
Technical University of Crete

School of Electrical and Computer Engineering

Intelligent Systems Laboratory

A Multi-Modal Q-Learning Approach
using Normalized Advantage

Functions and Deep Neural Networks

Diploma Thesis by

Christos P. Petridis

Submitted in partial fulfilment of the requirements for the Diploma of
Electrical and Computer Engineer at the Technical University of Crete

August 23, 2019

To be defended publicly on Friday, 23th of August at 09:00

against the thesis committee consisting of

Associate Professor Michail G. Lagoudakis
School of Electrical and Computer Engineering

Associate Professor Georgios Chalkiadakis
School of Electrical and Computer Engineering

Professor Aggelos Bletsas
School of Electrical and Computer Engineering

This page was intentionally left blank

Abstract

Reinforcement Learning, a branch of Machine Learning geared towards the

development of Autonomous Agents, presents a rapid evolution in recent

years as a means of solving sequential decision problems. The development

of robust Deep Neural Networks has also played a crucial role to this success.

The combination of these two areas eventually led to Deep Reinforcement

Learning, a state-of-the-art field which demonstrated already a great poten-

tial and tremendous results in continuous control tasks. In order to contribute

to this effort, the present thesis investigates an extension of the Normalized

Advantage Functions (NAFs) to multi-modal representations, such as mul-

tiple quadratics and RBFs (Radial Basis Functions). More specifically, we

focus on a continuous variant of the well-known Q-learning algorithm with

experience replay, combined with the NAF representation and deep neural

networks. The original NAF representation is by design unimodal, given that

the quadratic advantage function offers only one mode, which means that loss

in performance may occur due to the inability to explore and capture com-

plex representations with multiple modes. To tackle this problem, this thesis

proposes two multi-modal representations as a simple solution. The first one

uses multiple quadratic terms, whereas the second one uses RBFs. In each

case, the formulation of the action advantage is accomplished by two different

methods. The first one uses the sum of equally weighted advantage terms,

which are derived as outputs of the neural network. The second method uses

the argmax operator over the advantage terms. Both of these methods avoid

any direct interaction with the neural network, thus making the proposed

architectures more efficient. In order to evaluate our implementation, simu-

lation tests were run on an open-source platform, called RoboSchool, which is

integrated into the broader OpenAI Gym framework, and provides different

i

environments for testing reinforcement learning algorithms. In our case, we

used six environments (pendulum, inverted pendulum, inverted double pen-

dulum, humanoid, ant, walker2d), which support different simulated robots

and consist of continuous control tasks. Our results showed a significant im-

provement in performance and efficiency of the proposed multi-modal algo-

rithm compared to the original unimodal one, nevertheless at the cost of some

increase in computation time. We observed that the outcome for each task

differs as it depends on the values of several hyper-parameters, with batch

normalization, learning rate and exploration noise being the most sensitive

ones. This thesis is a first step towards a full-scale extension to multi-modal

representations and their application to more complex environments yielding

even more robust solutions to continuous control tasks.

ii

Diplwmatik ergasÐa tou foitht

Qr stou P. PetrÐdh

me jèma

Mia Polu-Tropik Prosèggish
Q-M�jhshc mèsw

Kanonikopoihmènwn Sunart sewn
Kèrdouc kai Bajèwn Neurwnik¸n

DiktÔwn

PerÐlhyh

H Enisqutik M�jhsh (Reinforcement Learning), wc kl�doc thc Mhqanik c

M�jhshc pou prosanatolÐzetai sthn an�ptuxh autìnomwn praktìrwn, parousi�zei

mia taqeÐa exèlixh ta teleutaÐa qrìnia wc trìpoc epÐlushc problhm�twn akolou-

jiak¸n apof�sewn. H an�ptuxh axiìpistwn Bajèwn Neurwnik¸n DiktÔwn

(Deep Neural Networks) èqei epÐshc diadramatÐsei kajoristikì rìlo sthn

epituqÐa aut . O sunduasmìc aut¸n twn dÔo perioq¸n telik� od ghse sth

Baji� Enisqutik M�jhsh (Deep Reinforcement Learning), èna pedÐo teleu-

taÐac teqnologÐac pou katèdeixe dh meg�lec dunatìthtec kai axiojaÔmasta

apotelèsmata se probl mata suneqoÔc elègqou. Gia na sumb�lloume se

aut thn prosp�jeia, h paroÔsa diplwmatik ergasÐa diereun� thn epèktash

twn Kanonikopoihmènwn Sunart sewn Kèrdouc (Normalized Advantage Func-

tions - NAFs) se polutropikèc anaparast�seic, ìpwc pollapl� quadratics

iii

kai RBFs (Radial Basis Functions). Eidikìtera, esti�zoume se mia suneq

parallag tou gnwstoÔ algìrijmou Q-learning me epan�lhyh empeirÐac se

sunduasmì me thn anapar�stash NAF kai ta baji� neurwnik� dÐktua. H ar-

qik anapar�stash NAF eÐnai apì to sqediasmì thc monotropik , dedomènou

ìti h quadratic advantage function prosfèrei mìno èna mode, pr�gma pou

shmaÐnei ìti mporeÐ na prokÔyei ap¸leia apìdoshc exaitÐac thc adunamÐac ex-

ereÔnhshc kai apotÔpwshc sÔnjetwn anaparast�sewn me pollapl� modes.

Gia na antimetwpÐsei autì to prìblhma, aut h diplwmatik ergasÐa proteÐnei

dÔo polutropikèc anaparast�seic wc apl lÔsh. H pr¸th qrhsimopoieÐ pol-

lapl� quadratics, en¸ h deÔterh qrhsimopoieÐ RBFs. Se k�je perÐptwsh, h

diamìrfwsh tou action advantage epitugq�netai me dÔo diaforetikèc mejì-

douc. H pr¸th qrhsimopoieÐ to �jroisma exÐsou stajmismènwn ìrwn advan-

tage, oi opoÐoi par�gontai wc èxodoi tou neurikoÔ diktÔou. H deÔterh mèjodoc

qrhsimopoieÐ ton telest argmax p�nw stouc ìrouc advantage. Kai oi duo

mèjodoi apofeÔgoun opoiad pote �mesh allhlepÐdrash me to neurwnikì dÐk-

tuo, kajist¸ntac ètsi tic proteinìmenec arqitektonikèc apotelesmatikìterec.

Prokeimènou na axiologhjeÐ h ulopoÐhs mac, pragmatopoi jhkan dokimèc pro-

somoÐwshc se mia platfìrma anoiqtoÔ k¸dika, pou onom�zetai RoboSchool,

h opoÐa enswmat¸netai sto eurÔtero plaÐsio OpenAI Gym kai parèqei di-

aforetik� perib�llonta gia ton èlegqo twn algorÐjmwn enisqutik c m�jhshc.

Sthn perÐptws mac qrhsimopoi same èxi perib�llonta (ekkremèc, antestram-

mèno ekkremèc, antestrammèno diplì ekkremèc, anjrwpoeidèc, ant, walker2d),

ta opoÐa uposthrÐzoun diaforetik� prosomoiwmèna rompìt kai apoteloÔntai

apì probl mata suneqoÔc elègqou. Ta apotelèsmat� mac èdeixan shmantik

beltÐwsh stic epidìseic kai thn apotelesmatikìthta tou proteinìmenou po-

iv

lutropikoÔ algìrijmou se sÔgkrish me ton arqikì monotropikì algìrijmo,

wstìso me to kìstoc k�poiac aÔxhshc tou upologistikoÔ qrìnou. Parathr same

ìti to apotèlesma gia k�je ergasÐa diafèrei kaj¸c exart�tai apì tic timèc

arket¸n uperparamètrwn, me tic batch normalization, learning rate kai ex-

ploration noise na eÐnai oi pio euaÐsjhtec. H paroÔsa diplwmatik ergasÐa

eÐnai èna pr¸to b ma proc mia pl rh epèktash se polutropikèc anaparast�-

seic kai thn efarmog touc se pio sÔnjeta perib�llonta apofèrontac akìmh

pio axiìpistec lÔseic se probl mata suneqoÔc elègqou.

v

Acknowledgements

I could not imagine that this thesis would last about a year. During that

period, a lot of things happened in my life that led me to work harder than

I expected. This journey taught me to fight even if the initial plan deviates.

Hence, it is very important for me to dedicate some lines in this document

in order to thank the people that stood by my side and I finally completed

my thesis.

The first person that I would like to thank is my supervisor, Vice Rector of

TU Crete and Assoc. Professor Michail G. Lagoudakis. His guidelines, his

experiences that he shared with me and our scientific discussions from under-

graduate courses to this work helped me to gain the appropriate knowledge

to complete my Diploma Thesis.

I would also like to thank my best friends, Anastasios and Athanasios, who

have supported and encouraged me since our childhood. I also thank my

fellow students, Antonios, Konstantinos and Nikolaos, as we spent many

hours of studying, attending classes and hanging out in beautiful places in

Chania during these six years.

Especially, I would like to thank the person that was able to tolerate me

during these years; my girlfriend Anastasia. I am really grateful for her

patience, her constant support and her willingness to stand by me in good

and bad times. Thank you for making my life easier and happier!

Lastly and most importantly, I dedicate this thesis to my family, my father

Panagiotis, my mother Marianthi and my sister Charikleia, for teaching me

the meaning of strength, commitment and integrity. I owe all my successes

and achievements to you.

vi

Afier¸netai stouc goneÐc mou,

Panagi¸th kai Mari�njh.

