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IV 

Preface 
 

The purpose of this thesis is the development of a methodology and the 

corresponding software for the construction of 2D unstructured grids for CFD 

(Computational Fluid Dynamics) analyses. The geometry to be examined and the 

boundaries of the domain are imported in 2D coordinates (x, y) form, through a 

“.txt” file, or from an “obj” file in parametric form, which is the only input given by 

the user. The direction of the nodes must follow counter clockwise sense for 

external boundary nodes and clockwise sense for internal boundaries. Specifically, 

the software developed enables the creation of purely triangular grids for the 

simulation of inviscid flows, as well as hybrid unstructured grids, consisting of 

triangular and quadrilateral elements, in order to accurately solve the boundary 

layer that develops in the area near the solid walls of the computational domain 

when simulating viscous flows. For the construction of the triangular grid, the 

known “Delaundo” software, developed by J.D. Muller is used, while for the 

construction of the viscous layers around the solid walls, an algebraic methodology 

is used that has been developed in the context of this thesis. Finally, a specially 

designed algorithm has also been implemented to suitably combine the triangular 

and quadrilateral sections into a single grid. All data is stored in properly designed 

structures. The software has been implemented entirely in C++ programming 

language, and is also enriched with a flexible graphical interface (GUI), for easy user 

interaction, created with the Qt 5 graphics platform, as well as with a viewer for 

visualizing computational grids, based on OpenGL. At present, the software provides 

the ability to create hybrid grids for both simple and more complex computational 

domains, as presented in the validation chapter. The algebraic mesh algorithm that 

has been created, follows a logical series of steps-calculations. 
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Chapter 1: Basic Concepts 
 

In modern practice, in the study of mechanical components and not only, problems 

of fluid mechanics often appear, required to be solved. Studying and solving those 

using analytical methods is not a simple procedure, as the differential equations 

governing such problems are non-linear with high complexity. As experiments 

proved to be particularly time-consuming and in most cases of high cost, the 

development of a new branch of fluids engineering was required: Computational 

Fluid Dynamics (CFD). CFD examines methods of developing and solving discrete 

models for the partial differential equations (PDEs) that govern fluid mechanics 

problems, adopting methods from computational physics and numerical analysis. 

The equations describing the inviscid flow are the Euler equations, while the viscus 

flow of Newtonian fluids are the Navier-Stokes equations [1]. Those equations 

cannot be solved analytically, except for a few special cases, so it becomes necessary 

the use of numerical approximations. 

With CFD a numerical approximation for the problem at hand is calculated. In 

order to receive the solution, it is necessary to use a discretization method, which 

essentially approximates the system of partial differential equations with one 

system of linear algebraic equations, which eventually can be solved using a 

computer. Approximations are applied to small space sectors, (and short time steps 

for transient problems), thus the solution is ultimately attributed to distinct points 

of space (and time).  

One of the crucial factors for a numerical solution is the discretization of space in 

small sectors. These small (non-overlapping) sectors are called “cells” and all the 

cells of the divided domain consist the computational grid, while the production of 

such a grid is called “mesh generation”. Consequently, the way the grid is 

constructed is particularly important to effectively solve a problem. A variety of 

grids can be used in natural problems, such as “structured” or “unstructured” grids, 

while there is no limitation on the number of cells. Two-dimensional grids usually 

contain triangular (unstructured grids) or/and quadrilateral (structured or 

unstructured grids) shaped cells. Furthermore, the combination of triangular and 

quadrilateral cells (in 2D domains) produces the unstructured hybrid. Accordingly, 

based on the needs of the flow simulation problem, different mesh generation 

methods can be applied. 

This diploma thesis aims in the development of a mesh generation software that 

will discretize 2D flow domains with hybrid unstructured grids. Industry’s standard 

programming language for such software is C++. C++ is deployed for tasks that 

demand high performance, such as video editing and transcoding, high-end 

computer-aided design or engineering (CAD, CAE), image processing, games, 
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telecommunications, and business. For the graphical user interface (GUI) QT 5 and 

OpenGL tools have been used, as they have been implemented in world-leading 

commercial software, demonstrating the high performance of this combination. 

1.1 2D Unstructured Triangular Grids 

2-dimensional (2D) unstructured grids have clear advantages over structured ones. 

In particular, unstructured grids can discretize any domain with triangular elements 

(Fig. 1) without any problem; on the contrary it is very difficult and time-consuming 

to build structured grids around complex geometries [1].  

 
Figure 1: 2D unstructured grid around an axisymmetric diffuser. 

Another important advantage of the unstructured grid is the ability of local 

refinement, in areas where heavily changing phenomena (such as boundary layers 

or shock waves) appear. The aforementioned local adaptation of the unstructured 

grid can be implemented during the solution of a problem, if transient phenomena 

appear, greatly increasing the accuracy of the simulation results. In contrast, in the 

case of structured grids the refinement should be performed across the grid so it can 

maintain the character of the structured grid [2]. The most important disadvantage 

of unstructured grids is the difficulty in handling them. Since there is no sense of 

direction against the length of the grid lines, it results an irregular connection of the 

cells. Consequently, lack of structure requires the creation of appropriate data 

structures, where the topological information of the elements will be stored. 
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Creation of such structures but also their handling is quite time consuming, while at 

the same time it has high memory requirements, especially for 3D cases. 

1.2 2D Structured Quadrilateral Grids 

The application of a structured grid in any aspect of grid generation has certain 

advantages and disadvantages. The advantage of such a grid is that the points of an 

elemental cell can be easily addressed by a double of indices (i,  j) in 2D. The 

connectivity is straightforward, because cells adjacent to a given elemental face are 

identified by the indices and the cell edges form continuous mesh lines that begin 

and end on opposite elemental faces, as illustrated in Fig. 2.  

 
Figure 2: Structured quadrilateral grid cells numbering [3]. 

In two dimensions, the central cell is connected by four neighboring cells. It also 

allows easy data management, and connectivity occurs in a regular fashion, which 

makes programming and data handling fast and easy [3]. Furthermore, structured 

grids provide high degree of quality and control. This is arguably an area where 

structured grids will always be supreme. Unstructured algorithms are highly 

automated, and as a result, engineers have to sacrifice control. With structured 

grids, a higher degree of control means almost the perfect match with the necessary 

grid. Structured meshing typically allows the user to have a better control of interior 

node locations and cell sizes.  

Structured grids are usually aligned in the flow direction, producing more 

accurate results and a better convergence in CFD solvers. This alignment in a 

structured grid is achieved almost implicitly, because grid lines and flow follow the 

contours of the boundaries; such an alignment is impossible for an unstructured 

grid. Application of boundary conditions and turbulence models work better, when 

there is a well-defined direction normal to a wall boundary, or a jet [4].  
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The disadvantage of adopting such a grid, particularly for more complex 

geometries, is the time consumption and the increase of grid nonorthogonality or 

skewness that can cause unphysical solutions, due to the transformation of the 

governing equations [3].  

 
Figure 3: 2D structured grid close to the solid boundary of an axisymmetric diffuser. 

1.3 Hybrid Mesh Generation 

For successful flow simulation, grid generation and numerical simulation methods 

need to be closely coupled [5]. This diploma thesis focuses on an adaptive algebraic 

method for the construction of hybrid 2D grids, composed of quadrilateral and 

triangular elements. Hybrid grid generation methods have attained a respectable 

status for discretizing arbitrarily complex computational flow domains. The 

quadrilaterals cover the region close to the body surface and triangles discretize the 

remaining domain (Fig. 4).  



On Hybrid Mesh Generation Basic Concepts 

  

5 

 
Figure 4: A 2D hybrid grid around an axisymmetric diffuser. 

Different element types allow the exploitation of the advantages of both 

structured and unstructured grid generation techniques. As described in the 

previous paragraphs, the main advantage of unstructured grids is the high 

automation level of the meshing procedure, and the grid adjustment almost in any 

geometry. On the other hand, the cost of such fast method is the lower quality of the 

numerical simulation, as irregular grid lines lead in a series of inaccurate flow 

results. In contrast structured grids provide higher cells quality and normal grid 

lines on the viscous boundaries, leading to simulation results of higher quality and 

accuracy. However, high quality leads on a time consuming meshing procedure and 

(usually) impossible mesh adaptation in complex geometries. Thus, the engineers 

through the use of hybrid grids adopted a golden ratio in between mesh quality and 

time consuming mesh generation. 

1.4 Data Structures and C++ 

The use of dynamic data structures cannot be avoided, as the grid information as 

well as information about the proper operation of the graphical environment is 

constantly changing. Thus, the first step for the development of a functional meshing 

software is the organization of the required data structures, to ensure adequate and 

quick information exchange during the mesh generation procedure. At the same 

time, the graphical environment should be adjusted accordingly to the user's 
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selections, as different functions can be activated throughout the mesh generation 

procedure. Thanks to those data structures, all desired software functions are 

achieved. C++ programming language is the industry standard language for decent 

graphical environments and high speed data processing. In addition, its flexibility as 

well as its widespread use of various tools (such as OpenGL and Qt) renders it ideal 

for creating such software, where the speed and high-quality graphics are 

indispensable.  

1.5 About OpenGL 

OpenGL is the leading environment for developing portable, interactive 2D and 3D 

graphics applications. Since its introduction in 1992, OpenGL has become the 

industry's most widely used and supported 2D and 3D graphics application 

programming interface (API), bringing thousands of applications to a wide variety of 

computer platforms [6]. OpenGL promotes innovation and speeds application 

development by incorporating a broad set of rendering, texture mapping, special 

effects, and other powerful visualization functions. OpenGL was used in this work as 

it provides useful functions for creating a graphical environment, as well as rich 

material and information easy to find on the web. It is also effective, as it can handle 

large amounts of data without delay [6]. The developed in this work T2GR 

environment uses 2D graphics. OpenGL was used to visualize boundaries, edges, 

nodes, and the constructed computational grid. 

1.5.1 Cartesian Coordinates (OpenGL) 

One of the hardest problems during the development of the GUI was finding the 

cursor position at cartesian coordinates every time the user clicks on the viewer. 

