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Abstract

Statistical Dialogue Systems (SDS) have proved their humongous potential over the

past few years. However, the lack of efficient and robust representations of the be-

lief state (BS) space refrains them from revealing their full potential. Furthermore,

there is a great need for automatic BS representations, which will replace the old

hand-crafted, variable-length ones. To tackle those problems, we introduce a novel

use of the Autoencoder (AE). Our goal is to obtain a low-dimensional and compact,

yet robust representation of the BS space. We investigate the use of dense AE,

Denoising AE (DAE), Sparse Denoising AE (SDAE) and Variational Denoising AE

(VDAE). Denoising approaches are particularly useful when corrupted BS vectors

exist in environments with high uncertainty. We also explore the capabilities of

Domain Independent Parameterization (DIP), a domain-independent alternative to

the BS representation, and we combine them with different types of the AE, in order

to obtain a more compact and robust representation of it. The BS space represen-

tation obtained from the AE is then used by two state-of-the-art Reinforcement

Learning (RL) algorithms to learn the dialogue policies from simulated users in the

PyDial toolkit; the non-parametric GP-SARSA and the parametric LSPI. In this

framework, the BS is normally represented in a relatively compact, but still redun-

dant summary space which is obtained through a heuristic mapping of the original

master space. We show that the proposed AE-based representations consistently

outperform the summary BS representation. Especially, as the Semantic Error Rate

(SER) increases, the DAE/VDAE-based representations obtain state-of-the-art and

sample efficient performance.
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Chapter 1

Introduction

In the past few years, there has been a rising interest in incorporating Spoken Dia-

logue Systems [31, 40, 12] in real-life applications. Apple Siri, Amazon Alexa, Mi-

crosoft Cortana and Google Assistant are few examples of novel commercial systems

that use voice commands to control multiple devices at a place or can be asked for

information. Many industries, like social robots [11], tourist information [2], banks

[26], navigation [15], health care [28] and calling centers [9], have already incorpo-

rated Spoken Dialogue Systems to improve performance and offer better services.

At its core, a Dialogue System utilizes a Dialogue Manager (DM) [41], which keeps

track of the dialogue’s state at its State Tracker and predicts an action based on

that state at the Policy Manager (PM). So far, rule-based DMs [3] have shown great

performance in many domains, but their building complexity, cost of scalability, sen-

sitivity to semantic errors, need for continuous supervision and domain-restricted

usage have turned the research interest towards the development of Statistical DMs

(SDMs) [41]. Their growth of popularity is a consequence of the numerous training

corpora that became available online in the past few years, the fact that they enable

the introduction of a continuous state space to the models and their generalization

capability.

There are PMs for the SDMs based on:

- non-parametric RL algorithms, i.e. the Gaussian Process SARSA (GP-SARSA)

[7]

- linear parametric RL algorithms, i.e. the Least-Squares Policy Iteration (LSPI)

[20][22]

- non-linear parametric RL algorithms, such as the Deep Q-learning Network

(DQN) [27], the Advantage Actor Critic (A2C) [6] and the episodic Natural

Actor Critic (eNAC) [33]

In [3] there is a comparison between those algorithms on different simulated envi-

ronments and domains in which GP-SARSA seems to outperform all the other deep

Neural Network (DNN) approaches. For the benchmarking procedure they use the

summary BS (sumBS) representation [38, 39] to train the policy managers. The

sumBS space is a heuristic mapping of the master (full) BS space. However, since
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CHAPTER 1. INTRODUCTION 1

it uses the domain ontology the sumBS vectors produced are domain-dependent,

relatively high-dimensional, sparse and redundant. They also require domain ex-

pertise and they cannot be easily generalized and adapted to new domains. Those

characteristics of the sumBS vectors prevent RL algorithms from finding good poli-

cies in reasonable time. For example, LSPI [20] having a cubic complexity on the

dimensions of the BS vector, is highly dependent on the size of sumBS vector.

Furthermore, in [3] the performance of the dialog manager degrades significantly

in the presence of noise or when the domain complexity increases. This performance

degradation could be attributed to the highly-dimensional and redundant sumBS

vector. We believe that a more efficient BS representation could result in large

performance gains particularly in difficult environments.

In this thesis we investigate robust and efficient BS space representations au-

tomatically obtained from AE variations [19]. Although AE variations have been

successfully used for non-linear feature extraction at several application domains, to

the best of our knowledge, this is the first time that they are used as a tool to project

the fullBS space into a more compact and lower-dimensional space in the framework

of a SDS. We also examine a noise robust variation of the AE; the Denoising AE

(DAE) [36]. DAE can overcome the sensitivity of other featurizations in environ-

ments that introduce high SER. Complementary, we investigate the use of Sparse

DAE (SDAE) based on [25], hoping that it will provide distinct representations

and enable PM to learn more robust policies. We also introduce another promising

AE-based representation technique, namely Variational AE (VAE) [16] [8] and Vari-

ational DAE (VDAE). VAE/VDAE manage to capture the true distribution that

creates the latent space representation of the sumBS space, performing variational

inference on the learned distribution to obtain the sumBS representations.

In addition, we examined the efficiency of the AE in other feature vectors.

Specifically, we considered the Domain Independent Parameterization (DIP) [37],

developed by ”Toshiba Research Europe LTD” which defines a smaller domain-

independent state representation. Despite its smaller size, the DIP representation is

redundant, and exhibits high dependency among its features. We therefore utilize

DAE and VDAE to further reduce its size and obtain a better and robust represen-

tation.

Finally, we use the above representations to learn optimal dialogue policies with

two different state-of-the-art RL algorithms: a parametric and a parameter-free

one, namely LSPI [20] and GP-SARSA [7] respectively. We describe a training

scheme which concurrently adjusts the parameters of the AE, DAE, SDAE or VDAE

networks with new episodes that are also used for policy optimization (GP-SARSA,

LSPI). We confirm the high performance of the proposed schemes over a series of

experiments for several domains in multiple noise environments, using the PyDial

dialog simulation toolkit.

This thesis is organized in the following chapters: In Chapter 2 we present the

general modular approach of Dialogue Systems, the mathematical background and

available tools. We then explain the constraints and we discuss how they are ap-

proached in the literature. In Chapter 3 we describe the AE and its different varia-
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tions we use, as well as DIP features and our training scheme and in Chapter 4 we

show and discuss the results of our experiments. Chapter 5 concludes our work and

describes possible extensions in the future.
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Chapter 2

Background

2.1 Dialogue Management

The basic architecture of a Spoken Dialogue System [41] consists of the Spoken

Language Understanding (SLU) module, the DM and a natural language generation

(NLG) module (Figure 2.1). We assume that a dialogue consists of turns between

Figure 2.1: Modular Architecture of a Dialogue System based on [41].

the user and the system. At each turn, the user gives a speech input to the SDS. In

the SLU module, an automatic speech recognizer converts the user’s speech input

to text and the natural language understating component translates text into an

abstract semantics representation in the form of user’s intention or user act au. The

belief state tracker in the DM makes use of au to estimate the current belief state

of the dialogue, providing an updated BS vector to the PM to predict the next

system action as. Finally, in the NLG module the system action as is translated

into natural language text through a template-filling procedure and a text-to-speech
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2.2. POMDPS 2

module returns a spoken system response to the user in spoken language, based on

the result of the template-filling.

2.2 POMDPs

Managing a dialogue can be seen as a discrete-time sequential decision process and,

thus, is generally approached as a Markov Decision Process (MDP) problem [1].

An MDP is based on the Markov’s property, which states that ”A future state is

independent of all the past states given the present one”. Specifically, the current

state where we are at is a sufficient statistic to predict a future one. We describe an

MDP as a 4-tuple:

(S,A, Ta, Ra) (2.1)

where S is a finite set of the states, A is a finite set of actions, Ta(s, s
′) = Pr(st+1 =

s′|st = s, at = a) is the probability that action a in state s as time step t will lead to

state s at time t+1 and Ra(s, s
′) is the immediate reward received after transitioning

from state s to state s′, due to action a.

In reality though, due to the fact that there is no strict description of the envi-

ronment’s models, i.e. the models describing the behavior or goals of the user or the

model that adds noise in the communication channel, the underlying state is par-

tially observable. This partial observability is caused by the errors introduced to the

user’s input through the channel, mistakes at the semantics extraction and the un-

certainty of the user’s true goal. Thus, we can frame this problem as a discrete-time

Partially Observable Markov Decision Process (POMDP) [41] [7].

