
Technical University of Crete
School of Electrical and Computer Engineering

Division of Informatics Laboratory

Web-based Decision Policy De�nition and Simulation

Application for the Gorgias Argumentation

Framework

Diploma Thesis

of

Konstantinos Kostis

Thesis Committee:

Supervisor: Katerina Mania
TUC Associate Professor

Member: Nikolaos Spanoudakis
Researcher -TUC Laboratory Teaching Sta�

Member: Michail Lagoudakis
TUC Associate Professor

MUSIC LAB

Chania, July 2019

Abstract

This thesis implements a web-based decision policy de�nition and simulation application
for the Gorgias argumentation framework. The originality of this application lies in the use
of state of the art web technologies alongside with Gorgias source code, which are combined
together to deliver a user friendly and agile environment.

Moreover, the application utilizes the majority of the Gorgias-B features and the SoDA
methodology and tries to hide their complexity, so that users can focus on adding the scenarios
and its preferences intuitively. Furthermore, the application completely hides the argument
de�nition process by creating default object level arguments and by implementing a custom
scenario view as a table representation, having scenarios as rows and the available options for
each scenario as columns.

For the front-end framework, in order to create the relevant HTML pages as well as
navigation and basic functionality, the Angular 7 Typescript framework is selected for its
robustness and the heavy amount of features that it o�ers. The cutting-edge Java Spring-
Boot framework was selected as back-end framework, due to its capabilities which o�er a very
secure and fast server implementation which responds to the needs of every developer who
wants to deploy applications to the cloud. Additionally, asynchronous scheduling technologies
were used on the server, RESTful Web Services for access to the functionality from the client
application, as well as NoSQL database technologies for storing and analyzing user's data.
Finally, in order to have a more accurate picture of the results and the functionality of the
developed application, evaluation with real users took place in two stages; one after the
system design and the other after the system's implementation. During the �rst stage, the
think aloud evaluation protocol was used, showing to users the paper prototypes created at
the design process. At the latter stage, users were asked to use the developed application and
interact with it. Results from both evaluation stages were taken into serious consideration
and have been analyzed. Most of them have been implemented in the �nal version of this
thesis application. After implementation, the same users were asked again and their feedback
was very positive.

In conclusion, through the use of the system concerns and needs have been arise, which
can be covered in future version of the application.

Keywords

Argumentation Theory, Argumentation Framework, Gorgias, Full Stack Web Develop-
ment

1

Contents

Abstract 1

Contents 5

List of Figures 8

List of Tables 9

1 Introduction 11

1.1 Concept . 11
1.2 Thesis Contribution . 12
1.3 Thesis Outline . 13

2 Background 15

2.1 Argumentation . 15
2.1.1 Argumentation Frameworks . 15
2.1.2 Preference-Based Argumentation Framework 16
2.1.3 Illustrative Example . 16

2.2 Gorgias . 18
2.3 The SoDA Methodology . 19
2.4 MVC Pattern . 19
2.5 RESTful Web Services . 19
2.6 Technologies . 20

2.6.1 NodeJS . 20
2.6.2 Webpack . 22
2.6.3 Spring Framework . 22
2.6.4 Angular . 24
2.6.5 MongoDB . 27
2.6.6 Prolog & Prolog JPL . 29
2.6.7 Docker . 29
2.6.8 Development Methodology . 31

3 Functional Speci�cations and UI Prototyping 33

3.1 Functional Requirements . 33
3.2 Personas . 34

3.2.1 Antonis, 55, Professor . 34
3.2.2 Takis, 20, student . 34
3.2.3 Nikos, 35, Web Designer . 35

3

4 CONTENTS

3.3 Storyboards . 35

3.4 Paper Prototypes . 35

4 User Views 43

4.1 Home Page . 44

4.2 Registration Page . 44

4.3 Login Page . 45

4.4 Projects Page . 46

4.5 Basic View . 46

4.5.1 Options Page . 46

4.5.2 Facts Page . 47

4.5.3 Beliefs Page . 48

4.5.4 Argue Table Page . 49

4.5.5 Execution Page . 50

4.6 Advanced View . 50

4.6.1 Option Page . 50

4.6.2 Facts Page . 52

4.6.3 Belief Page . 52

4.6.4 Argument for Options Page . 53

4.6.5 Argue for Options Page . 54

4.6.6 Prolog File Page . 55

5 Application Design 57

5.0.1 Client Side . 59

5.0.2 Server Side . 59

5.1 Client Side MVC Pattern . 60

5.2 Server Side . 60

5.2.1 PrologService . 60

5.2.2 REST Service . 62

5.2.3 CoreNLPService . 62

5.2.4 Database Service . 63

5.3 Server Side MVC Pattern . 63

6 Implementation & Evaluation 65

6.1 Client Side . 65

6.2 Server Side . 67

6.2.1 ScenarioService . 67

6.2.2 PrologService . 70

6.2.3 REST Service . 71

6.2.4 CoreNLPService . 71

6.2.5 Database Service . 72

6.3 System Evaluation and User Feedback . 72

6.3.1 Think aloud evaluation . 72

6.3.2 User Feedback . 72

CONTENTS 5

7 Conclusions and Future Work 77

7.1 Conclusions . 77
7.2 Future Work . 78

7.2.1 Natural Language Processing expansion 78
7.2.2 Automatically recognition of complimentary contexts 78
7.2.3 Custom Scenarios View . 78
7.2.4 Execution Results explanation . 79
7.2.5 Collaboration with other users . 79

References 83

List of Figures

2.1 Graph representation of an argument by Dung 15

2.2 Gorgias-B Graphical User Interface (GUI) [1] 18

2.3 Graphical Representation of SoDA Methodology[2] 19

2.4 NodeJS Logo . 20

2.5 NodeJS Architecture . 21

2.6 Webpack Logo . 22

2.7 Spring Framework Logo . 22

2.8 Spring's Architecture . 23

2.9 Angular's Logo . 25

2.10 Angular's router-outlet implementation . 25

2.11 Angular's modular architecture . 27

2.12 MongoDB Logo . 27

2.13 MongoDB document representation . 28

2.14 MongoDB collection representation . 28

2.15 SWI-Prolog Logo . 29

2.16 Docker Logo . 30

2.17 Docker Architecture . 30

2.18 Docker Container Vs Virtual Machines . 31

3.1 Application's Basic Storyboard. Transition from home page to login page is de-
scribed in �rst two pages. The other pages represent transition from successful
login to projects list page and then to the main page of the selected project. . 35

3.2 Home Page Wireframe . 37

3.3 Home Page After Login Wireframe . 37

3.4 Option Page (Basic View) Wireframe . 38

3.5 Fact Page (Basic View) Wireframe . 38

3.6 Belief Page (Basic View) Wireframe . 38

3.7 Option Page (Advanced View) Wireframe . 39

3.8 Fact Page (Advanced View) Wireframe . 39

3.9 Belief Page (Advanced View) Wireframe . 39

3.10 Argument for Beliefs Page (Advanced View) Wireframe 40

3.11 Argument for Options Page (Advanced View) Wireframe 40

3.12 Argue for Beliefs Page (Advanced View) Wireframe 40

3.13 Argue for Options Page (Advanced View) Wireframe 40

3.14 Argue Table Page (Basic & Advanced View) Wireframe 41

3.15 Execution Page (Basic & Advanced View) Wireframe 41

4.1 Home Page View . 44

7

8 LIST OF FIGURES

4.2 Registration Page View . 45
4.3 Login Page View . 45
4.4 Projects Page View . 46
4.5 Options Page Basic View . 47
4.6 Facts Page Basic View . 48
4.7 Beliefs Page Basic View . 48
4.8 Argue Table View . 49
4.9 Execution Page View . 50
4.10 Home Page View . 51
4.11 Fact Page Advanced View . 52
4.12 Belief Page Advanced View . 53
4.13 Argument for Options Page View . 54
4.14 Home Page View . 55
4.15 Prolog File Page View . 56

5.1 Application's main design model . 58
5.2 Application's distinct modules design . 59
5.3 Data Objects to Prolog conversion . 61
5.4 Prolog execution procedure . 61
5.5 REST API architecture . 62
5.6 Usage of Core NLP software . 63
5.7 Model-View-Controller model representation 64

6.1 Angular's MVC Work�ow with 2-way data binding 66
6.2 Angular's 2-way data binding technology . 66
6.3 Client's page structure, using Angular's components 67
6.4 Core NLP text transform . 72

List of Tables

2.1 HTTP methods and descriptions for the actions taken on the resource with a
simple example of a collection of books in a library. 20

6.1 Argue table for Call Assistant example . 67

9

Chapter 1

Introduction

1.1 Concept

Argumentation is the interdisciplinary study of how conclusions can be reached through
logical reasoning [3], or in other words, argumentation is a way to deal with contentious
information and draw conclusions about it [4]. Argumentation is a relatively-new, fast-paced
technology with applications ranging from simple games, in medical[5] area and network
security[6], cognitive assistants[7] [8] business programs[1] [9]. For example some cars have an
auto-pilot system integrated. Auto pilot recognizes outdoor conditions about weather, tra�c
info and driver's driving habits, combines them all together and adjusts car mechanics and
speed according to these collected data, explaining also to driver why each choice was made.
Also, modern cars can recognize possible collisions and warns driver in order to avoid it, or car
takes action to avoid collision or a crash. An example of this is ABS and traction control that
most cars integrate in our days. With the recent advancements in hardware and software,
argumentation has entered the markets and it's expected to reach almost every household in
the near future with the expansion of Internet of Things (IoT), such as personal assistants like
Amazon's Alexa and Apple's Siri. Major companies are already developing argumentation
frameworks, algorithms and applications in order to include them in their upcoming projects.
Apparently, even small businesses and individuals can bene�t from argumentation's features.
There is a remarkable example [2] of an ophthalmologist in France, who mapped all of the
symptoms a patient could have, with the maladies that can cause these symptoms, using
argumentation software. After this mapping of symptoms and maladies that are caused from
these, ophthalmologist's secretary as well as the ophthalmologist, can have a preliminary
diagnosis about patient's condition. This could lead to avoidance of a possible delay of
making an appointment, in cases where patient's condition is characterized as severe from the
argumentation software. This is a huge boost at the productivity and the accuracy of this
ophthalmologist's work. The software used by the ophthalmologist is Gorgias [1], which is a
preference-based argumentation framework written in Prolog at 2003.

This thesis' goal was to implement an online application taking advantage of all Gorgias
[1] [10] features emphasizing on the ease of use. Users should be able to model their real-life
problems in a user-friendly design without lack of useful information giving them the oppor-
tunity to navigate to di�erent view options. Thanks to Gorgias' underlying robustness, even
users with no technical knowledge they will not face any di�culty to use it e�ciently. Also,
useful tips appear in each section to help even more the accomplishment of each application
task. All applications stored are available in the cloud, so that they can be ready to be edited
or executed in each case. Apparently, security issues regarding the Web Application are taken

11

12 Chapter 1. Introduction

into consideration so users who use the application feel secure to store their work as also
their results. All of the above will, of course, be explained in greater detail in the following
chapters.

1.2 Thesis Contribution

Over the last decades, argumentation has been greatly developed and it's used widely from
home automation to cars, in order to make decisions and be able to explain to users why each
choice was made. This thesis motivation, is to develop an online decision-making de�nition
and simulation tool that will be comfortable for each user to use and interact with it.

After research on the internet, about other similar online tools, Spindle[11] was found.
Spindle is a logic reasoner that can be used to compute the consequence of defeasible logic
theories in an e�cient manner. This implementation, covers both the basic defeasible logic
and modal defeasible logic. Spindle also can be used as a standalone theory prover or as an
embedded reasoning engine. Despite that, after extended use, we came up to the conclusion
that Spindle is not handy to be used at everyday basis and without having expert knowledge
of defeasible logic. Spindle's user interface can be characterized as too poor with only one
text-area, where users de�ne their arguments and defeasible facts. But, in order to de�ne
these, user has to know about defeasible logic and how-to syntax it. So, for naive users it's
impossible to use this tool e�ciently.

Another tool implemented is Gorgias-B [12] [1] [10]. Gorgias-B is based on Gorgias Argu-
mentation framework which is written in Prolog. Although Gorgias-B is not implemented on-
line, it can be characterized as more easier to use and understand than Spindle tool. Gorgias-B
focuses on simplicity and ease-of use. It encapsulates all essential features of Gorgias frame-
work, hiding from users the underlying confusing technology. So, users do not have to know
about argumentation and Prolog. Gorgias-B allows users to create options, facts, beliefs and
de�ne priorities over scenarios.

Taking all these into consideration, this thesis application will focus on expanding Gorgias-
B tool which is based on Gorgias framework. More speci�cally, all Gorgias-B main features
such as option, fact and belief creation, argument de�nition, con�icts resolution and scenarios
execution, were migrated into this thesis application as well as some new features that were
introduced.

The main key feature introduced is Argue Table, where users can review their scenario
preferences in a more responsive and clear way. This feature is expected to bene�t users in
creation of arguments and de�nition of option properties. Also, from the table view, users
will be able to expand and re�ne their already created scenario preferences by adding new
facts and beliefs that user would like to include into their new scenarios.

