
Design and Implementation of Hardware
Architectures for Pricing Financial

Derivatives on Reconfigurable Logic

A dissertation submitted by

Konstantina G. Miteloudi

in partial fulfillment of the requirements for the degree of
M.Sc in Electrical and Computer Engineering

Technical University of Crete

2019

 ii

Committee: Professor Dionisios Pnevmatikatos T.U.C.

Associate Professor Ioannis Papaefstathiou A.U.TH.

 Professor Apostolos Dollas T.U.C.

 iii

Acknowledgements

I would like to thank my supervisors, Professor Ioannis Papaefstathiou and Professor Dionisios
Pnevmatikatos for co-supervising this dissertation. Also, I would like to thank Professor Apostolos
Dollas for participating to the committee. All the three of them have been source of inspiration.

Thanks to my partner and colleague Alkaios Sakellaris for everything. Together, we make a strong
team.

Finally, most of all, I owe it to my parents for the unconditional love they give me, because they
have taught me to dream and support me with patience and perseverance in making my dreams
come true.

 iv

Abstract

Option pricing is a fundamental problem in financial sector. This work presents a hardware
accelerator on FPGAs for Option Pricing using Crank-Nicolson Finite Difference scheme for solving
the Black-Scholes PDE. A variant of Cyclic Reduction called normalized Cyclic Reduction algorithm
is used as Tridiagonal Solver. The thesis contains all the theoretical background of option pricing
models and finite difference schemes. A literature review had been carried out covering
extensively all the FPGA based option pricing accelerators. The effort of this work was
concentrated mainly to hardware low-level optimizations that were implemented to produce a
parallel system that scale up efficiently. These optimizations, such as custom precision
arithmetic, fused operators, pipelined designs etc., were on level of hardware design and had
scope to produce a highly parallel hardware architecture. Three different hardware architectures
for the main computation core were presented. First a naïve non-pipelined at 32bit precision,
next a pipelined architecture using a custom 3 operand adder, also at 32bit precision and finally
the proposed hardware architecture with a Fused Multiply Addition operator (FMA or fmadd).
This architecture was implemented with 48bit precision, which was selected after taking into
account error analysis with MPRF library and design decisions. The implementation was on a
Xilinx FPGA device, Ultrascale xcvu9p, and achieved clock frequency 263MHZ.

 v

List of figures

Figure 1: Size of exchange-traded derivatives market (Data Source: www.bis.org). ... 12
Figure 2: Profit/Loss for a European call option with strike price K. ... 17
Figure 3: Profit/Loss for a European put option with strike price K. ... 18
Figure 4: A taxonomy of option valuation models and methods. ... 21
Figure 5: The course of a share stock, two periods for the expiry of the call. ... 23
Figure 6: Discretization mesh of the Black Scholes PDE. ... 30
Figure 7: Boundary conditions for European call option. .. 32
Figure 8: Explicit Stencil ... 33
Figure 9: implicit Stencil .. 36
Figure 10: Crank Nicolson Stencil .. 38
Figure 11: Cyclic Reduction calculation scheme. ... 41
Figure 12: Statistical analysis of literature of FPGA option pricing. .. 48
Figure 13 : The data flow of the E-FD hardware implementation on FPGA (Source: Jin et al. [37]) 54
Figure 14 : Root mean squared error against time for European option (Source: Jin et al. [42]) 55
Figure 15 : Internal architecture of Floating Point Unit (Source: Chatziparaskevas et al. [27]) 56
Figure 16 : Data dependency graph for the Thomas algorithm (Source: Palmer and Thomas [26]) 57
Figure 17 : Timing of FPGA Thomas solver on Zynq7020 (Source: Palmer [52]) ... 58
Figure 18 : Resource and Performance of FPGA Thomas solver (Source: Laszlo et al. [56]) 59
Figure 19 : TDMA solver pipeline (Source: Warne et al. [68]) ... 60
Figure 20 : Results of TDMA solver pipeline (Source: Warne et al. [69]) .. 61
Figure 21 : Timings in milliseconds of CR for problem size 512x512 (Source: Zhang et al [71]) 61
Figure 22 : Accuracy Analysis of tridiagonal solvers (Source: Zhang et al [71]) ... 62
Figure 23 : Performance of different tridiagonal solvers (Source: Quesada-Barriuso et al. [73]) 62
Figure 24 : Chunking for cyclic reduction of a 16x16 tridiagonal system (Source: Zhao and Yu [74]) 63
Figure 25: log relative error (l2-norm) near strike price versus system size. .. 67
Figure 26: Relative error (l2-norm) for the solution vector. .. 68
Figure 27: Absolute error in log scale at strike price versus system size. .. 71
Figure 28: Relative error (l2-norm) for the solution vector versus system size. ... 72
Figure 29: Absolute error in log scale at strike price versus system size. .. 73
Figure 30: Relative error (l2-norm) for the solution vector versus time steps. ... 74
Figure 31: Absolute error in log scale around strike price with N = 8192 versus time steps. 75
Figure 32: Payoff functions for European call option with different arithmetic precision and absolute error. 76
Figure 33: Relative error for Smax = 500. .. 78
Figure 34: Absolute error in log scale around strike price for Smax = 500 79
Figure 35: Log scale absolute error European call option with Smax = 500. ... 79
Figure 36: Relative error for Smax = 500 and r=20%. .. 80
Figure 37: Absolute error in log scale around strike price for Smax = 500 and r = 20%. ... 80
Figure 38: Log scale absolute error European call option with Smax = 500 and r=20%. ... 81
Figure 39: Payoff functions for European call option with Smax = 500 and r = 20%. .. 81
Figure 40: RMSE for precision against Δs with dt = 0.001. .. 85
Figure 41: Flow diagram of Crank-Nicolson scheme. .. 87
Figure 42: Flow diagram of Forward Phase. .. 87
Figure 43: Modeling the operations of Forward Phase. .. 88
Figure 44: Flow diagram of Backward Phase of Cyclic Reduction. .. 89
Figure 45: Modeling the operations of Backward Phase. .. 89
Figure 46: Modeling the operations of Update RHS e Phase. ... 90
Figure 47: Top block diagram. ... 91
Figure 48: Forward Phase of first design. .. 92