In a POMDP, at each step t of a dialogue, the DM maintains a distribution over

the set of all possible states S, performs an action a ∈ A using the derived policy

π, moves in the new (unobserved) state s′ ∈ S, receives a corresponding reward r

equals to the function R : S × A → R while taking the observation ω ∈ Ω and

proceeds repeatedly. To have a complete description of a POMDP we need the

set of conditional transition probabilities between states T , the set of conditional

observation probabilities O and the discount factor γ ∈ [0, 1]. Therefore, a POMDP

is the 7− tuple [13]:

(S,A, T,R,Ω, O, γ) (2.2)

The only information the agent can acquire from a dialogue environment is a

potentially delayed reward signal r and the observation of the state o. We can use

o at the belief tracker of the DM to formulate the BS vector b ∈ B : R|S|, which is

a vector that keeps a distribution over all the possible states s and use it instead of

s to cope with the uncertainty of observations.

The policy manager’s goal is to find a policy π of actions a at each time step t,

such that at = π(bt), that maximizes the discounted expected future reward starting

from the initial belief b0:

V π(b0) =
∞∑
t=0

γtE [R(bt,at)|b0, π] (2.3)
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Then optimal policy π∗ is obtained as:

π∗ = argmax
π

V π(b0) (2.4)

For each belief state b we can find π∗ by obtaining the value function V ∗ for each

b. We can obtain V ∗ as the solution to the Bellman optimality equation:

V ∗(b) = max
a∈A

[
r(b, a) + γ

∑
o∈O

Pr(o|b, a)V ∗(T(b, a, o))

]
(2.5)

where T is the belief state transition function.

At this point we could associate the full BS vector and the corresponding action

derived from the DM policy module with environment reward and respectively use

reinforcement learning (RL) to learn optimal decision policies.

Unfortunately, in real-world problems we cannot acquire the transition function

T, so we cannot use dynamic programming, value or policy iteration to find the

optimal policy. In addition, in these applications the full BS and action spaces are

very large and probably continuous. This introduces more barriers in finding optimal

policies as the solutions to the above equations become intractable. Later in this

chapter we are explaining how these barriers can be broken by the state-of-the-art

and our proposed technique in Chapter 3.

2.3 Reinforcement Learning

To avoid the need to acquire or compute T from 2.2 we have to resort to model-

free RL algorithms. Q-learning is such an algorithm at which, instead of the value

function V : B → R, we calculate Q : B × A → R. The algorithm updates Q at

each time step t as:

Q(bt, at)← Q(bt, at) + α
(
rt + γmax

a
Q(bt+1, at+1)−Q(bt, at)

)
(2.6)

where α is the learning rate, Q(bt, at) the old value and Q(bt+1, a) the estimation

of the optimal future reward. In this way, the Q-function is only dependent on the

4− tuple:
(b, a, r, b′) (2.7)

where b′ and b are the current and previous belief states respectively, (b, b′) ∈ B,

a ∈ A and r ∈ R.

Q-learning is an off-policy algorithm, meaning that it does not follow a specific

policy π to find the next action. In fact, this algorithm chooses the next action in

a greedy way, selecting the one that provides the highest reward. For this reason,

Q-learning optimization is performed on-line while interacting directly with the user.

Another RL algorithm that is model-free and can be trained on-line is State-

Action-Reward-State-Action (SARSA). SARSA algorithm is an on-policy algorithm,

meaning that it updates the policy π while interacting with the environment, i.e.

9



2.3. REINFORCEMENT LEARNING 2

updates π while using it, which is its only difference comparing it with Q-learning.

Likewise, we use equation 2.6 to update the value function Q.

Nevertheless, Q-learning and SARSA are not suitable to be used in big-scale

real-world applications, since they make use of matrices to store the value function

data and, thus, cannot be used for large BS and action spaces, not even mentioning

the cases where data are in R. To overcome this boundary we have to approach

the value function Q with function approximation techniques. The most prominent

function approximators that have been tested so far for DMs are Gaussian Processes

(GP) [7], linear parametric combinations of basis functions for Q (LSPI) [20] and

Deep Neural Networks(DNNs)[27].

2.3.1 GP-SARSA

A Gaussian Process (GP) is a collection of random variables that are described

by a multivariate normal distribution or, equivalently, a distribution over possible

functions. A GP’s distribution is the joint distribution of these random variables

(functions), which can be infinite and additionally handle continuous values. Hence,

a GP is a non-parametric function approximator, meaning that it has an infinite

number of parameters. For GP approximation we start from the prior knowledge

we have and we use Bayes’ rule to update the distribution of function by observing

training data [7].

The motivation on using GP to approximate the Q-function is quite obvious.

The GP-based approximator enables Q to handle arbitrary high dimensional states

and handle values in R altogether. If we substitute the update rule of 2.6 at the right

hand of the Q correction with the update of the GP-based Q-function approximation

we are obtaining the GP-SARSA algorithm.

2.3.2 Least Squares Policy Iteration

Least Squares Policy iteration (LSPI) [20] belongs to the family of approximate

policy iteration RL algorithms, which learns decision policies from samples that

are produced from the interaction with the environment, e.g. dialogue samples

when talking to a user in the case of SDSs. The iteration starts with a parametric

approximation of the Q-function with free weights w:

Q̃π(b, a;w) =
k∑
j=1

φj(b, a)wj (2.8)

The basis functions φj are fixed in size, which depends on the specific application

and can be chosen appropriately and, generally, they are non-linear functions of

b and a. Then LSPI proceeds to policy improvement, choosing greedily at each

iteration m the action that maximizes Qπm :

πm+1(b) = argmax
a∈A

Qπm(b, a) (2.9)
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Algorithm 1 LSTDQ algorithm with a model - Learns the approximate Q of a

fixed policy [20]

1: function LSTDQ(D, k, φ, γ, π) . Learns Q̂π from samples

2: // D : Set of samples (s, a, r, s′)

3: // k : number of basis functions

4: // φ : Basis functions

5: // γ : Discount factor

6: // π : Policy whose value function we are seeking at each time step

7:

8: Ã← 0 . Weights: (k × k)matrix

9: b̃← 0 . Bias: (k × 1)vector

10:

11: for each (s, a, r, s′) ∈ D
12: Ã← Ã+ φ(s, a)φ (φ(s, a)− γφ(s′, π(s′)))T

13: b̃← b̃+ φ(s, a)r

14: ω̃π ← Ã−1b̃

15:

16: return ω̃π

Algorithm 2 LSPI algorithm - Iteration between Policy Improvement and Policy

Iteration [20]

1: function LSPI(D, k, φ, γ, ε, π0) . Learns a policy from samples

2: // D : Set of samples (s, a, r, s′)

3: // k : number of basis functions

4: // φ : Basis functions

5: // γ : Discount factor

6: // ε : Stopping Criterion

7: // π0 : Initial policy, given as w0(usuallyequalsto0)

8:

9: π′ ← π0 . w′ ← w0

10:

11: repeat

12: π ← π′ . w ← w′

13: π′ ← LSTDQ(D, k, φ, γ, π) . w′ ← LSTDQ(D, k, φ, γ, π)

14: until (π ≈ π′) . until ||w − w′|| < ε

15:

16: return π . return π

11



2.3. REINFORCEMENT LEARNING 2

and policy evaluation (Algorithm 1 [20]), where the Least Squares Temporal Differ-

ence Q-function (LSTDQ) algorithm is being used to learn the Q-function.

In Algorithm 1 [20]) we are using the state s instead of the belief state vector b,

so there is no confusion between the notation between the bias and the belief state

vector. Without losing generalization capability we can use samples of the form

(b, a, r, b′) at the LSTDQ algorithm. Finally, we use the LSPI algorithm (Algorithm

2 [20])) to find an optimal policy based on the iteration described above.