Furthermore, in Argue Table there are other new features, the Impossible scenario fea-
ture and the ability to de�ne options in scenarios as default. When a scenario is generated
from other already created scenarios, that have con�icting options between them, and this
scenario supporting information is impossible to happen according to user, user is able to
de�ne this scenario as impossible and to exclude it from displaying in the Argue Table and
from simulation of the scenario.

Subsequently, users can de�ne priorities over options and especially de�ne them as default
at each particular scenario. This can be done easily in the UI with just hovering over each
selected option at each scenario.

A disadvantage which occurred from using Gorgias-B, is that, due to the complexity of
Gorgias framework and its quantity of features, naïve users would �nd it di�cult to use and

1.3 Thesis Outline 13

understand all the features for everyday use. So, taking these into consideration, at the design
process, two custom views were implemented to bene�t all kind of users. To bene�t naïve
users, which are not familiarized with argumentation and argumentation frameworks, a Basic
View is implemented. Basic view summarizes the key features that are included into this
thesis application, but in a more simplistic way. Especially, in Basic view, at the option
creation page as also at facts and beliefs creation page, an algorithm for natural language
processing is introduced which analyzes the free-text that user has inserted into each of these
forms, so users which have not enough knowledge about predicate creation and its context,
to create options facts and beliefs faster.

At the other hand, in Advanced View, are included all features of Basic View plus some
other features, like de�ning arguments for options or beliefs and resolving con�icting scenarios.
Also, an option to view the generated Prolog �le that will be fed to Gorgias framework in
order to simulate the scenario and return the results, is implemented.

1.3 Thesis Outline

This thesis is divided into seven main chapters based on their content. The �rst two
chapters (1, 2) include general background information and knowledge in order to better help
the reader understand the subject of this thesis. Detailed development of the project follows
along with how di�erent parts of the application were put together and the �nal chapter (7)
explains how we evaluated the system and application based on feedback from users. This
chapter includes our conclusions and the suggested future work. Thesis structure is explained
below in greater detail.

1.3.1 Chapter 2 - Background

Chapter begins with an introduction to Argumentation and it's de�nition as well as a brief
description about the main frameworks that have been implemented about argumentation.
An insight of Gorgias argumentation framework and Gorgias-B tool is presented. Concluding,
we present the SoDA methodology which is used by Gorgias-B to de�ne the requirements of
each real-life argumentation application that will be developed by the users of the developed
system.

1.3.2 Chapter 3 - Functional Speci�cations and UI Prototyping

This chapter begins with the de�nition of the functional requirements of the developed
application. The main tasks of the application are described in order to clarify which are
the key-features that will be implemented. After that, the personas of the users that were
asked to test the application are shown. Then, the �rst storyboards that have been submitted
through the design process of the application are brie�y described and discussed. At last,
paper prototypes that have been designed after the evaluation and the storyboard processes
are presented and also the necessity of these in the application design process.

1.3.3 Chapter 4 - User Views

In this chapter, all user interface views that have been implemented in HTML are thor-
oughly described. Starting from the home page of the application, login and signup page.
Then, Views are divided into two categories according to the view that are being displayed

14 Chapter 1. Introduction

(Basic and Advanced View). In Basic View, belong the Option, belief, fact page, Argue Ta-
ble page as well as the execution/simulation Page. In advanced view, belong Argument for
Options Page, Argue for Options page and Prolog File Page which displays the generated �le
contents that will be used from Gorgias to execute the scenario.

1.3.4 Chapter 5 - Application Design

In this chapter, the architecture, for both client and server, is presented. For the client-side
of this thesis application, Angular framework is selected and for the sever-side, Spring Boot
Java framework is selected. The architecture pattern used in front-end as well as in back-end
is MVC (Model � View � Controller)

1.3.5 Chapter 6 - Implementation & Evaluation

This chapter contains a brief description about how each component communicates with
other components. In front-end, is described how UI has been implemented using Angular's
component structure which divides each page into more sections in order to be easier to
manage and to maintain it. In back-end, is explained how each REST service (Scenario
Service, Prolog Service, REST service, CoreNLP Service, Database Service) interacts with
the developed system as well as a demonstration and explanation of algorithms developed for
argument generation is provided. Lastly, the think aloud evaluation protocol is explained.
There are used three people to evaluate the developed application. Each user's evaluation
results are stated and analyzed.

1.3.6 Chapter 7 - Conclusions and Future Work

In this chapter, conclusions about development of application follows as well as some sug-
gestions for potential future work that could expand and upgrade the developed application.

Chapter 2

Background

2.1 Argumentation

Argumentation theory, or argumentation, is the interdisciplinary study of how conclusions
can be reached through logical reasoning. It includes the arts and sciences of civil debate,
dialogue, conversation, and persuasion. It studies rules of inference, logic, and procedural rules
in both arti�cial and real world settings.[4] Also, according to [3] Argumentation is de�ned
as �a verbal and social activity of reason aimed at increasing (or decreasing) the acceptability
of a controversial standpoint for the listener or reader, by putting forward a constellation of
propositions intended to justify (or refute) the standpoint before a rational judge�. It is the
�eld of study in which rhetoric, logic and dialectic meet.

2.1.1 Argumentation Frameworks

Over the last decades, argumentation is an important domain in the �eld of Arti�cial
Intelligence (AI)and much research has been done on this area and many methodologies and
frameworks have been developed to achieve reliable logic-based results. The most widespread
framework is Dung's abstract argumentation. An abstract argumentation framework, as de-
�ned by Dung [13], represents the knowledge as a set of vertices, representing arguments,
and the edges, representing the attacks among arguments (�g 2.1). A more complex form of
argumentation is called structured argumentation, where an argument can derive from the
support of another argument, hence it is common to represent a single argument as a tree.

The abstract framework of has been instantiated to several particular cases. Some of them
are:

1. Abstract argumentation framework

2. Value-based argumentation framework

3. Preference-based argumentation frame-
work

Figure 2.1: Graph representation of an argu-
ment by Dung

This senior thesis, utilizes the robustness of Preference-based argumentation and it's struc-

15

16 Chapter 2. Background

ture is described below.

2.1.2 Preference-Based Argumentation Framework

A variety of application problems which can be analyzed using argumentation theory,
are in essense decision problems. Argumentation is best applicable when the application
environment is incomplete and dynamic. This means that there is a lack of information in
order to deploy a strict decision policy, so the use of argumentation can provide a way to
manage all the possible alternative decisions that can be taken. The language description of
argumentation is consisted in three parts:

Options

In a decision making problem, options are de�ned as the set of the various results. The
solutions of an application problem can be characterized fully by options. Options are in
fact actions, and the basic problem is to decide which action to take, e.g. to decide if a user
will buy pork or chicken. In most cases, options can be explanations to classify a situation.
Explanation is an intermediate step towards achieving the overall objective of deciding the
course of action.

Scenario Information

Scenarios, are de�ned as a set of relations, needed to depict the possible states of the
application environment. These relations encapsulate all the necessary information needed
from the application environment when it's asked to solve particular instances of the problem.

Scenario-Based Preferences

A scenario-based preference is de�ned as a pair of scenarios, S, alongside with a pre-
ferred subset of options, O, that appear in this pair of scenarios S. These preferences can
be described as high-level requirements in order to help �nd a satisfactory solution in any
particular circumstance of the given problem. Scenarios, S, that appear in each preference
constitute the minimal set of information about application environment to express preference
among options. In human-like AI applications, such as cognitive personal assistants, these
scenario-based preferences arise from personal preferences of a human user e.g. the prefer-
ence for red meat, or the avoidance of chicken in the context of a shopping assistant. These
scenarios can be grouped in hierarchies of increased speci�city.

In order to de�ne a decision maker's theory, information can be divided into three levels.
At the �rst level, the rules that are de�ned refer directly to the subject domain, and are called
Object-Level Decision Rules. At the second level, the rules that are de�ned are priorities over
the �rst level rules. These priorities can be based on the speci�c roles that agents can assume
or to generic and speci�c conditions. At the third level, the rules that are de�ned are priorities
over these rules based on generic or speci�c contexts. Also, priorities over third level rules
based on preferences between di�erent contexts can exist.

2.1.3 Illustrative Example

Below, an example is presented[1], in order to comprehend the function of this argumenta-
tion framework. The example captures the guidelines of a human user for an on-line shopping

2.1 Argumentation 17

personal assistant. The available options of this problem are to buy, or not, various products
in a supermarket.

OPTIONS = {buy(lamb), buy(pork), buy(chicken), buy(fish)} (2.1)

The application problem is to decide which buy options to select. For easy of presentation,
it is assumed that user can only buy one type of these foods when shopping. Firstly, user
de�nes the Object-level Rules. This is de�ned as described below (2.2)

SP 1
m = 〈S1

m = main_shopping;O1
m = {buy(lamb), buy(pork), buy(chicken), buy(chicken)}〉

(2.2)
This means that all the options are enabled/available under this basic scenario S1

m. At this
point, user can express preferences on these enabled options depending on further scenario
information that is su�cient for a preference to be expressed.

SP 2
m,c = 〈S2

m,c = S1
m ∪ cheap(pork), cheap(chicken);O2

m,c = buy(pork), buy(chicken)〉 (2.3)

This scenario, expresses that there is a preference between buying pork or chicken if they
are cheaper than the other products. At the scenarios below (2.4), (2.5), user indicates that,
may have a preference amongst the cheaper options, e.g. a preference for pork in the winter
and for chicken in the summer. These preferences, are re�nements of the scenario S2

m,c , in a
same way that S2

m,c is a re�nement of the initial scenario S1
m.

SP 3
m,c = 〈S3

m,c,w = S2
m,c ∪ winter;O3

m,c,w = buy(pork)〉 (2.4)

SP 3
m,c = 〈S3

m,c,s = S2
m,c ∪ summer;O3

m,c,s = buy(chicken)〉 (2.5)

In re�nements of scenarios, user is able to focus further on his preferences amongst pre-
ferred options of any parent scenario. In example below, user has a preference amongst
cheaper options for the locally produced foods.

SP 3
m,c,l = 〈S3

m,c,l = S2
m,c ∪ local(chicken);O3

m,c,l = buy(chicken)〉 (2.6)

So, now there is a preference for chicken when it is cheap and it is produced locally.
Argumentation can also support combination of scenarios, e.g. a new scenario made up of
the union of two scenarios such as when the re�nements of winter and local(chicken) can hold
together:

SP 4
m,c,w,l = 〈S4

m,c,l = S3
m,c,l∪S3

m,c,w = S2
m,c∪winter∪local(chicken);O4

m,c,w,l = buy(chicken)〉
(2.7)

Which expresses the preference for the locally produced chicken even in the winter time,
where pork is generally preferred amongst the cheap options. Lastly, user de�nes a scenario
that takes into consideration the preference for locally produced foods that applies irrespective
of the price (2.8).

SP 2
m,l = 〈S2

m,l = S1
m ∪ local(chicken), local(lamb);O2

m,l = buy(chicken), buy(lamb)〉 (2.8)

18 Chapter 2. Background

A principled approach to capture the preference requirements, or guidelines, of an appli-
cation problem, would involve identifying possible combinations of the scenarios expressed
directly by the user, which contain con�icting preferences, and prompting or learning from
the user further preferences under such combined scenarios and their re�nements.

2.2 Gorgias

Gorgias is a system based on preference-based argumentation that has been used for years
by a huge variety of users for developing real-life applications. As described in [14], Gorgias is a
preference-based argumentation framework written in Prolog where theories may be composed
at di�erent levels. Arguments are represented as rules which heads are either options or
priorities over existing rules. When pairs of arguments derive to contrary conclusions, these
pairs of arguments are named con�icting arguments. A con�icting argument is described
as admissible if it counter-attacks all arguments that attack it. First level arguments (i.e.
regarding options) must take priority (or higher level) arguments and be at least as strong as
their counterarguments.

A useful tool named Gorgias-B [10] (�g 2.2) has been developed to support the development
of applications of argumentation under Gorgias using the SoDA Methodology. Main feature of
it, is that allows users with little or no knowledge of argumentation to model their applications.
This tool, generates automatically source code in the form of an application argumentation
theory in Gorgias framework. Con�icting Arguments that occur can be resolved using this
tool, thanks to the graphical environment that guides users through each con�ict and the
available solutions to resolve these con�icts. Another feature is that it allows implemented
scenarios to be executed. The results of the execution are presented at the user interface of
the tool, as long as the admissible arguments that support them.

Although Gorgias-B tried to make argumentation more user friendly for users that have
no knowledge of argumentation, it still remains di�cult to understand it's operation unless
they are experts in the �eld of argumentation or they are the developers of the tool.

