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Abstract

Successful as it may be in mathematically modelling many real-life problems, coopera-
tive game theory regularly adopts assumptions that cannot possibly stand in most specific
everyday scenarios. Given this, in our work in this thesis we focus onHedonic Games—a
class of cooperative games in which players form coalitions based on their individual pref-
erences regarding their potential partners— and tackle certain such assumptions in order
to provide a model that fits better the real world. To this end, we make several contribu-
tions to Hedonic Games, approaching them from both a theoretical and practical point
of view and extending them in various ways.

Tobegin, a prevalent assumption in the literature is that agents are interested solely on
the composition of their own coalition. In our work we lift this assumption by allowing
agents to develop preferences not only on coalitions, but also on coalition structures—
i.e., partitions of the agents’ space. Specifically, we motivate and put forward the formal
definitionofhedonic games in partition function form (PFF-HGs), and extendwell-studied
hedonic games’ classes to this setting.

Another usual assumption in the hedonic games literature is that of complete infor-
mation. However, in the realworld this is almost never the case. To tackle this, we examine
the problemof uncertainty regarding hidden preference relations in hedonic games. Specif-
ically, we assume that agents interact within an unknown hedonic game setting, observe
a small number of game instances, and attempt to learn the hidden aspects of the game.
Then, we employ several learning models, both supervised and unsupervised, to approx-
imately extract the latent preference relations and detect desirable collaboration patterns.
In particular, we provide a thorough evaluation of the use of linear regression, regression
with basis functions, feed forward neural networks, and the online Latent Dirichlet Alloca-
tion (LDA) algorithm for approximately learning the unknown preferences across several
classes of hedonic games.

Last but not least, we initiate the study of a novel class of cooperative games, theHedo-
nic Utility Games (HUGs), that takes into consideration both hedonic and utility-related
preferences. We formally define HUGs, and show how to extend and apply existing sta-
bility solution concepts to them. Then, we put forward a novel solution concept, Indi-
vidually Rational - Individually Stable (IRIS), which characterizes the stability of coali-
tion structures in HUGs and was developed specifically for such settings. In addition, we
propose a natural, “trichotomous” hedonic preferences model; study certainHUGs prop-



erties in that model; and exploit it to characterize the feasibility of HUGs coalitions, and
to obtain a probability bound for pruning the coalitional space. Pruning can thus be ex-
ploited to reduce the computational load of deriving globally acceptable (“kernel-stable”)
payoff configurations for IRIS partitions.
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Περίληψη

Παρά την ικανότητά της να μοντελοποιεί μαθηματικά σε ένα αφαιρετικό επίπεδο πρα-
γματικάπροβλήματα, η συνεργατική θεωρίαπαιγνίων συχνά υιοθετεί υποθέσεις που τελικά δεν
ευσταθούνσεπραγματικάπεριβάλλοντα. Μεβάση ταπαραπάνω, σε αυτήν τηνμεταπτυχιακή
εργασία εστιάζουμε σταΗδονικά Παίγνια–μια κλάση συνεργατικών παιγνίων στην οποία οι
παίκτες σχηματίζουν συνασπισμούς με βάση προσωπικές προτιμήσεις που σχετίζονται με τους
πιθανούς συμπαίκτες τους– και αναιρούμε κάποιες συνήθεις υποθέσεις, με στόχο να παρέχουμε
ένα μοντέλο που περιγράφει ακριβέστερα τον πραγματικό κόσμο. Η εργασία μας προσέγγισε
και επέκτεινε τα Ηδονικά Πάιγνια τόσο από θεωρητική όσο και από πρακτική σκοπιά, και
κατέληξε σε ποικίλλες επιστημονικές συνεισφορές.

Κατ’ αρχάς, μια επικρατούσα υπόθεση στην βιβλιογραφία είναι ότι οι πράκτορες ενδιαφέ-
ρονται αποκλειστικά και μόνο για την σύνθεση του δικού τους συνασπισμού. Στην παρούσα
εργασία, αφαιρούμεαυτόν την υπόθεσημε το να επιτρέπουμε στουςπράκτορες νααναπτύσσουν
προτιμήσεις όχι μόνον σχετικά με συνασπισμούς, αλλά και σχετικά με δομές συνασπισμών–
δηλαδή, διαμερίσεις του χώρου των πρακτόρων. Συγκεκριμένα, εισάγουμε έναν τυπικό ορισμό
για τα ηδονικά παίγνια σε μορφή συνάρτησης διαμέρισης (PFF-HGs), και επεκτείνουμε γνω-
στές κλάσεις ηδονικών παιγνίων σε αυτή την μορφή.

Μια άλλη υπόθεση που γίνεται συνήθως στα ηδονικά παίγνια, είναι αυτή της πλήρους
πληροφόρησης. Ωστόσο, στον πραγματικό κόσμο αυτό δεν ισχύει σχεδόν ποτέ. Για να αντι-
μετωπίσουμε το θέμα, εξετάζουμε το πρόβλημα της αβεβαιότητας όσον αφορά κρυμμένες
σχέσεις προτιμήσεων σε ηδονικά παίγνια. Συγκεκριμένα, υποθέτουμε ότι οι πράκτορες αλ-
ληλεπιδρούν σε ένα άγνωστο περιβάλλον ηδονικού παιγνίου, παρατηρούν ένα μικρό αριθμό
από στιγμιότυπα, και προσπαθούν να μάθουν τις μή εμφανείς πτυχές του παιχνιδιού. Για το
σκοπό αυτό, εφαρμόζουμε διάφορα μοντέλα επιβλεπόμενης και μή (μηχανικής) μάθησης, για
να εξάγουμε προσεγγιστικά τις κρυφές σχέσεις προτιμήσεων και να ανιχνεύσουμε επιθυμητά
μοτίβα συνεργασιών. Πιο συγκεκριμένα, παρέχουμε μια ενδελεχή αξιολόγηση με την χρήση
γραμμικής παλινδρόμησης, παλινδρόμησης με συναρτήσεις βάσης, προωθητικών νευρωνι-
κών δικτύων αλλά και του αλγορίθμου πιθανοτικής θεματικής μοντελοποίησηςLatent Dirich-
let Allocation (LDA), για τηνπροσεγγιστικήμάθηση τωναγνώστωνπροτιμήσεωνσε διάφορες
κλάσεις ηδονικών παιγνίων.

Τέλος, προτείνουμε και εισάγουμε την μελέτη μιας νέας κλάσης συνεργατικών παιγνίων,
τωνΗδονικώνΠαιγνίων Χρησιμότητας (HUGs), τα οποία λαμβάνουν υπ’ όψιν τόσο “ηδονικές΄΄
προτιμήσεις (σχετικές με τη σύνθεση της ομάδας), όσο και προτιμήσεις σχετιζόμενες με χρησι-



μότητα. Δίνουμε τον επίσημο ορισμό τωνHUGs, και επεκτείνουμε υπάρχουσες λύσεις ευστάθειας
σε αυτά ταπαίγνια. Ενσυνεχεία, εισάγουμεμια καινούρια λύση ευστάθειας, την οποία καλούμε
Μεμονωμένα Ορθολογικό - Μεμονωμένα Ευσταθές (IRIS) σημείο ισορροπίας, που σχεδιά-
στηκε ειδικά για τα παίγνια HUGs, και η οποία χαρακτηρίζει ευσταθείς δομές συνασπισμών
σε αυτά τα παίγνια. Επιπροσθέτως, προτείνουμε ένα φυσικό μοντέλο “τριχοτόμησης” του
χώρου των ηδονικών προτιμήσεων, μελετάμε συγκεκριμένες ιδιότητες των HUGs σε αυτό το
μοντέλο, και το εκμεταλλευόμαστε ώστε να χαρακτηρίσουμε την εφικτότητα σχηματισμού
συνασπισμών σταHUGs, και να υπολογίσουμε ένα πιθανοτικό άνω όριο για το “κλάδεμα” του
χώρου συνασπισμών. Ως εκ τούτου, το κλάδεμα μπορεί να χρησιμοποιηθεί για να μειώσουμε
το υπολογιστικό φορτίο για τον υπολογισμό κοινώς αποδεκτών από τους παίκτες (τεχνικά,
“ευσταθών στον πυρήνα kernel”) πληρωμών σε IRIS δομές συνασπισμών.
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Chapter 1

Introduc on

A key notion that governs modern societies is that of collaboration and how individuals team
up in order to achieve common goals. People need to form teams, agree upon actions and deci-
sion, and ultimately execute the decided action plan in order to accomplish a specific task. The
field ofGame theory (GT) [Osborne and Rubinstein, 1994], and inparticular cooperative game
theory [Chalkiadakis et al., 2011], along with multi-agent systems (MAS) [Wooldridge, 2009]
study settings where there is such need of collaboration; and therefore intend to formally de-
scribemathematicalmodels that can appropriately depict such situations. Over the past decades
the fields of game theory and multi-agent systems have drawn attention to a plethora of scien-
tific research areas and primarily in computer sciences and economics.

A cooperative game, is a well-defined, specific framework, within which there is a set of
participating agents, a set of actions, and a set of rules. The goal of cooperative game theory is
to study, analyse and at some point be able to predict the behaviour of agents; i.e., which agents
will work together, and what action will take under the set of rules defined by the game. In
GT and MAS an ‘agent’ is an individual entity that acts and make decisions autonomously. As
such, an agent can be an individual person, a robot, a software program, an investor, a player
etc. regarding the real-life problem each cooperative game intends to model.

Moreover, one of the main points of interest in game theory focuses on the stability matter,
i.e., explore the conditions that establish a situation where no one is willing to diverge from.
Specifically, a state of a model is described by the teams, also refer to as coalitions, which are
formed, along with some reward earned, referring either to the whole team or to each individ-
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ual. A stable state is one where no participant has incentive to leave a team, join another team,
or claim better reward. With this in mind, researchers examine the conditions that lead to such
a stable state, from both a theoretcial and a computational perspective. In game theory, a set of
such conditions influence the strategies followed by the agents, as such they are called solution
concepts. One step further, the natural question rises: “Apart from finding sets of necessary and
desired conditions, how can a set of individuals converge to a stable state?”; therefore research
turns to centralized mechanisms [Oh et al., 2015], decentralized and self-organized formatting
protocols [Chalkiadakis and Boutilier, 2004,Mamakos and Chalkiadakis, 2017,Taywade et al., 2019],
which lead to stable settings.

Another crucial matter that has also drawn much attention is that of uncertainty
[Chalkiadakis and Boutilier, 2004],[Sliwinski and Zick, 2017], [Mamakos and Chalkiadakis, 2018].
Questions such as “What kind of information is revealed to the coalition formation mecha-
nism?”,“How can this information be exploited?”, and “How can we extract new and valuable
information?”, naturally arise when we are dealing with the ‘unknown’. As a natural conse-
quence a new path of research opens in which we attempt to extract hidden information about
the participants, their competences, and the interactions with one another. Thus the coupling
of machine learning (ML) [Bishop, 2006] with game theory and multi-agent systems was in-
evitable. Including uncertainty as a factor into the game theoretic models is an attempt of mak-
ing these models even more realistic, and transform them into ones that can fit the real world
even better.

1.1 Mo va on

In this thesis, we turnour attention to the class ofHedonic Games [Aziz et al., 2016b,Aziz et al., 2016a,
Chalkiadakis et al., 2011]. Hedonic games constitute a class of cooperative games that intuitively
attempts to capture the interpersonal relations amongst the players and the social bonds of the
formed coalitions. This class of games can model a plethora of real-life scenarios in which each
individual highly cares and takes into consideration the identity of the rest of the participants.

The majority of hedonic games literature, so far, considers complete information over the
game. However, in amore realistic framework thatwouldnot be a plausible assumption. In real-
life settings that can be modelled as hedonic games, we face the problem of uncertainty, i.e. the
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agents have little or no information about the overall game. That is, we cannot expect each agent
to know the exact preference relation over a vast space of coalitions, especially as the number of
agents increases. As such, it is essential to investigate hedonic games under uncertainty, explore
the several learning techniques and approach the problem of learning preferences under the
framework of hedonic games.

Cooperative games in partition function form [Michalak et al., 2008, Michalak et al., 2009,
Michalak et al., 2010, Skibski et al., 2015] try to capture the ‘bigger picture’ of a game. That is,
the agents instead of focusing in their ‘microcosm’, i.e., their own coalition and set of actions,
takes into consideration all the coalitions; and they adapt their decision making mechanisms to
also consider such externalities. Therefore, it is natural to approach hedonic games under the
point of view of partition function form.

Usually, during the process of coalition formation in cooperative games, we distinguish the
following two primary motives: (a) earn as much as possible in terms of payoff, and (b) be as
much satisfied as possible within a coalition. The latter, clearly can be modelled by hedonic
games; while the former (andmost commonmotivative aspect) canbemodelled byTransferable
Utility Games, etc. [Chalkiadakis et al., 2011]. However, in many real-world applications, such
an absolute demarcation among motives does not exist. On the contrary, people value (maybe
in different proportions each) both hedonic preferences and payoff shares, when they are to
collaborate with others in order to carry out a task. Thus, in the general case, when people
are to form coalitions, they take into consideration all motivating aspects.

1.2 Contribu ons

This thesis, motivated by the previously mentioned aspects, approaches hedonic games from
both a theoretical and a practical point of view. In fact, we distinguish this work in two main
parts:

• the theoretical one: providing theoretical extensions on the model of classic hedonic
games that can fit the real world more accurately; and

• the practical one: exploring several learning techniques in order to ultimately discover
preference relations.

3
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In the theoretical part of the thesis, we have introduced several extensions of the classic he-
donic games. Particularly, we put forward the formal definition ofHedonic Games in Partition
Function Form, which canbe seen as a generalization of hedonic games; andprovided several nat-
ural settings which this extension canmodel. We described the extension of several well-known
classes of hedonic games to their partition function form; and within this scope, we proposed
as well a propositional language to represent Boolean Hedonic Games in Partition Function
Form. Moreover, we introduce a novel hybrid class of cooperative games, the Hedonic Util-
ity Games (HUGs). This class constitutes the vehicle for combining the usual utility-related
preferences studied in TU games, with private, hedonic ones. We provide an initial study of
their computational aspects, focusing on stability-related considerations. We have also devised
a novel theoretical solution concept, namely Individually Rational - Individually Stable (IRIS),
which is specific toHUGs. We studied its existence properties, and provided a randomized tran-
sitions scheme to reach potential IRIS outcomes. Last but not least, we propose a instantiation
of HUGsmodel that allow us to characterize feasible coalitions, obtain a probability bound on
feasible coalition, and therefore reduce the computational load of finding kernel-stable payoffs,
which is a game theoretic stability-related solution concept.

In the practical part of the thesis, we have thoroughly studied severalmachine learningmod-
els, both supervised and unsupervised, on the problem of extracting hedonic preference rela-
tions. We conducted a systematic evaluation on each learningmodel, that confirms the effective-
ness of our work. Specifically, we exploited Linear Regression, Regression with Basis Functions,
Feed Forward Neural Networks [Bishop, 2006] andProbabilistic Topic Modeling [Blei, 2012] in
order to extract valuable information regarding hedonic preferences in several and, essentially
different, classes of hedonic games. Moreover, within the scope of the learning process, we devel-
oped and proposed two evaluating metrics that capture the qualitative proximity of the learnt
preference relation compared with the actual preference relation. Furthermore, we proposed
an interpretation method in order to convert a coalition-sample into a document-sample that
can be eventually used in PTMs.

The work presented in this thesis gave rise to two publications: “Learning hedonci games via
probabilistic topic modeling” [Georgara et al., 2019a], and “Extracting hidden preferences over
partitions in hedonic cooperative games” [Georgara et al., 2019b], while a third one “Hedonic
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Utility Games” has been submitted for publication to an algorithmic game theory conference,
and is currently under review.

1.3 Thesis Structure

In Chapter 2 we provide the necessary background for this thesis. We present the required the-
oretical notions on cooperative games, hedonic games, game theoretic solution concepts, and
machine learning focusing on the techniques used here. In Chapter 3 we put forward the theo-
retical extension ofHedonic Games in Partition Function Form. Chapter 4 focuses on learning
hedonic preferences in cooperative games. There we detail how we exploited several machine
learningmethods to learn preferences in this setting, and present a systematic experimental eval-
uation of the various methods. In Chapter 5 we introduce the novel class of cooperative games
Hedonic Utility Games, study the application of existing stability concepts into the such settings,
and put forward a novel solution concept especially devised for Hedonic Utility Games.
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Chapter 2

Theore cal Background and Related Work

In this section we will present the necessary theoretical background, and we will walk through
some baseline notions for game theory and machine learning. Moreover we will present and
discuss prior works relative to ours. In what follows, we firstly discuss two wide classes of game
theory, and then we focus on the specific class of Hedonic Games. Next, we move on to the
notion of Solution Concept by presented the most prevalent concepts. Last but not least we go
throughmachine learning, and we discuss both the supervised and unsupervised learning theory
and methods.

2.1 Coopera ve Games

In cooperative games agents work together in order to achieve a common goal. The need for
collaboration mainly derives from at least one of the following scenarios: (a) the desired goal
expresses the wider public good of the community, (b) the individuals cannot accomplish the
task on their own (due to lack of resources or competences), (c) it is more beneficial to each
individual to cooperate with others. A cooperative game is defined as:

Definition 1. [Wooldridge, 2009] Cooperative Game A cooperative or coalitional game is
a pair G = ⟨N ; v⟩, where N = {1, · · · , n} is a set of agents, and v : 2N → R is called the
characteristic function of the game.

The agents need to form coalitions that have to execute a decided action plan as a whole
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in order to reach the desired outcome. To be more specific, a coalition is a group of agents
that work with each other, join their resources and competences, and tackle together some task.
Formally, given a finite, non-empty set of agents N = {1, · · · , n}, a coalition C is a subset of
the original set of agents, i.e., C ⊆ N . A coalition consisting of only one agent, C = {i}, is
called singleton; and the coalition consisting of all agents, C = N , is called grand coalition. A
collection of coalitions that constitute a partition of N is called coalition structure, that is, if
CS = {C1, · · · , Ck} is a coalition structure then any two coalition in CS are disjoint Ci ∩ Cj =

∅ ∀ i, j, and the union of all coalitions inCS compose the original set of agents:
∪

Ci∈CS Ci ≡ N .
The collection of all coalitions that contain a particular agent i ∈ N is denoted asNi = {C ⊆
N |i ∈ C }. Given a specific coalition structure CS, we denote with CS(i) the unique coalition
in CS that contains agent i, i.e. CS(i) ≡ C ∈ CS s.t. i ∈ C .

In the majority of cooperative games the ‘worth’ of the desired goal is expressed through
utility. That is, the fulfilment of a task, and the extend of the success, is described by a numerical
value. In literature cooperative games are divided into two main classes: the transferable utility
(TU) games and the non-transferable utility (NTU) games [Chalkiadakis et al., 2011].

2.1.1 Transferable U lity Games

In transferable utility games we find the notion of ‘transfer’. A coalition by performing a course
of actions can reach an outcome, and this outcome results a utility to the whole coalition. This
utility can therefore be distributed to themembers of the coalition in the formof a payoff. Thus,
in aTUgame there canbe a ‘flow’ (transfer) of utility fromone agent to another, since themodel
itself does not define how the earned utility will be distributed at the end.

The utility achieve by each coalition is determined by a function v, usually referred to as
characteristic function or utility function. The utility function relates each possible coalition C
to a numeric value, and intuitively reflects the potential or the performance of the coalition on
accomplishing a specific task.

Definition 2. [Chalkiadakis et al., 2011] TU-Game A Transferable Utility (TU) Game G is
given by a pair G = ⟨N ; v⟩, where N = {1, · · · , n} is a finite, non-empty set of agents, and
v : 2N → R is a characteristic function, which maps each coalition C ⊆ N to real number v(C ).
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The outcome of a TU game G is given by a pair ⟨CS; x⟩, where CS is a coalition structure,
and x ∈ Rn is a payoff vector. The payoff vector contains the payoffs assigned to each agent,
i.e. the portion of the coalitional utilities assigned to each coalitional member. Each coalitional
utility is distributed to its members, i.e., for each C ∈ CS we have that

∑
i∈C xi ≤ v(C ); this is a

feasibility requirement of the payoff vector, each coalition can reward its members with part of
the obtained utility. Each agent receives a non-negative payoff, i.e., xi ≥ 0 for any agent i ∈ N .
If agent i’s payoff xi is greater or equal to the coalitional value of the singleton {i}, then xi is a
individually rational payoff. If all payoffs xi are individually rational, then the payoff vector is
an imputation.

2.1.2 Non-Transferable U lity Games

On the other hand, non-transferable utility games do not comprize any transfer of utility from
one agent to another. In the settings modelled by NTU games, the utility obtained is agent-
related; that is, when a task is performed by a coalition C , there is not a single dividable utility
achieved by the team, but there is a utility achieved by each member of the coalition.

Definition 3. [Shoham and Leyton-Brown, 2008] NTU-Game A Non-Transferable Utility
(NTU) Game G is given by a pair G = ⟨N ; v⟩, where N = {1, · · · , n} is a finite, non-empty
set of agents, and v : 2N → 2R |C | is a function that associates each coalition C ⊆ N a set of
value vectors, v(C ) ⊆ R|C |, which can be interpreted as the different sets of payoffs that C is able
to achieve for each of its members.