 vi

Figure 49: Datapath with latency for First architecture of the Forward Phase. .. 94
Figure 50: First architecture of the Backward Phase. .. 94
Figure 51: Latency for First architecture of the Backward Phase. ... 95
Figure 52: First architecture of the Update “e” Phase. .. 95
Figure 53: Latency for First architecture of the Update “e” Phase. ... 96
Figure 54: Three operand adder (Source: [84]). .. 97
Figure 55: Architecture of the FP with 3-operand adder. ... 98
Figure 56: Latency of the FP with 3-operand adder. ... 98
Figure 57: Architecture of the BP with 3-operand adder. ... 99
Figure 58: Latency of the BP with 3-operand adder. ... 99
Figure 59: Architecture of the UpeP with 3-operand adder. ... 100
Figure 60: Latency of the UpeP with 3-operand adder. .. 100
Figure 61: Modeling the FP with fused multiply adder operand. .. 101
Figure 62: Modeling the BP with fused multiply adder operand. ... 102
Figure 63: Modeling the UpeP with fused multiply adder operand. ... 102
Figure 64: Proposed Architecture of the FP with fused multiply adder operand. ... 105
Figure 65: Proposed Architecture of the BP with fused multiply adder operand. .. 106
Figure 66: Proposed Architecture of the UpeP with fused multiply adder operand. .. 106
Figure 67: Latency of proposed architecture of FP with FMA. .. 107
Figure 68: Latency of proposed architecture of BP with FMA. .. 108
Figure 69: Latency of proposed architecture of UpeP with FMA. ... 108
Figure 70: Shared memory for FP. ... 109
Figure 71: Shared memory for BP.. 110
Figure 72: Distributed memory per Core for FP. ... 112
Figure 73: Distributed memory per Core for BP. ... 113
Figure 74: Timings (milliseconds) for Cyclic Reduction. .. 115
Figure 75: Speed up for Cyclic Reduction. ... 115
Figure 76: Efficiency for Cyclic Reduction. ... 116
Figure 77: Timings (milliseconds) for Crank-Nicolson. .. 117
Figure 78: Speed up for Crank-Nicolson. ... 117
Figure 79: Efficiency for Crank-Nicolson. ... 118
Figure 80: log(RMSE) against log(time in ms) for Crank-Nicolson. .. 119
Figure 81: log(parallel efficiency) against log(time in ms) for Crank-Nicolson. ... 119

 vii

List of tables

Table 1: Capital inflows and outflows of investment with call option. ... 19
Table 2: Capital inflows and outflows of investment with put option. ... 20
Table 3: Portfolio cash flows at the expiration of the call option.. 22
Table 4: Comparison of boundary conditions ... 32
Table 5: Number Of Operations For A Loop Pass Per Phase ... 43
Table 6: Total Number Of Operations ... 44
Table 7: Chronologically sorted FPGA based option pricing accelerators. .. 46
Table 8: Relative error near strike price of European call option. ... 66
Table 9: Relative error for solution vector of European call option. ... 68
Table 10: Price approximation of European call option for different discretization and precision. 70
Table 11: Absolute error at strike price of European call option. ... 70
Table 12: Relative error for solution vector of European call option. ... 72
Table 13: RMSE of European call option for precision against Δs with dt = 0.001. ... 84
Table 14: Latency of FPOs for first architecture. ... 93
Table 15: Number of operations per architecture. ... 102
Table 16: Number of DSPs and Cycles per operator per precision. ... 103
Table 17: Used DSPs and latency per operator. .. 104
Table 18: Utilization Summary for all Designs ... 114

