
Technical University of Crete, Greece

School of Electrical and Computer Engineering

Soccer Player Behavior Development

for the RoboCup Standard Platform League

Helen Tsagkarogianni
etsagarogianni at isc tuc gr

Thesis Committee

Associate Professor Michail G. Lagoudakis (ECE)

Associate Professor Georgios Chalkiadakis (ECE)

Dr. Nikolaos I. Spanoudakis (PEM)

Chania, June 2019

http://www.tuc.gr
http://www.ece.tuc.gr

Helen Tsagkarogianni ii June 2019

Πολυτεχνειο Κρητης

Σχολη Ηλεκτρολογων Μηχανικων Και Μηχανικων Υπολογιστων

Ανάπτυξη Συμπεριφοράς Ποδοσφαιριστή

για το Πρωτάθλημα Standard Platform

του RoboCup

Ελένη Τσαγκαρογιάννη
etsagarogianni at isc tuc gr

Εξεταστική Επιτροπή

Αναπληρωτής Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Αναπληρωτής Καθηγητής Γεώργιος Χαλκιαδάκης (ΗΜΜΥ)

Δρ. Νικόλαος Ι. Σπανουδάκης (ΜΠΔ)
Χανιά, Ιούνιος 2019

http://www.tuc.gr
http://www.ece.tuc.gr

Helen Tsagkarogianni iv June 2019

Abstract

Humans are used to operate in dynamic environments, which nevertheless can be

quite unpredictable and complicated for a robot. Therefore, for an autonomous robot

to be able to adapt and act in such an environment, it must tackle a large variety of

the problems, using a top-down approach that breaks them down into simpler ones.

The annual robot soccer (RoboCup) competition offers such a dynamic environment and

one of the main components of any RoboCup player is the algorithm responsible for

decision making, known as robot behavior control. In this thesis, we aim to develop

from scratch soccer player behaviors for the Standard Platform League (SPL), where

all teams share the same robot platform, but develop different software, in an attempt

to better understand the process of behavior development. Behavior development can

be very tricky, since it combines information from different modules (vision, motion,

communication, estimation, etc.) and decides the actions that need to be taken for the

agent to achieve its goal. We worked on a recent code base framework developed by SPL

Team B-Human that uses the C-based Agent Behavior Specification Language (CABSL)

for the behavior development, which is freely available, however with all behavior code

turned to void on purpose. We implemented three soccer behaviors for three basic soccer

roles: a striker, a defender and a goalkeeper. Furthermore, we implemented an additional

behavior, called ball control, in order to assess the utilization of the framework beyond

typical robotic soccer behaviors. We aim for this work to serve as the initial steps for

new code base of our SPL team Kouretes and as a guide for assisting the understanding

and the use of the chosen framework and its capabilities.

Helen Tsagkarogianni vi June 2019

Περίληψη

Οι άνθρωποι είναι συνηθισμένοι να λειτουργούν σε δυναμικά περιβάλλοντα, τα οποία ω-

στόσο μπορούν να είναι αρκετά απρόβλεπτα και περίπλοκα για ένα ρομπότ. Επομένως, για να

μπορεί ένα αυτόνομο ρομπότ να προσαρμόζεται και να δρα σε ένα τέτοιο περιβάλλον, πρέπει

να αντιμετωπίσει μια μεγάλη ποικιλία των προβλημάτων, χρησιμοποιώντας μια προσέγγιση

top-down , η οποία τα διαιρεί σε απλούστερα. Ο ετήσιος διαγωνισμός ρομποτικού ποδοσφαί-

ρου (RoboCup) προσφέρει ένα τέτοιο δυναμικό περιβάλλον και ένα από τα κύρια συστατικά

του κάθε παίκτη είναι ο αλγόριθμος που φροντίζει για τη λήψη αποφάσεων, γνωστός ως έ-

λεγχος ρομποτικής συμπεριφοράς. Στην παρούσα διπλωματική εργασία, στοχεύουμε να ανα-

πτύξουμε από το μηδέν τις συμπεριφορές ενός ποδοσφαιριστή για το πρωτάθλημα Standard

Platform League (SPL), όπου όλες οι ομάδες μοιράζονται την ίδια ρομποτική πλατφόρμα,

αλλά αναπτύσσουν διαφορετικό λογισμικό, σε μια προσπάθεια να κατανοήσουμε καλύτερα τη

διαδικασία ανάπτυξης συμπεριφοράς. Η ανάπτυξη συμπεριφοράς μπορεί να αποβεί δύσκολη,

καθώς συνδυάζει πληροφορίες από διαφορετικές ενότητες (όραση, κίνηση, επικοινωνία, εκτί-

μηση, κλπ.) και αποφασίζει τις ενέργειες που πρέπει να εκτελεσθούν για την επίτευξη του

στόχου του πράκτορα. Δουλέψαμε σε ένα πρόσφατο πλαίσιο λογισμικού που αναπτύχθηκε

από την ομάδα SPL Team B-Human που χρησιμοποιεί τη γλώσσα C-based Agent Behavior

Specification Language (CABSL) για την ανάπτυξη συμπεριφοράς, το οποίο είναι ελεύθερα

διαθέσιμο, ωστόσο με όλο τον κώδικα συμπεριφοράς διαγραμμένο. Αναπτύξαμε τρεις συ-

μπεριφορές παικτών για τρεις βασικούς ρόλους ποδοσφαίρου: έναν επιθετικό, έναν αμυντικό

και ένα τερματοφύλακα. Επιπλέον, αναπτύξαμε μια πρόσθετη συμπεριφορά, που ονομάζεται

έλεγχος μπάλας, προκειμένου να εκτιμήσουμε την αξιοποίηση του πλαισίου λογισμικού, πέ-

ρα από τις τυπικές ρομποτικές συμπεριφορές ποδοσφαίρου. Στοχεύουμε το έργο αυτό να

αποτελέσει τα αρχικά βήματα για τη δημιουργία της νέας βάσης λογισμικού της ομάδας μας

SPL Κουρήτες και οδηγό για την καλύτερη κατανόηση και χρήση του επιλεγμένου πλαισίου

και των δυνατοτήτων του.

Helen Tsagkarogianni viii June 2019

Acknowledgements

I would like to thank my advisor Michail G. Lagoudakis for his guidance and support

throughout the implementation of this thesis.

I would also like to thank my team Kouretes and especially Dimitris Chatziparaschis,

George Apostolakis, and Nektarios Sfyris for their support.

Last but not least, I would like to thank my family for their love, patience and support.

Helen Tsagkarogianni x June 2019

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Overview . 2

2 Background 5

2.1 Multi-Agent Systems . 5

2.2 RoboCup . 5

2.2.1 RoboCupSoccer . 6

2.2.2 RoboCupRescue . 9

2.2.3 RoboCup@Home . 10

2.2.4 RoboCupIndustrial . 10

2.2.5 RoboCupJunior . 11

2.3 RoboCup Standard Platform League . 13

2.4 Nao . 19

2.5 B-Human Project . 20

2.6 Robotic Cognition . 21

2.6.1 Machine Vision . 21

2.6.2 Networking and Communication 21

2.6.3 Navigation . 21

2.6.4 Behavior Control . 24

3 Problem Statement 25

3.1 Thesis Objectives . 25

3.2 Framework Selection . 26

3.3 Related Work . 26

Helen Tsagkarogianni xi June 2019

CONTENTS

4 Our Approach 31

4.1 Initial Steps . 31

4.1.1 Code Base 2017 . 31

4.1.2 Code Base 2018 . 34

4.2 Game State Flow . 37

4.3 CABSL Behavior Development . 40

4.4 Modules used in Behavior Development 43

4.4.1 Walking . 43

4.4.2 Kicking . 48

4.5 Developed Common HeadControl Modes 50

4.6 Developed Common Behavior States . 54

4.7 Developed Soccer Behaviors . 56

4.7.1 Simple Striker . 56

4.7.2 Simple Defender . 60

4.7.3 Simple Goalkeeper . 65

4.8 Developed Ball Control Behavior . 71

4.8.1 Walk to the Ball . 72

4.8.2 Kicking the Ball . 74

4.8.3 Observing Position and Actions 76

5 Results 79

5.1 Simple Striker . 82

5.2 Simple Defender . 88

5.3 Simple Goalkeeper . 92

5.4 BallControl . 101

6 Conclusions 111

6.1 Discussion . 111

6.2 Future Work . 112

6.2.1 The Next Step . 113

6.3 Lessons . 114

References 120

Helen Tsagkarogianni xii June 2019

CONTENTS

A User Guide 121

A.1 How to run the existing code . 121

A.1.1 Alternating between behaviors, scenes and locations 122

A.2 Getting Started with Behavior Development 123

A.2.1 Commands . 123

A.2.2 SimRobot Quick Guide . 124

A.2.3 Quick Implementation Guide . 124

B Installing B-Human Code Release 133

Helen Tsagkarogianni xiii June 2019

CONTENTS

Helen Tsagkarogianni xiv June 2019

List of Figures

2.1 RoboCup Humanoid League . 7

2.2 Middle Size League . 7

2.3 Small Size League . 8

2.4 Simulation League . 8

2.5 RoboCup Rescue League . 9

2.6 RoboCup Rescue Simulation League . 10

2.7 RoboCup Logistics League . 11

2.8 Standard Platform League . 13

2.9 Standard Platform League whole field 2008 14

2.10 Standard Platform League 2015 . 15

2.11 Standard Platform League 2016 Indoor 16

2.12 Standard Platform League 2016 Outdoor 17

2.13 Standard Platform League 2018 . 18

2.14 Model of Nao V5 . 19

2.15 Nao V5 characteristics . 20

2.16 Nao camera top view . 22

2.17 Nao camera side view . 23

2.18 Nao’s joint view . 24

4.1 SimRobot feedback views . 33

4.2 SimRobot functionality . 36

4.3 Game Controller flow chart . 38

4.4 Simple Striker flow chart . 57

4.5 Field and robot coordinates . 59

4.6 Simple Striker dribble . 61

Helen Tsagkarogianni xv June 2019

LIST OF FIGURES

4.7 Simple Defender flow chart . 62

4.8 Simple Defender positioning . 65

4.9 Simple Goalkeeper flow chart . 67

4.10 Simple Goalkeeper different action areas 70

4.11 Ball Control flow chart . 73

4.12 Ball approach directly . 75

4.13 Ball approach with an arc . 76

5.1 Simple Striker: Simulation results of kicking the to ball towards the oppo-

nent goal. 82

5.2 Simple Striker: Lab results of kicking the to ball towards the opponent goal. 83

5.3 Simple Striker: Simulation results of left dribble 84

5.4 Simple Striker: Lab results of left dribble 85

5.5 Simple Striker: Simulation results of right dribble 86

5.6 Simple Striker: Lab results of right dribble 87

5.7 Simple Defender: Simulation results of patrol movement 88

5.8 Simple Defender: Lab results of patrol movement 89

5.9 Simple Defender: Simulation results of kick away motion 90

5.10 Simple Defender: Lab results of kick away motion 91

5.11 Simple Goalkeeper: Simulation results of heading to goal and aligning

motion from the top part of the field . 93

5.12 Simple Goalkeeper: Lab results of heading to goal and aligning motion

from the top part of the field . 94

5.13 Simple Goalkeeper: Simulation results of heading to goal and aligning

motion from the lower part of the field 95

5.14 Simple Goalkeeper: Lab results of heading to goal and aligning motion

from the lower part of the field . 96

5.15 Simple Goalkeeper: Simulation results of the goalkeeper active tracking

and kicking away . 97

5.16 Simple Goalkeeper: Lab results of the goalkeeper active tracking and kick-

ing away . 98

5.17 Simple Goalkeeper: Simulation results of the goalkeeper movements block-

ing the corners . 99

Helen Tsagkarogianni xvi June 2019

LIST OF FIGURES

5.18 Simple Goalkeeper: Lab results of the goalkeeper movements blocking the

corners . 100

5.19 Ball Control: Simulation results of walking to ball directly 101

5.20 Ball Control: Lab results of walking to ball directly 102

5.21 Ball Control: Simulation results of walking to ball with an arc 103

5.22 Ball Control: Lab results of walking to ball with an arc 104

5.23 Ball Control: Simulation results of patrolling sideways 105

5.24 Ball Control: Lab results of patrolling sideways 106

5.25 Ball Control: Simulation results of the proper alignment with the ball . . 107

5.26 Ball Control: Simulation results of the proper positioning 108

5.27 Ball Control: Lab results of the proper positioning 109

A.1 SimRobot feedback views . 125

Helen Tsagkarogianni xvii June 2019

LIST OF FIGURES

Helen Tsagkarogianni xviii June 2019

Listings

4.1 CABSL example . 42

4.2 Walk to ball example. 45

4.3 Walk to observing position example. 45

4.4 Align with the goal example. 47

4.5 Forward kick request. 49

4.6 Head mode Look left and right. 51

4.7 Head mode Look at target. 53

A.1 InWalkKick example . 128

B.1 B-Human console . 135

B.2 B-Human Calibrators - How they execute CalibrationStand 136

Helen Tsagkarogianni xix June 2019

LISTINGS

Helen Tsagkarogianni xx June 2019

Chapter 1

Introduction

Autonomous agents can be of a great assistance in numerous fields of our everyday lives;

from providing aid in a household to heavy duty automation required in factories or high

precision space excursions. A robotic autonomous agent combines the majority of the

topics studied by Artificial Intelligence. Machine vision, networking, navigation provide

the agent with the information required to make a decision, but doesn’t lead to a decision

by themselves. The algorithm that combines the above and leads the agent to its goal,

in our case is called behavior.

The RoboCup competition aims to solve various research problems regarding the per-

ception, localization, movement of the agents and coordination while aiming for robotic

autonomy. The competition assists in creating objectives for the participating teams; it

sets specific tasks that are accompanied by a variety of challenges and gradually get more

complicated. In addition, since some of the RoboCup leagues revolve around soccer, a

couple of things are intuitive such as the rules or tactics.

It is fascinating working with a robot, a system that combines hardware and software,

that is capable of being autonomous, exists in the real world and can in a way alter it

with its own actions. By working on a project like this, our goal is to gain experience and

try to implement behaviors using a new tool in order to put into action what we have

learned so far during our studies, but also better understand such a complex system.

Having limited resources and no prior experience in the field of programming au-

tonomous agents in combination with trying out a new framework made the project’s

structure not intuitive. On top of that, the task of developing a fully autonomous soccer

behavior made is quite complicated, making this implementation a challenge.

Helen Tsagkarogianni 1 June 2019

1. INTRODUCTION

1.1 Thesis Contribution

We started our implementation with executing basic functions, such as scanning and

locating the ball, aiming to better understand the software architecture. Then, we started

adding more modules into our behaviors, controlling both the head and the body of the

robot and also making our robot act based on its position in the field. After some

experimentation with different operating systems and code releases, we achieved a good

understanding of the project and the use of the modules given and we were able to utilize

them to create basic soccer and soccer-like behaviors.

We managed to achieve a solid basic understanding of the B-Human toolkit and im-

plemented four different behaviors using the chosen framework that were both functional

in simulation and on a real robot on the field located at the Kouretes Lab. Also we

believe that we can provide a basic guide for all the steps required into assisting any

implementation of more sophisticated behaviors.

The work done in this thesis is aimed to be used as a starting step for our robotic

team Kouretes. For that matter there is also a thorough guide in the appendix providing

information on how to execute the implemented behaviors, as well as implementation

tips.

1.2 Thesis Overview

In Chapter 2 we go over the background information required for this thesis. To be more

precise, we go through an introduction to RoboCup, a brief overview of the Standard

Platform League, a presentation of the humanoid robot Nao that was used as our agent

and a description of the modules required and provided by the chosen software framework.

In Chapter 3 we define the goals of this thesis and we review the different frameworks

used by other participating teams over the years as well as the one we concluded on using

and what led us to that choice. In Chapter 4 we describe the procedure we followed in

order to understand the framework and thoroughly explain the implemented behaviors.

In Chapter 5 we present the results of the implemented behaviors in both simulation and

physical world. In Chapter 6 we conclude the thesis by discussing the proposed procedure

and the implemented behaviors in addition to ideas for future work. In Appendix A we

Helen Tsagkarogianni 2 June 2019

1.2 Thesis Overview

have added a user guide that assists with the execution of the code and also provides all

the information required for the reader to create new behaviors.

Helen Tsagkarogianni 3 June 2019

1. INTRODUCTION

Helen Tsagkarogianni 4 June 2019

Chapter 2

Background

2.1 Multi-Agent Systems

An autonomous agent is an intelligent entity, of robotic or software nature able to adapt

and learn based on sensory data in order to achieve a goal given by its creator. It has

been given all the necessary information to carry out the given task without any further

interference from humans. At the beginning of the learning process it might require some

assistance, but past that point it should be able to learn and adapt in order to fulfill the

given task. Its nature and complexity may vary from a robotic vacuum to self-landing

space rockets. In this thesis, the goal of our agent is to play soccer meaning complying

with the game rules and scoring a goal, in case of a striker role, or preventing a goal, in

case of a defender or a goal keeper, in order to win the match.

Since the game of soccer is played between two teams, our autonomous agents are a

part of a multi-agent system, where the robots communicate with each other and work

together towards a common goal. The environment is considered competitive, since in

order for one team to win, the other must lose. Also, the agents of the same team need

to cooperate towards the common goals.

2.2 RoboCup

RoboCup [1] is an international robotics competition founded in 1996 by a scientific group

of university professors. It occurs annually and it aims to promote the research of robotics

Helen Tsagkarogianni 5 June 2019

2. BACKGROUND

and Artificial Intelligence by making easily accessible to the public but in the same time

progressively harder each year for the participating teams. The reason it revolves around

soccer is that a lot of issues need to be resolved in order to produce a successful team. To

be more precise, a robotic team needs to be able to tackle the difficulties that a real life

environment with dynamic lightning, uneven terrain, such as artificial grass, can create

as well as opponent teams with different strategies. Not to mention its original mission

was to develop a team of robots that would be capable of competing and winning the

World Cup human champion team by 2050. Today, RoboCup hosts a great variety of

leagues each one with its own subcategories.

• RoboCupSoccer

• RoboCupRescue

• RoboCup@Home

• RoboCupIndustrial

• RoboCupJunior

2.2.1 RoboCupSoccer

RoboCupSoccer is divided into five different leagues:

Humanoid League: The participating teams are composed of humanoid robots with

human like sensors. The teams aren’t restricted in one particular platform but the sensors

used are strictly human like. A few of the robots participating can be seen in Figure 2.1.

Standard Platform League: The teams competing in this league use fully au-

tonomous humanoid robots but all make use of the same platform, the humanoid robot

Nao of the Softbank Robotics. The field set up complicates the challenge even further

and provides room for new challenges each year. In Figure 2.8 we can see a snapshot of

a SPL match.

Middle Size League: Teams competing into the middle size league are free to de-

sign their own hardware but there are maximum size and weight limitations of their

autonomous robots as seen in Figure 2.2.

Helen Tsagkarogianni 6 June 2019

2.2 RoboCup

Figure 2.1: RoboCup Humanoid League

https: // www. robocup. org

Figure 2.2: Middle Size League

https: // www. robocup. org

Small Size League: One of the oldest RoboCup leagues. The teams are restricted

to specific dimensions but the robots are not autonomous since the processing required

for coordination as well as the control of the robots is executed on a computer outside

the field. A kick off can been seen in Figure 2.3.

Helen Tsagkarogianni 7 June 2019

https://www.robocup.org
https://www.robocup.org

2. BACKGROUND

Figure 2.3: Small Size League

https: // www. robocup. org

Figure 2.4: Simulation League

https: // www. robocup. org

SimulationLeague: Another one of the oldest leagues focusing for on the artificial

intelligence and the implementation of a team strategy. A snapshot of a simulation match

can be seen in Figure 2.4

Helen Tsagkarogianni 8 June 2019

https://www.robocup.org
https://www.robocup.org

2.2 RoboCup

Figure 2.5: RoboCup Rescue League

https: // www. robocup. org

2.2.2 RoboCupRescue

RoboCupRescue focuses both in real life robots (Figure 2.5) and simulation (a gazebo

snapshot in Figure 2.6) in order to implement advanced robotic solutions to tackle emer-

gency scenarios.