Figure 2.2: Gorgias-B Graphical User Interface (GUI) [1]

2.3 The SoDA Methodology 19

2.3 The SoDA Methodology

Software Development for Argumentation (SoDA) (�g 2.3) is a high level process, which
requires from the developer the consideration of questions about the requirements of each
problem at various scenarios. This methodology [2] is de�ned as a set of tasks that produce
Work Products. These tasks are the de�nition of the di�erent options of the application
problem (T1), the identi�cation of the knowledge needed to describe the environment (T2), the
separation of information into information that exists always and circumstantial information
(T3), the sort of the circumstantial information from general to more speci�c in levels (T4),
the capture of the application requirements (T5) and the last task iteratively de�nes sequences
of more speci�c scenarios and considers how options might win over others (T6).

Figure 2.3: Graphical Representation of SoDA Methodology[2]

2.4 MVC Pattern

2.5 RESTful Web Services

Representational State Transfer (REST) is a software architectural style [15] that de-
�nes a set of constraints to be used for creating web services. REST conforms to the web
standards such as using HTTP verbs and URI's. The principles that are bound to them
are that resources are identi�ed by the URIs, can have multiple representations and can be
accessed/modi�ed/created/deleted by standard HTTP methods.Also, RESTful services are
bound by the principle of statelessness, which means that each request from the client to
server must include all the details to understand the request.This improves visbility, reliabil-
ity and scalability for requests. HTTP verbs inform the server for what action has to be done
in each request. The main HTTP verbs or HTTP methods are:

1. GET: This method enables a user to get access to a resource. When a client click a
URL in the browser, it sends a GET request to the address speci�ed by the URL.

20 Chapter 2. Background

2. POST: This method is mainly used to create a resource. Multiple invocations of the
POST request can create multiple resources.

3. PUT: This method is used to update a resource. Multiple invocations of the PUT
request can update multiple resources.

4. DELETE: This method is used to delete a resource. When a resource is deleted, calling
DELETE method multiple times, the same response will be sent to client.

HTTP Method Resource URI Description

GET /library/books This gets a list of books

GET /library/books/isbn/12345678
This gets a book identi-
�ed by ISBN �12345678�

POST /library/books
This creates a new book
order

PUT /library/books/isbn/12345678
This updates a speci�c
book identi�ed by ISBN
�12345678'

DELETE /library/books/isbn/12345678
This deletes a book
identi�ed by ISBN
�12345678�

Table 2.1: HTTP methods and descriptions for the actions taken on the resource with a simple
example of a collection of books in a library.

2.6 Technologies

2.6.1 NodeJS

NodeJS is a software development platform (mainly for servers) built into a JavaScript
environment. Its goal is to provide an easy way to create scalable online applications. Unlike
most modern network deployment environments, a nodeJS process is not based on multi-
threading but on an asynchronous input / output communication model. This type of opera-
tion model aims to improve the processing capabilities of web applications with many in-/ out
functions, as well as real-time web applications (real-time communication programs, browser
games).

Figure 2.4: NodeJS Logo

The platform architecture brings Event-driven programming to servers, enabling the de-
velopment of fast JavaScript servers [16]. Event-driven programming is a model in which the

2.6 Technologies 21

�ow of a program is determined by events such as user actions (mouse clicks, push buttons),
sensor outputs, or messages from other programs / threads. It is the predominant program-
ming model used in graphical user interfaces and applications focused on executing speci�c
actions in response to user input. In event-driven applications, there is usually a basic loop
that awaits event occurrence, and then trigger a callback function when an event occurs [17].

Using the model described above, the developer can create large-scale servers without the
use of multi-thread, but with the exploitation of a simpli�ed model. The program-driven
simpli�ed model uses iterations to mark the completion of a process [16]. The Node Platform
was created because parallels are di�cult to implement in many server programming languages
and often lead to reduced performance. Node deployment is based on Google's open-source
V8 JavaScript engine [18], has excellent speed and is easy to use with HTTP, DNS, and
TCP key Internet protocols. Finally, the platform platform, the JavaScript language, is so
widespread that it makes it directly accessible to the entire community of web developers.
Main advantages of NodeJS are:

1. Increased speed. As mentioned above, Node is a software development platform that
uses the V8 engine, built by Google to incorporate Chrome into its browser. This
machine translates and executes JavaScript at great speeds, mainly because of the fact
that its compiler directly converts JavaScript into machine code.

2. Loop of events. The event loop is a single thread that performs asynchronously all in-
put/output functions. Traditionally, input/output functions are performed synchronously,
blocking each other, or asynchronously utilizing parallel threads. This approach tends to
be overcome due to the increased memory it requires and its reputation in programming
di�culty. Conversely, when a Node application requires execution of an input/output
operation sends an asynchronous event loop to work, together with a re-call function
and continues the normal �ow of the program. Finally, when the asynchronous process
is completed, the event loop returns to the process and performs its recall.

3. The fact that it was based on an already popular language, JavaScript. The most
prominent client-side application development frameworks are based, if not exclusively,
on the logic of JavaScript. Node is no longer required to translate the client-side logic
to that of the server side as it is common. It is also not necessary to translate HTTP
data sent to di�erent objects on the server side.

Figure 2.5: NodeJS Architecture

22 Chapter 2. Background

In this thesis, NodeJS was used for achieving robust communication between front-end
and back-end. So, NodeJS using proxy can pipe requests from Angular to Spring and then
return the responses from Spring to Angular.

2.6.2 Webpack

Web browsers have been designed to consume HTML, JavaScript, and CSS. The simplest
way to develop is simply to write �les that the browser understands directly. The problem
is that this becomes unwieldy eventually. This is particularly true at development of web
applications.

Webpack [19] allows the developers to treat their projects as a dependency graph. They
could have an index.js in their projects that pulls in the dependencies each project needs
through standard import statements. Developers can refer to their style �les and other assets
the same way. Webpack does all the preprocessing for them and gives them the bundles
they specify through con�guration. Webpack uses a con�g �le with the default �lename
webpack.con�g.js to de�ne loaders, plugins, etc., for a project. This declarative approach is
powerful, but it is a little di�cult to learn.

Figure 2.6: Webpack Logo

In this thesis, Webpack was used for packing all of the HTML and CSS pages created,
also for preprocessing these pages, so the loading time in browser will be reduced to provide
to users a fast and e�cient navigation experience.

2.6.3 Spring Framework

The Spring Framework is an open source Java framework based on Rob Johnson's "Expert
One-on-One J2EE Design and Development"[20] code designed to facilitate the development
of Java applications. Spring has a modular architecture and has been divided into independent
packages which, however, can work independently with other frameworks, o�ering their func-
tionality with minimal adjustments. It reduces the e�ort and cost to develop an application,
while providing facilities for the e�ectiveness of testing.

Figure 2.7: Spring Framework Logo

2.6 Technologies 23

The Spring framework has about 20 sections to organize its features, some of which are
shown in �gure 2.8. The main services o�ered are:

� Inversion of Control container (IoC)

� Aspect-oriented Programming (AOP)

� Data Access

� Transaction Management

� Model-and-View Controller

� Remote Access Framework

� Batch Processing

� Authentication & Authorization

� Remote Management

� Messaging

� Testing

Figure 2.8: Spring's Architecture

The most important features of the Spring Framework are Inversion-of Control (IoC) and
AOP (Aspect Oriented Programming). The �rst one is provided as a set of techniques in
which the control �ow is reversed in relation to the conventional method performed without
the use of the framework. The framework calls procedures/methods created by the developer
rather than the developer calls the framework processes/methods. The second o�ers a �exible
solution to the implementation of critical operations, such as transaction management.

24 Chapter 2. Background

Inversion of Control Container and Dependency Injection

One of the most important features of Spring is IoC (Inversion of Control) or Dependency
Injection (DI). Every major application [21] consists of classes that work together. The objects
therefore undertake to acquire their own links with the objects with which they collaborate (ie
to determine their dependence on them). This is a kind of pull con�guration (Rod Johnson,
2005), that is, the object attempts to extract the dependencies from its environment.

Unlike DI, the dependencies are inject to the objects that need them when they are created.
This task is assigned to the container, which translates the names of the objects into other
objects through the constructor, methods, or "factory" methods. This approach creates a
push con�guration. In this way the dependencies are explicit and the classes are documented
by themselves. Therefore, it is not necessary for the programmer to develop the code for the
composition of a class, as this is done by the framework easily and quickly.

Spring Boot

The Spring Boot programming framework is an open source library of Java libraries that
provides a particularly comprehensive infrastructure support for the development of robust
applications deployed in Java EE (Enterprise) in a fast and easy way. The Spring Boot
Framework was originally written by Rod Johnson and was released under Apache 2.0 license
in June 2003. Spring Boot's key features are:

1. Auto-composition: The composition of the various application features is automatically
done. Automatic composition allows for higher levels of security, easier development of
the Spring MVC model, Java Persistence API, etc.

2. Dependency builder: Depending on the functionality the developer declares to be nec-
essary for his work, Spring Boot undertakes to include the appropriate libraries. For
example, for the implementation of an online application, the "web" launcher must be
added. Similarly, if a Mongo persistence application is deployed, the mongo initiator
must be added, and so on.

3. Command Line Interface (CLI): is a command line tool that is optionally used for
fast deployment with the Spring framework. Allows scripts to be executed, which are
approximately similar to the corresponding Java code.

4. Activator: Allows the monitor of the processes running within an application as it works.
The corresponding information is presented through web endpoints or through a shell
interface.

In this thesis, for the design and implementation of the server, Spring Boot Java framework
was used. Also, Spring's Security features were used to reinforce application's security and
robustness.

2.6.4 Angular

Angular [22] [23] is a client-side Typescript programming framework developed by Google.
It belongs to the category of MVC (model-view-controller) frameworks.

The MVC model is implemented in the Angular programming framework with HTML and
Typescript. The View layer uses HTML, while Model and Controller uses Typescript.

2.6 Technologies 25

Figure 2.9: Angular's Logo

Views

A view on Angular is de�ned by appropriate tagging with the<router-outlet> tag. In a
sense, the overall HTML document is the view. However, given that Angular applications are
designed as single-page applications (SPA), only a portion of the page represents the current
view each time. Therefore, it can be assumed that the contents of the BODY tag represent
the view and the HEAD and HTML tags create the container for the individual views. An
example of marking an HTML page area as a view in Angular's framework is listed in the
following section of code:

Figure 2.10: Angular's router-outlet implementation

In order to start using Angular [24], the development environment has to:

1. Include Node.js® and an npm package manager

2. Install the Angular CLI using

npm install -g @angular/cli

3. Create a workspace and initial application

ng new my-app-name

4. Serve the application

cd my-app

ng serve --open

26 Chapter 2. Background

Controllers

An Angular controller is a Typescript constructor that is used to enhance the functionality
of the page. The controller is declared as de�ned below. Angular creates an object of the
Controller class using this particular constructor. A controller is used to respond to user input
and to interact with views to make changes to user interface. In addition, they are used to
maintain the model and modify it. The following code shows a simple JavaScript controller.

@Component({

selector: 'app-movie-list',

templateUrl: './movie-list.component.html',

styleUrls: ['./movie-list.component.css'],

})

Models

The model that corresponds to a controller includes the data to be displayed on a page, as
well as the data that is collected through forms. Additionally, models can include functions
that are triggered by user input or other activities, such as a button press or data change.
Angular has the ngModel class, which if integrated into the controller can be used directly as
a model. Based on the above, the code that follows declares and set values to model.

import {Component} from '@angular/core';

@Component({

selector: 'example-app',

template: `

<input [(ngModel)]="name" #ctrl="ngModel" required>

<p>Value: {{ name }}</p>

<p>Valid: {{ ctrl.valid }}</p>

<button (click)="setValue()">Set value</button>

`,

})

export class SimpleNgModelComp {

name: string = '';

setValue() { this.name = 'Nancy'; }

}

Based on the MVC model, Angular is consisted by some structural elements (�g 2.11)
which make the application robust and easy to understand. Below we describe in more detail
the structure and purpose of some of these structural elements.

2.6 Technologies 27

Figure 2.11: Angular's modular architecture

In this thesis, the whole design ad implementation of front-end was made with Angular 7
framework. All web pages in HTML were created using Angular component system.

2.6.5 MongoDB

MongoDB is an open source software [25] designed to store and manage document-oriented
information, ie data that is semi-structured. Developed and maintained by MongoDB Inc.
It can run on di�erent platforms and belongs to the family of NoSQL databases, ie it is
non-relational. Unlike the relational SQL databases, MongoDB does not have the meaning
of rows, dependencies, tables, nor joins and foreign keys can be found . What we encounter
is JSON type documents with �exible shapes, resulting in many applications to have a faster
and easier merge of data.

Figure 2.12: MongoDB Logo

Documents & Collections

MongoDB, as mentioned above, stores JSON type documents, which are represented by
keys and values. Usually documents with multiple keys and values come across. Figure 2.13
presents such a document.

28 Chapter 2. Background

Figure 2.13: MongoDB document representation

As in relational databases we have tables, respectively in MongoDB we have collections.
Documents relative to each other (eg same index documents) are stored in them. Figure 2.14
shows a collection of many documents.

Figure 2.14: MongoDB collection representation

Collections have not de�nite structure. Therefore, documents may have di�erent structure,
while they are in the same collection.