To clear any vagueness about the settings that can be modelled by NTU games, let us use
the following example (from [Chalkiadakis et al., 2011]):

Example 1. Consider a senior tenured professor A at university X who cooperates with a junior,
non-tenured assistant professor B at university Y. Both will obtain some benefit from writing the
paper, but the benefit that B obtains may well be much greater than the benefit that A obtains,
simply because the value added to B’s career is greater than the value added to A’s, and the
benefits that B obtains (enhanced reputation, scientific credibility, standing in the field) cannot
easily be transferred from B to A.
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Looking at the example we can easily infer that the scientific credibility B receives results
from both the paper and the collaboration with professor A, while A’s scientific credibility de-
rives solely from the paper; apparently, junior professor B cannot transfer part of his/her re-
ceived credibility to A.

In [Chalkiadakis et al., 2011] the authors provide a slightly different definition for NTU
games, pointing out that the class of NTU games can be thought of as a generalization of TU
games. According to this definition in anNTU game each coalition has a set of choices describe
by a function v : 2N → 2Λ, and each agent express a complete, reflexive, and transitive prefer-
ence relation, ≿, over these choices. That is, let C be a coalition, then v(C ) = {λC1 , λC2 , · · · }
are the choices coalition C has; for each i ∈ C the preference relation ≿i defines a prefer-
ence ordering on the choices {λC1 , λC2 , · · · }. The outcome of an NTU game is a pair ⟨CS; c⟩,
where CS = {C1, · · · , Ck} is a coalition structure, and c = {λ1, · · · , λk} a choice vector with
λ1 ∈ v(C1), λ2 ∈ v(C2), · · · , λk ∈ v(Ck). Thus, with this approach it is not hard to see that
if we map the set of choices of C described by v(C ) to the (infinite) set of all feasible payoff
vectors, we can describe a TU game as its NTU counterpart. Therefore, NTU can be seen as a
generalization of TU games.

2.1.3 Hedonic Games

A special class of cooperative games, and the central point of interest in this thesis, is that of
Hedonic Games (HGs). The main difference among hedonic games and the other classes of
cooperative games is that here there is no notion of utility at all. In contrary, hedonic games
intend to capture the essence of personal satisfaction via collaboration; that is, hedonic games
model settings where we focus on “is individual i enjoying the company of his/her partners in
coalition C”.

Definition 4. [Aziz et al., 2016b] Hedonic Game A Hedonic Game G is given by a pair
⟨N,≿⟩, where N = {1, · · · , n} is a finite, non-empty set of agents, and ≿= {≿1, · · · ,≿n}
is a preference profile that specifies for each agent i ∈ N a complete, reflexive, and transitive
preference relation ≿i on Ni. The outcome of G is a coalition structure CS.

The main component of a hedonic game is the preference profile of the agents within the
game. That is, given a set of agents, a preference profile accumulates the personal preferences of
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all agents. Each agent expresses her preferences over all the possible coalitions she canbemember
of. An agent i’s preferences are encoded with a complete, reflexive, and transitive preference
relation ≿i⊆ Ni × Ni as follows: for any two coalitions S, T ∈ Ni = {C ⊆ N |i ∈ C } there
is a relation of the form S ≿i T or T ≿i S, where S ≿i T is interpreted as “i prefers coalition
S at least as much as coalition T”. We say that i strictly prefers coalition S over T if and only if
it holds S ≿i T but not T ≿i S, and we denote this relation as S ≻i T . Agent i is indifferent
between coalitions S and T if and only if hold both S ≿i T and T ≿i S, and we denote this
relation as S ∼i T .

Usually hedonic games are considered as a subclass of NTU games with the following com-
promises: the set of choicesΛ contains all the possible coalitions ofN , i.e. Λ = {C |C ⊆ N \∅};
the choices available of a coalition C consist of a single choice: the coalition itself, i.e., v(C ) =
{C } and |v(C )| = 1. Thus, the outcome of a hedonic game, described as an NTU game, is
a coalition structure CS and the unique choice vector available to this particular CS, which is
identical to the coalition structure and therefore redundant.

Next we present some well-known classes of hedonic games and their properties. These
classes of hedonic games will be subject to our study within the scope of this thesis.

Addi vely Separable Hedonic Games

A hedonic game is said to have additively separable preferences or be an Additively Separable
Hedonic Game (ASHG) [Chalkiadakis et al., 2011] if each agent i’s preference relation is formed
according to some function vi of the form vi(C ) =

∑
j∈C Mi,j. Specifically, there exists an |N | ×

|N | real valuematrixM (M ∈ R|N |×|N |) such that each agent i’s preferences obey the following
rule: S ≿i T if and only if vi(S) ≥ vi(T ) ⇔

∑
j∈S Mi,j ≥

∑
k∈T Mi,k, where Mi,j is the real

value agent i assigns to agent j. Intuitively, each agent i shows her preferences over the other
agents through the values Mi,j ∀j ∈ N , and these preferences over agents are then ‘lifted’ to
preferences over coalitions through accumulative function vi which sums up all the preferences
over individuals participating in each coalition.
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B/W − and Frac onal Hedonic Games

Similarly to the class of ASHGs there are other classes that use preferences over agents which
are later lifted to preferences over coalitions via some function vi.

The classes of B/W −Hedonic Games (B/W −HGs) [Chalkiadakis et al., 2011] form an
agent’s preferences based on the best (B) and the worst (W ), respectively, agent within each
coalition. In particular, in B−HGs agent i prefers coalition S ∈ Ni over coalition T ∈ Ni if
and only if i prefers the most preferred agent s ∈ S over the most preferred agent t ∈ T , i.e.
S ≿i T if and only if s ≿i t. Respectively, in W −HGs agent i prefers coalition S ∈ Ni over
coalition T ∈ Ni if and only if i prefers the least preferred agent s ∈ S over the least preferred
agent t ∈ T , i.e. S ≿i T if and only if s ≿i t. It is not hard to see, that if we have the real value
matrix M , the function vi in the case of the B−HGs is of the form vi(C ) = maxj∈C {Mi,j}
and the preferences over coalitions follows the rule: S ≿i T if and only if vi(S) ≥ vi(T ) ⇔
maxj∈S{Mi,j} ≥ maxk∈T {Mi,k}; while in the case W − HGs the function vi is of the form
vi(C ) = minj∈C {Mi,j} and the preferences over coalitions follows the rule: S ≿i T if and only
if vi(S) ≥ vi(T ) ⇔ minj∈S{Mi,j} ≥ mink∈T {Mi,k}.

The class ofFractional Hedonic Games (FHGs)was introduced in [Aziz et al., 2014] as a nat-
ural consequence ofASHGs andB/W −HGs. In FHGs the defining function vi that produces
the preference relation over coalitions for agent i is the average operator. That is, here we have
that vi(C ) = avgj∈C {Mi,j} =

∑
j∈C Mi,j
|C | , whereMi,j is the real value i assigns to j, and |C | denotes

to the size of the coalition. Therefore, agent i prefers coalition S ∈ Ni over T ∈ Ni if and only
if vi(S) ≥ vi(T ) ⇔ avgj∈S{Mi,j} ≥ avgk∈T {Mi,k}.

Boolean Hedonic Games

Boolean Hedonic Games (BHGs) focus on hedonic games with dichotomous preferences.
[Aziz et al., 2016a] initiated the study of such games and provided a succinct representation for
BHGs using propositional formulas. In hedonic games with dichotomous preferences each
agent i classifies all the coalitions she is a member of into two disjoint sets. Similar frameworks
to this have been studied in economics and social sciences regarding individuals distinguishing
available optionsor outcomes into goodones andbadones (for example in [Bogomolnaia et al., 2005]).
Formally, each agent i defines two disjoint sets, the first set contains the coalitions that i prefers
and is denoted as N+i , while the second one contains the coalitions that i does not prefer and
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is denoted as N−i . Each coalition C ∈ Ni must exist to either N+i or N−i , and it must exist to
exactly one of these sets, i.e.,N+i ∪N−i = Ni andN+i ∩N−i = ∅. Having definedN+i andN−i ,
the preference relation is formed as follows: agent i strictly prefers all coalitions inN+i over any
coalition inN−i , while i is indifferent about coalitions existing in the same set. That is, for two
coalitions S, T ∈ Ni it holds that:

• S ≻i T if and only if S ∈ N+i and T ∈ N−i ;

• S ∼i T if and only if S, T ∈ N+i or S, T ∈ N−i .

The propositional formula φi proposed in [Aziz et al., 2016a] consists a descriptive declaration
of the set N+i . That is, formula φi encodes the collaboration patterns that agent i desires: the
formula takes the form φi = φi,1 ∨φi,2 ∨ · · · ∨φi,k, where φi,j describes a desired collaboration
pattern. In each φi,j we find the agents i would like to be in a coalition, and the agents she
wouldn’t. In its generality the formula φi,j can take the form:

φi = (p1,i∨¬p1,i)∧ (p2,i∨¬p2,i)∧ · · · ∧ (pi−1,i∨¬pi−1,i)∧ (pi,i+1∨¬pi,i+1)∧ · · · ∧ (pi,n∨¬pi,n)

where pi,j is a propositional variable that indicates if agents i and j are in the same coalition. For
notational simplicity in [Aziz et al., 2016a] the authors use the indicative literal ij instead of the
variable pi,j, while in [Peters, 2016] the author eliminates the indicator i from ij as it is implied
that φi,j refers to agent i. Therefore, the formula φi,j can now be written as: 1

φi,j =
∧

k∈Appealing Partnersj

k
∧

l∈Repellent Partnersj

l

Any coalition C ∈ Ni that includes all agents in the “Appealing Partnersj” set and does not
include any agent in the “Repellent Partnersj” set satisfies the collaboration patternφi,j, satisfies
the formula φi, and therefore coalition C is positioned intoN+i set. Respectively, any coalition
that cannot satisfy any collaboration pattern, does not satisfy formula φi, and is therefore posi-
tion intoN−i set.

1The symbols l and ¬l are equivalent; here we use the notation l, since it was the one used in the original
paper.
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2.2 Solu on Concepts

In game theory a solution concept is a formal rule for predicting how a game will eventually be
played. These predictions, i.e., the “solutions” of the game, describe which strategies would (or
should) be adopted by rational players and, therefore, define the result, i.e., the final outcome,
of the game. “A rational agent is one that acts so as to achieve the best outcome or, when there is
uncertainty, the best expected outcome” [Russell and Norvig, 2009]. Depending on the char-
acteristics and the scalability (number of agents) of a game, the number of possible outcomes
may become extremely large–and in the case of TU games where there is a dividable coalitional
utility to be shared amongst the coalitional members, the number of possible outcomes can be
uncountable. It is not hard to see that not all outcomes are equally desired by all agents, nor all
outcome are equally to occur [Chalkiadakis et al., 2011]. For this reason, the outcomes are eval-
uated according to the following two properties: (i) fairness, and (ii) stability. In this work, we
focus on the matter of stability, and in following subsections we discuss some well-established
and well-studied classes of solution concepts regarding stability.

2.2.1 Individual Ra onality

As previously mentioned, in game theory and artificial intelligence we intend to predict how
rational agents will behave during a game. The simplest notion of rationality guarantees that
no agent will be harmed. To clarify this, individual rationality ensures that the outcome of
the game will be for all agents at least as good as what they could achieve on their own. In
other words, if an outcome is individually rational then for each agent this outcome is at least
as desirable as an outcome where the agent would be singleton. Formally we say that:

Definition 5. [Chalkiadakis et al., 2011] NTU/TU-IR Give a NTU/TU game G = ⟨N ; v⟩,
an outcome ⟨CS; x⟩ is called individually rational (IR) if for every agent i ∈ N it holds that
xi ≥ v({i}).

Definition 6. [Aziz and Brandl, 2012] HG-IR Given a hedonic game G = ⟨N,≿⟩, an outcome
CS is called individually rational (IR) if no agent has an incentive to become alone, i.e., for all
i ∈ N it holds that CS(i) ≿i {i}.
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Individual rationality is a solution concept that can be applied in all classes of cooperative
games (TU, NTU, and hedonic games), and it is actually considered to be a minimum required
property in terms of stability [Aziz et al., 2016b].

2.2.2 Nash Stability

Nash equilibrium is a foundational solution concept mostly used in non-cooperative settings.
In non-cooperative game theory a Nash equilibrium is described by an action profile a∗ which
satisfies the following property: each player i cannot benefit by altering his/her action a∗i to
another a′i, while all other player j , i stick to their action a∗j [Osborne, 2004]. That is for each
agent i the action a∗i is the best response to action profile a∗ = {a∗1 , · · · , a∗i−1, a∗i+1, · · · , a∗n}
[Shoham and Leyton-Brown, 2008].

To best to our knowledge, there is no formal definition regardingNash Equilibrium regard-
ing TU games, or NTU games in general. In hedonic games’ literature however, we find the
concept of Nash Stability, where an outcome is Nash stable if no agent can benefit, i.e. be
in a more desirable coalition than its current one, by unilaterally deviate into another exist-
ing coalition with the understanding that all other agents j , i remain to their current coali-
tions [Dréze and Greenberg, 1980a, Bogomolnaia and Jackson, 2002]. Formally:

Definition 7. [Bogomolnaia and Jackson, 2002] Nash Stability Given a hedonic game G =
⟨N,≿⟩, an outcome CS is called Nash stable (NS) if for all agents i ∈ N and all coalitions
Sk ∈ CS ∪ {∅} it holds that CS(i) ≿i Sk ∪ {i}.

2.2.3 Individual Stability

A very attractive solution concept that we find in the hedonic games’ literature is that of indi-
vidual stability. According to this stability concept, the agents are allowed to perform unilateral
deviation to existing coalitions or an empty one. In a individually stable coalition structure, no
agent prefers to unilaterally deviate into a new coalition and, at the same time, is welcomed by
this new coalition. Formally:

Definition 8. IS-deviate In a hedonic game G = ⟨N,≿⟩, given a coalition structure CS, an
agent i ∈ N can IS−deviate into coalition S ∈ CS∪{∅} if for agent i it holds that S∪{i} ≻i CS(i),
and for each agent j ∈ S it holds that S ∪ {i} ≿j S.
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Definition 9. Individual Stability Given a hedonic game G = ⟨N,≿⟩, an outcome CS is
called individually stable (IS) if there is no agent that can IS-deviate into any coalition in CS,
i.e., � i ∈ N, S ∈ CS such that i can IS-deviate into S.

“The individual stability can be seen as a myopic property of Nash Stability which does not
consider simultaneous moves by several individuals” [Dréze and Greenberg, 1980a].

2.2.4 Core Stability

Themost powerful solution concept in cooperative game theory is that of theCore. Researcher
working in the field of any class of cooperative games have been studying the core solution con-
cept, its properties, and how a core-stable outcome can be reached. In TU games, the core
consists of all the pairs ⟨CS; x⟩ where the payoff vector x is such that for any possible coalition
C ⊆ N the summation of the agents’ payoffs are at least as good as the utility of the coalition.
In words, if an outcome is core-stable, it ensures that there exists no coalition that can provide
strictly better payoff to some player. Formally:

Definition 10. [Chalkiadakis et al., 2011] TU-Core The Core C (G) of a TU game G = G =
⟨N ; v⟩ is the set of all outcomes ⟨CS; x⟩ such that x(C ) = ∑

i∈C xi ≥ v(C ) for every C ⊆ N .

In theNTU settings we come upon the notion of objection. An objection to some outcome
expresses that for some coalitionC ⊆ N there is a choice that is strictly better (more preferable)
for all members in C than the current choice in the outcome. Formally:

Definition 11. [Chalkiadakis et al., 2011] NTU-Core Let G = G = ⟨N ; v⟩ be an NTU game,
and let ⟨CS; c⟩ be an outcome of G. Then we say there is an objection to c if exists a choice λ and
a coalition C ⊆ N such that λ ∈ v(C ) and λ ≻i ci for all i ∈ C . The Core C (G) of G is the set
of all outcomes that omits is no objection.

Similarly to the NTU games, in hedonic games we consider blocking instead of objections.
That is, given anHGwe say that a group of agents blocks a coalition structure if all agents in the
group strictly prefer this group to their current coalition in the coalition structure. Therefore, a
coalition structure is core-stable if it cannot be blocked by any group of agents. Formally:
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Definition 12. [Aziz and Brandl, 2012] HG-Core Given a hedonic game G = ⟨N,≿⟩, a coali-
tion S ⊆ N blocks a coalition structure CS, if each player i ∈ S strictly prefers S to her current
coalitionCS(i) in coalition structureCS. A coalition structure which admits not blocking coalition
is said to be in the core C (G).

2.2.5 Kernel Stability

The kernel solution concept was introduced by [Davis and Maschler, 1965], and it refers solely
to TU settings, as it is highly related to the essence of transfer. In particular, in a kernel-stable
outcome no player can claim any portion of payoff of another player. That is, given an out-
come ⟨CS; x⟩ if each pair of agents within the same coalition is in bilateral equilibrium, then the
outcome is kernel stable.

A key notion in the kernel solution concept is that of excess; given a gameG = ⟨N ; v⟩, the ex-
cess of a coalitionC with respect to a payoff vector x is givenby e(C ) △= v(C )−∑i∈C xi. Wedefine
themaximum surplus of agent i over agent j wrt. an outcome ⟨CS; x⟩ as si,j

△
= maxC∈Ii,j

{
e(C )

}
,

where Ii,j
△
= {C ⊂ N |i ∈ C ∧ j < C } ≡ Ni \Nj is the collection of all coalitions that contains

agent i but not agent j. Agent i outweighs agent j wrt. ⟨CS; x⟩ if si,j > sj,i and xj > v({j}). Thus,
given a game G = ⟨N ; v⟩ and an outcome ⟨CS; x⟩, two agents i, j ∈ N are in bilateral equilib-
rium if-f neither agent i outweighs agent j, nor agent j outweighs agent i. A coalition C is said
to be balanced wrt. ⟨CS; x⟩ if-f every pair of agents i, j ∈ C is in bilateral equilibrium.

Definition 13. [Davis and Maschler, 1965] Kernel-Stable The kernel K of a TU game G =
⟨N ; v⟩ is the set of all the outcomes having balanced coalitions with individual rational payoff
vector. Or equivalently, ⟨CS; x⟩ ∈ K if and only if

• for each player i ∈ N xi ≥ v({i}) ; and

• each two players are in bilateral equilibrium wrt. ⟨CS; x⟩.

An important property of the kernel solution concept is that is always non-empty, i.e., for
any arbitrary game there is always an outcome ⟨CS; x⟩ that is kernel-stable [Schmeidler, 1969].
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2.3 Machine Learning

One of the primary goals of artificial intelligences andmulti-agent systems is to build anthropo-
morphic agents (software, robots,machines, etc.) which can act and takedecisions autonomously.
People, however, besides a “pre-installed”, inherent capacity for rational thinking and logical de-
duction, they also possess the ability to learn. Therefore, in order to give agents the ability to
learn, amultitude of techniques have been developed that ultimately do exactly that: they allow
agents to acquire knowledge in a way similar to human beings.

In the attempt of gaining this valuable skill of learning, researchers have developed concrete
mathematical models that allow agents to systematically absorb and process the observed infor-
mation. The machine learning process, can be classified into two main classes of models: the
supervised models, and the unsupervised ones. These two classes are distinguished in the fact
that a supervised model needs to “observe” a number of samples along with their correspond-
ing actual outcome before the agent will be able to correctly predict the outcome of a previously
unobserved input. In the contrary, a unsupervised model processes the observations without
having any knowledge of the corresponding outcome, and discover links and interdependen-
cies among the observations in its own. Intuitively, one could say that in supervise learning we
know what we are looking for, and we try to find the mathematical pattern, i.e., a mathemati-
cally formal model, that encodes the information within each observation; while, on the other
hand, in the unsupervised learning we “blindly” investigate observations and ultimately reach
some conclusions for which we may have no a priori knowledge of their existence.

In what follows in this section we will present the base-line background for the machine
learning techniques we work with in the current thesis.

2.3.1 Supervised Learning

In supervised learning [Bishop, 2006] themodel is trained, and tested, with a number of sample
observations alongwith the corresponding target value. An observation contains all the stimuli
the model has access to, while the target value represents a desirable feature that we consider as
output. Formally:

Definition 14. Let an observation be a vector xk ∈ Rn, where each dimension xk,i represents the
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ith stimuli. The corresponding target value t ∈ R represents the single-dimension outcome of the
particular observation xk.

The input data are pairs of ⟨observation, target value⟩ (⟨xk, tk⟩). The output of a supervised
learningmodel (SLM) is a function of the form y = SLM(xk), where xk ∈ Rn is an observation,
and y ∈ R is a prediction of the target value that corresponds to observation xk.

Intuitively, supervised learning “targets” a specific feature, which is determined via the target
values provided, and attempts to find apredictorwhich given anobservation, i.e., a set of stimuli,
will come with an legitimate outcome, i.e., an accurate value of the desirable feature.

Linear Regression

TheLinear Regression Model (LRM) [Bishop, 2006] is a simple but yet powerful data analysis
tool. As indicated by its name, an LRM provides us with a line that can describe the input
data. In fact, an LRM attempts to find the line that fits the input data most accurately. The
linear regression considers the input data to be linear, and treat them as such; that is, the output
function is of the form:

y(xk) = w0 +

n∑
i=1

wi · xk,i

where x =
[
x1, x2, · · · , xn

]
is an observation, the coefficients w =

[
w1, w2, · · · , wn

]
∈ Rn are

theweights, andw0 ∈ R is the bias factor. Theweight vectorw ∈ Rn assigns to eachdimensionof
the observation vector (to each stimuli) a weight that shows the contribution of this dimension
to the determination of the desired feature; while the bias factor (or bias parameter) allows for
any fixed offset in the input data.