Algorithm 3 LSTDQ-OPT algorithm - Direct update on Ã−1 [20]

1: function LSTDQ(D, k, φ, γ, π) . Learns Q̂π from samples

2: // D : Set of samples (s, a, r, s′)

3: // k : number of basis functions

4: // φ : Basis functions

5: // γ : Discount factor

6: // π : Policy whose value function we are seeking at each time step

7:

8: B̃ ← 1
δ
I . Ã−1: (k × k)matrix

9: b̃← 0 . Bias: (k × 1)vector

10:

11: for each (s, a, r, s′) ∈ D
12: B ← B − Bφ(s,a)(φ(s,a)−γφ(s′,π(s′)))TB

1+(φ(s,a)−γφ(s′,π(s′)))TBφ(s,a)

13: b̃← b̃+ φ(s, a)r

14: ω̃π ← B̃b̃

15:

16: return ω̃π

Is is important to note, that the LSTDQ algorithm as described in Algorithm

1 demands the computation of Ã−1 which has a cubical dependence (O(k3)) on

the number of basis functions k in terms of complexity. This would lead to bad

system performance, especially if we want to update equation (2.8) frequently. A

variation of LSTDQ would aim to update directly Ã−1 matrix, which is denoted as

B in Algorithm 3 [20]. With this alteration we can easily and very cost-effectively

update out linear system with only squared dependence on k (O(k2)). Finally, like

in the original LSTDQ algorithm, we are using the state s instead of the belief state

b to eliminate confusability with the bias vector.

In this work we are using the Block basis functions. The block-basis feature is

one of the simplest state-action encodings. Considering a dialog of n discrete dialog

actions A = (a1, a2, . . . , an), the block-basis feature is constructed as a concatenation

of n block vectors, each having the size of the BS vector. In this framework, the state-

action representation is obtained by the activation of a single feature-vector block

that corresponds to the selected action. All other blocks in the feature-vector are

zero-valued. Specifically, let the BS vector be represented by a d-dimensional vector

s = (s2, s2, . . . , sd). Then the block-basis feature for the state s and a corresponding

12
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active action a is created as follows:

φ(s, a) = [c1s, c2s, . . . , cns]T (2.10)

where ci, i = 1, . . . , n is a binary constant defined as:

ci =

{
1, if ai = a

0, otherwise
(2.11)

Although this can be an elegant representation for the dialog domain since it nicely

discriminates the action contribution, it also exhibits several disadvantages. For

instance, even a small to medium action space can result to sparse and high di-

mensional block-basis features for a typical belief state-vector. This results to large

computational burdens during the policy learning process and makes the use of large

action spaces impractical.

2.3.3 Non-Linear Approximators

A very popular Q-function approximation category, that has attracted attention and

important research interest, is the DNN-based approximation techniques, i.e. DQN

[27], A2C [6] and eNAC [33]. The basic concept here is that we want to learn a

function that takes as input the state of the dialogue at each time step and predicts

the value of the Q-function.

The prominence of this technique arises from the ability of these approximators to

capture really complex dependency structures of the dialogue state at each time step.

This is promoted by the non-linearity that is being imposed to the sub-functions

consisting the approximator of the Q-function, also known as Neural Network, as

well as the architecture of its topology.

2.4 Belief State Space Representation

2.4.1 Full Belief State Space

As we discussed in Section 2.2 of this Chapter, we keep a distribution over all possible

states due to the uncertainty in our environment. An example of such dialogue states

at a domain on Laptops purchase is:

- inform(type=”Laptop”, price=”medium”,HDD=”750G”, cpu=”2.2Ghz”,

warrranty=”2years”,...,type=”business”)(0.15)

- inform(type=”Notebook”, price=”cheap”,HDD=”500G”,cpu=”2.2Ghz”,

warrranty=”3years”,...,type=”basic”)(0.07)

- ...

13
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In parenthesis after the state description is the probability of being in that state.

It can be easily inferred from the above example that the number possible states,

in which a dialogue can be at, has exponential dependence on the number of the

available values of each feature in the ontology. For example, if we consider 7 features

in the ontology of a domain with an average cardinality of |10| each, we end up with

107 = 10 million states.

2.4.2 Summary Space

An early tool that enabled low dimensional representations of the full BS space, that

could empower PM to learn better policies more efficiently, was the creation of a

summary space [38] [39] from the original fullBS space. Williams and Young in [38]

call the fullBS space the master space. Thus, summary space is a subset of the master

one and PM operates only on this subset, which leads to tractable computations for

finding optimal policies, since during an average dialogue the number of states it is

usually visited is a small subset of all the available ones.

In [42], the summary space is formed by factorizing the master space into the

user’s goal state space Swu and dialogue’s history state space Swd for every slot w

from the set of slots W that each of these two spaces is decomposed at. The result

is two new summary space sets Ŝwu = {best, rest} and Ŝwd = Swu . The mapping from

the master to the summary space is being done by setting each belief component

equal to the probability mass of the most likely user goal in slot w (b̂(ŝ) = best) and

the dialogue history equal to the history of the master space ( b̂((ŝwd )) = b(ŝwd ))

Thus, in PyDial the sumBS vector is formed as a dictionary that contains

domain-dependent and domain-independent beliefs, domain-independent features

and domain-dependent user acts as three distinct sub-dictionaries:

• beliefs :

– domain-independent: ”discourseACT” and ”method”.

– domain-dependent. Example: ’pricerange’ and ”batteryrating” (Lap-

tops11 domain)

• features :

– ”inform info”

– ”informedVenueSinceNone”

– ”lastActionInformNone”

– ”offerHappened”

• userActs

– inform(weightrange=”lightweight”, isforbusinesscomputing=”1”)

– affirm(driverrange=”small”)

14
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Each slot of the above sub-dictionaries can take any type of values depending on

the ontology; binary or decimal values, discrete or continuous numbers and strings.

It is important to mention that the domain-dependent beliefs are based on the

ontology of each domain.

To update the sumBS vector we use the Focus Tracker from [10], which is im-

plemented in PyDial. The tracker associates a probability in each slot, based on the

hypothesis’s of the SLU components of the SDS, and outputs the updated sumBS

vector. Finally, this dictionary is flattened into a vector that contains only the values

of the aforementioned dictionaries, i.e. a variable size vector of probabilities (Tables

2.1 and 2.2).

1 2 3 ... 268

discourseAct:

”ack”

pricerange:

”expensive”

offerHappened:

”true”
...

inform

(cuisine=”greek”,

kidsfriendly=”1”)

0.046 0.953 0.000 ... 1.000

Table 2.1: Cambridge Restaurants domain sumBS vector example.

1 2 3 ... 257

discourseAct:

”hello”

pricerange:

”cheap”

offerHappened:

”true”
...

inform

(weightrange=”lightweight”,

isforbusinesscomputing=”1”)

1.000 0.000 0.095 ... 1.000

Table 2.2: Laptops11 domain sumBS vector example.

The obtained flattened sumBS vector is therefore domain-dependent, sparse, still

relatively high-dimensional and information-redundant and it refrains most PMs

from learning good policies or from converging fast. Consequently, there is a great

need to represent the sumBS space into a more efficient and compact one.

2.4.3 Domain-Independent Parameterisation

Another approach towards efficient and domain-independent BS space is the Domain

Independent Parameterization (DIP) [37]. DIP produces a BS space based on the

domain-independent information from the SLU module and statistics on the domain-

dependent ones. The result is a low-dimensional, fixed size feature vector, that can

be seamlessly used in multiple domains. DIP exploits the underlying similarities and

the encapsulated information of task in different domains and extracts features based

on grouping relevant slots in the domain ontologies, on the history of the dialogue

and on the last action. These features, however, need to be hand engineered by the

system designer. Specifically, DIP state vector might include redundant, correlated

or non-informative features, they do not make use of domain-specific information
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and are sensitive to noise. Finally, this vector may vary in size depending on the

number of features we want to use.

2.4.4 Binary Feature Representation

Another alternative BS representation is the BinLin/BinAux BS introduced in [18],

which also uses limited domain information to build extremely compact state repre-

sentations. BinLin/BinAux are based on the assumption that the policy manager’s

decision, on what the next action will be, is dependent on the presence or not of

a slot in the ontology. Thus, binary features actually represent the activation of a

slot value for the given turn and they exclude its specific value. The featurization

of the BS space is achieved either by obtaining a linear combination(BinLin) for all

the domain slots, or by augmenting them with auxiliary binary information about

slot requests(BinAux). However, they need to be explicitly defined for each domain

and are sensitive to the input’s uncertainty and their performance degrades in the

presence of noisy semantic input.

2.4.5 Non-Linear Automatic Feature Representations

In recent work in [5, 4], a feed forward network (FNN) and a recurrent neural

network (RNN) are used to learn feature extractors in the form of feature functions

for each slot to obtain abstractions. of the BS space. However, this approach does

not seem to clearly outperform the techniques mentioned above and the resulting

system is prone to slow and non-optimal converge.