Querying

> db.users.find({"username" : "joe", "age" : 27})

Indexing

To improve query performance, MongoDB uses indexes. In the absence of indexes, search-
ing in a collection is carried out by scanning all the documents of a collection one by one.

2.6 Technologies 29

Aggregation

Aggregations are a set of functions that allow the manipulation of data returned by Mon-
goDB in response to a query. The merge functions group the values from the multiple docu-
ments, and by performing some functions on them, they return a compact result.

MongoDB provides three aggregation methods: the aggregation pipeline, the map-reduction
function, and the simple-purpose merge functions.

In this thesis, the database selected is MongoDB due to it' s speed and structure of data
that will be stored.

2.6.6 Prolog & Prolog JPL

Prolog is a logic programming language. Prolog is highly associated with arti�cial intelli-
gence and computational linguistics. Unlike other programming languages, Prolog is intended
primarily as a declarative programming language. Logic is expressed as relations which are
called as facts and rules. It was one of the �rst logic programming languages implemented,
and remains since today the most popular among such languages, with a number of free and
commercial implementation accessible.

Figure 2.15: SWI-Prolog Logo

SWI-Prolog is a free and open-source implementation of Prolog from 1987. The develop-
ment has been driven by the needs of real-world applications. SWI-Prolog is widely used in
the �eld of education and research. A huge bene�t for using SWI-Prolog, is the existence of
JPL. JPL is a java interface to Prolog, which o�ers functions that are called in Java and that
enables the communication between Java and system's installed Prolog Engine. It contains
two API's, one Java API for controlling Prolog from Java, and one Prolog API, to control
Java and call Java functions from Prolog. JPL is also available online as a Maven package.

In this thesis, Prolog is used in order to use the argumentation framework Gorgias, which
is written in Prolog. Spring boot establishes a connection with Prolog, using SWI-Prolog's
JPL plugin.

2.6.7 Docker

Docker [26] is an open platform for developing, shipping, and running applications. Docker
enables the developer to separate his applications from his infrastructure so he can deliver
software quickly. With Docker, it is possible to manage the infrastructure in the same ways
to manage applications. By taking advantage of Docker's methodologies for shipping, testing,
and deploying code quickly, developers can signi�cantly reduce the delay between writing code
and running it in production.

30 Chapter 2. Background

Figure 2.16: Docker Logo

Docker provides the ability to package and run an application in a loosely isolated envi-
ronment called a container [27]. The isolation and security allow the developers to run many
containers simultaneously on a given host. Containers are lightweight because they don't need
the extra load of a hypervisor, but run directly within the host machine's kernel. This means
developers can run more containers on a given hardware combination than if they were using
virtual machines. Developers can even run Docker containers within host machines that are
actually virtual machines.

Docker Architecture

Docker uses a client-server architecture. The Docker client communicates with the Docker
daemon, which is responsible for building, running, and distributing the Docker containers.
Docker client and daemon can run on the same system, or there is an option to connect
a Docker client to a remote Docker daemon. The Docker client and daemon communicate
using a REST API, over UNIX sockets or a network interface. Docker architecture as well as
di�erences between virtual machines and Docker are shown in �gures 2.17 and 2.18.

Figure 2.17: Docker Architecture

2.6 Technologies 31

Figure 2.18: Docker Container Vs Virtual Machines

In this thesis, Docker was used, in order to deploy the whole application in the cloud.
So, the developed application is packed in a container, which is independent from the host
operating system that is running on server. This makes the application able to be deployed
in every system that has Docker installed.

2.6.8 Development Methodology

To develop our system, the work methodology of Christodoulakis[28] is followed:

1. Paper Prototypes: Paper Prototypes are sketches in paper, that illustrate the pages
that will be implemented.

2. Storyboards: Storyboards are a set of sketches that illustrate the navigation between
pages and basic functionality

3. Discussion with users: Paper prototypes are given to users to interact with them and is
asked from them to execute some basic functionality of the designed system.

4. Application Implementation: Taking into consideration the feedback from users that
occured from discussion, the application is being implemented.

5. Evaluation: After the implementation, developed application is given to users to evalu-
ate it. Their feedback is being analyzed and discussed.

6. Evaluation results implementation: The feedback from users, and their proposals about
the developed application are being encapsulated into the application.

7. Feedback from users: At the �nal stage, �nal deliverable of the developed system, is
given again to same users to test it.

Chapter 3

Functional Speci�cations and UI

Prototyping

For the development and ultimate implementation of an online application, it is necessary
to divide the software into its structural modules as well as to co-operate and coordinate
between the teams that undertake to do so. Initially, the needs of the user are analyzed
to give a full picture of the application's requirements and �nal goal. Through teamwork,
functional and non-functional requirements are planned and organized, the constraints and
timing of the project are set. Then, based on all of the above, designers undertake to design
the user interface (UI) by continually evaluating it. Once �nished, developers begin to build
the application, again according to the user's requirements and needs.

In this chapter we describe the functional speci�cations of the Gorgias argumentation web
application and the tools that will be used to implement the user interface, the functionality
of the client and its servers.

3.1 Functional Requirements

The application described in this diploma thesis aims to create an online decision policy
authoring tool to help develop and solve real life application problems using argumentation.
Its main feature is its user-friendly and responsive graphical environment (UI). It is aimed at
users of all ages with elementary even with little familiarity with computers and concepts like
arti�cial intelligence or argumentation. For this reason, it is necessary to carefully design the
user interface so that it is fully understandable and user friendly, since it supports both desktop
and portable computers as well as mobile units (tablet, smartphone). The application should
provide ancillary messages that guide the user, so he can understand and use the di�erent
options provided by the system.

Requirements from the interface can be summarized as follows:

• Fully responsive user interface

• Smooth application navigation

• Handy and user-friendly UI

• Simpli�ed and accurate interface design to make application easy to be used, not only
by professionals but also by users who are not familiar with such applications.

33

34 Chapter 3. Functional Speci�cations and UI Prototyping

• Developed application should give the opportunity to a user to create an account to the
system, by giving a unique username, his e-mail and a password. Also user should be
able to manage his account, such as change his name or his password.

• A registered user should be able to create a new project, by naming it or to edit/delete
an existing project.

• At each project created, a user should be able to do the below:

• Insert the available options for each real-life problem that desires to model.

• Insert all the available knowledge needed in order to describe the di�erent appli-
cation environments which can arise in the application problem domain.

• Capture the application requirements. This should be done by creating the initial
scenarios, accompanied with all the available options or beliefs that are triggered in each
scenario instance.

• Specify the partial models or scenarios and can consider how options/beliefs might
win over other options/beliefs at each argue level.

• Preview all the scenarios that have been created at all levels. User should be able
to edit, delete, expand a scenario to make it more speci�c, mark an option as default,
or mark the scenario as impossible to happen.

• Finally, user should be able to test each developed decision model through an execution
engine using Prolog in the background. User can instantiate the scenario at execution
time by adding facts and beliefs.

• Compatibility with all modern mobile phones and devices that can be connected to the
internet

3.2 Personas

Personas are used to help designers and developers determine the requirements and needs
of the system and proceed with the application design. In fact, these are virtual users with
attributes and roles that correspond to real users who are interested in the application.

3.2.1 Antonis, 55, Professor

Mr. Antonis, is a professor in Computational Logic and Arti�cial Intelligence. He is also
one of the co-founders of Gorgias framework, which makes him expert in argumentation. Due
to his research domain in argumentation, Mr. Antonis uses Gorgias often to model and review
decision policies that have been de�ned at each of his research projects.

3.2.2 Takis, 20, student

Takis is a student in Technical University of Crete at School of Electrical and Computer
Engineering. Takis is very organized in his everyday life, thus he likes modeling his real-life
tasks and problems, in a modern way, in order to make choices about them. So, he uses
arti�cial intelligence decision assistants in an everyday basis.

3.3 Storyboards 35

3.2.3 Nikos, 35, Web Designer

Nikos, is a web designer and also an owner of a company that creates web applications
and websites. He is very pressed in work, and his company employs many workers. All these,
makes everyday decisions more di�cult for Nikos, who wants to have the full control of his
company, to track the delivery of their current projects (milestones) and also to assign tasks
to his workers driven by their workload and their already assigned tasks.

3.3 Storyboards

The design of system interfaces with the user was based on the storyboards technique.
These are virtual representations of the graphics on the pages of the application and represent
the functionality of the system as well as the relationships between the pages. In more detail,
they show the navigation on the application pages, support the designer to evaluate the
interface and to add, modify, or remove functionality quickly and easily.

Figure 3.1: Application's Basic Storyboard. Transition from home page to login page is
described in �rst two pages. The other pages represent transition from successful login to
projects list page and then to the main page of the selected project.

3.4 Paper Prototypes

Paper prototyping [28] is a process design method that developers use to design and test
user interfaces. Following the implementation of the storyboards and the evaluation that takes
place in them, designers advance with paper prototypes. A paper prototype is a drawing of
the user interface of the application with all the functionalities and the elements they contain,
with the �nal result being the screens of the application.

With the help of this method, developers are able to test the interfaces at an early stage
and thus save development time. This is because rescheduling of an interface due to an error
or due to some new functionality is easy and fast. As is well understood, the early stage in
the implementation and nature of paper prototypes, often even on paper, encourages criticism
of interfaces by potential users who are studying the originals designed as prototypes. This
method assists in assessing and de�ning requirements before even developing the application
code. The following illustrations show the paper prototypes that were created before the

36 Chapter 3. Functional Speci�cations and UI Prototyping

development of the application. They are divided into four categories, according to the view
that is selected. Home Page, Basic View, Advanced View and illustrations that are common
in both views.

3.4 Paper Prototypes 37

Home Page

Below are illustrated the starting pages of the web application. In �gure 3.2 is illustrated
the Home Page. The homepage adopts a minimal design in order to be easier for the user
to focus on the important elements of this page, such as the Login and the Register button.
In �gure 3.3 the Home Page when a user has already logged in or registered is illustrated.
This page describes some key features of this applications and prompts the user to enter the
projects menu.

Figure 3.2: Home Page Wireframe Figure 3.3: Home Page After Login Wire-
frame

Basic View

Application's basic view aims to help non-expert users who use the application, model
their real-life problems using a clean and simple user interface with all the elements of this
interface to be easy to understand. Each di�erent functions of the application is divided into
tabs. In the �gures below, are illustrated the tabs and their contents that are exclusively
visible at Basic View.

Figure 3.4 below, illustrates Option page, where user can create an option by expressing
it in natural language. A proprietary service runs and does natural language processing at
the input sentence, where the results are transformed into an appropriate form in order that
the argumentation framework can manage. Also, user can review already created options and
de�ne whether di�erent options are complements.

38 Chapter 3. Functional Speci�cations and UI Prototyping

Figure 3.4: Option Page (Basic View) Wireframe

In �gure 3.5 Facts Page is presented. In this page user can insert new facts to the system
using natural language. Another service is responsible to handle this request, and to transform
this sentence from natural language to the desired form. User can also delete the existing
ones facts. Lastly, in �gure 3.6, there is a creation form for Beliefs. As in previous two pages
3.4,3.5, user would has the ability to enter a desired sentence in natural language in order to
be transformed, as also can delete already inserted beliefs.

Figure 3.5: Fact Page (Basic View)Wireframe Figure 3.6: Belief Page (Basic View) Wire-
frame

Advanced View

Advanced view includes all the available tools that an expert user will need in order to
bene�t from argumentation's full potential. In the �rst �gure 3.7, advanced user can create
an option by inserting the name of the desired option and at least one (1) parameter that
describe this option. A choice to add the negation of this option is also provided by system.
User can also delete any of the created options. Last but not least, users can de�ne all the
created options as complements.

3.4 Paper Prototypes 39

Figure 3.7: Option Page (Advanced View) Wireframe

In �gures 3.8 and 3.9, advanced user can create a fact/belief by inserting the fact/belief
name and optionally can insert describing parameters for each one. In Belief page, user can
also mark an individual belief as Abducible. Furthermore, like in Basic View, user can review
all created facts/beliefs, and there is an option to delete unnecessary facts/beliefs.

Figure 3.8: Fact Page (Advanced View) Wire-
frame

Figure 3.9: Belief Page (Advanced View)
Wireframe

In �gures 3.10 and 3.11 below, Argument for Beliefs and Argument for Options Page are
presented. User can select from a drop-down list a preferred belief/option and then select
from another drop-down list, the corresponding facts/beliefs that user desired to include, in
order to de�ne a preference over this selected belief/option. In these pages, user can also
inspect already created preferences and delete them if it's necessary.

40 Chapter 3. Functional Speci�cations and UI Prototyping

Figure 3.10: Argument for Beliefs Page (Ad-
vanced View) Wireframe

Figure 3.11: Argument for Options Page (Ad-
vanced View) Wireframe

In �gures 3.12 and 3.13, Argue for Beliefs/Options pages are described which role is to
de�ne preference between options. In order to inspect or create new argue rules for an existing
belief/option, �rstly user has to select the argue level in which the desired rule belongs. After
initializing the argue level, user has to select from a drop-down list the con�icted scenarios
that have been arise from lower level rules. Subsequently, user has to select the preferred be-
lief/option from a list and the necessary scenario information that re�ects that speci�c argue
rule. User can also review or delete the scenarios that correspond to the selected level and
the con�icting scenario.