During the training phase of the learning procedure, anLRMusesK pairs of ⟨xk, tk⟩. Thus,

we have a vector that contains all the observations x =


x1
x2
...
xK


=


x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n
...

... . . . ...
xK,1 xK,2 · · · xK,n


∈

RK×n; where each row corresponds to one of theK observations. Similarly, we also have a vector
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that contains all the target values t =


t1
t2
...
tK


∈ RK , where the kth element is the target value of

the kth observation. According to these sample pairs, the LRM builds the weight vector and
specifies the bias factor. Specifically, the weights are computed through the following relation:
w = (xT · x)−1 · xT · t ∈ R1×n+1. The bias factor can easily be included in the above computation
by adding a feature in each observation; that is, if xk =

[
xk,1, xk,2, · · · , xk,n

]
is the kth

observation we add one more dimension with unitary value: xk =
[
xk,1, xk,2, · · · , xk,n

]
∈

Rn+1. Therefore, the weight vectorwT =
[
w0, w1, w2, · · · , wn

]
∈ Rn+1 includes the bias

factor w0 and all weights wk.

Regression with Basis Func ons

The simple mathematical model of linear regression, even though it consists a powerful tool, in
the same time it is quite limited due to the fact that it considers the input data to be linear, and
builds a linear function of the form yk = w0 +

∑n
i=1 wixk,i. However, in most cases the data

are not linear, and therefore, use a line as a predictor is not the most appropriate solution. For
this reason, instead of the linear regression model, the regression with basis functions (RMBF)
is preferred. The RMBFs, with the use of basis functions φ : Rn → R can provide us a much
more accurate predictor.

Let φ1, φ2, · · · , φM be M such basis functions, then each observation xk is related with
M real values φ1(xk), φ2(xk), · · · , φM (xk). Now, the predictor takes the form yk(xk) = w0 +∑M

i=1 wi · φi(xk). The number M of the basis functions and the nature of the basis functions
φi is highly related to the problem at hand, i.e., depends on the nature of the input data and
the desirable feature we want to formulate at the time. In order to compute the weight vec-

tor in an RMBF, let Φ =


φ1(x1), φ2(x1), · · · , φM (x1)
φ1(x2), φ2(x2), · · · , φM (x2)

...
... . . . ...

φ1(xK ), φ2(xK ), · · · , φM (xK )


∈ RK×M be a matrix that

contains all values from each basis function φi for each observation xk. Then the weights are
computed via the equation w = (ΦT · Φ)−1 · ΦT · t. As in the LRM, in the RMBF by adding

20



Machine Learning

a ‘dummy’ basis function φ0(xk) = 1 for every k observation, we can also compute the bias

factor w0: Φ =


1, φ1(x1), φ2(x1), · · · , φM (x1)
1, φ1(x2), φ2(x2), · · · , φM (x2)
...

...
... . . . ...

1, φ1(xK ), φ2(xK ), · · · , φM (xK )


∈ RK×M+1 and the weight vector is

wT =
[
w0, w1, · · · , wM

]
∈ RM+1.

The basis functions that should be used in a RMBF is highly dependent on the problem
that is under examination at the time; there are various functions that can be used, and their
parameters needs tuning based on the input data. However, a very common type of functions
that are used inmany cases is that of theGaussian Basis Functions. TheGaussian basis function
is an exponential of the form

φi(xk) = e
{
− | |xk−µi | |

2σ2i

}
where the parameter µi reflects the location of the input data for the function φi, and the pa-
rameter σi their spatial scale. The parameters µi and σi needs to be tuned based on the input
data of the problem at hand.

Feed Forward Neural Networks

The neural networks (NN) consist a really powerful, somewhat complex, machine learning
tool, that over the past decade have gain great attention. The Feed Forward Neural Networks
(FFNN) is a quite simple type of NNs that allows the information to flow one-way: from the
input layer to the output layer. To bemore specific, in a FFNNwe find the following structures:
an input layer, a number of intermediate hidden layers, the activation function, and the output
layer; as they are depicted in the Figure 2.1. Each node is thought of as a ‘neuron’ while each arc
between the neurons represents a ‘synapse’, with correspondence to a biological neural network.
Each neuron (node) produces as an outgoing message an linear combination of the incoming
message which then goes through an activation function f ; while each synapse scales with a
weight coefficient the message that flows in it. That is, the outgoing message that produces the
neuron r in the first layer is of the form: m(l1)r = f (∑i∈connecting r with input layerlin w

(lin→l1)
i · m(lin)i ).

Amessage that flows from theneuron i in the input layer to the first hidden layer though synapse
j coincides with the value of the ith dimension of observation xk. i.e.,m

(lin)
j ≡ xk,i; which within
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neuron r in the first hidden layer will be multiplied by the synapse j’s weight, w(lin→l1)
j ·m(lin)j ≡

w(lin→l1)
j · xk,i. Assume that we have in total m hidden layers (l1, l2, · · · , lm) and the layer lm

contains q neurons (we denote their outgoing messages withm(lm)1 , m(lm)2 , · · · , m(lm)q ); then the
output of the FFNN model for observation xk is given by:

yk = fout
( q∑
i=1

wlm→lout
i · m(lm)i

)
The number of hidden layers, the number of neurons in each layer, theweight coefficient in

each synapse, and the nature of the activation functions vary and are highly dependent on the
problem at hand. The ultimate tuning of the above hyperparameters affects the performance
of the FFNN, while the selection of these hyperparameters is related to the complexity of the
pattern to be learnt. In general, each layer may have different number of neurons, each neuron
may be related with different activation function, and each neuron may be connected with dif-
ferent number of synapses (for example in Figure 2.1 each neuron in one layer is connected via
synapses with all neurons in the next layer). We can maximize the performance of our FFNN
(or NN in general) by optimizing the chosen set of the aforementioned hyperparameters, by
using an optimization algorithm.

2.3.2 Probabilis c Topic Modelling

Probabilistic topic models (PTMs) [Blei, 2012] belong to the family of unsupervised machine
learning. In fact, probabilistic topic modelling is a statistical approach used in analyzing words
of documents that was originally used in data mining to discover a distribution over topics re-
lated to a given text document. PTMs were introduced within the linguistic scenario of uncov-
ering underlying (latent) topics in a collection of documents. Topic modeling algorithms have
been also adapted to other scenarios as well, for example in genetic data, images and social net-
works. In this thesis, instead,we are inspiredby recentworkof [Mamakos and Chalkiadakis, 2018],
and employ awidelyusedPTMalgorithm, online LatentDirichlet Allocation (LDA) [Blei et al., 2003],
to operate on instances of formed coalitions, in order to discover the ordinal preferences rela-
tions of each agent.
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Figure 2.1: Feed Forward Neural Network

Latent Dirichlet Alloca on

Wefirst describe thebasic termsbehind latentDirichlet allocation (LDA) following [Blei et al., 2003],
[Mamakos and Chalkiadakis, 2018], and [Georgara et al., 2019a]:

• A word is the basic unit of discrete data. A vocabulary consists of words and is indexed
by {1,2,…,V }. The vocabulary is fixed and is fed as input to the LDA model.

• A document is a series of Lwords, (w1, w2, . . . , wL).

• A corpus is a collection ofD documents.

• A topic is a distribution over a vocabulary.
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LDA is a Bayesian probabilistic topic model, in which each document can be described by a
mixture of topics. A generative process for each document in the collection is assumed by LDA,
where a random distribution over topics is chosen, and for each word in a document a topic is
chosen from the distribution; finally, a word is chosen from the chosen topic. The same set of
topics is shared by the documents of the corpus, but each document exhibits topics in different
proportions.

Latent variables, describing the hidden structure LDA indents to uncover, are assumed to
be included to the generative process. The topics are β1:K , whereK is the dimensionality of the
topic variable, which is known and fixed. Each topic βk, is a distribution over the vocabulary
of the corpus, where k ∈ {1, . . . , K }; and βkw is the probability of word w in topic k. For the
dth document, θd is the distribution over topics; and θdk is the topic proportion of topic k in
d. The topic assignments for the dth document are indicated by zd , and the topic assignment
for the lth word of the dth document is denoted by zdl . Consequently, w is the only observed
variable of the model and wdl represents the lth word seen in the dth document, while β, θ and
z are latent variables. The posterior of the topic structure given the documents is:

p(β1:K , θ1:D, z1:D | w1:D) =
β1:K θ1:Dz1:Dw1:D

p(w1:D)
whereD is the number of documents, and the computation of the denominator, i.e. the prob-
ability of seeing the given document under any topic structure, is intractable [Blei et al., 2003].
Moreover, LDA includes priors, so that βk is drawn from a Dirichlet distribution with parame-
ter η and θd is drawn respectively from a Dirchlet also, with parameter α.

As mentioned, the posterior cannot be computed. To approximate it, the twomost promi-
nent approaches are (a) variational inference introduced in [Jordan et al., 1999] and (b)Markov
Chain Monte Carlo sampling methods proposed in [Jordan, 1999]. In variational inference,
the true posterior is approximated by a simpler distribution q, which depends on parameters
φ1:D,γ1:D and λ1:K defined as:

φdwk ∝ exp{Eq[log θdk] + E[log βkw]},

γdk = α +
∑
w

ndwφdwkλkw = η +
∑
d

ndwφdwk

The probability that topic assignment of word w in d is k, under distribution q, is denoted by
φdwk. Variable ndw represents how many times the word w has been seen in document d. The
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variational parameters γ1:D and λ1:K are associated with variable ndw. The variational inference
algorithm’s intuition is to minimize theKullback-Leibler(KL) divergence between the variation
distribution and the true (intractable) posterior. This is accomplished by iterating between as-
signing values to document-level variables, and updating topic-level variables (see Algorithm 1).

Algorithm 1: Variational Inference for LDA [Blei et al., 2003]
1 Randomly initialize λ;
2 repeat
3 Expectation step:
4 for ( d = 1→ D ):
5 γdk = 1;
6 repeat
7 Set φdwk ∝ exp{Eq[log θdk] + Eq[log βkw]};
8 Set γdk = α +

∑
w ndw · φdwk;

9 until ( 1K ·
∑K

k=1 change in γdk | | < ε);
10 Maximization step:
11 Set λkw = η +

∑D
d=1 ndw · φdwk;

12 until (relative KL divergence has not significantly decreased) ;
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OnlineLatentDirichletAllocation In theonline versionofLDAtopicmodel [Hoffman et al., 2010],
the documents are received on streams rather than a single batch of the original LDA algorithm.
In this approach, the exact number of documents is not required to be known, though an esti-
mation is at least required. As a result, online LDA can adapt to very large corpora. The value
of the variational parameter λ1:K is updated every time a new batch arrives, while the rate at
which the documents of batch t actually affects the value of λ1:k is controlled by ρt = (τ0 + t)−k.
The variational inference for the online version of LDA is shown in Algorithm 3, where it even-
tuates that α and η are assigned to a value once, and remain fixed. Ultimately, the estimated
probability of the term w in topic k is βkw = λkw∑

λk .

Algorithm 3: Online Variational Inference for LDA [Hoffman et al., 2010]
1 Randomly initialize λ;
2 for ( t = 1→∞ ):
3 ρt = (τ0 + t)−k;
4 Expectation step:
5 Randomly initialize γtk;
6 repeat
7 Set φtwk ∝ exp{Eq[log θtk] + Eq[log βkw]};
8 Set γtk = α +

∑
w ntwφtwk;

9 until ( 1k ·
∑ |change in γtk | ≤ ε);

10 Maximization step:
11 Compute λ̃kw = η +Dnntφtwk;
12 Set λ = (1 − ρt)λ + ρt λ̃;
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Chapter 3

Hedonic Games in Par on Func on Form

In this thesis we study hedonic games, and we formally introduce some theoretical extensions
that allow such cooperative settings to model real-life application more accurately. In this sec-
tion we discuss the natural extension of classic hedonic games that consider coalition-wide pref-
erence relations intohedonic games inpartition function form(PFF-HGs) that consider partition-
wide preference relations. Tobest to our knowledge, allworks regarding hedonic games so far ex-
press preferences over coalition; and [Aziz et al., 2016b] specifically notes that in hedonic games
each agent is interested only in the members of her coalitions, and does not care about the com-
position of other coalitions. In real-world though, the composition of other coalitions can, and
in many cases does, affect the preferences of individuals. Thus, here we put forward the formal
definition ofHedonic Games in Partition Function Form, and formally express classes of classic
hedonic games to their partition function form extension [Georgara et al., 2019b].

As such, in this chapter we contribute in the hedonic games as follows:

• we provide the formal definition ofHedonic Games in Partition Function Form;

• we extend well-known classes of hedonic games to their partition function form; and

• we propose a propositional language to represent Boolean Hedonic Games in Partition
Function Form.

The work presented in this chapter is included in [Georgara et al., 2019b].
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3.1 What is the Par on Func on Form of a game?

In cooperative games, onemay come across the term partition function game, or game with exter-
nalities, or game in partition function form (see, eg., [Chalkiadakis et al., 2011,Michalak et al., 2008,
Michalak et al., 2009]). All these terms refer to and are used to describe the same notion: they
capture situations where achieved by the agents utility (either within a transferable or non-
transferable setting) does not depend solely on a single coalition’s composition, but actually on
the formation of all groupings. For instance, in [Michalak et al., 2008] the authors examined
the behaviour of four different types of Partition Function Games (super-additive with pos-
itive/negative externalities, and sub-additive with positive/negative externalities), and proved
that in such settings they can bound the coalitional values in order to use the state-of-the-art
coalition structure generation algorithm to obtain optimal coalition structures. One step fur-
ther, in [Michalak et al., 2009] the authors proposed new representations for coalitional games
with externalities, and study various notions of externalities; while in [Michalak et al., 2010] the
authorsworkwith computing extensions of the Shapley value to coalitional gameswith external-
ities. Nonetheless, all works cited above consider Transferable Utility Games, and notHedonic
Games, as we do in this work.

In order to conceive the kind of settings that captures a game expressed in partition function
form, consider the following:

Example 2. Participation in AI coding competition Consider n programmers that take
part in an AI coding competition. In this competition the programmers form groups to work
together in order to build intelligent software that plays a board game (e.g. Go), that will eventually
compete each other in a tournament. Let f (S) be a function that expresses the power of the
intelligent software coalition S builds. The final utility of a coalition S though depends also on
the power of their opponents, i.e. v(S) = ∑

T∈CS\S
(
f (S) − f (T )

)
.

In the above example, we see that there are cases in cooperative games, where it is very
natural someone’s reward to be affected by all coalitions formed. Another example described
in [Chalkiadakis et al., 2011] refers to an economic setting where the composition of all coali-
tions in the formed coalition structure regulates the price of the produced good, and therefore
the utility achieved by each coalition. Clearly, the Example 2, which is stated as a TU game, can
be rephrased into an NTU game by indicating that each programmer receives different level of
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professional education1 (that cannot be transferred). Thus the personal utility function of each
agent i ∈ Swill be described as vi(S) =

∑
T∈CS\S

(
fi(S)−fi(T )

)
, where fi(S) expresses how agent

i perceives the capabilities of a team.
Within a hedonic game framework, consider the following example.

Example 3. Synergies for Government Contracts Think of a number of companies
that establish synergies in order to acquire government contracts. Each company aims to establish
the best for it synergy, but the satisfaction reached by the collaboration is certainly affected by
the synergies of the rest of the companies, as well. In particular, consider four companies, i.e.
N = {a, b, c, d}; then company a wants to team up with company b as working together is highly
satisfactory. In the same time, however, a prefers companies c and d to also establish a synergy,
since due to some former rivalry such a synergy would repulse the contract auctioneer; that is,
CS =

{
{a, b}, {c, d}

}
≻a CS′ =

{
{a, b}, {c}, {d}

}
.

3.2 Formal Defini on

In order to formally define a game in partition function form, we first need to define some
auxiliary entities. Let N = {1, · · · , n} be a finite, non-empty set of players of size |N | = n.
The set Ni = {S ⊆ N : i ∈ S} is the collection of all coalitions that contain agent i, and
CS(i) = S ∈ CS : i ∈ S denotes the single coalition S within coalition structure CS that
contains agent i. We denote the set of all coalition structures that can result from the set of
playersN asC S N , i.e.,C S N contains all the possible partitions of setN . We relate a specific
coalition to a specific coalition structure referring to this relation as embedded coalition.

Definition 15. EmbeddedCoalitionAn embedded coalition is given by a pair ⟨S, CS⟩, where
S is a coalition, CS ∈ C S N is a possible coalition structure over N , and S ∈ CS.

The set of all embedded coalition over N is denoted as EN = {⟨S, CS⟩ ∀S ∈ CS,∀CS ∈
C S N }; while the set of all embedded coalitions over N that contains a specific agent i is de-
noted as EN (i) = {⟨CS(i), CS⟩ ∀CS ∈ C S N }. In words, an embedded coalition corresponds

1Participating in such a competition, apart from any actual cash-prize for the winning team, all participants
gain knowledge and experiences, train their skills, and get stimulated by others’ ideas. In Chapter 5 we will see this
example again, under a new hybrid model of games.
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to a coalition in a fixed coalition structure.

Generally, a game in partition function form is described as follows ([Chalkiadakis et al., 2011,
Saad et al., 2012]):

Definition 16. NTU/TU-PFF A game G in PFF is given by a pair ⟨N, v⟩, where N is a set of
agents, and

- if G is TU game, v : EN → R is a utility function that maps each embedded coalition
⟨S, CS⟩ ∈ EN to a unique real value

- if G is NTU game, v : EN → Rn is a mapping that associates each embedded coali-
tion ⟨S, CS⟩ ∈ EN to a real n-vector (with the understanding that all agents not in the
embedded coalition, ∀ i < ⟨S, CS⟩, receive zero utility).

Now, consider the classic hedonic games, where each agent expresses hedonic preferences
over coalitions. By extendinghedonic games intopartition function form,we require each agent
to define a preference relation over embedded coalitions, i.e., each agent expresses a partition-
wide preference relation instead of a coalition-wide one. Therefore, we define a hedonic game
in partition function form as follows:

Definition 17. PFF-HG A hedonic game in partition function form (PFF-HG) G is given by a
pair ⟨N,≿⟩, where N is a set of players; ≿= {≿1, · · · ,≿n} , and each ≿i⊆ EN (i) × EN (i) is
a complete, reflexive and transitive preference relation that captures agent i’s preferences over the
embedded coalitions that contains i.

In words, we expand the classic hedonic games into hedonic games in partition function
form by widening the coalitional space. Now the coalitional space does not simply contain
coalitions with different compositions, but it contains all the embedded coalitions, i.e., all the
different coalition structures that can result from a set of players N . That is, given an PFF-
HG G = ⟨N,≿⟩, each agent defines her preferences for each pair of embedded coalitions as
follows: let ⟨S, CS1⟩ ∈ EN (i), ⟨T, CS2⟩ ∈ EN (i), and ⟨U,CS3⟩ ∈ EN (i) be three embedded
coalitions; then agent i prefers ⟨S, CS1⟩ over ⟨T, CS2⟩ and ⟨T, CS2⟩ over ⟨U,CS3⟩ if and only
if ⟨S, CS1⟩ ≿i ⟨T, CS2⟩ ≿i ⟨U,CS3⟩; what it is to be noted is that coalitions S and U may be
exactly the same, however the grouping of other agents affect agent i’s preferences.
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Example 4. Let an PFF-HGG = ⟨N,≿⟩, withN = {1, 2, 3}. The space of embedded coalitions
is the following

EN =
{⟨
{1},

{
{1}, {2}, {3}

}⟩
,
⟨
{2},

{
{1}, {2}, {3}

}⟩
,
⟨
{3},

{
{1}, {2}, {3}

}⟩
,
⟨
{1},

{
{1}, {2, 3}

}⟩
,⟨

{2, 3},
{
{1}, {2, 3}

}⟩
,
⟨
{2},

{
{2}, {1, 3}

}⟩
,
⟨
{1, 3},

{
{2}, {1, 3}

}⟩
,⟨

{3},
{
{3}, {1, 2}

}⟩
,
⟨
{1, 2},

{
{3}, {1, 2}

}⟩
,
⟨
{1, 2, 3},

{
{1, 2, 3}

}⟩}
;

and the preference relation of agent 1 is:⟨
{1, 2, 3},

{
{1, 2, 3}

}⟩
≿1
⟨
{1, 2},

{
{3}, {1, 2}

}⟩
≿1⟨

{1},
{
{1}, {2}, {3}

}⟩
≿1
⟨
{1, 3},

{
{2}, {1, 3}

}⟩
≿1

⟨
{1},

{
{1}, {2, 3}

}⟩
.

As we can see here, agent 1 prefers being alone, i.e.,{1}, rather be in a coalition with agent 3 when
agent 2 is singleton as well, i.e., ⟨{1},

{
{1}, {2}, {3}

}
⟩ ≿1 ⟨{1, 3},

{
{2}, {1, 3}

}
⟩; at the same

time, however, agent 1 prefers a coalition with agent 3 than being alone when a collaboration
between agents 3 and 2 is in place, i.e., ⟨{1, 3},

{
{2}, {1, 3}

}
⟩ ≿1 ⟨{1},

{
{1}, {2, 3}

}
⟩.

By now, it must be clear enough that in a PFF-HG the very same coalition can be more or
less preferable to some agent regarding the collaborations of the other agents taking place.