The coordinates functions of  OpenGL return pixels cordinates. Therefore, a process 

was developed to convert the coordinates from digital to Cartesian. If 𝑥 is in the 

range [𝑎, 𝑏] and it is need to transform to 𝑦 in the range [𝑐, 𝑑], the following linear 

relation gives 

𝑦 = (𝑥 − 𝑎)
(𝑑 − 𝑐)

(𝑏 − 𝑎)
+ 𝑐. 

(1) 

Thus, every time the user clicks on the viewer the digital coordinates are 

converted to Cartesian, using the previous transformation. Ηowever, an 

approximation of the actual position will be calculated, as it is impossible to click 

exactly over a specific node. This is reasonable if we take into acount that an average 

screen holds 1366 x 768 = 1,049,088 pixels resolution. 
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1.5.2 Zoom In – Zoom Out (OpenGL) 

If the mouse pointer moves forward, it is considered as a zoom-in, while if it moves 

backward, it is considered as a zoom-out. Therefore, a variable that holds a zoom 

scale equal to 1 is multiplied by 1.1 during the zoom-out operation, and divided by 

1.1 during the zoom-in. The value 1.1 was selected as the zoom ratio after testing 

several other values. 

𝑠𝑐𝑎𝑙𝑒 =  𝑠𝑐𝑎𝑙𝑒 𝑥 1.1  (𝑧𝑜𝑜𝑚 − 𝑜𝑢𝑡) 
 

(2) 

𝑠𝑐𝑎𝑙𝑒 =  
𝑠𝑐𝑎𝑙𝑒

1.1
  (𝑧𝑜𝑜𝑚 − 𝑖𝑛) 

 

(3) 

As soon as the clipping plane is zoomed-in, the digital coordinates of the viewer 

change. As the pixel that was before in position (500, 200) after 8 scrolls will be at 

position(1072,430). Thus, the Cartesian coordinates that define the initial location 

of the graphics display camera should also be adjusted, through the “glOrtho” 

function. 

1.5.3 About “glOrtho” 

An orthographic projection matrix defines a cube-like frustum box that defines the 

clipping space where each vertex outside this box is clipped. When creating an 

orthographic projection matrix we specify the width, height and length of the visible 

frustum. All the coordinates that end up inside this frustum after transforming them 

to clip space with the orthographic projection matrix won't be clipped. The frustum 

looks a bit like a container (Fig. 5). 

 
Figure 5: The frustum defines the visible objects [6]. 
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The frustum defines the visible coordinates and is specified by a width, a height 

and a near and far plane. Any coordinate in front of the near plane is clipped and the 

same applies to coordinates behind the far plane. The orthographic frustum directly 

maps all coordinates inside the frustum to normalized device coordinates, since the 

𝑤 component of each vector is untouched. If the 𝑤 component is equal to 1.0, 

perspective division doesn't change the coordinates. 

To create an orthographic projection matrix, we make use of function “glOrtho”: 

𝑔𝑙𝑂𝑟𝑡ℎ𝑜( 
𝑋𝑚𝑖𝑛

𝑧𝑜𝑜𝑚 𝑠𝑐𝑎𝑙𝑒
,

𝑋𝑚𝑎𝑥

𝑧𝑜𝑜𝑚 𝑠𝑐𝑎𝑙𝑒
,

𝑌𝑚𝑖𝑛

𝑧𝑜𝑜𝑚 𝑠𝑐𝑎𝑙𝑒
,

𝑌𝑚𝑎𝑥

𝑧𝑜𝑜𝑚 𝑠𝑐𝑎𝑙𝑒
, 𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥) 

 (4) 

The first two parameters specify the left and right coordinates of the frustum and 

the third and fourth parameters specify the bottom and top parts of the frustum. 

With those four points we've defined the size of the near and far planes, while the 

5th and 6th parameters define the distances between the near and far planes. This 

specific projection matrix transforms all coordinates between these 𝑥, 𝑦 and 𝑧 range 

values to normalized device coordinates [6].  

1.5.4 Mouse Move (OpenGL) 

In order to impart the sense of movement in 2D space, the visible components 

defined by “glOrtho” must be renewed. To this end, the following technique applies: 

The difference between the previous position and the new is computed 

𝑑𝑥  =  𝑥 −  (𝑙𝑎𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥). (5) 

Translation into Cartesian coordinates 

𝑑𝑥  =
(𝑥𝑚𝑎𝑥 –  𝑥𝑚𝑖𝑛)

𝑤𝑖𝑑𝑡ℎ
∗ 𝑤𝑖𝑑𝑡ℎ. 

(6) 

Renewing the new position in Cartesian coordinates 

𝑥𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒  =  𝑥𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒  +  𝑑𝑥. (7) 

Re-initialization of function “glOrtho” 

𝑔𝑙𝑂𝑟𝑡ℎ𝑜 ( 
𝑋𝑚𝑖𝑛

𝑧𝑜𝑜𝑚 𝑠𝑐𝑎𝑙𝑒
− 𝑋𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 ,

𝑋𝑚𝑎𝑥

𝑧𝑜𝑜𝑚 𝑠𝑐𝑎𝑙𝑒
− 𝑋𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 ,

𝑌𝑚𝑖𝑛

𝑧𝑜𝑜𝑚 𝑠𝑐𝑎𝑙𝑒

− 𝑦𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 ,
𝑌𝑚𝑎𝑥

𝑧𝑜𝑜𝑚 𝑠𝑐𝑎𝑙𝑒
− 𝑦𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 , 𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥). 

(8) 
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1.6 Qt 5 (GUI) 

Since creating a computational grid is a complicated process, it would be quite 

difficult for the user to interact with the software through the command line. In the 

software developed within this diploma thesis, a graphical environment was 

designed in order to simplify the corresponding procedures. The graphical 

environment should be easy to learn, simple in its structure, provide all necessary 

information and finally lead the user step by step on each process. In fact, the 

graphical environment is the intermediary between the code and the user. The user 

selects the available parameters through the GUI and the code runs on them. For the 

creation of the GUI the Qt 5 classes and functions packet applied. Qt’s single source 

compatibility, its feature richness, its C++ performance, the availability of the source 

code, its documentation and all the classes and functions existence, make it ideal for 

GUI development [7]. 

1.7 The Free-Form Deformation Tool 

The T2GR software incorporates the Free-Form Deformation (FFD) tool. The tool 

works complementarily with the initial mesh. A basic use of this tool is to create 

similar geometries and their grids without inserting a new geometry or re-creating 

the computational grid, but only by deforming the initial ones (geometry and grid). 

Since the user has produced the necessary grid on the initial geometry, through the 

use of the FFD tool the user can deform the current geometry and at the same time 

the current computational grid (Fig. 6). Thus, without changing the boundary 

conditions and the number of nodes in the grid, the user has the ability to rapidly 

produce similar cases and study similar problems (such as in the case of an 

automated design optimization procedure). In the field of computational 

engineering any time-saving procedure could mean dramatic decrease on 

computing or monetary cost [8]. A basic introduction on FFD technique will be 

presented in Chapter 4.  
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Figure 6: A deformed geometry and grid, using FFD. 
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Chapter 2: Quadrilateral Grid Generation 
 

2.1 The Algebraic Method for Quadrilateral Grid Generation 

The method is based on algebra and vector mathematics and does not require the 

solution of differential equations. The primary advantage of the method is that it 

provides explicit control of the physical grid shape and physical grid spacing. 

Additionally, it requires relatively few computations. Consequently, the application 

of interactive computer graphics in conjunction with the algebraic method is 

advocated for rapid generation of grids. The basic structure of the method is 

described below, while particular attention is given to elements quality, grid 

smoothing and nodal vectors inclination. Physical boundary topology requirements 

are also presented. 

2.1.1 Normal Vectors Calculation for Each Edge 

Firstly, the algorithm calculates for each boundary and for each edge of the 

boundary all normal vectors  𝐸𝑖.𝑗(𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖, 𝑒𝑑𝑔𝑒𝑗) . Thus, let 𝑁𝑚(𝑥𝑚 , 𝑦𝑚) and 

𝑁𝑚+1(𝑥𝑚+1, 𝑦𝑚+1) be the set of nodes of the corresponding edge. The vector 𝐸𝑖.𝑗  is 

computed as in (9), while its magnitude is given in (10); 𝐸𝑖.𝑗 vector is then 

normalized and the result is the unit vector in (11). The vectors are normalized as 

for the subsequent calculations there is no need for their magnitude but only for 

their direction. 

𝐸𝑖.𝑗 =  (𝑦𝑚+1 – 𝑦𝑚 , 𝑥𝑚+1 – 𝑥𝑚) (9) 

| Ei,j |  =  √(𝑥𝑚+1 −  𝑥𝑚)2 + (𝑦𝑚+1 − 𝑦𝑚)2   (10) 

�̂�𝑖,𝑗= 
Ei,j

|Ei,j|
 (11) 

2.1.2 Nodal Normal Vectors Calculation 

Each edge of a boundary consists of two nodes, and for each edge a normal vector is 

calculated. Initially, the normal (to the boundary) vector for a boundary node is 

taken equal to that of one of the adjacent edges. In order to achieve uniformity of the 

normal vectors along the corresponding boundary, it is necessary to apply a 

smoothing operator to them. The nodes along a boundary are divided, and half of 

them will be affected from the 1st node of the corresponding boundary and the 

remaining half will be affected from the last node of the corresponding boundary. 

The number of nodes, for which their normal vectors will be smoothed, is selected 

by the user.  