 viii

Table of Contents

Table of Contents .. viii

Chapter 1: Introduction .. 11

1.1 The derivatives market ... 11

1.2 High Performance Computing in Finance ... 13

1.3 Motivation and objectives .. 13

1.4 Thesis Overview .. 14

Chapter 2: Financial Derivatives .. 16

2.1 Introduction .. 16

2.2 Vanilla Options .. 16

2.2.1 Call Option ... 16

2.2.2 Put Option ... 17

2.3 Option Pricing Mechanics ... 18

2.3.1 Minimum Price of Call Option ... 18

2.3.2 Exercise of American Options ... 19

2.3.3 Put-Call parity relationship ... 20

2.4 Option Pricing Models... 20

2.4.1 The Binomial model .. 22

2.4.2 Monte Carlo Simulation .. 23

2.4.3 Black & Scholes model .. 24

2.4.3.1 Closed form solution of Black-Scholes PDE ... 26

Chapter 3: Finite Difference and Tridiagonal Solvers .. 28

3.1 Introduction .. 28

3.2 Black-Scholes PDE approximation with finite difference methods .. 28

3.2.1 Grid selection .. 29

3.2.2 Boundary conditions ... 31

3.2.3 Explicit Scheme ... 32

3.2.4 Implicit Scheme ... 34

3.2.5 Crank-Nicolson Scheme .. 36

3.3 Algorithms for Solving Linear Equation Tridiagonal Systems ... 39

3.3.1 LU decomposition ... 39

3.3.1.1 The tridiagonal matrix algorithm (TDMA or Thomas) ... 40

3.3.2 Cyclic Reduction (CR) .. 41

 ix

3.3.2.1 Cyclic Reduction with normalized diagonal (Norm-CR) .. 42

3.3.3 Comparison of tridiagonal solver algorithms .. 43

Chapter 4: Hardware Acceleration in Option Pricing and related work ... 45

4.1 Introduction .. 45

4.2 FPGA based option pricing accelerators ... 45

4.2.1 Monte Carlo based works ... 48

4.2.2 Trees based works... 52

4.2.3 Finite Differences based works ... 53

4.2.3.1 Explicit Finite Differences (E-FD) ... 53

4.2.3.2 Implicit or Crank-Nicolson Finite Differences (I-FD or CN-FD) .. 56

4.3 FPGA and GPU based tridiagonal solvers .. 60

4.4 Summary ... 63

Chapter 5: Accuracy Analysis of Crank-Nicolson Finite Difference Method with Normalized-Cyclic
Reduction as a Tridiagonal Solver for Option Pricing ... 64