Robot: The teams competing in this league are faced with a lot of challenges that

a unknown environment can create in order to search and rescue individuals. Each solu-

tion is objectively evaluated taking into consideration the scenario in which the robot is

placed but also promotes the collaboration between the teams.

Simulation: This league instead of only the focus of intelligent agents that are able

to respond to a disaster scenario, it also aims on the development of simulators that are

capable to accurately simulate such scenarios as well as emulate realistic disaster phe-

nomena.

Helen Tsagkarogianni 9 June 2019

https://www.robocup.org

2. BACKGROUND

Figure 2.6: RoboCup Rescue Simulation League

https: // www. robocup. org

2.2.3 RoboCup@Home

RoboCup@Home focuses on the development of robots that aim to provide services and

assistance to a household.

Open Plataform: In this league every custom platform is allowed.

Domestic Standard Platform: Teams competing are restricted by the given plat-

form.

Social Standard Platform: Same as Standard Platform League, teams competing

are restricted in the use of the same robot this time Pepper of Softbank Robotics.

2.2.4 RoboCupIndustrial

RoboCupIndustrial is one of the newest competitions where the robots developed are

intended for work and industrial usage.

Helen Tsagkarogianni 10 June 2019

https://www.robocup.org

2.2 RoboCup

Figure 2.7: RoboCup Logistics League

https: // www. robocup. org

RoboCup@Work: The newest league in RoboCup that utilizes concepts from the

rest of the RoboCup competitions aiming to tackle challenges in industrial and service

robotics in order to enable their use in work-related scenarios.

Logistics: An application driven league inspired by the industrial scenario of a smart

factory, where a number of machines are responsible for all the stages of manufacturing

a final product. From refinery to assembly and even product modifications. A snapshot

can be seen in Figure 2.7

2.2.5 RoboCupJunior

RoboCupJunior offers several challenges, each emphasizing both cooperative and compet-

itive aspects in order to provide an exciting introduction to the field of robotics through

hands-on experience. Focusing on educating its competitors it also sponsors local, re-

gional and international robotic events for young students. It is designed to introduce

RoboCup to primary and secondary school children, as well as undergraduates who do

not have the resources to get involved in the senior leagues yet.

Helen Tsagkarogianni 11 June 2019

https://www.robocup.org

2. BACKGROUND

Soccer: 2-on-2 teams of autonomous mobile robots play in a highly dynamic envi-

ronment, tracking a special light-emitting ball in an enclosed, land marked field.

OnStage: One or more robots come together with humans, dressed in costume and

moving in creative, interactive and collaborative ways.

Rescue: Robots identify victims within re-created disaster scenarios, varying in com-

plexity from line-following on a flat surface to negotiating paths through obstacles on

uneven terrain.

Helen Tsagkarogianni 12 June 2019

2.3 RoboCup Standard Platform League

Figure 2.8: Standard Platform League

https: // www. robocup. org

2.3 RoboCup Standard Platform League

Standard Platform means that the for the implementation platform the software, mostly

operating system, and the hardware are defined and not created by the teams themselves.

In a way guarantees equal footing and concentrates the efforts on the other parts of the

implementation and not in the creation of the robotic system. Each year, the committee

updates the rules creating new challenges for the teams to overcome. Additionally, al-

lowing the cooperation between teams in terms of being able to use the code created by

other teams as long as you make changes and improve it, is aiming in the advancement

of all the community. Such changes can be from the color of the ball to the location and

the characteristics of the field. We are able to see a few of the visual changes over the

years though the Figures 2.9, 2.10, 2.11, 2.12 and 2.13 but major changes occur in other

aspect of the competition as well, such as the rules.

Helen Tsagkarogianni 13 June 2019

https://www.robocup.org

2. BACKGROUND

(a) (b)

(c)

Figure 2.9: Standard Platform League 2008 was the first year that Nao robots were used.

We see teams composed by two robots, an orange ball, different color goalposts, artificial

lighting and no other fields close. Source: http: // robots. newcastle. edu. au/ robogallery. html

Helen Tsagkarogianni 14 June 2019

http://robots.newcastle.edu.au/robogallery.html

2.3 RoboCup Standard Platform League

(a)

(b)

Figure 2.10: Standard Platform League 2015 B-Human vs rUNSWift. Source: https: // www.

facebook. com/ RoboCupSPL/

Helen Tsagkarogianni 15 June 2019

https://www.facebook.com/RoboCupSPL/
https://www.facebook.com/RoboCupSPL/

2. BACKGROUND

(a)

(b)

Figure 2.11: Standard Platform League 2016 Indoor field and quarter final between B-

Human and Chile. Source: https: // www. facebook. com/ RoboCupSPL/

Helen Tsagkarogianni 16 June 2019

https://www.facebook.com/RoboCupSPL/

2.3 RoboCup Standard Platform League

(a)

(b)

Figure 2.12: Standard Platform League 2016 Outdoor field outdoor and Finals between

B-Human and NaoDevils.

Source: https: // www. facebook. com/ RoboCupSPL/

Helen Tsagkarogianni 17 June 2019

https://www.facebook.com/RoboCupSPL/

2. BACKGROUND

(a)

(b)

Figure 2.13: Standard Platform League 2018 outdoor field.

Source: https: // www. facebook. com/ RoboCupSPL/

Helen Tsagkarogianni 18 June 2019

https://www.facebook.com/RoboCupSPL/

2.4 Nao

Figure 2.14: Model of Nao V5

http: // doc. aldebaran. com

2.4 Nao

The platform for this competition is the humanoid robot Nao developed by SoftBank

Robotics previously known as Aldebaran Robotics. A robot that can act as an au-

tonomous agent. In this thesis we are using a Nao version 5 with Naoqi 2.1.0.19 seen

in Figure 2.14. Nao V5 has 25 Degrees Of Freedom (DOF). An overview of its charac-

teristics can be seen in Figure 2.15. With the installation of the B-Human libraries and

modules a few procedures of Naoqi software are being deactivated.

Helen Tsagkarogianni 19 June 2019

http://doc.aldebaran.com

2. BACKGROUND

Figure 2.15: Nao V5 characteristics

http: // doc. aldebaran. com

2.5 B-Human Project

B-Human is a RoboCup team of the University of Bremen and the German Research

Center for Artificial Intelligence (DFKI). The team was founded in 2006 as a team in

the Humanoid League, but switched to participating in the Standard Platform League

in 2009.

In this thesis, we make use of the system designed by B-Human that allows us to focus

on the implementation of the behaviors since the rest of the infrastructure is already

implemented. To be more precise, this system provides us with all the required modules

that control the cognition and motion but is stripped of the Behavior control. We will

briefly go through what has been provided by the their code release of 2017 [2] and

2018 [3].

Helen Tsagkarogianni 20 June 2019

http://doc.aldebaran.com

2.6 Robotic Cognition

2.6 Robotic Cognition

We refer to cognition when our robot is able to sense and understand its surroundings

via sensors, cameras, contact and touch sensors. In addition, it should be able to create

beliefs regards the environment, generate a map of its surroundings, locate its position

inside the created map as well as remember previous routes and locations. Based on that

information it decides to act in order to achieve a specific goal.

2.6.1 Machine Vision

The term Machine Vision encapsulates all the technologies and methods used in order to

extract useful information from an image. The extracted information can be in various

forms depending on the application. In our case, the data are extracted from the two

cameras of Nao and have a YUV422 format that is then converted to ECImage. The

cameras are positioned as shown in Figures 2.16 and 2.17.

Since there is not enough overlap for stereo video image and the model of the Nao

used does not support simultaneous image record nor simultaneous maximum resolution,

a few compromises are being made stated in the B-Human code release of 2017 [2].

2.6.2 Networking and Communication

Since soccer is a team based game, communication between the robots of the same team

is vital in order to transmit messages about their perception, localization beliefs as well as

team tactics. For that to be achieved, a network must be established where all the robots,

from different teams, are able to communicate without their messages being intercepted

or mixed. This is achieved with the use of a magic number. Each team has its own magic

number and robots with different magic numbers will ignore each other. In the behavior

implementation we make use of variables that are populated with the use of all the beliefs

of the different robots such as teamBallModel, an object that we use in our behaviors

which stores the coordinates of the ball relative to the field.

2.6.3 Navigation

This project provides us with modules that handle both universal navigation based on the

map and the landmarks of the soccer field and reflex navigation in order to avoid collisions.

Helen Tsagkarogianni 21 June 2019

2. BACKGROUND

Figure 2.16: Nao camera top view

http: // doc. aldebaran. com

In order to focus mostly on the behavior implementation we make use only of the universal

navigation based on the mapping with the field characteristics and dimensions.

Mapping

Since the dimensions of the field are static and are given via a configuration file there is

no need for active mapping. The map is in a way predefined.

Localization

Localization is the procedure where the agent resolves questions regarding its location.

Since the agent is aware about the dimensions of the field as well as the position of the

landmarks, the localization occurs based on these features. Based on that, checking and

Helen Tsagkarogianni 22 June 2019

http://doc.aldebaran.com

2.6 Robotic Cognition

Figure 2.17: Nao camera side view

http: // doc. aldebaran. com

validating their position greatly reduces the localization error.

Path Planning

The path planner module is responsible for handling long walking distances to a target

that would probably end into a deadlock if the robot was just using reactive control. In

this project, B-Humans use a visibility-graph-based 2-D A* planner but it is not included

into our implemented behaviors.

Motion Control

The motion control module is responsible for the movement of the agent. It supplies ROS1

with the required angles and speed in order to execute any motion from a kick to a walk

1Robot Operating System

Helen Tsagkarogianni 23 June 2019

http://doc.aldebaran.com

2. BACKGROUND

Figure 2.18: Nao’s joint view

http: // doc. aldebaran. com

motion as well as head motions and any other blocking motion. There are several engine

responsible for the different motions in this approach. The WalkingEngine is responsible

for the walk and stand motions as well as some special InWalk kicks. The KickEngine

is responsible for the generation of any other kick. The GetUpEngine is responsible for

figuring out the best way for the robot to get up in case of a fall and also to make sure

that during a fall the damage inflicted on the robot is be limited. In Figure 2.18 we can

see all the different joints of Nao with their movement axes that are controller by the

different engines.

2.6.4 Behavior Control

The behavior control is responsible for the decisions our agent makes in order to achieve

its task. Given the information of all the modules mentioned above, behavior control com-

bines them and concludes to the action required while sending the appropriate requests

to motion control and all the interactive modules.

Helen Tsagkarogianni 24 June 2019

http://doc.aldebaran.com

Chapter 3

Problem Statement

The algorithm that is responsible for the decisions that our agent makes, its behavior, in

order to achieve its goal can be very complicated. For implementing such complicated

behaviors there must be a solid project architecture with a reliable framework. In this

last section of this chapter we are going to examine briefly what frameworks have been

used in the past and present for soccer behavior development. Since the goal of this thesis

is behavior implementation, we did not focus on the development of a new framework.

3.1 Thesis Objectives

The objective of this thesis is the implementation of three soccer behaviors and one

soccer-like behavior aiming to better understand behavior development, but also utilize

the chosen framework beyond the soccer domain.

The three soccer behaviors to be implemented are: (a) a striker, (b) a defender and

(c) a goalkeeper. The role of the striker aims to dribble the ball and ultimately score a

goal against the opponent team, while avoiding the opponent defenders. The role of the

defender aims to defend its own side of the field from a potential attack of the opponent

strikers and kick the ball away towards towards the opponent half of the field. The role

of goalkeeper is to guard its goal from any threatening kick and prevent the opponent

from scoring a goal, while kicking the ball away from its own goal area.

The last behavior we aim to implement is an abstract behavior aiming to control the

ball in order to keep it inside a designated target area, which in our case is chosen to be

the center circle of the field. While this behavior might not be useful for robot soccer

Helen Tsagkarogianni 25 June 2019

3. PROBLEM STATEMENT

playing, it combines different walking approaches to the ball, depending on the current

robot orientation with respect to the ball and the center of the field.

3.2 Framework Selection

The code of Kouretes along with all the behaviors and most of the frameworks where

implemented to work with Nao v3.3. Experimenting with different behaviors, algorithms

for the university courses, playing soccer in addition to the passage of time had great

impact on the team’s robots resulting into the slow breakdown of the older Nao that

needed to be replaced with new ones. The development of the robot Nao also advanced

as well resulting in newer Nao versions with a lot of differences. The Nao v4 and v5, while

similar in appearance are quite different in both hardware and software, NAOqi 1.14 for

Nao V4 and V3 while Nao V5 has the 2.1 version of NAOqi, the already implemented

code must be reworked and converted to the newest version in order to work. A few

efforts were made in the past but as a team we concluded that it might be better to start

all over again with the code base of B-Human. Hence we started experimenting with

CodeRelease 2017 creating a few behaviors and trying to understand the code. Then, as

we will see in the next chapters we transitioned what was already implemented into the

CodeRelease 2018 when it was released since we concluded that it has useful additions

and we had not yet a great load of code to transition to the different code base.

3.3 Related Work

The SPL teams1 use a variety of tools in order to implement their soccer behaviors. Lets

briefly go over a few of them:

ASU RoboSoc Devils [4] have used Model Based Designed and were able to create

simple behaviors for Nao with the combination of Simulink library for simulation and

code generation, Statefrom interface API and C/C++ interface API.

1https://spl.robocup.org/teams/

Helen Tsagkarogianni 26 June 2019

https://spl.robocup.org/teams/

3.3 Related Work

Bembelbots Frankfurt [5] started with the use of a simple state machine approach

and then transition to XABSL1 in order to implement their behaviors. Since there were

a few issues and the transition to CABSL2 was almost seamless and easily integrated

they decided to switch to CABSL and also started working on a stand alone behavior

simulator. They aim to create a simulator that will assist with the implementation of

new behaviors but also help the newest members of their team to quickly adapt.

Berlin United - Nao Team Humboldt [6] uses XABSL in order to model the

behavior of individual robots as well as the whole team. They have also implemented a

XabslEditor with the use of Java in order to assist with the development of such behav-

iors. This tool consists of a full featured editor with syntax highlighting, a graph viewer

for visualization of behavior state machines and an integrated compiler. In the same time

they work on the implementation of another tool, a visualizer for the XABSL execution

tree in order to assist in the monitor the decisions process of the robot at the run time.

B-Human [2, 3] team used in the past XABSL in order to implement their behaviors

but due to its programming restrictions they decided to implement our own behavior

engine called SMBE3 that was based on XABSL but resolved its issues. Through that

effort they designed CABSL, a language that is designed to describe an agent’s behav-

ior as a hierarchy of state machines and they are using it as behavior framework ever since.

Camellia Dragons [7] team is making use of the B-Human code release of 2016 with

extra modifications. They added five major functions, a motion module responsible for

collective play, a realistic ball perception method, different team roles, a computational

cost reduction method of self-localization system and a penalty kick behavior.

Cerberus [8] is a using a module Planner that is responsible of tracking the changes

in the robot’s environment and then decide on the next action. In its early stages it was

a market based planner and a Dec-POMDP4 based planner with the latest version being

1Extensive Agent Behavior Specification Language
2C-based Agent Behavior Specification Language.
3State Machine Behavior Engine
4Partially Observable Markov Decision Process.

Helen Tsagkarogianni 27 June 2019

3. PROBLEM STATEMENT

based on a finite state machine.

Cuauhpipiltin - formerly Eagle Knights [9] is aiming to use a local motion

planner the ND1 in order to navigate towards the ball or the goal while avoiding colli-

sions with other robots with combination of a multi-layered motion planning and control.

DAInamite [10] team implements behaviors with the use of hierarchical state ma-

chines written in Python and also modified the SimSpark3D simulator from Nao-Team

Humboldt in order to test behaviors.

Dutch Nao Team [11] team while it started with their own Python framework,

transitioned to Berlin United’s code and then B-Human code base. Currently ended up

implementing and using their own their framework since they wanted to be able to pro-

vide their team with a fully understandable codebase as well as extend documentation

assisting both old and new members.

HULKs [12] team is developing their behaviors with the use of a C++ based MSM2,

a state machine framework from Boost libraries. They also divide their implementation

into multiple state machines and switch between them with the use of a SMSwitcher.

Kouretes [13] team has used in the past the Agent Systems Engineering Methodol-

ogy (ASEME) [14, 15] in order to compose the behavior of the robotic team. ASEME

breaks down the behavior into smaller components called activities until a level of pro-

vided base activities is met. Members of our team also implemented their own CASE3

tool called Kouretes Statechart Editor [KSE] [16] in order to assist the developer with

the design of the state chart model either graphically from scratch or by first writing

liveness formulas4 [17] and transforming them automatically to an abstract state chart.

1Nearness Diagram
2Meta State Machine.
3Computer-Aided System Engineering
4The expressions that specify liveness properties, one of the two types of responsibilities of an agent.

Helen Tsagkarogianni 28 June 2019

3.3 Related Work

MI-PAL [18] team uses a Base-Control architecture in order to build their behaviors

which are encoded as LLFSMs1 and can be considered as Augmented Timed Finite-State

Machines similar to the original LISP-based behaviors of the subsumption architecture

and the Toto robot. They also developed MiEditLLFSM in Java, an editor for the cre-

ation of their behaviors.

Nao Devils [19] are using the B-Human code base of 2015 while changing and adapt-

ing the code based on their needs. Their behaviors were implemented with the use of

XABSL and later transitioned also to CABSL.

NTU RoboPAL [20] team uses FSMs to model their behaviors with multiple levels

and different pools that provide the required roles, way points and skills.

SPQR [21] initially was using their own framework called OpenRDK but then transi-

tioned to the framework developed by B-Humans and used it as a base in order to develop

their code adding their own modules about perception, coordination, decision making and

in general all the behavior. Currently they are making use of the 2017 framework.

Team-NUST [22] has implemented their own framework working with Naoqi and

creating the required modules in order to implement their teams code. The behavior

manager module is the one responsible for initiating, updating and cleanly finishing the

behaviors.

TJArk [23] started with the use of their own framework and later transitioned to the

framework provided by B-Human also utilizing CABSL for the implementation of their

behavior.

rUNSWift [24] team is using Python in order to implement the higher levels of their

behavior in favor of faster development and their behaviors were modeled in a decision

tree where the node were divided into two categories, roles and skills.

1Logic Labeled Finite State Machines.

Helen Tsagkarogianni 29 June 2019

3. PROBLEM STATEMENT

UPennalizers [25] are using three different state machines in order to implement

their behaviors. One is responsible for controlling the game flow and the other two

control the head and the body. Their framework is implemented in a combination of Lua

and C/C++.

Helen Tsagkarogianni 30 June 2019

Chapter 4

Our Approach

In this chapter, we are giving a brief overview of our progress, as well as the difficulties

we had to overcome. We go over the framework we use, we examine a synopsis of the

game states and the most important modules used in our behaviors. Most importantly,

we describe in detail the implemented robotic behaviors.

4.1 Initial Steps

Before we started developing behaviors, we had to properly set up the given tools; un-

derstand and configure the B-Human code base, our robot and everything else required.

This section is a brief overview of the procedure we followed before we reached the point

where we were able to focus solely in the behavior implementation.

4.1.1 Code Base 2017

Working with simulation.

Our implementation was initiated while trying to understand the B-Human code base

of 2017 [2]. At that time, due to courses and labs we weren’t able to test anything on

a real robot so most of our experimentation was fiddling with code and testing it on

the included simulator, called SimRobot, in order to get a better understanding of the

project’s hierarchy, since we did not have any prior experience. Through this procedure

we were able to figure out how to alternate between behaviors of one simulated robot.

To be more precise, we needed to locate the appropriate configuration file in order to

Helen Tsagkarogianni 31 June 2019

4. OUR APPROACH

bypass the soccer code that was supposed to be responsible for the role assignment of

each robot, as well as the game state transition and replace it with the actual behavior.

Since there was only one behavior included at the time1, we started experimenting

on that behavior testing different options that, based on the documentation, were im-

plemented. At that point, we realized that the majority of the code responsible for the

behavior and head control explained in the code release was rightfully removed by the

code providers, leaving us with little information regarding the usage of the modules. So,

we figured out the basic concepts of CABSL, how to make proper transitions to different

states, as well as how to control the movement of the robot with the use of the functions

provided with the example behavior.

