that include: (i)
the aerodynamic and (ii) the structural aspect of it. Aerodynamic considerations are the
ones dictating the design of the outer shell of the blade while structural considerations are
more vital for the design of the inner of the blade (Mølholt, 2008). Structurally, the blade is
typically hollow, with the outer geometry formed by two separate shells: one on the suction
and one on the pressure side. In order to transfer shear loads, one or more structural webs
of different geometries are fitted to support and join the two shells together (see Figure 1).

Figure 1: Sketches of various blade design approaches: (4a) Single shear web, (4b) Double
shear web, (4c) With load carrying box girder. (Mølholt, 2008)

also Figure 3). In Figure 2, three different manufacturers’ blade designs (LM Glasfiber, SSP
Technology & Vestas) are presented. In the blade from LM Glasfiber (see also Figure 2a) an
upper shell, a lower shell and two webs are bonded together to form the blade structure as
shown in Figure 2b. In the blade from SSP-Technology a load carrying box girder is created
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of two half parts bonded together while, in Figure 2c, Vestas uses a box girder which is
manufactured on a mandrel.

Figure 2: Different wind turbine blade designs: (2a) LM-Glasfiber design, (2b) SSP-
Technology design, and (2c) Vestas design. (Mølholt, 2008)

2 Materials and Manufacturing

Nowadays, there is a wide range of materials and manufacturing techniques utilized in
the wind turbine industry. The most utilized material combinations used are composite
laminates with embedded threaded steel rods in the root section, connecting the blade to
the hub in a bolted connection. Polyester, vinyl ester and epoxy resins are common, matched
with reinforcing wood, glass, and carbon fibers. A wide range of manufacturing processes are
also utilized in blade manufacturing, encompassing: wet lay-up, pre-preg, filament winding,
pultrusion, and vacuum infusion (with and without secondary adhesive bonding). More
details can be found in ref. (US National Research Council) of 1991. In the first chapter
of this report, the assumptions and restrictions taken into consideration will be presented
including the location of the installation and the average weather conditions taking place
according to officially published data. In the second chapter, the nominal loads to be applied
will be defined, taking into consideration the industry’s standards. In the third chapter, an
introduction of the SHM methodology that will be carried out followed by the fourth chapter
describing the material property requirements.
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3 Assumptions Definition

3.1 The location

Mount Panachaiko is the most northern mountain of the Peloponnese state area and is
occupying the north-central area of Achaia State. More accurately, it is situated eastern of
the city of Patra. The highest peak of Mount Panachaiko has an altitude of 1925m. The
largest Wind turbine farm of Greece is located in its north section, between the cities of
Patra and Rio. The farm (ELEV: 1588 m LAT: 38deg 12min LONG: 21deg 54min) was
established in 2006 and hosts 40 large scale wind turbines.

Figure 3: Panachaiko Mountain location in the northern area of Peloponnese, Greece.
(Google Earth)

3.2 Location Weather Conditions

In order to have a better insight of the weather conditions that take place at Mount
Panachaiko Mountain we accessed the National’s Observatory of Athens Database.
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Figure 4: View from Wind Farm of Mount Panachaiko. City of Patra at the left of the
photo. (Google Earth)

3.3 Blade loads

The use of computer analysis software such as fluid dynamics (CFD) and finite element
(FEA) is now commonplace within the wind turbine industry (Quarton, 1998). Dedicated
commercially available software such as LOADS, YawDyn, MOSTAB, GH Bladed, SEACC
and AERODYN are utilized to perform calculations based on blade geometry, tip speed and
site conditions (Habali, 2000). To simplify calculations, it has been suggested that a worst
case loading condition has to be identified compared to which all other loads may be tolerated
(Gasch et al., 2002). The worst case loading scenario is dependent on blade size and method
of control. For small turbines without blade pitching, a 50-year storm condition would be
considered as in the limiting case. For larger turbines (D ¿ 70 m), loads resulting from the
mass of the blade become critical and they should be considered. In practice, several load
cases are considered with published methods detailing mathematical analysis for each of the
IEC load cases (Burton, 2011). For modern large scale turbine blades, the analysis of a single
governing load case is not sufficient for certification. Therefore, multiple loading cases are
analyzed. The most important load cases are dependent on individual designs. Typically
priority is given to the following loading conditions:

• Emergency stop scenario (Ahlstrom, 2006)

• Extreme loading during operation (Burton, 2011)

• Parked 50-year storm conditions (Kong et al., 2005)

Under these operational scenarios, the main sources of blade loading are listed below:

• Aerodynamic
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• Gravitational

• Centrifugal

• Gyroscopic

• Operational

The load magnitude will depend on the operational scenario under analysis. If the optimum
rotor shape is maintained, then aerodynamic loads are unavoidable and vital to the function
of the turbine, considered in greater detail. As turbines increase in size, the mass of the
blade is said to increase proportionately at a cubic rate. The gravitational and centrifugal
forces become critical due to blade mass and are also elaborated. Gyroscopic loads result
from yawing during operation. They are system dependent and generally less intensive than
gravitational loads. Operational loads are also system dependent, resulting from pitching,
yawing, breaking and generator connection and can be intensive during emergency stop or
grid loss scenarios. Gyroscopic and operational loads can be reduced by adjusting system
parameters. Blades which can withstand aerodynamic, gravitational and centrifugal loads
are generally capable of withstanding these reduced loads. Therefore, gyroscopic and oper-
ational loads are not considered within this work.

3.4 Gravitational and Centrifugal Loads

Gravitational centrifugal forces dependent to mass which is generally thought to increase
cubically by increasing turbine diameter (Brondsted et al., 2006). Therefore, turbines under
ten meters diameter have negligible inertial loads, which are marginal for 20m upwards, and
critical for 70m rotors and above. The gravitational force is simply defined as mass multi-
plied by the gravitational constant, although its direction remains constant acting towards
the center of the earth which causes an alternating cyclic load case. The centrifugal force
is a product of rotational velocity squared and mass and always acts radial outward, hence
the increased load demands higher tip speeds. Centrifugal and gravitational loads are su-
perimposed to give a positively displaced alternating condition with a wavelength equal to
one blade revolution.

3.5 Structural Load Analysis

Modern load analysis of a wind turbine blade would typically consists of a three dimen-
sional CAD model analyzed using the Finite Element Method (Jensen, 2006). Certifica-
tion bodies support this method and conclude that there is a range of commercial software
available with accurate results (Veritas, 2010). These standards also allow the blade stress
condition to be conservatively modeled using classical stress analysis methods. Traditionally,
the blade would be modeled as a simple cantilever beam with equivalent point or uniformly
distributed loads used to calculate the flap wise and edgewise bending moment. The direct
stresses for root sections and bolt inserts would also be calculated.
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4 Wind Turbine Blade

4.1 Orientation

There are two orientations of wind turbines: horizontal axis wind turbines (HAWT) and
vertical axis wind turbines (VAWT). There are advantages and disadvantages to each orien-
tation. VAWTs use drag forces to rotate their blades and are frequently referred to as drag
machines. The dominant advantage to a VAWT is that it can accept wind from any direc-
tion at any time. This means that it does not require any yaw system to align the turbine
in the direction of the incident wind field. The blades are commonly straight without any
taper along the long axis. This allows them to be manufactured at lower cost. Since they
rotate about the vertical axis the drive train can be located near the ground, which reduces
the maintenance costs. Although VAWTs can accept wind from any direction, they are less
efficient than HAWTs. Another major problem with VAWTs is their scalability in terms
of viability for commercial production. They also tend to see larger fatigue damage on the
blades at the rotor as a result of cyclic aerodynamic stresses (McGowan, 2000).
In contrast, HAWTs use lift forces to rotate their blades and are frequently referred to as lift
machines. HAWTs can be designed such that the turbine is either upstream or downstream
from the supporting tower. In the downstream version, the turbine automatically aligns its
self with the wind; this rotation is known as yaw. To assist with their free yawing capability,
the rotor blades are coned slightly in the downwind direction. Downstream HAWTs are in-
fluenced by tower wind shadow. Since the supporting tower is upstream of the rotor, a wake
is created by the tower. The main effect of this wake is uneven air loading on the blades,
which causes an uneven angle of attack on the blades and leads to decreased efficiency. In
addition, the uneven cyclic loading causes fatigue damage not only to the blades but to
the tower and drive train as well. To a lesser extent the downwind orientation also causes
increased noise output.
In the upstream version, all tower wake effects are eliminated. However, the turbine is not
capable of free yawing. This means that an active yaw control system is needed. These
systems require a yawing motor, gears and a break to hold the turbine in place when it
is optimally oriented into the wind. Along with the increased complexity of a yaw control
system, an increased torsional load is applied to the tower (McGowan, 2000).
A large advantage to HAWTs is the issue of solidity, which is defined as the ratio of the blade
area to the swept blade area. As the turbine gets larger, the solidity gets smaller, which
in-turn reduces the cost per kilowatt. HAWTs are also easier to mount on top of a large
tower, which reduces the initial investment cost. As a result, HAWTs currently dominate
the wind power market (McGowan, 2000).