In fact, the hedonic games in partition function form can be though of as a generalization
of the classic hedonic games. It is not hard to see that if we let each agent i be indifferent among
embedded coalitions containing the same coalition S ∈ Ni, then the resulted game is a classic
hedonic game. That is, let an Pff-HG G = ⟨N,≿⟩, if for each pair CS, CS′ ∈ C S N and for
each agent i we have that

• ⟨S, CS⟩ ∼i ⟨T, CS′⟩ if and only if S ≡ T ; and

• ⟨S, CS⟩ ≿i ⟨T, CS′⟩ or ⟨S, CS⟩ ≾i ⟨T, CS′⟩ if and only if S , T

then the gameG from an PFF-HG is reduced into a classic hedonic game.

3.3 Classes of Hedonic Games in Par on Func on Form

In Section 2.1.3 we presented some well-studied classes of hedonic games, in this section we in-
troduce the partition function form of these classes.
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3.3.1 Addi vely Separable Hedonic Games

First we will examine the class of Additively Separable Hedonic Games (ASHG-PFF). As we
already have mentioned, in such games agents assign a valueMi,j to each other, which are then
used to define the preferences over coalitions. The transition to the partition function form is
requires each agent i to assign a value Mi,j to any other agent j within each different coalition
structure. Specifically, for each CS ∈ C S N , any agent i declares a vector:

Mi(CS) =


Mi,1(CS)
Mi,2(CS)

...
Mi,n(CS)


therefore, the value of the embedded coalition ⟨S, CS⟩ for agent i is vi(S, CS) =

∑
j∈S Mi,j(CS).

Now, for the preference relation it holds that agent i prefers the embedded coalition ⟨S, CS⟩ ∈
EN (i) over ⟨T, CS′⟩ ∈ EN (i), ⟨S, CS⟩ ≿i ⟨T, CS′⟩ , if and only if vi(S, CS) =

∑
j∈S Mi,j(CS) ≥

vi(T, CS′) =
∑

j∈T Mi,j(CS′). Note that for two embedded coalitions ⟨S, CS1⟩ ∈ EN (i) and
⟨S, CS2⟩ ∈ EN (i) agent i corresponds two values vi(S, CS1) =

∑
j∈S Mi,j(CS1) and vi(S, CS2) =∑

j∈S Mi,j(CS2); here, even though the composition of coalition S in both embedded coalitions
is the same, their values differ.

3.3.2 The classesB/W − and Frac onal Hedonic Games

Following the same pattern, in the classes B/W − and fractional hedonic games (B/W −HG-
PFF & FHG-PFF), each agent i assigns to each other agent j a value for each different coalition
structure CS ∈ C S N . Therefore, the transition to partition function form is straightforward.

In particular, for a B− hedonic game in partition function form, for a given agent i ∈
N an embedded coalition ⟨S, CS⟩ ∈ EN (i) is more preferable than some other embedded
coalition ⟨T, CS′⟩ ∈ EN (i) if the most preferable agent in ⟨S, CS⟩ is more preferable than the
most preferable agent in ⟨T, CS′⟩. That is, ⟨S, CS⟩ ≿i ⟨T, CS′⟩ if and only if vi(S, CS) =
maxj∈S{Mi,j(CS)} ≥ vi(T, CS′) = maxj∈T {Mi,j(CS′)}. Once again note that coalitions S
and T may be exactly the same, however the most preferable agent may be different, or even
if the most preferable agent remains the same the value assigned to this agent may be different
depending on the overall coalition structure.
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Respectively, for aW −hedonic game in partition function form, for a given agent i ∈ N an
embedded coalition ⟨S, CS⟩ ∈ EN (i) is more preferable than some other embedded coalition
⟨T, CS′⟩ ∈ EN (i) if the least preferable agent in ⟨S, CS⟩ ismorepreferable than the lest preferable
agent in ⟨T, CS′⟩. That is, ⟨S, CS⟩ ≿i ⟨T, CS′⟩ if and only if vi(S, CS) = minj∈S{Mi,j(CS)} ≥
vi(T, CS′) = minj∈T {Mi,j(CS′)}. In the case the coalitions S andT coincide, the least preferable
agent may be different, or even if the least preferable agent remains the same the value assigned
to this agent may differ.

Last but not least, in order to generalize fractional hedonic games to their partition function
form, for a given agent i ∈ N an embedded coalition ⟨S, CS⟩ ∈ EN (i) is more preferable
than some other embedded coalition ⟨T, CS′⟩ ∈ EN (i) if the i averagely prefers the players in
⟨S, CS⟩ than the players in ⟨T, CS′⟩. That is, ⟨S, CS⟩ ≿i ⟨T, CS′⟩ if and only if vi(S, CS) =∑

j∈S{Mi,j(CS)}
|S | ≥ vi(T, CS′) =

∑
j∈T {Mi,j(CS′)}
|T | .

3.3.3 Boolean Hedonic Games

For the expansion of Boolean Hedonic Games into their partition function form (BHG-PFF)
the key idea is for each agent to distinguish the embedded coalitions into good and bad ones.
That is, each agent labels each embedded coalition in EN (i) as preferable or non-preferable. For-
mally, let us denote with P+i the collection with all preferable embedded coalitions for agent
i, and, respectively, with P−i all non-preferable embedded coalitions. Therefore, in a boolean
hedonic game G = ⟨N,≿⟩ in partition function form, it hold that the embedded coalition
⟨S, CS⟩ ∈ EN (i) is strictly preferable by agent i over the embedded coalition ⟨T, CS′⟩ ∈ EN (i),
i.e., ⟨S, CS⟩ ≻i ⟨T, CS′⟩ if and only if ⟨S, CS⟩ ∈ P+i and ⟨T, CS′⟩ ∈ P−i . Moreover, it holds
that ⟨S, CS⟩ ∼i ⟨T, CS′⟩ if and only if ⟨S, CS⟩, ⟨T, CS′⟩ ∈ P+i or ⟨S, CS⟩, ⟨T, CS′⟩ ∈ P−i .

Now let us describe a propositional formula that can provide us with a compact represen-
tation of each agent’s i ∈ N preference relation. In fact in [Aziz et al., 2016a] the authors by
introducing a propositional logic for preference relation representation, jump to a description
of preference relation over partition. They do so by lifting preference over coalitions into pref-
erences over partitions and by being indifferent about partitions where the agent belongs to the
same coalition. Consequently, this can actually be thought of as a prime attempt to express a
boolean hedonic game in partition function form. First, we build on the idea of the logic devel-
oped in [Aziz et al., 2016a], and adjust this logic so that it anticipates to the needs of a BHG in
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partition function form in general.

A proposi onal language for BHG-PFF preference representa on

As in [Aziz et al., 2016a], let LN be a propositional language containing all the classical con-
nectives, ⊥,⊤,∧,→,↔, and propositional variables pi,j for each pair of players where i < j.
Therefore, a coalition structure can be described by these propositional variables, where intu-
itively each pi,j answers the question ‘is agent i and agent j in the same coalition?’. 2

As we have already discussed in Section 2.1.3, each agent uses a logic formula to declare her
goal, i.e., which collaborative patterns a desirable coalition structure should satisfy. Azis et al,
let a propositional formula φi that describes agents i’s goal contain only propositional variables
related to i; that isφi can be constructed only by literals of the form pi,j where j ∈ N . Moreover,
we remind the reader that each goalφi is built from a number of different collaboration patterns
expressed asφi = φi,1∨· · ·∨φi,k, where each collaboration patternφi.j consists only of variables
related to agent i.

Now, in order to describe coalition structures preferences, an agent i needs to declare collab-
oration patterns not only between herself and the other agents, but also among the other agents
in general. Let us denote with γi,j the jth collaboration pattern of agent i’s goal–we use the sym-
bol γ to distinguish it from φ and avoid any vagueness that may arise. Thus, a collaboration
pattern γi,j can now contain variables pk,l where k, l ∈ N and k, l , i; that is, γi,j is written as:

γi,j =
∧

{k,l}∈Appealing Collaborationsj

pk,l
∧

{m,o}∈Repellent Collaborationsj

¬pm,o

whichdenotes that agent i’s goal canbe achieved if eachpair {k, l} in “AppealingCollaborationsj”
set coexist in some coalition, and no pair {m, o} in “Repellent Collaborationsj” set coexist in
some coalition. Specifically, each coalition structure CS ∈ C S N such that:

• ∀ c ∈ Appealing Collaborationsj ∃ S ∈ CS : c ⊆ S; and

• ∀ c ∈ Repellent Collaborationsj � S ∈ CS : c ⊆ S

2Since we want to indicate if agents i and j are in the same coalition there is no need of having both propo-
sitional variables pi,j and pj,i as they both encode the exact same information. This is the reason why we use only
variables pi,j where i < j, as the variables pj,i are redundant.
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satisfies the collaboration pattern γi,j and it is considered as a desirable to agent i coalition struc-
ture. In words, if for every desirable pattern c ∈ Appealing Collaborationsj, there is a coalition
S ∈ CS that contains c (i.e, c ⊆ S); while for eachunwantedpattern c ∈ Repellent Collaborationsj
there is no coalition S ∈ CS such that c is contained in S, then the coalition structureCS satisfies
formula γi,j.

Example 5. Let a BHG-PFF G = ⟨N, γ⟩, where N = {1, 2, 3, 4} is the set of players and
γ = {γ1, γ2, γ3, γ4} is a propositional formula, where each γi describes the i’s agent goal. Let
agent 1’s goal be described through the formula

γ1 = γ1,1 ∨ γ1,2 ∨ γ1,3
(p1,2 ∧ ¬p2,4)︸         ︷︷         ︸

γ1,1

∨ (p2,3 ∧ ¬p2,4)︸         ︷︷         ︸
γ1,2

∨ (p1,3 ∧ p1,4 ∧ ¬p2,3)︸                 ︷︷                 ︸
γ1,3

Thus, according to γ1 the embedded coalitions that are positioned in P+1 are the following (we use
different colours to indicate which collaboration pattern satisfies each embedded coalition– γ1,1,
γ1,2,γ1,3) The space of embedded coalitions related to agent 1 is:

EN (1) =
{⟨
{1},

{
{1}, {2}, {3}, {4}

}⟩
,
⟨
{1},

{
{1}, {2, 3}, {4}

}⟩
,
⟨
{1},

{
{1}, {2, 4}, {3}

}⟩
,
⟨
,
⟨
{1},

{
{1}, {2}, {3, 4}

}⟩
,⟨

{1},
{
{1}, {2, 3, 4}

}⟩
,
⟨
{1, 2},

{
{1, 2}, {3}, {4}

}⟩
,
⟨
{1, 2},

{
{1, 2}, {3, 4}

}⟩
,
⟨
{1, 3},

{
{1, 3}, {2}, {4}

}⟩
,⟨

{1, 3},
{
{1, 3}, {2, 4}

}⟩
,
⟨
{1, 4},

{
{1, 4}, {2}, {3}

}⟩
,
⟨
{1, 4},

{
{1, 4}, {2, 3}

}⟩
,
⟨
{1, 2, 3},

{
{1, 2, 3}, {4}

}⟩
,⟨

{1, 2, 4},
{
{1, 2, 4}, {3}

}⟩
,
⟨
{1, 3, 4},

{
{1, 3, 4}, {2}

}⟩
,
⟨
{1, 2, 3, 4},

{
{1, 2, 3, 4}

}⟩}
thus the preferable embedded coalitions for agent 1 are:

P+1 =
{⟨
{1},

{
{1}, {2, 3}, {4}

}⟩
,
⟨
{1, 2},

{
{1, 2}, {3}, {4}

}⟩
,
⟨
{1, 2},

{
{1, 2}, {3, 4}

}⟩
,⟨

{1, 4},
{
{1, 4}, {2, 3}

}⟩
,
⟨
{1, 2, 3},

{
{1, 2, 3}, {4}

}⟩
,
⟨
{1, 3, 4},

{
{1, 3, 4}, {2}

}⟩}
Any other embedded coalition ⟨S, CS⟩ ∈ EN (1) cannot satisfy any collaboration pattern of
γ1,1,γ1,2 or γ1,3. they cannot satisfy formula γ1, and therefore they are labelled as non-preferable
embedded coalitions, i.e they are positioned in P−1 set.
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3.4 Real-life Se ngs Modelled by PFF-HGs

Let us now go through some real-life settings that can bemodelledmore accurately by a hedonic
game in partition function form; such as the example 7 we presented in Section 3.1.

Example 6. PoliticalPartiesConsider n = 8 political parties,N = {a, b, c, d, e, f, g, h}, each
of which have its own political line, ideas and perspectives. In order to form legal government,
the parties need to collaborate with each other and form coalitions. From party’s a point of
view, parties d and h share some common ideas with a, and therefore they all can establish a
satisfying collaboration; at the same time party d is in good amends with parties b and g, so
a believes that a synergy between the two, {b, g}, would benefit coalition {a, d, h}. Therefore
the coalition structure

{
{a, d, h}, {b, g}, {c}, {e}, {f }

}
is more preferable to agent a over the

coalition structure
{
{a, d, h}, {b}, {g}, {c}, {e}, {f }

}
, i.e.,

{
{a, d, h}, {b, g}, {c}, {e}, {f }

}
≻a{

{a, d, h}, {b}, {g}, {c}, {e}, {f }
}
.

Example 7. Companies Synergies Consider 3 companies that establish synergies in order to
acquire government contracts. In each competition the companies form different coalitions, and
the bundling of the contracts leads to different satisfaction for each company. A collaboration
of two specific companies, namely a and b, results a higher satisfaction to company c as this syn-
ergy prevents the coalition {a, b} from acquiring the contract due to some former rivalry. Thus,{
{a, b}, {c}

}
≻c

{
{a}, {b}, {c}

}
.

Example 8. Crowdsourcing Platforms Another example could be crowdsourcing online
platforms, where given a complicated task and a specific time frame, individuals are to form work-
groups to solve problems or puzzles. The solutions to the individual problems combine a solution
to the overall complicated task. Thus, each participant cares about all groups’ composition, as each
coalition solves a part of the desired overall task.

Example 9. Company Domain Structure Similarly to the concept in the previous example
(8), each employer in each domain within a company is interested on the composition of his/her
own domain. Yet, they are also interested in other domain’s composition as all domains must
work in harmony for the company’s prosperity.

Example 10. Term Project Teams Consider a course in Multi-agent Systems in a Computer
Science School. The students, in order to be successful in the course, are to work in groups to fulfil
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a project. Ultimately, all the projects are to compose a larger project that affects the students’ grade.
Therefore, each student is interesting in the overall grouping instead of solely their own coalition.
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Chapter4

Learning Hedonic Preferences in Coopera ve

Games

In real-life it would be frivolous and superficial to believe that one is aware of the complete pref-
erence relations among not only other agents, but also among that agent herself and the other
agents. For this reason, it is essential for an agent to be able to learn the underlying hidden
game. This in fact was the motivation for the authors in [Sliwinski and Zick, 2017] to explore
the Probably A proximately Correct (PAC) learnability of several classes of hedonic games: it
studied how good probabilistic “hedonic” utility function approximations can be derived from
a (polynomial) number of samples, and proposed algorithms to do so for specific problem in-
stances in the process.

We let each agent i ∈ N train and maintain her own learning model. That is, each agent
i attempts to learn her own preferences via interacting with others as she observes coalitions
and partitions. In this thesis, we studied the problem of uncertainty in hedonic preferences in
the essence that each agent is unaware of either the Mi,j values or the logic formulae that she
“subconsciously” follow to determine her preferences.

This chapter consists the practical part of this thesis, and as such, our contributions here are
as follows:

• we conduct a systematic evaluation of our learning technique;

• we develop two evaluation metrics for the models’ performance; and
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Figure 4.1: Social graph example

• we propose an interpretation method for converting coalition into documents.

Thework presented in Sections 4.3.2, 4.4.2, 4.5 also appear in [Georgara et al., 2019b]; while
the work in Section 4.6 in [Georgara et al., 2019a].

4.1 A framework for learning hedonic preferences

In order to evaluate the performance of several learningmodels on the problem of learning pref-
erences within hedonic games, we need to specify the games’ framework. We will specify two
different frameworks depending on the class of game to be learnt. In particular, the first frame-
work generates hedonic games in the classes ofASHGs,B/W −HedonicGames and Fractional
Hedonic Games; while the second framework generates hedonic games with dichotomous pref-
erences.

4.1.1 Preferences based on an underlying social graph

In Additively Separable Hedonic Games, B/W − Hedonic Games and Fractional Hedonic
Games the preferences over coalitions of an agent i are the lifted preferences over agents; that is,
agent i develops preferences over the rest of the agents, expressed through the valuesMi,j ∀j ∈
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N , this values Mi,j are then go through some known function building the preferences over
coalitions (or over partitions). These values may be arbitrary, or follow some a priori known
distribution. Here we suggest that this values derive from a graph.

Suppose we have a network as the one in Figure 4.1. Each node represents an agent while
the edges represents the a social link between the agents. That is, if two nodes ni and nj are con-
nected via an edge ei,j itmeans that agents i and j have a communication link, and intuitively this
communication link is interpreted asmotive for collaboration. For instance in [Igarashi and Elkind, 2016]
the authors considered a environment where agents should be connected according to some
graph structure in order to be able to form a coalition.

In this light, let i be an agent and g a social graph, we distinguish the following twodistances:

1. the distance distg(i, j) between i and some other agent j, which is given by the minimum
path from node ni to node nj;

2. the distance distg(i, S) between i and some coalition S, which is given by the average dis-
tance between i and the agents j ∈ S, i.e., distg(i, S) =

∑
j∈S distg (i,j)
|S | .

Intuitively, the distance between two agents answers the question “how much close friends are
agent i with agent j?”; thus, given some graph, we can use the distances to form a distribution
ofMi,j values for each agent. The distance between an agent a coalition, on the other hand, can
be interpreted as the tendency of the agent to join this coalition, depending on howmuch close
friends is the agent with the agents within the coalition.

Therefore, if consider a pure hedonic game in which preferences over agents are lifted into
preferences over coalitions throughMi,j values we can use the following:

Mi,j
��
g = κi ·

1
distg(i, j)

where κi is some constant related to agent i. Due to the fact that the distances between two
agents is given by the shortest path (supposing that the graph g is not weighted, or weighted
with positive values), if two agents are close friends, there is a “small” distance between them,
and thus, since we are working with ASHG,B/W −HGs and FHGs, we need the reciprocal of
the distance. The constant κi is simply a scaling factor.
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Now in a hedonic game in partition function formwe exploit the distance between an agent
and a coalition to set theMi,j values as follows:

Mi,j(π
��g) = κi ·

1
distg(i, j)

+ λi ·
∑
S∈π

distg(i, S) + ξi ·
∑
S∈π

1
distg(j, S)

with κi, λi and ξi be constants related to i. As expected, the composition ofMi,j for a game in
PFF is more complex as it takes into consideration all coalitions’ constitution within a partition
π. Inparticular, we consider three ‘properties’ of contribution that influence a valueMi,j within
a specific partition π under a specific social graph g:

1. the distance between agents i and j;

2. the distances between agent i and all coalitions within π; and

3. the distances between agent j and all coalitions within π.

Intuitively, the first property of contribution represents the ‘direct’ relationship that agent i
develops towards agent j. The second property captures i’s ‘cost’ tomove to a different coalition,
and through term λi ·

∑
S∈π distg(i, S) agent i attributes to j a small/large amount for every

coalition close/faraway to her. That is consider the partitionπ =
{
{1, 2, 5, 9}, {3, 4, 7}, {6, 8}

}
and the social graph g depicted in Figure 4.1. The cost of agent 1 moving to another existing
coalition is:

distg(1, {3, 4, 7})+distg(1, {6, 8}) =
distg(1, 3) + distg(1, 4) + distg(1, 7)

3
+
distg(1, 6) + distg(1, 8)

2
=

20
3

Therefore, agent 1 attributes to each agent j ∈ {2, 5, 9} an amount of λ1 · 203 .
Similarly, the third property captures j’s ‘cost’ to move to a different coalition, and through

term ξi ·
∑

S∈π
1

distg (j,S) agent i expresses a degree of honour towards agent j for collaborating
with her. In the above partition π, the cost to move of agent 9 is

distg(9, {3, 4, 7})+distg(9, {6, 8}) =
distg(9, 3) + distg(9, 4) + distg(9, 7)

3
+
distg(9, 6) + distg(9, 8)

2
=

14
3

thus, since the cost to move of agent 9 is relatively small, agent 1 ‘honours’ agent 9 for their cur-
rent collaboration with an amount: ξ1 ·

( 1
distg (9,{3,4,7}) +

1
distg (9,{6,8})

)
= ξ1 · 1415 .
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As a result the value b91 in the partition π under the graph g is:

b91 (π
��g) = κ1 +

20
3
· λ1 +

14
15
· ξ1

4.1.2 Logical formulae genera on

In the Boolean Hedonic Games the preference relations are defined through logic formulae
φ and γ; as we have already explicitly shown in Section 2.1.3 for the simple Boolean Hedonic
Games model, and in Section 3.3.3 for the BooleanHedonic Games in Partition Function Form
model. In the experimental process we follow in this thesis in order to verify the effectiveness of
the various learningmodels in the area of hedonic preference relations within the scope of hedo-
nic games, we placed no assumptions or restrictions on the model of dichotomous preferences
(opposed to the graph restriction we used for the ASHGs, B/W /FHGs).

Therefore, the construction of the logic formulae was based on uniformly selection of the
agents in the ‘Appealing Partners’ and the ‘Repellent Partners’, in the case of classic boolean
hedonic games; and, respectively, uniformly selection of the patterns in the ‘Appealing Collab-
orations’ and the ‘Repellent Collaborations’, in the case of boolean hedonic games in patterns
function form. What is to be noted here, is that even if we have no restrictions on the formulae,
we carefully constructed each one so that every formula is feasible, i.e., there are no conflicts be-
tween the sets ‘Appealing Partners’-‘Repellent Partners’ or the sets ‘Appealing Collaborations’-
‘Repellent Collaborations’ that would result an infeasible formula.