We knew that all the rest of the modules were working properly because we could see

the representation in SimRobot views, as shown in Figure 4.1, but we didn’t know how

to access that information in our behaviors. We couldn’t, at that point, understand how

to work with obstacles that the robot would identify, but we found how to work with

field dimensions, as well as objects with local variables. A few examples were the ball

model, as well as the robot’s angle with the opponent goal.

Adding a real Nao into the equation.

At that time, we were able to begin setting up one of our robots for B-Human code,

a Nao v.5 (model of 2014). That required formatting the robot, running the required

scripts and setting up the necessary files for networking, as well as a proper setup for

the access point. Due to a peculiar setup with static IPs that was required for our older

soccer robots to be able to connect to our lab’s wireless network, we had to create a new

wireless network that would comply with the specifications of the SPL rules [26].

Additionally, we found out how to create different locations (field dimensions, land-

mark coordinates, a variety of settings, etc.) and switch between them, something very

useful for the real robot, since they were also needed for the robot’s calibration. Apart

from that, any localization would be impossible if wrong dimensions were given. It is

important to point out that the field we have in the lab follows the specifications of

earlier stages of the SPL 2.3, meaning that its dimensions as well as the goal posts are

1A striker example provided with the project to assist in understanding the code and how to call

different modules.

Helen Tsagkarogianni 32 June 2019

4.1 Initial Steps

(a)

(b) (c)

Figure 4.1: In Figure 4.1(a), we can see that the perception module can determine

obstacles and also differentiate between different robots based on the color of their jersey.

In Figure 4.1(b), we can see the belief the robot has about its location in the world state,

shown in Figure 4.1(c), after a localization scan.

different from the ones expected in the B-Human code base. As a result, in order to

test a behavior on a real robot from that point on, we have to also make sure we switch

the configuration file to the proper location. Having the location properly setup with

accurate field dimensions, we proceeded with calibrating Nao’s joints using SimRobot

and the appropriate scripts provided.

After properly calibrating Nao, we started the implementation of different head control

Helen Tsagkarogianni 33 June 2019

4. OUR APPROACH

modes that were responsible for searching and tracking the ball. Thankfully, Nao had no

issue tracking the ball in the lighting conditions in our lab nor any other field landmark,

so we didn’t attempt a camera calibration. In addition, we implemented a few small

behaviors executing basic functionality, such as following and kicking the ball around.

Since it was the first time we tested our code with a robot, we had to make many

adjustments on the speeds given to the motion engines, pointing out yet again one of

the differences between simulation and reality. We also determined a way to access the

robot’s touch sensors, as well as the bumpers. Furthermore, we figured out how to include

new behaviors in the project and be able to alternate between them, while bypassing the

soccer behavior that was responsible for the robot’s game state.

It should be noted that up to this point in the implementation we were using Linux

as the operating system hosting SimRobot on a machine that wasn’t meeting the require-

ments, since we ran into more problems when we tried executing the project on more

powerful, yet inflexible, computers (different bit-wise OS architecture and hardware not

supporting SSSE3 instruction set required for running SimRobot).

4.1.2 Code Base 2018

Shortly after, B-Human code base of 2018 [3] was released with many changes in structure

and modules in order to comply with evolving rules, but also a few improvements on

perception. We decided that we should go ahead and move all the implementations to

the new code base, since it was improved and up to date. Since the changes were only

briefly mentioned in the new code release report, we had to puzzle out how to properly

migrate the work we had done so far. That led to a lot of confusion, because the changes

in the structure made previously-accessible modules inaccessible and a few configuration

files were removed. While that might have been done for a greater good and a cleaner

project architecture, it made things more complicated for us, so we had to unriddle the

structure of the project anew.

Another major problem that was surfaced with the new release was the different

OS version that was required in order to run the code base. The code of 2017 was

using a Linux Ubuntu 17.04 distribution, while the 2018 code a Linux Ubuntu 18.04

distribution. We attempted to run the new code base to our old Linux distribution, but

we were unsuccessful. Without knowing if we would be able to transition properly to the

Helen Tsagkarogianni 34 June 2019

4.1 Initial Steps

new code base, we didn’t want to risk loosing the progress made so far. So, we setup the

new code base to a different, more powerful machine that was running Windows 10, but

didn’t have access to the robot, keeping the previous configuration unchanged.

After figuring out how to properly port everything to the new code base and testing

that everything functions correctly, we proceeded with the implementation of a few new

behaviors in simulation. There was a massive difference in compilation and running

speeds due to better hardware, so we didn’t proceed into formatting the old machine to

the latest distribution.

Moreover, we figured out how to include the executed behavior as part of the playing

state, but that created the need for a game controller signal. At that point we became

aware of the great functionality of the SimRobot, since we were able to recreate that signal

and at the same time monitor almost everything for the simulated robot. In Figure 4.2

we can see all the different views and the information provided for the simulated robot.

The same principles also apply to a real robot and there is a brief guide of how to use

them in Appendix A. What we didn’t realize at that time was that SimRobot is unable

to substitute a game controller for a real robot resulting into a few issues when running

behaviors on the physical robot. An example issue was that the object with the global

coordinates of the ball was get reset constantly.

Understanding how to properly utilize the global and local coordinates of some objects

led us to be able to monitor the velocity of the ball and make our robot react accordingly

to the ball’s, movements based on its position in the field. Also, we understood how to

access the information regarding observed objects by the robot and make decisions based

on their positions.

Since we were heavily using SimRobot, we needed to control the scenes in simulation,

as we did in our lab setup, so we had to work out how to make different scenes to serve

that purpose and also find the file that was responsible for their alteration. That also

resulted into making some scenes lighter resource-wise.

In the mean time, the computers of our lab were formatted with the required Linux

distribution and a few issues appeared with permissions, when transferring files from

Windows to Linux via git in order to test our changes on the robot. But with those

issues resolved and the computers setup properly, we were able to test each implemented

behavior on the robot and make the required adjustments. At that point we came across

the game controller issue that resulted in the constant reset of some variables, something

Helen Tsagkarogianni 35 June 2019

4. OUR APPROACH

(a) (b)

(c)

Figure 4.2: In Figures 4.2(a), 4.2(b) and 4.2(c) we can see all the different views with

information regarding the joints and the world state combined with a brief overview about

the state and the movement of Nao. In the top right of each figure there is information

regarding the behavior, head control and motion requests. Under it we see the upper, the

lower camera views and in Figure 4.2(c) we see in the center view the kick view editor.

that was not occurring in the simulation. A temporary solution, discovered by a team

member, was to bypass the handling of the game controller signals, until a way to setup

and run a game controller is found.

That was also another point where we realized the difference between the simulated

robot and the actual robot and how that difference can damage our robot. Since we

were trying to implement more sophisticated movements, we were supplying by mistake

the walking engine with a variable that had initially really high values. That resulted

into the robot executing sudden movements or even moving at maximum speed for ex-

tended periods, something that added stress to its joints. A few noticeable examples

were sidestepping at full speed which after a few steps, except from being a bit unstable,

was also constantly hitting the leading foot of the motion to the ground. Also, the very

Helen Tsagkarogianni 36 June 2019

4.2 Game State Flow

fast overall head movements were distorting the camera stream. So, we started adding

weights to some of the variables that controlled the speed of the robot resulting into

smoother motion.

Having almost finalized the implemented behaviors, which we describe in Sections 4.7

and 4.8, we started working on understanding how to utilize the different engines in order

to perform kicks. Up to this point, we were using the inWalkEngine with the default

kick provided, but we manage to include different kicks from older code base versions as

well. The different inWalk kicks that were included from older code releases are better

described as dribbles. In addition, we added the code required for generating the request

needed in order to perform kicks generated by the kick engine. At first, we used the

example kick provided, until we figured out how to use the Kike View, an editor included

in SimRobot for creating kicks and other actions with the use of inverse kinematics. We

modified the example kick to some extent, but we were unable to proceed further due to

constant SimRobot crashes, both on Windows and Linux, when we were trying to add

different poses. We still haven’t figured out why this happens and we are still unable

to run the example kick on our robot due to malfunction of its right shoulder. To be

precise, our robot is currently unable to move its right arm and as a result is unable to

fully keep its balance in order to execute the kick, resulting into falling onto the ground.

4.2 Game State Flow

Taking for granted that the perception in combination with the cognition have already

populated and going to keep the required structures regards the localization and the

surroundings of the agent updated, we can solely focus on accessing that information and

then make decision based on the world state and the robot’s surroundings.

Another thing that should be noted is that in this implementation we bypass the

game flow by using the implemented game controller and sending a signal that sets the

game state directly to playing for the simulated robot. For the real robot we achieve this

by setting our robot manually to penalized state and back. The game flow consists of

six states controlled by a module called Game Controller as do the states of the robot,

playing state and penalized state.

The game states are being handled by HandleGameState.h. In that file the robot

basically checks theGameInfo.state provided by the game controller and proceeds with

Helen Tsagkarogianni 37 June 2019

4. OUR APPROACH

initial

ready

set

playing

finished

notPenalize

penalized

Figure 4.3: Game Controller flow chart.

the execution of the behavior defined for that state. The game states are the following,

each one with its own set of rules: initial, ready, set, playing and finished. The robot

states are identical with the addition of two more: penalized and getUp. The game flow

is represented in Figure 4.3.

initial

This is the initial game state. In this state the head control mode is initialized and the

robot is being set to a stand high pose, a natural pose defined as a special action. The

Helen Tsagkarogianni 38 June 2019

4.2 Game State Flow

robot is not allowed to do any other kind of movement.

ready

In this state the robots must move to kick off positions. Based on the RoboCup regu-

lations [26], there is a predefined time where the robots must resolve their position and

their side of the field and move to their predefined positions based on their role.

set

When this game state is given by the game controller the robots should stand still and

wait for the game state to transition to playing or in the latest competition to hear the

referee whistle. While they are not allowed to move, they can move their head around or

attempt to get up if fallen.

playing

This is where the match starts and the robots play soccer, always complying by the game

rules. Robots can be penalized manually in this state by pressing the chest button twice

and in quick succession. The behaviors implemented in this thesis are a part solely of

the the playing state.

finished

This is the game state that runs at the end of a half and also at the end of the match. It

could host cheering or safe shutting down.

getUp

This state is the only state that is not provided by the game controller. Instead, it

depends on theFallenDownState responsible for handling the case when the robot falls.

It is an independent state checked on the higher levels of the behavior, in the same level

as the game states, and in the case of a fall the get up motion is decided by a special

action.

Helen Tsagkarogianni 39 June 2019

4. OUR APPROACH

penalized

When a robot violates the game state rules, it is being set to penalized either by the game

controller or manually while pressing the chess button. While in the penalized state it is

not allowed to move in any way, neither both body nor head.

Without a game controller running and connected to the network with our soccer

robot, we sent the playing state signal via the SimRobot only for the virtual while we

were unable to do the real robot. In the simulation, the game controller module functions

properly but in the remote control mode, where we are connected to a real robot, we

concluded that the connection SimRobot creates with our robot is that of a team mate

and not of game controller. As a result, sending any signal regards the playing state has

no effect. The only way that we found so far in order to go to the playing after the initial

state is to penalize and remove the penalize manually for our robot. Not having a game

controller can cause a few more issues that we will examine later on.

Our implemented behaviors are focused only on the playing state and sometimes

include actions that should be done on different game states for the sake of simplicity.

4.3 CABSL Behavior Development

In our implementation, the C-based Agent Behavior Specification Language (CABSL)

[27] is being used which is the successor of XABSL [28]. This representation has several

advantages over its predecessor including a very small coding overhead, support of any

datatype used in C++, the ability to perform any kind of C++ computation and also

due to its nature, IDEs are able to assist in the code generation. It also has several

disadvantages; it allows grammar violations, is limited in C++ and does not directly

support on the flight behavior changes although that can be implemented in a different

way.

The program that controls a robot is executed in cycles; in each cycle it collects

information from its environment and based on the observations makes decisions and

acts in order to accomplish its goal.

This approach treats each behavior of a robot or an agent, in general, as a finite

state machine, similar to a Mealy machine, called option. Each option is then divided

Helen Tsagkarogianni 40 June 2019

4.3 CABSL Behavior Development

into states and each state is defined by two sections, transition and action. In the

transition section, a transition to another state occurs, if a specific condition defined by

the programmer is satisfied. In the action section, a set of commands is being executed,

as long as we remain in that state.

In our case, in each cycle, all the reachable options based on the state of the robot are

being called and alternate based on the truthful transitions, executing the actions listed

on their active states. As a result the implemented behaviors are considered a mapping

of the world state in combination with the agent’s actions that resulted after a specific

sequence of visited states.

For instance, let’s assume we are implementing a behavior called ourBehavior, as

shown in Listing 4.1. This behavior consists of three states. State firstState is the ini-

tial state, where the execution begins. When we initially call ourBehavior, we transition

to the firstState. In each execution cycle, we remain in that state constantly checking

conditionA and executing the actions included in the action section of the state. The

transitions are checked before the actions are executed. When the conditionA becomes

true, we transition to secondState using the goto keyword. After transitioning to the

secondState, we first check in sequence whether or not conditionB or conditionC become

true in order to trigger another transition. If neither is true, we execute the action of

that state.

Helen Tsagkarogianni 41 June 2019

4. OUR APPROACH

Listing 4.1: CABSL example

option(ourBehavior)
{

initial_state(firstState)
{

transition
{

if (condition_A)
{

goto secondState;
}

}
action
{

// Do something
}

}

state(secondState)
{

transition
{

if (condition_B)
{

goto firstState;
}
if (condition_C)
{

goto thirdState;
}

}
action
{

// Do something else
}

}

state(thirdState)
{

transition
{

MySecondBehavior(); // We can also call another behavior.
}
action
{

// Better not to do something since you are calling another behavior!
}

}
}

Helen Tsagkarogianni 42 June 2019

4.4 Modules used in Behavior Development

There are other useful symbols define that can be used for conditioning the state

transitions such as option time, state time, action done, action aborted.

option time stores the time since the first execution cycle of the option. We don’t

use this symbol in the developed behaviors.

state time is a timer that stores the duration that the running option stays in the

same state after the first execution cycle of the switch. We use this symbol in many

different states of the implemented behaviors as we will see in the sections that follow.

action done is a symbol that becomes true if the last sub-option is executed in the

previous execution cycle reached a target state. Previously we mentioned that an option

is able to call another options. These sub options can inform the option that called them

about their state. It used in most motion requests.

action aborted similar with the action done only this time this symbol becomes

true if the sub-option reached the aborted state.

4.4 Modules used in Behavior Development

4.4.1 Walking

There are three different ways to control the movement of our robot. Either by setting

the speed of the motion with WalkAtRelativeSpeed and WalkAtAbsoluteSpeed, or by

setting a target and also the speed we wish the robot to use in order to reach the given

target, WalkToTarget. We mostly make use of the first option in our implemented

behaviors, while the second is an alteration of the first that uses normal speed values

instead of a the percentage of the maximum speed that is used in the first.

WalkAtRelativeSpeed

With this option, a motion request is created with three different speeds, one for the

rotation of the robot and another 2 for the x and y axes, that we provide to the mo-

tion in the form of a Pose2f vector. These values are a percentage of the maximum

speed and take values from -1.f to 1.f. As mentioned in the option declaration given,

providing the option with Pose2f(0.f, 1.f, 0.f) lets move the robot forward at full

speed, Pose2f(0.f, 0.5f, 0.5f) lets move the robot diagonal at half of the possible

speed while Pose2f(0.5f, 1.f, 0.f) lets move the robot in a circle. In addition, with

Helen Tsagkarogianni 43 June 2019

4. OUR APPROACH

Pose2f(1.f, 0.f, 0.f) the robot rotates around itself left, anticlockwise while using a

negative value, the robot will rotate right, clockwise. During the walkAtRelativeSpeed

motion, the robot walks constantly, even when the speed becomes zero. When that hap-

pens, the robot keeps walking in place. In order to make the robot stop the walking

motion we must call the motion request Stand(). The maximum value of all the speeds

is 1.0 and from what we understood , even if we set a higher value, the robot is unable

to go any faster.

We are able to manipulate the speeds given to this motion request by providing the

speed in a manner seen in Listings 4.2 and 4.3. In the first example, by using the angle

of the ball relative to the robot as an input for the z axis that controls the rotation of the

robot, our robot is able to react to the ball movements. As a result, it constantly tries

to turn towards the ball minimizing its angle with the ball. Adding a forward movement

(0.8f) to the motion results to a movement where the robot actively chases the ball. For

instance, if the ball is located -30 degrees relative to the robot and we pass the -30.f

to the rotation ,the robot will start turning right towards the ball(at maximum possible

speed). In the same time, that angle is reduced and the updated value is given to the

option resulting to the robot walking towards the ball but also chasing it in case the ball

changes position. In the second example, we see a more complicated movement in order to

walk and align at the given observing position. Instead of breaking it into smaller states,

we can do the following. While turning, if the robot’s x reaches the value -900.f, the

result of the expression -900.f - theRobotPose.translation.x() will become zero.

As a result, it will keep moving sideways in order to match its y coordinate with that of

the ball’s global position. In other words until the theTeamBallModel.position.y() -

theRobotPose.translation.y() become zero. The problem with this approach is that

the produced speeds have really high values and need to be adjusted with weights. In

addition, it is important to understand that those two motions occur in the same time

and we constantly check the robot’s coordinates in order to determine if it reached the

required location in order to transition to a different state.

Helen Tsagkarogianni 44 June 2019

4.4 Modules used in Behavior Development

Listing 4.2: Walk to ball example.

state(walkToBall)
{

transition
{

// Check if the ball has been seen recently. Could also use
theBehaviorParameters.ballNotSeenTimeOut if properly setup.

if(theLibCodeRelease.timeSinceBallWasSeen > 3000)
{

// If not, we need to relocate it.

OUTPUT_TEXT("searchForBall");
goto searchForBall;

}
}
action
{

/* A simple movement in order to walk towards the ball. */
WalkAtRelativeSpeed(Pose2f(theBallModel.estimate.position.angle(), 0.8f,

0.f));

}
}

Listing 4.3: Walk to observing position example.

// The robot walks to the predefind observation point. In this case its his position
as a defender.

state(walkToObservingPosition)
{

transition
{

// Check if the ball has been seen recently.

if (theLibCodeRelease.timeSinceBallWasSeen > 3000)
{

// If not, we need to relocate it.

OUTPUT_TEXT("searchForBall");

goto searchForBall;
}

// Check if the ball is on your side of the field where it actually starts
getting dangerous.

if (theTeamBallModel.position.x() < 0)
{

OUTPUT_TEXT("moveToBallWhileBlocking");

Helen Tsagkarogianni 45 June 2019

4. OUR APPROACH

goto moveToBallWhileBlocking;
}

// Check if the robot reached the observing position.
// TODO maybe I should add the angle with the ball as well.
if (theLibCodeRelease.between(theRobotPose.translation.x(), -910.f, -905.f)

&& (theLibCodeRelease.between(theRobotPose.translation.y(),
theTeamBallModel.position.y() - 5.f,theTeamBallModel.position.y() +
5.f)))

{
OUTPUT_TEXT("standingAndObserving");

goto standingAndObserving;
}

}
action
{

// Call the look at ball with the coordinates of the ball relative to the
robot.

LookAtBall(Vector3f(theBallModel.estimate.position.x(),
theBallModel.estimate.position.y(), 0.f));

// Also head towards the observing position.

WalkAtRelativeSpeed(Pose2f(theBallModel.estimate.position.angle(), -900.f -
theRobotPose.translation.x(), theTeamBallModel.position.y() -
theRobotPose.translation.y()));

}
}

WalkToTarget

In order to use this option we need to supply the motion engine with two Pose2f vectors.

The first one is the speed vector while the second vector indicates the coordinates of the

destination relative to the robot. We haven’t worked extensively with this option so we

haven’t yet utilized its full potential. We are mostly using this option when we want to

handle the alignment of the robot with a target but only under certain conditions, for

instance performing a kick. An example can be seen in Listing 4.4 where we see a state

that handles the robot alignment with the goal. In this state we also see the selection

of the appropriate foot based on the position of the ball in the field. It must be noted

that we don’t strictly follow the guidelines of CABSL since we are using conditions in

the action section. This is a subject for future work.

Helen Tsagkarogianni 46 June 2019

4.4 Modules used in Behavior Development

Listing 4.4: Align with the goal example.