In [22] [23] feature selection is used to obtain lower-dimensional state represen-

tation. However, most of the algorithms are tied to specific RL algorithms such as

LSPI, and cannot be generalized to other policy models. Furthermore, they do not

exhibit robustness in the presence of noise.
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Chapter 3

Non-Linear Belief State

Representation

3.1 Deep Neural Networks

The building unit of a neural network (NN) is the neuron. A neuron is a mathemat-

ical function that takes an input and produces an output. Inspired by the biological

neurons, the artificial one involves the multiplication of its input with a weight and

the application of an activation function to the weighted input to produce the output

y:

y = a(w × x) + b (3.1)

where w ∈ R1 denotes the neuron’s weight, α() defines the activation function,

x ∈ R1 is the input of the neuron and b ∈ R1 is the bias. In this thesis we are

excluding bias, without losing the ability of generalization.

Choosing the activation function appropriately, we can transform the neuron

input non-linearly. This non-linearity can be introduced with a sigmoid-shaped

function, like sigmoid, tanh and softmax, or the Rectified Linear Unit (ReLU). Non-

linearity enables neural networks to approximate complex functions that traditional

linear models are incapable of. Multiple neurons can be stacked together into a layer

and handle a vector of real values x ∈ Rdx×1, where dx are the dimensions of x.

Then 3.1 becomes:

y(x) = a (W × x) (3.2)

or

yk(x) = a

(
dz∑
i=0

wki × xi

)
(3.3)

where y(x) ∈ Rdy×1, yk is the k-th neuron of the layer y and W ∈ Rdy×d0 .

A NN may consist of multiple layers of neurons connected together, formulating

a directed acyclic graph. We call x the input layer and z the output layer of the

NN. In addition, we can interpolate between the input and output layers one or

more hidden layers, creating a Deep NN (DNN). For the simplest DNN, we can

consider only one hidden layer h1(x) and the weight matrix Wh1x ∈ Rdh1×dx defines
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3.2. VANILLA AUTOENCODER 3

the matrix of weights connecting the input and the first hidden layer:

h1(x) = α (Wh1x × x) (3.4)

Then, with Wyh1 ∈ Rdy×dh1 , the output layer y(x) is calculated as:

y(x) = α (Wzh1 × h1(x)) (3.5)

Several hidden layers j ∈ 1, · · · , N , can then be added with varied dimensions

depending on the architecture. The corresponding hidden representation of a hidden

layer j is then defined as a mapping from the previous layer j − 1 as follows:

hj(x) = α
(
Whjhj−1

× hj−1(x)
)

(3.6)

The most common way to train a NN is through backpropagation [21]. A forward

pass from the input to the output layer is computed to obtain the prediction y =

y(x) at the output layer. Then we can compute the loss J based on the error between

the predicted value and the label l that is the target of the NN. For example a popular

loss function is the mean square error:

J(y, l) = E
[
||y − l||2

]
(3.7)

Consequently, we backpropagate J to train the weights of the NN, using a fitting

optimizer [30], i.e. Gradient Descent [34] and ADAM [17]. In the most applications

NNs are used either for classification [45] or regression [32] and are trained in a

supervised learning framework, i.e. we have in our possession a set of labelled

data and we compute the loss based on the difference between the prediction of

the data from the NN and the true labels of the input. However, in this thesis we

are considering a specific NN topology, the AE, in the framework of unsupervised

learning in order to extract useful features from the input x.

3.2 Vanilla Autoencoder

AEs are a family of NN topologies used for unsupervised learning which have been

successfully employed for non-linear feature extraction at several application do-

mains [29, 19, 24]. Due to its architecture, an AE is forced to learn lower dimen-

sional and more robust representations of the input vector x. In this thesis, input

x ∈ Rdx×1 denotes the sumBS vector (Section 2.4) which has a variable length dx
depending on the chosen domain. The AE is then used to project the sumBS from

the Rdx×1 space into a fixed-size, lower-dimensional one.

Typically, an AE can be seen as the concatenation of two networks ( Figure 3.1).

The first one is the encoder, which projects the input layer to a lower-dimensional

latent space. The second one is the decoder, which takes the encoded representation

and projects it back to the original input. Their architecture exhibits a perfect

symmetry with regards to the central hidden layer which is the lowest-dimensional

one and serves as the coding layer.
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CHAPTER 3. NON-LINEAR BELIEF STATE REPRESENTATION 3

Figure 3.1: Encoder - Decoder Architecture of an Autoencoder

In this thesis, the AEs are built as deep, feed-forward and dense NNs consisting

of multiple layers, as we described them in Section 3.1. The hidden representation

of the projection layer hdN
2
e is obtained through a typical mapping of the input,

as described in Equation 3.6 using the encoders weight matrices W enc. The latent

representation z (Equation 3.8) from the bottleneck layer hdN
2
e is then mapped back

to the input x through a reverse mapping function using the corresponding weight

matrices of the decoder W dec.

z = hdN
2
e(x) (3.8)

In this work, the decoder’s weight matrices were tied to the corresponding encoder’s

weight matrices W dec = [W enc]T .

3.3 Denoising Autoencoder

Originally the DAE was used to discard the noise from corrupted images [36]. The

latent space in this case was higher-dimensional than the input. However, in this

work, we keep the network’s symmetry and the gradually smaller dimensions of the

latent space as described in the previous Section 3.2, since our goal is to obtain also

a compact representation.

In this thesis, DAE is essentially a dense AE which is trained to represent the

corrupted or noisy input vectors, providing robustness. In a typical SDS, noise can

be introduced due to a multitude of factors, including the errors of the recognizer,

the semantic errors (e.g. acoustic confusability, ambiguity of natural language, in-

complete utterances, etc.), as well as the uncertainty of user’s goal. In specific, the

input of a DAE is a corrupted version x̃ of the clean fullBS vector x:

x̃ = x+ n (3.9)

where x is the target in the output layer, and n denotes the noise vector, produced

by an unknown distribution, which has the same size as the clean fullBS x.Noise n

is added to x artificially using the SER percentage as probability PSER. Specifically,

the corrupted vector x̃ is obtained by keeping, with probability 1− PSER, the true

semantic information for a slot, and making random selections from all the available
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values in the ontology, with probability PSER. It is worth noting that this artificial

corruption process can be applied to data from both real and simulated dialogues.

Using an adequately large set of [x, x̃] sample pairs, a DAE can be trained

to approximate the noise distribution and appropriately filter out the noise. The

parameters of the DAE are trained so as to minimize the average reconstruction

error J defined as the mean squared error:

J(x,y) = E
[
||x− y||2

]
(3.10)

where y is the prediction obtained at the output of the network’s decoder when we

input the noisy x̃, and x is the original non-corrupted vector.

3.4 Sparse Autoencoder

Another AE variation is the Sparse AE (SAE). SAE have proved to be very suc-

cessful at several application domains such as in text extraction from images [25],

locomotion [44] and facial expression recognition [43]. A SAE can be designed by

introducing a sparsity penalty, so that the NN learns sparse representations of the

input. This can potentially help policy managers to learn better policies, since the

representation learned by the sparse autoencoder (SAE) contains a small number

of neurons that are highly activated at a specific state and the rest that are close

to zero. In detail, what we try to achieve at a SAE is an average activation across

of the latent space that is close to a very small value ρ, called the sparsity parame-

ter. This results in enforcing the SAE to learn to activate only a few neurons at a

time, imposing the desired sparsity. To accomplish sparsity we introduce a sparsity

penalty to the loss function, weighted by a parameter β. We calculate the average

activation ρ̂ of the latent space over all the samples m for each neuron k of the latent

hidden layer hdN
2
e(x) as:

ρ̂k =
1

m

m∑
i=1

zik (3.11)

where zik is the activation of the k-th neuron of the bottleneck layer hdN
2
e for the

i-th sample of the dataset.