4.2 TheQP andOPA evalua on metrics

The learning models we use in this thesis, as we have described them in Section 2.3, and specif-
ically the supervised ones, are tools for function approximation. That is, given some points in
the form of observations we build a function such that if we come upon a previously unseen
observation we will be able to determine a value that represents good enough the feature our
model attempts to learn. In hedonic games however, we deal with a particular property that
distinguish out problem from the classical function approximation. That is, in hedonic games
we care little about the actual coalitions’ utilities, since our interest lies mainly on the preference
relations formed. In other words, working with any class of hedonic games presented so far, if
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we approximately learn a function ûi for some agent i, we have to answer the following two
questions:

1. Is the approximation ûi close to the real ui? and

2. Does the preference relation encoded by ûi match the one encoded by ui?

The first question actually focus on the learning models’ performance under the mathematical
function approximation point of view. The second, however, implies that even if our model is
not themost accurate function approximator, yet it can actually provide us with a good enough
preference relation. To clarify this, think of the following: for agent i the preference relation
between coalitions S, T ∈ Ni is S ≻i T that derives from the values ui(S) =

∑
j∈S Mi,j = 10

and ui(S) =
∑

k∈T bki = 5. Now, our learning model approximately learn a function ûi as
ûi(S) = 25 and ûi(T ) = 19; it has actually ‘failed’ to accurately approximate ui, however since
S ≻i T if and only if ui(S) > ui(T ), our approximation ûi correctly encodes this relation since
ûi(S) > ûi(T ).

Consequently, we distinguish the following two evaluation metrics:

• theRoot Mean Square Error (RMSE) between the predicted function ûi(S, CS), and the
true function ui(S, CS)

• theQualitative Proximity (QP) between the ordering described by ûi(S, CS) and the true
preference relation.

The first metric is straightforward, RMSE(ui, ûi) =
√

1
|D|

∑
(S,CS)∈D

(
ui(S, CS) − ûi(S, CS)

)2,
whereD is the collection of testing data used in themodel, and |D| is the size of the collectionD.
The secondmetric, however, ismore interesting. Thismetric indicates that even if the predicted
ûi differs significantly fromthe trueui in actual values, they are still equivalent. That is, functions
ûi and ui encode in the same way the preference relation between any two coalitions S and T ,
e.g. both S ≿uii T and S ≿ûii T hold. QP, in fact, could be thought of as a variant of Kendall
Taumetric [Kendall, 1948].

Therefore, when a function ui of an agent i is “learned” based on the training data, we
extract a preference relation, ≿ûii . Then we can measure the percentage of equivalence between
ui and ûi by counting the average of pairwise relations that are identically encoded by ui and ûi.
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Thus, we define Qualitative Proximity (QP) as follows:

QP(ui, ûi) =
∑
(S,CS),(T,CS′)∈D CHK

(
ui, ûi, (S, CS), (T, CS′)

)
|D|(|D| − 1)/2 , where

CHK
(
ui, ûi, (S, CS), (T, CS′)

)
=


1 if

(
(S, CS) ≿uii (T, CS′)
∧ (S, CS) ≿ûii (T, CS′)

)
0 otherwise

.

One step further, we introduce a single metric that combines bothRMSE andQP. According
to this metric:

• the lower the errorRMSE(ui, ûi), the better ûi fits ui

• the higher theQP(ui, ûi), the better ≿ûii matches ≿uii .

Thus, our Overall Preference Accuracy (OPA) metric can be defined as follows:

OPA(ui, ûi) =
QP(ui, ûi)

ε + RMSEnrm(ui, ûi)
,

where RMSEnrm is the normalized RMSE regarding the test samples values’ range. This nor-
malized RMSE allows us to compare the performance in games with different value ranges.
The intuitive interpretation of theOPAmetric is that, we highly value the contribution ofQP
metric–since this actually measures the similarity of the original preference relation to the ap-
proximated one–but also take into some consideration theRMSE between the original and the
approximated function. In order to avoid division with zero, we add a small positive ε = 10−5

to the denominator.

4.3 Linear Regression Model

In this section we will present the implementation of the Linear Regression Model in the prob-
lem of learning preferences in both Classic Hedonic Games and Hedonic Games in Partition
Function From.
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We remind the reader that an LRM computes a weight vector w based on the input data,
and according to this weight vector it builds a function of the form:

y(xk) = w0 +

b∑
i=1

wi · xk,i.

Having computed the function y, the LRM is in place to give an answer for any observation in
the form of xk. Next, we will present the nature of the observations xk used in any case, and the
intuition of their selection.

4.3.1 LRM for Classic Hedonic Games

We employed the linear regression model in classic hedonic games that follow the model of Ad-
ditively Separable, B/W −, and Fractional Hedonic Games.

As alreadymentioned in Section 2.3.1, the input of the LRM consist of pairs ⟨xk, tk⟩, where
xk is the kth observation and tk is the target value, i.e., the actual value, that corresponds to ob-
servation xk. In the problem of learning preferences within classic HGs, the observation xk rep-
resents a coalition Sk ⊆ N , while the target value tk represents the value (a) ui(Sk) =

∑
j∈Sk Mi,j,

(b) ui(Sk) = maxj∈Sk Mi,j , (c) ui(Sk) = minj∈Sk Mi,j, or (d) ui(Sk) = avgj∈Sk Mi,j, for (a)ASHGs,
(b)B−HGs, (c)W −HGs, or (d) FHGs, respectively.

For now on let us focus on the LRM that agent 1 trains and maintain (denoted as LRM1)–
by altering agent 1 to agent iwewill obtain theLRMi that agent i owns. An observation xk that
is imported in the LRM1 is an encoded coalition Sk ∈ N1, i.e., agent 1 ∈ Sk. The observation xk
encodes the coalition Sk as follows: weusenboolean variables, with each one indicatingwhether
an agent is member of coalition Sk. That is,

xk =
[
11∈Sk , 12∈Sk , 13∈Sk , · · · , 1n∈Sk

]
where 1i∈Sk is the indicator function that answers if agent i ∈ Sk, i.e.,:

1i∈Sk =


1, if i ∈ Sk,
0, otherwise

.

Clearly, since we are in the LRM1 and Sk ∈ N1, we always have 11∈Sk = 1, and thus the observa-
tions is:

xk =
[
1, 12∈Sk , 13∈Sk , · · · , 1n∈Sk

]
.
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n |edges| |edgeweight |
20 U (19, 190) U (1, 10)
50 U (49, 1225) U (1, 10)
100 U (99, 4950) U (1, 10)

Table 4.1: Social graphs’ specifications.

The corresponding target value tk is one of the follow:

tk =



∑
i∈Sk M1,i, if gameG is ASHG

maxi∈Sk M1,i, if gameG is B −HG

mini∈Sk M1,i, if gameG is W −HG

avgi∈Sk M1,i, if gameG is FHG

Experimental Results

We conducted a number of experimental simulations in order to evaluate each learning model.
Specifically, in each simulationwe ran 5 game ‘instances’ for each class of games, with each game
instance in these games be defined by a social graph. So we generated 5 different social graphs
for each game class:

• Additively Section HGs;

• B−HGs; and

• W −HGs.

Moreover, we evaluated the scalability of LRM in the problem of learning preferences as
the number of agents increase in the game. In words, we trained and test LRMs for n = 20, 50
and 100 agents, in Table 4.1 you can see the specifications of each social graph; here the constant
κi is set to 1. In Table 4.2 we show the average values over the 5 games of theQP, RMSE, and
OPAmetrics per hedonic game class and per number of agents. While Figure 4.2 is the graphical
representation of the above table.

As we can see, the LRMs used for the ASHGs have a better performance than the ones used
for B−HGs and W −HGs. This in fact, is an anticipating result, as ASHGs are based on sum-
mation which is linear. B−HGs and W −HGs, on the other hand, are based on maximization
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(a) Classic ASHGs

(b) Classic B−HGs

(c) Classic W −HGs

Figure 4.2: LinearRegressionModel: average onQP, RMSEnrm, andOPAmetrics over 5 game-
instances per class of Hedonic Games.
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n Number of Samples ASHG B−HG W −HG
Training Testing RMSE QP OPA RMSE QP OPA RMSE QP OPA

20 400 900 0.2683 0.5953 1.3345 26.366 · 103 0.4715 1.2342 18.275 · 103 0.5282 1.1811
50 800 1200 0.2913 0.6456 1.4448 14.752 · 103 0.4115 0.9200 14.793 · 103 0.4030 0.9001
100 1500 2500 0.2987 0.8132 1.8293 8.726 · 103 0.4138 10.9707 2.02753 · 106 0.4861 2.4209

Table 4.2: Experimental results for LRM in classic hedonic games.

n Total Space Training Samples (%) Testing Samples (%)
20 524, 288 0.076% 0.1716%
50 562, 949, 953, 421, 312 1.421 · 10−10% 2.131 · 10−10%
100 6.338253001141147 · 1029 2.366 · 10−25% 3.944 · 10−25%

Table 4.3: Number of samples as a proportion of the total space.

and minimization, respectively, which are non-linear. Also, notice that we fed each LRM with
an very small portion of the total space of the function to be learnt, as the reader can see in
Table 4.3.

4.3.2 LRM for Hedonic Games in Par on Func on Form

In this section we evaluate the effectiveness of linear regression models on the problem of he-
donic games in partition function form. Specifically, we used LRMs to learn preferences over
partitions for ASHG-PFF and Boolean Hedonic Games in PFF. Here each observation xk cor-
responds to an embedded coalition. In order to encode an embedded coalitions, i.e., a coalition
structure, as an observation we use the following structure: we exploit

(n
2
)
boolean variables,

with each one indicating whether an unordered pair of agents co-exist in the same coalition
within the given partition. That is, for each unordered pair (i, j)we use the indicator function:

1i∈CS(j) =


1, if agent i is in coalition CS(j),
0, otherwise

.
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Thus, a coalition structure CSk is encoded as xk having
(n
2
)
elements as:

xk = [12∈CS(1),13∈CS(1), · · · ,1n∈CS(1)︸                                ︷︷                                ︸
n−1 elements

,13∈CS(2),14∈CS(2), · · · ,1n∈CS(2)︸                                 ︷︷                                 ︸
n−2 elements

,

14∈CS(3),15∈CS(3), · · · ,1n∈CS(3)︸                                 ︷︷                                 ︸
n−3 elements

, · · · · · · · · · · · · ,

1i+1∈CS(i),1i+2∈CS(i), · · · ,1n∈CS(i)︸                                    ︷︷                                    ︸
n−i elements

, · · · · · · · · · · · · ,

1n−1∈CS(n−2),1n∈CS(n−2)︸                       ︷︷                       ︸
2 elements

,1n∈CS(n−1)]

Note that regardless which agent’s LRM we think of, the observation remains the same.
That is, xk carries the information about the whole partition, and not about a single coalitions.
Thus, no matter if we are in LRM1 or LRM2 or LRMi, all models will receive as an input the
very same xk, but each model sees a different target value which depends on the corresponding
agent. As such, the corresponding target value tk for some specific observation xk which encodes
the embedded coalition ⟨S, CSk⟩ for agent 1 in LRM1 is:

tk =


∑

i∈S M1,i(CS), if gameG is ASHG

+c, if gameG is BHG and CSk ∈ P+1
−c, if gameG is BHG and CSk ∈ P−1

where c is some positive constant.

Experimental Results

Herewegenerated5 game instance ofAdditively SeparableHGs and5 game instance ofBoolean
HGs. For the ASHGs each game instance is defined by the social graph, while each Boolean
HGs’ game instance is defined through the logic formulae γ. In Table 4.4, the reader can see the
specifications for each social graph, and each logic formulae.

We trained and tested LRMs for n = 5, 10, 20 and 50 agents to evaluate the models’ per-
formance as the number of agents increase. In Table 4.5 we show the average values over the 5
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(a) BHGs in PFF

(b) ASHGs in PFF

Figure 4.3: Linear RegressionModel: average onQP, RMSEnrm, andOPAmetrics over 5 game-
instances per class of Hedonic Games in PFF.
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n
Graph Formulae

κ, λ, ξ |edges| edgeweight #⟨Incli, Incli⟩/agent #agents/⟨Incli, Incli⟩
5 ∼ U (0, 10) ∼ U (4, 10) U (1, 5) U (2, 3) U (1, 4)
10 ∼ U (0, 10) ∼ U (9, 45) U (1, 5) U (4, 7) U (4, 6)
20 ∼ U (0, 10) ∼ U (19, 190) U (1, 5) U (9, 11) U (5, 7)
50 ∼ U (0, 10) ∼ U (49, 1225) U (1, 5) U (12, 15) U (8, 12)

Table 4.4: Social graph’s, and logic formulae specifications.

n Number of Samples BHG ASHG
Training Testing RMSE QP OPA RMSE QP OPA

5 200 500 0.5641 0.8416 3.2598 39.789 0.8390 3.7842
10 2000 5000 0.5878 0.7510 3.3687 78.336 0.8685 2.9331
20 5000 10000 1.0283 0.5496 1.8440 165.57 0.8619 3.1564
50 20000 40000 0.9372 0.6336 2.1193 696.89 0.8258 2.7457

Table 4.5: Experimental results for LRM in hedonic games in partition function form. The
values are average onQP, RMSE, andOPAmetrics over 5 Hedonic Games in PFF.

n Total Space Training Samples (%) Testing Samples (%)
5 101.71600 384.6% 1346.16%
10 105.06437 1.724% 6.04 · 10−10%
20 1013.71372 9.66 · 10−9% 1.16 · 10−9%
50 1047.26897 1.07 · 10−41% 2.68 · 10−41%

Table 4.6: Number of samples as a proportion of the total space.

game instances of theQP, RMSE, andOPAmetrics per hedonic game class and per number of
agents. While Figure 4.3 is the graphical representation of the above table.

Again, theLRMsused for theASHGshave abetter performance than theonesusedBoolean
HGs; which is an anticipating result, since learning preference for BooleanHGs can be thought
of as a classification problem. Therefore, for Boolean HGs a learning model that assume the
input data to be linear is no very accurate. Nonetheless, if we consider the portion of the to-
tal space of the functions to be learnt, the performance of the models are more than antiquate
(see in Table 4.6). That is, apart form the environment with 5 agents, in all the other settings
(n = 10, 20, 50) the LRM sees an extremely small proportion of a vast space.
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4.4 Regression with Basis Func ons

Here we discuss the linear regression model with basis function used for evaluating the model’s
performance on the problem of learning preferences in classic hedonic games and in hedonic
games in partition function form.

As we have discussed in Section 2.3.1 in the regression model with basis functions, we use
M basis functions, and every basis function is of the form:

φi(xk) = e
{
− | |xk−µi | |

2σ2i

}
,

whereµi reflects the location of eachφi in the L-dimensional space, and σ the scale of each value,
which is common for every φi. To clarify this, with L in the aforementioned dimensional space
we refer to the number of different features that an observation xk has. That is, the number
of elements in each observation corresponds to a feature, and therefore L coincides with the
size of the observation xk. As a result µi is a vector with L elements that ‘positions’ function
φi in the L-dimensional space. In order to compute the center vector µi of each φi, we use the
well-known k-means algorithm [MacQueen et al., 1967] K -Means is an unsupervised learning
method that partitions data into a specific number of clusters, and calculates the center values
µi for every cluster. The scale of each value σ is same for all basis functions φi, and is computed
as:

σ =
maxi,j |µi − µj |√

2 · (M − 1)
, ∀ i, j = 1, 2, · · · ,M

The total number M of the basis functions depends essentially on the problem at hand;
here we determineM with the TPE method described in Section 4.5. That is, we optimize the
number of the basis functions in every learningmodel by taking into consideration the available
input data, i.e, the training set of the RMBF.

4.4.1 RMBF for Classic Hedonic Games

Here we present the performance of regression models with basis functions for classic hedonic
games; and in particular, forASHGs,B−HGs, andW −HGs. Sincewe areworkingwith classic
hedonic games, the input observations xk of an RMBF encodes a single coalition, and follows
the representation described in Section 4.3.1. That is, if Sk is the coalition that corresponds to
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n Number of Samples ASHG B−HG W −HG
Training Testing RMSE QP OPA RMSE QP OPA RMSE QP OPA

20 400 900 0.4406 0.8021 1.8427 16.042 · 103 0. − − 1.6593 13.955 · 103 0.7545 1.6870
50 800 1200 0.3492 0.7105 1.7090 14.219 · 103 0. − − 1.6755 14.190 · 103 0.6725 1.4918
100 1500 2500 0.3554 0.8132 1.8770 8.607 · 103 0. − − 1.6882 10.037 · 103 0.7769 1.7371

Table 4.7: Experimental results for RMBF in classic hedonic games.

observation xk, then the xk has the form:

xk =
[
11∈Sk , 12∈Sk , 13∈Sk , · · · , 1n∈Sk

]
For each class of games (ASHGs,B−HGs, andW −HGs)we generated 5 game instances follow-
ing the specifications in Table 4.1. Once again, we trained and tested the RMBFs for n = 20, 50
and 100 agents.

InTable 4.7we showthe average values over the 5 gamesof theQP,RMSE, andOPAmetrics
per hedonic game class and per number of agents; while Figure 4.4 is the graphical representa-
tion of this table. Looking at Table 4.7, we can observe that in all classes of games we achieve
a value of QP metric that is above 0.7. This confirms that by using the regression model with
non-linear basis functionwe approximatemore accurately non-linear functions, such as the one
representing B−HGs and W −HGs; and in the same time gain performance and in the func-
tion representing ASHGs. The latter, does not arises any questions due to the nature of the
function we have used so far in order to describe an ASHG; that is, each coalition is mapped to
a value that is summation over non linear terms:

vASHG
i (S) =

∑
j∈S

1
distg(i, j)

.

Last but not least, in Figure 4.5 we show the graphical representation of OPA metric per
game class and per number of agents for both LRM and RMBF learning models. In order to
do so, we used the same training sets and the same testing sets in both types of learning models.
As a result, we can observe that the Regression Model with Basis Functions outperforms the
Linear Regression Model in all game-classes.
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(a) classic ASHGs

(b) classic B−HGs

(c) classic W −HGs

Figure 4.4: RegressionModel with Basis Functions: average onmetric OPA over 5 classic game-
instances per class of Hedonic Games.
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(a) classic ASHGs

(b) classic B−HGs

(c) classic W −HGs

Figure 4.5: Performance of LRM vs RMBF in classic HGs according to the OPA metric. The
values are average over 5 game-instances per class of Hedonic Games.
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n Number of Samples BHG ASHG
Training Testing RMSE QP OPA RMSE QP OPA

5 200 500 0.4072 0.9059 3.8592 30.347 0.8926 4.2244
10 2000 5000 0.8593 0.6887 2.833 106.60 0.8071 2.9914
20 5000 10000 0.7816 0.7348 2.4577 242.29 0.7443 2.5969
50 20000 40000 0.6561 0.8035 2.7041 885.76 0.7174 2.4304

Table 4.8: Experimental results for RMBF in hedonic games in partition function form. The
values are average on metrics RMSE, QP and OPA over 5 Hedonic Games in PFF.

4.4.2 RMBF for Hedonic Games in PFF

Here we evaluate the performance of regressionmodels with basis functions for hedonic games
in partition function form; and in particular, for ASHGs-PFF, and Boolean HGs-PFF. Since
we are working with hedonic games in PFF, the input observations xk of an RMBF encodes a
single coalition, and follows the representation described in Section 4.3.2. That is, if ⟨Sk, CSk⟩
is the embedded coalition that corresponds to observation xk, then the xk has the form:

xk = [12∈CS(1),13∈CS(1), · · · ,1n∈CS(1)︸                                ︷︷                                ︸
n−1 elements

,13∈CS(2),14∈CS(2), · · · ,1n∈CS(2)︸                                 ︷︷                                 ︸
n−2 elements

,

14∈CS(3),15∈CS(3), · · · ,1n∈CS(3)︸                                 ︷︷                                 ︸
n−3 elements

, · · · · · · · · · · · · ,

1i+1∈CS(i),1i+2∈CS(i), · · · ,1n∈CS(i)︸                                    ︷︷                                    ︸
n−i elements

, · · · · · · · · · · · · ,

1n−1∈CS(n−2),1n∈CS(n−2)︸                       ︷︷                       ︸
2 elements

,1n∈CS(n−1)]

For each class of games (ASHGs-PFF, BHGs-PFF) we generated 5 game instances following
the specifications in Table 4.4. Once again, we trained and tested the RMBFs for n = 5, 10, 20
and 50 agents.

In Table 4.8 we show the average values over the 5 games of theQP,RMSE, andOPAmet-
rics per hedonic game class and per number of agents; while Figure 4.6 is the graphical repre-
sentation of this table. Looking at Table 4.8, we can observe that RegressionModel with Gaus-
sian basis function can approximate Boolean HGs in PFF achieving accuracy (regarding toQP
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(a) BHGs in PFF

(b) ASHGs in PFF

Figure 4.6: RegressionModel with Basis Functions: average onmetric OPA over 5 classic game-
instances per class Hedonic Games in PFF.
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5 10 20 50
LRM LRMRBF NN LRM LRMRBF NN LRM LRMRBF NN LRM LRMRBF NN

ASHGs-PFF 0.05sec 1.2sec 14sec 2.4sec 17sec 1.7min 10sec 1.7min 8.3min 3.2min 25.3min 5.5hr
BHGs-PFF 0.04sec 1sec 45sec 1.3sec 12sec 2.9min 5.5sec 1.2min 8.4min 1.7min 30.6min 2.5hr

Table 4.9: Approximate time needed per game for training & testing.

metric) up to 0.8 for 50 agents. In the same time, the RMBFs achieve a very good Qualitative
Proximity (QPmetric) in ASHGs-PFF as well (above 0.7).