// In this state the robot align behind the ball towards the goal.

state(alignWithGoal)
{

transition
{

// Check if the ball has been seen recently.

if(theLibCodeRelease.timeSinceBallWasSeen > 300)
{

// If not, we need to relocate it.

OUTPUT_TEXT("searchForBall");

goto searchForBall;
}

// If properly aligned kick the ball.
// The decision about the shooting foot must go a step higher. The foot

should be decided higher in the hierarchy and then be used here.

if (((theLibCodeRelease.between(theBallModel.estimate.position.y(), 40.f,
60.f) &&
(theRobotPose.translation.y() >= 0.f)) ||
(theLibCodeRelease.between(theBallModel.estimate.position.y(), -60.f,

-40.f) &&
(theRobotPose.translation.y() < 0.f)))
&&
(theBallModel.estimate.position.x() <= 200.f) &&
(std::abs(theLibCodeRelease.angleToGoal) < 5_deg))

{
OUTPUT_TEXT("kickToGoal");

goto kickToGoal;
}

}
action
{

// Call the look at ball with the coordinates of the ball relative to the
robot.

LookAtTargetAndBall(Vector3f(theFieldDimensions.xPosOpponentGoal, 0.f, 0.f),
Vector3f(theBallModel.estimate.position.x(),
theBallModel.estimate.position.y(), 0.f));

// Call the look at ball with the coordinates of the ball relative to the
robot.

if (theRobotPose.translation.y() >= 0.f)
{

WalkToTarget(Pose2f(80.f, 80.f, 80.f),

Helen Tsagkarogianni 47 June 2019

4. OUR APPROACH

Pose2f(theLibCodeRelease.angleToGoal,
theBallModel.estimate.position.x() - 200.f,
theBallModel.estimate.position.y() - 50.f));

}
else
{

WalkToTarget(Pose2f(80.f, 80.f, 80.f),
Pose2f(theLibCodeRelease.angleToGoal,
theBallModel.estimate.position.x() - 200.f,
theBallModel.estimate.position.y() + 50.f));

}
}

}

4.4.2 Kicking

Kicking the ball can be achieved either with the use of the Kick Engine, the Walk Engine

or even with a special action although there was no work done with the latter.

The principle is the same in all implementations. Each motion has a number of phases,

each one with different duration. Each phase can have different values for every joint of

the robot. The sequence of the different phases compile a motion. The difference between

the three different motions seems to be in the way these values are stored, represented

and then used.

Kick Engine

In order to utilize the kick engine, a kick file .kmc needs to be created and stored in the

Config folder. Creating such a file can be achieved with the use of KikeView integrated

in SimRobot. The same can be also done manually but not recommended since there are

a lot of variables to consider when creating a motion. More information about motion

creation can be found in the appendix. A motion request for the kick engines can be seen

in Listing 4.5

Helen Tsagkarogianni 48 June 2019

4.4 Modules used in Behavior Development

Listing 4.5: Forward kick request.

/**
* @param mirrored True or false if we want the kick to be mirror. In a way its a

choise of the kick foot.
*/
option(ForwardKick, (bool)(false) mirrored)
{

/** Set the motion request. */

initial_state(setRequest)
{

transition
{

// When you are ready.

if (theMotionInfo.motion == MotionRequest::kick)
{

goto requestIsExecuted;
}

}
action
{

theMotionRequest.motion = MotionRequest::kick;
theMotionRequest.kickRequest.kickMotionType = KickRequest::kickForward;
theMotionRequest.kickRequest.mirror = mirrored;
theMotionRequest.kickRequest.autoProceed = true;
theMotionRequest.kickRequest.boost = false;

}
}

/** The motion process has started executing the request. */

target_state(requestIsExecuted)
{

transition
{

if (theMotionInfo.motion != MotionRequest::kick)
{

goto setRequest;
}

}
action
{

theMotionRequest.motion = MotionRequest::kick;
theMotionRequest.kickRequest.kickMotionType = KickRequest::kickForward;
theMotionRequest.kickRequest.mirror = mirrored;
theMotionRequest.kickRequest.autoProceed = true;
theMotionRequest.kickRequest.boost = false;

}
}

}

Helen Tsagkarogianni 49 June 2019

4. OUR APPROACH

Walk Engine

Another way to perform a kick like motion is via the Walk Engine. In this case, there

is no tool that we know of to assist in the generation of a motion so the kick files must

be created with a text editor in the form of a .cfg file. Similar files can be found again

in the Config folder of the project in order to be used as a reference. The resulting kick

extends the walking motion as an inWalkKick and in order to use it we need to provide

the option with a WalkKickVariant that includes the type of the kick, the leg that is

going to execute the motion and also the starting pose of the kick or in other words the

coordinates from where the motion should start.

4.5 Developed Common HeadControl Modes

The HeadControl option is implemented as an interface and runs in parallel with the

main behavior. As the name states, this option is responsible for controlling the head of

the robot by the use of the HeadControlModes we implemented using the LookForward

head mode as a reference that was already included, altering slightly. The implemented

HeadControlModes are the following:

• LookLeftAndRight

• LookAtBall

• LookAtTarget

• LookAtTargetAndBall

LookForward

This is the simplest of the head control modes so far. It is responsible for pointing the

head of the robot forward to a default position. The default position of the robot’s head

when looking forward is with a pan1 of 0 and a tilt2 of 34. That results to a slight bend on

the robots head downwards in order to be able to cover with both top and bottom camera

its feet and the field in front of the it. This is achieved by using the SetHeadPanTilt

providing it with the pan and tilt mentioned previously and the speed in degrees of the

1Pan is for a side to side motion.
2Tilt is for an upwards to downwards motion.

Helen Tsagkarogianni 50 June 2019

4.5 Developed Common HeadControl Modes

transition we wish the robot to complete. LookForward is also used in most of the other

head control modes as an initialization state.

LookLeftAndRight

The LookLeftAndRight mode was implemented because a scanning motion for the head

was needed when the robot is searching for the ball. The motion is divided into three

states. The initial state calls the LookForward mode and then monitors when the head

will stop moving by checking the output of the Head Motion Engine. As soon as the

head comes to a stop, we transition to the next state, lookLeft. In this state, we set

the head’s pan while keeping the tilt unchanged with the use of the SetHeadPanTilt. In

order for the robot to turn his head left we need to use positive value. In this case we

use 0.85 with a speed of 70 degrees in order to do a smooth motion and without reaching

angles that might stress the head joints. When the head stops moving again, meaning

that most probably it reached the targeted position, we transition to the next state,

lookRight. In this state, we set the head’s pan to a negative value, -0.85 in order for the

head to rotate to the opposite direction while keep checking the Head Motion Engine and

from this point on the mode continues looping between lookLeft and lookRight until

the HeadControlMode is changed by another state of the behavior control. The code of

this head mode can be seen in Listing 4.6

Listing 4.6: Head mode Look left and right.

/** An option intended for scanning purposes in order for the robot to determine
* several things regarding its surroundings.
* The time of a full rotation is now unknown.
* */

option(LookLeftAndRight)
{

/* Simply sets the necessary angles */

initial_state(lookForward)
{

transition
{

if(state_time > 100 && !theHeadMotionEngineOutput.moving)
{

goto lookLeft;
}

Helen Tsagkarogianni 51 June 2019

4. OUR APPROACH

}
action
{

/* > Pan is from side to side. As a result of this the +0.90 degres is to
the left of

* the robot, while -0.90 is to the right.
* > Tilt is from up and down. This time the + is for the down ward

movement of the
* robots head while the - moves the robot head upwards.
* > The last parameter is the speed that the robot is asked to do the head

movement.
*/
//SetHeadPanTilt(0.f, 0.38f ,150_deg);
LookForward();

}
}
state(lookLeft)
{

transition
{

if (state_time > 100 && !theHeadMotionEngineOutput.moving)
{

goto lookRight;
}

}
action
{

SetHeadPanTilt(0.85f, 0.38f ,70_deg);
}

}
state(lookRight)
{

transition
{

if(state_time > 100 && !theHeadMotionEngineOutput.moving)
{

goto lookLeft;
}

}
action
{

SetHeadPanTilt(-0.85f, 0.38f ,70_deg);
}

}
}

LookAtTarget

In this mode, the joints of the head are set to the coordinates of the target relative

to the robot, provided to the option as a Vector3f target which is a vector containing

Helen Tsagkarogianni 52 June 2019

4.5 Developed Common HeadControl Modes

three float values, x, y and rotation since it is required from the Head Motion Request

SetHeadTarget. That request is then passed to the Head Motion Engine that handles

the positioning of the head. To transform a global coordinate to a local angle we can use

theRobotPose.inversePose * Vector2f(target.xPos, target.yPos)).angle();. The

code of this head mode can be seen in Listing 4.7

Listing 4.7: Head mode Look at target.

/** Turns the head towards the target. The target’s coordinates are relative to the
robot(local).

* */

option(LookAtTarget, (const Vector3f&)(Vector3f::Zero()) target)
{

/* Simply sets the necessary angles */

initial_state(lookForward)
{

transition
{

if(state_time > 100 && !theHeadMotionEngineOutput.moving)
{

goto lookTarget;
}

}
action
{

LookForward();
}

}

state(lookTarget)
{

transition
{
}
action
{

// Local coordinates.

SetHeadTarget(target, 100_deg);
}

}
}

Helen Tsagkarogianni 53 June 2019

4. OUR APPROACH

LookAtBall

Exactly the same as LookAtTarget we use it while providing it with the ball’s local

coordinates. It was created with a different intention. The main idea was that the be-

havior wouldn’t give the coordinate of the ball to HeadControl. Instead, the HeadContol

should have access to the BallModel and get the coordinates by accessing the object of

that class but this is not implemented because it needs changes in the project’s hierarchy.

As the robot moves, the coordinates get updated and as a result the robot tracks the

given target.

LookAtTargetAndBall

In the LookAtTargetAndBall we pass as arguments two different targets. One for the

position of the ball and one more for the target we want to observe, both with their

coordinates relative to the robot. The same principle such as LookLeftAndRight are

followed in this mode. Instead of left and right we cycle through the state responsible

for turning the head towards the target, lookTarget and lookBall that handles the

position of the ball.

Additional Head Control Modes

There are a few more head control modes included which try to handle targets on the

ground, with the use of their global coordinates, but that motion request while included

it does not seem to have the expected results so it has not been utilized so far.

4.6 Developed Common Behavior States

In order to better understand the concept of behavior control as well as the programming

environment, four main behaviors were developed:

• Simple Striker

• Simple Defender

• Simple Goalkeeper

• Ball Control

Helen Tsagkarogianni 54 June 2019

4.6 Developed Common Behavior States

While the first three have a very distinct purpose, Ball Control combines elements

from all the rest behaviors trying to implement a soccer-like behavior that wouldn’t be

directly used in a soccer game. In each behavior, different implementations are being

tested in order to fully understand and utilize the language and the tools provided by

B-Humans.

From this point onward we need to denote that some states are essential components

of the rest of the behaviors and are being used in their integrity or with a minor changes.

Those states include:

• Localization scan - localize

• Searching the ball - searchForBall

• Sidestepping - patrolLeft/Right

localize

The initial state of every implemented behavior is the state localize. In this state,

before the robot starts moving, the robot uses the HeadControlMode LookLeftAndRight

in order to scan its surroundings and determine its position on the field. This brief state

turned out to be really helpful on reducing a bit the unavoidable localization error so it

is being used in every other behavior implemented in this thesis. The duration of this

state is 8 seconds.

searchForBall

This state is responsible of locating the ball by checking the time since the ball was last

seen. That variable it seems to be updated in every frame that the ball is located in the

robot’s field of view. When the robot sees the ball, the value doesn’t go beyond 20 ms.

Proceeding with the ball search while the timer has just surpassed 20 ms will result to

the robot constantly searching for the ball so we concluded that when the ball has not

been seen for more than five seconds, 5000ms allowing room for some movements, is when

we need to relocate it. As soon as the ball enters the field of view, the timer is being

updated. Checking for a small value of that variable, given that we are in searchForBall

state, is the condition responsible for transitioning the behavior control to the next state.

Helen Tsagkarogianni 55 June 2019

4. OUR APPROACH

patrolLeft/Right

patrolLeft is the state where the robot moves sideways based on the ball’s velocity in

order to follow its path while sticking on a specific trajectory based on the implementing

behavior. It also keeps track of the ball velocity and angle with the robot so it can

decide the next transition. In order to implement such a movement we provide to the

WalkEngine values for the angle, x and y coordinates via the WalkAtRelativeSpeed.

patrolRight is almost identical with patrolLeft state. The only difference is the

speed value that we provide to WalkEngine using WalkAtRelativeSpeed that has a

negative value for the y axes in order to achieve a sideways motion on the opposite

direction.

4.7 Developed Soccer Behaviors

4.7.1 Simple Striker

With the development of the Simple Striker we wanted to experiment with the obstacles

provided from the perception as well as the different dribbles. Our striker locates the ball

and walks towards it. Checks its position relative to the ball, turns towards the opponent

goal and checks whether or not its path is blocked by another robot. If so, it chooses

to dribble based on the obstacle position in front of it until it goes close enough to the

goal. If its path is clear, it kicks straight to the goal. The behavior consists the following

states and its flow chart can be seen in Figure 4.4:

• localize

• searchForBall

• walkToBall

• alignWithGoal

• alignLeftDribble/RightDribble

• decideKick

• kickToGoal

• dribbleLeft/dribbleRight

Helen Tsagkarogianni 56 June 2019

4.7 Developed Soccer Behaviors

localize

walkToBall

searchForBall

decideKick

alignWithGoal alignLeftDribble alignRightDribble

kickToGoal dribbleLeft dribbleRight

Figure 4.4: Simple Striker flow chart.

walkToBall

In this implementation the walkToBall state is a simple ball approach. The robot walks

directly to the ball while using its local coordinates and checking if the ball stopped

moving and its also close enough in order to switch to the state where the kick is being

decided. The head tracks the ball with the use of the HeadControlMode LookAtBall.

decideKick

After reaching the ball, the next step is to decide the type of the kick our striker will

perform. The type depends on the number of obstacles that are considered opponents

and their position on the field based on the robot’s field of view while looking at the ball.

Obstacles inside the field can be characterized as one of the following:

• goalpost

• unknown

Helen Tsagkarogianni 57 June 2019

4. OUR APPROACH

• someRobot

• opponent

• teammate

• fallenSomeRobot

• fallenOpponent

• fallenTeammate

Regardless of the type, each obstacle includes information about its center, left and

right point. In this state we make use of the variable that gives information regards the

center of the obstacle. Knowing the dimensions of a Nao, we are able to calculate if the

striker can keeps its course without the obstacle interfering and avoiding collisions. If

there is an obstacle but is not blocking the robot’s path to the goal it proceeds with

the alignment with the goal in order to perform a kick it towards it. If that is not the

case then the robot checks for an opening. If the y coordinate of the obstacles center

is negative or zero it proceeds on align for left dribble and if negative for right dribble.

While in this state the robot is not moving executing the motion request Stand() and

looking at the ball with the use of LookAtBall.

alignWithGoal

After deciding to kick towards the opponent’s goal, the robot needs to properly align

itself behind the ball towards the goal. That movement depends on the angle the robot

has when entering this state. If the angle is greater than 60 degrees then the robot needs

to do a side ways move, choosing the sorter path, either clockwise or anticlockwise until

the angle with the target is between acceptable values. This is achieved with the use of

the local coordinates of the ball and moving sideways in order to minimize the robot’s

angle with the goal. It also checks its position on the field, as seen in Figure 4.5, in

order to determine the foot that will execute the kick. Different alignment is required

for each foot. If it is located on the upper half of the field the kick will be executed with

the left foot so it needs to position itself slightly to the right of the ball. Similarly, for

the lower half of the field, the kicking foot is the right so it needs to be position itself

more to the left of the ball. It constantly checks its angle with the goal and when that

variable reaches an acceptable value the behavior transitions to the kickToGoal. Also

Helen Tsagkarogianni 58 June 2019

4.7 Developed Soccer Behaviors

Figure 4.5: On the upper part of the field, where the robot’s y coordinate is positive, our

striker aligns itself and kicks based on the left foot. The same principle if followed for

the right foot in the lower part of the field. Its important to note that its own side of the

field is always positioned at the plain where x is negative.

the head control mode moves the head between the ball and the goal position with the

use of HeadControlMode LookAtTargetAndBall.

kickToGoal

When properly aligned with the goal, the robot proceeds to kick the ball. In this state,

while the head control mode LookAtBall handles the head motion, the robot proceeds

into kicking it towards the goal. That is achieved with the use of an InWalkKick, the

walk kick variant forward with the use of the appropriate kicking leg while also providing

to the engine the starting position of the motion. When that motion is finished it triggers

the flag action done. Using that flag in combination with a counter that records the

amount of time the control is in this state the robot decides whether or not to proceed to

the next state. This is useful in case something goes wrong the kick and is never executed

correctly since it will be able to continue with the execution of the behavior.

Helen Tsagkarogianni 59 June 2019

4. OUR APPROACH

alignLeftDribble/alignRightDribble

Since there is an obstacle blocking the robot’s path to the goal our striker needs to avoid

it. It needs to position itself in such a way in order to align for the appropriate foot

for each dribble. Since we want to dribble towards the goal, the angle with the goal is

again being used in order to perform the alignment but with a 10 degrees offset. The

inWalkKicks that will follow these alignment maneuvers instead of a straight forward

kick, turn slightly the torso of the robot towards the orientation of the kick so it needs

to be positioned a bit differently. Also it needs to be noted that alignLeftDribble

transitions to dribbleLeft, while alignRightDribble to dribbleRight but the kicking

leg is the opposite since the robot is performing a dribble towards the sides.

dribbleLeft/dribbleRight

In order to perform a dribble we are sing the inWalkKicks with the turnOut WalkKick

parameter as well as the appropriate leg, left for right dribble and right for left dribble.

Each dribble has a different starting pose. Also the resulting kick is a movement with

a slight longer execution time. So, in order for the dribble to execute fully we need to

add am additional of 3 ms to the execution time of the state before transitioning back to

walkToBall. During the dribbles we use the HeadControlMode LookAtTargetAndBall

for extra accuracy.

4.7.2 Simple Defender

The next behavior is the simple defender where we tried out different approaches of the

patrol movement. The defender’s area of action is consider to be below the half line since

it is responsible of protecting its own goal. As results, this behavior constantly checks the

position of the ball and re-positions the robot close to it without passing the field line.

In addition, if the ball reaches its own part of the field, it proceeds on kicking it away.

This behavior consists the following states and its flow chart can be seen in Figure 4.7:

• localize

• searchForBall

• decideNextMove

• moveToBallWhileBlocking

Helen Tsagkarogianni 60 June 2019

4.7 Developed Soccer Behaviors

(a) (b)

(c)

Figure 4.6: In Figure 4.6(a) we can see when there is no need for a dribble while on

Figures 4.6(b) and 4.6(c) we see when a left and when a right dribble is being chosen.

• alignForKick

• kickAwayFromGoal

• walkToObservingPosition

• standingAndObserving

• patrolLeft/patrolRight

decideNextMove

After the state localize that is responsible for localization, our behavior control transi-

tions to the state decideNextMove. In this state, the defender checks the global position

of the ball in order to act accordingly. If the ball is located at its own part of the

field, then the defender proceeds into walking towards the ball in order to kick it away

and so the behavior control transitions to moveToBallWhileBlocking. If the ball is on

the opponent’s half of the field it then heads to the observing position with the state

walkToObservingPosition. During this state the robot stands still with the use of

motion request Stand and tracks the ball with LookAtBall.

Helen Tsagkarogianni 61 June 2019

4. OUR APPROACH

localize

searchForBall

decideNextMove

moveToBallWhileBlocking

walkToObservingPosition

alignForKick

standingAndObserving

kickAwayFromGoal

patrolLeftpatrolRight

Figure 4.7: Simple Defender flow chart. All of the states except kickAwayFromGoal lead

to searchForBall but the edges are removed from the chart for the sake of clarity.