Then, we enforce the mean value of the elements of ρ̂ to take a value close to

the sparsity parameter ρ. This procedure will highly discriminate the few relevant

neurons weakening the inclusion of the irrelevant ones from the training procedure of

the policy manager. To achieve this we treat ρ and ρ̂ as the means of respectively two

Bernoulli random variables and we calculate the Kullback-Leibler(KL) divergence

between them. KL-divergence is a trivial method to measure the similarity of two

different distributions.
dz∑
k=1

ρ log
ρ

ρ̂k
+ (1− ρ) log

1− ρ
1− ρ̂k

(3.12)

or
dz∑
k=1

KL(ρ||ρ̂k) (3.13)
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Eventually, we incorporate this penalty term in J using a weighting parameter β as:

Jsparse = J + β

dhz∑
k=1

KL(ρ||ρ̂k) (3.14)

In [25, 44, 43], the the encoder has a higher-dimesnional output than the input

in order to learn the desired sparse representations. In our work we are following the

bottleneck architecture we applied for the vanilla AE and DAE, because we want to

obtain a compact and low-dimensional representation. Finally, we are training our

networks using the denoising technique described in Section 3.3 obtaining a Sparse

DAE (SDAE).

3.5 Variational Autoencoder

All the previous variations of the AE suffer from the same weakness of their topolo-

gies. This is the poor generalization capability to unseen data, particularly consid-

ering the sparse and continuous nature of the sumBS vector in the input, caused by

discontinuous nature of the learned latent space. A discrete latent space is charac-

terized by bad interpolation of the samples and, consequently, the PM cannot learn

good policies from representations of unseen states.

To overcome this problem we are investigating the use of the Variational AE

(VAE) [16, 8]. The term variational is originated by the variational inference we

are performing at the posterior distribution that describes the latent space. From

a probability model perspective, a VAE contains the probability models of the p(x)

of observed data, also called evidence, x and p(z) of the true latent variables z, as

shown in Figure 3.2. The joint distribution of these two models is p(x, y) using the

X Z

Figure 3.2: Graphical Representation of the dependence between data x and latent

variable z.

Bayes’ rule is:

p(x, z) = p(x|z)p(z) (3.15)

and the posterior of the z given the data x:

p(z|x) =
p(x|z)p(z)

p(x)
(3.16)

However, in order to compute the prior probability of evidence p(x) we have to

marginalize out z from
∫
p(x|z)p(z)dz. As this requires the evaluation of all config-

urations of the latent variable z and, thus, exponential time, we have to approximate
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the posterior probability p(x|z). In variational inference we approximate p(z|x) with

a family of distributions q(z|x;λ) and we learn the parameters λ with the help of

an AE.

A VAE creates continuous latent spaces, since the latent vectors z are generated

randomly from a parametric inference model defined as a multivariate Gaussian

distribution q(z|x : λ) = N (z : µ,σ), where λ = {µ,σ}, µ is the mean vector

of the Gaussian and σ is the corresponding vector of standard deviations. The µ

and σ vectors are approximated through a corresponding pair of weight matrices

Wµ and Wσ in the bottleneck layer hdN
2
e, which are optimized as parameters of the

neural network.

In fact, instead of the σ values we maintain the log values of σ, log(σ). The

reason is that predicting log(σ) instead of σ introduces stability during the training

procedure and makes computations easier. This is beneficial to the training process,

as log(σ) can ensure the non-negativity of σ and the avoidance of computations with

very small numbers, that σ usually takes, during optimization.

The objective of the AE’s optimization now has slightly changed. We keep the

objective of learning representations that produce outputs identical to the input,

while though also clustering states as close as possible to the neighbouring clusters,

yet distinctly enough. This results to smoother interpolation of data, leading to

more robust representations. Thus, optimization of the VAE is made on the basis

of the following loss function:

JV AE(x,y) = J(x,y) +DKL (q(z|x : λ)||p(z)) (3.17)

where DKL denotes the KL-Divergence among the true latent variable distribution

p(z) which is typically chosen to follow the standard Gaussian N (0, 1) and the

approximation q(z|x : λ) learned by the encoder.

When we want to use the encoder to produce a representation of the sumBS

vector taken from the learned distribution q, we sample from the multivariate Gaus-

sian q, using a equally-dimensional sample vector ε from a multivariate Normal

distribution, as:

r = µ(x) + σ(x) ∗ ε (3.18)

In the proposed Variational DAE (VDAE) scheme, the inference model q(z|x̃ : λ)

learns to generate latent vectors from corrupted sumBS state vectors x̃ that have

been injected with noise using the method described in Section 3.3. In this way, the

VDAE will be trained to be tolerant in noise.

3.6 Concurrent Training Scheme

In this work, both the policy manager and the parameters of the AE variation in

use are optimized in parallel using batches of dialogue episodes. The AE variation

take as input sumBS vectors x, while the policy manager takes as input the AE’s
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bottleneck layer hdN
2
e(x). Consequently, both the sumBS representations and the

policy are dynamically adapted to the environment’s variations.

To speed up the convergence of this parallel process we perform pre-training on

the AE based on randomly generated sumBS vectors. During our experiments we

noticed that the convergence of the above process depends on the initialization of the

AE’s network weights. Good initial estimates of the network weights result to faster

optimization and better policies of the policy manager. The pre-training process is

terminated when the loss function drops below a threshold. Further optimization

is then performed on-line to dynamically adapt the models to the environment’s

uncertainty. This process is summarized in Algorithm 4.

Algorithm 4 Concurrent Training Scheme

1: AE.preTrain()

2: for iteration ∈ (1, NumOfDialogueBatches) do

3: for Dialogue in DialogueBatch do

4: DialSimulation.Start()

5: while !(DialSimulation.Ended()) = True do

6: Policy.saveToBatch(Episode)

7: AE.saveToBatch(Episode)

8: if AE.BatchisFull() = True then

9: AE.train()

10: Policy.train()

11: Policy.evaluate()
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Experiments

4.1 Experimental Set Up - Framework

For our experiments, we used the GP-SARSA policy algorithm in the PyDial [35]

on simulated standard users. We also incorporated the optimized version of LSPI

algorithm (Algorithm 3) in the toolkit. The choice of GP-SARSA was made upon

its dominant performance over the rest statistical PMs [3], whereas LSPI was chosen

due to its learning properties and its promising potential in dialogue management

when quality features are in use [22].

Both algorithms can be trained either off-line on samples or on-line while the

learned policy is used, with very little modifications. In this work we train them

off-line in batches, but the learned policies can then be updated online in real-user

environments.

We evaluated our algorithms in the following three domains:

(a) Cambridge Restaurants (CR), which is the most common domain in the liter-

ature. It produces a 268-dimensional sumBS vector.

(b) San Francisco Restaurants (SFR) which has a higher-dimensional (636-dimensional)

sumBS vector.

(c) Laptops11 (LAP11) which is among the most difficult domains, especially for

higher SER. LAP11 has a 257-dimensional sumBS vector.

For each domain we defined a different domain-specific AE, DAE, SDAE or VDAE

network. However, the topologies shared exactly the same characteristics for all

the domains, besides the size of the input and output layers, which rely on the

dimensions of the sumBS vector we want to represent. Furthermore, they shared

the same hyperparameters and optimization methods. For instance, we used ADAM

optimizer and we applied dropout in the encoder with a rate of 0.6 to avoid over-

fitting and we run the optimization for 50 epochs during each training.

The learning rate (LR) was configured as time-based, exponential decaying. Dur-

ing pre-training, the initial LR was set to 10−1 with a decay rate of 10−1 , while

for the on-line training the corresponding values were set to 10−4 and 10−2 4.1. To
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Optimizer
Learning Rate

Decay
Decay Rate

Dropout Epochs
Init Online Init Online

ADAM 10−1 10−4 Exp 10−1 10−2 0.6 50

Table 4.1: Hyper-parameter Values.

obtain fair results, we performed five independent runs of the same experiment using

different initialization of the random generator and we calculated average dialogue

success rates.

For this work, we consider two distinct BS vectors; the sumBS vector and the

DIP vector. DIP as discussed in Section 2.4.3 provides fixed-sized and domain-

independent features. Nevertheless, the number of these features is variable and

depends on the designer’s judgment which of them should be used. For this work

we use 58 of them and, thus, the DIP vector has respectively 58 dimensions for every

domain. In order to represent the DIP vector using the AE variations, we convert

it to its binary form, obtaining a 187-dimensional binary DIP vector.

As far as the topologies are concerned, for the sumBS representation we consid-

ered networks for AE and DAE of 5 or 7 fixed-size hidden layers as follows:

• 5-layer: h1 : 200, h2 : 100, h3:50, h4 : 100, h5 : 200

• 7-layer: h1 : 200, h2 : 100, h3 : 50, h4:20, h5 : 50, h6 : 100, h7 : 200

For SDAE we use only the 5-layer architecture and for VDAE only the 7-layer

one. When the objective is the representation of the DIP vector, we use a slightly

alternated topology of the 5-layer above, where the first and the last hidden layers

are smaller:

• 5-layer: h1 : 150, h2 : 100, h3:50, h4 : 100, h5 : 150

We use the number of the hidden layers in the topology after the name of the

AE variation to distinct the different variation-topology combinations. For example,

AE5 is the 5-layer topology of the vanilla AE and DAE7 is the 7-layer topology for

the DAE and so on.