vii

Contents

Abstract i

Acknowledgements vi

List of Tables xii

List of Figures xiii

1 Introduction 2

1.1 Thesis Contribution . 3

1.2 Thesis Outline . 4

2 Background 5

2.1 Learning . 5

2.1.1 Markov Decision Process 5

viii

2.1.2 Policies . 7

2.1.3 Reinforcement Learning 8

2.2 Artificial Neural Networks . 12

2.2.1 Network Architecture 12

2.2.2 Common Activation Functions 13

2.2.3 Optimizers . 19

2.2.4 Batch Normalization 20

2.3 The Advantage Updating Algorithm 20

3 Related Work 22

3.1 RL and DL . 22

3.2 Continuous State and Action Domains 24

3.3 Advantage Functions . 25

4 Our Approach 26

5 Implementation 29

5.1 NAF Description . 29

5.2 NAF Architecture . 30

5.3 Noise Exploration . 34

ix

5.4 Replay Buffer . 35

5.5 The Idea of Multimodularity 35

5.6 Methods and Selection . 36

5.6.1 Multiple Quadratics 37

5.6.2 Radial Basis Functions 41

6 Experimental Setup 44

6.1 Roboschool . 44

6.2 Environments . 45

6.3 Programming Language of Choice 46

6.4 TensorFlow . 47

6.5 Operating System, Hardware Specification and their Impact . 47

6.6 Code Structure . 48

7 Results 50

7.1 The Evaluation Process . 50

7.2 Parameters of the Experimentation Process 51

7.3 Neural Network Hyperparameters 52

7.4 Comparisons . 53

x

7.4.1 Baseline Agent vs Unimodal Approach 54

7.4.2 Multiple Quadratics Method 54

7.4.3 RBFs Method . 57

7.4.4 Comparison of the Weighted Technique 59

7.4.5 Comparison of the Argmax Technique 61

7.4.6 Overall Figures and Comparisons 63

8 Conclusion 72

8.1 Discussion . 72

8.2 Future Work . 73

8.3 Conclusions . 74

Bibliography 75

xi

List of Tables

6.1 List of domains. 46

7.1 Parameters of our system. Bold font indicates the most used

value of the corresponding parameter. 52

xii

List of Figures

2.1 Agent and environment interaction in RL (Sutton and Barto,

1998) . 9

2.2 Q-learning algorithm [7] . 11

2.3 Artificial Neural Network . 14

2.4 Linear Function . 14

2.5 Sigmoid(or Logistic) Function 15

2.6 Tan-h Function . 16

2.7 Softmax Function . 17

2.8 ReLU Function . 17

2.9 Leaky ReLU Function . 18

3.1 The dueling Q-network(source: [1]) 24

xiii

5.1 The Neural Network design for NAF. This Figure depicts only

the basic components of the NN. 32

5.2 The NN and its full functionality. The Figure depicts how the

outputs V, L and µ are used to form the Q-function. 33

5.3 NAF algorithm as it described in [2] 33

5.4 An instance of Swimmer task (source: OpenAI Gym) 35

5.5 A general chart that depicts what path we followed for imple-

menting our research . 37

5.6 The new architecture of NN using the technique of weights. . . 39

5.7 The new architecture of NN using the technique of argmax. . . 40

5.8 A univariate Gaussian distribution. 42

5.9 A multivariate Gaussian distribution. 43

6.1 Graphical depictions of the six Roboschool domains we used. . 49

7.1 Performance of the unimodal approach vs a random agent.

The faded color depicts the average raw reward that the agents

achieved in every episode. 55

7.2 Performance of the agent using Multiple Quadratics method.

The faded color depicts the average raw reward that the agents

achieved in every episode. 56

xiv

7.3 Performance of the agent using RBFs method. The faded

color depicts the average raw reward that the agents achieved

in every episode. 58

7.4 Performance of the agent using weights in Multiple Quadratics

and RBFs. The faded color depicts the average raw reward

that the agents achieved in every episode. 60

7.5 Performance of the agent using argmax in Multiple Quadratics

and RBFs. The faded color depicts the average raw reward

that the agents achieved in every episode. 62

7.6 The performance of all approaches applied to Pendulum envi-

ronment. 64

7.7 The performance of all approaches applied to InvertedPendu-

lum environment. 66

7.8 The performance of all approaches applied to InvertedDou-

blePendulum environment. 67

7.9 The performance of all approaches applied to Ant environment. 69

7.10 The performance of all approaches applied to Humanoid envi-

ronment. 70

7.11 The performance of all approaches applied to Walker2d envi-

ronment. 71

xv

Acronyms and Abbreviations

2D — Two Dimensional

3D — Three Dimensional

AI — Artificial Intelligence

ANN — Artificial Neural Network

CNN — Convolutional Neural Network

DL — Deep Learning

DNN — Deep Neural Network

DRL — Deep Reinforcement Learning

MDP — Markov Decision Process

NAF — Normalized Advantage Function

NN — Neural Network

OU — Ornstein-Uhlenbeck

RBF — Radial Basis Function

RL — Reinforcement Learning

1

Chapter 1

Introduction

In recent years, Artificial Intelligence (AI) is a field that has captured our

attention due to its revolutionizing impact in our lives. One of its goal is

to create fully-automated agents that interact with the environment to learn

optimal behaviours and to make the best decisions. The implementation of

such systems is neither easy nor quick. Instead, it requires a lot of time and

effort to build reliable systems which must be responsive and learn effectively.

In this context, Reinforcement Learning (RL), as a mathematical framework

for autonomous learning, has the potential for great success [3]. RL refers

to algorithms whose goal is to learn how to maximize their returns through

trial and error in sequential decision problems; for example, get the maxi-

mum winning points in a game over many actions. The rapid evolution of

deep learning led deep reinforcement learning (DRL) to achieve great success

in problems highly challenging. One of the characteristics of DRL is that the

deep neural nets represent value and policy functions thus many DL methods

can easily be used. For example, some algorithms such as deep Q-network

(DQN) [21] and trust region policy optimization (TRPO) [42] have achieved

scores that approximate human-level performances. Hence, these algorithms

tend to become the core of artificial intelligence.

However, a gap is observed when applying DRL methods and their theory

despite the fact that they have demonstrated tremendous success empirically.

2

More specifically, the majority of theoretical work related to reinforcement

learning refers to state and action spaces which are finite and sometimes

focuses on cases which present a linear value function. Under these cir-

cumstances, linear regression and convex optimization are methods that can

easily explain reinforcement learning from statistical and algorithmic point

of view. Instead, in deep neural networks which are nonlinear function ap-

proximators, it is extremely hard to analyse the theoretical perspective of

reinforcement learning as it requires to solve a nonconvex statistical opti-

mization problem.

The acquisition of new deep learning tools in combination with the need

to make robust reinforcement algorithms or to evolve the old ones led the

community to pay attention to the field of deep reinforcement learning. The

problem of applying the Q-learning algorithm to stochastic domains, i.e. to

solve continuous control tasks with high-dimensional action spaces, was an

interesting challenge which led to the NAF [2] algorithm. Based on that, we

took a step further and tried to extend this algorithm so as to be able to

exploit its full functionality. To achieve this, we approached this algorithm

from a different perspective and we focused on importing the idea of multi-

modularity. To date, this approach has not been explored sufficiently thus

we decided to delve more into this problem.

1.1 Thesis Contribution

This work proposes an idea on how to approach and implement multimodal

representations. The basic idea was to reimplement, extend and test new

multi-modal representations on the existing NAF algorithm in order to seek

an optimal mode and not to collapse to the first one it finds. We need to point

out that this thesis has an educational direction as all of the experiments were

done under laboratory conditions and are not tested on real physical systems.

The basic aim was to give the opportunity to one who is interested in this

field to delve more into our proposed idea, to get in touch with an aspect of

deep reinforcement learning and, why not, to come up with new, more robust

3

and state-of-the-art techniques.

1.2 Thesis Outline

The structure of this thesis is as follows: In Chapter 2 we will refer to the

essential theoretical background regarding Reinforcement Learning and its

policies, the Markov Decision Process, the architecture of the Neural Net-

works and their implementation and the Advantage Updating algorithm. In

Chapter 3 we will discuss in detail the development in the fields of Reinforce-

ment Learning and Deep Learning and we will provide information about the

related work undergoing in continuous state and action spaces and the devel-

opment of the advantage functions. In Chapter 4 we will provide a detailed

analysis of how we approach our problem, how to choose our methods and

what our principal idea was. In Chapter 5 we will refer to the methods we

chose and we will explain in detail the process of their implementation. In

Chapter 6 we will describe the environments and the software platforms that

we used in order to test and evaluate our methods. In Chapter 7 we present

in detail the results of our work while in Chapter 8 we will discuss the im-

portance of our results, we will propose some ideas for future work and we

will cite the conclusions of this work.

4

Chapter 2

Background

2.1 Learning

2.1.1 Markov Decision Process

A Markov Decision Process (MDP) is a discrete-time mathematical mod-

elling framework for decision making, particularly useful when the outcome

of a process is in part a result of the agents actions and in part random. They

have found extensive use in areas such as economics, control, manufacturing,

and RL.

A MDP can be described as a 5-tuple (S,A, P,R, γ), where:

• S = s1, s2, . . . , sn is the finite state space of the process. The state s is

a description of the status of the process at a given time.

• A = a1, a2, . . . , am is the finite action space of the process. The set of

actions are the possible choices an agent has at a particular time.

• P is a Markovian transition model, where P (s, a, s′) is the probability

of making a transition to state s′ when taking action a in state s. A

5

Markovian transition model means that the probability of making a

transition to state s′ when taking action a in state s depends only on

s and a and not on the history of the process.

• R is the reward function (real number) of the process. It is Markovian

as well and can be the instant or the expected instant reward (for

stochastic rewards) at each time step. The expected reward R for a

state-action pair (s, a), is defined as:

R(s, a) =
∑
s′∈S

P (s, a, s′)R(s, a, s′)

• γ ∈ (0, 1] is the discount factor. When γ = 1 a reward retains its full

value independently of when it is received. As γ becomes smaller, the

importance of rewards in the future is diminished exponentially by γt.

A MDP is often augmented to include also D as (S,A, P,R, γ,D), where:

• D is the initial state distribution. It describes the probability that each

state in S will be the initial state. In some problems most states have

a zero probability, while few states (possibly only one) are candidates

for being an initial state.

In a MDP, the optimization objective is to maximize (or minimize) the ex-

pected total discounted reward, which is defined as:

Es∼D;at∼?;st∼P

(
∞∑
t=0

γtrt | s0 = s

)

through appropriate action choices at each time step.

Bellman Equation

The goal of an agent is to get the highest expected reward from any state it

may be located in. In order to succeed, the optimum value function must be

6

achieved, i.e. to maximize the sum of cumulative rewards [4].

Using the Bellman equation, the state value function can be split in two

parts: an immediate reward and a discounted value annotated Rt+1 and

γGt+1 respectively.

V (s) = E[Gt | St = s] = E[Rt+1 + γRt+2 + γ2Rt+3 + . . . | St = s]

= E[Rt+1 + γ(Rt+2 + γRt+3 + . . .) | St = s]

= E[Rt+1 + γGt+1 | St = s]

= E[Rt+1 + γV (St+1) | St = s]

According to the above equation, the state-action value function Q can be

defined as:

Q(s, a) = E[Rt+1 + γQ(St+1, At+1) | St = s, At = a]

2.1.2 Policies

The term policy refers to the process of mapping states to actions. A policy

π defines the response, which may be either deterministic or stochastic, of an

agent in the environment for any state and it has the ability to completely

determine the agent’s behaviour. Thus, π(s) is the action chosen by the

agent, following the policy π.

In addition, there is a kind of policy that yields the highest expected utility.

This policy is called optimal policy π∗. This policy targets to maximize the

expected total discounted reward over the entire state space and under all

conditions. It is known that for every MDP there exists at least one optimal

policy. But this does not mean that this policy is unique. Hence, equal

expected total discounted reward can be produced through different actions.

To sum up, the definition of state-action value function Qπ(s, a) for a policy

7

π is shown below

Qπ(s, a) = Eat∼π;st∼P

(
∞∑
t=0

γtrt | s0 = s, a0 = a

)

and indicates, over all possible combinations of states and actions, the ex-

pected, discounted total reward when action a is taken at state s by following

the policy π.

2.1.3 Reinforcement Learning

Reinforcement Learning is the procedure of learning in an environment by

interacting with it [5, 3, 6]. The agent usually does not know anything about

neither the environment -as it does not have any model of the underlying

MDP- nor what the results of its actions are. On top of that, the possibility

of a stochastic environment leads the agent to yield different outcomes for the

same situation. Thus, RL is considered as the third tier in the field of machine

learning due to the fact that there is no teacher to give information about

good or bad behaviours as it happens in supervised learning whereas the goal

in unsupervised learning is to find similarities and differences between data

points.

In this context, the goal of an autonomous agent is to learn how to maximize

the cumulative reward over time derived from the consequences of its actions.

Usually, this reward is discounted because when it is obtained in early stages,

it is considered more valuable than a later one. This can be considered as a

measure for the agent to find a quick solution and not to waste time in states

that provide negative rewards.

In RL, there are two related problems: Prediction and Control. As far as

prediction is concerned, the main goal is to find a way to predict the total

reward given a fixed policy. However, in control problems, the goal of the

agent is to learn how he can maximize the total reward by finding a good

policy. It is often to see these two problems together, as the prediction

algorithm tries to evaluate a policy whereas the control algorithm improves

8

it.

In figure 2.1, a typical framing of a RL scenario is depicted: an agent receives

the state and the reward derived from the previous state transition. Based

on these, the agent takes an action and interacts with the environment.

The environment receives the action, returns the new state and the new

reward to the agent and this process is executed repeatedly.

Figure 2.1: Agent and environment interaction in RL (Sutton and Barto,
1998)

Main Elements of RL

A RL agent could consist of one or more of the following elements:

• Policy: π indicates how an agent behaves. More specifically, it is a

function that maps each state to an action, such that:

π : S → A

where

S : state space

and

A : action space

Further, a policy function can be either Deterministic (At = π(st)) or

Stochastic (π(a | s) = P [at = a | st = s])

9

• Return: As γ is the discount factor of future rewards, the return Gt,

which is also called expected total discounted reward at step t, is given

by:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
m=0

γmrt+m+1, γ ∈ (0, 1]

Model-free RL

Model in reinforcement learning is often refer to the transition dynamics of

the environment:

p(s′, r | s, a) ∀s, a

In general, model-free means that the agent tries to maximize the expected

reward only from real experience, without a model/prior experience. After

taking an action, it does not know which state it will be in but it matters

only for the reward associated with that state. More specifically, next states

and available actions are only observed based on what the agent experi-

ences. Model-free methods are generally less computational-heavy compared

to model-based methods as they try to obtain the optimal policy for the

given task and not to learn the entire dynamics of the environment.

Q-learning

Q-learning [7] is a model-free, off-policy algorithm. The use of this algorithm

can be either in an online or offline setting. Its main function is based

on samples of the form (s, a, r, s′) so as to estimate the state-action value

function of an optimal policy. Each sample is a minimal piece of agent-

environment interaction; s is a state experienced by the agent at some time

step, a is the action chosen and executed by the agent in that state, r is

the reward that was received during the transition, and s’ is the next state

observed at the next time step. As it is showed below, the difference update

10

equation is:

Q(a, s) = Q(a, s) + α[R(s) + γmax
a′

Q(a′, s′)−Q(a, s)]

where α: is the learning rate which determines to what extent newly acquired

information overrides old information.

The algorithm’s advantage is the limited computational demands at every

step, whereas its drawback is the large amount of required steps so as to

converge. However, under uncertain conditions, it allows an agent to act op-

timally by using an action-value representation that it has learned, satisfying

the Markov property. Figure 2.2 depicts the Q-learning algorithm.

Figure 2.2: Q-learning algorithm [7]

11

2.2 Artificial Neural Networks

Artificial Neural Networks (ANN) or Neural Networks (NN) are computing

systems vaguely inspired by the biological neural networks that constitute

the brain. Such systems ”learn” to perform tasks by considering examples,

generally without being programmed with any task-specific rules. An ANN

is based on a collection of connected units or nodes called artificial neurons,

which loosely model the neurons in a biological brain. Each connection, like

the synapses in a biological brain, can transmit a signal from one artificial

neuron to another. An artificial neuron that receives a signal can process it

and then signals additional artificial neurons connected to it.