4.2 Wind Turbine Blade

Energy is essential to human civilization development. With the progress of economics,
there is an expanding demand on renewable energy resources to secure energy supply, like
wind power, solar power, tide and wave power etc. As a clean renewable resource, wind
power plays a more and more important role in modern life(RenewableUK 2012).
Power in the wind comes from the transformation of the air that is driven by the heat
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of the sun, which is abundant, clean and renewable. As one of the most popular renew-
able energy resources, wind power exploitation is growing rapidly.At the beginning of 2006,
the total installation of wind turbine capacity reached 59,206 MW worldwide(Schreck.S.J
& Robinson.M.C. 2007). In June 2011, a total installation of 5,560 MW was operational
and predicted by RenewableUK that in 2012 the annual wind power capacity will increase
to 1.2 GW. It was also released by the Global Wind Energy Council that in 2011, a total
annual increase in wind power industry reached 41 GW worldwide, which is corresponding
to an annual growth of 21% comparing to the previous year. It has been estimated that
the global capacity could reach no less than 200 GW by 2014.Wind turbine technology is
undergoing great development. With the advancement of materials, manufacturing technol-
ogy, intelligent control, and rotor aerodynamics, the rotor diameter of a 5 MW wind turbine
(Re-power) has reached 126 meters(REpower 2012).
A wind turbine converts kinetic energy into mechanical power through a rotor, and then
converts the mechanical power into electric power through a generator which is linked to
the rotor with and without a gearbox. Various types of wind turbines are designed to take
advantage of wind power based on the principles of aerodynamics. Depending on the wind
turbine rotor orientation, there are two types of wind turbines, horizontal axis wind tur-
bine (HAWT) and vertical axis wind turbine (VAWT).Based on the operation scheme, wind
turbines can be divided into stall-regulated (fixed-pitch) wind turbines and pitch-controlled
(variable-pitch) wind turbines. According to the relative flow direction of the wind turbine
rotor, horizontal-axis wind turbines are either upwind or downwind turbines. Most modern
HAWTs have three blades.Three-bladed upwind HAWT is the most common topology due
to higher efficiency, better balanced performance and aesthetic appreciation.the fixed-pitch
wind turbine remains one of the most popular topologies for wind turbines due to the ad-
vantages of simplicity, reliability, easy to access, well-proven and low cost. Most of wind
turbines are three-bladed upwind fixed-pitch HAWTs, which are investigated in this thesis
unless otherwise stated.

4.3 Blade Aerodynamics

A wind turbine is a complex system which consists of several components, including a
rotor, a transmission system, a generator, a nacelle, a tower and other electro-mechanical
subsystems. The rotor blades are the most important components. In order to transfer
wind energy into mechanical and electric power, the blade is designed as an aerodynamic
geometry with nonlinear chord and twist angle distributions. The section view of a wind
turbine blade is of an airfoil shape (one or more airfoils), which is expected to generate high
lift and low drag forces. The shape of the blade determines the energy captured, and the
loads experienced. The study of interaction between wind flows and wind turbines is wind
turbine aerodynamics which plays an important role in wind turbine design and analysis.
Wind turbine aerodynamics comes from propeller aerodynamics. To introduce wind turbine
aerodynamics in a simple way, a “tube” is introduced to describe the flow passing through
a rotor in the classical disk theory.
In the disk theory, the flow is assumed equivalent across the sectional area of the tube, and
the rotating rotor is regarded as a disc. When the inflow wind blows and strikes the blades,
the velocity drops and the pressure increases just before the rotor plane and immediately
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after the rotor plane, an adverse pressure distribution appears. With a pressure deficit be-
tween the upwind surface and the downwind surface along the span of the blade, once the
total torque is able to conquer the cogging torque and the resistant torque of the system, the
turbine rotor starts to rotate. With adequate wind inflow velocity (generally higher than 3-4
m/s), the turbine accelerates and the generator begins to produce electricity. An optimal
wind turbine blade design usually has a high power efficiency, which is named as power
co-efficient, and is calculated as the ratio of the rotor power output of the wind turbine to
the power in the wind.
Many factors play a role in the design of a wind turbine rotor, including aerodynamics, gen-
erator characteristics, blade strength and rigidity etc. But wind energy conversion system
is largely dependent on maximizing its energy extraction, rotor aerodynamics play impor-
tant role in the minimization of the cost of energy. Moreover, there are many other aspects
of concern in wind turbine blade design, such as maximum annual power capability, struc-
ture safety, economics, material availability and site suitability. All these factors contribute
to CoE, which is the final goal of a wind turbine design. Wind turbine blade design is a
multiple-objective optimization process as many disciplines are required including aerody-
namic, structure, material, and economics. The design process is often executed in a heuristic
manner.
The design process is composed of three main models which are a structure model, an aerody-
namic model and an economics model (cost model). These three models form the main frame
of wind turbine design. Among the three models, the aerodynamic model is the most funda-
mental one which determines the power extracted and the loads experienced.The structural
design of blades is also as important as their aerodynamic design. The dynamic structural
loads play the significant role in determining the lifetime of the rotor.In addition, the blade
geometry parameters are required for dynamic load analysis of wind turbine rotors.As a re-
sult, the lifetime of wind turbine are all affected by the aerodynamic model used. In a word,
the aerodynamic model has a great importance on design of wind turbine rotor blades and
other components and subsystems. An aerodynamic model is the first consideration in the
wind turbine design process.
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4.4 Other Design Considerations