On Hybrid Mesh Generation Quadrilateral Grid Generation 

12 

Let the normal to node 𝑘 − 1 be (𝑥𝑘−1 , 𝑦𝑘−1), and the normal to its adjacent node 

of the boundary be (𝑥𝑘, 𝑦𝑘). Let the pair of the corresponding normal vectors to the 

adjacent to node k edges be (𝑋𝑘−1 , 𝑌𝑘−1), (𝑋𝑘 , 𝑌𝑘). Then, the smoothed normal 

vector (𝑥𝑘,𝑛𝑒𝑤, 𝑦𝑘,𝑛𝑒𝑤) will be calculated as  

𝑥𝑘,𝑛𝑒𝑤 = 𝑆𝐹 ∗ 𝑥𝑘−1  +  (1 − 𝑆𝐹) ∗ (𝑋𝑘−1  + 𝑋𝑘 ) + 𝑥𝑘  (12) 

𝑦𝑘,𝑛𝑒𝑤  =  𝑆𝐹 ∗ 𝑦𝑘−1 +  (1 − 𝑆𝐹) ∗ (𝑌𝑘−1  +  𝑌𝑘)  +  𝑦𝑘  (13) 

𝑘 =  1, 2 . . . , 𝑛 − 1 

𝑆𝐹 ∈ [0 , 1] 

 

Concerning the first and last nodes of each boundary, let the normal vector to the 

previous boundary last edge be (𝑋𝑙𝑎𝑠𝑡(𝑝𝑟𝑒), 𝑌𝑙𝑎𝑠𝑡(𝑝𝑟𝑒)) and for the next boundary 

first edge be (𝑋0(𝑛𝑒𝑥𝑡), 𝑌0(𝑛𝑒𝑥𝑡)). Then, the smoothed normal vectors at the first 

(0) and last (𝑁) node of the boundary result as: 

𝑥0,𝑛𝑒𝑤 =  [𝑋0  +  𝑋1  +  𝑋𝑙𝑎𝑠𝑡(𝑝𝑟𝑒)  +  𝑋𝑙𝑎𝑠𝑡−1(𝑝𝑟𝑒) ] +  𝑥0 (14) 

𝑦0,𝑛𝑒𝑤  =  [𝑌0  +  𝑌1  +  𝑌𝑙𝑎𝑠𝑡(𝑝𝑟𝑒)  +  𝑌(𝑝𝑟𝑒)]  +  𝑦0 (15) 

𝑥𝑁,𝑛𝑒𝑤  =  [𝑋𝑙𝑎𝑠𝑡  +  𝑋𝑙𝑎𝑠𝑡−1 +  𝑋0(𝑛𝑒𝑥𝑡)  +  𝑋1(𝑛𝑒𝑥𝑡) ] +  𝑥𝑁  (16) 

𝑦𝑁,𝑛𝑒𝑤  =  [𝑌𝑙𝑎𝑠𝑡  +  𝑌𝑙𝑎𝑠𝑡−1  +  𝑌0(𝑛𝑒𝑥𝑡)  +  𝑌1(𝑛𝑒𝑥𝑡) ] +  𝑦𝑁  (17) 

As before, every node vector is then normalized to become unitary.  

In Figure 7 the smoothing was applied only to the 2 last nodes of the upper 

boundary. In Figure 8 smoothing was applied to all nodes of both boundaries, and 

the result is obviously better. 
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Figure 7: Smoothed (nodal) normal vectors, only for the last 2 nodes for the upper 

boundary. 

 
Figure 8: Smoothed (nodal) normal vectors. 

2.2 Inflation Set-Up 

In order to initiate the inflation (of the quadrilateral mesh) in the selected 

boundaries, it is first necessary to check which of the corresponding (inflated) 

boundaries are connected to each other. Looking at the first and last node of the 

corresponding boundary and the first and last node of the other inflated boundaries 

the software recognizes if there is a connection between them. In the case of a 

connection, all of the linked inflated boundaries are appended into a common list 

and the double nodes are removed. Thus, when this procedure ends, information 

about on which boundaries the inflation will be applied, which of these boundaries 

are connected and finally which are the inflation nodes, is available. Combined with 

the information of the growth rate, initial step, and number of steps, which is 
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provided by the user through the GUI, the loop for the creation of the quadrilateral 

grid can be initialized. 

2.2.1 Quadrilateral Grid Generation 

For the first inflation layer, the normal direction of the nodes has been already 

computed. All normal vectors are transformed to unitary ones, and then the high of 

the first layer is applied, in order to compute the corresponding nodes of the first 

inflation layer. After the construction of the first inflation layer, all subsequent 

layers can be created in the same way. In order to extend the (inflated) nodes to the 

desired direction, it is necessary to re-calculate the vertical vectors on each edge, for 

every new layer (so as to retain a smoothed inflation). As before, the direction of the 

normal vectors attributed to each node of the layer are computed and then a 

smoothing is applied. The height ℎ𝑘  of each layer 𝑘 is computed using a geometric 

progression: 

ℎ𝑘 = ℎ1 ∗ (𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒)𝑘 (18) 

𝑘 =  1, 2 … , 𝐾  

2.3 Quadrilateral Grid Conforming to Adjacent Boundary 

If the inflated grid has to conform to the geometry of an adjacent boundary (Fig. 9), 

then the previous methodology has to be modified. 

 
Figure 9: Non-conforming inflated grid. 

The method that provides the grid with the correct inflating direction, to conform 

to the adjacent boundary, is based on B-Spline interpolation. The method of B-Spline 

interpolation will be described in a following chapter. However, in this section some 

elements of this method will be presented. Having the original nodes of the adjacent 
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boundary, a new node distribution is created along the corresponding boundary in 

order to obey to the inflation rate of the inflated boundary (Fig. 10). Firstly, using 

the existing nodes of the adjacent boundary, a B-Spline curve is computed to 

interpolate those nodes. Then, the geometric progression, used for the inflation, is 

used to compute new nodes along the B-Spline curve, which will serve as nodes of 

the produced quadrilaterals. The corresponding vectors along the B-Spline, will be 

also used at next for the smoothing operation of the normal vectors in the inflation 

procedure. The final result is demonstrated in Figure 10.   

 
Figure 10: Conforming grid inflation. 

2.4 Triangular Mesh Generation 

In the next step of the algorithm and once the quadrilateral grid has been created, 

the boundaries on which the triangular grid will be created should be initialized. 

Thereafter, on the inflated boundaries, the triangular grid should be created, using 

as a starting boundary by the corresponding nodes of the quadrilateral grid. This 

procedure is quite simple; the software has to examine whether the first node or the 

last node of the last inflated layer is on an adjacent boundary (Fig. 10). If that is the 

case the double node of the adjacent boundary is removed from the boundary and 

this boundary takes as first node the corresponding node of the quadrilateral 

(inflated) grid. Triangular grid boundary conditions are then initialized. 
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Chapter 3: Delaunay Triangulation 
 

3.1 The Delaunay Triangulation 

The principle of the Delaunay Triangulation (DT) [9-11] is simple and powerful at 

the same time. Given a set of vertices, the convex hull around the vertices in the 

domain is tessellated such that each vertex is assigned the area that is closer to the 

vertex than to any other vertex. This tessellation is called the Dirichlet tessellation 

and the set of straight edges that define the borders between the different tiles is the 

Voronoi diagram. The rule of connection is to connect those vertices whose regions 

in the Dirichlet tessellation are adjacent or in other terms who share an edge of the 

Voronoi diagram. These edges are part of the median of the edges in the Delaunay 

triangulation and thus for each triangle there exists a point where the three edges of 

the Voronoi diagram intersect the Voronoi vertex. This point is by construction the 

center of the circle that goes through the three forming vertices of the triangle (Fig. 

11). 

 
Figure 11: Voronoi diagram, Dirichlet tessellation [12]. 

In Figure 11 the Voronoi diagram is visualized with black thick lines, the 

circumcircle of a triangle with green line, and Delaunay triangulation with grey lines 

[12].
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3.1.1 Quality of the Delaunay Triangulation 

A few geometric properties of the Delaunay triangulation [13] are the following: 

 The DT is unique, except for degenerate cases of more than three vertices 
that are co-circular. 

 The circumcircle around a triangle does not contain any other vertex. 
 The DT is a Max-Min triangulation: it maximizes the minimum angles in the 

grid. 

There are many ways to generate Delaunay triangulation efficiently with high 

element quality. In this diploma thesis the methodology used was developed by 

Jens-Dominik Müller [12]. An extremely important feature of this methodology 

developed by Müller is that it was designed for the use of computational fluid 

dynamics (CFD) solvers. This has the effect of allowing the user to interfere with 

various parameters to affect the quality of the grid being created. Also, the grid is 

created with respect to constraints, such as maximum angle (one of the most 

classical conditions for mesh creation), regularity, size variation and the Laplacian 

normalization, an operator that when imposed on the grid, greatly improves its 

quality by smoothing it [12].  

3.1.2 Generating the Delaunay Triangulation 

Delaunay refinement methods insert new vertices recursively into a valid Delaunay 

triangulation. Thus any method that generates the Delaunay triangulation 

incrementally is suitable. Watson's algorithm [14] is more practical. It exploits the 

circumcircle criterion directly, by finding the region that is covered by all the 

triangles that contain in their circumcircles the new site that is to be inserted. The 

cavity can be found by locating a first cell that contains the new vertex and marching 

from neighbor to neighbor. All cells of the cavity have to share an edge, since the 

cavity is convex due to the circumcircle criterion. This cavity is re-triangulated by 

removing all the triangles covering it and reconnecting the edges of the cavity with 

the new vertex to a new valid DT (Fig. 12). For its simplicity, this is the method that 

was chosen by Müller [12] for Frontal Delaunay Method. 
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(a) (b) (c) 

Figure 12: Vertex insertion with Watson's algorithm [14]. 
Part (a) shows the valid Delaunay triangulation with the new vertex that is contained in 

various circumcircles. The cavity that has to be re-triangulated is shown shaded in (b); (c) 
shows the re-triangulated cavity [12]. 

3.2 Frontal Delaunay Triangulation 

The Frontal Delaunay method (FroD) incorporates ideas from the frontal vertex 

placement strategy of the Advancing Front Method (AFM) [15] to achieve the 

regularity and the smooth size variation desired into the Delaunay Triangulation 

(DT), providing the high quality point cloud with the optimal connectivity [12]. 