2.2.1 Network Architecture

A very simple NN could be considered as a linear transformation of some

data points X:

X1 = WX +B

When the values of some column in X affect all the values in the same col-

umn in X1 then the input layer X and the layer X1 are said to be fully

connected. As it is described above, the convention of characterizing NN

with layers has its origins in physical neurons as they are arranged in lay-

ers. The aforementioned transformation can be implemented only in linear

transformations. Thus, learning non-linear functions requires the addition of

a non-linear activation function:

X1 = f(WX +B)

12

When learning is about more complex functions, transformations can be

recursively stacked:

X2 = f(W1X1 +B1)

. . .

Xk+1 = f(WkXk +Bk)

In the context of an optimization algorithm, the function used to evaluate

a candidate solution is referred to as the objective function. Typically, with

neural networks, we seek to minimize the error. As such, the objective func-

tion is often referred to as a cost function or a loss function and the value

calculated by the loss function is referred to as simply the ”loss”.

More specifically, a loss function is a function that maps a set of parameter

values for the network onto a scalar value that indicates how well those pa-

rameter accomplish the task the network is intended to do. The data are often

the input in the NN with the corresponding target values. This characterizes

the error and leads to the desired behaviour of the NN. It is easy to find the

loss function as all parts are differentiable and thus, its derivatives can be cal-

culated with respect to all the parametersW,W1, . . . ,Wk and B,B1, . . . , Bk.

Knowing about that, we can minimize the loss function using the gradient de-

scent by an effective way called back-propagation [8]. As far as the structure

of the NN is concerned, the first layer which is the X is commonly referred as

input layer, the last layer as the output layer and all the other intermediate

layers are called hidden layers. In Figure 2.3, the architecture of an ANN is

depicted.

2.2.2 Common Activation Functions

In a NN, the purpose of an activation function is to redefine one node’s

output and to map output values in certain intervals which depends on what

activation function is used.

13

Figure 2.3: Artificial Neural Network

Linear function

The function is a line or linear as shown in Figure 2.4. Therefore, the output

of the functions will not be confined between any range. It does not help

with the complexity or various parameters of usual data that is fed to the

neural networks whereas its range is between (−∞,∞). The equation is:

φ(z) = cz, c : constant

Figure 2.4: Linear Function

14

Sigmoid function

The sigmoid function curve looks like a S-shape, as shown in Figure 2.5. The

main reason why we use sigmoid function is because it produces values in the

interval [0, 1]. Therefore, it is especially used for models which require the

prediction of the probability as an output. The drawback of this function is

that it can cause a NN to get stuck during training time.

φ(x) =
1

1 + e−x

Figure 2.5: Sigmoid(or Logistic) Function

Tan-h function

The tanh (or hyperbolic tangent) function is also like sigmoid but it acts

better. The range of the tanh function is between (−1, 1). As Figure 2.6

shows, tanh is also sigmoidal (s-shaped). The advantage of this function is

that the negative inputs will be mapped truly negative and the zero inputs

15

will be mapped near zero.

φ(x) =
2

1 + e−2x
− 1

Figure 2.6: Tan-h Function

Softmax function

For classification networks, a very common function that is used in the output

layer is the softmax function as shown in Figure 2.7. A basic property of the

softmax is that all output values will be mapped in the range [0, 1] and sum

up to one, making it an ideal choice for different classes or categories to be

interpreted as probabilities. The mathematical definition for a set x1, . . . , xK

is shown below:

softmax(xk | x1, . . . , xK) =
exk

K∑
i=1

exi

16

Figure 2.7: Softmax Function

ReLU(Rectified Linear Units) function

To date, the ReLU function, shown in Figure 2.8 is the most common activa-

tion function since it is used in almost all the CNNs or DL. When the input

is below 0, the linear unit with the rectified output is 0 whereas if the input

is greater than 0, the result equals the input. However, the disadvantage is

that any negative input given to the ReLU activation function outputs into

zero, which means that the resulting graph is affected because the negative

values are not mapped appropriately. The mathematical expression is:

φ(x) = max(0, x)

Figure 2.8: ReLU Function

17

Leaky ReLU

The Leaky ReLU activation function, shown in Figure 2.9, is very similar

to the ReLU but it has one difference; the negative from the inputs are

replaced by a multiple of the input with a small constant factor α. In this

way, this activation function can solve the ”dying ReLU” problem as it is

called, setting the range of Leaky ReLU in (−∞,∞). The mathematical

expression is shown below:

φ(x) =

x, if x > 0

αx, otherwise

Figure 2.9: Leaky ReLU Function

In general, a neural network without an activation function is essentially

just a linear regression model. The activation function does the non-linear

transformation to the input making it capable to learn and perform more

complex tasks. For instance, if there is not a non-linear activation function,

the network will behave as having a single layer, no matter how many layers

it actually has.

In addition to the aforementioned, some activation functions have the ability

to tackle the problem of the vanishing gradient. In other words, this problem

occurs when the gradient has so small values in prior layers of a deep neural

18

network that finally does not have significant improvement in the weight

values of the earlier layers.

2.2.3 Optimizers

A common method used for optimizing neural networks is called Adam [9].

The estimation of first and second order of the gradients gt = ∇θtf(θt−1)

gives the ability of updating the parameters of the loss function f(θ). The

current timestep is annotated with the letter t and its initial value is equal

to one. Its use helps to bias-correct the estimation of first and second order:

mt = β1mt−1 + (1− β1)gt

ut = β2ut−1 + (1− β2)g2
t

E[g] ≈ m̂t =
mt

1− βt1

E[g2] ≈ ût =
ut

1− βt2
Here, β1, β2 ∈ [0, 1) are hyper parameters. The updates are based on a step

size α according to:

θt = θt−1 −
m̂t√
ût − ε

, ε > 0

Adam could be considered as a generalization of RMSProp, setting β1 = 0

[10]. This means that the estimation of the second order is used only. Such

an optimizer has successful implementation on training on-policy algorithms

[11]. Some other commonly optimizers used earlier include Adadelta [12],

Adagrad [13] and momentum [14].

19

2.2.4 Batch Normalization

It is known that the weights of a layer take different values during the train-

ing time, thus next layers have to adjust to the changes. To be more specific,

any layer that comes next, needs to incorporate these changes, a process

known as internal covariance shift. A simple solution to this problem is the

use of normalization layers, called batch normalization [15]. The purpose of

these layers is to bleach the activation functions of the previous layer. This

process is done by element-wise subtraction of the mini-batch mean and di-

vide by the square root of the variance. For every mini-batch the statistics

are computed, which is considered as a regularizer and in some cases, there

is no need for dropout. According to the authors, this happens because the

representation of one sample will be shifted independently relative to the

other samples of the mini-batch. Sometimes, a problem can occur when

bleaching the outputs of a previous layer because it may lead to a decrease

on what the next layer can represent. For this problem to be overcome, the

authors proposed a process where parameters will be trained so as to ensure

that the normalization layer, in case it is needed, will produce the identity

function. During inference, the process of normalization is done on popu-

lation estimates of the mean and variance. These population estimates are

inferred using running mean and variance estimates attained during training.

The use of batch normalization, in many cases, improved the test errors in

state-of-the-art neural networks.

2.3 The Advantage Updating Algorithm

The use of advantage updating is a great tool for reinforcement learning in

continuous time. The advantage updating algorithm is placed among other

reinforcement learning algorithms and it stores two types of information.

Firstly, the value V (s) is stored for every state s which represents the total

discounted expected return, starting in state s and taking optimal actions.

Secondly, the advantage A(s, α) is stored for every state s and action α.

20

This value shows to what extent the expected total discounted reinforcement

is increased when an action α has been taken based on the current action

which is considered to be the best so far. After the system converges to

the optimality, the true value of each state is considered the value function

V ∗(s). As far as the advantage A∗(s, a) is concerned, it is zero when the

action a is the optimal due to the fact that a presents no advantage related

to itself whereas it takes negative values when any suboptimal action is chosen

which makes sense because a suboptimal action could not have a positive or

zero advantage relative to the best action. Given an action a, the Q∗(s, a)

performs as the utility of the action, the change in ∆V ∗(s, a) performs as

the incremental utility whereas the advantage A∗(s, a) performs the utility

of the action based on the optimal action. Below, the advantage function A∗

in terms of the V ∗ is defined:

A∗(s, a) =
1

∆t

[
R∆t(s, a) + γ∆t

∑
s′

P (s, a, s′)V ∗(s′)

]
− V ∗(s)

The correlation between the advantages and the Q values can be defined as:

A∗(s, a) =
1

∆t

[
Q∗(s, a)−max

a′
Q∗(s, a′)

]
During the learning, the value function and the advantage function are

needed. Instead, after convergence to the optimality, only the advantage

function is capable of extracting the policy. This policy is optimal in state s

for any action α that maximizes A∗(s, a) and defined as:

Amax(s) = max
a
A(s, a)

In case that the above quantity is zero in every state, then the advantage

function is considered normalized.

21

Chapter 3

Related Work

In this section, we will talk about related work in the fields of reinforcement

learning and deep reinforcement learning. Then, an overview of recent re-

search in the domain of continuous space and actions will be presented and

be discussed.

3.1 RL and DL

Many challenging sequential decision-making problems had not find solutions

for many years. However, in recent years, RL managed to become increas-

ingly popular due to the fact that it has succeeded to tackle a great amount

of these problems. To achieve this, DL techniques had to be combined with

RL [16, 17, 18]. The combination of these two fields has generated a new

field called Deep Reinforcement Learning (DRL) and its use is most success-

ful in problems which have high dimensional state-space. Some other RL

approaches in the past faced designing difficulties on how to choose features

[19, 20]. Instead, DRL has the ability to succeed in extremely complicated

tasks with no or lower prior knowledge and this happens due to the fact that

it can learn different levels of abstractions from raw data. For instance, a

DRL agent can learn policies from raw inputs of thousands pixels so as to

22

play and compete humans in Atari games [21, 22]. In addition to this, re-

lated methods have been applied in order to perform robotic control tasks

both simulated and real-world [23, 24, 25]. These breakthroughs can offer

the possibility of imitating, even in high dimensional space, the ability of

human problem solving, which was difficult to think of a few years ago.

Deep RL has done several notable works in gaming, such as reaching super-

human level in Atari games [21], mastering in Go [26] or winning top pro-

fessionals in Poker [27, 28]. In real-world applications, DRL has a great

potential as well, such as self-driving cars [29], robotics [30, 31, 32], smart

grids [33] and finance [34]. Notwithstanding all the innovations so far, more

challenges come out in order to apply DRL algorithms. For instance, it is not

straightforward to explore the environment effectively or to find a good be-

haviour and generalize it in another similar context. Hence, many algorithms

have been recommended for the DRL framework, depending on a wide range

of settings of sequential decision-making problems.

The aforementioned success stories in the field of gaming are very important

because it is showed that the DRL has a great potential in a wide range of

complex and diverse tasks, especially when working with high dimensional

inputs are required. However, deep RL systems have already begun to be

used in real environments. For instance, [35] refers to how Facebook exploits

DRL for pushing notifications or how it loads videos in a faster way using

smart pre-fetching.

While there are fields that someone could say that supervised learning can

stand alone, i.e sequence prediction [36, 37], it can be proved that RL can

also be applicable to those ones. In [38] is showed that the design of a right

neural architecture for applications which use supervised learning can consti-

tute a RL problem. But, it is known that these tasks are able to be managed

by evolutionary strategies as well [39, 40].

As we can see, DRL has a lot of applications in many different fields and thus,

the field of computer science could not be an exception. In other words, clas-

sic and fundamental algorithmic problems have the potential to be solved

by DRL, e.g the travelling salesman problem [41]. As this problem is NP-

complete, the chance of tackling it using DRL leads to the conclusion that

23

many other NP-complete problems could be solved if their structure allows

it.

3.2 Continuous State and Action Domains

In domains with discrete actions, i.e. Atari games, most of RL techniques

focus on value estimation and Q-learning [21]. Instead, this differs in con-

tinuous domains because explicit representation of a policy is required. For

instance, in a policy gradient algorithm. In general, the value function esti-

mate is crucial and has a lot of benefits. However, these benefits cost in the

architecture of a system, especially when we talk about continuous deep RL.

Thus, the exploitation of such advantages requires the use of two networks.

This happens due to the fact that both the policy and the value function

must be represented by separate networks [42, 43]. As it may look like a lim-

itation, an approach described in [2], shows how some features of Q-learning

can be used into continuous domains and lead to the implementation of a

single network whose outputs are the policy and the value function. A similar

Q-function representation were in dueling networks [1] as shown in Figure

3.1, but it is not related to continuous action domains. Also, this alternative

Q-learning technique has a correlation with the work presented in [44] but it

is observed a difference in the Q-function update.