Several other design considerations include the categories of maintenance, environmental
concerns, and wind resources. Maintenance can make up a significant portion of the overall
cost of a wind turbine as maintenance costs tend to increase through the lifespan of the
wind turbine. A benefit of increased turbine size is a decreased projected maintenance cost.
Maintenance and capital cost can also be highly dependent on local labor and expertise.
Environmental concerns include noise pollution, aviation migration patterns, land use re-
strictions, local opposition, and electromagnetic interference (McGowan, 2000).
Wind resources need to be studied in depth before the implementation of any wind turbines.
The higher the wind in the area, the more desirable the location; wind classes are based on
power density and mean wind speed. Wind classes vary from class 1 to class 5, with class
1 being the least optimal for power production and class 5 being the most optimal. A wind
class of at least 4 is required for a turbine to be reasonably productive (Elliott, et al., 1986).
High wind environments also come with their issues. Because high wind may not always
be constant, the variability of wind speeds may need to be studied. Higher wind areas also
frequently have increased wind shear, gusts, and turbulence, all of which cause increased
fatigue damage to wind turbines. Topography also plays a major role in wind patterns.
This coupled with vegetation variations can cause greater surface roughness, requiring the
supporting tower to be taller to get into the desired boundary layer level (McGowan, 2000).
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4.5 The Wind Turbine Blade Design

Most of airfoil families are utilized for horizontal axis wind turbines (HAWTs) include
among others NACA 44XX, NACA 23XXX, NACA 63XXX, and NASA LS series airfoils.
All the above airfoils suffer noticeable performance degradation from roughness effects re-
sulting from leading-edge contamination.The airfoil families are classified either as thick or
thin.Thick airfoil families with thickness between 16% and 21%, are commonly found in stall-
regulated wind turbines.Their utilization indicates that the tip-region airfoils are considered
thick enough in order to accommodate overspeed-control aerodynamic devices and to reduce
the blade weight.On the other hand,thin airfoil families those with thickness between 11%
and 15%, are more suited to variable-pitch or variable-rpm turbines that use full-span blade
pitch.In general, greater thickness is opted for the blade root airfoils to withstand structural
and dynamic effects. The blade-root airfoil thickness is usually in the range of 18% to 24%.
It has been assessed that thicknesses greater than 26% result to poor performance character-
istics. In 1992, an airfoil family (Figure 5) was designed for extra-large blades for turbines
rated at 400-1000 kW. This family, which is included in stall-regulated rotors, is composed of
the S816, S817, and S818 airfoils. The tip-region airfoil has a Cl, max of 1.1 and a thickness
of 16%. The primary outboard airfoil has a Cl, max of 1.2 and a thickness of 21% while the
root airfoil has Cl, max of 1.3 and a thickness of 24% .

Figure 5: Illustration of airfoils location along the blade span and illustration of different
pitch angles of airfoils with reference to the root of the blade.