Helen Tsagkarogianni 62 June 2019

4.7 Developed Soccer Behaviors

moveToBallWhileBlocking

In this state, our defender walks straight to the ball while checking if by any chance

it passed the center line again, something that would also trigger a transition to the

behavior control. In that case, walkToObservingPosition is the state that would be

called. If that does not happen, the robot keeps moving towards the ball until it reaches

the required distance in order to transition to alignForKick that is responsible for the

realignment of the robot before the kick. While moving towards the ball our defender

tracks it with the LookAtBall.

alignForKick

At this point, our robot is at a respectable distance from the ball and starts walking

side ways in order to properly align with the ball and the angle that is needed for the

kick to the ball away toward the opponent goal. The head keeps alternating between the

ball and the opponent goal with the use of LookAtTargetAndBall while checking if the

ball has been moved further away. If so, it will stop aligning and try to move closer to

the ball with the state moveToBallWhileBlocking and if it passed the center line it will

transition to walkToObservingPosition. It also checks the angle it has with the ending

target.

The alignment move is also divided into two parts although is important to note that

we are now referring to the movements the robot executes after arriving to the ball. The

first part is responsible for the movement required if the target requires a turn bigger that

60 degrees while the second part handles the movement pass that point. Also, it takes

into consideration and chooses the smaller angle as well as the proper foot for a smooth

kick. When the required angle and proper distance has been reached it transitions to

kickAwayFromGoal.

kickAwayFromGoal

Having properly align with the target and the ball the robot proceeds to kick the ball

away from its side of the field and its goal while looking at the kicking target with the

use of LookAtTarget. The kicking foot depends on the position of the robot on the field

as seen in the striker behavior. After the kick has been executed or a specific time has

Helen Tsagkarogianni 63 June 2019

4. OUR APPROACH

past the behavior control transitions back to decideNextMove in order to conclude on

the next move.

walkToObservingPosition

If the ball is located on the opponents side of the field the defender walks to the observing

position. This position is located on a line a bit behind of the center line as shown in the

Figure 4.8, where x = -910 while y depends on the global coordinate y of the ball. That

results into an observing position that changes based on the ball position. In addition,

since the value for the sideways motion can be around 1.f most of the time due to the

nature of the calculation we limit the motion speed as follows. If the absolute value of

the resulting speed is way beyond 0.85f we set it to 0.85f and using the fraction of the

speed divided by its absolute value we extract the sign of the motion. While in this state

the robot keeps tracking the ball with LookAtBall through out the movement and also

checks whether or not it reached the observing position in order to transition to the state

standingAndObserving.

standingAndObserving

After reaching the observing position, our defender stands still and passively tracks the

ball with LookAtBall as long as its velocity is zero. As soon as the ball starts moving, its

velocity becomes non zero and based on its sign it will either transition to patrolLeft if

its positive or patrolRight if its negative. It also checks if it pass to its side of the field

in order to transition to moveToBallWhileBlocking.

patrolLeft/patrolRight

While being in the standingAndObserving state if the ball starts moving, the defender

executes a side way movement depending on the movement of the ball. In the same man-

ner, tracking the ball’s velocity provides to the defender information regards its move-

ment. So, it constantly checks the local velocity of the ball while tracking the ball with

LookAtBall and in the same time being ready to transition to moveToBallWhileBlocking.

Also, it seems that when the robot looses track of the ball then its velocity relative to

the robot also becomes zero. As a result, we can use this state as a correction state for

small movements of the ball but also a brief state before walkToObservingPosition.

Helen Tsagkarogianni 64 June 2019

4.7 Developed Soccer Behaviors

(a)

Figure 4.8: Simple Defender positioning.

4.7.3 Simple Goalkeeper

The last soccer behavior implemented is a simple goalkeeper. His objective is to protect

its own goal by blocking its path towards its goal and kicking the ball away when it

enters its penalty area. It also assists its team by scanning the field and providing them

with useful information regards their location, the opponents location as well as the

ball’s location. For that to be achieved it should be able to identify the goal’s location,

to position itself there and maneuver accordingly. The states for this behavior are the

following and the behavior’s flow chart can be seen in Figure 4.9:

• localize

• searchForBall

• searchForBallWithMovement

• turnToGoal

• walkToGoal

Helen Tsagkarogianni 65 June 2019

4. OUR APPROACH

• alingInfrontOfGoal

• turnToCenter

• scanField

• trackTheBall

• activeTracking

• alignForKick

• kickAwayFromGoal

• blockTheOpenCorner

• trackTheBallWhileBlockingTheCorner

An interesting thing to note is that during the localization state, localize, it is not

required for the goalkeeper to see the goal posts, it can conclude on their location based

on other landmarks since the field dimensions are known and consider to be ground truth.

searchForBall

This state is the same used on the rest of the behaviors with only a couple of differences.

Firstly, the goalkeeper does not revolve around itself when searching the ball since the ball

should be located inside the field. Additionally, if the behavior control stays more than

20 seconds in this state it could mean that there is an issue with the localization, thus it

transitions to searchForBallWithMovement. If the ball is located, then it transitions to

activeTracking.

searchForBallWithMovement

Since there is not any other robot to assist with the localization, the goalkeeper might get

stuck on a dead lock when reaching its goal. This occurs because there are no landmarks

past that point so it can easily misapprehend its position, specially its angle. So, we

concluded that if it takes way too long for our goalkeeper to locate the ball it should act

in order to find it. In this state, the goalkeeper continues its search for the ball while

turning around itself as the rest of the behaviors do. This way, it is also able to spot

field landmarks such as the penalty line and the penalty mark. The presence of such

landmarks is able to resolve any issues in localization, allowing the behavior control to

proceed normally. As soon as the ball is located, it transitions to activeTracking as the

normal searchForBall does.

Helen Tsagkarogianni 66 June 2019

4.7 Developed Soccer Behaviors

localize

turnToGoal

walkToGoal

alingInfrontOfGoal

scanField

trackTheBall

turnToCenter

activeTracking

alignForKick

blockTheOpenCorner

kickAwayFromGoal

trackTheBallWhileBlockingTheCornersearchForBall

searchForBallWithMovement

Figure 4.9: Simple Goalkeeper flow chart. The states scanField, trackTheBall,

alignForKick, blockTheOpenCorner, trackTheBallWhileBlockingTheCorner and

activeTracking also lead to searchForBall but the edges are not displayed on the

graph for clarity.

turnToGoal

After having concluded on its position on the field, the next step is to turn towards its

own goal. That is achieved with the use of the fieldDimentions xPosOwnGroundline

as well as the global robot pose. Calculating the angle between the vector that describes

Helen Tsagkarogianni 67 June 2019

4. OUR APPROACH

the pose of the robot and the goal ground line (xPosOwnGroundline,0) while revolving

around its own axis will align the robot with its own goal. In the same time, it checks

constantly whether or not it reached an acceptable angle so it can be considered facing

its own goal and then transition to the state walkToGoal. Its head looks forward during

the execution of this state with the use of the headControlMode LookForward.

walkToGoal

A pretty simple state where the robot walks towards its own goal. The idea is the

same with the walk to ball with the only difference being the values provided to the

walking engine via the WalkAtRelativeSpeed. Checking constantly the distance from the

xPosOwnGroundline, it transitions to the alingInfrontOfGoal as soon as the distance

requirement is being met. While in this state the robot keeps looking at the goal with

the use of LootAtTarget mode, providing it with the coordinates of its goal.

alingInfrontOfGoal

The state alingInfrontOfGoal is responsible for keeping the robot properly centered

in front of the its goal but also acts as connecting state to the states that follow. Its

being visited often in order to decide which state to transition to after. In addition, this

state in combination with turtToCenter is responsible for the maneuver that aligns and

centers the robot in front of the goal. Since the angle between the pose on arrival and

the desired pose is obtuse, is expected to create an offset to the final pose so this state

corrects it. Since the state is being executed when the robot is either facing the goal or

the center of the field, it checks the angle of the robot in order to determine which case it

is and acts accordingly. Also, in this state the robot checks the position of the ball. If it

has passed the center line and it is located on its team half of the field, then the behavior

transitions to trackTheBall in order to track it. If it is not, then it is not considered as

a threat and the robot proceeds to the scanField in order to be able to provide its team

with information. During the execution of this state, the goalkeeper looks left and right

with the use of LookLeftAndRight that also assists the localization.

Helen Tsagkarogianni 68 June 2019

4.7 Developed Soccer Behaviors

turnToCenter

This state is only used after alingInfrontOfGoal in order to execute a turn towards the

center of the field. This is achieved with the use of WalkAtRelativeSpeed and providing

only the robot’s angle with the center of the field making the robot revolve around its axis

while constantly checking that angle. When it reaches the desired angle it transitions

back to alingInfrontOfGoal in order to keep the robot centered. It also checks and

executes the shortest turn available. During this state, the robot looks left and right

with the use of LookLeftAndRight.

scanField

In this state, the goalkeeper scans the field using the HeadControlMode LookLeftAndRight

in order to keep the perception of the field and the other robots updated and accurate.

It stays in this state as long as the ball is not considered a threat. As soon as the ball

becomes a threat, it transitions to actively tracking the ball with trackTheBall.

trackTheBall

When the ball enters its own side of the field, is considered to be a potential threat for the

goalkeeper’s goal. As a result, the goalkeeper starts tracking it with HeadControlMode

LookAtBall. From here, based on the ball’s position and velocity, the behavior control

will transition to the appropriate state. It will transition back to alingInfrontOfGoal if

the ball moves to the opposite side of the field. If global y coordinate of the ball is between

the y coordinates of the left and right goal post as seen in Figure 4.10 in the blue area,

then it proceeds to actively track the ball with state activeTracking aiming to cover the

goal from a direct kick. If the global y coordinate of the ball is not located between the y

coordinates of the left and right goal post, as seen in the same figure in the yellow area,

it proceeds to block the appropriate corner of its goal with the blockTheOpenCorner.

Lastly, if the ball enters its penalty area, the green area, it proceeds into aligning with it

in order to kick it away with alignForKick. During this state it keeps track of the ball

with LookAtBall.

Helen Tsagkarogianni 69 June 2019

4. OUR APPROACH

Figure 4.10: Simple Goalkeeper different action areas.

activeTracking

The purpose of this state is to protect the goal from a direct kick. During this state, the

goalkeeper tries to match its y coordinate with the y coordinate of the global position of

ball as long as it is between the two goal posts minus a static value of 400 in order for the

robot to avoid any collision with the posts. As soon as the ball passes those two points,

the behavior control transitions to blockTheOpenCorner, specially if the robot has not

manage to catch up to the ball’s position thus far. Similarly with the trackTheBall

it will transition to alingInfrontOfGoal if the ball moves to the opposite side of the

field. It also checks if the ball has entered the penalty area in order to proceed with the

alignment for kicking it away via alignForKick. During this state it keeps track of the

ball with LookAtBall.

Helen Tsagkarogianni 70 June 2019

4.8 Developed Ball Control Behavior

alignForKick/kickAwayFromGoal

alignForKick and kickAwayFromGoal are the same states as seeing in the Simple De-

fender. If the ball is moved outside the penalty area it transitions to activeTracking.

blockTheOpenCorner

In this state the ball is located outside of the active area of the goalkeeper, either above

the left goal minus 400 or below the right goal post plus 400. Is important to note

that the y coordinate of right goal is the exact opposite of the left goal. Since the

ball is outside the active area, the goalkeeper must move in order to block the opening

created in the corner closer to the ball. During this state, the robot’s head alternates

between the ball and the penalty mark for extra localization accuracy with the use of

LookAtTargetAndBall. As soon as the robot reaches the relative position it then transi-

tions to trackTheBallWhileBlockingTheCorner. If the ball moves back inside the goal-

keeper’s active area it transition to activeTracking. Similarly with the active tracking

it also checks if it is required to kick the ball outside of its penalty area.

trackTheBallWhileBlockingTheCorner

After reaching the predefined blocking position, the robot is now blocking the open angle.

From this point on, it tracks the ball with LookAtBall but without moving. If the ball

enters the penalty area it aligns with it in order to kick it away via the alignForKick.

If the ball moves back inside the goalkeepers active area then the it will start actively

tracking it with activeTracking.

4.8 Developed Ball Control Behavior

The idea behind this behavior was to combine the functionality of the rest of the behav-

iors but also try different approaches for walking to ball, aligning and patrolling. That is

achieved by having as an objective to keep the ball inside the center circle. That includes

searching for ball, walking to ball directly or with an arc, active and stationary ball

tracking and also side walking based on the ball’s velocity. This behavior is composed

by the following states and its flow chart can been seen in Figure 4.11:

Helen Tsagkarogianni 71 June 2019

4. OUR APPROACH

• searchForBall

Walking to the ball is handled by two states:

• walkToBallDirectly

• walkToBallWithAnArc

States that are required for kicking:

• alignWithTarget

• kick

States revolving around the observing position:

• walkToObservingPosition

• standingAndObserving

• patrolLeft/patrolRight

searchForBall

This specific behavior is special since the transition to the state searchForBall is a

global transition meaning that is being checked in every single state transition regardless

of the previous state. This has a couple of benefits. When making the transition global

it doesn’t need to be included in every single state but is always being checked when

transitioning between the states. It might also be slightly faster because we never enter a

state in order to transition to searchForBall straight after. The same principle applies

in this transition as well, we check the time since the ball was last seen and if any robot

has not seen the ball for three seconds, 5000ms, it needs to be relocated it. But there is

also a negative, if not properly conditioned it can skip the initial localization phase.

4.8.1 Walk to the Ball

The first state that the behavior control transitions to after the state localize is the

walkToBallDirectly. In order for the robot to start moving towards the ball after

locating it, a combination of local as well as global variables are used. At first, the

robot start heading toward the ball using its local coordinates. In that representation

the ball’s coordinates are relative to the robot. When it has properly aligned with the

ball, checks whether or not at the moment of its arrival to the ball’s location the target,

in this case the circle in the center of the field, is located at an angle greater than 90

degrees. If that is not the case then the robot moves directly to the ball by executing

Helen Tsagkarogianni 72 June 2019

4.8 Developed Ball Control Behavior

searchForBall

walkToBallDirectly

localize

walkToObservingPositionalignWithTarget

walkToBallWithAnArc

standingAndObservingkick

patrolLeft patrolRight

Figure 4.11: Ball Control flow chart.

the walkToBallDirectly state. On the contrary, if the greater than 90 degrees, it then

chooses a different approach called walkToBallWithAnArc state. In both states, the

robot’s head keeps track of the ball with the use of the HeadControlMode LookAtBall.

The movement of the robot’s body is being controlled with the WalkAtRelativeSpeed

where we provide the values of the three axes that we saw at section 4.4.1.

Helen Tsagkarogianni 73 June 2019

4. OUR APPROACH

walkToBallDirectly

While being in this state, the robot continuously checks a variety of things. It makes

sure that the ball is still not located at the target or targeted area. If the ball is moved

inside the targeted, it transitions to walkToObservingPosition. It also checks whether

or not it should keep walking to ball directly or if it needs to transition to another state.

Lastly, it must check whether or not it reached an appropriate distance from the ball in

order start aligning with the target. If the distance from the target is the appropriate

it transitions to alignWithTarget. During this state the robot keeps track of the ball

with the LookAtBall. The robot’s approach when walking to ball directly can be seen

in Figure 4.12.

walkToBallWithAnArc

In this state, since the robot acknowledges that its angle with the target at the point

of arrival to the target is greater than 90 degrees, it moves to the ball while having a

slight arc. The robot’s approach when walking with an arc towards the ball can be seen

in Figure 4.13. That is achieved by multiplying x, y with specific, distance dependent,

weights in order to give to the robot a helical trajectory towards the ball while keeping

the speed in x axis two times faster than y axis. Arriving at the ball’s location with an

angle relative to the target, makes the following movements of the robot more smooth

and the whole procedure faster. It is important to notice that if the ball is moved

and the angle changes the approach changes accordingly. So, in the same manner as

walkToBallDirectly, if the distance from the target is the appropriate it transitions to

alignWithTarget and throughout this state the robot keeps track of the ball with the

LookAtBall.

4.8.2 Kicking the Ball

alignWithTarget

When the robot is close enough to the ball but also in a safe distance in order to avoid

pushing the ball around, it executes the actions of alighWithTarget state. The goal

of this state is to turn the robot behind the ball in order to face the target and then

proceed for a possible kick. Similarly with the rest of the behaviors when aligning with

Helen Tsagkarogianni 74 June 2019

4.8 Developed Ball Control Behavior

Figure 4.12: Ball approach directly.

their target, the movement depends on the angle the robot has when entering this state

and is also divided into two parts although is important to that we are now referring to

the movements the robot executes after arriving to the ball. If the angle is greater than

60 degrees then the robot needs to do a side ways move, choosing the shortest path, either

clockwise or anticlockwise until the angle with the target is between acceptable values.

While in this state, the robot’s head cycles between the target and the ball with the use

of head control mode LookAtTargetAndBall. As soon as the required angle is being met,

the alignment maneuver is finished and the control transitions to ballControlKick.

kick

Kicking the ball follows the same principal with the rest of the behaviors, thorough

explained at section 4.7.1, with the only differences being the target of the motion and a

static kick leg, the left leg. In this state, the given target is the center of field.

Helen Tsagkarogianni 75 June 2019

4. OUR APPROACH

Figure 4.13: Ball approach with an arc.

4.8.3 Observing Position and Actions

walkToObservingPosition

When the ball is located on the target or in this case within the target area, the robot

proceeds with moving to the observing position. The head keeps looking at the ball with

the LookAtBall in order for the robot to keep validating its position and the robot moves

with the use of walkInRelativeSpeed in order to reach the observing position. We set

the speeds of the walkInRelativeSpeed with first variable being the angle between the

target and the center of the circle and the second being described in patrolLeft/Right

state in equation 4.1 while keeping the third to zero.

Helen Tsagkarogianni 76 June 2019

4.8 Developed Ball Control Behavior

standingAndObserving

In this state the robot stands still while tracking the balls movement with its head using

LookAtBall. If the ball’s velocity changes in the y axes of the local coordinates it then

proceeds in patrolling left with the patrolLeft state or right with the patrolRight

state, based on the sign of y.

patrolLeft/patrolRight

As mentioned earlier, patrolLeft is the state where the robot moves sideways based

on the ball’s velocity in order to follow its path while sticking on a specific trajectory,

in this behavior that of the center circle line. It transitions to standingAndObserving

state when the ball has stopped moving and when the angle of the robot with the ball is

zero. The angle provided is the angle between the current position of the robot and the

center of the circle, calculated with the function angleTo from Geometry.h. It calculates

the angle between a vector, our robot’s coordinates and a pose, the center of field using

atan2, a two argument arctagent. The x coordinate given is calculated as following

while y is kept static at 0.85f:

x : the robot′s x coordinate.

y : the robot′s y coordinate.

Since we are interested in following a circle line we can check if we are a radius distance

away from the center of the circle. It also important to note that this approach is viable

since the center of that circle is also the point of reference for these coordinates.

So:

a = x2 + y2

b = (r + 160)2

b is the wanted distance we want our robot to keep from the center.

(a− b)/100.000 (4.1)

Subtracting these two and then divide them with 100.000 in order to normalize the

result to usable numbers. The result will indicate to the robot to move either forward,

Helen Tsagkarogianni 77 June 2019

4. OUR APPROACH

or backwards in order for the result to converge to zero thus closely following the circle.

Both the static variables 160 and 100.000 were chosen empirically in the simulation

environment and seem to behave well in the lab. Especially the 100.000 is needed to

normalize the whole result in such a way that the value given to x will not overtake

the value given on the y axis of the robot because we want the main movement to be

sideways and not forward or backwards. On the y axis we give a value of 0.85, with the

max being 1.0. While in this state the robot’s head is turned towards the ball, using the

LookAtBall, constantly check if the ball in contained in the specified area. If not, the

behavior transitions back to the walkToBallDirectly. The same principle is followed in

patrolRight with a negative value.

Helen Tsagkarogianni 78 June 2019

Chapter 5

Results

We implemented the three basic soccer behaviors required for a robotic team to play

soccer and since these behavior are distinct they could be viable with the use of a static

team strategy. In addition, the last behavior implemented is capable of keeping the ball

in the targeted area and also retrieving it in case it is removed.

These behaviors can be executed in simulation as well as in a real environment al-

though some kicks don’t seem to be as executable on a real robot due to hardware wear.

An easy noticeable example is the malfunctioning joint on the right shoulder than cause

a few issues with the balance since the right arm is immobilized. Hardware difficulties

indicate the importance of a good simulation tool, hence without SimRobot we wouldn’t

be able to understand the code or implement anything.