Figure 3.1: The dueling Q-network(source: [1])

Bearing in mind that we investigate and expand the work of [2], our empirical

24

evaluation shows that our approach boosts even more the continuous Q-

learning algorithm and gives, in some benchmarks, better results than the

continuous actor-critic methods and the initial unimodal approach.

3.3 Advantage Functions

The separation of value and advantage functions is not a new entry in the

literature. The first reference was done by Baird [45]. In his work, called ad-

vantage updating algorithm, the equation about the Bellman residual update

was split in two update terms. The one term was referred to a state value

function and the other one for its associated advantage function. The results

of advantage updating demonstrated a faster convergence than Q-learning

in continuous domains [46]. However, the advantage learning algorithm that

came after showed only a single advantage function [47]. A new architecture

developed in [1]. In this work, the NN consists of a single deep model. The

output of this model is a combination both of the value and of the advantage

A(s, a) yielding a state-action value Q(s, a). This innovation makes the duel-

ing architecture flexible to be combined with many model-free reinforcement

learning algorithms. However, [48] is referred as the starting point of the use

of advantage functions in policy gradients. A more recent work in this field

is the estimation of advantage values on-line as a way to limit the variance

of policy gradient algorithms [42].

25

Chapter 4

Our Approach

In the aforementioned Chapters, an extended presentation of DRL capabili-

ties was described. The rapid development of Deep Neural Networks (DNN)

and the need of more robust RL techniques have led to a great interest of

further research on this field. We saw that DRL has made an impressive

progress in discrete domains, such as Atari Games [49], reaching human level

scores and under certain circumstances, DRL techniques outperform top pro-

fessionals. This success has made the community to explore new methods in

a more complicated domain, called continuous domain. The research in this

domain focuses on algorithms that solve continuous state spaces. However,

real-world tasks consist both of continuous state spaces and continuous action

spaces, making the procedure of developing innovative and state-of-the-art

algorithms even harder and more complicated. In this context, we decided to

investigate and compare a method that tries to solve problems in continuous

state and action spaces. Thus, we selected the Normalized Advantage Func-

tion (NAF) algorithm as our initial method in order to expand and improve

it. To be more specific, the idea of NAF algorithm was born as an efficient

way to enable Q-learning for being applied in continuous action spaces com-

bined with deep neural networks (DNNs). As it is known, Q-learning [50] is

a tabular method applied to problems in which the state and action space is

small enough for approximate value functions to be represented as arrays and

26

tables. Hence, Q-learning becomes ideal for discrete domains but it cannot

solve continuous state spaces.

The first approach to overcome this obstacle subjects to an improved version

of Q-learning, called Deep Q-learning [49]. In this work, experience replay

[51] and target networks were used and this led domains with continuous

state spaces to be solved. However, it has not managed to solve domains

which consist of continuous action spaces as well. A new approach that tried

to solve this issue was the Dueling Networks [1], but again, its implementa-

tion could not be put into practice for continuous domains. Although the last

approach was very promising yet not yielding the willing outcome, NAF al-

gorithm [2], which our investigation is based on, has a lot of similarities with

dueling networks but NAF algorithm can be applied to continuous action

spaces. Understanding that this problem is offered for more investigation,

we decided to conduct a further research regarding a limitation that NAF

has.

Our goal was to explore the multimodal capabilities of this algorithm for

educational purposes. As it will be explained further below, NAF algorithm

is based on a unimodal representation. Practically, this means that the

quadratic advantage function leads to a single good mode and has no ability

to represent multiple good modes, which may exist. In other words, as the

quadratic form is not very expressive, the algorithm can find a local optimum

but it may not be the global one. From this perspective, our investigation

focuses on exploring some other ways for NAF to exploit its full functional-

ity.

Reviewing the literature, we concluded that there are no references about

multimodal approaches regarding NAF algorithm and that makes our effort

even more difficult yet interesting. It is worth mentioning that literature

includes papers about multimodal approaches proposing energy-based poli-

cies [52] but it is not related to our work as they explore multimodularity

using different methods. As it is shown, our approach to investigate the

multimodal representations is quite innovative and interesting. The biggest

problem that we faced was the limitations of computational resources which

will be explained further in Section 6.5.

27

The basic idea of our approach is about finding the best parametric forms

that can describe the multimodal representations. In this context, we imple-

mented two different expressions. The first one was to use multiple quadratics

which would be selected either by an equal contribution of weights or by us-

ing the argmax. In order to test more methods, we decided to also implement

multimodularity using Radial Basis Functions (RBFs). In this case, the ad-

vantage term would be selected by the same method mentioned above. In

Chapter 5, we describe the steps of our implementation in detail while in

Chapter 7 we present our results.

28

Chapter 5

Implementation

5.1 NAF Description

The basic algorithm which our research was focused on is the extension of Q-

learning. However, when we deal with continuous state spaces, this algorithm

does not have a solution using tabular methods, and practically, even some

discrete state space are too large to be solved by this method. So, there

was the need of an extension of Q-learning to continuous state and action

spaces. In this context, [2] proposed the normalized advantage functions, a

simple solution to tackle continuous task. They proved through extensive

experiments that their method is much more effective than other actor-critic

methods and at the same time, it learns faster and delivers more accurate

policies. However, this approach even if it is simple yielding very good results,

lacks of multimodularity, a case that we investigate in this thesis. Before

starting exploring how to implement our proposed extension, we firstly need

to analyse the NAF algorithm and experiment with it.

29

5.2 NAF Architecture

As we mentioned in Section 5.1, the Q-learning algorithm could not be used

directly in continuous action spaces and in order this problem to be over-

come an alternative method was proposed, the Normalized Advantage Func-

tions. To be more specific, this method combines the idea of Q-learning

with deep neural networks as a means of representations. To achieve this,

the Q-function Q(s, α) had to be in such a form that during the Q-learning

update, the maximum of Q-function could be ascertained analytically and

easily. As it is known, many representations can be used for the maximum

to be found. However, this method uses a deep neural network as a represen-

tation tool. The NN generates two separate terms; the first one is the value

function term V (s) while the second one is the advantage term A(s, a) and

the sum of this functions leads to Q-function. The advantage term A has

a specific form because it consists of non-linear (quadratic) features of the

states. Thus, the advantage term can be described as a quadratic function.

Now, we can define the mathematical expression both of Q-function and the

advantage term A(s, α). So, the Q-function is defined as:

Q(s, a) = V (s) +A(s, a)

where

s : a state of the environment

a : the action to be taken

As far as the quadratic function of A is concerned, it is defined as:

A(s, a) = −
1

2
(a− µ(s))TP (s)(a− µ(s)

Looking at the aforementioned equation, we need to explain some terms in

detail. Firstly, the matrix P is a matrix that depends on the state s and it is

a positive-definite square matrix. Because of its form, the advantage term A

30

is maximized when α = µ(s). The µ plays one of the most important roles

as it represents a greedy policy function. So, the Q takes its maximum value

when α is the greedy action. By doing this, when we have an optimal Q, it

is not required to know the optimal action, since we have the optimal value

of µ.

Another term which needs to be defined from the mathematical expression

of the advantage term A is the matrix P . Hence, it can be expressed as:

P (s) = L(s)L(s)T

Here, L is also a matrix and specifically, it is a lower-triangular matrix. The

entries of this matrix come as the output of a linear neural network, where

the diagonal values are both exponentiated and strictly positive.

L(s) =

eσ11(s) . . . 0

...
. . .

...

σm1 . . . eσmn(s)

Having presented the definition of the main terms, we did not mention how

to estimate the functions V and µ. Hence, these functions are produced by

a deep neural network. Below, the Figure 5.1 shows the architecture of this

network.

As we can see, the input of the NN is only the state s. The NN consists of

two hidden layers both of them with 200 fully connected units using rectified

linear units (ReLU) as activation function. The outputs of the NN is the

matrix L which has already been defined, the mean µ which is produced by

a fully connected layer using a tanh activation so as actions are bounded for

safety reasons. Finally, the term V is also an output of the NN, produced

by a fully connected layer without a specific activation function. Figure 5.2

shows how the Q-function is derived from the output of the NN.

The NAF algorithm is shown in Figure 5.3. It is worth mentioning that

the algorithm uses a replay buffer in order to collect experiences and use

31

Figure 5.1: The Neural Network design for NAF. This Figure depicts only
the basic components of the NN.

them a means to learn faster and more accurately. In this way, the algorithm

optimizes its learning process. Moreover, noise is added to the policy µ for

exploration purposes. The use of the replay buffer and the exploration noise

are crucial parts of the algorithm’s functionality thus they are analysed in

detail.

32

Figure 5.2: The NN and its full functionality. The Figure depicts how the
outputs V, L and µ are used to form the Q-function.

Figure 5.3: NAF algorithm as it described in [2]

33

5.3 Noise Exploration

In reinforcement learning algorithms, exploration plays a crucial role. It is

known that a simple way of exploration and, most of the times, the most

common is to randomize the actions based on a distribution. This proce-

dure is done by choosing some random actions or when Gaussian noise is

added in continuous state and action spaces. However, when we talk about

randomness, an obstacle can show up: how to choose the magnitude of the

randomness of noise for the exploration. This problem becomes even bigger

in domains with high dimensionality where different actions require different

values of exploration. Moreover, in some domains, independent Gaussian

noise cannot have a positive impact as a means of exploration. For instance,

there is a simulated task called swimming snake (see Figure 5.4) where the

motion of different body joints must be coordinated for synchronization to be

achieved. By adding Gaussian noise, correlation between action dimensions

cannot be achieved. In order to overcome this problem and to implement

the most appropriate exploration noise they decided to use the Ornstein-

Uhlenbeck (OU) process [53] . In this way, we were able to produce a

temporally correlated noise sequence [43]. An OU process requires three pa-

rameters to defined: σ, θ and µ. According to what tasks we have to deal

with, we choose respectively the appopriate values for these parameters. As

we saw that our algorithm was not affected by these values, we selected fixed

parameter values so as to achieve the biggest fairness to our experiments. In

this context, the values set to:

σ = 0.3

θ = 0.15

µ = 0

34

Figure 5.4: An instance of Swimmer task (source: OpenAI Gym)

5.4 Replay Buffer

In reinforcement learning, it is known that we receive sequential samples

from interactions with the environment. This means that a network ”sees”

too many samples of one kind and forgets the others. For instance, an agent

can reach the second level of a game. It looks or behaves completely differ-

ently, so it forgets how to play the first level. To avoid this inconvenience, we

store all experience in a replay buffer. This allows us to train on more inde-

pendent samples. We choose a batch of transitions from the buffer at random

and train on that. This, eventually, helps break the temporal correlation of

training samples.

5.5 The Idea of Multimodularity

Reinforcement learning is always an interesting field of research, let alone in

combination with deep learning. Many state-of-the-art algorithms have been

produced and one of them is the NAF algorithm. As we mentioned in Section

5.1, NAF is a new method of applying the Q-learning algorithm in domains

with continuous state and actions spaces. This is a big step in research,

particularly the combination of Q-learning with deep neural networks. In

the beginning, we focused on investigating different covariance matrices for

the advantage function term which was analysed extensively. Some of them

35

were the covariance matrix used in the original form, an identity covariance

and a diagonal covariance matrix. The original form of the algorithm gives

a lot of freedom for further research and experimentation thus we started

testing different matrices. However, before exploring new forms of matrices,

we reimplement the basic algorithm as close as possible to the original one

and we observed that it was able to solve easily simple environments such

as Pendulum, InvertedPendulum and InvertedDoublePendulum. Instead, we

could not solve environments such as Humanoid or Walker2d due to the

limitations of computational resources.

While we were testing different forms of covariance matrices, we observed that

in most cases only the original covariance matrix had the best results and

worth to be used in the majority of tasks. However, during this procedure, a

new idea came out from the tests and analysis of the baseline algorithm. We

observed that the quadratic form of the advantage term has the properties

of a unimodal distribution. In other words, this means that the algorithm

can find a local maximum which it may be a sub-optimal and thus it will not

seek the optimal one. This observation led us to expand our research and to

try to find a way on how the algorithm can seek more modes until to find the

optimal. Hence, we concluded that we had to find a multimodal distribution

and implement an extension of the basic algorithm. In this context, we

started to pursue ways on how to modify the advantage term so as to be

transformed into a multimodal expression.

5.6 Methods and Selection

To date, in literature, multimodularity is referred as the combination of dif-

ferent modalities for new features to be learnt. In this way, deep networks

will be trained easily and will be more efficient solving more complex tasks.