5.1 Introduction .. 64

5.2 Error metrics ... 64

5.3 First set of experiments .. 65

5.3.1 Experiment 1: Which boundary conditions? .. 65

5.3.1.1 Relative error (l2-norm) near strike price ... 66

5.3.1.2 Relative error (l2-norm) of the solution vector .. 67

5.3.2 Experiment 2: Which system size? ... 69

5.3.2.1 Absolute error at strike price .. 70

5.3.2.2 Relative error (l2-norm) of the solution vector .. 71

5.3.3 Experiment 3: How many time steps? ... 73

5.3.3.1 Payoff functions and vector error ... 76

5.3.4 Experiment 4: Different parameters .. 78

5.3.4.1 Increase of Smax = 500 ... 78

5.3.4.2 Increase of interest rate from 1% to 20% ... 80

5.4 Arithmetic precision experiment with MPFR .. 83

5.4.1 The MPFR Library .. 83

5.4.1.1 Implementation of Crank-Nicolson scheme with MPFR ... 83

5.4.2 Monte Carlo simulation with custom precision .. 84

Chapter 6: Hardware Architectures and Design Decisions .. 86

6.1 Introduction .. 86

6.2 Modeling the Crank-Nicolson scheme .. 86

 x

6.2.1 Forward Phase .. 87

6.2.2 Backward Phase .. 88

6.2.3 Update Right Hand Side “e” Phase ... 89

6.3 The first two architecture designs .. 90

6.3.1 First architecture design ... 91

6.3.1.1 Forward Phase .. 92

6.3.1.2 Backward Phase .. 94

6.3.1.3 Update Right Hand Side “e” Phase ... 95

6.3.2 Second architecture design with custom 3-operand adder ... 96

6.3.2.1 Forward Phase .. 98

6.3.2.2 Backward Phase .. 99

6.3.2.3 Update Right Hand Side “e” Phase ... 100

6.4 The proposed architecture with fused multiply-adder operator ... 101

6.4.1 Modeling design with FMA ... 101

6.4.2 Proposed architecture with FMA .. 105

6.4.3 Latency of the proposed architecture with FMA per CR phase .. 107

6.4.4 Data Storage .. 109

6.5 Summary and results .. 114

Chapter 7: Conclusions and Future work ... 121

 11

Chapter 1:
Introduction

1.1 The derivatives market

Financial derivative products are not an innovation of modern capital and money markets.
Their use is extended back in time, many centuries ago, when the Ancient Phoenicians and
the Ancient Greeks were selling full shiploads in advance, namely at a predetermined price
and delivery in the future. The renaissance of letters and the arts in Europe brought
innovations in the markets of the Netherlands (Belgium and Dutch), which formed the center
of European trade. In Amsterdam futures contracts date back to the “tulip mania” in the
1630s. During the 1970s and 1980s, the liberalization of foreign exchange markets, as well as
the contribution of academics to the pricing of financial derivatives and especially the
Options, managed to radically change the landscape and significantly widen their use.

The Chicago Board Options Exchange (CBOE, www.cboe.com) started trading call option
contracts on 16 stocks in 1973. Options had traded prior to 1973, but the CBOE succeeded in
creating an orderly market with well-defined contracts. Put option contracts started trading
on the exchange in 1977. The CBOE now trades options on over 2,500 stocks and many
different stock indices. Like futures, options have proved to be very popular contracts. Many
other exchanges throughout the world now trade options. The underlying assets include
foreign currencies and futures contracts as well as stocks and stock indices.

Financial derivatives today are a powerful tool in the hands of financial institutions and
investors and are becoming more and more interesting. The Figure 1 shows the monthly
volume of exchange-traded options in trillion of dollars. The data source is from The Bank for
International Settlements (www.bis.org), which is an institution in Basel (Switzerland) that
acts as a bank for central banks. This figure depicts the last 20 years of option market. As can
be seen from the graph, there are three distinct phases:

 [phase 1] The period between 2000 and August 2007 saw a dramatic growth in the
trade of options. Respectively, there was a steep rise in the volume of transactions
from 3.78 to 56.6 trillion US dollars. This is an average increase of 7.5 trillion US dollars
per year. Two basic reasons for this escalation were due to new financial instruments
and electronic trading. The later has led to a growth in algorithmic trading, which
involves the use of computer programs to initiate trades, often without human
intervention [1].

 [phase 2] The second period can be defined as the Financial Crisis. Early warning signs
of this crisis have been piled up since early 2007. It was caused by the subprime
mortgage crisis [2], which itself was caused by the use of derivatives. The most high
profile financial incident of this time was the bankruptcy of Lehman Brothers [3] in 15

http://www.cboe.com/
http://www.bis.org/

 12

September 2008. Before the financial markets are able to calm down from the
aforementioned events, the Europe debt crisis came with the default of Greece in 9
May 2010 [4],[5],[6],[7]. The United States having not overcome their systemic
problems that led them to the 2008 crisis returned to the financial crisis this time in
the form of sovereign debt. In 5 August 2011 US lost AAA credit rating for the first time
in history [8]. The option market followed these events and its size dramatically shrunk
to the lowest level of the last decade, about $ 26 trillion in the last quarter of 2012.

 [phase 3] From 2016 and onwards, as shown in the chart, there is a continuous upward
trend in the trading volume of the market. In the first quarter of 2018, it reached the
highest historic value of $ 61 trillion in the last 20 years. If this trend continues it will
be a new era of growth for the option market.

Figure 1: Size of exchange-traded derivatives market (Data Source: www.bis.org).

http://www.bis.org/

 13

1.2 High Performance Computing in Finance

The finance sector is one of most prominent users of High Performance Computing (HPC). The
progress in online applications like news aggregation and analysis and the competition in the
field of low-latency and High-Frequency Trading (HFT) required new technologies to keep
track with the operational and market demands.

Also, due to the aftermath of the financial crisis in 2008 the computational demands have
surged over the last years. New regulations for banks and financial institutes (e.g., Basel III
and Solvency II) raised the demand for risk valuation and forced them to deliver valuation and
risk simulation results to internal risk management departments and external regulatory
authorities frequently.

These changes added up to an important bottleneck in many investment and risk
management calculations. The pricing of exotic derivatives in appropriate market models,
where no (semi) closed-form pricing formulas exist, and the evaluation is carried out by
applying numerical approximations. In most cases, calculating those numbers for a complete
portfolio can be very compute intensive and can last hours to days on state-of-the-art
compute clusters with thousands of cores.

1.3 Motivation and objectives

The main motivation for this work was to produce a hardware solution for option pricing in
FPGA. This solution must meet the following criteria:

 Speed, in terms of how quick can give a value for an option.