4.5 Feed Forward Neural Networks

The model of neural networks is a powerful, yet complex learning tool. Neural networks, even
in their simplest form, require a significant amount of computational power and they are time
consuming; indicatively in Table 4.9 we show the average time required to train and test LRMs,
RMBFs and FFNNs for hedonic games in partition function form. For this reason, we used
the model of Feed Forward Neural Network only for learning preferences in hedonic games
in partition function form; since such games are by nature more complex than classic hedonic
games, and the preferences inHGs-PFF lies in a vast space even for a small number of agents: for
instance, for 10 agentswehave 115975 elements forwhich elements an agents defines apreference
relation per unordered pair. Specifically, we trained and tested FFNNs for Adaptive Separable
Hedonic Games in PFF and for Boolean Hedonic Games in PFF.

We remind the reader that inFFNNwehave several hidden layers, and in eachhidden layer, a
non-linear activator is used, otherwise it would act similarly to an simple LRmodel. Depending
on thePFF-HGclass, we let the output layer have adifferent activator. That is, inASHGs-PFF, a
regressionmodel is needed to approximate the function tk = vi(S, CSk) ∈ R, so the output layer
activator must be linear. In the case of BHGs-PFF, essentially we have a classification problem,
thus we use a sigmoid activator at the output layer. By using a sigmoid function, the resulting
target values lie in {0, 1}; thusweuse the convention thatwhen the target value of a given sample
CSk is tk = 1, it means that CSk ∈ P+i , and when tk = 0we have that CSk ∈ P−i .

We have alreadymentioned that the performance of neural networks depends on the choice
of some hyperparameters such as the optimization method, the number of nodes per layer, the
activator function in each layer, etc.; while the chosen set of hyperparameters is highly depen-
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dent on the complexity of the to-be-learned preferences, i.e., the problem at hand. In this work,
we use as an optimization method theADAM optimization algorithm [Ba and Kingma, 2015].
ADAM attempts to combine the benefits of two different variations of the stochastic gradient
descent method, namely Adaptive Gradient Descent (AdaGrad) and the Root Mean Square
Propagation (RMSprop) [Ruder, 2016]. AdaGrad uses a different learning rate for each param-
eter to improve performance for sparse gradients, while inRMSprop andAdaDelta the learning
rate of each parameter relies on a decaying average of recent gradients. The choice of theADAM
optimizerwasmade empirically, following a series of experimentswith instances of our problem.
This showed that ADAM outperformed AdaGrad, RMSprop and AdaDelta [Ruder, 2016].
We focused on the above methods, since adaptive learning systems are generally suggested for
sparse data, as discussed in [Ruder, 2016]. The sparsity of the data is clearly indicated by the
form of our observations’ representation, which is thoroughly described in Section 4.3.2.

Having selected the optimization method, we let our architecture self-tune other hyperpa-
rameters of thenetworkbyusing theTree-structuredParzenEstimator (TPE) [Bergstra et al., 2011],
an algorithmbasedonBayesianoptimizationwith theuse ofhyperopt library forpython [Bergstra et al., 2013].
In general, hyperparameter optimizers attempt to find a value hi thatminimizes a function f (h),
i.e. the optimizer seeks the value argminh(f (h)). In our apporach, f represents the loss function
of the neural network, since this is the quantity we want tominimize. For a predefined number
of steps, the algorithm produces sets of hyperparameters hi, that are used to construct a neural
network, which is then trained and tested given the input data. At the end of this process, our ar-
chitecture yields the best set of hyperparameters h∗, along with the trained neural network that
uses these h∗. The TPE allows us to optimize hyperparameters that are structurally dependent:
for instance, if we set as a hyperparameter the number of hidden layers, we first optimize the
number of layers, and then the hyperparameters for each layer. Figure 4.7 shows the architec-
ture of the model for selecting the best hyperparameters for the neural network. In Section 4.2
we introduced the QP evaluation metric, which is used as the function f .

4.5.1 Experimental Results

In Table 4.10 we shows the average values over the 5 games of theQP,RMSE, andOPAmetrics
per hedonic game class and per number of agents. As we can see, NNmodels outperform both
LRM and LRMRBF, both in ASHGs and BHGs, especially as the number of agents increases.
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Figure 4.7: Architecture for selecting network hyperparameters.

n Number of Samples BHG ASHG
Training Testing RMSE QP OPA RMSE QP OPA

5 200 500 0.0283 0.9921 5.9525 13.887 0.9188 1.9925
10 2000 5000 0.0123 0.9985 5.9905 14.604 0.9678 2.1362
20 5000 10000 0.2784 0.8625 2.8668 71.354 0.9377 2.2991
50 20000 40000 0.2824 0.8559 3.3192 404.52 0.9032 1.8285

Table 4.10: Experimental results for FFNN in hedonic games in partition function form. The
values are average on metrics RMSE, QP and OPA over 5 game instances per class of Hedonic
Games in PFF.

This is, in fact, an anticipated result since the hyper-parameters optimization makes our NN
models more adaptive to the problem. However, the larger the number of agents is, the more
computationally expensive the NN model is. This results from the hidden layers having many
fully connected nodes. The number of layers is 1 or 2, while the nodes per layer are in [n2 ,

n·(n−1)
2 ],

selected by TPE optimizer.

In Figure 4.8 we depict the graphical representation of theQP,RMSE, andOPA described
in Table 4.10. While in Figure 4.9 we show the juxtaposed values ofOPAmetric for all learning
models used to approximate preferences of hedonic games in partition function form. Again,
in order to do so, we used the same training sets and testing sets for all models per game-class.
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(a) BHGs in PFF

(b) ASHGs in PFF

Figure 4.8: Feed Forward Neural Networks: average on metric OPA over 5 Hedonic Games in
PFF.
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(a) BHGs in PFF

(b) ASHGs in PFF

Figure 4.9: Performance of LRM vs RMBF vs FFNN Hedonic Games in PFF according OPA
metric. The values are average over 5 game-instances per class of Hedonic Games in PFF.
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4.6 Probabilis c Topic Modelling

Now, let us move to the unsupervised learning technique we used in order to discover hidden
collaboration patterns within hedonic games. Specifically, we employed Probabilistic Topic
Modelling in classic Boolean Hedonic Games. To avoid any faugness we clarify that in this sec-
tionweuse the symbolφ to refer to logic formulae –opposed to previous sections in this chapter
where φwas used to represent basis functions.

As we have already mentioned Probabilistic topic models (PTMs) is a statistical approach
used in analyzing words of documents that was originally used in data mining to discover a
distribution over topics related to a given text document. Firstly, in order to use PTMs so that
we can extract hidden information regarding the preferences of the underlying hedonic gamewe
need to prescribe a way to represent coalitions and preferences orderings into text documents.
As such, right below in Section 4.6.1 we present a novel procedure(inspired by the recent work
of [Mamakos and Chalkiadakis, 2018]) to interpret a pair of coalition and preference order into
a ‘bag-of-words’, which can then be channeled into the PTM algorithm.

4.6.1 Game interpreta on into documents

Let G = ⟨N,φ1, · · · , φn⟩ be a hedonic game with dichotomous preferences, where N is a set
of players and n = |N |. φi represents a logic formula correlated to agent i ∈ N , which allows
agent i to ‘approve’ or ‘disapprove’ a given coalition. The formulaφi consists a concise represen-
tation of the preference relation ≿i (the preference relation ≿i may be of size exponential in n,
as opposed to formula φi which may be significantly shorter). In hedonic games with dichoto-
mous preferences, each agent classifies the coalitions related to her into satisfactory coalitions
and dissatisfactory ones. Intuitively, formula φi expresses agent i’s goal, and agent i is satisfied
if her goal is achieved, or dissatisfied otherwise.

We define an instance κ of game G as a tuple ⟨CSκ, satisfied1, · · · , satisfiedn⟩, where CSκ is
a coalition structure of N , and satisfiedi is a auxiliary boolean variable that indicates whether
agents i’s goal is achieved or not. We let each instance κ produce n documents, one document
per agent. Since preferences are assumed to be exclusively personal, it is natural to consider
n formulae to be independent. Under this assumption, it is natural to train and maintain n
different LDAmodels each ofwhich learns a single formula. Therefore, we assign a singlemodel
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to each agent, which corresponds to the formula related to that agent; i.e. agent i is responsible
for the ith model, which is used to discover φi.

We sample m instances of the game G. Every instance produces n documents, where each
document refers to exactly one’s agent formula. Thus, in total we havem ·n documents to train
n different models. That is, each agent i uses in her own probabilistic topic model exactly m
documents, which correspond to her own formulaφi. Thus, the corpus of eachmodel is of size
(1/n)% of the total number of produced documents.

This approach is similar to the oneused in [Mamakos and Chalkiadakis, 2018]. However, in
thework ofMamakos andChalkiadakis, agents belonging in the same coalitionprocess identical
documents describing this coalition; while in our case, agents belonging to the same coalition
process different documents describing the same coalition. This divergences from the previ-
ous work makes our representation distinct, and is due to the nature of the games: the work
of [Mamakos and Chalkiadakis, 2018] concentrates in transferable utility games, where a coali-
tion is related to a single utility; by contrast, we work with hedonic games with dichotomous
preferences, where each agent participating in a coalition S characterizes S as satisfactory or dis-
atisfactory, regardless of the corresponding characterization by her partners.

A document di,κ is related to agent i in instance κ, and contains the following: an indica-
tive word for each agent in coalition CSκ(i), the indicative word ‘gain’ if the coalition CSκ(i)
is satisfactory (i.e. if CSκ(i) ∈ N+i ), or the indicative word ‘loss’ if CSκ(i) is disatisfactory
(CSκ(i) ∈ N−i ). For example, withN = {1, 2, 3, 4, 5}, and an instance

instκ = ⟨{1, 2}, {3, 5}, {4}, True, False, True, False, True⟩

the produced documents are of the form:

d1,κ =
(
ag1, ag2, gain

)
d2,κ =

(
ag1, ag2, loss

)
d3,κ =

(
ag3, ag5, gain

)
d4,κ =

(
ag4, loss

)
d5,κ =

(
ag3, ag5, gain

)
Aswe can see, agents belonging in the same coalitionmay have identical documents, d3,κ ≡ d5,κ;
while other agents may have different documents, d1,κ . d2,κ.

65



Hedonic Games in the Real World: Machine Learning and Theoretical Extensions

4.6.2 Significant agents

In order to evaluate our experimental results, we first need to determine the coalition that is
primarily described by each topic. For this reason, we define significant agentswithin each topic.
That is, given a topic k, all the agents that appear with probability greater than a small number
ε are considered to be significant. Formally:

Definition 18. SignificantAgentsAn agent i ∈ N is considered to be significant with respect
to a topic k if and only if Pr(i|topic = k) ≥ ε, where ε ∈ R+ is a small, positive, real number.

Therefore, we say that any agent, which is significant with respect to a topic, belongs to the
coalition determined by this very topic. That is, topic k describes the coalition S = {j ∈ N :
Pr(j |topic = k) ≥ ε}.

4.6.3 Valid topics

After establishing the coalition described in each topic, we move to assessing the validity of the
topic. Intuitively, the validity of a topic signifies whether the topic reflects a sub-formula de-
scribing the agent’s hedonic preferences. Thus, given the significant agents within a topic, we
characterize it as valid or invalid for agent i. A topic k is valid when:

• Pr(gain|topic = k) ≥ Pr(loss|topic = k) and S = {j : Pr(j |topic = k) ≥ ε} ∈ N+i , or

• Pr(loss|topic = k) ≥ Pr(gain|topic = k) and S = {j : Pr(j |topic = k) ≥ ε} ∈ N−i

otherwise the topic is invalid. In words, the meaning of the latter characterization is essentially
the actual cross-validation of the topics result with the corresponding formula φi.

Given these definitions, we can then adopt as an evaluation metric the percentages of valid
and invalid topics found by the algorithm. Intuitively, we would like the algorithm to discover
topics that are valid, that is, they reflect preferences sub-formulae that correspond to satisfactory
or dissatisfactory collaboration patterns.

4.6.4 Topic Significance constraint

In amore realistic scenario, knowing that the probability of ‘gain’ is greater than the one of ‘loss’,
and vice versa, within a topic, may not be enough. Intuitively, we would like to be confident
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whether the coalition described within a topic is satisfactory or dissatisfactory. For this reason,
we introduce a topic significance constraint, according to which a topic is labeled as significant if
the absolute differenceof theprobability of term ‘gain’ and theprobability of term ‘loss’, exceeds
some small number δ, i.e. |Pr(gain|topic = k) − Pr(loss|topic = k)| ≥ δ. Thus, each topic
is assessed as ‘significant’ with confidence level δ; and if a topic is ‘significant’ it can therefore
assessed as ‘valid’ or ‘invalid’. Now the definition of a valid topic k becomes:

• Pr(gain|topic = k) ≥ Pr(loss|topic = k) + δ and S = {j : Pr(j |topic = k) ≥ } ∈ N+i , or

• Pr(loss|topic = k) ≥ Pr(gain|topic = k) + δ and S = {j : Pr(j |topic = k) ≥ } ∈ N−i

4.6.5 Dataset and Se ng Escala on

For the simulations we created several game instances of hedonic games with dichotomous pref-
erences, according to the following procedure:

1. for each gameG define the preference relations through φ formulae

2. generate randomly partitions ofN , π

3. for each agent i decide whether π(i) is satisfactory regarding formula φi

4. interpret and log the instance information ⟨π(i), satisfiedi⟩ into documents

Formulae Construc on

A formula φi expresses agent i’s goal in a concise and short representation. That is, each φi con-
sists of two subsets of agents: (a) the “Appealing Partners” set and (b) the “Repellent Partners”
set. In its simplest form, agent i is satisfied within a coalition where all agents in the “Appealing
Partners” set aremembers of this coalition, and no agent in the “Repellent Partners” set is partic-
ipating. However, an agent imay have several pairs of ⟨Repellent Partners, Repellent Partners⟩
subsets of agents, and be satisfied with a coalition if this coalition is consistent with at least one
such pair. Therefore, in the general formwe have that: φi =

∨
l=1:L φi,l = φi,1∨φi,2∨· · ·∨φi,L

where φi,l = Repellent Partnersi,l∧, Repellent Partnersi,l . The complexity of a formula φi de-
pends on (a) the number of φi,l and (b) the number of agents each pair

⟨Appealing Partners, Repellent Partners⟩
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contains. We ran our experiments on settings with escalated complexity of the structure of the
formulae φ.

• Low Complexity: φis with low complexity consist of a single ⟨Appealing Partners,
Repellent Partners⟩ pair, and the total number of agents appearing in this pair of subsets
is fixed to n/10. That is, each agent has a must include or exclude demand on 10% of the
agents.

• HighComplexity: we escalate the complexityby increasing thenumberof ⟨Appealing Partners,
Repellent Partners⟩ pairs to 3. The number of agents appearing in each pair uniformly
ranges in [n/10, n/5].1,2

Instance Genera on & Informa on Logging

For a given hedonic game G, i.e. for a given set of formulae φ, we generate a number of game
instances. In each instance we randomly partition agents into coalitions. Each coalition in the
formed coalition structure is characterized as satisfactory or dissatisfactory according to formula
φi, for every agent iwithin the coalition. After characterizing the coalition of a certain agent, we
log the contained information into a text document using the interpretation described in Sec-
tion 4.6.1.3 The total number of documents produced per game varies depending on the game’s
complexity, and ranges between [500K, 2.5M ]. However, the size of the corpus each online
LDA model is fed with, corresponds only to the 2% of the total number of produced docu-
ments. That is, we use 10, 000 and 50, 000 game instances for the low and the high complexity
environments respectively.

Note that the game instances do not have stochasticity. That is, for each generated sample
(document) of a game instance, it is deterministically guaranteed that if the sample contains
the word ‘gain’(‘loss’) then the respective coalition is satisfactory (dissatisfactory). In a real life
situation of a boolean hedonic game formation, we would sample instances of the game by

1Thenumber of agents participating in eachφi, alongwith the total number of formulae per agentwithin each
level of complexity environment were chosen so that the required dataset could be generated within a reasonable
time frame; these numbers do not impose any burden on the LDA algorithm itself.

2We have preliminary results showing our approach can be quite effective in even more complex settings.
3For practical reasons, the logged information is repeatedmore than just once within a document. That is, we

boost the term frequency of the agents’ indicative words, along with the characterization ‘gain’ or ‘loss’, in order
to avoid misleading words with low frequencies.
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Complexity |corpus| |φi | number of Topics batch size iterations
Low 10000 1 5-12 5-25 (step 5) 50
High 50000 3 5-19(step 2) 5-25 (step 5) 50

Table 4.11: Simulation parameters

letting participants form groups, and then receive by each one a feedback on whether or not
they were satisfied in their coalition.

LDA Model

For the implementation, we used the scikit-learn Python 3.5 library [Pedregosa et al., 2011]. As
mentioned, the online version of LDA was used for a range of topics, iterations and batch sizes
related to the formulae complexity. In Table 4.11 we present the different parameters used in the
simulations.

The number of topics K , is a parameter that the (online) LDA model needs to be pro-
vided with. In situations such as the ones we are studying, the exact number of topics can-
not be known a priori; however, it can systematically be chosen depending on the problem at
hand. Moreover, there exist other LDAvariations, such asHDP [Teh et al., 2004], that are non-
parametric on the number of topics.

4.6.6 Experimental results

Before presenting our results, in Figure 4.10 we show two examples of topics (distributions over
the “words”), in the low complexity environment. That is, each bar depicts the probability
of a specific word belonging to the given topic. To clarify, the x-axis of the graphs depicts the
vocabulary of our corpus, i.e. the bars 0 − 49 correspond to the agent names; and the last two
bars 50, 51 represent the words ‘gain’ and ‘loss’, respectively. In the left graph, the distribution
over the vocabulary is exhibited for a valid topic, which infers a satisfactory coalition–due to the
relatively high probability of the word ‘gain’ (the 50th word in the axis shown with green bar).
Similarly, in the plot we see the graph for a dissatisfactory coalition scenario (the red bar there
corresponds to the word ‘loss’).

We now present our actual results. First, we conducted a series of game simulations for
the low complexity environment. Specifically, we constructed 4 different games that are subject
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Figure 4.10: Environment Complexity: low. Example of a topic describing ‘satisfactory’ coali-
tion (left), and a topic corresponding to a ‘dissatisfactory’ coalition (right).
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Low Complexity High Complexity
Number of Topics (%) valid (%) invalid Number of Topics (%) valid (%) invalid

5 89.83% 10.17% 5 84% 16%
6 91.81% 8.16% 7 87% 13%
7 96.79% 3.21% 9 90% 10%
8 92.08% 7.92% 11 90% 10%
9 93.98% 6.02% 13 86.92% 13.08%
10 92.67% 7.33% 15 84.64% 15.36%
11 95.53% 4.47% 17 80.59% 19.41%
12 88.89% 11.11% 19 78.16% 21.84%

Table 4.12: Percentage of valid and invalid topics over 4 different hedonic games with dichoto-
mous preferences.

to the characteristics of the low complexity environment. For each one of these games we ran
the learning process 5 times, using batches of different size (of the same documents) channeled
to the LDA model.4 The resulting topics were evaluated using the metrics described above,
and we computed the average percentage of valid and invalid topics per game per number of
topics. A similar evaluation process was followed for the high complexity environment. Again,
we constructed 4 different games that are subject to the characteristics of the high complexity
environment.

Table 4.12 shows our average results in the settings. As we can see, generally, the model in
low complexity environment learns correctly at least 88% of the sub-formulae φ̂i, for different
numbers of topics.5 At the same time, the percentage of incorrectly learned sub-formulae does
not exceed 11.5% within this environment. Regarding the high complexity environment, we
see that the average percentage of valid topics learned is greater than 78% for various number
of topics. The average percentage of incorrectly learned topics does not exceed 22%. As the
environment complexity increases along with the number of topics we intend to discover, the
accuracy of learned collaboration patterns drops.

By taking into account the topic significance constraint, we re-evaluated the topics arisen
from the LDA model for the low and the high complexity environment. The results depicted

4As we have already mentioned, there is no stochasticity during the dataset creation. However, by employing
this repetition of the learning procedure per game, we ensure the robustness of our results.

5A larger number of topics allows for more preferences sub-formulae to be learned, but it naturally increases
complexity.
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in Table 4.13 show an expected drop in the average percentage of valid topics, since we discard a
portion of the topics by assessing them as ‘insignificant’. It is worth noting that the difference
between the average percentage in the unconstrained and constrained cases reaches up to 15.27
percentage points for the assessment of valid topics. Figure 4.11 is the graphical representation
of Table 4.13.

Average (%) valid topics

Topics low complexity Topics high complexity
(%) unconstr (%) constr diff (%) unconst (%) constr diff

5 89.83% 88% −1.83 5 84% 82% −2
6 91.81% 91.11% −0.7 7 87% 82.86% −4.14
7 96.79% 94.88% −1.91 9 90% 85.56% −4.34
8 92.08% 86.77% −5.31 11 90% 82.27% −7.73
9 93.98% 86.76% −7.22 13 86.92% 73.08% −13.84
10 92.67% 83.83% −8.84 15 84.67% 71% −13.67
11 95.53% 83.86% −11.67 17 80.59% 67.35% −13.24
12 88.89% 75.35% −13.54 19 78.16% 62.89% −15.27

Table 4.13: Environment Complexity: low | high. Average percentage of valid topics over 4
different games with and without the significance constraint.