4.6 Blades 15 to 25 Meters in Length

In 1992, an airfoil family (Figure 11) was designed for extra-large blades for turbines rated
at 400-1000 kW. This family, which is included in stall-regulated rotors, is composed of the
S816, S817, and S818 airfoils. The tip-region airfoil has a Cl, max of 1.1 and a thickness of
16%. The primary outboard airfoil has a Cl, max of 1.2 and a thickness of 21% while the
root airfoil has Cl, max of 1.3 and a thickness of 24%.
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Figure 6: Thick Airfoil Family for extra-large blades (low tip Cl, max) and design specifica-
tions. (Somers, 1992)

5 Structural Health Monitoring

5.1 Structural Health Monitoring(SHM) and system in general

The first model of Structural Health Monitoring application began from aerospace industry
during the 1970 and early 1980.Structural Health Monitoring and vibration-based damage
have used, firstly , in the civil engineering community in the bridges and buildings. By the
time, Structural Health Monitoring has expanded throughout the engineering.(Farrar and
Worden,2007)
In general, a Structural Health Monitoring system can be considered to be combined of two
key factors, sensing technology and the associated signal analysis and interpretation algo-
rithm. The data of Structural Health Monitoring consists of the response of the structure at
different locations and information about the environmental conditions. Temperature, baro-
metric pressure and wind speed are measurements related to the environmental conditions.
Moreover, this system contains sensors which consists of three basic steps i.e., the signal
monitoring, the processing and the interpretation. This systems are vibration-based , which
are essential to avoiding problems and preventing of internal damages.
The collection of extract data, that systems have, can be useful information about the
structure and its performance. This extract information can be used for decision-making re-
garding the safety,reliability maintenance, operation and future performance of the structure.

5.2 Assessment of Structural Health Monitoring Implementation

Structural failures are caused by several reasons, e.g. earthquakes, hurricanes, strong
winds, extremely high temperatures etc. For that reason, a suitably defined system, able
to monitor the performance of the whole structure, is necessary. For the case of wind tur-
bines, this need is ubiquitous due to inaccessibility reasons (e.g. offshore structures), fatigue,
or even because of the type of loads. A Structural Health Monitoring (SHM) system is a
damage identification procedure for the prediction of possible damages of the host structure.
Moreover, this system can take measures where necessary, which is very important as sig-
nificant economic loss can be prevented. The whole procedure consists of three basic steps,
i.e the signal monitoring, the processing, and the interpretation. Moreover, such systems

16



are vibration-based, thus vibrations can be used for the detection of internal damages which
usually are hidden, and they cannot be observed (Bouzid, 2015).
The core idea behind vibration-based SHM is that failures usually affect the dynamic char-
acteristics such as for example the stiffness. This means that the severity of the damage can
be quantified by its eigen-characteristics. To this extent, SHM is used for the detection of
common failure scenarios (Ghoshal et al., 2000).
Composite materials which are used in wind turbines’ blades have certain advantages, i.e.
they improve the electrical conductance. However, they exhibit anisotropic properties which
makes the mechanism behind failures sophisticated. This type of materials is usually suffer-
ing by ageing and fatigue Moreover, even a small impact can lead to the creation of cracks,
delamination phenomena on the fibers, etc. in-situ sensors with intelligent algorithms for
on-line damage detection can be combined in order to achieve high accuracy and reliability
for damage identification and monitoring at the minimum cost (Li et al., 2014).

5.3 Drawbacks of Composite materials

The wind turbines’ blades are manufactured using composite materials which generally
improve the electrical conductance and/or the energy harvesting efficiency. However, com-
posites exhibit anisotropic properties which makes the mechanism behind the potential dam-
ages and failures quite complicated. Moreover, the absence of available standards holds back
the design process and usually leads to overdesigned structures. Another, let say, drawback
of composite materials is their sensitivity to damages due to impact loadings which is caused
by the shortage of extra reinforcement. Cracks, delamination of fibers and/or other failures
can be caused even by a minor impact. Finally, composites are influenced by ageing and/or
material fatigue.

5.4 Requirements of SHM for Composite materials

Non-Destructive Testing (NDT) methods can be used for damage detection. However,
these methods have some disadvantages as they require heavy equipment, they are time
consuming (especially for large-scale structures such as wind turbines) and expensive, as
they increase the maintenance cost. Structural health monitoring combines in-situ sensors
with intelligent 14 algorithms for on-line damage detection. This method can achieve high
accuracy and reliability for damage detection at the minimum cost.
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5.5 Damage identification and Structural Health Monitoring

In general, modal analysis tools can be very useful for damage identification as the dy-
namic characteristics of a smart structure are modified due to the existence of damages or
failures. However, the case here is the identification of structural failures by using machine
learning techniques such as neural networks. This means that the first step for damage
identification can be either the conduction of a complete modal analysis or the consideration
of a suitably defined and trained artificial neural network. In the present investigation, the
cracks occur near the trailing edge of the blade structure close to the free end (see Figure
7).