Figure 3.12: Argue for Beliefs Page (Ad-
vanced View) Wireframe

Figure 3.13: Argue for Options Page (Ad-
vanced View) Wireframe

3.4 Paper Prototypes 41

Basic & Advanced View

Argue Table Page and Execution Page that are illustrated in �gures 3.14 and 3.15 show
up also in Basic and Advanced View. In Argue Table Page 3.14, all the created scenarios from
all levels are listed in a table view. A check-mark visualization is used in order to indicate
which of all the available options are selected in each scenario. User has the option to expand
the existed scenarios with additional scenario information and more speci�c options. It is also
available to mark a scenario as impossible if user decides that this scenario is impossible to
happen or even delete one.

Figure 3.14: Argue Table Page (Basic & Advanced View) Wireframe

In �gure 3.15 below, is illustrated the Execution page. In this page, user can test/simulate
the scenarios. User can instantiate as many facts or beliefs as needed and then either search
for speci�c options, or select the �Explore all Options� button to see which of the options can
be valid. After execution process, system presents to user the execution results in a list form
grouped by available options for that instantiated scenario.

Figure 3.15: Execution Page (Basic & Advanced View) Wireframe

Chapter 4

User Views

The purpose of this senior thesis is to de�ne and simulate decision policies for real life
problems quickly and e�ciently. The application was designed from its earliest stages with
the design of pages optimized for user experience and usability. It is aimed at users of all
ages, with good or relative familiarity with web applications.

Moreover, given the needs born through the use of smart mobile phones, application pages
could not have been developed without being fully responsive and functional.

Subsequently, some of the features that have been set in order to achieve the above are
analyzed.

Simplicity

The simple, fast and complete user experience in web design is one of the most di�cult
points facing designers and developers. The main feature of modern applications is simplicity.
The user must be able to navigate the application with con�dence and comfort. Thus, the
goal of the implementation that has been implemented within this thesis application, is to
have an experience that will be psychologically comfortable and visually relaxing. That is
why the pages were designed in such a way that they are easy to understand, simple, with
distinct content and few colors that do not tire or confuse the user.

Visual hierarchy

The elements of a page must be organized and positioned at the appropriate points so
that once users open the application, they can �rst focus on the most important of them. A
big role in this is played by the order in which data are displayed, their size etc.

Navigability

Another very important feature that a web application should have is easy navigation.
It must be fully understood by the user, which means that the user must be able to quickly
understand what needs to be �lled in, when he opens the application, then which button
will press, how will return to the previous page etc. Having all of the above, as a basic axis,
the application pages have been con�gured with the help and evaluation made by users so
that they behave ergonomically and correctly in both desktop and mobile devices (tablets,
smartphones).

43

44 Chapter 4. User Views

4.1 Home Page

Home page (�g. 4.1) is the �rst page that appears to a user. It contains two buttons that
prompt the user to either log in with his credentials or to create a new account.

Figure 4.1: Home Page View

4.2 Registration Page

This is the page where a user creates his new account (�g. 4.2). This page contains an
input form with user's account information in the �elds.

More speci�cally, form's �elds are the below:

Username Here user, inserts his username, which must be unique for each user. With
this username, he will login to the system.

Email User inserts his email address which must be valid, in order to get the con�rmation
email to authenticate his new account.

Password & password con�rmation Here user inserts his preferred and he's asked to
reinsert it for con�rmation. Also a meter showing how strong the password is, is displayed
between password �eld and con�rmation.

4.3 Login Page 45

Figure 4.2: Registration Page View

4.3 Login Page

This page (�g 4.3)shows up when user clicks the login button. This page contains an
input form with two �elds. The credentials that are needed to enter the application. There is
also an option if user forgets his password, to reset his account password after following the
instructions from the sent email.

Figure 4.3: Login Page View

46 Chapter 4. User Views

4.4 Projects Page

This page (�g 4.4) is the projects page. In this page, user can create a new project by
clicking the "Create new Project" button which is located to the upper right corner of the page.
If there are already created projects, they are all listed in a table with their corresponding
info and their action buttons needed to open it, to edit it or to delete it.

Figure 4.4: Projects Page View

4.5 Basic View

In this section are presented the views that belong to basic view, as also as the views that
are common in Basic and Advanced View. The common views are Argue Table (�g. 4.8) and
Execution Page (�g. 4.8).

4.5.1 Options Page

The Option page (�g. 4.5) can be divided into three parts. In the �rst part, there is
the input form to create a new option. This contains only one �eld which user �lls it with
free text and the option is generated automatically after natural language processing in the
background. The second part of page, is the list of all created options, where can review or
delete them. In the last part, there is the complement section. In this section, user can de�ne
from the available options, which of them are complements and add them at the complements
list that there is below or can click the button "Generate Complements" that automatically
generated complements for all options de�ned.

4.5 Basic View 47

Figure 4.5: Options Page Basic View

4.5.2 Facts Page

The fact page (�g. 4.6) in Basic is consisted by the input form to create a new fact in free
text and the list that contains all the facts, where user can review the inserted facts or delete
them.

48 Chapter 4. User Views

Figure 4.6: Facts Page Basic View

4.5.3 Beliefs Page

The belief page (�g. 4.7) is consisted by the input form to create a new belief in free text
and the list that contains all the beliefs, where user can review the inserted beliefs or delete
them.

Figure 4.7: Beliefs Page Basic View

4.5 Basic View 49

4.5.4 Argue Table Page

In this page (�g. 4.8), there is a table where user can expand existing scenarios, delete
them or overview them.

More speci�cally, argue table has as rows each di�erent scenario, and as columns it has
the level of each scenario, the scenario name, the available options and the command column
which contains buttons that refer to a speci�c action.

At the columns that correspond to available options, if some options are selected, a check-
mark is appeared at this option. Also, user is able to de�ne a selected option as default by
clicking the default button, that is appeared when mouse pointer hovers over that option cell.

The last column of the Argue Table, encloses all actions in buttons that correspond to
each scenario. These actions are the below:

Expand: When user clicks the expand button, this row collapses and it shows up a
small window, which prompts user to select beliefs and facts that will participate as also as
the desired options that will be available for the next level scenario that will be created.

Impossible: When user clicks this button, this scenario is removed from this view and
it's added ti impossible scenario view.

Delete: When user clicks the delete button, it prompts user to verify whether he wants
to delete selected scenario or to cancel delete.

To toggle if the impossible scenarios will be visible or not at the Argue Table, a slider
toggle is located at the top of the table, which alters the view of the impossible scenarios.

Figure 4.8: Argue Table View

50 Chapter 4. User Views

4.5.5 Execution Page

This page (�g. 4.9) contains a input form that user has to �ll it to instantiate scenario for
execution/simulation and a collapse caret list with header each available option and as body
the explanation that has been returned from Gorgias framework if it exists.

The input form contains one �eld and two buttons. At this �eld, are listed in a multi
select box, all available facts and beliefs that have been created at the working project. After
selecting facts and beliefs, user has to select for which options the simulation of the scenario
will execute. The buttons, refer to, whether a user would like to simulate the instantiated
scenario for all created options, or for a single option.

Figure 4.9: Execution Page View

4.6 Advanced View

4.6.1 Option Page

The Option page (�g. 4.10) can be divided into three parts. In the �rst part, there is the
input form to create a new option. This contains three �elds:

4.6 Advanced View 51

Option Name: In this �eld, user �lls it with the desired option name. This �eld is
required.

Option Parameters: This �eld, is the parameter �eld. This �eld requires at least one
input. So, user should add some context to the option and he can add as many parameters
as he wants that describe the option better. There are two buttons aside each parameter
�eld, with the �rst button to insert a new parameter and the other button to remove selected
parameter.

Option Negation: With this checkbox, if user checks it, an identical option like the one
he just created, will be created also but it will be the negation of it. For example eat(food)
and not_eat(food).

The second part of page, is the list of all created options, where can review or delete them.
In the last part, there is the complement section. In this section, user can de�ne from the
available options, which of them are complements and add them at the complements list that
there is below or can click the button "Generate Complements" that automatically generated
complements for all options de�ned.

Figure 4.10: Home Page View

52 Chapter 4. User Views

4.6.2 Facts Page

Fact Page in Advanced view, (�g. 4.11), is divided into two main components. The �rst
component is an input form for belief creation, containing three �elds:

Fact Name: In this �eld, user �lls it with the desired fact name. This �eld is required.

Fact Parameters: This �eld, is the parameter �eld. This �eld is optional. So, if a user
wants to add some context to the fact, he can add as many parameters as he wants. There
are two buttons aside each parameter �eld, with the �rst button to insert a new parameter
and the other button to remove selected parameter.

The other component, contains the list of the created beliefs, with their name and an
option to delete them per will.

Figure 4.11: Fact Page Advanced View

4.6.3 Belief Page

Belief Page in Advanced view, (�g. 4.12), is divided into two main components. The �rst
component is an input form for belief creation, containing three �elds:

Belief Name: In this �eld, user �lls it with the desired belief name. This �eld is required.

Belief Parameters: This �eld, is the parameter �eld. This �eld is optional. So, if a user
wants to add some context to the belief, he can add as many parameters as he wants. There
are two buttons aside each parameter �eld, with the �rst button to insert a new parameter
and the other button to remove selected parameter.

Abducible belief: Last form �eld, is a checkbox. By clicking this checkbox, user can
de�ne the new belief as Abducible.

The other component, contains the list of the created beliefs, with their name and an
option to delete them per will.

4.6 Advanced View 53

Figure 4.12: Belief Page Advanced View

4.6.4 Argument for Options Page

In Argument for Options Page (�g. 4.13), user can de�ne the Object-Level Arguments of
the scenario, or in other words, the �rst level Scenarios Preferences. There is an input form
with two �elds. The �rst �eld is a select menu containing all options that have been created
and the other �eld is a multi select menu which contains all the facts and beliefs created.
When user selects one element from this �eld, this is listed below with an option to remove
it.

At the other half of the page, are listed all Arguments for Options created, in order for
user to review them or to delete them.

54 Chapter 4. User Views

Figure 4.13: Argument for Options Page View

4.6.5 Argue for Options Page

In this page (�g. 4.14), are located all the necessary elements to review delete and de�ne
scenarios preferences. To de�ne scenario preferences, the input form is used. The �elds of the
form are the following:

Level: This drop-down menu, contains all the available levels that already de�ned sce-
narios are. This �eld is required.

Scenarios: When user selects a level, then the Scenarios drop-down list is �lled with the
con�icted scenarios name, if any exists. This �eld is also required.

Preferred Options: After selecting scenario that user will refer, available options are
calculated and drop-down list is �lled with them.

Weaker Options: Weaker options drop-down list contains also all the available options
for this con�icting scenario selected in Scenarios �eld. It has also an option "All Others".

All predicates: In this form �eld, there are all the created by user facts and beliefs at
this project. When user selects one element from the list, this is listed below with an option
to remove it.

4.6 Advanced View 55

Figure 4.14: Home Page View

4.6.6 Prolog File Page

Lastly, in the Prolog File Page (�g. 4.15) in Advanced View, is displayed the Prolog source
code that will be sent to Gorgias framework to process it. The source code is presented well
formatted to user, in order to be clearer and easier to read.

56 Chapter 4. User Views

Figure 4.15: Prolog File Page View

Chapter 5

Application Design

The design was based on the idea that the data resulting from user actions will be analyzed
by the application and stored in a NoSQL database. Subsequently, using a suitable process
such data are converted to a format which can identify the Prolog and stored these as a �le
in NoSQL base. Finally, this �le will be used by the Prolog engine to execute and export the
result. Main design model of the application is shown in �gure 5.1

57

58 Chapter 5. Application Design

Figure 5.1: Application's main design model

The overall application was designed to take advantage of the principles and bene�ts of
the Model-View-Controller (MVC) design model. This means that distinct modules will be
created to control the presentation of the data, �ltering it according to the user's criteria and
managing it in a data model.

59

Figure 5.2: Application's distinct modules design

From the above �gure 5.2, it appears that generated data are transmitted through a REST
service at system Model level, where they are stored for use in further questions that will result
in their execution in Prolog environment and the return of the result. At a second level, the
Model is specialized in each module to match the technologies that meet the corresponding
requirements mentioned above.

5.0.1 Client Side

At the client level, the form input environment is created for each di�erent project that a
user wants to create. Also, the browser displays the results that resulted from the execution
of the de�ned project-speci�c scenarios, in a Prolog environment.

5.0.2 Server Side

At server side, application implements the services below:

• Communication with Prolog and conversion of the data into a format appropriate for
their recognition by Prolog

• Storage service of the created data in the database

• Filtering data based on user criteria

• Conversion of free text to Prolog Predicate using Stanford's Natural Language Process-
ing software CoreNLP[29].