So we can conclude that we are able to properly control our robot with the use of

this framework and this representation language without being limited only to soccer

behaviors. Also the variety of the tools provided with the framework as well as their

modularity makes experimenting and changing implementation on different parts of the

project relative easy as soon as the developer grasps the project’s architecture.

In this chapter we will go over few scenarios of the implemented behaviors. Each

scenario is going to be followed with images of its execution in both simulation and re-

ality. In the following images is important to notice the feedback given by SimRobot

in both mentioned cases. The ball is represented as an orange circle. The obstacles are

represented in squares with different colors, red for the opponent players and white for

the rest obstacle types. In addition, we can see information regarding the touch sen-

sors of the robot represented with squares of magenta color as well as the trigger of the

Helen Tsagkarogianni 79 June 2019

5. RESULTS

bumpers while kicking the ball represented with circles. We can see the camera feed-

back from both cameras of the Nao in the bottom right. Above those two views, we

have a camera view from a different perspective that was recorded during the execution

of the behavior and added afterwards during the video rendering. In the center of the

screen-shots we can see the world state and the belief the robot has about its state and

position on the field. Its important to mention that the field has a static representa-

tion. That means that our own side of the field is always located on the left (blue area)

of the field representation while the opponent’s side on the right (red area). That is

translated to the negative values on the x axis for our own side and the positive for

the opponent’s. The robots conclude on which side its their own based on the positions

they have at the beginning of their executed behavior. Also we can see a representation

(red vectors) of the robots motion and the ball’s velocity as well as an anticipation of

the ball’s position after the kick, small circle in purple color. On the bottom left we

can see the console that can provide us with feedback regarding the behavior execution.

Above there is a view where we can see the different layers of the executed options and

behavior. Both simulation results and lab results follow the principle idea. The only

difference is that in the simulation the world state is located under the camera views in

the bottom right. The screen-shots of the simulation are capture from a captured video

on a machine that runs Windows 10. The screen-shots from the lab are captured from a

rendered video that combines a desktop capture of a Linux machine that runs SimRobot

and is connected to our soccer player via WiFi in combination with the actual footage

of the behaviors recorded from a phone camera. You can find the code in our GitHub

repository and the videos can be found at our team’s Youtube channel TeamKouretes.

Simple Striker Video Links:

• Left Kick - Lab: https://youtu.be/9By_UIXWLzg

• Right Kick - Lab: https://youtu.be/H6pn1E-Xkdk

• Both Kicks - Simulation: https://youtu.be/YOyAr54ueso

• Left Dribble - Lab: https://youtu.be/d-HLVtI8HZI

• Right Dribble - Lab: https://youtu.be/SC-6XiMe9cY

• Both Dribbles - Simulation: https://youtu.be/f7QLn7aHafM

Simple Defender Video Links:

Helen Tsagkarogianni 80 June 2019

https://github.com/AnonKour/Soccer-Player-Behavior-Development-for-the-RoboCup-Standard-Platform-League
https://www.youtube.com/channel/UCQtQ92uoeiY--DGQYS1UWPw
https://youtu.be/9By_UIXWLzg
https://youtu.be/9By_UIXWLzg
https://youtu.be/H6pn1E-Xkdk
https://youtu.be/H6pn1E-Xkdk
https://youtu.be/YOyAr54ueso
https://youtu.be/YOyAr54ueso
https://youtu.be/d-HLVtI8HZI
https://youtu.be/d-HLVtI8HZI
https://youtu.be/SC-6XiMe9cY
https://youtu.be/SC-6XiMe9cY
https://youtu.be/f7QLn7aHafM
https://youtu.be/f7QLn7aHafM

• Full Behavior - Lab: https://youtu.be/IaCwAt_2DIw

• Full Behavior - Simulation: https://youtu.be/rqOLmQZpWiU

Simple Goalkeeper Video Links:

• Full Behavior - Lab: https://youtu.be/Mb9xCK873zs

• Full Behavior - Simulation: https://youtu.be/NHDf7qEkvdY

• Top Goal Approach - Simulation: https://youtu.be/4D5hM4Sb5nI

• Bottom Goal Approach - Simulation: https://youtu.be/mxUVfz6Nx3o

• Both Goal Approaches - Lab: https://youtu.be/hjFFTQ7TteU

Ball Control Video Links:

• Proper Alignment - Simulation: https://youtu.be/F3pdQlydZgA

• Both Ball Approaches - Simulation: https://youtu.be/R_1ZZrs-pcg

• Patrol - Simulation: https://youtu.be/EEuK2PzdXxs

• Proper Alignment - Lab: https://youtu.be/baaE_UzjQo4

• Patrol - Lab: https://youtu.be/jTPG64CwlZI

Helen Tsagkarogianni 81 June 2019

https://youtu.be/IaCwAt_2DIw
https://youtu.be/IaCwAt_2DIw
https://youtu.be/rqOLmQZpWiU
https://youtu.be/rqOLmQZpWiU
https://youtu.be/Mb9xCK873zs
https://youtu.be/Mb9xCK873zs
https://youtu.be/NHDf7qEkvdY
https://youtu.be/NHDf7qEkvdY
https://youtu.be/4D5hM4Sb5nI
https://youtu.be/4D5hM4Sb5nI
https://youtu.be/mxUVfz6Nx3o
https://youtu.be/mxUVfz6Nx3o
https://youtu.be/hjFFTQ7TteU
https://youtu.be/hjFFTQ7TteU
https://youtu.be/F3pdQlydZgA
https://youtu.be/F3pdQlydZgA
https://youtu.be/R_1ZZrs-pcg
https://youtu.be/R_1ZZrs-pcg
https://youtu.be/EEuK2PzdXxs
https://youtu.be/EEuK2PzdXxs
https://youtu.be/baaE_UzjQo4
https://youtu.be/baaE_UzjQo4
https://youtu.be/jTPG64CwlZI
https://youtu.be/jTPG64CwlZI

5. RESULTS

5.1 Simple Striker

Scenario no1: The striker heads towards the ball and kicks it straight to the opponent’s

goal since no obstacle intercepts its course as seen in Figure 5.1 and Figure 5.2. As

mentioned in previous chapter, the kicking foot depends on the part of the field the ball

is located.

(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Simple Striker: Simulation results of kicking the to ball towards the opponent

goal. The appropriate kicking leg depends on the position of the ball.

Helen Tsagkarogianni 82 June 2019

5.1 Simple Striker

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.2: Simple Striker: Lab results of kicking the to ball towards the opponent goal.

The appropriate kicking leg depends on the position of the ball.

Helen Tsagkarogianni 83 June 2019

5. RESULTS

Scenario no2: The striker heads towards the ball and executes a left dribble as seen in

Figure 5.3 and Figure 5.4 in order to avoid the opponent that blocks its course to the

goal. The left dribble is achieved with the use of the right leg so the striker needs to align

accordingly in order to use that leg effectively.

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Simple Striker: Simulation results of left dribble.

Helen Tsagkarogianni 84 June 2019

5.1 Simple Striker

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.4: Simple Striker: Lab results of left dribble.

Helen Tsagkarogianni 85 June 2019

5. RESULTS

Scenario no3: The striker heads towards the ball and executes a right dribble as seen in

Figure 5.5 and Figure 5.6, based on where the obstacle between it and the goal is located.

This dribble utilizes the left foot along with the proper alignment executed before the

dribble. While the two dribbles are mirrored it seemed that in both environments, the

left dribble was less powerful.

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Simple Striker: Simulation results of right dribble.

Helen Tsagkarogianni 86 June 2019

5.1 Simple Striker

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.6: Simple Striker: Lab results of right dribble.

Helen Tsagkarogianni 87 June 2019

5. RESULTS

5.2 Simple Defender

Scenario no1: Staying in his side of the field, the defender is trying to match his

y coordinate with the global y coordinate of the ball. That way, it blocks any ball

movement towards its own half of the field and in the same time stays close to the ball

in order to prevent any threatening move towards its goal. The results of this behavior

can be seen in Figure 5.7 and Figure 5.8.

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Simple Defender: Simulation results of patrol movement.

Helen Tsagkarogianni 88 June 2019

5.2 Simple Defender

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8: Simple Defender: Lab results of patrol movement.

Helen Tsagkarogianni 89 June 2019

5. RESULTS

Scenario no2: The ball is located at the defender’s team side of the field. At this

location it is considered a potential threat for its goal hence the defender proceeds into

walking towards it and kicking it away towards the opponent’s goal as seen in Figure 5.9

and Figure 5.10. As soon as the ball moves away from its side of the field it moves back

to observing the ball and aligning with it properly.

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Simple Defender: Simulation results of kick away motion.

Helen Tsagkarogianni 90 June 2019

5.2 Simple Defender

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: Simple Defender: Lab results of kick away motion.

Helen Tsagkarogianni 91 June 2019

5. RESULTS

5.3 Simple Goalkeeper

Scenario no1: The goal keeper heads towards its goal from the top part of the field and

position itself properly as seen in Figure 5.11 and Figure 5.12. This part of the behavior

that is responsible for the proper positioning of the goalkeeper in addition to any other

role is really important cause it occurs multiple times during a game. It occurs at the

start of the game and during the game if a robot is penalized.

Scenario no2: The goal keeper heads to its goal from the bottom part of the field and

position itself properly as seen in Figure 5.13 and Figure 5.14.It is important to note that

in both cases, top and bottom approach, the goalkeeper is able to determine its position

and chose the shortest path that will align it first with the goal and after with the center

of the field.

Scenario no3: The goalkeeper is in position in front of its goal and the ball is on its

own side of the field. When the ball moves sideways the goalkeeper moves as well in

order to protect its goal and also kicks it away when it enters the penalty area as seen in

Figure 5.15 and Figure 5.16.

Scenario no4: The goalkeeper is in position in front of its goal and the ball is on its own

side of the field. When the ball moves sideways the goalkeeper moves as well in order

to protect the open corner but stops at a specific point in order to protect its goal more

efficiently and also to avoid any colision with the goal posts as seen in Figure 5.17 and

Figure 5.18.

Helen Tsagkarogianni 92 June 2019

5.3 Simple Goalkeeper

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.11: Simple Goalkeeper: Simulation results of heading to goal and aligning motion

from the top part of the field.

Helen Tsagkarogianni 93 June 2019

5. RESULTS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.12: Simple Goalkeeper: Lab results of heading to goal and aligning motion from

the top part of the field.

Helen Tsagkarogianni 94 June 2019

5.3 Simple Goalkeeper

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.13: Simple Goalkeeper: Simulation results of heading to goal and aligning motion

from the lower part of the field.

Helen Tsagkarogianni 95 June 2019

5. RESULTS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.14: Simple Goalkeeper: Lab results of heading to goal and aligning motion from

the lower part of the field.

Helen Tsagkarogianni 96 June 2019

5.3 Simple Goalkeeper

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.15: Simple Goalkeeper: Simulation results of the goalkeeper active tracking and

kicking away.

Helen Tsagkarogianni 97 June 2019

5. RESULTS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.16: Simple Goalkeeper: Lab results of the goalkeeper active tracking and kicking

away.

Helen Tsagkarogianni 98 June 2019

5.3 Simple Goalkeeper

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.17: Simple Goalkeeper: Simulation results of the goalkeeper movements blocking

the corners.

Helen Tsagkarogianni 99 June 2019

5. RESULTS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.18: Simple Goalkeeper: Lab results of the goalkeeper movements blocking the

corners.

Helen Tsagkarogianni 100 June 2019

5.4 BallControl

5.4 BallControl

Scenario no1: In this scenario the ball is not located inside the center circle. In addition,

it is located in such a way that it can be handled with the walkToBallDirectly. After

reaching the ball, the robot aligns and kicks it towards the target as seen in Figure 5.19

and Figure 5.20.

Scenario no2: The ball is not located inside the center circle but is located in such a way

that the robot would need to execute a long alignment movement if it walked to the ball

directly. Instead, it proceeds to handle the approach with the walkToBallWithAnArc.

After reaching the ball, executes the final alignment and kicks it towards the target as

seen in Figure 5.21 and Figure 5.22.

(a) (b)

(c) (d)

Figure 5.19: Ball Control: Simulation results of walking to ball directly.

Helen Tsagkarogianni 101 June 2019

5. RESULTS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.20: Ball Control: Lab results of walking to ball directly.

Helen Tsagkarogianni 102 June 2019

5.4 BallControl

(a) (b)

(c) (d)

(e) (f)

Figure 5.21: Ball Control: Simulation results of walking to ball with an arc.

Helen Tsagkarogianni 103 June 2019

5. RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 5.22: Ball Control: Lab results of walking to ball with an arc.

Helen Tsagkarogianni 104 June 2019

5.4 BallControl

Scenario no3: The ball is located inside the center circle as soon as the robot finishes

the localization. After the robot has reached the observing position, the ball starts mov-

ing inside the circle triggering the patrol movement of the robot as seen in Figure 5.23

and Figure 5.24. The patrol movement depends on the velocity of the ball.

(a) (b)

(c) (d)

(e) (f)

Figure 5.23: Ball Control: Simulation results of patrolling sideways.

Helen Tsagkarogianni 105 June 2019

5. RESULTS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.24: Ball Control: Lab results of patrolling sideways.

Helen Tsagkarogianni 106 June 2019

5.4 BallControl

Scenario no4: The ball is not located inside the center circle but is located in a way that

it must be handled with the walkToBallWithAnArc. While the robot walks towards the

ball, the ball is being moved to a different position that does not require angled approach

anymore. This scenario can be seen in Figure 5.25. The same occurs in the lab but we

are unable to represent it with images due to the angle of the shooting.

(a) (b)

(c) (d)

(e) (f)

Figure 5.25: Ball Control: Simulation results of the proper alignment with the ball.

Helen Tsagkarogianni 107 June 2019

5. RESULTS

Scenario no5: The ball is located inside the target, in our case the center circle. As

the robot tracks it , it is removed briefly and then positioned back in the circle. Our

robot starts walking towards the ball when it moves but as soon as we position it back

on target, it returns to its position as seen in Figure 5.26 and Figure 5.27.

(a) (b)

(c) (d)

(e) (f)

Figure 5.26: Ball Control: Simulation Results of the proper positioning.

Helen Tsagkarogianni 108 June 2019

5.4 BallControl

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.27: Ball Control: Lab Results of the proper positioning.

Helen Tsagkarogianni 109 June 2019

5. RESULTS

Helen Tsagkarogianni 110 June 2019

Chapter 6

Conclusions

6.1 Discussion

We understood a good portion of the code and the tools included and we believe that we

can provide enough information for the implementation of more complex behaviors, even

though we might have neither managed to implement optimal nor extremely competitive

behaviors. In addition, we believe that the current framework could be utilized beyond

the spectrum of soccer.

Simulation Vs Reality

A variety of conclusions were drawn before, during and after the behavior implemen-

tations. First of all, it was important to understand how different a behavior can be

depending on the environment. The environment of the simulator is close to ideal and

while it can help up understand how a behavior should work, does not show us how it

does work on the robot. An important example is the impact walking has on footage of

the Nao’s cameras. But it is not only the difference between the simulation and reality

but also the differences between different machines running the same simulation. Since

we started experimenting on SimRobot we didn’t fully understand how impactful that

may be.

The speed of the execution of the simulation depends on the specs of the hosting

machine. If the machine is not as powerful the drop in FPS1 can be devastating thus the

1Frames per second.

Helen Tsagkarogianni 111 June 2019

6. CONCLUSIONS

developer would be unable to properly understand the behavior. For instance, a behavior

may seem very slow in around 20 fps and when executed on an actual robot could cause

damage on the joints. Also it seemed to cause issues on the execution circle although

these issues were too sparse.

Having a too powerful machine on the other hand, can also lead to inconsistencies

because the simulation tends to run slightly faster than the actual robot. Something that

can lead to the usage of value, specially speed values that can cause damage to the actual

robot when used in the lab.

While testing on the robot itself seems the only option, that could also lead to potential

damage since we aren’t exactly sure how something behaves until we try it on the actual

robot. So the best plan of developing and testing behaviors is the combination of both

simulation and real robot with extra caution when trying things on the Nao itself.

Another drawn conclusion was that the best way to test a behavior on an actual robot

is to set a speed around half or a bit lower of the value range. Setting it to the lowest

possible might also have a negative impact because some actions require momentum in

order to be executed correctly. With the use of an average value, the damage to the

hardware maybe be curtailed.

In addition, since the behaviors tend to run a bit slower on the robot, state timers

and the timeSinceBallWasSeen timer needs to be adjusted accordingly. For instance,

setting the condition that checks the timer of the timeSinceBallWasSeen too low in

order to have a faster response of the robot when the ball is not seen will work on the

simulation but it will result on the actual robot searching for the ball constantly. This

occurs because the robot wont be able to keep an accurate track of the ball even while

walking towards it because some parts of the walking animation cause distortion of the

camera image and as a result not seen the ball for a good amount of milliseconds.

6.2 Future Work

The work done in this thesis is the initial steps and while the project provides us with all

the necessary tools to work with different strategies and scenarios we didn’t dive deeper

into that field due to the lack of hardware and to reduce the complexity. Based on the

work done so far we believe that any future work aiming for more complicated behaviors

it would be more efficient if done in the order presented in this section.

Helen Tsagkarogianni 112 June 2019

6.2 Future Work

6.2.1 The Next Step

Code re-factoring in general

A lot of positioning management should be move to upper levels in the behavior function-

ality, in an additional behavior layer. Setting the boundaries, calculating the path our

player should take in order to reach its destination, the appropriate kicking foot for each

kick as well as the proper alignment before each kick. All of these tasks are currently

executed in the action section of the behaviors with the use of extensive conditioning

even though the behaviors themselves are not that sophisticated.

Adding an extra module handling the above will also solve some dependencies and

make the project architecture clearer that was also partially intentionally tangled in order

for the implemented behaviors to have access to some modules such as field dimensions.

This will also provide working ground for a more sophisticated localize, field scan or even

ball search. Those states, instead of a predefined movements, they could be guided by

a module on a higher level and pass the values required for movement straight to the

behavior and then the required engine. That would also releaf the behavior control from

calculations that might delay the robot’s actions.

Thus we believe that one of the important next steps in this implementation would

be the code re-factoring and integration of such a module for soccer and non-soccer

behaviors.

For implemented soccer behaviors

Focusing more on the soccer behaviors after the code re-factoring there could be a few

improvements. For the implemented behaviors themselves there would be a few improve-

ments.

The simple striker should be able to identify multiple obstacles and handle the dibbling

through them.

The simple defender should be able to block an incoming pass intercepting an attack

and also moving to the ball while blocking an opponent. The latter would require the

use of other team members that would indicate the coordinates of the blocked opponent.

The simple goalkeeper should be able to execute a blocking move in case of a threat-

ening shot.

Helen Tsagkarogianni 113 June 2019

6. CONCLUSIONS

Another future step would be to figure out how to assign roles to multiple robots. This

step does not necessary require multiple real robots. SimRobot could be a temporary

solution into trying out simultaneously different behaviors but that might required a

strategy implementation instead of deploying different builds to different robots based on

the wanted behavior.

When more robots are part of the team they should rely more to the TeamBallModel

and not so much to their own BallModel since its a combination of the others robots

perception. For that to happen, the implementation must be adjusted as well because

the local and global coordinates vary.

For that to work properly, we need the game controller because if the robot is not

communicating with a game controller the state of the game is not updated correctly. If

that is the case the theTeamBallModel variable gets constantly reseted and thus unusable.

More information of how to temporary bypass this problem is included in the appendix.

Another important feature to be added is the game controller. This requires to find

a way to make the provided game controller work and also connect it to the network

that our robots are playing. When that takes place then the implemented behaviors need

to be broken down to small ones. For instance, the positioning the goalkeeper executes

should take place at the set game state. In addition, the code responsible for the handling

the Kick off needs to be re-enabled.

Static values such as positions and targets should be used as a proportion of the

field dimensions. These value should also be provided by a higher module and the roles

should not have direct access to features such as fieldDimentions nor make calculations

on them. That would make the behaviors cleaner, universal and maybe even faster.

Last but not least, the PathPlannerProvider.cpp provided must somehow be checked,

comprehended and included allowing our robots to avoid obstacles real time.