For instance, learning features for one modality, such as video, can have bet-

ter results, if during the feature learning time, multiple modalities, such as

audio or text, are present. Although the majority of multimodularity refers

to this approach, in our case, we are looking for something completely differ-

36

ent. Conducting research on how to alter our advantage term so as to behave

in a multimodal way, we ended up to test two methods. The first one was

to investigate the use of multiple quadratics. The second one was to imple-

ment a different approach using the Radial Basis Functions (RBFs). Since

we analysed if our theory could be implemented, we concluded that either

of these methods could offer us the multimodal representations that we are

looking for. Each method is described in detail in Sections 5.6.1 and 5.6.2.

Figure 5.5 depicts a simple chart of the multimodal methods we tested.

Figure 5.5: A general chart that depicts what path we followed for imple-
menting our research

5.6.1 Multiple Quadratics

As we explained in Section 5.2, the advantage term is in a quadratic form.

Also, it is a unimodal distribution which means that this expression of the

advantage term could not seek any other modes since the quadratic function

has only one, specifically at µ. In other words, the unimodal distribution

finds a sub-optimal mode in most of the times. To change this and to give

37

to our algorithm the ability to seek the best mode, we propose a multimodal

approach using the sum of multiple quadratics. However, the weighted sum

of quadratics is not the only solution. We also propose the use of argmax

which is a simple method both to be implemented and to yield good results.

Let’s see the analysis of our proposition.

Weights

It becomes clear from the definition that multiple quadratics require to export

not only a unique advantage term but more than two. So, the new advantage

term will have this form:

A(s, α) = −1

2

∑
i

wi((α− µi(s))TP (s)(α− µi(s)))

A(µ, s) =
1∑
wi

∑
i

wiA(µi, s)

where i is the number of unimodal advantage terms that we use.

However, observing the aforementioned expression, we concluded that we

needed a way on how to weigh the contribution of each term. Our first

thought was the weights to be one of the outputs of our deep neural net-

work. This option would give us the ability to produce weights with different

contribution for each advantage term, giving priority and selecting the term

with the biggest positive impact. At a first glance, that sounded ideal for

implementation but when we tested it two problems arose. The first one was

there was not a standard metric on how to generate the weights, meaning

that the contribution of the terms would not be accurate and sometimes we

would not choose the best one. The second and bigger problem that we faced

was the stability of our neural network. The addition of another parameter

which means more parameters to be trained and the need for more outputs

led our network to instability and malfunction. If we consider that all of our

environments consist of continuous action and state spaces with high dimen-

sionality, it becomes clear that any deviation from the initial architecture

38

could lead the network to collapse. In our tests, most of times the network

was unstable and could not perform in a proper way. These limitations forced

us to abandon this idea and to focus on something more realistic and feasible

under these circumstances. Thus, we empirically decided each term to have

an equal contribution to the final advantage term. In this way, we avoid any

interaction with the neural network regarding the selection of the weights

and keeping our network stable. Also, in order not to output many advan-

tage terms from our network, we set a fixed number to use, namely 4, each

with 25% contribution. Hence, the final advantage term is defined as:

A = A1(µ1, σ) +A2(µ2, σ) +A3(µ3, σ) +A4(µ4, σ)

According to aforementioned definition, it becomes clear that the NN had to

change slightly. The change is about the need for three extra outputs as the

advantage terms became four. Although we made these changes, we ensured

the stability of our NN and its proper functionality. Figure 5.6 shows the

new version of the NN.

Figure 5.6: The new architecture of NN using the technique of weights.

39

Argmax

Our research showed that the method described in Section 5.6.1 is an effective

method with a positive outcome. But, in order to find a more simple yet

efficient and unbiased method we used the argmax as a way to choose the best

advantage term directly. The argmax, as it is known, refers to the inputs in

our case at which each advantage term output is as large as possible. Taking

this into consideration, we concluded that even we had many advantage terms

as output from the NN, only one of them would be the most appropriate.

This characteristic feature of argmax is very important because we can avoid

the use of weights and how to choose them, making the selection of the best

mode even more unbiased. The mathematical expression of the advantage

term is defined as:

A = argmax(A1,A2,A3,A4)

In Figure 5.7 is shown the functionality of our NN using the argmax process

so as the advantage term to be selected.

Figure 5.7: The new architecture of NN using the technique of argmax.

40

5.6.2 Radial Basis Functions

At a first glance, multiple quadratics seem to be a decent and quite sim-

ple approach on how to create a multimodal representation and adjust it to

our case. However, we would like to make a step further and to investigate

another multimodal approach, hoping to find a more efficient and robust so-

lution.

In this context, we chose to try the Radial Basis Functions(RBFs). To be

more specific, RBFs, also called multivariate Gaussian distribution are a gen-

eral form of a univariate normal distribution but in higher dimensions. This

property gave us the idea that RBFs would be a good fit to our research

problem due to the fact that continuous state and action spaces in our do-

mains deal with high dimensions.

Generally speaking, one of the characteristics of a RBF is that its response

depends monotonically on a central point. Taking this into consideration,

we thought that having a fixed point which is the greedy action policy of

the agent, we could take a number of different centres which in our case, is

the mean µ value and choose the one which is closer to the greedy action α.

Thus, we could compare many modes and finally select the optimal one.

It is known that a radial function is a Gaussian and we have a scalar input.

So, the function is defined as:

h(x) = exp

(
−(x− c)2

r2

)
where

c : centre

r : radius

So far, we have extensively explained that the advantage term has a multi-

modal form and consists of a vector of actions. Taking this into consideration,

it becomes clear that even our hypothesis to use RBF is correct, we could

41

not apply a univariate distribution because the actions are not a scalar but a

vector of different actions. Hence, we had to choose a multivariate Gaussian

distribution. The mathematical expression of the RBF is defined as:

N(µ,Σ)(x) =
1√

(2π)n|Σ|
exp

(
−

1

2

(
(x− µ)TΣ−1(x− µ)

))
where

µ ∈ Rn : mean value

Σ : the covariance matrix

Looking at the definition, it becomes clear that the argument of the expo-

nential function −1
2
(x − µ)TΣ−1(x − µ) is a quadratic form with respect to

the vector x. This feature allowed us to investigate the multimodal repre-

sentations of our algorithm.

Below, we can see a graphical representation both of a univariate and a

multivariate distribution.

Figure 5.8: A univariate Gaussian distribution.

42

Figure 5.9: A multivariate Gaussian distribution.

The next steps that we follow are the same ones as we described in Section

5.6.1. In this case we tested again both the sum of multiple advantage terms

in a multivariate representation and the selection of the multivariate distri-

bution that gives the optimal and global response by using the argmax. In

order to have a fair comparison between our two tested methods, we decided

to use only four advantage terms. Hence, regarding the sum of multiple ad-

vantage terms which are equally weighted the final advantage term is defined

as:

A = N1(µ1,Σ) +N2(µ2,Σ) +N3(µ3,Σ) +N4(µ4,Σ)

Instead, in the case of the argmax, the advantage term is defined as:

A = argmax(N1, N2, N3, N4)

All these methods, as it is shown in Chapter 7 are tested and evaluated in

a great number of simulated tasks under certain circumstances. The perfor-

mance, the efficiency and the results are presented and discussed in detail.

43

Chapter 6

Experimental Setup

The rapid evolution of DRL forced the community to develop platforms for

testing and evaluating the new algorithms that arose. For instance, in su-

pervised learning, large labelled datasets, such as ImageNet [54], have led to

a great progress in this field. Instead, in the field of RL a large and diverse

collection of environments are required. Also, the lack of standardization of

the tasks used in publications which means that it becomes difficult to repro-

duce published research and compare outcomes from different papers made

the RL research slow down. For this problem to be fixed, different platforms

have been developed. In this thesis we decided to use the OpenAI Gym and

more specifically, the Roboschool.

6.1 Roboschool

Gym [55] is a toolkit for developing and comparing reinforcement learning

algorithms. A very important feature is that it is compatible with any nu-

merical computation library, such as TensorFlow [56] which we also used and

we will describe it later in this chapter. Although the gym library is a set

of test problems -environments- that can work out our RL algorithms, we

limited the selection of the tasks and chose what we needed. In this context,

44

we used Roboschool. The Roboschool is an open-source software for robot

simulation, integrated with OpenAI Gym. Roboschool provides a set of dif-

ferent environments for controlling robots in simulation. These environments

are extremely challenging and provide a free alternative solution to MuJoCo

[57] implementations. It is worth mentioning that Roboschool is based on

the Bullet Physics Engine [58], an open-source physics library that has been

used by other simulation software such as Gazebo and V-REP [59].

6.2 Environments

Roboschool provides twelve environments with tasks which are challenging

and realistic. In this thesis, we selected six of them in order to test our

algorithm. The selection is based on what computational resources we had

and on covering a wide range of different tasks. Figure 6.1 shows an instance

of each environment, while Table 6.1 gives a short description of each domain.

45

Roboschool domains
Domain Description
Pendulum Try to keep a frictionless pendulum standing

up.
InvertedPendulum Continuous control version of classic cartpole

problem. Keep a pole upright by moving the
1D cart.

InvertedDoublePendulum Two-link continuous control version of classic
cartpole problem. Keep two-link pendulum
upright by moving the one-dimesional(1D)
cart.

Humanoid Make a three-dimensional(3D) bipedal robot
walk forward as fast as possible, without
falling over.

Ant The four-legged ant should move toward the
fixed target from a fixed starting position and
posture.

Walker2d Agent should move forward as quickly as pos-
sible with a bipedal walker constrained to the
plane without falling down or pitching the
torso too far forward or backward.

Table 6.1: List of domains.

6.3 Programming Language of Choice

In the field of Machine Learning and generally whatever deals with Artificial

Intelligence (AI) and Data Science problems, Python is the first choice as

the programming language. The whole coding infrastructure of our imple-

mentation was done using Python and its scientific and numerical libraries,

such as numpy and matplotlib to name a few. This choice is based on the

fact that Python is a high-level language with simple syntax, object-oriented,

powerful enough to execute our algorithm and computationally efficient.

46

6.4 TensorFlow

The design and the implementation of a neural network is not so simple as

it may sound. It requires a lot of attention on how to build it and what

tools to use. In this context, TensorFlow [56] is the best solution so far. In

our case, we had to implement a complex neural network because of the high

dimensionality both of inputs and outputs. In order to avoid exploding gradi-

ent descents and frequent system failures we decided to use the TensorFlow.

It is an open source software library for numerical computation using data

flow graphs. The graph nodes represent mathematical operations, while the

graph edges represent the multidimensional data arrays (tensors) that flow

between them. TensorFlow has been the fundamental tool in our complicated

implementation and in even more demanding numerical computations.

6.5 Operating System, Hardware Specifica-

tion and their Impact

An important role in our implementation and its results is played by the com-

putational resources we have. We tried our application to be independent

from the operating system. However, the open source libraries and platforms

we used are based mainly on Linux distribution thus we use one of them

which was the Ubuntu 16.04 version. We selected this version because it was

easy to install and execute the numerical methods which the implementation

required.

However, many domains require strong computational resources because they

have to deal with high-dimensional tasks. Unfortunately, that was a limita-

tion for us because we benchmarked our application in a 32-bit system with

a i3 dual core CPU. This limitation led us not to test many combinations

and we restricted ourselves to the basic ones.

47

6.6 Code Structure

As we mentioned in Section 6.3, the programming language of our code is

Python. Python is a very simple language and does not require header files

like C/C++ for example. Hence, our code is structured in four files: the

first file includes the whole infrastructure of our neural network, declaring

the structure of the input, output and hidden layers. Also, it includes the

implementation of the replay buffer for storing the experience during the

training time. The second python file includes the hyperparameters such as

the learning rate, the batch size, the number of hidden layers to name a few.

This part of code is arranged in such a way that only these parameters need

to be changed by any user and test their combinations. The most important

part of this file is the NAF algorithm itself implemented as close as possible

to the original one. The third file includes the whole implementation of the

exploration. Exploration is a very crucial part of the training process thus

we decided to distinguish it from the other parts. The fourth and final file is

about the data visualization of our outcomes. It is used to depict the outcome

for each combination of the methods and the domains that we tested.

48

(a) Pendulum (b) InvertedPendulum

(c) InvertedDoublePendulum (d) Humanoid

(e) Ant (f) Walker2d

Figure 6.1: Graphical depictions of the six Roboschool domains we used.

49

Chapter 7

Results

7.1 The Evaluation Process

In Chapters 5 and 6 we provided a detailed analysis of how we implemented

our methods and what domains we used. During the experimentation proce-

dure, we received some valuable results that gave us the ability to compare

our algorithm and our proposed approach on how to deal with multimodal

representations in the field of Deep Reinforcement Learning. In order to eval-

uate our methods, we firstly use a random agent as our baseline. It is very

important to have a starting point of comparison which is totally indepen-

dent and based on randomness. We used this agent in every environment.