4.2 Experimental Results

4.2.1 Vanilla and Denoising Autoencoder

Table 4.2 summarizes the performance of the AE5, DAE5 and DAE7 representations

against the sumBS one, for the three domains using the GP-SARSA PM. We used

four different levels of SER (0%, 15%, 30% and 45%), consistent both in training

and evaluation. We run 10 batches of 300 dialogues each and we evaluated each

batch on 300 test dialogues. In the environments of 0% SER we do not include the

performance of DAEs, as they are identical with a vanilla AE.
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SER BS CR LAP11 SFR

0% sumBS 98.4%(±1.1) 86.8%(±3.8) 95.2%(±1.3)

AE5 99.3%(±0.5) 92.6%(±1.9) 95.3%(±0.8)

AE7 97.3%(±0.8) 90.9%(±1.7) 95.4%(±2.1)

15% sumBS 96.4%(±2.2) 66.5% (±2.3) 81.6% (±1.6)

AE5 96.5%(±1.0) 68.9%(±10.1) 89.3%(±1.8)

DAE5 94.5%(±0.7) 80.5%(±0.7) 87.9%(±0.5)

DAE7 91.9%(±2.9) 89.7%(±3.1) 95.1%(±1.4)

30% sumBS 88.5%(±4.2) 51.4%(±9.3) 66.3%(±5.3)

AE5 92.2%(±1.1) 50.1%(±10.4) 69.4%(±2.3)

DAE5 92.1%(±0.7) 72.9%(±0.6) 84.0%(±0.8)

DAE7 92.9%(±2.4) 84.3%(±4.0) 94.9%(±1.28)

45% sumBS 78.0%(±3.4) 24.1%(±5.5) 53.9%(±6.8)

AE5 78.1%(±3.3) 38.7%(±5.4) 36.9%(±7.9)

DAE5 84.2%(±0.8) 76.3%(±0.8) 78.8%(±1.6)

DAE7 91.2%(±5.4) 88.0%(±2.9) 81.9%(±7.8)

Table 4.2: Average dialogue success after 3000 dialogues using AE and DAE topolo-

gies. Standard deviation in parenthesis. Best score in bold.

The performance of sumBS with GP-SARSA in our results coincide with those

in the benchmarking work in [3], although it slightly differs due to the random

initialization of the simulated users. The graphs in Figures 4.1 4.2 and 4.3 show

the evolution of the average success rates in the LAP11, CR and SFR domains for

different SER levels and the different AE topologies. It can be seen that in all

these diagrams, the policy shows a relatively smooth and fast convergence for all

the representations. Approximately, the PM needs about 2000 dialogues to achieve

convergence.

It can be seen that the dialogue manager benefits from the vanilla AE5 repre-

sentation for 0% SER, which is consistent for any number of episodes, but is unable

to provide noise-robust features for higher SERs. On the other hand, as the pres-

ence of noise increases the representation based on the DAE5 and DAE7 topologies

show great potential. Their performance is much higher, particularly in the difficult

domains of LAP11 and SFR. Specifically, DAE7 maintains a performance close to

90% even for noise levels as high as 45%. Their dominance in performance is even

more apparent in the difficult domains of LAP11 and SFR, where the performance

of sumBS and vanilla AE5 dramatically degrades. We also observe the dominance

of the deeper topologies, as in the extremely noisy environment of 45% SER, the
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30-dimensional BS representation obtained from DAE7, achieves significantly better

performance in the CR and LAP11 domains compared to the 50-dimensional DAE5,

and marginally better performance in SFR domain.
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(b) LAP11 15%.
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(c) LAP11 30%.
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(d) LAP11 45%.

Figure 4.1: LAP11 Domain in Multiple Environments using sumBS and AE/DAE

topologies with GP-SARSA for the PM.
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(a) CR 0%.
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(b) CR 15%.
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(c) CR 30%.
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(d) CR 45%.

Figure 4.2: CR Domain in Multiple Environments using sumBS and AE/DAE

topologies with GP-SARSA for the PM.
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(b) SFR 15%.
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(c) SFR 30%.
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Figure 4.3: SFR Domain in Multiple Environments using sumBS and AE/DAE

topologies with GP-SARSA for the PM.

4.2.2 Sparse Denoising Autoencoder

The hypothesis for the utilization of the SDAE representation properties is not quite

supported by the PM’s performance in different environments, as shown in Figures

4.4, 4.5 and 4.6. We compare the SDAE-based representations with the similar-

topology DAE one from the previous section. Observing the diagrams it can be

easily inferred that the sparsity in the latent space representation of the sumBS

vector prevents the PM from learning a robust policy in any environment. Even

thought SDAE provides good representations in the first 300 dialogues and the PM

achieves great performance (above 90%), similar to the performance of DAE in 4.2.1,

when the sparsity becomes dominant in the latent vector, the performance drops to

very low levels. This behavior is consistent in any domain and all the environments.

In some cases we even observe better performance of the SDAE in the first 300-600

samples than the DAE5. This is a result of the initialization we performed on the

SDAE topology, for which we used the learned parameters of the DAE5 parameters

for each domain.

The most probable reason behind the degradation in the performance of the

SDAE-based representation is that the sparsity penalty in the loss function, prevents

the SDAE to learn informative-enough representations that will lead to a robust

policy. In the previous work we mention on 3.4, SDAE’s latent space was a lot

bigger than the input, a topology that we do not follow in our work. Furthermore,

in a SDAE the problem of latent space discontinuity is being intensified through the

sparsity parameter, which we brought up in Section 3.5. As a result, the PM fails

to learn robust policies to when unseen sumBS vectors provided.
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SER BS CR LAP11 SFR

0% AE5 99.3%(±0.5) 92.6%(±1.9) 95.3%(±0.8)

SDAE 81.3%(±11.8) 65.0%(±4.1) 77.0%(±7.3)

15% DAE5 94.5%(±0.7) 80.5%(±0.7) 87.9%(±0.5)

SDAE 76.3%(±7.3) 70%(±4.5) 70.2%(±7.3)

30% DAE5 92.1%(±0.7) 72.9%(±0.6) 84.0%(±0.8)

SDAE 78.4%(±10.1) 64.1%(±9.9) 67.0%(±8.4)

45% DAE5 84.2%(±0.8) 76.3%(±0.8) 78.8%(±1.6)

SDAE 75.9%(±11.9) 58.1%(±3.0) 73.3%(±5.1)

Table 4.3: Average success after 3000 dialogues using DAE5 and SDAE. Standard

deviation in parenthesis. Best score in bold.
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Figure 4.4: LAP Domain in Multiple Environments using DAE5 and SDAE with

GP-SARSA for the PM.
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Figure 4.5: CR Domain in Multiple Environments using DAE5 and SDAE with

GP-SARSA for the PM.
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Figure 4.6: SFR Domain in Multiple Environments using DAE5 and SDAE with

GP-SARSA for the PM.
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4.2.3 DIP Features

In order to deal with the deficiencies of DIP stated in 2.4.3 we are representing

the DIP vector using DAE in a lower-dimensional space hoping to obtain a more

compact and efficient representation of it. Using real-valued DIP features as input to

the DAE, caused problems to the backpropagation procedure, as some of the features

have wider range of values than others, i.e. feature 1 ∈ (−3.5,+3.5) and feature

2 ∈ (0, 0.1). That gave unintentional importance to the features with wider range

and, eventually, prevented DAE to learn good representations. Most of the features

was already regularized and we did not want to make any further modifications to

them. To overcome this gradient problem we converted the real features into binary

ones, obtaining a 187-dimensional binary DIP vector.

We incorporated the DIP features in the PyDial toolkit and we run experiments

with the same training method and set-up as in 3.6 and 4.1 using the GP-SARSA

and LSPI algorithms for the PM for 4000 episodes each. The DIP feature vector

we are using for these PMs has 58 dimensions each one belonging in R, whereas we

use the 187-dimensional binary DIP vector as input to the 5-layer DAE topology as

described in 4.1. We call this 50-dimensional BS representation the DIPDAE. The

results for the four different environments are shown in table 4.4 and the curves for

the three different domains in Figures 4.7 4.8 4.9.