6.3 Lessons

During the course of this thesis, we became familiar with a different type of project

architecture that is used in projects of this scale. A variety of configuration files are

gathered and set easily accessible in the higher levels of the architecture. There is also

a different setup files depending on the operating system with the accompany scripts

Helen Tsagkarogianni 114 June 2019

6.3 Lessons

for the generation of the proper project build for different IDEs1 that led to a better

realization of the architecture on multiple levels.

We also became familiar with navigating and searching useful information with the

use of the command line in such a project where the internet and a search engine wont

have all the answers. In addition, we gained experience and a better understanding of

operating systems, both Linux and Windows, such as handling permission issue. Since

we were alternating between the two OS we also practice the usage of Git.

Lastly, we now have a better understanding of how to proper set up and handle

different networks.

1Integrated Development Environments

Helen Tsagkarogianni 115 June 2019

6. CONCLUSIONS

Helen Tsagkarogianni 116 June 2019

Bibliography

[1] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:

RoboCup: A challenge problem for AI. AI Magazine 18(1) (1997) 73–85 https:

//www.robocup.org. 5

[2] Röfer, T., Laue, T., Bülter, Y., Krause, D., Kuball, J., Poppinga, A.M.B., Prin-

zler, M., Post, L., Röhrig, E., Schröder, R., Thielke, F.: Team Report and

Code Release 2017. Technical report, University of Bremen and the German

Research Center for Artificial Intelligence (DFKI) (2017) https://github.com/

bhuman/BHumanCodeRelease/blob/coderelease2017/CodeRelease2017.pdf. 20,

21, 27, 31, 131, 134, 135

[3] Röfer, T., Laue, T., Hasselbring, A., Heyen, J., Poppinga, B., Reichenberg, P.,

Röhrig, E., Thielke, F.: Team Report and Code Release 2018. Technical report,

University of Bremen and the German Research Center for Artificial Intelligence

(DFKI) (2018) https://github.com/bhuman/BHumanCodeRelease/blob/master/

CodeRelease2018.pdf. 20, 27, 34, 121, 129, 133, 134

[4] Kermani, R.R.: Model-based Design, Simulation and Automatic Code Gen-

eration For Embedded Systems and Robotic Applications. Technical report,

Arizona State University (2013) http://www.public.asu.edu/~gfaineko/pub/

thesis/kermani_2013_ms_thesis.pdf, https://subversion.assembla.com/

svn/simulink-stateflow-interface-for-nao/. 26

[5] Brohn, T., Ditzel, S., Fürtig, D.I.A., Glaser, L., Hess, T., Hammer, H.J., Knorr,

E., Rinfreschi, K., Schön, T., Siegl, J.M., Steiner, S., Weiglhofer, F., Wörner, P.:

RoboCup SPL Team at Goethe University Frankfurt Teamreport 2018. Technical

Helen Tsagkarogianni 117 June 2019

https://www.robocup.org
https://www.robocup.org
https://github.com/bhuman/BHumanCodeRelease/blob/coderelease2017/CodeRelease2017.pdf
https://github.com/bhuman/BHumanCodeRelease/blob/coderelease2017/CodeRelease2017.pdf
https://github.com/bhuman/BHumanCodeRelease/blob/master/CodeRelease2018.pdf
https://github.com/bhuman/BHumanCodeRelease/blob/master/CodeRelease2018.pdf
http://www.public.asu.edu/~gfaineko/pub/thesis/kermani_2013_ms_thesis.pdf
http://www.public.asu.edu/~gfaineko/pub/thesis/kermani_2013_ms_thesis.pdf
https://subversion.assembla.com/svn/simulink-stateflow-interface-for-nao/
https://subversion.assembla.com/svn/simulink-stateflow-interface-for-nao/

BIBLIOGRAPHY

report, Goethe University (2018) https://www.jrl.cs.uni-frankfurt.de/web/

wp-content/uploads/2018/01/teamreport18-bembelbots.pdf. 27

[6] Mellmann, H., Schlotter, B., Kaden, S., Strobel, P., Krause, T., Couque-

Castelnovo, E., Ritter, C.N., Hübner, T., Tofangchi, S.: Berlin United -

Nao Team Humboldt Team Report 2018. Technical report, Humboldt Uni-

versity Berlin (2019) https://www2.informatik.hu-berlin.de/~naoth/docs/

publications/technical/naoth-report18.pdf. 27

[7] Aizawa, Y., Hidaka, K., Mori, N., Ohkusu, K., Takahashi, K., Uemura,

Y., Chiba, M., Hayashi, K., Ito, K., Nagami, T., Shimizu, Y., Ya-

mada, Y., Hosokawa, K., Ito, S., Kuboya, T., Ohta, G., Tachi, T., Tan-

abe, K., Tsubokura, K., Suzuki, T., Kobayashi, K.: Camellia Dragons

Team Report 2017. Technical report, Aichi Prefectural University (2018)

https://github.com/CamelliaDragons/CamelliaDragonsCodeRelease/blob/

master/CamelliaDragonsTeamReport2017rev2.pdf. 27

[8] Akin, H.L., Aşik, O., Görer, B., Erdem, A., Irfan, B.: Cerberus’14 Team Re-

port. Technical report, Bŏgaziçi University (2015) http://robot.cmpe.boun.edu.

tr/~cerberus/wiki/lib/exe/fetch.php/wiki:cerberus14report.pdf. 27

[9] Morales, M., Hayet, J.B., Esteves, C., Anaya, R.: Cuauhpipiltin 2012: Stan-

dard Platform League Team Description Paper. Technical report, ITAM, CIMAT,

UNAM, and DEMAT-UG (2015) http://www.robotica.itam.mx/spl/tdp_spl_

ek_robocup2012.pdf. 28

[10] Heßler, A., Xu, Y., Tuguldur, E.O., Berger, M.: Team Description 2014. Techni-

cal report, Technical University of Berlin http://dainamite.github.io/public/

publication/dainamite_tdp_2014_final.pdf. 28

[11] Kronemeijer, P., Lagrand, C., Negrijn, S., van der Meer, M., van der Wal, D.,

Nzuanzu, J., Hesselink, R., Zwerink, W., Gupta, A.R.K.N., Visser, A.: Team Qual-

ification Document for RoboCup 2019. Technical report, University of Amster-

dam (2019) https://www.dutchnaoteam.nl/wp-content/uploads/2019/01/DNT_

TeamQualificationDocument2019.pdf. 28

Helen Tsagkarogianni 118 June 2019

https://www.jrl.cs.uni-frankfurt.de/web/wp-content/uploads/2018/01/teamreport18-bembelbots.pdf
https://www.jrl.cs.uni-frankfurt.de/web/wp-content/uploads/2018/01/teamreport18-bembelbots.pdf
https://www2.informatik.hu-berlin.de/~naoth/docs/publications/technical/naoth-report18.pdf
https://www2.informatik.hu-berlin.de/~naoth/docs/publications/technical/naoth-report18.pdf
https://github.com/CamelliaDragons/CamelliaDragonsCodeRelease/blob/master/CamelliaDragonsTeamReport2017rev2.pdf
https://github.com/CamelliaDragons/CamelliaDragonsCodeRelease/blob/master/CamelliaDragonsTeamReport2017rev2.pdf
http://robot.cmpe.boun.edu.tr/~cerberus/wiki/lib/exe/fetch.php/wiki:cerberus14report.pdf
http://robot.cmpe.boun.edu.tr/~cerberus/wiki/lib/exe/fetch.php/wiki:cerberus14report.pdf
http://www.robotica.itam.mx/spl/tdp_spl_ek_robocup2012.pdf
http://www.robotica.itam.mx/spl/tdp_spl_ek_robocup2012.pdf
http://dainamite.github.io/public/publication/dainamite_tdp_2014_final.pdf
http://dainamite.github.io/public/publication/dainamite_tdp_2014_final.pdf
https://www.dutchnaoteam.nl/wp-content/uploads/2019/01/DNT_TeamQualificationDocument2019.pdf
https://www.dutchnaoteam.nl/wp-content/uploads/2019/01/DNT_TeamQualificationDocument2019.pdf

BIBLIOGRAPHY

[12] Riebesel, N., Hasselbring, A., Peters, L., Poppinga, F.: Team Research Report 2016.

Technical report, Hamburg University of Technology https://hulks.de/_files/

TRR_2016.pdf. 28

[13] Kargas, N., Kofinas, N., Michelioudakis, E., Pavlakis, N., Piperakis, S., Spanoudakis,

N.I., Lagoudakis, M.G.: Kouretes 2013 SPL Team Description Paper. Technical re-

port, Technical University of Crete http://www.intelligence.tuc.gr/kouretes/

docs/2013-kouretes-tdp.pdf. 28

[14] Paraschos, A., Spanoudakis, N.I., Lagoudakis, M.G.: Model-driven behavior speci-

fication for robotic teams. In: Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2012). Volume 1., Valencia,

Spain (2012) 171–178 28

[15] Spanoudakis, N.: The Agent Systems Engineering Methodology ASEME. Phd

thesis, Paris Descartes University, Paris (2009) 28

[16] Topalidou-Kyniazopoulou, A., Spanoudakis, N.I., Lagoudakis, M.G.: A

CASE Tool for Robot Behavior Development. Technical report, Techni-

cal University of Crete https://users.isc.tuc.gr/~nispanoudakis/resources/

RCS-2012-TopalidouSpanoudakisLagoudakis.pdf. 28

[17] Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-

Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3)

(2000) 285–312 28

[18] Estivill-Castro, V.: Standard Platform League Team Description. Technical re-

port, Griffith University and Universitat Pompeu Fabra http://www.mipal.net.

au/Publications/TDpaperMIPAL.pdf. 29

[19] Hofmann, M., Schwarz, I., Urbann, O., Larisch, A.: Team Report 2018. Technical re-

port, Robotics Research Institute https://github.com/NaoDevils/CodeRelease/

blob/master/TeamReport2018.pdf. 29

[20] Shih, C.S., Lin, K.L., Chiang, S.A., Hu, T.H., Fu, W.K., Hu, C., Chen, H.Y.,

Cheng, Y.Y., Chao, T.W.: NTU RoboPAL Team Report 2015. Technical

Helen Tsagkarogianni 119 June 2019

https://hulks.de/_files/TRR_2016.pdf
https://hulks.de/_files/TRR_2016.pdf
http://www.intelligence.tuc.gr/kouretes/docs/2013-kouretes-tdp.pdf
http://www.intelligence.tuc.gr/kouretes/docs/2013-kouretes-tdp.pdf
https://users.isc.tuc.gr/~nispanoudakis/resources/RCS-2012-TopalidouSpanoudakisLagoudakis.pdf
https://users.isc.tuc.gr/~nispanoudakis/resources/RCS-2012-TopalidouSpanoudakisLagoudakis.pdf
http://www.mipal.net.au/Publications/TDpaperMIPAL.pdf
http://www.mipal.net.au/Publications/TDpaperMIPAL.pdf
https://github.com/NaoDevils/CodeRelease/blob/master/TeamReport2018.pdf
https://github.com/NaoDevils/CodeRelease/blob/master/TeamReport2018.pdf

BIBLIOGRAPHY

report, National Taiwan University (2015) https://drive.google.com/file/d/

0B1d3UWuPZfdyVjlKRU1iTVpqUGc/view. 29

[21] Suriani, V., Manoni, T., Giambattista, V.D., Cecchini, M., Bloisi, D.D., Nardi,

D.: Team Description Paper 2018. Technical report, Sapienza University of Rome

http://www.diag.uniroma1.it/~spqr/reports/SPQR-TDP2018.pdf. 29

[22] Saifullah: Team Report - 2019. Technical report, RISE, SMME and NUST

(2019) https://docs.google.com/document/d/1H9NFfVEYYqDxaf2ef4AEArm_

PaG9ix4DcYhPoQEpLxI/edit. 29

[23] : Team description paper & research report 2018. Technical report, Tongji Univer-

sity (2019) https://github.com/TJArk-Robotics/TJArK-Vision/blob/master/

TJArkTeamResearchReport2018.pdf. 29

[24] Brameld, K., Hamersley, F., Jones, E., Kaur, T., Li, L., Lu, W., Pagnucco, M.,

Sammut, C., Sheh, Q., Schmidt, P., Wiley, T., Wondo, A., Yang, K.: RoboCup

SPL 2018 rUNSWift Team Paper. Technical report, University of New South Wales

Sydney http://cgi.cse.unsw.edu.au/~robocup/2018/TeamPaper2018.pdf. 29

[25] Deng, X., Pak, D., La, F., Lee, D.D.: The UPennalizers RoboCup Standard Platform

League Team Description Paper 2018. Technical report, University of Pennsylvania

https://fling.seas.upenn.edu/~robocup/files/2018Report.pdf. 30

[26] Committee, R.T.: RoboCup Standard Platform League (NAO) Rule Book.

RoboCup Technical Committee (2018) https://spl.robocup.org/wp-content/

uploads/downloads/Rules2018.pdf. 32, 39

[27] Röfer, T.: CABSL C-based Agent Behavior Specification Language. Techni-

cal report, University of Bremen (2018) https://www.b-human.de/downloads/

publications/2018/CABSL.pdf. 40

[28] Loetzsch, M., Risler, M., Jungel, M.: XABSL - A Pragmatic Approach

to Behavior Engineering. Technical report, Technische Universität Darmstadt

and Humboldt-Universität zu Berlin http://martin-loetzsch.de/publications/

loetzsch06xabsl.pdf. 40

Helen Tsagkarogianni 120 June 2019

https://drive.google.com/file/d/0B1d3UWuPZfdyVjlKRU1iTVpqUGc/view
https://drive.google.com/file/d/0B1d3UWuPZfdyVjlKRU1iTVpqUGc/view
http://www.diag.uniroma1.it/~spqr/reports/SPQR-TDP2018.pdf
https://docs.google.com/document/d/1H9NFfVEYYqDxaf2ef4AEArm_PaG9ix4DcYhPoQEpLxI/edit
https://docs.google.com/document/d/1H9NFfVEYYqDxaf2ef4AEArm_PaG9ix4DcYhPoQEpLxI/edit
https://github.com/TJArk-Robotics/TJArK-Vision/blob/master/TJArkTeamResearchReport2018.pdf
https://github.com/TJArk-Robotics/TJArK-Vision/blob/master/TJArkTeamResearchReport2018.pdf
http://cgi.cse.unsw.edu.au/~robocup/2018/TeamPaper2018.pdf
https://fling.seas.upenn.edu/~robocup/files/2018Report.pdf
https://spl.robocup.org/wp-content/uploads/downloads/Rules2018.pdf
https://spl.robocup.org/wp-content/uploads/downloads/Rules2018.pdf
https://www.b-human.de/downloads/publications/2018/CABSL.pdf
https://www.b-human.de/downloads/publications/2018/CABSL.pdf
http://martin-loetzsch.de/publications/loetzsch06xabsl.pdf
http://martin-loetzsch.de/publications/loetzsch06xabsl.pdf

Appendix A

User Guide

Requirements

In order to execute the code the reader will need:

• Our code [Link - GitHub repository.].

• A relative powerful machine in case you want to run simulations.

• A Nao v.5 with B-Human installed1.

A.1 How to run the existing code

In order to execute the existing code you need to navigate to the \Make\ directory found

in the upper levels of this project and depending on the operating system, execute one

of the following options. For Linux, navigate to \Make\Linux\ and execute in a terminal

make all -j. For Windows it would be advised to use VStudio and that requires to

generate the appropriate project from the directory \Make\VS2017\ with the use of the

generate script located in the mentioned directory. For windows it should also be noted

that you will need Cygwin as stated in the B-Human code release [3] in Chapter 2,

Getting Started. As a build configuration we are using develop. After the compilation is

finished we navigate to \Make\Linux\ in order to use another on of the scripts, copyfiles

in order to copy the compiled code to the robot. You can use ./copyfiles –help for

more information regards the use of this command.

1In case of not having it installed refer to Section B

Helen Tsagkarogianni 121 June 2019

https://github.com/AnonKour/Soccer-Player-Behavior-Development-for-the-RoboCup-Standard-Platform-League

A. USER GUIDE

A.1.1 Alternating between behaviors, scenes and locations

How to switch between the roles/behaviors

In order to alternate between the existing behaviors with the game states in this im-

plementation you must navigate to HandlePlayingState.h located at \Src\Modules\

BehaviorControl\BehaviorControl\Options\GameControl\ and remove the comments

from the behavior you wish to execute. This way, in order to execute the behavior, you

will need to penalize and not penalize the robot manually when working with a real robot.

For simulation you need to write in the console gc playing in order to set up the game

state to playing.

If you wish to bypass the game flow you can do so, only for the BallControl for the

current implementation, by going to Soccer.cpp at \Src\Modules\BehaviorControl\

BehaviorControl\ and call the appropriate option.

How to change location/scenario

In this project we are able to add and alternate between locations.

In order for the localization to work properly, the dimensions of the location must be

set accordingly since the map is considered known and no additional mapping algorithm

is being executed. The same procedure must be done for the scenes in SimRobot since

the Nao comprehends its surroundings and localizes based on the field dimensions and

landmarks, such as ground lines and goalposts. In our case, the dimensions used in

SimRobot are different from the dimensions of the field we have in the lab. As a result we

need to change the location of the execution based on the robot we run it, real or simulated

robot. We have added an extra location called Lab with different dimensions. One way

to switch to that location is to set the location variable of the settings.cfg located

at \Config\ to the location folder we have created and added to \Config\Locations\,

in our case Lab. Then we compile and copy the files to our robot or run the simulation.

Locations have multiple variables defining them, from field dimensions to camera

calibrations and color settings. The same principle is followed for the scenarios as well,

where we can set different behavior and motion parameters.

Helen Tsagkarogianni 122 June 2019

A.2 Getting Started with Behavior Development

How to start SimRobot and change scenes

In order to launch SimRobot you need to navigate to the folder with the files created

from the projects compilation. Depending on the operating system the executable of Sim-

Robot can be found at the corresponding directory, for Windows is at \Build\Windows\

SimRobot\Develop\. All the scenes can be located at \Config\Scenes\. This is also

the folder you will need to navigate when you want to alternate and select scenes after

launching SimRobot. When you launch SimRobot you need to select a scene for any

simulation or robot monitor to take place. If you had selected a scene in the past it

will be included in a recent menu at the arrow next to the folder icon on the top left.

RemoteRobot.ros2 is the scene used for remote access and it will attempt to reconnect

to robot IP used in the past. Some scenes can be faster on execution than others and

that depends on the objects included in the scene.

A.2 Getting Started with Behavior Development

A.2.1 Commands

Useful commands regardless the operating system, since Cygwin is also installed on Win-

dows.

• grep

• chmod

• make -j where you are able to assign jobs in order to speed up the compile.

It also advised to use an IDE in order to assist with locating the files and the references.

The VStudio project seemed to be really well organized and helped speed up going

though classes and option files trying to locate the initialization of an object in order to

understand its usage.

We can build each module seperatally by running make and the name of the module,

for instance make SimRobot or make bush.

Helen Tsagkarogianni 123 June 2019

A. USER GUIDE

How to search around

We usually use grep in order to search and navigate around the project by typing in a

terming:

grep -i -r "what we search" "directory to search in"

and we can also do the same for files and add type of files we would like to exclude

from our search, such as binary files. For instance by using grep -rI you can exclude

binary files. Or you can --include="*.example" and --exclude="*.example" specific

file formats to adjust the search in your needs.

A.2.2 SimRobot Quick Guide

Setting up the required scenes

In order to have all the available information easily accessible at all times we must utilize

a couple of SimRobot’s views. During the implementation of the behaviors included in

this thesis we used the following views enabled, usually in the arrangement shown in

most of the figures in this thesis.

• behavior view

• worldState view

• upper and lower camera views

• console view

• kike view

In a more detailed Figure A.1 we can see where are the above view located in order

to enable them.

A.2.3 Quick Implementation Guide

In this section we are going to go through the absolutely basic steps that are needed

in order to write, compile and run a behavior based on our experience, given that the

installation of B-Human on a computer for the SimRobot and a Nao is already done1.

1If not, please refer to Section B

Helen Tsagkarogianni 124 June 2019

A.2 Getting Started with Behavior Development

(a)

Figure A.1: SimRobot feedback views. We can see how to enable each of the shown

views. The only tricky one is KikeView where you need to type kick in terminal while

the simulation is running in order for the KikeView to appear on the left.