In FroD, vertices are generated and inserted in sets of one row at a time. This 

special treatment of each row distinguishes it from the independently developed 

method Rebay [16] that is otherwise very similar. After the insertion of each vertex, 

the DT is reestablished such that there exists a valid DT that covers the entire 

domain at any stage of the algorithm. However, the Delaunay criterion will not 

necessarily add the triangles between the new vertex and the frontal edge that they 

are projected from, as proposed by the insertion strategy, if a triangle is not part of 

the DT, it will not be formed. Other triangles are formed that close the DT around 

the newly inserted vertex [12]. 

In order to make these implicit triangles well-behaved, a minimum distance 

between vertices has to be imposed, say a certain fraction of the local mesh spacing. 

This prevents short edges leading to acute triangles. The required distance is taken 

from a background grid in this non-Euclidean space. The mesh-spacing has to be 

interpolated at the midpoint between the two points in question. In the case that 

tow vertices of the same row are too close, they are merged [12]. 
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Chapter 4: Free – Form Deformation (FFD) 
 

4.1 Introduction to FFD Technique 

Free-form Deformation is considered as one of the most powerful, versatile and 

applicable parameterization and deformation techniques of two- as well as three-

dimensional shapes, with major applications in a wide range of scientific and 

technological fields, such as engineering design optimization and computer 

graphics. 

The fundamental idea of FFD is the indirect handling of the object by enclosing it 

into a parametric space (2D or 3D). Then, by deforming a parametric lattice 

(defining the parametric space), a deformation of the embedded object is achieved. 

Based on this idea, a large number of different FFD versions have been developed 

during the last years. 

4.1.1 FFD Methodology Steps 

Despite the numerous different FFD versions, either for 2D or 3D geometric models, 

according to Lamousin and Waggenspack [17] there are four main steps to 

implement any FFD technique. 

Step 1: Construction of the Parametric Lattice. 

The shape of interest, is embedded into a two- or three- dimensional parametric 

space (lattice), consisted by an ordered or arbitrary mesh of control points, 

depending on the particular FFD version and application. The topology of the 

parametric lattice should be such that it wraps the embedded shape under study, 

while the nature of the basis functions that form the FFD lattice has a significant 

impact on the handing of the embedded model. 

Step 2: Embedding the Object within the Lattice. 

This stage consist of the assignment of a unique set of parametric coordinates 

(𝑢, 𝑣, 𝑤) to each point (𝑥, 𝑦, 𝑧) of the enclosed shape, where 𝑢, 𝑣, 𝑤  are the 

parametric variables that define the parametric coordinates system. Herein, it is 

useful to note that the parametric coordinates of each point of the model do not 

change during the deformation stage, with respect to the specific parametric 

coordinates system. Due to a lack of analytical methodologies for the 

aforementioned assignment problem, approximate methodologies have been 

developed to compute the parametric coordinates, such as Quadtree and Octree 

subdivision, for 2D and 3D problems respectively. 

Step 3: Deforming the Parametric Space. 
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The deformation of the parametric space is implemented by the movement of the 

nodes of the control lattice. Especially, as long as the weighted FFD versions are 

concerned, a deformation could be also achieved only by the modification of the 

weights of the control points. 

Step 4: Evaluating the Effects of the Deformation. 

The parametric coordinates of the points (Step 2) are used with the deformed 

control lattice (Step 3) to evaluate the new locations of the embedded point set. The 

topology of the original model is then used to reconstruct the deformed object. 

4.2 Two-Dimensional B-Spline FFD 

In this work, a 2D B-Spline-based FFD version is utilized, which is defined as a 

mapping from a subspace V ⊂R2 → �̅�⊂ R2. The main idea behind FFD is not to 

directly deform the shape of interest, but to achieve an indirect manipulation by 

embedding the object into a parametric control lattice; then by transforming the 

geometry of the particular lattice, every object enclosed to it undergoes the same 

deformation. 

4.2.1 The Implementation Procedure 

Step 1: Construction of the Parametric Lattice. 

In this application of FFD, a 2D lattice, formed by a two-variate B-Spline surface, is 

chosen to take advantage of the benefits B-Splines offer, such as partition of unity, 

flexibility and convenient geometrical deformation via control points. Additionally, 

by using a B-Spline lattice, the alteration of a control point does not modulate the 

entire geometry of the enclosed object, so a focused deformation can be achieved. A 

planar B-Spline surface is obtained by taking a bidirectional net of control points, 

two knot vectors, and the products of the univariate B-Spline functions [18] 

𝑆(𝑢, 𝑣) =  ∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑃𝑖,𝑗   ,

𝑚

𝑗=0

𝑛

𝑖=0

   𝑃𝑖,𝑗 = (𝑥𝑖,𝑗 , 𝑦𝑖,𝑗) 
(19) 

where 𝑃𝑖,𝑗  are the control points of the FFD lattice, 𝑛 +  1, 𝑚 +  1 are the numbers 

of control points on each parametric direction and 𝑢, 𝑣 are the parametric variables 

that define the parametric coordinates system. Let 𝑁𝑖,𝑝(𝑢) be a B-Spline Basis 

function of 𝑝 degree in 𝑢 parametric direction and 𝑁𝑗,𝑞(𝑣) be a B-Spline Basis 

function of 𝑞 degree in 𝑣 parametric direction, defined over the open and uniform 

knot vectors 𝑈, 𝑉 respectively 

𝑈 =  {𝑢0, 𝑢1, … , 𝑢𝑛+𝑝+1} 
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𝑉 =  {𝑣0,  𝑣1, … , 𝑣𝑚+𝑞+1} 

Concerning the degrees 𝑝, 𝑞 of the Basic functions, they must satisfy the following 

inequalities 

1 ≤  𝑝 ≤  𝑛 , 1 ≤  𝑞 ≤  𝑚 

The value of each knot of the 𝑈 knot vector is calculated by the following formula: 

𝑢𝑖 =  {

               0,        0 ≤ 𝑖 ≤ 𝑝 + 1
         𝑖 − 𝑝, 𝑝 + 1 ≤ 𝑖 ≤ 𝑛 + 1
𝑛 − 𝑝 + 1,         𝑛 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑝 + 1

 

while the calculation of the values of the 𝑉 knot vector is implemented respectively. 

The i-th B-spline basis function of degree 𝑝, written as 𝑁𝑖,𝑝(𝑢), is defined by the 

utilization of the Cox-de Boor recursion formula, as follows: 

𝑁𝑖,𝑝(𝑢) =  
𝑢 − 𝑢𝑖

𝑢𝑖+𝑝 − 𝑢𝑖
 𝑁𝑖,𝑝−1(𝑢) +  

𝑢𝑖+𝑝+1 − 𝑢

𝑢𝑖+𝑝+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢) 

 

(20) 

𝑁𝑖,0 =  {
1  𝑖𝑓 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1

 0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
 (21) 

Given that the parametric coordinates (𝑢𝑡 , 𝑣𝑡) of a point inside the parametric 

space are known, then the vector of the respective Cartesian coordinates (𝑥𝑡, 𝑥𝑡) is 

calculated by the following equation:  

𝑅(𝑢, 𝑣) =  
∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑃𝑖,𝑗  𝑚

𝑗=0
𝑛
𝑖=0

∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑚
𝑗=0

𝑛
𝑖=0

 (22) 

Step 2: Embedding the Object within the Lattice. 

After the construction of the FFD lattice, a quadtree algorithm has to be 

implemented, so a unique parametric pair of coordinates (𝑢𝑡 , 𝑣𝑡) to be assigned in 

every single point (𝑥𝑡, 𝑥𝑡) of the shape to be deformed. For each point of the object, 

the following algorithm is repeatedly applied [19]: 

a. The parametric area is divided into four equal subareas. 

b. The Cartesian coordinates of each subarea vertex are calculated. 

c. These coordinates are compared to the Cartesian coordinates of the object’s 

point under consideration, in order to identify the subarea in which the 

corresponding point lies. 

d. The latter subarea is divided into four new equal subareas and steps b-d are 
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repeated for a prescribed number of subdivisions, or until a desirable 

accuracy is achieved. The desired parametric coordinates of the searched 

point are defined as the parametric coordinates of the center of the subarea, 

in which the point resides, resulting from the last subdivision [20]. 

In Fig. 13, a reference airfoil (DU-06-W-200) is embedded into an initial 2D FFD 

lattice formed by a two-variate B-Spline function. The parametric space is defined 

by the parametric coordinates (𝑢 , 𝑣) while a unique pair of parametric coordinates 

(𝑢𝑡 , 𝑣𝑡) has been assigned to each one of the 𝑘 boundary points of the airfoil. 

 
Initial Airfoil.              Initial FFD Lattice. 

Figure 13: DU-06-W-200 airfoil in a 2D FFD lattice. 

Step 3: Deforming the Parametric Space. 

In Fig. 14 the deformation of the initial FFD lattice, caused by the movement of the 

B-Spline control points, is presented. 
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Deformed FFD Lattice. 

Figure 14: The movement of the control points causes the deformation of the lattice 
and the deformation of the corresponding space. 

Step 4: Evaluating the Effects of the Deformation. 

The recovery of the deformed shape, i.e. the calculation of the Cartesian coordinates 

of the deformed object, is achieved by importing the new Cartesian coordinates of 

the control points from Step 3 into Eq. (31) and implementing Eq. (31) for each one 

of the object’s boundary points (and grid points), whose parametric coordinates are 

known from Step 2. 
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Chapter 5: T2GR Import & Export file formats 

5.1 Exported Mesh “dpl” File Format 

In this chapter the input and output file formats, which have been developed for the 

T2GR mesh generation software, will be described. The “.dpl” file format is one of 

the grid output formats of T2GR. The in-house RANS (Reynolds-Averaged Navier-

Stokes) solver uses this format type for its input files. A “.dpl” file is a file format 

produced by the Delaundo software [12], but slightly adjusted for hybrid grids. An 

example is given below that demonstrates the structure of the “.dpl” file format. 