“Any me” Behaviour

Last but not least, we conducted a simulation experiment to examine how our model behaves
during an ongoing learning process. That is, assume that agents at a certain time t1 have access
to a part of the corpus. The agents train their models with the sub-corpus that is available to
them at the time. After this first phase training, agents have some beliefs over satisfactory and
dissatisfactory coalitions, that they could use in a decision-making process. At time t2 a second
part of the corpus is revealed to the agents, thus the agents update their already partially trained
modelswith thenewdocuments; and soon and so forth. In eachof the later phases, the values of
parameters of themodel regarding the number of batches and iterations aremaintained. Equiv-
alently, these later phases correspond to LDA processes with prior distributions over topics and
documents. Intuitively, using priors leads to faster convergence of the algorithm.

In Table 4.14 we show the results of this procedure, for games in the high complexity envi-
ronment and for varying numbers of topics. We let the agents train in 3 phases and recorded
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(a) Low Complexity Environment

(b) High Complexity Environment

Figure 4.11: Environment Complexity: low | high. Average percentage of valid topics over 4
different games with and without the significance constraint.
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Topics Phase 0 Phase 1 Phase 2
time (sec) valid (%) time (sec) valid (%) time (sec) valid (%)

5 43.97s 80% 35.66s 100% 24.0s 100%
7 43.57s 77.14% 33.04s 97.14% 25.62s 100%
9 45.63s 71.11% 35.45s 93.33% 27.64s 97.78%
11 43.91s 67.27% 35.48s 90.18% 28.31s 90.91%

Table 4.14: Environment Complexity: high. Anytime behaviour of the training model.

Figure 4.12: Environment Complexity: high. Anytime behaviour of the training model.

the time needed and the average percentage of valid topics for each phase. 2500 documents
were fed to the model in each phase. As we can see, Phase 0 requires more time, while the aver-
age percentages of valid topics are not particularly encouraging; Phase 1 requires approximately
75 − 80% of time required by Phase 0, and the percentages rise by up to 22 percentage points;
similarly, Phase 2 requires approximately 40% of the time required by Phase 0, and the average
percentage of valid topics consistently gets close to or even reaches 100%.

In Figure 4.14 we show the result’s graphical representation of the anytime behaviour of the
training model.

Note: What it is important to be noted here, is that we employed probabilistic topicmodeling
which yielded with really good results (reaching validity∼ 78% and accuracy 80%) under an ex-
treme scenario. That is, essentially we had only two features (‘satisfactory’ and ‘dissatisfactory’),
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and a small vocabulary consisting of only 52 words; while PTMs are to process large series of
documents, which in their turn consist of large vocabularies, and ultimately extract muchmore
features than just two. As a result, our model performed extremely good in an extreme case.
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Chapter 5

Hedonic U lity Games

In this chapter we provide one more theoretical extension of hedonic games. In fact, here we
formally introduce a novel class of cooperative games theHedonic Utility Games (HUGs). We
discuss the HUGsmodel intuition, and study this model under the notion of stability through
several solution concepts.

As such, our contributions here are:

• we introduce a novel hybrid class of cooperative games, theHUGs, and provide a generic
model;

• we walk through the application of existing solution concepts to HUGs;

• we propose a novel solution concept; and

• we propose an instantiation of hedonic preferences, study its properties within HUGs,
and exploit it to obtain a probability bound for pruning the coalitional space.

5.1 Mo va on

Cooperative games [Chalkiadakis et al., 2011] can be naturally distinguished into utility-driven
games and hedonic games. This reflects agents’ motivation during coalition (group) forma-
tion. In utility-driven games, an agent seeks to acquire the best possible payoff, and therefore
joins the coalition that offers her the highest reward. With the term ‘utility-driven’ games we
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refer to classes of games such as Transferable Utility Games, Characteristic Function Games,
etc. [Chalkiadakis et al., 2011]; such games, and all their subclasses share a common property:
for each coalition there is a unique real value that intuitively represents the worth of the coali-
tion, and this value corresponds to some dividable resource that can be distributed among the
coalition members. By contrast, in hedonic games [Aziz et al., 2016b] as we have already thor-
oughly discussed, each agent is interested to participate in her most preferable coalition. That
is, each agent ranks all coalitions depending solely on the identity of the coalitional members.

One could say that in the former case the agents form a preference relation over coalitions
which is based on payoffs; while in the latter it is based on coalitional composition. However, in
many real life settings, such an absolute demarcation amongmotives does not exist. On the con-
trary, people value (maybe in different proportions each) both hedonic preferences and payoff
shares, when they are to collaborate with others in order to carry out a task. Thus, in the general
case, when people are to form coalitions, they take into consideration all motivating aspects.

Although there are classes of games in cooperative game theory literature that can suffi-
ciently model real cooperative problems; these classes so far ignore either their hedonic or their
utility aspect. For this reason, here, we give a few examples of settings where hedonic and utility
aspects naturally co-exist.

Example 11. StartupCompaniesConsider an online platform that promotes startup companies’
formation. Startup companies par excellence have a core (a group of friends) that share ideas,
passion, way of thinking etc.; a group of friends that most likely will be sceptical about cooperating
with individuals that are in rivarly. Despite that, since they constitute a working firm, this core
of people also care about the prosperity of the company, i.e. they are interested in the profits of the
company.

Example 12. Social Ridesharing Consider the problem of social ridesharing In ridesharing,
a set of commuters form coalitions and arrange one-time rides at short notice. The goal is to (a)
transport all commuters to their destination; and at the same time (b) minimize their expenses.
In [Bistaffa et al., 2017], the authors adopt a cooperative game theoretic approach in order to
tackle the problem considering only the utility aspect of the game, i.e. they satisfy (a) and (b).
Nevertheless, in many cases a commuter i may prefer to rideshare with her friends even if this
ride costs more than others. In other words, a commuter may be willing to pay more if she is to
spend time with people she is having fun with.
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Example 13. Recommender System think of a recommender system that is used by a travel
agency. The travel agency is interested in creating groups of travellers that will (a) have a good
time during their holidays, (b) meet their constraints/desires, for example a maximum total cost.
Thus, the recommender system should form groups of travellers that appear to prefer each other’s
company, and at the same time plan a holiday package which is within their budget.

Example 14. Participation in AI coding competition–revisited Consider n program-
mers that take part in an AI coding competition. In this competition the programmers form
groups to work together in order to build intelligent software that plays a board game, that will
eventually compete each other in a tournament. Participating in such compete requires plenty
of hours of intimate work with each other, thus each programmer highly values the identity of
his/her team-mates. Moreover, each team (group of programmers) will receive a cash prize for
participating, which is closely related to the team’s performance in the tournament. As a result,
each programmer desires to be in a team such that:

• he/she highly appreciates the other members of the team; and

• the team’s performance is good enough, in order to receive a higher cash prize.

As such, in Section 5.2 we discuss a genericmodel that combines hedonic and utility aspects,
and as suchwe introducehedonic utility games (HUGs). In Section 5.3wediscuss the application
of existing stability concepts into the HUGs setting, while in Section 5.4 we put forward our
novel theoretical IRIS solution concept, and study its complexity. In Section 5.5 we first extend
thewell-known dichotomous hedonic preferencesmodel to a natural trichotomous preferences
one, and study HUGs and IRIS in that setting. As part of our work there, we characterize
feasible coalitions for HUGs, and exploit this feasibility concept to obtain a probability bound
for pruning the coalitional space that ultimately reduce the computational load for obtaining
kernel-stable payoff configurations in IRIS partitions.

5.2 Generic Model

As mentioned, in this work we combine hedonic with utility games. That is, players have he-
donic preferences over coalitions, but also form utility-based preferences over coalitions. The

79



Hedonic Games in the Real World: Machine Learning and Theoretical Extensions

hedonic preferences take into consideration the identity of coalition members, i.e. each player
only cares about which players are in her own coalition. The utility-based preferences are derived
from a utility (characteristic) function and/or the payoff share each player receives. As such, a
hedonic utility game in its generality is driven by two main components: the hedonic aspect,
i.e. hedonic preferences over coalitions based solely on each coalition’s members composition;
and the utility aspect, i.e. the utility obtained by a coalition, that eventually leads to a payoff
rewarded to each player. In other words, the hedonic preferences are the component that at-
tributes a personalized opinion on a given coalition, while the utility function along with the
utility-based preferences are the component that attributes a “generally accepted” quantified
opinion on the same coalition.1

Definition 19. (Hedonic Preferences) Let N = {1, · · · , n} be a finite set of players, a hedonic
preference relation is denoted by ≿hed= (≿hed1 , · · · ,≿hedn ), where ≿hedi ⊆ Ni × Ni is complete,
reflexive, and transitive relation, with Ni = {S ⊆ N such thati ∈ S}.

Definition 20. (Utility-based Preferences) Let N = {1, · · · , n} be a finite set of players and
v : 2N → R be a utility function that give rise to utility-driven preference relation ≿ut= (≿ut1
, · · · ,≿utn ), where ≿uti ⊆ Ni ×Ni is a complete, reflexive and transitive relation, withNi = {S ⊆
N such thati ∈ S}.

Theutility-basedpreferences≿ut canbedefined in variousways,whichdependon theplayer
and/or the problem at hand. For instance, let v be a utility function, and x(C ) a payoff vector
for some coalition C ⊆ N , then, ≿uti could be of the form C1 ≿uti C2 if xi(C1) ≥ xi(C2); or, ≿uti
could solely depend on the utility function: C1 ≿uti C2 if v(C1) ≥ v(C2). One step further, we
can say that each player forms an overall ordering over coalitions that takes into account both
hedonic and utility-based preferences.

Definition 21. (Overall Preferences) Let≿hedi be a hedonic preference relation, and≿uti be a utility-
based preferences relation, for some player i. Then, a function hi(≿hedi ,≿uti ) =≿overalli , blends the
hedonic and utility-based preferences in order to produce a single overall ordinal preference relation
over coalitions.

1A HUG could be reminiscent of Multiple Objective Games [Zhao, 1991] where each player has a multi-
dimensional utility vector, and needs to optimize every dimension. However, in HUGs the utility function is
common to all agents, while there is also a distinct hedonic dimension in the preferences of each player.
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Thus, a hedonic utility game in its generality is:

Definition 22. (HUGs)AHedonic Utility Game (HUG)G is given by a tuple ⟨N ; h1, · · · , hn;≿hed1
, · · · ,≿hedn ; v⟩, where for each i ∈ N hi(≿hedi ,≿uti ) is a blending function that produces an overall
preference relation ≿overalli combined by the hedonic preference ≿hedi and a utility-based preference
≿uti derived from the utility function v : 2N → R. The outcome of a HUG is a pair ⟨CS, x⟩,
where CS is a coalition structure; and x ∈ Rn is a payoff vector related to CS.

Theblending functionhi takes into accountplayer i’s both thehedonic and theutility-based
preferences, and produces an ordinal preference relation over coalitions. For each player i, func-
tion hi may differ; so, let us examine how h can be formed in some base-line scenarios:

(i) A player i’s overall preferences that depend only on the hedonic preferences, hi(≿hedi ,≿uti
) =≿hedi ; i.e., even if u(S) < u(T ) or xi(S) < xi(T ) player i still prefers coalition S over T .

(ii) For some player i, function hi(≿hedi ,≿uti ) =≿uti depends exclusively on the utility-based
preferences, that is player i’s overall preferences is S ≿overalli T if and only if v(S) ≥ v(T )
(or if andonly if xi(S) ≥ xi(T )). Or the i’s overall preferences canbebasedonwhatwe later
call ‘potentially individual rationality’, i.e., S ≻overalli T if and only if v(S) ≥ ∑

j∈S v({j})
and v(T ) < ∑

k∈T v({k}).

(iii) Another case is that of depending on both hedonic and utility-based preferences, i.e. let for
some player i function hi(≿hedi ,≿uti ) be defined as “i prefers coalition S over coalition T if
and only if S ≿hedi T and v(S) ≥ v(T ) − εi”; where εi is a threshold corresponding to an
acceptable utility-loss, determined by i. Similarly could be the case of “i prefers coalition S
over coalitionT if and only if S ≿hedi T and xi(S) ≥ xi(T ) − εi”, where εi now determines
an acceptable payoff-loss.

(iv) A quite more complex scenario is that player i’s function hi(≿hedi ,≿uti ) be defined as “i
prefers coalition S over coalition T if and only if

(
S ≿hedi T and v(S) ≥ v(T ) − εmax

i
)

or
(
v(S) ≥ v(T ) + εmin

i regardless of the hedonic relation of i on S and T
)
”; where εmax

i
defines a maximum acceptable utility-loss for player i in order to satisfy her hedonic pref-
erences, and εmin

i defines a minimum desirable utility-gain for player i in order to ignore
her hedonic preferences. Respectively, function hi(≿hedi ,≿uti ) could be also defined as “i
prefers coalition S over coalition T if and only if

(
S ≿hedi T and xi(S) ≥ xi(T ) − εmax

i
)
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or
(
xi(S) ≥ xi(T ) + εmin

i regardless of the hedonic relation of i on S and T
)
”; where now

εmax
i and εmin

i correspond to a maximum acceptable loss and a minimum desirable gain,
respectively.

These are just some scenarios: in general hi(≿hedi ,≿uti ) can take any form. Thus, each player can
value her hedonic and utility-based preferences differently. Note that this blending function hi
may result to a preference relation that is non-transitive; in our view, this is a very interesting
property that alters the way the concept of ‘rationality’ is perceived in settings where both the
hedonic and the utility aspect affect the outcome. In other words, in real-life settings where we
deal with interpersonal relations and imminent payoff, rationality stops being straightforward
and adapts in such a complex environment.

To help our discussion in the rest of the paper, we now provide an alternative definition
equivalent to Definition 22, but which explicitly refers to the ≿hedi and ≿uti aspects of the prob-
lem. As such, HUGs’ definition now becomes:

Definition 23. (HUGs–alternative) A Hedonic Utility Game G is given by a tuple ⟨N ;≿hed; v⟩,
where ≿hed= (≿hed1 , · · · ,≿hedn ) is a vector of hedonic preference relations, one for each i; and
v : 2n → R is a utility function. The outcome of a HUG is a pair ⟨CS, x⟩, where CS is a
coalition structure; and x ∈ Rn is a payoff vector related to CS.

To ease notation, from now on we use ≿i to refer to ≿hedi , unless explicitly stated otherwise.
Also, henceforth, we use S ≻i T to denote that i strictly prefers coalition S to T ; and S ∼i T
to denote that i is indifferent between coalitions S, T . Moreover, in the rest of the paper we
use the following notation: N is a set of players and Ni = {S ⊆ N : i ∈ S} is the set of all
coalitions that contains agent i;π is a partition (also referred to as coalition structure CS) ofN ,
while π(i) ≡ S ∈ π : i ∈ S, is the single coalition within π that contains agent i.

5.3 Exis ng Solu on Concepts applied in HUGs

In this section we discuss how several existing stability solution concepts can be applied on the
HUG model. We focus on solution concepts from the literature of Hedonic Games and the
Transferable Utility Games in order to approach HUGs from both aspects.
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5.3.1 Individual Ra onality

First we discuss the concept of individual rationality (IR). Individual rationality is a notion one
finds onbothhedonic andTUgames [Chalkiadakis et al., 2011]. Inhedonic games, a partitionπ
is individually rational if for every agent i ∈ N it holds thatπ(i) ≿i {i}. Inwords,π is IR if each
iprefers its current coalition,π(i), at least asmuchas the singleton {i} [Bogomolnaia and Jackson, 2002,
Aziz et al., 2016b]. In TU games, a partition π with respect to a payoff vector x, is individually
rational if for every agent i holds that xi ≥ v({i}). In words, π is IR if each agent i receives a
payoff that is at least as good as what she can earn on her own [Chalkiadakis et al., 2011].

Now, given a hedonic utility gameG = ⟨N ;≿; v⟩, a partitionπ ofN is individually rational
if π is IR in both hedonic and TU terms. That is, wrt a payoff vector x related to π, for every
i ∈ N it holds that π(i) ≿i {i}, and at the same time, xi ≥ v

(
{i}

)
.

5.3.2 Individual Stability

The concept of individual stability of coalition structures is a keynotion in thehedonic games lit-
erature [Dréze and Greenberg, 1980b, Bogomolnaia and Jackson, 2002, Aziz et al., 2016b]. In
an individually stable (IS) partition, no agent prefers to unilaterally deviate into a new coalition
and, at the same time, is welcomed by this new coalition.

Definition 24. (IS-deviation in HUGs) In a HUG G = ⟨N ;≿; v⟩, given a partition π, an agent
i can IS-deviate into a coalition S ∈ π ∪ {∅} if it holds that S ∪ {i} ≻i π(i) and for each j ∈ S
it holds that S ∪ {i} ≿j S.

A partition π is individually stable if no agent can IS-deviate. By its definition, individ-
ual stability includes individual rationality, i.e. if a partition satisfies individual stability then it
satisfies individual rationality (in the hedonic sense) as well. For pure hedonic games, comput-
ing or even deciding the existence of IS partitions is NP-complete [Ballester, 2004]; thus, since
considering solely the hedonic aspect of a HUGwith arbitrary hedonic preference relations the
game coincides with a pure hedonic game, it is straightforward that it is NP-complete to find an
individually stable partition in a HUG.

For TU games there is no ‘individual stability’ solution concept;2 however, in a utility game
2One could, of course, consider the special case of the core [Chalkiadakis et al., 2011] where an agent forms a

profitable deviating coalition by joining an existing one or by staying alone.
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an IS-deviation can be thought of as follows: given a partition π, an agent i can IS-deviate into
S ∈ π∪{∅} iff xi(S∪{i}) > xi(π(i)) and for each j ∈ Swe have that xj(S∪{i}) ≥ xj(S). Thus,
we can provide an enhanced definition for IS-deviation for HUGs as:

Definition 25. (Enhanced IS-deviation in HUGs) In a HUG G = ⟨N ;≿; v⟩, given a partition
π, an agent i can IS-deviate into a coalition S ∈ π ∪ {∅} if it holds that S ∪ {i} ≻i {i} and
xi(S∪{i}) > xi(π(i)); and also, for each j ∈ S it holds that S∪{i} ≿j S and xj(S∪{i}) ≥ xj(S).

Note that we said nothing on how to compute the payoff xi(S); one can arbitrarily set a
complete representation X : 2n → Rn, such that for every coalition S ⊆ N there is a payoff
xi(S) ∈ X for each i ∈ N .3

5.3.3 Core Stability

The strongest cooperative solution concept regarding stability is the core, the set of outcomes
where no subset of players has an incentive to deviate. The core solution concept is well-defined
and well-studied in both hedonic games [Aziz et al., 2016b] and utility-driven games
[Chalkiadakis et al., 2011]. For interest and completeness, we define the core of HUGs in a
straightforward manner.

Definition 26. (Core of HUGs) Given a hedonic utility game G = ⟨N ;≿; v⟩, a pair ⟨S, y⟩ blocks
the outcome ⟨π, x⟩ if for every i ∈ S holds S ≻i π(i) and yi > xi. The core C(G) of a HUG is
the set of all partitions π that admits no blocking pairs ⟨S, y⟩.

5.3.4 Kernel Stability

The kernel is an exclusively utility-driven games’ solution concept, defined given a coalition
structure. It was introduced in [Davis and Maschler, 1965] as a subset of the bargaining set
[Chalkiadakis et al., 2011] of a cooperative game. It consists of all outcomes where any pair of
agents are in bilateral equilibrium; that is, no player can claim a share of another player’s pay-
off. The kernel is always non-empty [Schmeidler, 1969]. Nonetheless, computing the kernel is
itself hard; [Aumann et al., 1965] proposed a set of rules for determining the kernel, but this is
inapplicable for large settings.

3We make the intuitive assumption that for every j < S we have xj(S) = 0, and xi(∅) = 0 for each i ∈ N .
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The key element for the kernel computation is the excess of a coalition S, defined as e(S, x) =
v(S) − ∑

i∈S xi, which expresses the gain / loss to the members of S if they do not accept the
payoff distribution x. The maximum surplus of player i over j, si,j(x) = maxS∈Ti,j e(S, x) where
T = {S ⊂ N |i ∈ S and j < S}, represents the maximal amount that i can gain by joining
a coalition D ∈ Ti,j, with the understanding that the other members of D are satisfied with
getting the same with their current payoff. If i outweighs j (si,j(x) > sj,i(x) and xj > v({j})),
then i can claim a portion of j’s payoff. If neither i outweighs j nor j outweighs i, then the pair
i, j is in bilateral equilibrium.

The Stearns transfer scheme [Stearns, 1968] described a payoff transfer scheme that con-
verges to the game’s kernel. This transfer scheme performs a series of k-transfers that rearrange
the payoff configuration such that each pair of agents in a coalition is in bilateral equilibrium.
Regardless, this may require an infinite number of steps. Under that realization,
[Shehory and Kraus, 1999] provided a modification that allows fast convergence, given a speci-
fied error . Both schemes transform a payoff vector to a kernel-stable one with respect to some
partition. Thus, in principle one could have a HUGG = ⟨N ;≿; v⟩, provided along with an IS
coalition structure, via the algorithms presented in Section 5.3.2; and an arbitrary initial payoff
vector x, which can then be transformed into a kernel-stable one. However, this transformation
procedure may result to a payoff configuration that is neither individually stable (under En-
hanced IS-deviation), nor even individually rational; subsequently, that would allow incentives
for deviations. We now introduce a new solution concept that helps us overcome this problem.