 Accuracy, in the settings that are selected to provide error below the market
threshold.

 Adaptability, the proposed solution can solve different kind of options.

The objectives of this thesis that specialize the above motives can be summarized to the
followings:

 Find and implemented the most suitable FPGA based hardware architecture for
Normalized Cyclic Reduction (Norm-CR) algorithm.

 Incorporate the Norm-CR in the Crank–Nicolson Finite Difference scheme in a highly

parallel FPGA design.

 Provide transparent results in terms of accuracy, timing and utilization for the FPGA
implementation.

A secondary objective, that has been created by the volume and interdisciplinary of
knowledge needed for the implementation of the above, is this thesis to be a guide for similar
scientific research.

 14

1.4 Thesis Overview

In chapter 2, the underlying mechanics of financial derivatives are analyzed. The main
valuation models are presented, such as the Binomial, the Black & Scholes and the Monte
Carlo simulation approach.

Next, in chapter 3, the finite difference (FD) methods are presented and their application in
the solution of Black-Scholes PDE. Three different FD schemes are examined Explicit, Implicit
and Crank-Nicolson. Also, algorithms for solving tridiagonal linear systems are examined such
as tridiagonal matrix algorithm (TDMA or Thomas), Cyclic Reduction (CR) and a variant with
normalization of main diagonal of the tridiagonal matrix called Norm-CR. The latter algorithm
is used in the hardware implementation.

In Chapter 4, an extensive literature review is contacted covering the field of hardware based
accelerators for Option Pricing since 2005 until papers published on August of 2018. All
relative literate is presented and statistical analysis is made to see the trends in the field. Two
main classes are examined based on the hardware and algorithms used:

 FPGA based option pricing accelerators covering all the financial models such as the
Binomial, the Black & Scholes and the Monte Carlo simulation.

 FPGA and GPU implementations of Tridiagonal Solvers.

In our knowledge is the first literature review in the field.

Chapter 5 is dedicated to accuracy analysis of the option pricing procedure. Many
experiments where designed and implemented to evaluate the performance of Crank-
Nicolson Finite Difference method for solving Black-Scholes PDE. Different metrics of errors
are used to see the behavior of arithmetic solution over the analytical. A special experiment
is contacted with the Multiple Precision Floating-Point Reliably (MPFR) to determine the
floating precision that the algorithm can efficiently operate.

In Chapter 6 the design decisions and the hardware architectures are presented. There are
three basic parts in the analysis of this chapter:

 The first part includes the modeling of the Crank-Nicolson scheme.

 In the second part, two hardware architectures are presented, a first naïve which non-
pipelined and a pipelined design that exploit a custom 3 operand adder as a fused
floating point operator.

 Finally, the last part is dedicated to the proposed design with a fused multiply adder.

Each design had been implemented in different periods of time with different technology of
FPGAs. Implementation results are presented for all designs, but only the proposed
architecture is evaluated with performance metrics. Also, analysis for operational limits of the

 15

system are discussed combining the accuracy analysis of the previous chapter with the timings
results.

Finally, in Chapter 7 the conclusions and future work are discussed.

 16

Chapter 2:
Financial Derivatives

2.1 Introduction

In general, a financial derivative is a contract that is based on other financial products. In
particular, derivatives are contracts between two counterparties that effect a transaction
(purchase or sale) of a particular underlying product. The transaction will take place at some
point in the future with pre-agreed terms regarding the price and timing of the transaction.
The main reason for introducing and using derivatives is the need to develop safeguards
against the risk of an investment.

Derivatives are risk reduction tools but if are used for profit-making purposes the financial
risk may increase. Typical paradigm of this is the subprime mortgage securitization, which
played a big part in the beginning of the Crisis of 2007. The underlying asset(s) can vary from
a commodity to a stock market index or an interest rate, an exchange rate etc. Thus,
derivatives facilitate the transfer of financial risks.

Common derivatives are options and futures. The simplest call and put options are now so
standard that are called vanilla options. Meanwhile, there exist many kinds of options,
including the so-called exotic options. These include for example Asian options, which depend
on the average price over a period, look-back options, which depend on the maximum or
minimum price over a period, and barrier options, which depend on some price level being
attained or not. Many of these complicated payoff patterns can be created from trading in
the corresponding underlying product and different standard options [1].

The next sections are devoted to option market Mechanics. So that the reader can have the
necessary knowledge required for the next chapters of this thesis.

2.2 Vanilla Options

An option is a contract that gives its holder the right to buy or sell a particular underlying
product at a predetermined price within a given period of time. The value of the right is
determined on the basis of the price of the underlying product on which it is based. There are
two types of options, call options and put options.