 

22645   37413   3588 [the number of nodes: 22645, the number of triangular 

elements: 37413, the number of quadrilateral elements: 3588]. 

 

1   1258   1069   220   752   2246   2926 

2   1092   785   116   1503   312   1593 

3   2287   1386   2111   3925   5328   3829 … 

[for each triangular element a running counter is used (1, 2, 3…),  the nodes index at 

each corner in counterclockwise sense (1258, 1069, 220), and the neighboring 

elements index (752, 2246, 2926)]. 

… 

37414   19046   19047   1   675   2478   37415   37713   0 

37415   19047   19048   2   1   2477   37416   37714   37414 

37416   19048   19049   3   2   2063   37417   37715   37415 … 

[After all triangular elements, the quadrilateral element are listed. For each 

quadrilateral element a running counter is used (37414,…), the nodes index at each 

corner in counterclockwise sense (19046, 19047, 1, 675), and the neighboring  

elements index (2478, 37415, 37713, 0)]. 

 

-11.95076   0.3207567 

-11.90385   0.3207575 

-11.85718   0.3207597 

-11.8106   0.3207618 … 

[After all elements, all the nodes (𝑥, 𝑦) coordinates are listed].

 

6 [: the number of boundaries – then all the boundaries are defined]. 
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299   1 [the number of edges in the first boundary: 299, the number of boundary 

index: 1]. 

22346   22347   40703 

22347   22348   40704 

22348   22349   40705 

22349   22350   40706 … [the index of each one of the two nodes of the 

corresponding edge: (22346, 22347), the index of the element adjacent to that edge: 

40703]. 

 

150   2 

22345   22645   41001 

22045   22345   40702 

21745   22045   40403 

21445   21745   40104 … 

 

50   3 

437   438   1008 

438   439   2098 

439   440   2101 

440   441   2102 … 

 

50   4 

487   488   2309 

488   489   749 

489   490   2312 

490   491   2314 

491   492   2316 … 

 

50   5 

537   538   1072 

538   539   1066 

539   540   2359 

540   541   384 

541   542   2371 … 

 

100   6 

587   588   1174 

588   589   2210 

589   590   2496 



On Hybrid Mesh Generation T2GR Import & Export file formats 

  

 

26 

590   591   1172 

591   592   74 … 

5.2 Exported Mesh Case File Formats 

The “.cas” file format is the second output format, included in T2GR software. Grid 

sections attributed with boundary conditions are stored in the “.cas” file, while an 

“.msh” file is a subset of the “.cas” file, containing only those sections relating to the 

computational mesh (no boundary conditions included). The currently defined grid 

sections are explained in the following sections: 

Comment ID: 0 

Header ID: 1 

Dimensions ID: 2 

Nodes ID: 10 

Cells ID: 12 

Faces ID: 13 

Other (Non-Grid) Case Sections ID: 45 

Each section is attributed with an ID, in order to initialize it and distinguish it [21]. 

5.2.1 Comment Sections 

Comment sections can appear anywhere in the file (except within other sections), 

as: 

 

(0 “comment text”) 

 

The purpose of comment sections is to precede each long sections or group of 

related sections by a comment section, explaining what is to follow. The comment 

sections make the content of the file readable and straightforward [21]. 

5.2.2 Header 

Header sections can appear anywhere in the file (except within other sections), as: 

 

(1 “exported from myMesher V1.03”)  

 

The purpose of this section is to identify the software that generated the file. 

Although this section can appear anywhere, it is typically one of the first sections in 

the file. Additional header sections indicate other software that may have been used 

in generating the file. This provides a history mechanism, showing where the file 

came from and how it was processed [21]. 
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5.2.3 Dimensions 

The dimensions of the grid appear as: 

(2 ND) 

where ND is equal to 2 or 3. This section is supported as a check that the grid has the 

appropriate dimensions, however this section is optional and its existence will not 

affect the case file construction [21]. 

5.2.4 Nodes 

The nodes section appears as: 

 

(10 (zone-ID first-index last-index type ND)) 

 

If zone-ID is zero, this provides the total number of nodes in the mesh. In this 

case, the “first-index” will be equal to 1, the “last-index” will be the total number of 

nodes, the “type” is equal to 0, “ND” is omitted, and there are no coordinates 

following (the parentheses for the coordinates are omitted as well), for example: 10 

(0 1 2d5 0).  

If zone-ID is greater than zero, it indicates the zone to which the nodes belong. In 

this case, “first-index” and “last-index” are the indices of the nodes in the zone. The 

values of “last-index” in each zone must be less than, or equal to, the value in the 

declaration section; “type” indicates the type of nodes in the zone. The following 

values are used to indicate the node type: 

 0 for “virtual” nodes. 

 1 for no (any) type. 

 2 for boundary nodes. 

Nodes of type 0 are ignored but types 1 and 2 are read and written. “ND” is an 
optional argument that indicates the dimensionality of the node data, where ND =2 
or =3. If the number of dimensions in the grid is 2, as specified in the Dimensions or 
in the node header, then only 𝑥 and 𝑦 coordinates are present in each line. The 
following is an example of a 2-dimensional grid: 

 
(10 (1 1 2d5 1 2)( 

  1.500000e-01 2.500000e-02 

  1.625000e-01 1.250000e-02 

   . 

   . 

   . 

https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/tgd_usr/tgd_user_format_dimensions.html


On Hybrid Mesh Generation T2GR Import & Export file formats 

  

 

28 

  1.750000e-01 0.000000e+00 

  2.000000e-01 2.500000e-02 

  1.875000e-01 1.250000e-02 

  )) 

 

As the grid connectivity is composed of integers representing pointers, using 
hexadecimal format conserves space in the file and provides for faster file input and 
output. The header indices are also in hexadecimal format, so that they match the 
indices in the bodies of the grid connectivity sections. The “zone-ID” and “type” are 
also in hexadecimal format for consistency [21]. 

5.2.5 Cells 

The declaration section for cells is similar to that for nodes: 

(12 (zone-ID first-index last-index type element-type)) 

When “zone-ID” = 0, it indicates that it is a declaration of the total number of cells. 

If “last-index” = 0, then there are no cells in the grid. This is useful when the file 

contains only a surface mesh, as it serves to alert the solver (Fluent for example) 

that it cannot be used in the solver. In a declaration section, the “type” has a value of 

0, while the “element-type” is not present, for example (12 (0 1 3e3 0)) states that 

there are 3e3 (hexadecimal) = 995 cells in the grid. This declaration section is 

required and must precede the regular cell sections. The “element-type” in a regular 

cell section header indicates the type of cells in the section, as shown in the 

following table: 

element-type Description Nodes/Cell Faces/cell 
0 Mixed   
1 Triangular 3 3 
2 Tetrahedral 4 4 
3 Quadrilateral 5 4 
4 Hexahedral 8 6 
5 Pyramid 5 5 
6 Wedge 6 5 
7 Polyhedral NN NF 

*where NN and NF will vary, depending on the specific polyhedral cell. 

Regular cell sections have no body, but they have a header of the same format, 

where “first-index” and “last-index” indicate the range for the particular 

zone, “type” indicates whether the cell zone is fluid (type = 1) or solid (type = 17). 
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A “type” = 0 indicates a dead zone and will be skipped when the file is read in 

solution mode in the solver. If a zone is of mixed type (“element-type” = 0), it will 

have a body that lists the “element-type” of each cell [21]. 

5.2.6 Faces 

The face section has a header with the same format as that for cells, but with a 

section index of 13. The format is: 

 

(12 (zone-ID first-index last-index bc-type face-type))  

 

where [21]: 

 “zone-ID” = zone ID of the face section, 

 “first-index” = index of the first face in the list, 

 “last-index” = index of the last face in the list, 

 “bc-type” = ID of the boundary condition represented by the face section, 

 “face-type” = ID of the type(s) of face(s) in the section. 

A “zone-id” = 0 indicates a declaration section, which provides a count of the total 
number of faces in the grid. Such a section omits the “bc-type” and is not followed by 
a body with further information. 

A non-zero “zone-id” indicates a regular face section and will be followed by a 
body containing information about the grid connectivity. Each line describes one 
face and appears as follows: 

𝑛0 𝑛1 𝑛2 𝑐0 𝑐1 

Where n* are the defining nodes (vertices) of the face, and c* are the adjacent 
cells. All cells, faces, and nodes have positive indices. If a face has a cell only on one 
side, then either 𝑐0 or 𝑐1 is zero. For files containing only a boundary mesh, both 
these values are zero. 

“bc-type” indicates the ID of the boundary condition represented by the face 
section. The current valid boundary condition types are defined in the following 
table: 

“bc-type” Description 

2 Interior 

3 Wall 

4 Pressure-inlet 

5 Pressure-outlet 

7 Symmetry 

8 Periodic-shadow 
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9 Pressure-far-field 

10 Velocity-inlet 

12 Periodic 

14 Fan, porous-jump, radiator 

20 Mass-flow-inlet 

24 Interface 

31 Parent (hanging node) 

36 Outflow 

37 Axis 

“face-type” indicates the type of faces in the zone, as defined in the following table: 

“face-type” Description Nodes/face 

0 Mixed -/- 

2 Linear 2 

3 Triangular 3 

4 Quadrilateral 4 

5 Polygonal NN 

*where NN will vary, depending on the specific polygonal face. 

5.2.7 Other (Non-Grid) Case Sections 

The following sections store boundary conditions, material properties, and solver 

control settings. Grid generators and other preprocessors need only to provide the 

section header and leave the list of conditions empty as: 

 

 (45 (zone-ID zone-type zone-name domain-id) ( )) 

 

The “zone-ID” is in decimal format, this is in contrast to the use of hexadecimal in 

the grid sections. The “zone-type” follows the same table as the “bc-type”. 

ANSYS Fluent allows the wall type to be assigned to face zones both on the inside 

and on the boundaries of the domain. Some zone types are valid only for certain 

types of grid components. For example, cell (element) zones can be assigned only 

one of the following types (fluid, solid). The zone-name is a user-specified label for 
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the zone. It must be a valid Scheme symbol and is written without quotes. The rules 

for a valid zone-name (Scheme symbol) are as follows: 

 The first character must be a lowercase letter or a special-initial. 