5.4 The IRIS Solu on Concept

In this section, we propose a novel solution concept designed specifically for the hybrid model
of HUGs. In Subsection 5.3.2, we presented an extension of the notion of individual stability
that considers utility as well. However, this enhanced version of individual stability for HUGs,
requires an explicitly ‘predefined’ payoff configuration space, a payoff configuration per each of
all possible partitions. That would be prohibitive, in terms of space, even for a small, let alone
for a large number of players. Here, we propose the novel individually rational - individually
stable (IRIS) solution concept that does not suffer from this problem. In IRIS, we have two
requirements:
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IS partitions

pvIR(G) = {π|v(S) ≥ ∑
i∈S v(i)∀S ∈ π}

All partitions

IRISpartitions

Figure 5.1: IRIS partition space

• the partition is individually stable as far as the hedonic aspect of the game is concerned,
and

• the partition is such that an individually rational payoff can potentially be provided.

In other words, we seek partitions π that satisfy the hedonic individual stability concept, and
at the same time the coalitional values are such that all players can claim a payoff that is at least
as good as what they can earn on their own; i.e., partitions that are hedonically individually sta-
ble, and partition that provide imputations (for instance, kernel-stable partitions). Such (IRIS)
partitions (may) exist in the intersection of the set of individually stable partitions and the set
of partitions where each agent can at least claim what she can earn on her own {π : v(S) ≥∑

i∈S v({i}),∀S ∈ π} as illustrated in Figure 5.1. Let us denote the set of individual stable par-
titions as IS(G), and the set {π : v(S) ≥ ∑

i∈S v({i}),∀S ∈ π} as (potentially v-Individually
Rational) pvIR(G). To formally define IRIS, let us first define the concept of v-rationalizing
deviation:

Definition 27. (v-Rationalizing Deviation) Given a partition π of N , a deviation of agent i
from T ∈ π into S ∈ π ∪ {∅} is called v-rationalizing if v(T ) < ∑

j∈T v({j}) and v(S ∪ {i}) ≥
v({i}) +∑j∈S v({j}).

We can now exploit Definition 24 and Definition 27 to construct the formal expression of
IRIS deviation, and the characterization of IRIS partitions:
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Definition 28. (IRIS-deviation) Given a HUG G = ⟨N ;≿; v⟩ and a partition π, agent i can
IRIS-deviate into S ∈ π ∪ {∅}if

• i can IS-deviate into S; or

• i can perform a v-rationalizing deviation into S.

Definition 29. (IRIS partition) Given a HUG G = ⟨N ;≿; v⟩, a partition π is individually
rational-individually stable if no agent can IRIS-deviate. That is,

(1) �i, S ∈ π ∪ {∅} s.t. S ∪ {i} ≻i π(i), and S ∪ {i} ≿j S,∀j ∈ S; and
(2) ∀i ∈ N it holds that v

(
π(i)

)
≥ ∑

k∈π(i) v({k}).

The second condition in Definition 29 ensures that in an IRIS partition, there can exist
a payoff configuration that is individually rational. In utility-driven games the payoff vector
results from the distribution of each coalition’s utility to its members. In IRIS partitions, by
allowing only the coalitions that can afford to reward theirmemberswith a payoff at least as good
as their individual utility, we can guarantee that there exists at least one payoff configuration that
is individually rational. We clarify that we slightly abuse the term ‘individual rationality’, since
we do not consider any payoff vector in particular, but coalition structures that can potentially
lead to an individually rational payoff configuration.

Note that we are able to define and use the IRIS solution concept exactly due to the hybrid
nature of HUG settings. That is, we could not have had the IRIS solution concept in a pure
utility-driven game, since the notion of individual stability is not defined in such settings; nor
could we have had it in pure hedonic games where the notion of utility is not defined. Notice,
however, that by dropping the first condition of Definition 29 we would be able to consider
a special case of individual rationality in pure utility-driven settings where condition (2) holds.
At the same time, by dropping the second condition we would end upwith the concept of indi-
vidual stability in pure hedonic games; as such, Definition 29 generalizes the individual stability
concept to HUGs. Notice also that IRIS is a strengthening of individual stability: every IRIS
partition is always IS, but the opposite is not necessarily true.

Complexity of IRIS InAlgorithm 4we provide anO(n) algorithm that checks if an agent can
IRIS-deviate into a coalition.

87



Hedonic Games in the Real World: Machine Learning and Theoretical Extensions

Name: isInIRIS
Instance: A HUGG = ⟨N ;≿; v⟩, and a partition π
Question: Is π in IRIS(G)?

Name: ExistsIRISPartition
Instance: A hedonic utility gameG = ⟨N ;≿; v⟩
Question: Is there a π that is an IRIS partition?

Figure 5.2: Two IRIS-related decision problems.

Algorithm 4: CanIRIS-Deviate(i,S,≿,v,π)
1 if( CanIS-Deviate(i,S,≿,π) ): return True;
2 current_value← ∑

k∈π(i) v(k);
3 if( current_value ≥ v(π(i)) ): return False;
4 new_value← ∑

j∈S v(j) + v(i);
5 if( new_value ≥ v(S ∪ {i}) ): return True;
6 return False;

Algorithm 5: checkIRISPartition(G,π)
1 for ( every existing coalition S ∈ π ):
2 for ( every agent i ∈ N \ S ):
3 if( CanIRIS-Deviate(i,S,≿,v,π) ): return False;
4 return True;

Proposition 1. The problem isInIRIS (Fig. 5.2) is decidable in polynomial time.

Proof. Go through Algorithm 5. The conjunction of the for-loops in lines 1 and 2 executes at
most n2 times, while for checking CanIRIS-Deviate(i,S,≿,v,π) we need at most 3 · n compu-
tations (O(n)). Thus we can check in polynomial time, O(n3), whether a given partition of a
HUG is IRIS or not. □

Even though it is easy to decide if a given partition is IRIS, it is also essential to solve the
decision problem ExistsIRISPartition (see Figure 5.2). To answer this problem we need to
either find a partition that satisfies conditions (1) and (2) of Definition 29, or decide that there
is no such partition. However, in general, these two conditions are completely unrelated; that
is, since they refer to different aspects of a HUG (the former to the hedonic aspect, while the
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latter to the utility aspect), having information that regards the first condition, provides us with
no information regarding the second one, and vice versa. Therefore, a machine that decides
the ExistsIRISPartition problem needs to solve two unrelated, separate problems, and come
with a partition that is an answer to both problems or halt if there is none such partition. Since
one of the problems is NP-complete [Ballester, 2004], ExistsIRISPartition is NP-hard. We
can also explicitly prove Proposition 2 below:

Proposition 2. It is NP-hard to find an IRIS partition in a HUG G = ⟨N ;≿; v⟩ with arbitrary
hedonic preferences.

Proof. Suppose we have a hedonic game ⟨N,≿⟩ with arbitrary preference relations, exactly as
the model considered in [Ballester, 2004]. Add to this game a superadditive utility function
v to get a HUG G = ⟨N ;≿; v⟩. Due to superadditivity, condition 2 of Definition 29 always
stands; thus a partitionπ is IRIS if and only if it satisfies condition 1 of Definition 29, i.e. if and
only if it is IS. However, Ballester showed in [Ballester, 2004] that it is NP-complete to find an
IS partition in a game with arbitrary hedonic preferences. Therefore, it is NP-hard to find an
IRIS partition with arbitrary preferences. □

5.4.1 A randomized transi ons scheme to find IRIS par on

In Proposition 2 we showed that it is NP-hard to build an IRIS partition. However, suppose
we have an oracle which informs us that IRIS(G) is non-empty for some HUGG = ⟨N ;≿; v⟩.
Therefore, we can use a transitions scheme to reach a point in IRIS(G).

We begin with a random partition; if this partition is IRIS we stop. Otherwise, we succes-
sively perform IRIS deviations. In the case we have stuck in a loop, i.e., the partition transit
from pointA to point B and vice versa, we perform a random deviation. At some point follow-
ing this procedure we will reach the IRIS partition, however this may take infinite number of
steps. Nonetheless, given that the oracle verifies the IRIS non-emptiness, the time needed for
the transitions scheme to converge into an IRIS partition is highly dependent on the sizes of
the IS(G) and pvIR(G) sets, and the proportion of their intersection with respect to the total
area of partitions (see Figure 5.1). In many settings where IRIS partition exists, we expect that
this time will not be prohibitive in practice, though this is to be verified via simulations within
specific environments.
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1. Get a random partition π
2. If π is IRIS: stop
3. Repeat:

a) Perform an IRIS-deviation
b) If π is IRIS: stop
c) If π has stacked in a loop: perform a random deviation

Figure 5.3: A randomized transitions scheme.

5.5 Instan a on of HUGs with Trichotomous Preferences

So far within the HUGs framework, we considered the hedonic preferences to be arbitrary.
However, here we present a modification of the well-known dichotomous hedonic preferences4

that will allow us to obtain certain algorithmic results for solution concepts inHUGs. Dichoto-
mous preferences were introduced in [Aziz et al., 2016a] to suggest that for each player the re-
lated coalition space can be partitioned into two disjoint subsetsN+i andN−i . In our trichoto-
mous preferences modification we now explicitly require that each player i:

• strictly prefers all coalitions inN+i to singleton,

• strictly prefers singleton to all coalitions inN−i , and

• is indifferent about coalitions in the same subset.

That is, for some S, T ∈ Ni we have S ≻i {i} ≻i T if and only if S ∈ N+i and T ∈ N−i ,
and S ∼i T if and only if S, T ∈ N+i or S, T ∈ N−i . Also, ∀i Ni = N+i ∪ {i} ∪ N−i . The
trichotomous preferencesmodel is an intuitive paradigm that holds inmost real life settings; for
instance, consider work groups for a school project assignment, a student would prefer to be in
a groupwith her friends than being alone, and in the same timewould prefer being alone rather
in group of people she dislikes.

Therefore, if we adopt trichotomous hedonic preferences, we can build on [Peters, 2016]
and obtain an IS partition inO(n3) using Algorithm 6.

4So far, in this thesis we have refer to Games with Dichotomous Hedonic Preferences as Boolean Hedonic
games.
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Algorithm 6: IS Partition(N ,≿,v)
1 π← ∅;
2 ∀i ∈ N assign i into {i};
3 while ( there are agents that can IS-deviate ):
4 for ( every agent i that is singleton ):
5 for ( every existing coalition S ∈ π ):
6 if( CanIS-Deviate(i,S,≿,π) ):
7 assign agent i into coalition S;
8 return π;

Algorithm 7: CanIS-Deviate(i,S,≿,π)
1 if( S ∪ {i} is strictly preferable to i than her current coalition π(i) ):
2 for ( every agent j ∈ S ):
3 if( S is strictly preferable to j than coalition S ∪ {i} ):

/* i cannot IS-deviate into S since j objects this deviation. */

4 return False
/* At this point there is no objection, thus i can IS-deviate into S. */

5 return True
6 return False

Having inmind, that forHUGswith trichotomouspreferences the IS(G) is non-empty, and
that we can reach an IS partition in polynomial time, along with the fact that the pvIR(G) is
always non-empty for anyHUG, the immediate question arises: for aHUGwith trichotomous
hedonic preferences, is the intersection IRIS(G) = IS(G) ∩ pvIR(G) non-empty? The answer
is we have no guarantees that even under these simplifying assumptions an IRIS partition exists.
For instance consider example 15.

Example 15. Consider a 4-player HUG with trichotomous preferences such that:
N+1 =

{
{1, 2}, {1, 3, 4}, {1, 2, 4}

}
,N+2 =

{
{2, 4}, {1, 2, 4}, {1, 2, 3, 4}

}
,N+3 =

{
{1, 3, 4}, {1, 3}

}
,

N+4 =
{
{1, 4}, {2, 4}, {1, 2, 4}, {1, 3, 4}

}
, and v({i}) = 2 ∀ i ∈ N, v(S) = |S | ∀ S ⊆ N :

|S | = 2, 3, and v(N ) = 8. According to these preferences, the individually stable partitions are
the following:

IS(G) =
{{
{1, 2, 4}, {3}

}
,
{
{1, 3, 4}, {2}

}}
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while according to v the potentially individually rational partitions are the following:

pvIR(G) =
{{
{1}, {2}, {4}, {3}

}
,
{
{1, 2, 3, 4}

}}
.

Therefore, IRIS(G) ≡ IS(G) ∩ pvIR(G) = ∅, there is no IRIS partition even if the setting is a
simplified HUG with trichotomous preferences.

Now, if the oracle verifies that for aHUGG = ⟨N ;≿; v⟩with trichotomous preferences the
IRIS(G) is non-empty, thenwe canuse the aforementioned transition scheme (Subsection 5.4.1)
and reach an IRIS partitionwhere every coalition is individually stable in terms of hedonic pref-
erences, and also has the ‘capability’ to provide an individually rational payoff vector. How-
ever, we said nothing so far about the agent’s actual payoffs. One could use the classic trans-
fer scheme proposed by [Shehory and Kraus, 1999], and build a kernel-stable configuration for
any IRIS coalition structure. Nonetheless, as pointed out by [Bistaffa et al., 2017], the Shehory-
Kraus transfer schemewill become eventually inefficientwhen thenumber of agents is increased.
In [Bistaffa et al., 2017] Bistaffa et al. overcome this problem by not considering infeasible coali-
tions. In [Shehory and Kraus, 1999] the authors also discuss about predefining an acceptable
range of sizes for coalitions in order to achieve polynomial complexity. Similarly, in a HUG we
can reduce the coalitional search space by disregarding infeasible coalitions.

Although in general we may not be able to perform any pruning, under the assumption of
trichotomous hedonic preferences we can discard infeasible coalitions.

Definition 30. (Feasibility via trichotomous properties) Given a HUGG = ⟨N ;≿; v⟩, a coalition
S ⊆ N is infeasible if and only if for at least one i ∈ S it holds that S ∈ N−i , otherwise S is
feasible:

S infeasibletrich ⇔ ∃ i ∈ S : S ∈ N−i ,
S feasibletrich ⇔ ∀i ∈ S : S ∈ N+i or |S | = 1.

According toDefinition 30, we consider as feasible coalitions only those that are hedonically
immune to deviations. That is, any coalition S ∈ N−i for some i ∈ S, is unstable since agent i
would prefer to deviate into a singleton. Thus, if a coalition is non-acceptable for at least one of
its members, then this coalition is unstable, and therefore there is no benefit in being included
in the computations of the kernel. Note that by disregarding infeasible coalitions we lose no
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individually stable partitions, i.e., we lose no coalitions that canbepart of any individually stable
partition:

Proposition 3. Given an IS partition π of a HUG G = ⟨N ;≿; v⟩, � S ∈ π s.t. S ∈ N−i for
some i ∈ S.

Proof. The hedonic preferences in a HUG are defined according to trichotomous preferences
model. That is for any agent i ∈ N it holds that S ≻i {i} ≻i T if and only if S ∈ N+i and
T ∈ N−i ; in other words, each agent i strongly prefers to be member of any coalition in the set
N+i rather than being alone, but also she strongly prefers to be alone rather than being in any
coalition in the setN−i . Now, assume there is a coalition S ∈ π s.t. S ∈ N−i for some i ∈ S. As
indicated above, this particular agent i, strongly prefers to be on her own instead of being in S,
motivating i to deviate into an empty coalition ({}). This means thatπ is not stable. Therefore,
in a individually stable HUG partition π, there is no coalition S ∈ π s.t. S ∈ N−i for some
i ∈ S. □

Since IRIS partitions are IS, and pruning is not related to their pvIR(G) component, we
lose no IRIS partitions either.

Proposition 4. Given an IRIS partition π of a HUG G = ⟨N ;≿; v⟩, � S ∈ π s.t. S ∈ N−i for
some i ∈ S.

Wemay also consider the following simple setting: the trichotomous preferences over coali-
tions are actually lifted preferences over players. That is, let each i ∈ N develops an “empathy”
value eji towards any other player j ∈ N , expressing i’s perception as to how well it can collabo-
rate with j; and a coalition S ⊆ N \ {i} is placed inN+i if a function f (S, ei)meets a threshold ti.
This function f can be a summation of values eji over the j in the coalition (as in Additively Sep-
arableHedonic Games [Aziz et al., 2016b]), or average of these values (as in Fractional Hedonic
Games [Aziz et al., 2014]), or the pairwise average of these values:

f (S, e) = 1
2
·
∑
i∈S

∑
j∈S

eji + e
i
j

2
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Now, if we let each value eji ∼ N (µi, σ2i ) be Gaussian independent and identically dis-
tributed (i.i.d.) random variables, the pairwise average

f (S, e) ∼ N ( |S |
2

∑
i∈S

µi,
|S |2
128

∑
i∈S

σ2i )

is also a Gaussian random variable. Thus, using this universal (common to all agents) pair-
wise average function, we can obtain a probability bound onwhen a coalition is pruned accord-
ing to trichotomous preferences.

Proposition 5. Given a HUG G = ⟨N ;≿; v⟩, with trichotomous preferences following i.i.d.
eji ∼ N (µi, σ2i ) and the pairwise average function f (S, e), a coalition S ⊆ N is pruned with
probability:

P(S be trich-pruned) ≥ 1 −
|S | ·∑i∈S µi

2 ·maxi∈S ti
Proof. Consider feasibility according to Def. 30; we could reform the condition as follows:
S feasibletrich ⇔ f (S, e) ≥ maxi∈S{ti}. Thus, the probability of a coalition to be pruned ex-
ploiting the properties of the trichotomous preferences model, is:

P(S be trich-pruned ) = 1 − P(S feasibletrich )

= 1 − P
(
f (S, e) ≥ max

i∈S
{ti}

)
.

Now, exploiting Markov’s Inequality [Mitzenmacher and Upfal, 2005] we have that:

P
(
f (S, e) ≥ max

i∈S
{ti}

)
≤
E[f (S, e)]
maxi∈S{ti}

⇔

P
(
f (S, e) ≥ max

i∈S
{ti}

)
≤
|S |
2 ·

∑
i∈S µi

maxi∈S{ti}
⇔

1 − P
(
f (S, e) ≥ max

i∈S
{ti}

)
≥1 −

|S | ·∑i∈S µi

2 ·maxi∈S{ti}
⇔

P(S be trich-pruned ) ≥1 −
|S | ·∑i∈S µi

2 ·maxi∈S{ti}

□
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis approached the class of Hedonic Games from both a theoretical and a practical per-
spective. We provided novel theoretical extensions that allow us to model real-world scenarios
under a more realistic point of view. At the same time, we tackled the natural problem of un-
certainty within the framework of hedonic games.

Specifically, our practical contributions include studying and exploiting well-known ma-
chine learning models such as linear regression, regression with basis functions, feed forward
neural network, and probabilistic topic modeling in order to extract and discover hidden pref-
erences and collaboration patterns. We conducted a thorough experimental evaluation of the
aforementioned learning models. In the process, we developed two evaluation metrics, and de-
vised a novel interpretation method of coalitions into text documents.

Our work also resulted to a number of theoretical contributions. We provided some nat-
ural extensions on the classic framework of hedonic games: In particular, we put forward the
formal definition of Hedonic Games in Partition Function Form, a generalization of hedonic
games, inwhich each agent owns a preference relation over partitions; we extendedwell-studied
classes of hedonic games into their generalizedmodel; and studied these classes of games in their
partition function form under uncertainty. In addition, we introduced a novel hybrid class of
cooperative games, HUGs, that couples hedonic preferences with utility ones. We extended
several traditional stability concepts to the HUGs setting, via equipping them with the ability
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to cope with both utility and hedonic preferences; and proceeded to propose IRIS, a novel,
HUGs-specific solution concept that combines the key notions of individual stability and indi-
vidual rationality, and studied its computational properties. We then provided an instantiation
ofHUGs, along with a definition for characterizing a coalition’s feasibility, and used it to prune
the coalitional space in order to compute kernel-stable payoffs for IRIS partitions. Last but not
least, we provided a probability bound for pruning coalitions in HUGs.

6.2 Future Work

There are several possible extensions to this thesis.
First, there is definitely more work to be done regarding the uncertainty in hedonic games.

For instance, it would be interesting to investigate even more learning models, and evaluate
them as more or less appropriate for learning agent preferences. In addition, it would be possi-
ble to examine even more classes of hedonic games; for instance, we could evaluate the PTMs’
performance using classic ASHGs, ASHGs-PFF, BHG-PFF, etc. Further experimental work
could involve ‘tuning’ the models we have already studied, in order to better fit our problem.
Moreover, it would be interesting to examine uncertainty under a dynamic environment, that
is, with new agents arriving over time, and/or preference relations altering during interactions.

Second, our proposed generalization of hedonic games into partition function form opens
theway for their thorugh theoretical study. Specifically, it would be interesting to study stability
concepts within hedonic games in partition function form, and examine the computational
aspects of this extension.

Last but not least, our novel Hedonic Utility Games opens yet another path in the theoreti-
cal study of practical cooperative game settings. In fact, the study of the computational aspects
ofHUGshas just beganwith this thesis. One potential endeavour, interesting fromboth a theo-
retical and a practical standpoint, would be the examination of the convergence properties to an
existing point in IRIS(G), and the systematic evaluation of the corresponding convergence rate
in specific settings. In addition, one could devise ways to identify approximately IRIS-stable
partitions. Finally, it would be interesting to examine HUGs under uncertainty.
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