Figure 7: Positions of measurements (control points)
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6 Neural Networks

6.1 Artificial Neural Networks

The Artificial Neural Networks is a machine learning prediction algorithm which attempts
to simulate the function of the human central nervous system. Artificial Neural Networks is
not considered as a complex algorithm for hardware implementation.(Kakoulli, E.,2012)
First, it is about a network of interconnected calculating nodes (artificial neurons) which
are algorithms of computational intelligence. A number of dimensional inputs are inserted
throughout the Artificial Neural Networks which are initially multiplied by its initial weights.
Then, if the weighted sum of the n dimensions exceeds a threshold value, then the neuron
fires a floating point value which is the passed through the activation function for mapping
the value to give an output. Even though the cost function is high , back-propagation al-
gorithm achieve to have a low cost because of changing the weights of the Artificial Neural
Networks. On every new iteration the weights are updated, so it can reach the lowest cost.
Such multiple neurons together is known as a Neural Network. The basic operation of pro-
cessing the inputs to predict the output, make the Artificial Neural Network design.

6.2 Mathematical model of the neuron

Biological neural networks are very complex. In contrast, the mathematical model of the
network is much more simplied and is based on several assumptions:
1. All neurons are synchronized. That means that the signal passing from one neuron to
another takes the same time for all connections. Signal processing is also synchronized and
is the same for all neurons.
2. Every neuron has a so-called transfer function which determines neuron’s output signal
depending on the input signal strength. That function is time-independent.
3. When the signal passes the synapse, it changes linearly, i.e., the signal value is multiplied
by some number. That number is called synaptic weight.
The very important property of the synaptic weight is that it changes in time. That feature
makes it possible for brain to react differently on the same input in different moments. Or,
in other words, to learn. Of course, those assumptions simplify the initial biological neural
network very much.
For example, brain signal transmission time naturally depends on the distance between
neurons.Artificial networks still preserve the most important characteristics of biological
networks - adaptability and ability to learn.
The first mathematical model of the neuron was introduced more than a half century ago,
but did not change much since then. First of all, the neuron is seen as a simple ”automate”
that transforms input signals into the output signal (Figure 8 ).
The model functions as follows: inputs of the neuron’s synapses receive N signals [X1, . . . ,Xn].
Then every synapse makes a linear modi

cation of the signal using its synaptic weight. After that neuron’s body (soma) receives
signals [X1w1, . . . ,Xnwn] (where wi is the corresponding synaptic weight) and sums those
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signals:
S =

∑n
i=1 Xiwi

Then it applies some given function F (that is also called activation function) and sends
the final signal:
Y = F(S)

Figure 8: Arti
cial neuron model.

to the output. There are different functions, that are commonly used as activation functions.
In a net- work, it is not necessary to use the same function for all the neurons. However,
it’s a common practice. In most cases activation functions are non-linear. Otherwise, the
whole network will implement some linear transformation and will be equivalent to only one
artificial neuron perceptron.

6.3 Multi-layer perceptron

That section describes one of the fundamental neural networks’ types - multi-layer percep-
tron (or MLP, or back propagation network). Lots of other neural networks’ types - such as
RBF networks or probabilistic networks - are based on that model. In general, an artificial
neural network is a set of artificial neurons. Arrangement and types of those neurons depend
on the network type. Multi-layer perceptron contains three types of neurons:
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Figure 9: Multi-layer perceptron.

1. Input neurons. Those neurons are taking input vector that encodes some action
or information about the external environment. Input neurons don’t perform any type of
computation, but only pass the input vector to subsequent neurons.
2. Output neurons receive signals from the preceding neurons and transform it using formulas
8. Those values represent output of the whole neural network.
3. Hidden neurons are the basis of the neural network. Those neurons receive the signal
from the input neurons or preceding hidden neurons, process it in accordance with formulas
8 and then pass result signals to the subsequent (hidden or output) neurons.
In multi-layer perceptron neurons are divided into layers. Input and output neurons form
separate layer each - input layer and output layer. Hidden neurons form one or several
hidden layers. Every MLP neuron, with the exception of input neurons, is connected via
synapses with all neurons of the previous layer. Example of the MLP architecture is shown
on Figure 9

6.4 Back-propagation Network

Neural Networks can be used for several applications, such as, solving different problems,
damage identification(Natke, 1001), (Efstathiades et al., 2007),for optimization of control
parameters (Muradova et al., 2016) etc. In order to do this, the network should be set up
and trained.
First, the network selects, how many input and output neurons should contain and how
many hidden neurons and layers. However, the selection of hidden units and layers is not
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simple. Too few of them and you get high training error and underfitting,too many of them
and get overfitting.(Lawrence S.,1997)
There are several ways of training a network.Back-propagation algorithm can be classified
into supervised and unsupervised learning. Supervised learning is the process that combines
the inputs that the network should learn which all together are the training set. Unsupervised
learning means that the training set does not contain expected outputs for the given inputs.