 Each subsequent character must be a lowercase letter, a special-initial, a 
digit, or a special-subsequent. 

Some examples of zone sections, produced by grid generators and preprocessors, 

are as follows: 

(45 (1 fluid fuel 1) ( ) ) 
(45 (8 pressure-inlet pressure-inlet-8 2) ( ) ) 
(45 (2 wall wing-skin 3) ( ) ) 
(45 (3 symmetry mid-plane 1) ( ) ) 

The “domain-id” is an integer that appears after the zone name, associating the 

boundary condition with a particular phase or mixture (sometimes referred to as 

phase-domains and mixture-domains) [22]. 

5.3 Obj Geometry Definition 

“obj” is a geometry definition file format first developed by Wavefront Technologies 

for its Advanced Visualizer animation package. The “obj” file format is a simple data 

format that represents 2D & 3D geometries. However, in the current software only 

2D axisymmetric geometries can be used for mesh generation. Each curve included 

in an “obj” file contains the control polygon points, the degree and the knot vector of 

the curve. These parameters define a B-spline curve.  

Since an “obj” file can contain more than one curves, a special class named model 

has been developed. Within this class there are functions of reading and collecting 

data from the “obj” files and for the creation of the corresponding B-spline curves. 

Once the curves have been successfully created, the corresponding Cartesian 

coordinates are stored in appropriate structures to be visualized and made available 

to software tools and functions. 

In summary, the developed software receives a list of parametric curves, then 

stores their data and creates the corresponding B-spline curves, finally refreshes the 

boundary structures by giving them the Cartesian coordinates. The corresponding 

“obj” file processing algorithm was developed entirely within this diploma thesis. 
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Chapter 6: Useful Algorithms 

 

6.1 Distribution of Points using Geometric Progression 

Geometric progression is the sequence in which no term is equal to zero and for two 

consecutive terms of 𝛼𝜈 , 𝛼𝜈+1 holds 

𝛼𝜈+1

𝛼𝜈
  =  𝜆 (23) 

where λ is a non-zero fixed quantity. The quantity λ is called the ratio of geometric 

progression. For better control over the nodes of the quadrilateral elements close to 

the corresponding boundaries, a function was created where, using the geometric 

progression, each layer of the quadrilateral elements is defined according to an 

initial step (height of the first layer) and a growth rate. 

The general form of geometric progression is as follows: 

𝛼𝜈 = 𝛼1𝜆𝜈−1. (24) 

The sum of the ν first terms of geometric progression (the total height of the 

inflation zone) is given as (for the different values of 𝜆): 

𝜆 >  1 
∑ 𝛼𝑖 = 𝑎1

𝜆𝜈 − 1

𝜆 − 1

𝜈

𝑖=1

 
(25) 

𝜆 =  1 
∑ 𝛼𝑖 = 𝜈𝑎1

𝜈

𝑖=1

 
(26) 

𝜆 <  1 
∑ 𝛼𝑖 =

𝛼1

1 − 𝜆

𝜈

𝑖=1

 
(27) 

For a desired total height of the inflation zone (the zone with quadrilateral 

elements), 𝑎1 is the initial step and 𝜆 remains unknown. For 𝜆 = 1 and 𝜆 < 1 it is 

straightforward to compute 𝜆 from the total height of the inflation zone. However, 

for 𝜆 >  1 a polynomial of νth degree results for 𝜆. In order to find the root of the 

polynomial, the Newton Raphson methodology is used. 

6.2 Newton Raphson Methodology 

In numerical analysis, Newton's method (also known as the Newton–Raphson 

method), named after Isaac Newton and Joseph Raphson, is a method for finding 

successively better approximations to the roots of a real-valued function. The 

Newton–Raphson method in one variable is implemented as follows [23]: 
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The method starts with a function 𝑓 defined over the real numbers 𝑥, the 

function's derivative 𝑓 ′ and an initial guess 𝑥0 for the root of function 𝑓. If the 

function satisfies the assumptions made in the derivation of the formula and the 

initial guess is close, then a better approximation 𝑥1 is given as 

 

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
. 

(28) 

Geometrically (𝑥1, 0) is the intersection of the 𝑥-axis and the tangent of the graph 

of 𝑓 at (𝑥0, 𝑓(𝑥0)). The process is repeated until a sufficiently accuracy value is 

reached 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
. (29) 

Fig. 15 explains graphically one step of the Newton-Raphson method. 

 
Figure 15: Graphical representation of Newton-Raphson method [24]. 

In Fig. 15, we start from 𝑥1  approximation of the root, and move to 𝑥2 

approximation of the root of 𝑓, using the Newton-Raphson method. In the T2GR it 

was necessary to find the root of the polynomial in Eq. (30) 

∑ 𝛼𝑖 = 𝑎1
𝜆𝜈−1

𝜆−1

𝜈
𝑖=1    ∑ 𝛼𝑖

𝜈
𝑖=1 (𝜆 − 1) = 𝑎1(𝜆𝜈 − 1)  𝜆𝜈 − 𝜆

∑ 𝛼𝑖
𝜈
𝑖=1

𝛼1
+

(∑ 𝛼𝑖−𝛼1)𝜈
𝑖=1

𝛼1
 = 0 
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𝑓(𝜆)  =  𝜆𝜈 − 𝜆
∑ 𝛼𝑖

𝜈
𝑖=1

𝛼1
+

(∑ 𝛼𝑖) − 𝛼1
𝜈
𝑖=1

𝛼1
 (30) 

𝑓΄(𝜆)  =  𝜈𝜆𝜈−1 −
∑ 𝛼𝑖

𝜈
𝑖=1

𝛼1
 (31) 

We use as initial guess 𝑥0 = 5 and as termination condition the accuracy of the 

root at least equal to 1 ∙ 10−13. The root approach formula changes when its 

multiplicity is greater than one. In this case, the mathematical type of root approach 

changes as follows 

𝑥𝑛+1 = 𝑥𝑛 − 𝑚
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 (32) 

where 𝑚 is the multiplicity of the root. This process helps to improve the speed of 

convergence towards the root. The software developed in this work does not apply 

this technique. 

6.3 Cosine Distributions 

The usage of the cosine distribution is common in aerodynamic design, as it is ideal 

for local densification of airfoil nodes near the leading and/or trailing edges of the 

airfoil. The densification of the surface nodes also affects the density of the 

computational grid on these areas. In order to create a double-cosine distribution on 

the nodes of a boundary, the interval [0, π] is first divided into as many segments as 

the desired ones on the corresponding boundary. Then, for each segment within [0, 

π] the corresponding cosine value is calculated, which corresponds on the 𝑥-

coordinate of the node along the unitary chord of the airfoil. For a simple cosine 

distribution either the [0,π/2] interval is used, or the [π/2, π], based on the desired 

density of nodes close to the leading or the trailing edge of the airfoil. 

 
Figure 16: NACA0012 (equal spacing). 
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Figure 17: NACA0012 (double cosine distribution). 

In Figure 16 a NACA0012 airfoil is presented with an equal between the nodes in 

𝑥-direction. It is obvious that the geometry representation is much more accurate in 

Fig. 17, where a double cosine distribution has been applied for the airfoil surface 

nodes in 𝑥-direction. 

6.4 B-Spline Interpolation 

Spline interpolation is a form of interpolation where the interpolant is a special type 

of a piecewise polynomial called a spline. Spline interpolation is often preferred 

over polynomial interpolation because the interpolation error can be made small, 

even when using low degree polynomials for the spline. Suppose we are given a set 

of points {𝑄𝑘}, 𝑘 =  0, … , 𝑛  and we want to interpolate these points with a 𝑝th 

degree non-rational B-spline curve. If we assign a parameter value, �̅�k, to each 𝑄𝑘, 

and select an appropriate knot vector 𝑈 =  {𝑢0, . . . , 𝑢𝑚},  we can set up the 

(𝑛 + 1)(𝑛 + 1) system of linear equations [18] 

𝑄𝑘 = 𝐶(�̅�k) = ∑ 𝑁𝑖,𝑝
𝑛
𝑖=0 (�̅�k)𝑃𝑖. (33) 

For the creation of the above system of linear equations we should define �̅�k and 

𝑈. Let 𝑈 (the knot vector) be a set of 𝑚 +  1 non-decreasing numbers (knots), 

𝑢0  <=  𝑢1  <=  𝑢2  <= . . . <=  𝑢𝑚 . The knots can be considered as division points 

that subdivide the interval [𝑢0, 𝑢𝑚] into knot spans. All B-spline basis functions are 

supposed to have their domain on [𝑢0, 𝑢𝑚]. We frequently use 𝑢0  =  0 and  𝑢𝑚  =  1 

so that the domain is the closed interval [0,1]. Their choice affects the shape and 

parameterization of the curve. In this diploma thesis the calculation of �̅�k is as 

follows: 

�̅�k  =  �̅�k-1 + 
|𝑄𝑘− 𝑄𝑘−1|

𝑑
 𝑘 =  1, … , 𝑛 − 1 

 
(34) 

�̅�0 = 0 𝑘 = 0 (35) 
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�̅�n = 1 𝑘 = 𝑛 (36) 

𝑑 = ∑ √|𝑄𝑘 − 𝑄𝑘−1|

𝑛

𝑘=1

 
 

(37) 

This is the most widely used method, and is generally adequate. It also provides a 

good parameterization to the curve, in the sense that it approximates a uniform 

parameterization. Hence, to define B-spline basis functions, we need one more 

parameter, the degree 𝑝. The 𝑖𝑡ℎ B-spline basis function of degree 𝑝,  𝑁𝑖,𝑝(�̅�k), is 

defined recursively as follows: 

𝑁𝑖,0 =  {
1  𝑖𝑓 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1

 0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
 (38) 