The next was to evaluate the unimodal approach of the NAF algorithm but

as we implemented it. As a first comparison step, we compared our imple-

mentation to our baseline, i.e. the random agent. Again, this method was

applied to every environment. The final step was to evaluate our two pro-

posed methods, the multiple quadratics and the RBFs, where each one used

two techniques, one using weights for each advantage term and the second

using the argmax. Since we applied our proposed methods and tested them

to the six domains, we extracted valuable curves for each methodology. The

comparisons are based on all applied methods evaluated for each domain.

50

Sections 7.2 and 7.3 describe in detail the parameters we used both in our

experiments and in the architecture of the neural network.

7.2 Parameters of the Experimentation Pro-

cess

Generally, in the field of Machine Learning we need to train models in neural

networks for them to learn and act independently. However, the training of a

model requires some significant parameters to be set. In our work, we firstly

had to choose the number of timesteps and episodes that we would use in our

environments. During our research, we concluded that, due to the different

domains where in some of them we had to deal with 3D simulated robots

thus high-dimensional actions, we had to use a large number of episodes, a

suggestion proposed in literature as well. However, our limited computational

resources and the pressure of time forced us to a manageable number of

episodes. In this context, we train our models for 3000 episodes, each one with

a maximum of 1000 timesteps which means that the whole training procedure

could reach the 3M timesteps. An exception to this was the environment

3D simulated robot, called Humanoid. Because of its nature and in order

to achieve better results, we run our experiments in 5000 episodes with a

maximum of 1000 timesteps, leading to a maximum of 5M timesteps. We

noticed that these numbers would lead our system to run for a long time

because we used a CPU for calculations rather than a GPU. Moreover, in

order to extract more accurate and fair results, we run each experiment 5

times and we use the average value of these five iterations as the final reward

value for each episode.

51

7.3 Neural Network Hyperparameters

Apart from the parameters that we need to choose for the experimentation

procedure, the hyperparameters of a neural network plays the most important

role in the whole procedure. Table 7.1 shows the values of hyperparameters

for our network.

Hyperparameters
Parameter Range of value
Episodes 3000
Timesteps 1000(max)
Training iterations 5
Learning rate(ADAM) 0.01, 0.001, 0.0001
γ 0.99
τ 0.01
ε 0.1, 0.3, 1
Hidden layers 2
Hidden size 32, 64, 128, 256
Buffer memory 10e6
Batch size 32, 64, 100, 200
Batch normalize True, False

Table 7.1: Parameters of our system. Bold font indicates the most used value
of the corresponding parameter.

The selection of these values are not in random. Instead, this process requires

many trials in order to find the most suitable value for each occasion. In this

work, we decided to set fixed values for each hyperparameter, especially when

the domains are similar. For instance, environments such as Pendulum and

InvertedPendulum, had better performance when learning rates close to 0.01

were used. Instead, tasks which needed more expressiveness and had high-

dimensionality actions performed better when learning rate close to 10−4 was

applied.

The different values of learning rate led us to conclude that our system was

sensitive to some hyperparameters. So, we concluded that the learning rate,

52

the use or not of batch normalization and the values of the exploration noise

are affected our system. It becomes clear that we had to make any possible

combination for the ideal structure of our system but the many limitations

prevented us and we finally used fixed values which were more suitable for

the majority of the environments.

As we can see in Table 7.1, hidden size and batch size can take different

values and not fixed. That was an exception we did because when the task

was easier to be solved, small number of hidden and batch size were required

so there was no need our network to be more complicated which many times

led it to collapse. Instead, environments with high dimensionality required

larger sizes in order good training models to be achieved.

7.4 Comparisons

Having run many experiments and conducted a great number of tests, it is

time to present and compare our results. As we have already mentioned

many times, we tested our methods in six different domains, each of them

with its own characteristics and we developed two methods, multiple quadrat-

ics and RBFs tested with two different action selection approaches each of

them. Also, we used a random agent as baseline and we implemented the

unimodal representation as well. Hence, we organized our comparisons as fol-

lows: firstly, we will present the results for unimodal representation and will

compare it with the baseline. Secondly, we will compare the outcome in each

domain both of multiple quadratics and RBFs. In addition, a comparison

between the methods of weights and argmax will be presented. Finally, for

each task, we will present the result of all combinations and we will discuss

it.

53

7.4.1 Baseline Agent vs Unimodal Approach

Figure 7.1 shows the mean rewards that each agent achieved in every domain.

More, the average raw reward for each episode is depicted(the faded color),

too. At a first glance, it becomes clear that our first goal was successful as

the unimodal agent outperforms the random agent in all environments.

In all domains, we see that the random agent has a steady behaviour and

practically it cannot make progress. Besides, it takes random moves so it is

normal not to perform well. On the other hand, the unimodal approach that

we implemented based on - as close as possible - the instructions of the NAF

algorithm behaves very well compared to the random agent which was the

first goal. This means that generally there is an improvement and our agent

performs well. It is worth mentioning some important observations:

In Figure 7.1b we see that, at the beginning, the agent in unimodal form has

a deviation between the raw values of the reward but after some episodes we

see that the mean and the raw reward converge. This is a very important

feature of our approach because it indicates that our agent after a number

of training episodes, it becomes stable. This behaviour is also observed in

Figures 7.1e and 7.1d.

In Figures 7.1e and 7.1d we observed that our agent achieves high rewards at

early episodes. This is a huge improvement because these two tasks simulate

a 3D robot which means that the agent has to deal with high dimensional

actions.

All in all, our agent presents very good results compared to the baseline agent

and we notice improvements.

7.4.2 Multiple Quadratics Method

Figure 7.2 depicts the results of our first proposed method. This method

consists of two other techniques, the use of weighted terms and the selection

of the advantage term using the argmax. In this section, we compare these

two techniques and discuss the most important outcomes.

54

(a) Pendulum (b) InvertedPendulum

(c) InvertedDoublePendulum (d) Ant

(e) Humanoid (f) Walker2d

Figure 7.1: Performance of the unimodal approach vs a random agent. The
faded color depicts the average raw reward that the agents achieved in every
episode.

55

(a) Pendulum (b) InvertedPendulum

(c) InvertedDoublePendulum (d) Ant

(e) Humanoid (f) Walker2d

Figure 7.2: Performance of the agent using Multiple Quadratics method.
The faded color depicts the average raw reward that the agents achieved in
every episode.

56

Is has become clear that the more high dimensional actions a domain has,

the more complicated it is to be solved. We mention this because we observe

in Figures 7.2d, 7.2e, and 7.2f that the agent performs slightly different re-

gardless which technique it uses. Hence, we can conclude that in 3D tasks,

our multimodal approach using multiple quadratics has almost the same be-

haviour. This does not mean that our agent does not perform well. Instead,

it achieves high rewards but the two options of multiple quadratics have sim-

ilar performance.

In Figures 7.2a and 7.2c we can see that both techniques behave similarly.

But, the most important thing in this behaviour is that both of them, after a

certain training time, converge and become stable. This observation is very

obvious because as we can see, the mean rewards values and the raw rewards

values are almost the same or there is a tiny deviation between them. Hence,

we conclude that both techniques behave properly in such domains.

Overall, we see that the approach with multimodal distribution, in partic-

ular with multiple quadratics using weights and argmax can provide great

performance and good results regardless of which technique we use.

7.4.3 RBFs Method

As we presented the results of the Multiple Quadratics method, Figure 7.3

depicts the outcome of RBFs method in each domain. We implemented

the RBFs method following the applied procedure in Multiple Quadratics.

Hence, we discuss the results of the weights and argamax techniques and we

compare their performance.

Looking at the general picture, we come to a conclusion about these two

techniques. They behave almost similarly and there are only slight differ-

ences in the values of mean reward. Thus, they perform both very well. The

only significant difference in their performance is observed in Figure 7.3b.

In this task, we see that using the argmax technique for implementing the

RBFs method and approaching a good multimodal representation outweigh

57

(a) Pendulum (b) InvertedPendulum

(c) InvertedDoublePendulum (d) Ant

(e) Humanoid (f) Walker2d

Figure 7.3: Performance of the agent using RBFs method. The faded color
depicts the average raw reward that the agents achieved in every episode.

58

the use of the weighted technique. This is clear when we see closely that

there is a constant difference in the rewards from nearly the beginning of the

training time.

In Figures 7.3a, 7.3b and 7.3c, we can also observe that the deviation be-

tween the mean reward and the average raw reward is almost minimal. This

leads us to conclude that in 2D domains such as Pendulum, and Inverted-

DoublePendulum the weighted and argmax techniques can make the agent

to converge fast and to have a steady good performance.

Instead, Figures 7.3d, 7.3e and 7.3f show that there is a big deviation in the

values of mean and average raw rewards. This means that despite the high

rewards that present, they may lead the agent to instability and, in the end,

it may not make a significant progress.

To conclude, in five out of six domains, the two techniques perform the same

well and we can apply any of them. In addition, we found that when we deal

with 3D simulated robots, there is a divergence in rewards which may lead

the agent to fail in the long run. However, in 2D tasks, our techniques can

be efficient and our agent is trained very well.

7.4.4 Comparison of the Weighted Technique

It is useful to compare the technique of weights and its behaviour in our

two different methods which we used for our approach. In this way, we

can examine its performance in the collection of the selected environments.

Figure 7.4 shows a comparison of the use of weights between the two methods

and we can extract meaningful results.

In general, it becomes clear from the results in all domains that the imple-

mentation of RBFs with weights slightly outperforms the use of weights in

Multiple Quadratics. This leads us to choose the RBFs method in order to

achieve better results and to be able to keep our whole system stable.

Specifically, we observe that in domains with lower dimensional actions this

technique achieves a convergence in rewards in both methods. Figures 7.4a,

7.4b and 7.4c can prove this declaration. Hence, the agent learns faster and it

59

(a) Pendulum (b) InvertedPendulum

(c) InvertedDoublePendulum (d) Ant

(e) Humanoid (f) Walker2d

Figure 7.4: Performance of the agent using weights in Multiple Quadratics
and RBFs. The faded color depicts the average raw reward that the agents
achieved in every episode.

60

yields as high as possible. However, the required convergence is not observed

in Figures 7.4d, 7.4e and 7.4f where the domains consist of simulated robots

with high dimensional actions. The weighted technique still performs well

and yields very good results regarding the rewards but the constant diver-

gence between the mean reward and the reward of each episode may provide

a poorer outcome to similar tasks.

Lastly, it is worth mentioning that our agent, in Figures 7.4a and 7.4c ,

shows to converge and be stabilized at the early stages of the training time(in

≈ 500th episode), a feature that is very significant for training models.

7.4.5 Comparison of the Argmax Technique

As we mentioned in Section 7.4.4, a comparison of each technique that we

used in our methods can extract significant verdicts. The Figure 7.5 sum-

marizes the performance of the argmax which we used to our approach and

applied to the six domains.

Looking at the Figure 7.5, we can directly understand that the argmax out-

performs when it is used by the RBFs. The differences may not be so big but

they cannot be ignored as the training model must be efficient and effective

in the end of training process.

To be more specific, Figure 7.5b depicts the difference between the two meth-

ods. It becomes clear that the RBF can yield more efficiently than Multiple

Quadratics when they use the argmax. Moreover, we can observe that in

both methods there is a convergence in mean and raw reward values, leading

to a stable system and to a well trained model. This convergence is also

observed in Figures 7.5a and 7.5c. The conclusion of these three Figures

shows that when we have to deal with 2D simulated robots, the preferred

approach can be any of the two methods we implemented because there are

tiny differences in performance which are not affect the training model in

overall.

61

(a) Pendulum (b) InvertedPendulum

(c) InvertedDoublePendulum (d) Ant

(e) Humanoid (f) Walker2d

Figure 7.5: Performance of the agent using argmax in Multiple Quadratics
and RBFs. The faded color depicts the average raw reward that the agents
achieved in every episode.

62

However, this is not happen when the tasks have to train 3D simulated robots.

In these cases, as it is shown in Figures 7.5d, 7.5e and 7.5f the best method

is to choose the RBFs because it performs better than Multiple Quadratics

with argmax. The only disadvantage that is observed is that the mean and

raw reward values present a divergence which is possible to lead our agent

not to be trained as well as it could be.

7.4.6 Overall Figures and Comparisons

In Sections 7.4.1, 7.4.2, 7.4.3, 7.4.4 and 7.4.5 we presented the results of

subsets regarding our final algorithm and its verdict. However, it is really

important to show and discuss the outcome of our approach in every do-

main and compare the random agent, the unimodal representation and our

multimodal approach so as to understand the improvements that we have

achieved. Below, we present the figure of each domain and we benchmark

each method.

Pendulum

Figure 7.6 depicts the performance of each representation over 3000 episodes.

The mean reward is the rolling mean over 50 episodes and that gives us a

better visual perspective of our implementation.

The first and most important conclusion is that all of our methods outper-

form the baseline agent which fluctuates around -750. Therefore, there is an

initial improvement of our proposed approaches.