This back-propagation method of errors training method calculates the derivative of the
errors considering network weight. The derivative is fed to the optimization method which
updates the weights and looks for the minimum value of the error function.

Figure 10: The backpropagation training process
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A selected set of training data connects the measurements directly with failure charac-
teristics. If there is an error in calculated outputs, the weights are adjusted to minimize the
error. With this method, the neural network solves directly the inverse problem. In this
case, this methodology can be used for static loading and measurements of displacements or
deformations, for harmonic dynamic loading, for eigenvalues and eigenmodes or even for dy-
namic service loads or testing loading such as ultrasounds which are used in nondestructive
structural evaluation.
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6.5 Neural Network of the inverse problem

In the present investigation, a blade structure with an unknown crack is analyzed. The
crack is characterized by a set of parameters z = [z1, ...zm]T. Here, the coordinates (x, y) of
the crack are used as identification parameters. The deformation of the blade for a given
static loading bl, l = l, . . . , l1(see Figure 11) and for a given crack z is given by the vector
x̃(z, bl).

Figure 11: Areas of static loadings on the wind turbine blade

In this case, l1, is the total number of different loading cases. Moreover, let the response
of the examined structure with a known crack be subjected to the same loading bl denoted
by x̃0(z, b

l). In this investigation the elements of x̃0(z, b
l) are produced by a finite element

algorithm. The same procedure can be also used for the solution of the inverse analysis
problem if a set of training data is available. Here, a direct solution of the inverse problem
by means of back propagation trained neural networks is sought. Due to the appearance of
nonlinearity in the response vector in terms of the crack parameters, the classical error min-
imization approach may lead to nonconvex optimization (Stavroulakis, 2013) (Stavroulakis
and Antes, 1997). A multilayer back-propagation error trained neural network is used to
learn the relation:

x̃(z, bl)→ z

for a given value of loading vector bl. The couples of data composed of the vectors x̃(z, bl)
and the corresponding parameter vectors z are used as training examples. In the production
mode, the nonlinear network reproduces the relation x → z , i.e. for a given set of mea-
surements x̃ (different from the ones used in training) it gives a prediction for the variables
characterising the internal crack (Stavroulakis and Antes, 1998b).
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7 Numerical Results

7.1 Wind blade materials

The total structure is of sandwich form for both the external surfaces and the internal
spars. The thickness of the structure differs from point to point. More material is necessary
at the spars, where larger stiffness is needed, while the external surfaces are thinner, thus
less material is used. Namely, the thickness at the different surfaces vary from 0,035 m to
0,1 m. The model which is considered in the present investigation consists of an isotropic
elastic PVC foam, which is used for the core of the blade, while the external material is
chosen to be an orthotropic elastic Epoxy Carbon material with enhanced characteristics in
terms of electrical conductance, i.e. in terms of sensing ability, which is very useful in similar
applications. The total mass of the blade is 3.686,39 kg. The characteristics and critical
values of the materials which were used, are given in detail below. The detailed material
properties of the foam are given in Table 1, while the ones for the Epoxy Carbon material
are presented in Table 2.

Table 1: PVC foam material properties.

Density [kg/m3̂] 80
Young’s Modulus [Pa] 1, 02x108

Poisson’s Ratio 0,3
Bulk Modulus [Pa] 8, 5x107

Shear Modulus [Pa] 3, 9231x107

Table 2: Epoxy Carbon UD material properties.

Density [kg/m3] 1490
Young’s Modulus (X direction) [Pa] 1, 21x1011
Young’s Modulus (Y direction) [Pa] 8, 6x109

Young’s Modulus (Z direction) [Pa] 8, 6x109

Poisson’s Ratio (XY) 0,27
Poisson’s Ratio (YZ) 0,4
Poisson’s Ratio (XZ) 0,27

Shear Modulus (XY) [Pa] 4, 7x109

Shear Modulus (YZ) [Pa] 3, 1x109

Shear Modulus (XZ) [Pa] 4, 7x109

The orthotropic strain limits and the orthotropic stress limits of the Epoxy Carbon
material are given in the following Table 3.
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Table 3: Epoxy Carbon UD Orthotropic Strain and Stress Limits.