How to control Nao

You can control Nao’s movements with the use of two motion requests that were also

mentioned in the previous chapters, walkAtRelativeSpeed and walkToTarget, although

for the latter you will need to use variables that are relative to the robot. These requests

are called inside the action section of the state. In the same state, in the transition section,

we add the required condition that checks the results of the motion request. As a general

rule, we don’t set the acceptable angle or any other variable we check to a specific number

because that approach could lead to deadlocks since there are always smalls overshoots or

undershoots both to the movement of the robot and and to the localization. Instead we

are checking a range of values. That is true in general when creating behaviors, allowing

zero error on values can lead to deadlocks appearing as oscillations. A simple example

would be to ask the robot to move to X location. Its highly unlikely that the robot will

manage to match its x to be exactly equal to X. In addition, there is also error in both X

and x variables. As a result, it will start going forwards to an overshoot and backward to

Helen Tsagkarogianni 125 June 2019

A. USER GUIDE

an undershoot, specially if the speed of the robot is not adjusted based on the distance.

You can control the Nao’s head by defined the HeadControlMode you wish it to execute

in every state along side the rest motion controls in the action section of a state.

How to add new roles/behaviors

In order for a role or any other configuration to work, we need to add it in the sub-folders

of the following directory \Src\odules\BehaviorControl\BehaviorControl\Options\

Roles\ and also include the path of the newly added folder in the Options.h that is

located at \Src\Modules\BehaviorControl\BehaviorControl\.

For each behavior, is mandatory to have an initial state or else it will cause a crash

when executed. After adding the required files you must include them in one of the game

states. Until a game controller is added to the network the best option would be the

PlayingState.h located at:

\Src\Modules\BehaviorControl\BehaviorControl\Options\GameControl\

You can control the game flow to transition to this state either by typing in the terminal

gc playing for the simulation or by cycling manually through the penalization of the

actual robot by pressing the button on its chest.

How to add new head control modes

If we want to add new head control modes we need to start by creating the new head

mode file. The head control modes are in the following directory:

\Src\Modules\BehaviorControl\BehaviorControl\Options\HeadControl\

We create the new file giving it the same name as the mode we wish to imple-

ment. That name will also go as the first argument of the option. We can use one

of the other modes as a reference. In this mode we are using different head motion re-

quest located at the \HeadMotionRequest\ folder in \Src\Modules\BehaviorControl\

BehaviorControl\Options\Output\. We also need to include our newly create mode

into a few locations. Firstly, at the Option.h located at \Src\Modules\BehaviorControl\

BehaviorControl\ where we need to include the location of the file. Then, at the

HeadControlMode.h located at \Src\Modules\BehaviorControl\BehaviorControl\Tools\

where we need to add it in the ENUM. Lastly, at the HeadControl2018.cpp where we

also need to include the location of the file and at HeadControl2018.h. Both files are

Helen Tsagkarogianni 126 June 2019

A.2 Getting Started with Behavior Development

located at \Src\Modules\BehaviorControl\BehaviorControl\HeadControl2018\. In

the HeadControl2018.cpp file we need to add a case for our head control mode. The head

motion HeadMotionRequest::targetOnGroundMode seems that is not included when we

look at the CameraControlEngine.cpp located at \Src\Modules\BehaviorControl\

CameraControlEngine\ and need implementation for the coordinate transformation.

How to create new locations

We need to add the new location folder at the \Config\Location\ and then change the

location parameter in the settings.cfg at \Config\. The best would be to copy one of

the existing ones and alter it as we please.

FieldDimensions

Field dimension are bound into locations. For instance, there is the default location

with the field dimensions of a field used in RoboCup 2016 and also complies with sim-

ulated field in SimRobot. The field in our lab is a much older version with different

dimensions as well as goalposts. All these differences must be specified in the field di-

mensions where there is a variable for every single line and distance on the field before

the initial calibration as well B.

Switching between the two is really important and if the dimensions are not set up

correctly the perception module will conclude in wrong values and even the localization

itself will be wrong.

After creating the files required for the different locations, we can switch between

them in various ways.

- Either by manually changing the configuration file before or after building and upload-

ing the build code to Nao.

- Via the B-Human bush, an application that is able to manipulate of all the robots

connected to it the default network, scenario and location.

- Via command line while being connected with Nao with ssh and changing the config-

uration file. Since it is a configuration file its not required to be build with the whole

solution in order to be used.

Helen Tsagkarogianni 127 June 2019

A. USER GUIDE

How to add new kicks using InWalkKicks

In order to create different types InWalkKicks we need to add our new inWalkKick to

\Src\Representations\Configuration\WalkKicks.h and then included at WalkKicks.h

located at \Config\WalkKicks. Then we can call it by using the InWalkKick as seen in

the Listing A.1

Listing A.1: InWalkKick example

* How to call the inWalkKick myinwalkkick *\

InWalkKick(WalkKickVariant(WalkKicks::myinwalkkick, Legs::left),
Pose2f(theBallModel.estimate.position.angle(),theBallModel.estimate.position.x()
- 100, theBallModel.estimate.position.y() - 50));

How to add new kicks using KickEngine

For the Kick Engine kicks we have already added a basic motion request, ForwardKick.h

that can be used as a reference. In the future you might need to make a new motion

request. In order to do so you must add the new motion request in \Src\Modules\

BehaviorControl\BehaviorControl\Options\Output\MotionRequest and also include

it in Options.h.

We can create new kick files with the use of KikeView. After creating the new kick

we must add the KickMotionId in KickRequest.h located at \Src\Representations\

MotionControl\. The id of the kick is the same with its name. The next step would be

to also create the appropriate motion request that will request the execution of the kick in

\Src\Modules\BehaviorControl\BehaviorControl\Options\Output\MotionRequest.

After creating the motion request you now have to call it in the action section of the state

you wish to execute it. When creating kicks in kike view, there are a few things to keep

in mind. When you have the Kike View selected, the icons on the top left of SimRobot

change allowing you to import .kmc files along with other functions. It would be advised

to have as a reference the kickForward.kmc and the window as big as possible so you

wont miss any important information but in the same time to avoid hiding that menu.

It is also important to note that when you create your own kick do not leave the COM

Balancer X and COM Balancer Y to zero cause it will cause crashes. While it might

Helen Tsagkarogianni 128 June 2019

A.2 Getting Started with Behavior Development

sound obvious, since the view can appear really small the names and value cut out and

can be easily missed.

How to create a local network

SPL network is special since the IP of the robot indicates information regards its number

and team. For instance Ermis, our Nao is the number 25 of team 3. So its IP address

is 10.0.3.25 and for LAN 192.168.3.25. In order to be able to connect to this robot you

need to set up the appropriate network to communicate with it as a team member.

In order to be able to connect to Nao with the new IP you will need to create two

different networks, one wired and one wireless(if the computer has a wireless adapter)

at the computer that will have access to the robot. An example of wired configuration

can be found in https://github.com/AnonKour/LabTutorials/tree/master/HowToS/

ConnectToNewerNaoBHuman. In the same way, we set up the wireless network. If you

setup you robot with a different team number you need to adjust the IP accordingly.

For the wireless communication you will also need to set up an access point, set the IP

Address to 10.0.3.1 with Subnet Mask: 255.255.0.0 and DHCP and DHCP Server enabled.

We also set the IP Address Pool to cover the IPs of you robots. In our case, we use a

pool of 10.0.3.2 - 10.0.3.99 Default Gateway and Default Domain to 10.0.3.1.

How to setup the networks on Nao

In 2.4.3 Creating Robot Configuration Files for a NAO you setup the required configura-

tion files that also store the IP for wire and wireless for you robot. Be extra careful not

to have the same IP for wireless and wired because Nao will refuse to connect wirelessly.

In the 2.4.4 Managing Wireless Configurations of the B-Human code release [3] you

will need to configure the required wired and wireless supplicants based on the setup of

your access point.

There are examples of that format located at \Install\Network\Profiles\.

Some useful links that could help you set up the wpa supplicant properly in addition to

the examples:

• https://wiki.netbsd.org/tutorials/how_to_use_wpa_supplicant/

• https://linux.die.net/man/5/wpa_supplicant.conf

Helen Tsagkarogianni 129 June 2019

https://github.com/AnonKour/LabTutorials/tree/master/HowToS/ConnectToNewerNaoBHuman
https://github.com/AnonKour/LabTutorials/tree/master/HowToS/ConnectToNewerNaoBHuman
https://wiki.netbsd.org/tutorials/how_to_use_wpa_supplicant/
https://linux.die.net/man/5/wpa_supplicant.conf

A. USER GUIDE

• Cnet guide.1

How to connect to Nao/Wired/Wireless

There are two ways to connect to Nao. Via WIFI while being in the same wireless network

and via Ethernet. Once you are in the the same network you could use either ssh with

the following format nao@”and Nao’s IP” or a script located at \Make\Linux\ folder

under to operating system or simply in the Common folder.

How to add behaviors that bypass the game flow

You can call it from \Src\Modules\BehaviorControl\BehaviorControl\Soccer.cpp

and you can add your code at \Src\Modules\BehaviorControl\BehaviorControl\

Options\Soccer.h as another option. While bypassing the game flow is possible, it

could effect other modules such as perception and localization.

Be careful when naming cause the option should not have the same name as one of

its states.

How to access the bumpers and touch sensors

In order to see how you can access the bumpers, the buttons and the touch sensors of Nao

you can check the KeyStates.h located at \Src\Representations\Infrastructure\

SensorData\. You can see an example of how to use those KeyStates in Soccer.h

located at \Src/Modules\BehaviorControl\BehaviorControl\ where the chest button

is being used.

How to copy the compiled code to Nao

In order to copy files to the robot we use copyfiles which is located at \Make\Linux\

and we put the robot’s IP as well as the options we want. We can see a full list of the

options if we use ./copyfiles -h

1https://www.cnet.com/how-to/home-networking-explained-part-5-setting-up-a-home-router/

Helen Tsagkarogianni 130 June 2019

https://www.cnet.com/how-to/home-networking-explained-part-5-setting-up-a-home-router/

A.2 Getting Started with Behavior Development

How to run B-Human bush

If you have executed make all then you have also compiled the The B-Human User Shell

(bush), a tool described in Section 10.2 B-Human User Shell of B-Human code release of

2017 [2]. It can be found in \Build\Linux\bush\Develop\.

How to connect Nao via SimRobot

When starting a scene, if a robot has connected in the past with SimRobot the tool

attempts to connect to that IP. If the B-Human module is running at the robot and

everything else is setup properly it will establish a remote connection automatically. We

can check the status of naoqi and the bhuman module by typing status while connected

to the robot.

Things to keep in mind

Be careful when using targets with Vector3f cause the variable order is different that

Pose2f used in walking motion requests. The former uses a variable order of x, y and

angle while the latter of angle, x and y.

As stated in the code release [2]:

The TeamBallModel is the perception that was created by the images of all the robots

in order to find the global position of the ball and hence to be able to locate it on the

field and not based on the relative position of the robot.

The obstacle detection does not distinguish between different types of obstacles, i. e.

robots, goal post, and referees. In fact, it does not detect referees wearing black trousers

at all, because black is considered to be a possible color of the field. All obstacles found

are treated as robots. Therefore, it is tried to detect their jersey color.

All the console commands are located in chapter 10.1.6 Console Commands in B-

Human code release [2]

You might need to setup different values for timer that checks how much time has

passed since last seen the ball. Different motions can distort the camera image causing a

momentary loss of the ball even if its in the robot’s field of view.

When working with a real robot make sure to clean up the log files regularly cause

they will end up allocating all the available space. It will cause eventually a rsync

Helen Tsagkarogianni 131 June 2019

A. USER GUIDE

write error when you will try to copy the compiled code to Nao via ./copyfiles.

Check downloadLogs script in \Make\Linux\ for more information.

Helen Tsagkarogianni 132 June 2019

Appendix B

Installing B-Human Code Release

This section complements the B-Human section in code release 2018 [3], Getting Started.

Before following the steps mentioned in section 2.4 Setting Up the NAO, there are a few

things you should keep in mind.

For the atom system image and the flasher mentioned you will need an account with

a registered robot is required (https://community.ald.softbankrobotics.com). In

order to find those files, after signing in, you must navigate to Resources in the top right

and then Software on the tab menu at the center of the screen. Then select English and

under My Robots select Nao. You will find the required files in the list.

Take also into consideration that flashing lasted for a 2014 Nao v.5 around 20 minutes.

Until the first boot in needed 26 minutes, so be patient.

Also every time we tried the procedure got halted in the register page of the robot

step regardless of the account we used to register it. So when you reach that step, restart

Nao1 in order to get the settings from the cloud but make sure that you passed the step

where you set up the password. If you restart the Nao before setting up a password or if

you backtrack the steps it can end up without a password and it seems in order for that

to be resolved it need to be reformatted since there is no way we know of to connect to

it. After the restart when you enter the IP of the robot in a browser it will automatically

fetch the correct credentials and allow you to finish the setup.

After the B-Human installation, while we are used to Nao greeting us, all those

procedures with the installation of B-Human are being disabled. B-Human installation

1If it has been already registered in the past.

Helen Tsagkarogianni 133 June 2019

https://community.ald.softbankrobotics.com

B. INSTALLING B-HUMAN CODE RELEASE

also lasts a few minutes.

How to setup Nao to work with B-Human

The steps required to setup Nao are in the section 2.4 Setting Up the Nao of the B-Human

code release 2018 [3]. Be extra careful not to have the same IP for wireless and wired

because Nao will not be able to connect wirelessly to the network. For creating the wired

and wireless files see A.2.3.

How to calibrate Nao

The procedure we must follow in order to calibrate Nao is stated in section 2.8 Cali-

brating the Robots of B-Human code release 2018 [3]. The commands of the chapter

must be typed in SimRobot’s console. You can see how to setup the required scenes in

Section A.2.2 of the appendix. You can also use the Tab button on your keyboard to

assist with the auto completion and cycling between options. Be careful to use the correct

field dimensions regards the robot’s coordinates. All the console commands are located

in chapter 10.1.6 Console Commands in B-Human code release 2017 [2]. After further

research, it would seem that when we calibrate our Nao we skipped an important step

since we couldn’t properly understand how properly run the calibrations. From what we

understood the required steps are the following although we did not have the chance to

confirm that:

• First we need to execute the stand and calibration stand.(Not sure if you need

both.)

• Then we need to make sure that the legs are properly aligned as mentioned in the

code release and do any manual adjustments to the robot stance as necessary in

order to correct its actual posture. A tape measure or ruler is required.

• Then we call the calibrator in order to extract the values of the manual adjustments

we made.

• Then save the representation.

• Redeploy Nao(either meaning copy files or install robot?) and restart B-Human.

In Listing B.1 we can see the console commands that are required in order to execute

the steps mentioned. After that, in the same principle, proceed with the 2.8.3 Camera

Helen Tsagkarogianni 134 June 2019

Calibration. The Join Calibrator seen in the previous listing is located in \Config\

Scenes\ and as we can see in Listing B.2, it handles the CalibrationStand. For the

rest of the calibrations follow the instructions on the code release 2017 [2] Chapter 2.8.3

Camera Calibration. After that there is Chapter 2.8.4 Color Calibration which we did

not run.

Listing B.1: B-Human console

/* We type in the console the command. */

get representation:MotionRequest

/* And we get as a result a pre-configured command that we need to alter and execute:
*/

set representation:MotionRequest motion = specialAction; specialActionRequest = {
specialAction = standHigh; mirror = false; }; walkRequest = { mode =
absoluteSpeedMode; speed = { rotation = 0deg; translation = { x = 0; y = 0; }; };
target = { rotation = 0deg; translation = { x = 0; y = 0; }; }; walkKickRequest =
{ kickType = none; kickLeg = left; }; }; kickRequest = { kickMotionType = none;
mirror = false; armsBackFix = false; autoProceed = false; boost = false;
dynPoints = []; };

/* We need to alter the command and set motion = stand. */

set representation:MotionRequest motion = stand; specialActionRequest = {
specialAction = standHigh; mirror = false; }; walkRequest = { mode =
absoluteSpeedMode; speed = { rotation = 0deg; translation = { x = 0; y = 0; }; };
target = { rotation = 0deg; translation = { x = 0; y = 0; }; }; walkKickRequest =
{ kickType = none; kickLeg = left; }; }; kickRequest = { kickMotionType = none;
mirror = false; armsBackFix = false; autoProceed = false; boost = false;
dynPoints = []; };

/* The robot will change its stance accordingly. In order to call the
CalibrationStand you call the Joint Calibrator: */

call Calibrators/Joint

/* From what we understood this is the part where we need to check the distance
between the Nao’s feet in order to make sure its 10cm as stated in the code
release. Then these values need to be given to JointCalibration via typing: */

get representation:JointCalibration

/* This should give us a different result than the following which is the default.*/

set representation:JointCalibration offsets = { headYaw = 0deg; headPitch = 0deg;
lShoulderPitch = 0deg; lShoulderRoll = 0deg; lElbowYaw = 0deg; lElbowRoll = 0deg;

Helen Tsagkarogianni 135 June 2019

B. INSTALLING B-HUMAN CODE RELEASE

lWristYaw = 0deg; lHand = 0deg; rShoulderPitch = 0deg; rShoulderRoll = 0deg;
rElbowYaw = 0deg; rElbowRoll = 0deg; rWristYaw = 0deg; rHand = 0deg; lHipYawPitch
= 0deg; lHipRoll = 0deg; lHipPitch = 0deg; lKneePitch = 0deg; lAnklePitch = 0deg;
lAnkleRoll = 0deg; rHipYawPitch = 0deg; rHipRoll = 0deg; rHipPitch = 0deg;
rKneePitch = 0deg; rAnklePitch = 0deg; rAnkleRoll = 0deg; };

/* Then save the representation. */

save representation : JointCalibration

/* Redeploy Nao(either meaning copy files or install robot?) and restart B-Human */

Listing B.2: B-Human Calibrators - How they execute CalibrationStand

mr JointCalibration JointCalibrator
dr module:JointCalibrator:init
mr FallEngineOutput default

mr StandArmRequest CalibrationStand
mr StandLegRequest CalibrationStand
set module:CalibrationStand:jointCalibrationMode true;
mr WalkingEngineOutput default
dr module:CalibrationStand:height

echo dr module:JointCalibrator:reset
echo dr module:JointCalibrator:reload
echo dr module:JointCalibrator:capture
echo save representation:JointCalibration

get module:JointCalibrator:offsets

Helen Tsagkarogianni 136 June 2019

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Overview

	2 Background
	2.1 Multi-Agent Systems
	2.2 RoboCup
	2.2.1 RoboCupSoccer
	2.2.2 RoboCupRescue
	2.2.3 RoboCup@Home
	2.2.4 RoboCupIndustrial
	2.2.5 RoboCupJunior

	2.3 RoboCup Standard Platform League
	2.4 Nao
	2.5 B-Human Project
	2.6 Robotic Cognition
	2.6.1 Machine Vision
	2.6.2 Networking and Communication
	2.6.3 Navigation
	2.6.4 Behavior Control

	3 Problem Statement
	3.1 Thesis Objectives
	3.2 Framework Selection
	3.3 Related Work

	4 Our Approach
	4.1 Initial Steps
	4.1.1 Code Base 2017
	4.1.2 Code Base 2018

	4.2 Game State Flow
	4.3 CABSL Behavior Development
	4.4 Modules used in Behavior Development
	4.4.1 Walking
	4.4.2 Kicking

	4.5 Developed Common HeadControl Modes
	4.6 Developed Common Behavior States
	4.7 Developed Soccer Behaviors
	4.7.1 Simple Striker
	4.7.2 Simple Defender
	4.7.3 Simple Goalkeeper

	4.8 Developed Ball Control Behavior
	4.8.1 Walk to the Ball
	4.8.2 Kicking the Ball
	4.8.3 Observing Position and Actions

	5 Results
	5.1 Simple Striker
	5.2 Simple Defender
	5.3 Simple Goalkeeper
	5.4 BallControl

	6 Conclusions
	6.1 Discussion
	6.2 Future Work
	6.2.1 The Next Step

	6.3 Lessons

	References
	A User Guide
	A.1 How to run the existing code
	A.1.1 Alternating between behaviors, scenes and locations

	A.2 Getting Started with Behavior Development
	A.2.1 Commands
	A.2.2 SimRobot Quick Guide
	A.2.3 Quick Implementation Guide

	B Installing B-Human Code Release