2.2.1 Call Option

As its name suggests, a call option gives its holder the right to buy a certain quantity of the
underlying asset at a certain price in the future. There are two types of calls, European calls
and American calls. The European call can be exercised only at the end of the predetermined
period. In contrast, American call option holder can exercise the right to buy at any time
within the specified time period.

Essentially, a call is a "bet" between two investors regarding the price of the underlying
asset(s). The buyer of the call believes that there will be a rise in the price in the future, while
the seller believes that the price of the underlying product will decrease.

 17

Considering the case of a European call, its buyer has the right to purchase the underlying
product at a given price. This value is called strike price or exercise price and henceforth will
be denoted as K. On the other hand, the publisher of the call is obliged to sell the underlying
asset to the buyer if the latter decides to exercise his right.

When buying a call option, the buyer pays the issuer the value of the option, which henceforth
will be denoted as V. Upon expiry of the predetermined period (expiration or maturity of the
Call), the buyer may exercise his right to purchase the underlying product or not. The decision
it will be taken depends on the relationship between the ST price of the underlying product at
the moment the call option expires and the call exercise price K (Figure 2).

In particular, if the price of the underlying product is higher than the exercise price 𝑆𝑇 > 𝐾,
then the buyer must exercise the right and buy the underlying product at the value K.
After 𝑆𝑇 > 𝐾, obviously the buyer has an inflow of capital equal to 𝑆𝑇 − 𝐾. The net profit
is 𝑆𝑇 − 𝐾 − 𝑉. In the same case the call seller has a net loss equal to 𝑆𝑇 − 𝐾 − 𝑉.

Let's now examine the case where the price of the underlying asset at the expiration date of
call option is less than the strike price 𝑆𝑇 < 𝐾. In this case, the buyer will not exercise its right
and the damage will be limited to the amount paid for the purchase of the Call, that is the
amount of V. If the right is exercised, this damage will increase by the difference 𝐾 − 𝑆𝑇. On
the contrary, the call seller gets a win in this case and his profit is equal to the amount that
received from the buyer, that is, V.

Figure 2: Profit/Loss for a European call option with strike price K.

V
al

u
e

-V

ST

K

Buyer

V
al

u
e

V

ST
K

Seller

2.2.2 Put Option

Unlike Calls, the put option gives the holder the right to sell the underlying asset(s) within a
predetermined time and at a pre-agreed price. The seller of the Put in this case is obliged to
purchase the underlying product from the purchaser of the Put, if the right is exercised.
As in the case of Calls, there are put options of a European type in which the exercise of the
right can only be exercised at the expiration of the contract and put options of an American
type, where the exercise of the right can be exercised at any time until its expiry. The earnings
are determined by the relationship between the 𝑆𝑇 value of the underlying asset at the

 18

exercise time and the exercise price K of the underlying (Figure 3). The following two cases are
more clearly distinguishable:

 𝑆𝑇 > 𝐾 : In this case, the buyer of the Put will not exercise the right, as he can sell the
underlying at 𝑆𝑇 , which is higher than the pre-agreed strike price K of the contract.
The damage in this case will be equal to the amount paid for the purchase of the right,
ie V. On the other hand, the seller of the Put will have an equivalent profit of V.

 𝑆𝑇 < 𝐾 : In this case, the buyer of the Put will exercise the right, as he may sell the
underlying product to the seller of the Put, at a price higher than his actual value. The
buyer's net profit will be 𝐾 − 𝑆𝑇 reduced by the option price of V. Instead, the seller
has a transaction loss that is equal to the put's owner's profit.

Figure 3: Profit/Loss for a European put option with strike price K.

V
al

u
e

-V

ST

K

Buyer

V
al

u
e

V

ST
K

Seller

2.3 Option Pricing Mechanics

In the following sections, basic options pricing methodologies are presented. The analysis of
these models is made for the case where the option under consideration is a European Call.
As will be shown, typically American-style Calls are not exercised before their expiration.
Consequently, a similar analysis to that presented may be used in the case of the American
Type Option. Given a relationship that correlates the value of a European-style Call and the
value of a European-style Put, the models can also be used to measure Put. Therefore, before
analyzing the two options described above, some basic principles of valuation of options will
be presented.

2.3.1 Minimum Price of Call Option

Assuming that at some point 𝑡 an investor has the following two alternatives available:

 Portfolio 1: Purchase a call option at 𝑉 and simultaneously invest 𝐾 ⁄ (1 + 𝑟) with 𝑟
stands for interest rate until the expiration date.

 19

 Portfolio 2: Direct purchase of the underlying asset of the Call option of the alternative
1 in the current value of 𝑆.

Table 1 shows the inflows and outflows for both options, both in time t and at maturity. As
can be seen, in any case income from portfolio 1 at the maturity of the option exceeds the
revenues of portfolio 2. Therefore, the relationship between the values of the two options
today should be respectively the same. Such as:

𝑉 +
𝐾

(1 + 𝑟)
> 𝑆 ⇒ 𝑉 > 𝑆 −

𝐾

(1 + 𝑟)

This relationship determines the minimum price of a call option.