The second conclusion is that our multimodal approach is far better than

any other representation, both the baseline agent and the unimodal distribu-

tion. This is also very significant because the goal of this work is to improve

the existed algorithm and it seems that we have achieved it regarding this

domain.

However, these are the more general conclusions of our implementation. So,

it is crucial to mention more specific facts of our experiments. For instance,

63

we can observe that our proposed methods, both the multiple quadratics and

the RBFs, in ≈ 500th episode, start to converge and have tiny deviations dur-

ing the training time. This is the most important outcome because it shows

us that our methods are pretty stable regarding this domain. But, we need

to mention here that our agents present an unstable behaviour during the

first 500 episodes. Lastly, it becomes clear that the method of RBFs using

the argmax presents the biggest improvement even it has small differences

with the other three methods. Hence, we could say that, in similar domains,

we would choose any of the multimodal representations.

� ��� ���� ���� ���� ���� ����
��������

!����

!����

!����

!����

!����

!���

!���

!���

	
��

��
�
��

��
�

�������

������������������
����������������
����������
��������
��������
������

Figure 7.6: The performance of all approaches applied to Pendulum environ-
ment.

InvertedPendulum

Figure 7.7 depicts the performance of each representation over 3000 episodes.

The mean reward is the rolling mean over 50 episodes and that gives us a

64

better visual perspective of our implementation.

The first and most important conclusion is that all of our methods outper-

form the baseline agent which fluctuates around 50. Therefore, there is an

initial improvement of our proposed approaches.

The second conclusion is that one of our multimodal approaches is far better

than any other representation, the baseline agent and the unimodal distribu-

tion. This is also very significant because the goal of this work is to improve

the existed algorithm and it seems that we have achieved it regarding this

domain.

However, these are the more general conclusions of our implementation. So,

it is crucial to mention more specific facts of our experiments. For instance,

we can observe that our proposed method of RBFs using argmax leads the

agent to learn really fast and to be extremely stable and this makes it out-

perform any other agent in long term. It also very important to mention

that all of our proposed methods present a stable performance and there is

not big fluctuations thus they are stable, too. Moreover, we observe that

two of our methods, the multiple quadratics using weights and the RBFs

using weights do not perform better from the unimodal distribution. Hence,

we received poorer performance in this domain for these two methods and

we would not choose them to solve similar tasks. A possible explanation to

this poor performance is that as the task is a bit more complicated than the

Pendulum, the equal selection of weights does not offer any improvement in

order to solve this task.

Overall, we can say that our method succeeded our initial goal which was to

improve the behaviour of the agent and this happens even if it is done only

by one method.

InvertedDoublePendulum

Figure 7.8 depicts the performance of each representation over 3000 episodes.

The mean reward is the rolling mean over 50 episodes and that gives us a

better visual perspective of our implementation.

65

� ��� ���� ���� ���� ���� ����
��������

�

���

���

���

����

����

����

����

�

��
�
�!

�
�

	� �������������

���������!������
������������"
����!������
�������"
�������
�����

Figure 7.7: The performance of all approaches applied to InvertedPendulum
environment.

The first and most important conclusion is that all of our methods outperform

the baseline agent which fluctuates around 270. Therefore, there is an initial

improvement of our proposed approaches.

The second conclusion is that the multimodal approaches that we propose

outperform by far both the unimodal distribution and the baseline agent

thus we consider that our methods improves the performance of the agent

and extend the initial algorithm.

However, these are the more general conclusions of our implementation. So,

it is crucial to mention more specific facts of our experiments. One of the

most important observation that we need to mention is the stability of all of

our methods. We see that they converge fast and there are no fluctuations,

providing a stable performance to our implementation. Also, the Figure

shows that during the first 500 episodes, our methods have ups and downs

regarding the reward values which means that at the first stages of training

66

there were an unstable behaviour that forced our agent not to converge faster

and not to act steadily. Lastly, in this domain, the principal method with

the best performance is the use of multiple quadratics with argmax. It has

a little difference with the others but this small leading makes it the first

choice for applying to similar environments.

� ��� ���� ���� ���� ���� ����
��� ���

���

���

���

	��

����

����

��

��
�
�$

��
�

��#��!��
�"�������"�"�

�"����!�� �$����!
�"����!�� ������%
����$����!
���������%
"�������
������

Figure 7.8: The performance of all approaches applied to InvertedDoublePen-
dulum environment.

Ant

Figure 7.9 depicts the performance of each representation over 3000 episodes.

The mean reward is the rolling mean over 500 episodes and that gives us a

better visual perspective of our implementation.

The first and most important conclusion is that all of our methods outper-

form the baseline agent which fluctuates around 50. Therefore, there is an

initial improvement of our proposed approaches.

67

The second conclusion is that all of our multimodal approaches are far better

than any other representation, the baseline agent and the unimodal distribu-

tion. This is also very significant because the goal of this work is to improve

the existed algorithm and it seems that we have achieved it regarding this

domain.

However, these are the more general conclusions of our implementation. So,

it is crucial to mention more specific facts of our experiments. In this do-

main, it becomes clear that the RBFs method outperforms the use of multiple

quadratics and this is obvious from the beginning of the training time. Thus,

a task with a 3D simulated robot requires a more expressive form in order to

perform as well as possible. It is also obvious that the two techniques that are

use in the RBFs have similar behaviour and there are only small differences

regarding the rewards. However, we observed that in the end of the training

time, the use of argmax performs much better not only than all methods but

also than RBFs which use weights. This lead us to consider that a RBFs

method is more suitable in domains with high dimensional actions.

Humanoid

In Figure 7.10 is shown the performance of each representation over 5000

episodes. The mean reward is the rolling mean over 500 episodes and that

gives us a better visual perspective of our implementation.

The first and most important conclusion is that all of our methods outper-

form the baseline agent which fluctuates around -50. Therefore, there is an

initial improvement of our proposed approaches.

The second conclusion is that all of our multimodal approaches are far better

than any other representation, the baseline agent and the unimodal distribu-

tion. This is also very significant because the goal of this work is to improve

the existed algorithm and it seems that we have achieved it regarding this

domain.

However, these are the more general conclusions of our implementation. So,

68

��� ���� ���� ���� ���� ����
��������

�

���

����

����

����

����

	
��

��

��

��
�

���

�����������������
����������������
�����������
����������
��������
������

Figure 7.9: The performance of all approaches applied to Ant environment.

it is crucial to mention more specific facts of our experiments. Firstly, we

see that the RBFs using argmax achieve the highest reward during almost

the whole training time and this makes it more suitable for similar tasks.

Secondly, we observe that the RBFs have in general, better and more stable

performance than multiple quadratics thus we consider that in task with 3D

simulated robots it is more efficient to use these methods. Moreover, mul-

tiple quadratics using argmax present a better achievement at the end of

training time than RBFs which use weights. This leads us to conclude that

the technique of argmax improves much more the performance of a 3D sim-

ulated robot, yielding higher rewards in high dimensional domains. Lastly,

it is important to mention that the unimodal representation in such tasks

which have continuous state and actions space presents a very performance

regarding multimodal approaches.

69

���� ���� ���� ���� ����

�������

�

���

���

���

	��

����

����

�
��

��

�!

��
�

� ������

� ���������!������
� ��������������"
����!������
���������"
 �������
������

Figure 7.10: The performance of all approaches applied to Humanoid envi-
ronment.

Walker2d

In Figure 7.11 is shown the performance of each representation over 3000

episodes. The mean reward is the rolling mean over 500 episodes and that

gives us a better visual perspective of our implementation.

The first and most important conclusion is that all of our methods outper-

form the baseline agent which fluctuates around 30. Therefore, there is an

initial improvement of our proposed approaches.

The second conclusion is that all of our multimodal approaches are better

than any other representation, the baseline agent and the unimodal distri-

bution. We need to note here that in the of training time, the unimodal

representation presents a rapid increase. This means that if we had more

resources to run experiments for a longer time we might see eventually the

unimodal to overcome one of the multimodal approaches or to collapse. How-

70

ever, the goal of this work is to improve the existed algorithm and it seems

that we have achieved it under these circumstances.

At a first glance, these are very important conclusions but we need to discuss

some more specific observations that derive. Firstly, it becomes clear again

that the RBFs methods, especially the one which use argamax, outperform

the multiple quadratics methods and the unimodal representation, achiev-

ing higher rewards and thus they become more suitable for similar domains.

Also, it is worth mentioning that the RBFs methods yield higher rewards

than multiple quadratics thus they present an overall better performance and

behave more efficiently in such domains. Lastly, it is shown a fluctuation for

all methods. We believe that this happens duo to high-dimensionality of the

tasks thus it makes the agent not to converge and have a stable performance.

��� ���� ���� ���� ���� ����
��������

�

���

����

����

����

�
��

��
	
��

��
�

�������

�����������������
���������������
�����������
���������
��������
������

Figure 7.11: The performance of all approaches applied to Walker2d envi-
ronment.

71

Chapter 8

Conclusion

8.1 Discussion

Our results show that the proposed approach of multimodal representations

does outperform the original unimodal NAF algorithm. In each tested task,

we received a better outcome which makes it clear that our new version has

succeeded its initial goal.

What is noteworthy is that under limited computational resources and with

no extensive literature references about this issue, we managed to prove that

the reimplementation of Q-learning in continuous actions and state spaces

is feasible and can produce a robust and alternative solution in high dimen-

sional spaces. Delving more into these results, we can conclude that under

laboratory conditions we achieved high scores in every simulated task, even

it was a 2-D or 3-D robot, and most importantly, we showed that the uni-

modal approach does not exploit the whole functionality of NAF algorithm,

a situation that we were able to alter.

To date, literature does not have a standard way to measure the performance

of RL algorithms for each environment. Moreover, many of these tasks are

considered unsolved thus there is no an official way to compare our results.

However, we can extract valuable insights comparing the two distributions

72

and that is what we did. We observed high scores of our implementation

with respect to the original distribution which means that our benchmarks

are based on fair comparisons. Hence, we understand the importance of our

results as they can be used as a means of future comparisons for any similar

algorithm that may test the multimodularity in such domains.

Although we produced very good results, we did not test them extensively

due to computational limitations. This is a very important issue because we

could extract even better results and eventually apply our implementation

to a real physical system. The acquisition of a powerful machine that can

run simultaneously many combinations of hyper-parameters for each envi-

ronment can be further tested either using our implementation or exploring

a new version. In addition, we observed that our approach had a slightly

increased computation cost compared to the unimodal representation. This

fact is rational because we export more advantage terms for implementing

the multimodal representations and this leads to a time-consuming behavior,

delaying the execution process and increasing the size of the NN.

8.2 Future Work

The idea of multimodularity can be explored even more as it is an open field

for research. This work examined only a small portion of how to deal with

high-dimensionality in continuous state and action spaces. There are many

aspects that can be reimplemented, improved or extended. For instance, this

work could be tested in all of the environments that OpenAI Gym provides

and maybe in other similar platforms. Therefore, a more general model could

be built which would be ready to be tested in real-world tasks. Apart from

that, another aspect for further investigation would be the experimentation

with every possible combination of the most appropriate hyperparameters.

In this context, the new algorithm could be applied to a range of tasks

regardless the features of each task, thus it would be easier to be adopted by

any physical system.

As far as the implementation is concerned, there is a lot of room for adjusting

73

new methods for exploring multimodal representations. New ideas can come

out and be compared with the ones we propose on this thesis. Moreover, the

existing neural network could be extended in order to produce more outputs,

such as the weights of the multiple quadratics and RBFs thus the algorithm

would be optimized.

An interesting idea for the future would the extensive test of these methods

both to more complicated simulated tasks but also to real-life systems. In

this way, we could understand if our methods have a significant impact to

real world problems and the idea of multimodularity could be implemented

not only using the NAF algorithm, but other baseline algorithms for deep

reinforcement learning such as DDPG algorithm.

8.3 Conclusions

It may sound trivial but our results, from our point of view and comparing

them with the literature, are very decent and if we consider that we pro-

posed a new approach that does not have extensively been explored, then

our impact to this field of research has a positive sign. Of course, our ex-

periments were performed in laboratory conditions and our methods were

not tested in real-world systems. However, our results indicate that there is

an important improvement in performance regarding our proposed methods

for multimodal representations regarding the published methods so far. This

makes us believe that our approach can trigger the community for further

research in this field. It is important to highlight that we conducted our

research and run our experiments under computational limitations as we did

not have the appropriate resources. Hence, a more state-of-the-art system

could achieve the results much faster and we could test even more parameters

of our model. Therefore, it becomes clear that given enough computational

resources and extending and improving these methods or implementing more

robust ideas, the verdict will be much more outstanding regarding the field of

Deep Reinforcement Learning and its application to continuous action spaces

thus in physical systems.

74

Bibliography

[1] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and

N. de Freitas, “Dueling network architectures for deep reinforcement

learning,” 2015.