Client's software is based on the Model-View-Controller model, as well as the server model.
This is implemented through restful services that perform the tasks of:

• Prepare and transmit queries to the data model so they can be sent to the Prolog engine

• Send the data resulting from execution in Prolog to the data model so that it is displayed
to the user

Simultaneous use of MVC model both for the client and the server o�er speci�c advan-
tages that are critical to an application in which signi�cant volumes of data (in a production
environment) arise. Such advantages are [30]:

Sparse communication and data exchange between client and server, as data functions
transmitted to the client can be managed locally, minimizing delays in the application re-
sponse.

60 Chapter 5. Application Design

Improving the response of the application, since processing focuses on a smallest set of
application-related data on the client side.

Load distribution from a single server, which implements the model controller in multiple
browsers.

5.1 Client Side MVC Pattern

The client of the application has been based on Model-View-Controller (MVC). This
implementation ensures that the server transmits the data application only. The data is
processed by the customer according to the standard MVC model, so that their presentation
format is �nally displayed in the client browser. An important role in this implementation
has been played by the existence of several programming frameworks, which, with the use of
JavaScript, implement it in a relatively simple way.

Client access to an MVC programming framework makes it easy to develop applications
that manage dynamic data. More speci�cally, due to the fact that the MVC implementation
to the client minimizes the need for exchange of formatted data with the server, it is o�ered to
develop basic CRUD services, which manage raw, unformatted data. CRUD services (create,
read, update, delete are functions that aim to store, refresh, �nd and delete data from a
database.) The basic principle on which MVC implementation is based on the customer is the
implantation of labels in the code HTML, which trigger a corresponding JavaScript language
code In this context, the browser loads the HTML page and creates the Document Object
Model for it Then the DOM model translates and gathers all the tags in the programming
box Finally, through the labels the associated JavaScript functions are activated and the page
is reloaded in its �nal form.

5.2 Server Side

Server implements these main services:

1. Communication with Prolog and conversion of the data into a format appropriate for
their recognition by Prolog (PrologService)

2. Business Logic Management Service (REST Service)

3. Conversion of free text to Prolog Predicate using Stanford's Natural Language Process-
ing software CoreNLP[29] (CoreNLPService)

4. Storage service of the created data in the database (Database Service)

5.2.1 PrologService

PrologService can be divided in two main subcategories.

Convert to Prolog Service

In this service, the data entered by the user into the forms in the application's interface, is
collected and analyzed. Source code in Prolog programming language results from the analysis
process. After analysis process, this source code is encoded in Byte array and stored in the
database after it has been assigned the appropriate id to be recognized by the application.
An example of this conversion is shown in �gure 5.3.

5.2 Server Side 61

Figure 5.3: Data Objects to Prolog conversion

JPL Service

This service, handles the whole communication between JAVA and prolog, using JPL
dependency. JPL is an important dependency for the developed application's architecture.
[31] JPL is a set of Java classes and functions providing an interface between Java and Prolog.
JPL uses the Java Native Interface (JNI) to connect to a Prolog engine through the Prolog
Foreign Language Interface (FLI), which is more or less in the process of being standardized in
various implementations of Prolog. JPL is not a pure Java implementation of Prolog; it makes
extensive use of native implementations of Prolog on supported platforms. Main tasks of this
service are to initialize the Prolog Engine, and send queries to it, which include the paths for
the binary �les that have to be loaded in Prolog in order to execute it. Also, the results that
Prolog exports during execution, are handled by PrologService and are transmitted to client's
Model in order the user to be able to view it.

Figure 5.4: Prolog execution procedure

62 Chapter 5. Application Design

5.2.2 REST Service

The Representational State Transfer (REST) architecture creates an interface between
systems by using the HTTP protocol for data tra�c and activating functions on those data
using formats such as XML and JSON.
The main features of REST architecture are:

1. This is a client / server protocol that does not maintain the status of the communication
channel. This means that neither the client nor the server needs to "remember" any
previous status of the communication channel in order to communicate again.

Objects in the REST architecture are managed through the URI. Any resource in a
REST system is addressed by its URI. The URI allows access to the information for
modi�cation or deletion.

2. Uniform interface. In order to transmit data via REST, the system applies speci�c
operations to the available resources (POST, GET, PUT and DELETE) provided that
they are addressed with a URI. This mechanism creates uniformity in the management
of information managed by a server.

3. Layered Architecture: It is possible to create hierarchical layers between the modules of
an application. In this context, the programming interface may be available from server
A, data storage is on a B server, and authentication requests are handled by a third C
server.

Figure 5.5: REST API architecture

5.2.3 CoreNLPService

Stanford's CoreNLP [32] provides a set of human language technology tools. It can give
the base forms of words, their parts of speech, whether they are names of companies, people,
etc., normalize dates, times, and numeric quantities, mark up the structure of sentences in
terms of phrases and syntactic dependencies, indicate which noun phrases refer to the same
entities, indicate sentiment, extract particular or open-class relations between entity mentions,
get the quotes people said, etc.Stanford CoreNLP's goal is to make it very easy to apply a
bunch of linguistic analysis tools to a piece of text. CoreNLP is available in English language.

5.3 Server Side MVC Pattern 63

Figure 5.6: Usage of Core NLP software

5.2.4 Database Service

The NoSQL technology was chosen to implement the storage and analysis functions of
data from user input processes. NoSQL means those databases that have a data storage and
retrieval mechanism di�erent from that of relational databases (SQL), which is based on the
storage of semi-structured objects. The data types used by NoSQL databases (key-value,
documents, etc.) are di�erent from those of relational databases, which makes them more
e�cient in various functions, mainly data analysis [33]

5.3 Server Side MVC Pattern

The three services described above, implemented on the side of the server, work together
on the basis of the MVC model. The server's MVC model implements three building blocks.

1. The View section serves to display the pages that contain the argumentation data such
as options, facts and scenarios preferences that correspond at each user created project.

2. The Controller section coordinates the �ow of data to and from the Model section and
View. The Controller reacts to the actions of the user and retrieves information from
the Model in order to channel them into the View section. Controller consists of the
REST services, that de�ne the actions that have to be done after each request as also
the return of the responses from requests.

3. The Model section represents the data stored in the database. The implementation of
this section matches the database data to objects. The items to be stored are transmitted
to the System Service Database for service.

In summary, the MVC model is illustrated in Figure 5.7

64 Chapter 5. Application Design

Figure 5.7: Model-View-Controller model representation

Chapter 6

Implementation & Evaluation

6.1 Client Side

In order to implement client-side applications, only technologies that can be run on a
standard browser without the need for any additional software (such as a runtime) have been
used. Given that an application client who consumes the server services is a browser only,
the design decision to implement it has led to the adoption of the following technologies and
programming tools:

� HTML5

� CSS3

� Angular

The choice of Angular programming framework was based on the simpli�ed implementa-
tion of the MVC model on the client side by embedding additional HTML tags in the code
that triggered the execution of functions through the frame. The advantage of Angular lies
in the fact that HTML remains the page description language while synchronizing data from
the User Interface with the JavaScript objects created by the page using a 2-way binding
technique. Angular approach is the implementation of "event handlers" and their activation
when the programming framework decides that one of them should be activated. Using An-
gular programming box, a complete distinction is made between DOM model, models and
functionality (as developed in the controllers).

MVC Pattern

The design model on the client side is Model-View-Controller, which was implemented
with Angular. On the basis of this model, building blocks were created, which can be reused
on the same or di�erent pages. These units derive data from the data model and feed the
level view. The use of Angular as a client-side programming framework implements the MVC
model as follows:

View It is implemented with the HTML description language and additional Angular tags,
so that the Document Object Model created by the page loaded in the browser can be
checked.

65

66 Chapter 6. Implementation & Evaluation

Controller Controller sends requests to the REST Service and assigns the information that is re-
quired for the View level to the RxJS object of the programming frame. It also imple-
ments callback functions, which are triggered as a response to speci�c events.
It is charged with validation of data so that it is processed by the client and does not
burden the server with such tasks.

Figure 6.1 and 6.2 shows MVC model's entities and the link between them.

Figure 6.1: Angular's MVC Work�ow with 2-way data binding

Figure 6.2: Angular's 2-way data binding technology

Components

Based on Angular's architecture, client consists of di�erent components. Each component
is implemented according to the MVC model and has its own Controller, View and Service.
Angular facilitates the reuse of a building unit by using the label:

<component_name></component_name>

6.2 Server Side 67

Figure 6.3: Client's page structure, using Angular's components

6.2 Server Side

6.2.1 ScenarioService

ScenarioService is implemented in Spring Boot framework. All the di�erent functionality
of the developed application that refers to scenarios, is implemented in this service. To be
more speci�c, this functionality is summarized with the following functions.

First of all, scenarioService includes the functions needed, to group all the scenarios cre-
ated, by their name, in a Table View (table 6.1). So, all the scenario preferences that re�ects
each scenario are grouped together and then it's packed as JSON array in order to return it to
the Client Side and then to graphical user interface (GUI) of the application to be presented
in the Argue Table custom view.

In addition, there is the function to create a scenario based on selected beliefs and facts,
accompanied with the appropriate option for each scenario.

Scenarios
Options

allow(call) deny(call, without_explanation) deny(call, with_explanation)

1 In general choose X X X

2 at_work X X (Default) X

3 at_work, family(call) X (Default) X

4 at_work, family(call), in_meeting X

5 at_work, family(call), in_meeting, from_son(call) X X

6
at_work, family(call), in_meeting
, from_son(call), son_is_ill

X

7
at_work, family(call), in_meeting
, from_son(call), not_son_is_ill

X

Table 6.1: Argue table for Call Assistant example

In order to make scenarios more speci�c and express preferences for an option over another,
expand function has been implemented. This function is illustrated in alg.1. This algorithm
represents how system can manage user's inputs, to generate arguments in a speci�c scenario
over an argument in more general scenarios. So, once we set up, for each option o in O where
O contains all the options that users have selected to create a preference for them. Algorithm

68 Chapter 6. Implementation & Evaluation

accesses all arguments in that scenario that has as preferred option that selected options and
also the arguments that have the selected options as a non-preferred option and then checks
if the preferred options of these arguments are complements. If they are, then algorithm
generates the priority arguments at a higher level than the previous arguments. Due to the
possibility of the existence of default options in the scenarios examined, to avoid con�icting
preferences, a correction algorithm is executed to correct possible mistakes about hierarchies.

Function expandScenario(SP lvl, o):
1 for each option o ∈ SP lvl

do

2 for each argSP
lvl−1

o_over_o′ do

3 for each argSP
lvl−1

o′_over_o do

4 if complements(o, o′) then

5 add argSP
lvl

o_over_o′ = (S lvl − S lvl−1)� (argSP
lvl−1

o_over_o′ > argSP
lvl−1

o′_over_o)

6 call autoCorrectArgs()

Algorithm 1: Central Algorithm For Scenario Re�ne

Function autoCorrectArgs():

1 for each option o ∈ O ′ do
2 if isDefault(SP, o) then
3 insertPreference(SP, o)

Algorithm 2: Central Algorithm For Correcting Arguments after Re�ne

Multiple scenarios may have common elements and can also be combined, which results
in possible con�icts between the available options of each one. These con�icts get analyzed
and are presented to user in Argue Table, in order to make a decision for these.

As stated at previous chapters, one of the innovations that this implementation o�ers,
is the function for users to give to an option higher priority over all others at a scenario.
This is the central algorithm alg.3 for de�ning an option as default. Algorithm searches for
arguments of a speci�c scenario S, which their lower priority option is this that user wants to
de�ne as default. Then, at each of these arguments, algorithm creates a counter-argument at
a higher level, by setting higher priority for the default option and the context to true.

Function insertPreference(SP lvl, o):

1 for arg
SP lvl

x

o′_over_default do

2 add argSP
lvl+1

default_over_o′ = (true)� (argSP
lvl

default_over_o′ > argSP
lvl

o′_over_default)

Algorithm 3: Central Algorithm For Inserting a Preference for an Option

Function isDefault(S, o):

1 for each arg
Slvl
x

o_over_o′ where Slvl
x ∈ S do

2 if (Slvl − Slvl−1) = ∅ then
3 if lvl > 1 then

4 result = true

5 if supp_information(argS
lvl

o_over_o′) 6= supp_information(argS
lvl−1

o′_over_o) then

6 result = false;

return result

Algorithm 4: Algorithm for Identifying whether an option (o) is marked as Default
in a speci�c scenario (S)

6.2 Server Side 69

Furthermore, there is a possibility that a user would like to express a priority for an
option o at a scenario (Slvl), or in other words a scenario preference (SP), and that option
to be unavailable. So, an auto-complete algorithm is implemented, to search whether this
option was available in a previous scenario Slvl′wherelvl′ < lvl. If this information is found,
a preference for this option in that scenario is generated, as also a default preference for all
the other options that where selected before. Therefore, the initial preference that user asked,
can now be completed successfully. This whole procedure described above, is illustrated in
alg.5 below.