Table 1: Capital inflows and outflows of investment with call option.

Time to maturity 𝒕 = 𝟎 𝒕 = 𝑻

 𝑺𝑻 < 𝑲 𝑺𝑻 > 𝑲

Portfolio 1

Buy Call Option −𝑉 0 𝑆𝑇 − 𝐾
 Investment −𝐾 ⁄ (1 + 𝑟) 𝐾 𝐾

Total −𝑉 − 𝐾 ⁄ (1 + 𝑟) 𝐾 𝑆𝑇

Portfolio 2

Total −𝑆 𝑆𝑇 𝑆𝑇

2.3.2 Exercise of American Options

As has already been mentioned, the main feature of American options is that they can be
exercised at any time until their expiration. Assume that at some point in time, the value of
the underlying asset is 𝑆 before expiry of the option, and that the underlying product will not
yield revenue in the form of coupons (for bonds) or dividends (for shares / indicators). Then
with the exercise of the option, the investor will have earnings of max {0, 𝑆 − 𝐾}. If, on the
contrary, proceeds with the sale of the right, it will have revenue:

𝑉 > 𝑆 −
𝐾

(1 + 𝑟)

Exercising the right makes sense only if 𝑆 > 𝐾. But in this case 𝑉 > 𝑆 − 𝐾, so the sale of the
right will bring higher returns than its exercise. Therefore, the exercise of the right before
maturity should not be preferred by the investor. Alternatively, he may proceed with the sale
of the right.

 20

2.3.3 Put-Call parity relationship

The value of a European call option is associated with the value of a corresponding European
put option through a relationship known as Put-Call parity. Let's assume that at some point
in time 𝑡 two alternative investments are considered. Portfolio 1 concerns the purchase of
the underlying asset and a put option with price 𝑉𝑝𝑢𝑡 . Alongside, lending capital of value

𝐾/(1 + 𝑟) with interest rate 𝑟 until the maturity of the put option, where K is the strike price.
Portfolio 2 involves buying a call option of value 𝑉𝑐𝑎𝑙𝑙. The results (capital inflows / outflows)
of these two portfolios at maturity are summarized in the Table 2 below.

Table 2: Capital inflows and outflows of investment with put option.

Time to maturity 𝒕 = 𝟎 𝒕 = 𝑻

 𝑆𝑇 < 𝐾 𝑆𝑇 > 𝐾

Portfolio 1

Buy Stock −𝑆 𝑆𝑇 𝑆𝑇
Buy Put Option −𝑉𝑝𝑢𝑡 𝐾 − 𝑆𝑇 0

Lending 𝐾 ⁄ (1 + 𝑟) −𝐾 −𝐾

Total −𝑆−𝑉𝑝𝑢𝑡 + 𝐾 ⁄ (1 + 𝑟) 0 𝑆𝑇 − 𝐾

Portfolio 2

Total 𝑉𝑐𝑎𝑙𝑙 0 𝑆𝑇 − 𝐾

As can be seen, the results of the two alternatives at the end of the time period are absolutely
identical and therefore have the same value. Such as:

𝑉𝑐𝑎𝑙𝑙 = 𝑆+𝑉𝑝𝑢𝑡 −

𝐾

(1 + 𝑟)
 (2.1)

This relationship is particularly useful as it allows the valuation of the price
𝑉𝑝𝑢𝑡 of the Put option based on the given value of the Call option and vice versa. This equation

(2.1) is known as call-put parity.

2.4 Option Pricing Models

The option pricing is one of the most important areas of financial science research, over the
last 45 years. This subject is not only of considerable research interest, but also of increased
practical interest, as valuation techniques for options and other forms of derivatives are used
on a daily basis by portfolio managers. The dissemination of options coincides with the
publication of the works of Fischer Black and Myron Scholes in 1973 on the pricing of stock
options [9] and Robert Merton [10].

There are four basic families of models in the taxonomy of option pricing methods (Figure 4):

 21

 The analytical models, where a closed form solution exists for valuating, usually a
European type option [9], [10].

 The numerical models, where the most known methods are the binomial model
[11],[12], finite difference methodology [13],[14],[15] and Monte Carlo simulation
[16]. These methods can be used for any kind of option vanilla or exotic.

 The analytical approximation is a technique that combines numerical and analytical
models. The value for early exercise option is assessed using a numerical technique
and then the premium is added to the price of a European option, which has been
obtained from an analytical model. This approach has been used to value American
calls and puts on stocks, stock indices, currencies and futures contracts [17].

 Finally, term structure models are mainly used for options on bonds and interest rates.
Its solution methods are from analytical and numerical methods [18].