[2] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-

learning with model-based acceleration,” 2016.

[3] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,

1st ed. Cambridge, MA, USA: MIT Press, 1998.

[4] R. Bellman, Dynamic Programming, 1st ed. Princeton,

NJ, USA: Princeton University Press, 1957. [Online]. Avail-

able: http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&

dq=dynamic+programming+richard+e+bellman&client=firefox-

a#v=onepage&q=dynamic%20programming%20richard%20e%

20bellman&f=false

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[6] L. P. Kaelbling, M. L. Littman, and A. P. Moore, “Reinforcement

learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,

pp. 237–285, 1996. [Online]. Available: http://people.csail.mit.edu/

lpk/papers/rl-survey.ps

75

http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://people.csail.mit.edu/lpk/papers/rl-survey.ps
http://people.csail.mit.edu/lpk/papers/rl-survey.ps

[7] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D.

dissertation, King’s College, Cambridge, UK, May 1989. [Online].

Available: http://www.cs.rhul.ac.uk/∼chrisw/new thesis.pdf

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Neurocomputing:

Foundations of research,” J. A. Anderson and E. Rosenfeld,

Eds. Cambridge, MA, USA: MIT Press, 1988, ch. Learning

Representations by Back-propagating Errors, pp. 696–699. [Online].

Available: http://dl.acm.org/citation.cfm?id=65669.104451

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

2014.

[10] T. Tieleman and G. Hinton., “Lecture 6.5-rmsprop: Divide the gradi-

ent by a running average of its recent magnitude.” COURSERA:Neural

networks for machine learning, 4(2), 2012.

[11] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,

D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep

reinforcement learning,” CoRR, vol. abs/1602.01783, 2016. [Online].

Available: http://arxiv.org/abs/1602.01783

[12] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” CoRR,

vol. abs/1212.5701, 2012. [Online]. Available: http://arxiv.org/abs/

1212.5701

[13] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods

for online learning and stochastic optimization,” J. Mach. Learn.

Res., vol. 12, pp. 2121–2159, Jul. 2011. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1953048.2021068

[14] N. Qian, “On the momentum term in gradient descent learning

algorithms,” Neural Netw., vol. 12, no. 1, pp. 145–151, Jan. 1999.

[Online]. Available: http://dx.doi.org/10.1016/S0893-6080(98)00116-6

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” CoRR, vol.

76

http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://dl.acm.org/citation.cfm?id=65669.104451
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dx.doi.org/10.1016/S0893-6080(98)00116-6

abs/1502.03167, 2015. [Online]. Available: http://arxiv.org/abs/1502.

03167

[16] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,”

Nature, vol. 521, no. 7553, pp. 436–444, 2015. [Online]. Available:

https://doi.org/10.1038/nature14539

[17] J. Schmidhuber, “Deep learning in neural networks: An overview,”

CoRR, vol. abs/1404.7828, 2014. [Online]. Available: http://arxiv.org/

abs/1404.7828

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.

[19] R. Munos and A. Moore, “Variable resolution discretization in optimal

control,” Machine Learning, vol. 49, no. 2, pp. 291–323, Nov 2002.

[Online]. Available: https://doi.org/10.1023/A:1017992615625

[20] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling,

“The arcade learning environment: An evaluation platform for

general agents,” CoRR, vol. abs/1207.4708, 2012. [Online]. Available:

http://arxiv.org/abs/1207.4708

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,

S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,

D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through

deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,

2015. [Online]. Available: https://doi.org/10.1038/nature14236

[22] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience

replay,” in 4th International Conference on Learning Representations,

ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track

Proceedings, 2016.

77

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
http://www.deeplearningbook.org
https://doi.org/10.1023/A:1017992615625
http://arxiv.org/abs/1207.4708
https://doi.org/10.1038/nature14236

[23] R. Hafner and M. Riedmiller, “Reinforcement learning in feedback

control,” Machine Learning, vol. 84, no. 1, pp. 137–169, Jul 2011.

[Online]. Available: https://doi.org/10.1007/s10994-011-5235-x

[24] T. de Bruin, J. Kober, K. Tuyls, and R. Babuska, “The importance of

experience replay database composition in deep reinforcement learning,”

01 2015.

[25] S. Levine and V. Koltun, “Guided policy search,” in Proceedings of the

30th International Conference on Machine Learning, ser. Proceedings

of Machine Learning Research, S. Dasgupta and D. McAllester, Eds.,

vol. 28, no. 3. Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 1–9.

[Online]. Available: http://proceedings.mlr.press/v28/levine13.html

[26] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den

Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,

M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,

I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and

D. Hassabis, “Mastering the game of go with deep neural networks

and tree search,” Nature, vol. 529, pp. 484–503, 2016. [Online].

Available: http://www.nature.com/nature/journal/v529/n7587/full/

nature16961.html

[27] N. Brown and T. Sandholm, “Libratus: The superhuman ai for

no-limit poker,” in Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 5226–5228.

[Online]. Available: https://doi.org/10.24963/ijcai.2017/772

[28] M. Moravćık, M. Schmid, N. Burch, V. Lisý, D. Morrill,

N. Bard, T. Davis, K. Waugh, M. Johanson, and M. H.

Bowling, “Deepstack: Expert-level artificial intelligence in no-

limit poker,” CoRR, vol. abs/1701.01724, 2017. [Online]. Available:

http://arxiv.org/abs/1701.01724

78

https://doi.org/10.1007/s10994-011-5235-x
http://proceedings.mlr.press/v28/levine13.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://doi.org/10.24963/ijcai.2017/772
http://arxiv.org/abs/1701.01724

[29] Y. You, X. Pan, Z. Wang, and C. Lu, “Virtual to real reinforcement

learning for autonomous driving,” CoRR, vol. abs/1704.03952, 2017.

[Online]. Available: http://arxiv.org/abs/1704.03952

[30] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end

training of deep visuomotor policies,” J. Mach. Learn. Res.,

vol. 17, no. 1, pp. 1334–1373, Jan. 2016. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2946645.2946684

[31] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by

crashing,” CoRR, vol. abs/1704.05588, 2017. [Online]. Available:

http://arxiv.org/abs/1704.05588

[32] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel,

“Asymmetric actor critic for image-based robot learning,” CoRR, vol.

abs/1710.06542, 2017. [Online]. Available: http://arxiv.org/abs/1710.

06542

[33] V. François-Lavet, “Contributions to deep reinforcement learning and

its applications in smartgrids.” 2017.

[34] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct reinforce-

ment learning for financial signal representation and trading,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 28, no. 3,

pp. 653–664, March 2017.

[35] J. Gauci, E. Conti, Y. Liang, K. Virochsiri, Y. He, Z. Kaden,

V. Narayanan, and X. Ye, “Horizon: Facebook’s open source applied

reinforcement learning platform,” CoRR, vol. abs/1811.00260, 2018.

[Online]. Available: http://arxiv.org/abs/1811.00260

[36] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. C.

Courville, and Y. Bengio, “An actor-critic algorithm for sequence

prediction,” CoRR, vol. abs/1607.07086, 2016. [Online]. Available:

http://arxiv.org/abs/1607.07086

79

http://arxiv.org/abs/1704.03952
http://dl.acm.org/citation.cfm?id=2946645.2946684
http://arxiv.org/abs/1704.05588
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1710.06542
http://arxiv.org/abs/1811.00260
http://arxiv.org/abs/1607.07086

[37] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level

training with recurrent neural networks,” CoRR, vol. abs/1511.06732,

2016.

[38] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement

learning,” CoRR, vol. abs/1611.01578, 2016. [Online]. Available:

http://arxiv.org/abs/1611.01578

[39] R. Miikkulainen, J. Z. Liang, E. Meyerson, A. Rawal, D. Fink,

O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy,

and B. Hodjat, “Evolving deep neural networks,” CoRR, vol.

abs/1703.00548, 2017. [Online]. Available: http://arxiv.org/abs/1703.

00548

[40] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu,

Q. V. Le, and A. Kurakin, “Large-scale evolution of image

classifiers,” CoRR, vol. abs/1703.01041, 2017. [Online]. Available:

http://arxiv.org/abs/1703.01041

[41] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural

combinatorial optimization with reinforcement learning,” CoRR, vol.

abs/1611.09940, 2016. [Online]. Available: http://arxiv.org/abs/1611.

09940

[42] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust

region policy optimization,” CoRR, vol. abs/1502.05477, 2015.

[43] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra, “Continuous control with deep reinforcement

learning,” 2015.

[44] K. Rawlik, M. Toussaint, and S. Vijayakumar, “On stochastic optimal

control and reinforcement learning by approximate inference (extended

abstract),” in Proceedings of the Twenty-Third International Joint

Conference on Artificial Intelligence, ser. IJCAI ’13. AAAI Press,

2013, pp. 3052–3056. [Online]. Available: http://dl.acm.org/citation.

cfm?id=2540128.2540576

80

http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1703.01041
http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1611.09940
http://dl.acm.org/citation.cfm?id=2540128.2540576
http://dl.acm.org/citation.cfm?id=2540128.2540576

[45] L. C. Baird III, “Advantage updating.” 1993.

[46] M. E. Harmon, I. Leemon C. Baird, and A. H. Klopf, “Reinforcement

learning applied to a differential game,” Adaptive Behavior, vol. 4,

no. 1, pp. 3–28, 1995. [Online]. Available: https://doi.org/10.1177/

105971239500400102

[47] M. E. Harmon and L. C. Baird III, “Multi-player residual advantage

learning with general function approximation.”

[48] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient

methods for reinforcement learning with function approximation,”

in Proceedings of the 12th International Conference on Neural

Information Processing Systems, ser. NIPS’99. Cambridge, MA,

USA: MIT Press, 1999, pp. 1057–1063. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=3009657.3009806

[49] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. A. Riedmiller, “Playing atari with deep reinforcement learn-

ing,” CoRR, vol. abs/1312.5602, 2013.

[50] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D.

dissertation, King’s College, Cambridge, UK, May 1989. [Online].

Available: http://www.cs.rhul.ac.uk/∼chrisw/new thesis.pdf

[51] L.-J. Lin, “Self-improving reactive agents based on reinforcement

learning, planning and teaching,” Machine Learning, vol. 8,

no. 3, pp. 293–321, May 1992. [Online]. Available: https:

//doi.org/10.1007/BF00992699

[52] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learn-

ing with deep energy-based policies,” CoRR, vol. abs/1702.08165, 2017.

[53] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian

motion,” Phys. Rev., vol. 36, pp. 823–841, Sep 1930. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRev.36.823

81

https://doi.org/10.1177/105971239500400102
https://doi.org/10.1177/105971239500400102
http://dl.acm.org/citation.cfm?id=3009657.3009806
http://dl.acm.org/citation.cfm?id=3009657.3009806
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://link.aps.org/doi/10.1103/PhysRev.36.823

[54] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:

A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[55] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,

J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,

2016.

[56] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,

P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,

P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,

“TensorFlow: Large-scale machine learning on heterogeneous systems,”

2015, software available from tensorflow.org. [Online]. Available:

https://www.tensorflow.org/

[57] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for

model-based control,” 2012.

[58] E. Coumans, “Bullet physics simulation,” in ACM SIGGRAPH 2015

Courses, ser. SIGGRAPH ’15. New York, NY, USA: ACM, 2015.

[Online]. Available: http://doi.acm.org/10.1145/2776880.2792704

[59] M. F. E. Rohmer, S. P. N. Singh, “V-rep: a versatile and scalable robot

simulation framework,” in Proc. of The International Conference on

Intelligent Robots and Systems (IROS), 2013.

82

https://www.tensorflow.org/
http://doi.acm.org/10.1145/2776880.2792704

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Thesis Contribution
	Thesis Outline

	Background
	Learning
	Markov Decision Process
	Policies
	Reinforcement Learning

	Artificial Neural Networks
	Network Architecture
	Common Activation Functions
	Optimizers
	Batch Normalization

	The Advantage Updating Algorithm

	Related Work
	RL and DL
	Continuous State and Action Domains
	Advantage Functions

	Our Approach
	Implementation
	NAF Description
	NAF Architecture
	Noise Exploration
	Replay Buffer
	The Idea of Multimodularity
	Methods and Selection
	Multiple Quadratics
	Radial Basis Functions

	Experimental Setup
	Roboschool
	Environments
	Programming Language of Choice
	TensorFlow
	Operating System, Hardware Specification and their Impact
	Code Structure

	Results
	The Evaluation Process
	Parameters of the Experimentation Process
	Neural Network Hyperparameters
	Comparisons
	Baseline Agent vs Unimodal Approach
	Multiple Quadratics Method
	RBFs Method
	Comparison of the Weighted Technique
	Comparison of the Argmax Technique
	Overall Figures and Comparisons

	Conclusion
	Discussion
	Future Work
	Conclusions

	Bibliography