𝑁𝑖,𝑝(𝑢) =  
𝑢 − 𝑢𝑖

𝑢𝑖+𝑝 − 𝑢𝑖
 𝑁𝑖,𝑝−1(𝑢) +  

𝑢𝑖+𝑝+1 − 𝑢

𝑢𝑖+𝑝+1 − 𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢) (39) 

The knots can be easily calculated with the technique of averaging  

𝑢0 = ⋯ =  𝑢𝑝 = 0 𝑗 = 0, … , 𝑝 (40) 

𝑢𝑚−𝑝 = ⋯ =  𝑢𝑚 = 1 𝑗 = 𝑚 − 𝑝, … ,1 (41) 

𝑢𝑗+𝑝 =  
1

𝑝
∑ �̅�𝑖

𝑗+𝑝−1

𝑖=𝑗

 

𝑗 = 1, … , 𝑛 − 𝑝 (42) 

With this method the knots reflect the distribution of the �̅�k. Furthermore, 

combining all this equations, leads to a system, which is totally positive and banded 

with a semi-bandwidth less than 𝑝, that is 𝑁𝑖,𝑝(�̅�k) = 0 if | 𝑖 –  𝑘 |  ≥  𝑝. Hence, it can 

be solved by Gaussian elimination without pivoting [18].    
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Chapter 7: Generating Mesh through the GUI 

 

7.1 T2GR Software 

By launching T2GR software, the application’s main window is shown, as depicted in 

Fig. 18. Before the creation of a new project, the main window is composed only by 

the menu bar, which is a graphical control element, containing drop down menus 

and the status bar. The latter is a graphical control element that poses an 

information area, located at the bottom of the main window. At this stage, the menu 

bar contains only the File, About and Help menus; however, more drop down menus 

will be added dynamically to the menu bar after the creation of a new project, 

depending on the user’s actions, in order to support the software’s functionality. 

 

Figure 18: The main window of T2GR software. 
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From the File menu the user can chose one of the following actions: 

• New: Creates a new project.     

• Open: Opens an existing project. 

• Save: Saves the current project. 

• Exit: Exits the application. 

7.2 New T2GR Project 

In order to create a new project, two options can be used; the user can click on the 

empty file symbol, following the sequence File ->New Project, or use a short cut key 

(ctrl + N). After the user creates a new project a new dialog appears, with the 

OpenGL viewer on the right side and the main functionalities of the software on the 

left side of the screen. In addition to the new dialog that appeared, three new drop 

down menus appear and three new tools on the main toolbar, as shown in Fig. 19. 

 
Functionalities OpenGL Viewer Drop down menus, Tools 

Figure 19: The main window after the creation of a new project. 

7.3 Functionalities  

The software offers the user a comprehensible graphical environment with step-by-

step guidance. Initially, the user can add and remove boundaries through “txt” and 

“obj” files, by simply clicking the Add Boundary or Remove Boundary buttons at the 

Geometry Tab (Fig. 20).  
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Figure 20: Geometry Tab. 

As shown in Fig. 20, the necessary information is provided for each boundary, 

such as name, number of nodes, boundary condition. Whenever the user adds or 

removes a file from the boundaries table, the viewer automatically refreshes the 

graphics on the screen. 

There are two options for computational grids (triangular, hybrid). The Mesh tab 

includes these two options (Fig. 21). Each of these selections works in a different 

way, with the corresponding requirements depending on the grid type. 

 
Figure 21: The Mesh Tab. 

7.3.1 Triangular Mesh Generation 

For the triangular grid generation, the parameters to triangulate are displayed step 

by step. The first step is to set boundaries’ nodes orientation (Fig. 22). In the second 

step (after the user clicks Next), the control file parameters dialog is shown (Fig. 23). 
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Figure 22: Boundaries’ nodes orientation dialog box. 

The control file dialog includes all the parameters for the construction of the 

triangular grid (Delaundo code). 

 
Figure 23: Control file parameters for the triangular grid. 

[http://www.ae.metu.edu.tr/tuncer/ae546/prj/delaundo/DelaundoUserManual.pdf] 

http://www.ae.metu.edu.tr/tuncer/ae546/prj/delaundo/DelaundoUserManual.pdf
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7.3.2 Hybrid Grid Generation 

In order to create a hybrid grid, the user first has to choose the inflated boundaries. 

The user controls (smoothing factor, orientation, frontal smoothing gradient, end 

smoothing gradient) the direction in which the quadrilateral mesh will be created, 

the slope of the first layer and the nodes orientation (Fig. 24).  

 
Figure 24: Inflation Setup. 

In the next dialog that appears, the user controls the parameters of the 

quadrilateral mesh (initial step, growth rate) as in Fig. 25. 

 
Figure 25: Inflation Setup (layers parameters setup). 

It should be noted that the quadrilateral mesh is created and dynamically altered. 

That means the user can influence the above parameters and directly modify the 

shape of the grid (Fig. 26).  
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Figure 26: Quadrilateral mesh procedure. 

Changes are finalized as soon as the Accept button is pressed. The last dialog that 

appears is to initialize the parameters for creating the triangular mesh (Fig. 23). 

Thus, pressing the Ok button displays the hybrid mesh. Once the mesh has been 

created, either triangular or hybrid, all of its necessary information (number of 

nodes, number of triangles, number of quads) appear on the left side of the screen. 

In addition, the mesh drop down menu features are now available to the user. If the 

user selects this menu while the grid has not been successfully created, a suitable 

message box informs the user for the reason the mesh menu is deactivated. The blue 

color refers to the quadrilateral mesh while the red refers to the triangular mesh 

(Fig. 27). After the mesh has been created, the user can hide, display, and delete the 

mesh from the Mesh menu.  
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Figure 27: Hybrid mesh generation. 

7.4 T2GR Tools 

The T2GR software provides the user a variety of tools to edit either the grid or the 

geometry. These tools are based on geometric methodologies, such as B-Spline 

interpolation, Free Form Deformation (FFD) and geometric cosine distribution. All 

methodologies will be described, step by step, for their proper implementation. 

7.4.1 Boundary Tools 

On any of the available boundaries, the number of nodes and spacing can be 

changed, which is extremely useful for mesh generation. Thus, through the main 

toolbar and the tools (B-spline interpolation, spacing) these operations can be 

initialized. It should also be mentioned that modifications occurring on any 

boundary are automatically saved. For example, when a modification is made to the 

distribution of the nodes and then a modification is made to the number of nodes, 

the software redistributes the new number of nodes, according to the current 

distribution. In addition, if the user clicks the discard button in the B-spline dialog, it 

resets the geometry to the initial state. As a result, the user has a useful tool to 

process the imported geometries. 
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Figure 28: B-Spline Interpolation tool. 

The B-spline interpolation tool is used whenever the user wants to modify the 

number of nodes on a selected boundary. 

 
Figure 29: Adjust spacing between nodes. 

The initial step spin box (Fig. 29) is used only for the geometric progression 

distribution, as the value it defines will be the initial length of each edge. If the user 

selects −/− then an appropriate message box will appear, informing the user that the 

option does not match to any of the available distributions. These functions are 

available for any boundary selected by the user through the selection mode. The 

selection of the boundary is performed by simply clicking on it or near it. The user 

can always distinguish which boundary is selected as it changes color (Fig. 30). 

 
Figure 30: Selected boundary (green color) and non-selected boundaries (red color) 
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Last but not least, a styling menu was added in order to help users to personalize 

their T2GR workspace. The user, through Display Settings menu, has the ability to 

change the color through an RGBA (Red, Green, Blue, Alpha) pallet, on boundaries, 

nodes and the background. Furthermore, there is also an option to increase or 

decrease the width of lines and the size of points (Fig. 31). 

 
Figure 31: The RGBA pallet and the applied color. 

 

7.4.2 FFD Tool (Grid)         

Once the grid has been created, the user can now use the FFD tool. First, the user has 

to select two points on the grid, with the cursor, to determine the size of the surface 

lattice, as shown in Fig. 32. 
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Figure 32: Surface lattice initialization. 

On the dialog that appears the user should select the number of control points 

needed on the 𝑥-axis and the number of control points on the 𝑦-axis. After clicking 

“Next” the surface lattice is created (Fig. 33). 

 
Figure 33: Surface lattice FFD tool. 

The user now has the ability to deform the grid by moving any point from the 

surface FFD lattice (Fig. 34). Finally, the dialog that appears provides the user with 

the ability to replace the initial mesh data with the deformed mesh data.  
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Figure 34: Mesh deformation after moving points on the FFD lattice. 

7.5 T2GR Overview 

Software Abilities: 

 Editing the boundaries of the computational domain. 

 Insertion or export of any boundary. 

 Visual personalization tools. 

 Increase or decrease the number of nodes, using a B-Spline curve 

interpolation. 

 Modification of the nodes distribution (spacing) on every boundary. 

o Cosine Distribution. 

o Geometric Distribution. 

 Mesh processing. 

 Inflation on any bound that is chosen by the user. 

 Vector slope adjustment at nodes. 

 Adjustment of quadrilateral grid inclination. 

 Smoothing in regions with strong geometry change (sharp angles). 

 The user can choose any of the following parameters: growth rate, initial 

step, number of layers. 

 Mesh Generation. 

 Triangular 

 Hybrid 

 Mesh Export Format. 
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  .dpl (Delaundo) 

 .cas (Ansys FLUENT) 

 Geometries Import Format. 

 .dat (point cloud) 

 .obj 

Thus, it is apparent that the user has the flexibility to handle the geometry but 

also holds the option of his intervention in the creation of the grid. One of the most 

significant factors on mesh generation is the nodes’ distribution on the boundaries. 

For that reason two different methodologies have been developed (cosine 

distribution, geometric distribution). Each methodology serves different needs. For 

example, on an airfoil the double cosine distribution is ideal. In contrast, for 

geometries with slight changes in gradient the geometric distribution is preferable; 

by giving an initial step, automatically a growth rate is calculated, and a new 

distribution for the corresponding nodes is applied. Also, the user's involvement in 

the inclination of the inflated grid provides an extra control of its quality.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

50 

Chapter 8: Software Validation 
 

8.1 Validation Procedure 

In order to certify the ability of the proposed software to produce computational 

grids of good quality, flow simulations were performed for three different reference 

problems, using the computational grids created by the present software. The flow 

simulation for all the following cases was accomplished through the use of an in-

house incompressible Navier-Stokes solver, based on Vertex-centered, Finite 

Volume (FV) methodology. 