Function autoCompletePriorities(Slvl, o):
1 call expandScenario(Slvl−1 whereSlvl−1 ∈ Slvl, o)

2 for arg
Slvl
x

t_over_t′ where t 6= o do

3 call insertPreference(Slvl, t)

4 call expandScenario(Slvl, o)

Algorithm 5: Central Algorithm For auto completing priorities for unavailable options

Last but not least, this service contains the newly introduced functionality of de�ning or
unde�ning a whole generated scenario as Impossible and excluding it or reincluding it from
the Argue Table custom view. An example of an Impossible scenario is that it's winter and
its summer simultaneously.
a(allow(call)) = {in_general}� allow(call)
a(deny(call, without_explanation)) = {in_general}� deny(call, without_explanation)
a(deny(call, with_explanation)) = {in_general}� deny(call, with_explanation)

Given the example shown in Argue Table 6.1,and having created the object level rules for
each option when a user tries to expand the newly created scenario to produce the second
line (2) of the table, expandScenario(SP lvl, o) function will be called like this:

expandScenario(SP 2
at_work,, o)

o = [allow(call), deny(call, with_explanation), deny(call, without_explanation)]

and the arguments that will be generated are the following:

p1(allow(call)) = {at_work}� (allow(call) > (deny(call, without_explanation))
p2(allow(call)) = {at_work}� (allow(call) > deny(call, with_explanation))
p3(deny(call, without_explanation)) =
{at_work}� (deny(call, without_explanation) > allow(call))

p4(deny(call, without_explanation)) =
{at_work}� (deny(call, without_explanation) > deny(call, with_explanation))

p5(deny(call, with_explanation)) = {at_work}�(deny(call, with_explanation) > allow(call))
p6(deny(call, with_explanation)) =
{at_work}� (deny(call, with_explanation) > deny(call, without_explanation))

In order to de�ne the second option deny(call, withexplanation) as default the insertPreference(SP
lvl, o)

function is called like this:

insertPreference(SP 2
at_work, deny(call, with_explanation))

70 Chapter 6. Implementation & Evaluation

and these arguments are generated:

c1(allow(call)) = {true}� (deny(call, without_explanation) > allow(call))
c2(allow(call)) = {true}�(deny(call, without_explanation) > deny(call, with_explanation))

With the previous same functions are generated the arguments that refer to at_work, family(call)
scenario where allow(call) is the selected option:

c3(allow(call)) = {family}� (allow(call) > deny(call, without_explanation))
c4(allow(call)) = {true}� (allow(call) > deny(call, without_explanation))
c5(allow(call)) = {family}� (allow(call) > deny(call, with_explanation))

Subsequently, the next scenario that will be created is line 4. The function to be called is

autoCompletePriorities(S4
at_work,family(call),in_meeting, deny(call, with_explanation))

because the option deny(call, withexplanation) is not available with the current selected
options in the previous scenario preferences. The arguments that will be generated are:

c6(deny(call, with_explanation) =
{family}� (deny(call, with_explanation) > deny(call, with_explanation))

c7(deny(call, with_explanation) =
{family}� (deny(call, with_explanation) > deny(call, without_explanation))

c8(deny(call, with_explanation) =
{true}� (deny(call, with_explanation) > deny(call, without_explanation))

c9(allow(call)) = {true}� (allow(call) > deny(call, with_explanation))

6.2.2 PrologService

This service is implemented by the Spring-Boot programming framework. Prolog Service
contains all the functions needed to successfully compile and simulate each project. Speci�-
cally, the whole procedure from compilation to simulation can be summarized in the following
4 steps.

As soon as the user chooses to run his project and after initializing of the execution with
the facts and beliefs that will participate in it as well as the option or all options, PrologService
is called. Initially, the service reads from the database all the data that correspond to this
particular project, and then the data is compiled into Prolog language. This process is as
follows.

The �rst step is to convert all the project data to Prolog �le. All di�erent facts and
beliefs are stated in the �le with the Dynamic term. Each belief or fact is transformed into
"name/num_parameters" as described below.

:-dynamic fact_name/number_of_parameters,

Following, is the de�nition of the libraries to be used. These are the libraries of Gorgias
that are in a directory in the root folder of the application. Then all the di�erent rules
are converted one by one into Prolog Rules, paying great attention to their priority over

6.2 Server Side 71

other rules as well as the identifying name they will take to avoid which con�icts. The data
that accompanies each rule such as options and facts/beliefs are also converted. Also the
complements for the di�erent options that are de�ned in this project are also inserted in the
compilation process and take the form such as below.

complement(allow(Call), deny(Call)).

Finally, if some beliefs are de�ned as abducible, then they are also introduced in this form.

abducible(son_is_ill, []).

After the transformation of the �le is done successfully, this information is stored in a byte
array to the database.

Then, the second step is, to establish a connection between Prolog and Spring Boot.
This is achieved by using the JPL library provided by SWI-Prolog. To initialize connection,
JPL.init() method is called. Once it's successful, all HTTP libraries and protocols are declared
in order to permit to Prolog the handling of HTTP requests (GET, POST).

use_module(http/http_open).

Afterwards, the next step is to load the generated �le from �rst step to Prolog and simulate
it. So, system makes a method call "http_open" in Prolog to load the �le as a Stream. After
the completion of loading procedure, service uses user's inputs from the execution page of
GUI. These user inputs contains info about the instantiation of the scenario that is going
to be simulated. This info is the selected beliefs or facts that take part in the instantiated
scenario and the options that will be examined. Therefore, to execute and to return the
execution results, Gorgias command "prove" is called. The produced results accompanied
with a minimal are returned eventually as HTTP response to service.

Finally, the last step is to lush the File from Prolog engine's memory as also to close the
connection between Prolog and Spring-Boot.

6.2.3 REST Service

REST services implement two functional requirements:

1. Storage of the data generated by the user's actions in the corresponding forms in the
UI of the application. Each di�erent entity is stored in the appropriate MongoDB
collection.

2. Recover data from the database, based on client queries. Queries are served by the
Database Service, where they are disseminated via the corresponding REST service.

6.2.4 CoreNLPService

CoreNLPService was implemented using the Spring-Boot framework. Proprietary libraries
are included from Maven Repository and compiled. In order to achieve the goal that was
de�ned is functional requirements, to create user-friendly UI and to be easy for non expert
users to use the application, di�cult and complex Prolog elements, such as Predicates should
be visualised in another way. So, the basic idea is to guide the user to write a free form text,
which after language processing, it will be transformed into Prolog's argument's structure
predicate form. Or in other words to extract predicate from free text i a way that should
ensure almost complete acquisition of predicate-argument structures from text. We consider

72 Chapter 6. Implementation & Evaluation

extraction of predicate-arguments, structures from a single text with a substantial narrative
part.

Verbs play a fundamental role in Natural Language Processing (NLP), so verb information
in lexicons is essential. A verb as a predicate identi�es a relation between entities denoted by
the subjects and complements. So, coreNLPService, utilizing the power of Stanford's coreNLP
tool written in Java, processes the give sentence, with the restriction that is written in well-
English, and analyzes the entity relation of the sentence by verb. When syntactical analysis
completes, entities are transformed into word functions as presented in below �gure 6.4. An
abstract form of representation would be verb(subject, object, nouns) with minor changes per
input. This transformation is presented to user to approve it or to adjust it.

Figure 6.4: Core NLP text transform

6.2.5 Database Service

6.3 System Evaluation and User Feedback

6.3.1 Think aloud evaluation

The think aloud protocol is a protocol used to collect data from usability testing. Involves
users who undertake to perform certain de�ned actions that have been asked for them, while
at the same time they must express aloud any thought. More speci�cally, users must say what
they see, what seemed strange to them, what they feel, and that it is captured (captured?)
By observers in the form of notes, or even better in the form of videos . In the latter case,
developers can use the video to see how users reacted to what they were asked to do and what
they saw during the test. In this way, a more complete picture is formed on the functionalities
to be developed, on the design of the pages and on the organization and editing of the project.

6.3.2 User Feedback

Primary Stage

Once the design of the pages is over, we apply the think aloud protocol. For the applica-
tion's needs, an evaluation was made by 3 users whose choice was not random at all. The two
users were designers of web sites and the third one was a student. The �rst two focused on
the simplicity that the interfaces designed on the paper had to show more. They advised on
the navigability of the application and the position of the side column with the results and
prompted a change of position. The student emphasized on the lack of help section and pro-
posed to add at each page a help button containing help tips accompanied with simple small
examples, in order to guide the users on how to use the application and each di�erent aspect

6.3 System Evaluation and User Feedback 73

of it. Student also indicated that the complement section in options page was too complex
and time-consuming because of the iteration of the same procedure over and over until all
combinations are over. So, he indicated to add an �auto-generate complements� button on
top of the complement section, so that is clearly visible by users. The functionality of this
button, will be to automatically create for all the combinations of the options, the pairs of
complements accompanied with a message. The message informs users about the successful
or not completion of the task.

Lastly, student, due to his lack of experience on argumentation and argumentation frame-
works, he insisted that for a naïve user like him, the information and the tabs at the application
were many enough and it was a bit distracting for him. Therefore, a solution for this problem,
would be to create two custom views. One for naïve users, and one for expert users. The
naïve user view, or as called �Basic View� would contain only the basic needed tabs to create
options, beliefs, facts, de�ne scenario preferences in Argue Table and to execute/simulate
scenarios. The advanced view would include all basic tabs as well as tabs where the de�nition
of the arguments, resolving con�icts between arguments take place and the tab that contains
the content of the Prolog �le generated.

Final Stage

After the implementation of the web pages, the real-time evaluation was also done by
browsing the web pages. Rating was made by three users. And in this case the choice was
not accidental. The �rst evaluation was made by a user interface developer with extensive
experience in web design and development. His thoughts moved around the aesthetics of the
pages, their colors and functionality. In particular, he highlighted the need for a new �Back to
Projects� button, which after clicking it, will redirect to the projects page in order to navigate
to another user created project. Also, he reported that the collapsed input that appears when
a user clicks to expand an already de�ned scenario is not visible enough and confusing to
focus. So, he proposed to add an outline with a color that will help users to focus on it and
not distract them. The outline will cover both the scenario that will be expanded and the
preview of the scenario that will be created.

The second evaluation was made by a student who focused on the application at mobile
phone. His thoughts moved around some changes in the layout of the pages, so that page con-
tent to �t exactly on mobile phone screens. Furthermore, he insisted to correct the alignment
of the text input forms, so that to be relaxing and easy for each user to �ll them.

The third and last rating was made by an expert user in argumentation and Gorgias
framework. His thoughts however, helped to a large extent to examine the simplicity of
implementation and the e�ectiveness of its functionality. He proposed to add one more func-
tionality to the system. After extended use of the developed system, he observed that in some
cases the scenarios that are generated automatically from the combination of other scenarios
that have con�icting options, may have in their context facts or beliefs that re objectively
impossible to happen. To overtake this situation, he proposed to add a button to de�ne such
scenarios as impossible. After the de�nition of a scenario as impossible, this scenario should
be hidden from the Argue Table View, as well as from execution page. But, in order to remove
a scenario from the impossible state, a custom view to display only the impossible scenarios
should be implemented.

Furthermore, last user noticed that some help messages and some labels on form inputs
were misleading by mistake and thus he tried to give advice to make them as clear as pos-
sible. Last but not least, he proposed to add all pages of the developed application �oating

74 Chapter 6. Implementation & Evaluation

noti�cations that will inform users about the progress of their requests or about actions that
they perform. Thus, in every page were added noti�cation messages in �oating boxes where
each box, according to the progress of each action/request have di�erent colors. Green color
for successfully completed requests and red color for unsuccessful requests or errors. All these
noti�cations windows include a custom explanatory message according to the progress and
the page that belongs to.

After the necessary corrections were made and at this stage of implementation they were
again asked if they were satis�ed and the answers were all positive. The developed ap-
plication's database service was implemented with a NoSQL family database system. The
open-source MongoDB database was selected. The MongoDB storage unit is the Document.
A record on MongoDB is equal to a Document. Document is a data structure consisting of
pairs of �elds and corresponding values. It is similar to a JSON object, and their �eld values
can contain all supported JSON types, other Documents, tables or Document Tables as well
as some other types, such as Date, Timestamps, ObjectId.
The advantages of a Document approach are the below:

The advantages of a Document approach are the above:

� Documents can be easily represented in each programming language with the data types
available to each one.

� Integrated Documents and Tables reduce the need for expensive joins.

� Documents are not static and can be changed at any time , thus �exibly supporting
polymorphism and giving developer �exibility in creating the database structure.

Database Structure

MongoDB is used to store 8 types of Collections:

� User Data In this Collection, User Data are stored which arised from the application's
signup process. The data that are stored are the username that must be unique, the
password which is stored encrypted, the name of the user, as well as user's email which
is used to activate new user's account or if the user forgot the password.

� Project Each Project is de�ned by it's unique ObjectID, by it's name, description, date
created and modi�ed and by the userID that created it.