Domains

SER BS CR LAP11 SFR

0% DIP-GP 97.9%(±1.38) 93.6%(±3.34) 97.4%(±1.78)

DIP-LSPI 44.1%(±27.41) 44.5%(±27.4) 84.4%(±4.2)

DIPDAE-GP 75.4%(±14.18) 52.1%(±23.48) 60.5%(±14.9)

15% DIP-GP 97.2%(±1.71) 90.2%(±5.6) 91.4%(±8.1)

DIP-LSPI 63.7%(±12.6) 50.7%(±28.2) 82.2%(±5.3)

DIPDAE-GP 76.3%(±4.56) 77.2%(±11.75) 89.1%(±3.27)

30% DIP-GP 96.4%(±1.67) 88.1%(±6.62) 92%(±4.3)

DIP-LSPI 60%(±27.6) 45.86%(±25.9) 86.5%(±4)

DIPDAE-GP 77.4%(±4.36) 77.4%(±14.26) 77.6%(±16)

45% DIP-GP 96.8%(±1.56) 87.3%(±2.86) 80.9%(±18.63)

DIP-LSPI 55.3%(±22.37) 86.7%(±2.88) 72.3%(±17.3)

DIPDAE-GP 68.4%(±16) 88%(±2.8) 86.3%(±7.2)

Table 4.4: Average dialogue success after 4000 dialogues using DIP. Standard devi-

ation in parenthesis. Best score in bold.

The use of DIP features enables PM with GP-SARSA to learn good and relatively

stable policies across the three domains in every environment 4.4. The observed

performance of our experiments is again consistent with the performance shown in
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[37]. For CR domain the success rate is very high and the rise of SER in the 4

environments does not affect PM. However, in LAP11 and SFR domains the drop

in the success rate reaches a decrease of 17% from 0% to 45% SER. Overall, it

is apparent that DIP can provide some tolerance in noise, by using only domain-

independent information from SLU module (Section 2.1).

(a) LAP 0%. (b) LAP 15%.

(c) LAP 30%. (d) LAP 45%.

Figure 4.7: LAP Domain in Multiple Environments using DIP with GP-SARSA and

LSPI for the PM.

An interesting observation is that DIP features did not performed well when

used in combination with the LSPI algorithm, as they lead to inadequate policies

during dialogues in domains LAP11 and CR. However, they seem to help LSPI to

learn good policies in SFR domain, but yet the performance is not comparable to

the GP-SARSA PM’s one. The reason of the exhibited performance can be traced to

the basis function (Section 2.3.2) we use at LSPI, which correlates at a high degree

the BS representations, obtained from DIP, with the function approximation. If the

DIP features are not compact or informative enough, LSPI will not be able to learn

a good approximation of the Q-function and, consequently, a good policy.

Another indication that DIP features are not informative enough is that DAE5

cannot find a robust representation in some experiments. This is shown in Figures

4.7, 4.9 and 4.8, where the success rate of the PM with GP-SARSA is dropping

throughout the training of the PM and the dynamic adjustment of the DAE5.
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(a) CR 0%. (b) CR 15%.

(c) CR 30%. (d) CR 45%.

Figure 4.8: CR Domain in Multiple Environments using DIP with GP-SARSA and

LSPI for the PM.

(a) SFR 0%. (b) SFR 15%.

(c) SFR 30%. (d) SFR 45%.

Figure 4.9: SFR Domain in Multiple Environments using DIP with GP-SARSA and

LSPI for the PM.
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4.2.4 Variational Denoising Autoencoder

The outstanding performance of the DAE-based representations from the deeper

7-layer topology of the DAE (Section 4.2.1) motivated us to focus our experiments

only on deeper topologies for the VDAE. We also used a 5-layer VDAE to represent

the DIP feature vector. The reason why we use a more swallow topology, was to

directly compare the DIPVDAE representation with the DIPDAE one. Based on

the approach in 4.2.3, we gave the 187-dimensional binary DIP vector as input to

the VDAE.

For the experiments in 0% SER the VDAE is in fact a VAE, as the sumBS vector

we give as input is noise-free. We again run the experiments in 10 batches of 300

dialogues each, since we did not observed any improvement in the PM’s behavior in

the previous section after 3000 dialogues.

Samples: 3000 Domains

SER BS CR LAP11 SFR

0% VAE-GP 96.5%(±2.7) 94.7%(±1.7) 93.7%(±2.1)

VAE-LSPI 99.7%(±0.4) 98.5%(±1.1) 98.4%(±1.1)

DIPVAE-LSPI 80.7%(±9.0) 99.1%(±0.7) 95.0%(±1.8)

15% VDAE-GP 95.5%(±0.8) 91.7%(±0.5) 93.6%(±1.0)

VDAE-LSPI 99.0%(±0.8) 97.9%(±0.6) 97.0%(±0.7)

DIPVDAE-LSPI 80.4%(±1.9) 97.4%(±2.3) 94.7%(±2.6)

30% VDAE-GP 92.9%(±1.3) 90.2%(±1.9) 89.9%(±2.7)

VDAE-LSPI 98.1%(±1.2) 97.7%(±0.9) 95.3%(±1.6)

DIPVDAE-LSPI 81.8%(±2.3) 97.0%(±1.8) 92.8%(±2.41)

45% VDAE-GP 92.3%(±3.3) 87.9%(±2.7) 88.6%(±2.9)

VDAE-LSPI 93.6%(±2.7) 96.7%(±0.9) 94.6%(±1.5)

DIPVDAE-LSPI 79.1%(±4.0) 96.7%(±2.6) 92.4%(±2.5)

Table 4.5: Average dialogue success after 3000 dialogues using VDAE and DIPV-

DAE. Standard deviation in parenthesis. Best score in bold.

The performance of the VDAE-based representations is prominent in Table 4.5.

The PM that utilizes LSPI to learn the dialogue policies show the true potential of

the algorithm when compact and highly informative representations of the sumBS

vector are provided. The average dialogue success rate of the LSPI-based PM is

astonishingly high for the 3 domains in every environment. Even though there

is an average decrease of 4% from 0% SER to 45% SER, still the success rate is

above 93.6%. Additionally, VDAE shows very quick convergence, from the first 300

sampels with GP-SARSA and under 1000 samples with LSPI (Figures 4.12. 4.10

and 4.11). T

The quality of VDAE representations is also apparent when used in combination

with the GP-SARSA algorithm, yet this PM never outperforms the LSPI-based one.
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(a) LAP 0%. (b) LAP 15%.

(c) LAP 30%. (d) LAP 45%.

Figure 4.10: LAP Domain in Multiple Environments using VAEVDAE and DIP-

VAE/DIPVDAE with GP-SARSA and LSPI for the PM.

(a) CR 0%. (b) CR 15%.

(c) CR 30%. (d) CR 45%.

Figure 4.11: CR Domain in Multiple Environments using VAEVDAE and DIP-

VAE/DIPVDAE with GP-SARSA and LSPI for the PM.

The performance of the VDAE in combination with GP-SARSA is equivalent to the

DAE7-based representations 4.2, as well as to the PM that uses the DIP features

(Section 4.4). These diagrams demonstrate the consistent behaviour of the VDAE

among all the domains since in all cases it achieves high accuracy with the smallest
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(a) SFR 0%. (b) SFR 15%.

(c) SFR 30%. (d) SFR 45%.

Figure 4.12: SFR Domain in Multiple Environments using VAEVDAE and DIP-

VAE/DIPVDAE with GP-SARSA and LSPI for the PM.

number of training episodes.

The representations of the DIP features we get from the VDAE exhibit unreliable

performance. Even though in CR domain they fail to give robust representations

to the PM, in LAP11 and SFR the DIPVDAE representations enable PM to reach

performances similar to when we use the VDAE representation of the sumBS vec-

tor. DIPVDAE representation during CR domain simulations seems to have stuck

in a local minimum during training, which gave this bad performance. This behavio

is consistent to the one of the DIPDAE representations (Figures 4.7, 4.8 and 4.9).

Generally, we conclude that AE variations show instability when try to learn repre-

sentations of the DIP features and more attention during their training should be

paid to ensure quality representations.