Strain [m] Stress [Pa]
Tensile (X direction) 1, 67x10−2 2, 231x109

Tensile (Y direction) 3, 2x10−3 2, 9x107

Tensile (Z direction) 3, 2x10−3 2, 9x107

Compressive (X direction) −1, 08x10−2 −1, 082x108

Compressive (Y direction) −1, 92x10−2 −1, 0x108

Compressive (Z direction) −1, 92x10−2 −1, 0x108

Shear (XY) 1, 2x10−2 6x107

Shear (YZ) 1, 1x10−2 3, 2x107

Shear (XZ) 1, 2x10−2 6x107

7.2 Identification of cracks using neural networks

In the present investigation two different cases are examined. The failures (cracks) appear
on the surface of the wind turbine blade.
Case 1:
For the first numerical experiment, the control points (points of measurement) on the blade
are selected on the central axis of the surface as shown in Figure 12. More specifically, 44
control points are employed for the analysis. A static analysis is performed on the wind
turbine in order to obtain the training data for the neural network which is trained using
the back-propagation method. A total amount of 40 cracks are used for the training process.
Namely, the displacements for each crack are measured at these points in order to train the
neural network for the detection of cracks. The same points of measurement are also used
for the testing process. The results of the analysis are displayed below.

Figure 12: Positions of measurements (control points)

The results from the neural network are presented in Figure 13. With green circles are de-
noted the real position of the cracks, while with blue crosses are presented the predictions
of the neural network. From these results, it is clear that the trained network can predict
the positions of the recurring cracks very effectively.
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Figure 13: The results from training by the neural network

In Figure 14 one can see the correlation of inputs and outputs for both the model and the
neural network prediction, as well as the error of the created system through the deviation
of the diagonal line, which represents the error-free cases. Every point corresponds to a
different damage example used for training or representation of the neural network model.

Figure 14: Correlation of inputs and outputs for both the model and the neural network
prediction
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A simulation with the use of 10 unknown cracks is performed. The results are shown in
Figure 15. Again, with green circles are denoted the real position of the cracks, while with
blue crosses are presented the predictions of the neural network.

Figure 15: The results for the first case

In Figure 16 one can see the correlation of inputs and outputs for both the model and the
neural network prediction, for case 1. From the results it is clear that the fitting is not
sufficient.

Figure 16: Correlation of inputs and outputs for both the model and the neural network
prediction for case 1
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Case 2:
For the second case, a set of 105 control points is selected, covering not only the central
axis of the surface as in case 1, but the whole surface of the wind turbine blade, as seen
in Figure 17. The same analysis is performed in order to obtain the training data for the
neural network. A total amount of 40 cracks are used for the training process. Namely,
the displacements for each crack are measured at these points in order to train the neural
network for the detection of cracks. The same points of measurement are also used for the
testing process. The results of the analysis are displayed below.

Figure 17: Positions of measurements (control points)

The results from the neural network are presented in Figure 18. Again, with green circles
are given the real position of the cracks, while the blue crosses denote the predictions of the
artificial neural network. It is seen that the trained network can predict even more efficiently
the positions of the recurring cracks.

Figure 18: The results for the first case
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In Figure 19 can see the correlation of inputs and outputs for both the model and the neural
network prediction, as well as the error of the created system through the deviation of the
diagonal line, which represents the error-free cases. Every point corresponds to a different
damage example used for training or representation of the neural network model.

Figure 19: Correlation of inputs and outputs for both the model and the neural network
prediction

The same 10 cracks are used for the analysis and the results are shown in Figure 20. The
results here indicate that the training of the network in this second case is more successful.

Figure 20: The results for the second case
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Finally, in Figure 21 the correlation of inputs and outputs for both the model and the
neural network prediction, for case 2 is depicted. One can observe that the neural network
achieves better fitting in this case.

Figure 21: Correlation of inputs and outputs for both the model and the neural network
prediction for case 2

8 Conclusion

In the present investigation two different cases were examined. The difference lies on the
number and the position of the control points. From the results, one can conclude that a
suitably trained neural network can predict effectively the positions of the recurring cracks,
however only when the control points are evenly distributed along the surface of the wind
turbine blade (case 2). It is also worth noting that only static loadings, and a relatively
small amount of measurements were considered. A next step on the present investigation
can be the optimization of the neural network characteristics, as well as the consideration
of multiple loading which will be applied across every dimension. Moreover, an extension of
this work to dynamic loadings with more measurements and the use of modal analysis tools
can be also performed.
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