� Option Each option has a unique ID, a name, parameters and the project's ID which
belongs.

� Complements Complements are de�ned as a pair between options and the project's
ID which belongs.

� Fact Fact's basic �elds are the name of the fact, it's parameters and the ID of the
project it belongs.

� Belief Belief share the same �elds with Fact, with an addition of a boolean �eld whether
a belief is considered as abducible.

� Rule Rules are the most important part of our structure. Rules are composed of their
unique ID, the project to which they belong, optionHead or beliefHead accordingly
which of these two the rule re�nes, the lowest priority rule that de�nes it, the level and
the highest rule in priority.

6.3 System Evaluation and User Feedback 75

� Impossible Scenarios In this Collection, info about the scenarios that have been
de�ned by Rules which are impossible to take place in a real-life application, is stored.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The objective of this senior thesis is to implement web-based decision policy de�nition
and simulation application for the Gorgias argumentation framework in a modern program-
ming language that performs well to users and to create a web interface of this so it can be
accessible by the public. The software was designed to incorporate cutting-edge technologies
and programming frameworks, handle a large volume of transactions and be compatible with
both desktop and smart mobile phones and mobile devices.

This senior thesis demonstrated the novelty of a decision policy de�nition and simulation
in Spring-Boot and Angular in with a simple-to-use web interface. At the web interface, user
can model real-life problems, create scenarios, expand scenarios or re�ne them. Visualization
of the scenarios is also available in the web interface. The implementation speci�cs of this
project, including front-end, back-end, unit testing and deployment, were also discussed in
this thesis.

Moreover, usability testing has taken place during the evaluation process, which uncovered
usability issues to the web's interface user friendliness. These issues that are described in
evaluation process, �rstly have been analyzed and then have been resolved according to user's
feedback.

Furthermore, particular emphasis was given at the design of the application pages, having
as a goal that each page is fully understandable and simple for the users, regardless of the age
and the experience in such web applications. This entails creating a simpli�ed web interface
for inserting data, as well as for reviewing the results.

Developed application di�ers from the other corresponding implementations, such as
Gorgias-B, because of the integration of 4 basic and innovative functions.

� Visualization of all the available scenarios in a table view (Argue Table). The user is
given the option to display all the available scenarios that have been created accompa-
nied with the corresponding options at each scenario. In this way, user can expand the
scenarios, edit his choices or delete speci�c scenarios.

� Priority de�nition between the options of each scenario. User has the ability to de�ne
selected options as default, giving that bigger priority on these default options over the
options at each particular scenario.

� De�nition of a scenario as impossible. User, at will, can set a whole scenario except
from the basic scenarios as Impossible. In this way, these impossible scenarios are not

77

78 Chapter 7. Conclusions and Future Work

displayed at the argue table with the rest of non-impossible scenarios. Anytime, user
can also review the scenarios that have been set by him as impossible and set them
again as possible.

� Implementation of a natural language processing tool at form inputs. During the inser-
tion of the available options, user has the ability to insert them in free-text form to the
system. In background, system makes natural language processing with syntactical and
word analysis. To achieve it, Stanford's Core NLP language processing tool. SO system
(takes) user input from the form and converts it to a form that's appropriate for the
background system.

In conclusion, through the use of the system concerns and needs have been arise, which
can be covered in future version of the application. These are described thoroughly in the
future work section below.

7.2 Future Work

The system developed in the context of this senior diploma thesis, is a product of both
systematic design of the multiple units that comprise it and of its intense implementation at
programming level. In this context, it was not possible to use the system as a productive tool
than to present it as a prototype base on which to base future work and future extensions.

Systematic work with this system and its operation in decision policy de�nition and sim-
ulation, set the stage for some thoughts that contribute to its extensions, both functional and
technological.

7.2.1 Natural Language Processing expansion

Natural language processing and conversion to Prolog predicate[34], could be expanded
at future implementations of this thesis to support multi line sentences at inserting options,
facts and beliefs, or to enter free-form text to describe scenarios and then the system to
map it to appropriate system's data structure. This whole process could be more e�cient and
attractive, if user could also insert information via voice input. To be more speci�c, user could
insert not only options, facts and beliefs as a free text but also de�ne scenario preferences and
priorities between options.

7.2.2 Automatically recognition of complimentary contexts

Another useful and time saver expansion of the system, would be the existence of a
database �lled up with complimentary contexts (day -> night), so that combinations of al-
ready created scenarios that have these complimentary contexts combined, can be calculated
as Impossible scenarios automatically. An example of this is that a combined scenario refer
to summer and winter at the same time which is impossible to happen.

7.2.3 Custom Scenarios View

Argue Table view was highly rated by users who evaluated the developed application.
Despite that, in order to be handier and more con�gurable, an additional view could be
implemented. A custom view where each subset scenario, to be listed with its father scenarios,
or another view which lists the initial scenarios, and each one has as sub list their children
scenarios.

7.2 Future Work 79

7.2.4 Execution Results explanation

Gorgias framework, right after execution provides an output, which results from the given
input �le. This output, is an explanation why each speci�c option is available and which
de�ned arguments take part at each decision. The current explanation, is based on listing the
translated arguments from Prolog. A possible future expansion of this, could be the display of
the explanation in a more user-friendly way, maybe in English sentences, grammatically and
syntactically correct. This could lead to make the explanation clearer, more comprehensive
and without any doubt about its meaning.

7.2.5 Collaboration with other users

Last but not least, in many cases users work together as a group their projects or share
their works. It would be nice feature to allow groups to collaborate at each project, to edit it
simultaneously and interact with it in real time.

References

[1] A. C. Kakas, P. Moraitis, and N. I. Spanoudakis, �Gorgias: Applying argumentation,�
Argument & Computation, no. Preprint, pp. 1�27, 2019.

[2] N. I. Spanoudakis, A. C. Kakas, and P. Moraitis, �Applications of argumentation: The
soda methodology.� in ECAI, 2016, pp. 1722�1723.

[3] N. K. Janjua, A Defeasible Logic Programming-Based Framework to Support Argumenta-

tion in Semantic Web Applications, 1st ed., ser. Springer Theses. Springer International
Publishing, 2014.

[4] F. H. Van Eemeren, R. Grootendorst, and F. H. Eemeren, A systematic theory of argu-

mentation: The pragma-dialectical approach. Cambridge University Press, 2004, vol. 14.

[5] N. I. Spanoudakis, E. Constantinou, A. Koumi, and A. C. Kakas, �Modeling data ac-
cess legislation with gorgias,� in International Conference on Industrial, Engineering and

Other Applications of Applied Intelligent Systems. Springer, 2017, pp. 317�327.

[6] E. Kara�li, A. C. Kakas, N. I. Spanoudakis, and E. C. Lupu, �Argumentation-based
security for social good,� in 2017 AAAI Fall Symposium Series, 2017.

[7] F. Cloppet, P. Moraitis, and N. Vincent, �An agent-based system for printed/handwritten
text discrimination,� in International Conference on Principles and Practice of Multi-

Agent Systems. Springer, 2017, pp. 180�197.

[8] N. Spanoudakis and P. Moriaitis, �Engineering an agent-based system for product pricing
automation,� Engineering Intelligent Systems, vol. 17, no. 2, p. 139, 2009.

[9] K. Pendaraki and N. Spanoudakis, �Portfolio performance and risk-based assessment of
the portrait tool,� Operational Research, vol. 15, no. 3, pp. 359�378, 2015.

[10] N. I. Spanoudakis, A. C. Kakas, and P. Moraitis, �Gorgias-b: Argumentation in practice.�
in COMMA, 2016, pp. 477�478.

[11] H.-P. Lam and G. Governatori, �The making of spindle,� in International Workshop on

Rules and Rule Markup Languages for the Semantic Web. Springer, 2009, pp. 315�322.

[12] �Gorgiasb tool.� [Online]. Available: http://gorgiasb.tuc.gr/

[13] P. M. Dung, �On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games,� Arti�cial intelligence, vol. 77, no. 2,
pp. 321�357, 1995.

81

http://gorgiasb.tuc.gr/

82 REFERENCES

[14] A. Kakas and P. Moraitis, �Argumentation based decision making for autonomous
agents,� in Proceedings of the second international joint conference on Autonomous agents

and multiagent systems. ACM, 2003, pp. 883�890.

[15] B. Mehta, RESTful Java Patterns and Best Practices. Packt Publishing, 2014.

[16] P. Teixeira, Professional Node.js: Building Javascript Based Scalable Software, 1st ed.
Wrox, 2012.

[17] A. Mardan, Practical Node.js: Building Real-World Scalable Web Apps, 1st ed. Apress,
2014.

[18] �V8.� [Online]. Available: https://v8.dev/

[19] J. Vepsalainen, Webpack and React: From apprentice to master, 2017.

[20] R. Johnson, Expert One-on-One J2EE Design and Development. Birmingham, UK, UK:
Wrox Press Ltd., 2002.

[21] C. Walls, Spring Boot in Action. Manning, 2015.

[22] C. D. Brad Dayley, Brendan Dayley, Node.js, MongoDB and Angular Web Development:

The de�nitive guide to using the MEAN stack to build web applications (Developer's

Library). Addison-Wesley Professional; 2 edition (November 2, 2017).

[23] A. Freeman, Pro Angular 6, 3rd ed. Apress, 2018.

[24] [Online]. Available: https://angular.io/guide/quickstart

[25] M. D. Kristina Chodorow, MongoDB: The De�nitive Guide, 1st ed. O'Reilly Media,
Inc., 2010.

[26] �Docker overview,� Jan 2019. [Online]. Available: https://docs.docker.com/engine/
docker-overview/

[27] V. S. Pethuru Raj, Jeeva S. Chelladhurai, Learning Docker. Packt Publishing, 2015.

[28] C. Christodoulakis, �A rich media mobile web application for visitors and the community
of the technical university of crete,� Master's thesis, Technical University of Crete, 2012.

[29] �Stanford corenlp � natural language software.� [Online]. Available: https://stanfordnlp.
github.io/CoreNLP/

[30] H. J. La and S. D. Kim, �Balanced mvc architecture for developing service-based mobile
applications,� in IEEE International Conference on E-Business Engineering. IEEE,
2010, pp. 292�299.

[31] F. Dushin. [Online]. Available: http://www.swi-prolog.org/packages/jpl/java_api/
index.html

[32] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky,
�The Stanford CoreNLP natural language processing toolkit,� in Association for

Computational Linguistics (ACL) System Demonstrations, 2014, pp. 55�60. [Online].
Available: http://www.aclweb.org/anthology/P/P14/P14-5010

https://v8.dev/
https://angular.io/guide/quickstart
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
http://www.swi-prolog.org/packages/jpl/java_api/index.html
http://www.swi-prolog.org/packages/jpl/java_api/index.html
http://www.aclweb.org/anthology/P/P14/P14-5010

REFERENCES 83

[33] M. Madison, M. Barnhill, C. Napier, and J. Godin, �Nosql database technologies,� Journal
of International Technology and Information Management, vol. 24, no. 1, p. 1, 2015.

[34] T. Mitsikas, N. I. Spanoudakis, P. S. Stefaneas, and A. C. Kakas, �From natural language
to argumentation and cognitive systems.� in COMMONSENSE, 2017.

REFERENCES 85

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Concept
	Thesis Contribution
	Thesis Outline
	chap2 - Background
	chap3 - Functional Specifications and UI Prototyping
	chap4 - User Views
	chap5 - Application Design
	chap6 - Implementation & Evaluation
	chap7 - Conclusions and Future Work

	Background
	Argumentation
	Argumentation Frameworks
	Preference-Based Argumentation Framework
	Illustrative Example

	Gorgias
	The SoDA Methodology
	MVC Pattern
	RESTful Web Services
	Technologies
	NodeJS
	Webpack
	Spring Framework
	Angular
	MongoDB
	Prolog & Prolog JPL
	Docker
	Development Methodology

	Functional Specifications and UI Prototyping
	Functional Requirements
	Personas
	Antonis, 55, Professor
	Takis, 20, student
	Nikos, 35, Web Designer

	Storyboards
	Paper Prototypes

	User Views
	Home Page
	Registration Page
	Login Page
	Projects Page
	Basic View
	Options Page
	Facts Page
	Beliefs Page
	Argue Table Page
	Execution Page

	Advanced View
	Option Page
	Facts Page
	Belief Page
	Argument for Options Page
	Argue for Options Page
	Prolog File Page

	Application Design
	Client Side
	Server Side

	Client Side MVC Pattern
	Server Side
	PrologService
	REST Service
	CoreNLPService
	Database Service

	Server Side MVC Pattern

	Implementation & Evaluation
	Client Side
	Server Side
	ScenarioService
	PrologService
	REST Service
	CoreNLPService
	Database Service

	System Evaluation and User Feedback
	Think aloud evaluation
	User Feedback

	Conclusions and Future Work
	Conclusions
	Future Work
	Natural Language Processing expansion
	Automatically recognition of complimentary contexts
	Custom Scenarios View
	Execution Results explanation
	Collaboration with other users

	References