4.3 Discussion

In Figures 4.13, 4.14 and 4.15 we include the performance curves of DIP features

with GP-SARSA and the most dominant AE-based representations of the sumBS

space; DAE7 with GP-SARSA, VDAE with GP-SARSA (VDAE-GP) and VDAE

with LSPI (VDAE-LSPI). Thus, we can easily compare their performance and dis-

tinguish the most prominent one. The combination of VDAE with LSPI (red curve)

clearly outperforms every other BS representation and PM combination. VDAE

representations of the sumBS space converge faster than any other BS representa-

tion, with this behavior being consistent for every PM, domain or SER level. On

the contrary, VDAE in combination with GP-SARSA, even though it consistently
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maintains higher performance than DAE7 and DIP for LAP11 domain, for CR do-

main it is outperformed by DIP in 0% and 15% SER environments and for SFR

domain it is outperformed by DAE7 for every SER level, except the 45% one.
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Figure 4.13: Comparison between DAE7, DIP and VDAE with GP-SARSA and

VDAE with LSPI for the LAP Domain in Multiple Environments.
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(b) CR 15%.
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(d) CR 45%.

Figure 4.14: Comparison between DAE7, DIP and VDAE with GP-SARSA and

VDAE with LSPI for the CR Domain in Multiple Environments.
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(a) SFR 0%.
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(b) SFR 15%.
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(c) SFR 30%.
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Figure 4.15: Comparison between DAE7, DIP and VDAE with GP-SARSA and

VDAE with LSPI for the SFR Domain in Multiple Environments.

A direct comparison with the state-of-the-art is not feasible due to the different

experimental protocols, domains, and policies of previous works. For example, in

[37], a first version of the DIPs in conjunction with GP-SARSA is tested on both the

CR and a precursor of the LAP11 domain. After training on 1000 dialogues with 15%

SER, the reported accuracy is approximately 95% for the CR, which is comparable

to the average accuracy of 94.6% that we obtain using dense AEs and lower than

the accuracy of 96.2% of the VDAE in the same environment and domain after 900

dialogues. In [18], where the CR domain is studied, the examined BS representation

is DIPs, BinLin, and BinAux and the policy manager is A2C, whereas the number

of training dialogues is 2000. The reported accuracy ranges from 17% to 35% lower

compared to our VDAE system, depending on the environment.

In [4, 5] DIP, FFN and RNN Feudal features are exploited. The policies con-

sidered are NN-based and the results presented are for 4000 episodes. Nevertheless,

since they consider the same domains and matching conditions for the environments

1, 3 and 6 which correspond to 0%, 15% and 30% respectively, we show in Table 4.6

a comparison of both the average success and the reward. It can be seen that the

proposed VDAE with LSPI (VDAE-LSPI) dominates in all cases in terms of success

rate, as well as in terms of average reward, except the SFR domain, where DAE7

with GP-SARSA (DIP7-GP) obtains the highest one. In addition, this performance

gain achieved despite the fact that VDAE-LSPI and DAE7-GP where trained on

less episodes.

As far as the SDAE representations of the sumBS vector are concerned, the

SDAE topology is unable to compress the information of the sumBS vector into a

low-dimension one, while imposing sparsity to it. The applications of the SAE in the
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SER/
Model

CR LAP11 SFR

ENV Succ Rew Succ Rew Succ Rew

0% DAE7-GP 97.3% 13.1 90.9% 10.6 95.4% 11.9

VDAE-LSPI 99.7% 13.3 98.5% 11.4 98.4% 11.3

Env.1 Feudal-DQN 89.3% 11.7 65.5% 5.7 71.1% 7.1

15% DAE7-GP 91.9% 11.7 89.7% 10.1 95.1% 11.5

VDAE-LSPI 99.0% 13.1 97.9% 11.2 97.0% 10.9

Env.3 Feudal-DQN 92.6% 11.7 89.6% 9.4 90.0% 9.7

30% DAE7-GP 93.0% 11.9 84.3% 9.0 94.9% 11.2

VDAE-LSPI 98.1% 12.7 97.7% 10.8 95.3% 9.8

Env.6 Feudal-DQN 90.6% 10.4 78.5% 6.0 83.0% 7.1

Table 4.6: DAE7-GP and VDAE-LSPI average success and reward (3000 episodes)

compared to the Feudal-DQN system [5] (4000 episodes)

literature ([25], [44] and [43]), use a higher-dimensional latent space in comparison

with the input of the encoder, in order to learn a sparse representation of the input.

This difference in our approach is probably the reason of SDAE’s bad performance.

However, we cannot make use of such a representation, since it would be harder for

the PM to learn good policies based on that. In addition, in the aforementioned

cases where the SAE is used with success, the objective is classification task and not

a control problem.

It is also worth noting that since the all the AE topologies in our proposed

scheme is domain-independent with the exception of the input and output layer,

new AEs could be rapidly optimized in a transfer learning framework [14, 46]. This

is particularly useful when new entries in a domain’s ontology are introduced, as well

as for optimizing new AEs for new domains with limited data, making our approach

domain-transferable.
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Conclusion

In this thesis, we are proposing a novel use of of the vanilla AE, DAE, and VDAE

for representing the sumBS space for SDMs. Our motivation is to create low-

dimensional, fixed-size, and robust representations which are automatically extracted

from a set of training dialogues. Using artificially corrupted training data we obtain

representations tolerant in SER noise. Furthermore, the learned representations are

trained concurrently with the PM in a novel training scheme. The experimental

results show that the proposed scheme is very efficient, outperforming significantly,

even with limited training samples, the baseline sumBS, and other state-of-the-art

approaches for different domains and noise levels. The proposed representations

were tested in different domains, namely Cambridge Restaurants, San Francisco

Restaurants and Laptops11 under several SER conditions ranging from 0% to 45%.

The novelty and efficiency of the use of the DAE and VDAE is confirmed through

the constantly high performance under all conditions.

In Section 4.2.1 we show that a DAE topologies can learn representations in a

low-dimansional latent space that are also noise-tolerant. In the same section we

observed a promising behavior of a deeper architecture with lower-dimensionality

of the latent space. In Section 4.2.2 our initial hypothesis for the capabilities of

a SDAE to provide compact representations, while also enforcing the latent space

representation to provide a sparse vector, was not supported by the results of our

experiments. We observed that while the representations of SDAE were becoming

sparser, the performance of the PM was dropping constantly.

In this thesis, we also explored the potential of DIP features in 4.2.3 to pro-

vide domain-independent features, from which we can eventually extract lower-

dimensional and noise-robust representations for use in the PM. One the one hand,

DIP features exhibited very bad performance when used in combination with the

LSPI algorithm. On the other hand, DAE and VDAE 5-layer topologies could not

learn a consistently efficient representation of DIP features. Thus, we conclude that

DIP features introduce instability during the training of the two variations of AEs

and deeper insight in their optimization should be gained.

Nevertheless, VDAE representations of the sumBS space exhibited outstanding

performance, as it is shown on our experiments in Section 4.2.4. VDAE showed

the great potential of NN-based representations in SDSs. The orientation of our
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efforts to learn the distribution that produces the latent space representations of

the sumBS space, instead the representation itself, proved to be fruitful. The PM,

regardless the RL algorithm in use, managed to learn exceptional and noise-tolerant

policies. Apparently, LSPI consistently outperformed even the most popular and

robust GP-SARSA algorithm for every domain and in every environment with the

use of VDAE-based representations.

Consequently this work, proposes a novel use of different variations of the AE as

an automated representation technique for low-dimensional and robust representa-

tions of the sumBS space. We started exploring its most simple variations of the AE

(vanilla AE) and proceeded in the more sophisticated ones (DAE and VDAE) per-

forming eventually variational inference at the latent space. In addition we tried to

achieve domain-independence representing the DIP features, even though we did not

managed to reach the desired performance we were seeking. Finally, we tested the

acquired representations on a PM that utilized two state-of-the-art RL algorithms;

the non-parametric GP-SARSA and the parametric LSPI.

The experimental results show that the proposed scheme is very efficient, out-

performing significantly, even with limited training samples, the baseline sumBS,

and other state-of-the-art approaches for different domains and noise levels. The

highest gain refers to environments with 45% SER and difficult domains such as the

demanding Laptops11, where an absolute improvement of 72.6% is achieved (sumBS

with GP-SARSA vs. VDAE with LSPI), confirming the proposed method’s ability.

Future work includes the use of VDAE representations with non-linear PM,

like DQN, eNAC or A2C, in order to explore their potential with another popular

category of RL algorithms for SDM systems.
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