8.1.1 Laminar Flow around a Sphere 

Initially, simulation of the incompressible laminar flow around a sphere with a 

Reynolds number equal to 100 was performed. Under these conditions, the flow 

around the test body is steady and axisymmetric. Therefore, although the flow is 

actually three-dimensional, using the ability of the CFD solver to deal with 2D- 

axisymmetric flows, it can be solved with a 2D computational grid, setting the 

appropriate boundary conditions. The 2D hybrid grid constructed around the 

sphere is shown in Figure 35 and consists of 59,967 triangular elements, 1957 

quadrilateral ones, with a total number of nodes equal to 32,474. 

 
Figure 35: The computational grid used for simulating the axisymmetric flow around a 

sphere. 
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Fig. 36 shows the dimensionless pressure and velocity fields around the sphere, 

as well as the computed streamlines. Finally, for the quantitative evaluation of the 

results, Fig. 37 presents the distribution of the pressure coefficient on the surface of 

the sphere, compared to the corresponding distributions resulting from the work of 

other researchers. There seems to be a fairly satisfactory agreement between the 

current results and the reference ones. 

 
Figure 36: Non-dimensional fields of velocity and pressure 

 
Figure 37: The distribution of the pressure coefficient on the sphere surface. 
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8.1.2 Turbulent flow around a NACA0012 airfoil 

The incompressible turbulent flow around a NACA0012 airfoil was simulated for a 

Reynolds number equal to 3106. The produced grid is shown in Figure 38, and 

consists of 20,790 triangular elements, 9,384 quadrilateral elements, with 19,985 

nodes. 

 
Figure 38: The computational grid for simulating turbulent flow around NACA0012 airfoil. 
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Figure 39 shows the dimensionless pressure and velocity fields around the 

airfoil. Finally, for the quantitative evaluation of the results, Figure 40 shows the 

distribution of the pressure coefficient on the surface of the airfoil, compared to 

experimental measurements. As can be seen, the two distributions of the non-

dimensional pressure coefficient fit quite well. 

 
Figure 39: Dimensionless velocity and pressure fields around the NACA0012 airfoil. 
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Figure 40: Distribution of the pressure coefficient on the surface of NACA0012 airfoil. 

8.1.3 Turbulent flow around an axisymmetric diffuser 

Finally, the incompressible turbulent flow around an axisymmetric diffuser for 

Reynolds number equal to 67,000 was simulated. For the specific reference 

problem, as in the case of the flow simulation around the NACA0012 airfoil, the 

calculation of the turbulent kinetic energy was made through the use of SST (Shear 

Stress Transport) turbulence model. The 2D hybrid computational grid is shown in 

Fig. 41, consisting of 97,999 and 15,264 triangles and quadrilaterals respectively, 

with a total number of nodes equal to 64,837. 
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Figure 41: The computational grid used to simulate the turbulent flow around the 

axisymmetric diffuser. 



 

 

56 

 
Figure 42: Non-dimensional velocity and pressure fields around the axisymmetric diffuser. 
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Finally, Fig. 43 presents the distributions of the non-dimensional pressure 

coefficient and the non-dimensional acceleration of the velocity on the axis of 

symmetry of the axisymmetric diffuser, compared to the corresponding numerical 

and experimental data derived from the research work of Abe & Ohya [25]. 

 
Figure 43: Distributions of the non-dimensional pressure coefficient and the non-

dimensional acceleration of the velocity on the axis of symmetry [25]. 
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Chapter 9: Pseudo Code and Flowcharts 
 

9.1 Hybrid Mesh Generation Pseudo Code 
 

for Each Viscous Bound{ 

for Each Edge of The Bound 

Calculate Perpendicular Vector 

for Each Node of The Bound 

Calculate Smoothed Extended Nodes 

Calculate First Step Nodes 

for Each Step != 1{ 

if Quad Mesh Connects Neighboring Bound 

Reconstruct Neighboring Bound 

Set Surface Nodes (n-1) Step Nodes 

for Each Edge of Surface 

Calculate Perpendicular Vectors 

for Each Node of Surface Nodes 

Calculate smoothed extended Nodes 

} 

} 

for Each Quad Mesh{ 

If Quad Mesh Nodes are External 

Set as Surface Nodes for Viscous Bound 

} 

Create .pts File 

run Delaundo 

If Delaundo Creates Triangles{ 

Read Dpl File 

for each triangle element{ 

Store Index of Neighbors 

Store Nodes 

Store Index of Nodes 

Store Index of Element

 

 } 

} 

Create dpl file with a single mesh 

9.2 Mesh and Bounds Connectivity Flowchart 

The flowchart in Figure 44 shows the case where the grid being developed is linked 

to a neighboring boundary. Four alternative approaches are followed, in order to 

achieve the alignment of the grid with the adjacent geometry. The “if” statements 
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represent logical operations with Booleans and the blue boxes represent functions 

that take place whenever necessary. 

 
Figure 44: Mesh and bounds connectivity flowchart. 

9.3 Bounds Reconstruction Function 

The flowchart in Figure 45 shows the algorithm used to produce the reconstruction 

of the neighboring boundaries associated with the quadrilateral mesh. The 

methodology is based on B-spline interpolation and geometric progression for nodal 

distribution.  
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Figure 45: Boundaries reconstruction function flowchart. 

9.4 Numbering Quadrilateral Elements 

Since the quadrilateral and triangular computational grids have been successfully 

constructed, the algorithm automatically joins the two grids to create a single hybrid 

computational grid. The flowchart followed by the algorithm is contained in Fig. 46. 
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Figure 46: Joining quadrilateral and triangular grids in a single one. 
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Chapter 10: Hybrid Grid Cases 
 

10.1 NACA0012 

Number Of Nodes  56113 

Triangular Elements 87966 

Quadrilateral Elements 11662 

Number of Layers 17 

Initial Step 5 ∗ 10−4 

Structured Mesh Growth Rate 1.12 

Unstructured Mesh Growth Rate  0.8 

Unstructured Mesh Laplacian Smoothing True 

Viscous Wall Nodes Orientation Clockwise (CW) 

Cage Boundaries Nodes Orientation Counter-Clockwise (CCW) 

Switch Method Function (Structure Grid) Activated 

Frontal Smoothing Gradient  0.35 

End Smoothing Gradient 0.55 
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Figure 47: NACA0012 (leading edge). 

 
Figure 48: NACA0012 with hybrid mesh (close view). 
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10.2 Axisymmetric Diffuser  

Number Of Nodes  33634 

Triangular Elements 30700 

Quadrilateral Elements 17955 

Number of Layers 45 

Initial Step 5 ∗ 10−5 

Structured Mesh Growth Rate 1.11 

Unstructured Mesh Growth Rate  0.5 

Unstructured Mesh Laplacian Smoothing True 

Viscous Wall Nodes Orientation Clockwise (CW) 

Cage Boundaries Nodes Orientation Counter-Clockwise (CCW) 

Switch Method Function (Structure Grid) False 

Frontal Smoothing Gradient  N/A 

End Smoothing Gradient N/A 
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Figure 49: Axisymmetric Diffuser (trailing edge). 

 
Figure 50: Axisymmetric Diffuser (close view). 
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10.3 Axisymmetric Sphere 

Number Of Nodes  33634 

Triangular Elements 30700 

Quadrilateral Elements 17955 

Number of Layers 17 

Initial Step 5 ∗ 10−3 

Structured Mesh Growth Rate 1.12 

Unstructured Mesh Growth Rate  0.2 

Unstructured Mesh Laplacian Smoothing True 

Viscous Wall Nodes Orientation Clockwise (CW) 

Cage Boundaries Nodes Orientation Counter-Clockwise (CCW) 

Switch Method Function (Structure Grid) True 

Frontal Smoothing Gradient  0.95 

End Smoothing Gradient 1.0 
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Figure 51: Axisymmetric Sphere. 

 
Figure 52: Axisymmetric Sphere (leading edge). 
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Chapter 11: Conclusions 
 

In this diploma thesis a software was developed for the construction of 2D hybrid 

unstructured grids. The target was the development of a user-friendly software that 

produces grids of high quality for accurate fluid dynamics simulations. The 

construction of the inflation layers (utilizing quadrilateral elements) is based on an 

algebraic technique, which provides a fast and easy way to distribute the layers of 

the grid.  

Since mesh generation is inherently a complicated procedure, it is of major 

importance the development of a graphical user interface (GUI), for rendering the 

grid generation procedure straightforward for the inexperienced user. Such a GUI 

was successfully developed within this work. 

The fidelity of the geometric algorithm has tested through three different test 

cases, involving flow simulation around axisymmetric bodies, using an in-house 

incompressible 2D-axisymmetric solver. Each one of the utilized test cases has 

different geometrical characteristics, different grid-density requirements and 

different types of boundary conditions. Complicated flow phenomena, such as 

vortices and flow separation regions, have been successfully simulated, using the 

produced computational grids. As a result, all three simulations successfully 

confirmed the fidelity of the algorithm and its ability to produce hybrid 

unstructured grid with proper characteristics for use with flow simulation solvers.  

The incorporation of the FFD tool greatly enhances the use of the developed 

software in design optimization procedures. The FFD tool is very useful in rapidly 

deforming the geometry at hand, along with its computational grid, without the 

need for new grid generation. 

The developed software has a very wide region of applications. However, many 

new characteristics and abilities are to be added in the future. Some of them are the 

following: 

- Introduction of grid-quality metrics. 

- Surface mesh generation (on non-planar surfaces described as B-spline 

and/or NURBS parametric surfaces). 

- Introduction of grid-refinement tools. 
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