Figure 4: A taxonomy of option valuation models and methods.

Black & Scholes

1973

Analytical

models

Numerical

models

Analytical

approximation

models

Term structure

models

Binomial trees

Finite Difference

Monte Carlo

Simulation

Explicit

Implicit

Crank

Nicolson

The highlighted boxes in Figure 4 depict the path this thesis is going to take. Before deepen
into the theory of finite difference, it is essential to analyze in brief the basic models that are
more commonly implemented in hardware. In following sections the binomial, the Monte
Carlo simulation and the Black & Scholes models are presented.

 22

2.4.1 The Binomial model

The binomial model [11],[12] is the simplest approach to the valuation of stock options. It is
a discrete-time model, under which the analysis is based on changes of the underlying asset
at discrete points until the time to maturity of the option.

Suppose that at some time 𝑡 a portfolio combines a call option and purchase 𝑎 amount of the
underlying asset. The value of the option is 𝑉 and it has a strike price 𝐾 and expires after a
period of time. The value of the underlying product at the given time 𝑡 is 𝑆. During the time
period until the expiration of the call option, the value of the underlying product may be
increased to 𝑢𝑆 or reduced to 𝑑𝑆 , where 𝑢 and 𝑑 coefficients are determined based on the
corresponding logarithmic returns.

The cash flows of the portfolio at the maturity of the call option are presented in the following
Table 3. In this table, 𝑉𝑢 and 𝑉𝑑 denotes the value of the call in case of increasing and
decreasing respectfully, of the value of the underlying. On this base of analysis, the value of a
call option can be calculated as follows: 𝑉𝑢 = max {0, 𝑢𝑆 − 𝐾} and 𝑉𝑑 = max {0, 𝑑𝑆 − 𝐾}.

Table 3: Portfolio cash flows at the expiration of the call option.

Time to maturity 𝑡 = 0 𝑡 = 𝑇

 Increase Decrease

Write Call option 𝑉 −𝑉𝑢 −𝑉𝑑
Buy 𝑎 quantity of asset −𝑎𝑆 𝑎𝑢𝑆 𝑎𝑑𝑆

Again, suppose that the investor is interested in compiling a portfolio so that the result of the
investment at maturity is not affected by changes in the price of the underlying product. Such
a portfolio is said to offset the risk (hedged portfolio). For such portfolio, it must:

−𝑉𝑢 + 𝑎𝑢𝑆 = −𝑉𝑑 + 𝑎𝑑𝑆 ⇒ 𝑎 =
𝑉𝑢 − 𝑉𝑑

𝑆(𝑢 − 𝑑)
 (2.2)

This ratio determines the number of items of the underlying product to be purchased so that
portfolio results are not affected by changes in the price of the underlying product and is
reported as a hedging factor.

The certain result of this portfolio can thus be achieved by investing some capital for the
period until the maturity date of the call with a fixed interest rate of 𝑟. The 𝑋 capital to be
invested is:

𝑋 =
−𝑉𝑢 + 𝑎𝑢𝑆

1 + 𝑟
=

−𝑉𝑑 + 𝑎𝑑𝑆

1 + 𝑟
 (2.3)

If there are two ways (portfolio or investment) to achieve the same result, then their present
value should be equal, otherwise it will be possible to make a direct profit, and this is an
imbalance that cannot last long. Therefore, it should:

 23

𝑉 − 𝑎𝑆 = 𝑋 ⇒ 𝑉 − 𝑎𝑆 = −
−𝑉𝑑 + 𝑎𝑑𝑆

1 + 𝑟
⇒ 𝑉 =

𝑎(1 + 𝑖)𝑆 + 𝑉𝑑 − 𝑎𝑑𝑆

1 + 𝑟
 (2.4)

By substituting in this relation the amount of shares that included in the portfolio from the
underlying asset, as determined by the relation (2.2), it follows that:

𝑉 = −
𝑝𝑉𝑢 + (1 − 𝑝)𝑉

𝑑

𝑟
 (2.5)

where 𝑝 = (𝑟 − 𝑑) (𝑢 − 𝑑)⁄ .

This relationship determines the value of the call option when one time period remains to
expire. On the basis of this relationship and following the same reasoning, it is possible to
evaluate the option at any time before its expiry and of course at time 0. In the case where
two time periods remain until the expiration of the option, the course of the share until the
expiration of the option is given in the Figure 5 below.

Figure 5: The course of a share stock, two periods for the expiry of the call.

S

uS

dS

u2S

udS

d2S

t=0 t=1 t=2

2.4.2 Monte Carlo Simulation

The Monte-Carlo simulation [16] is used to valuate options for the neutral risk. Initially, many
yield paths are sampled in order to find the expected return in a neutral risk environment,
and then, for this return, the present value is estimated.

Let’s consider a financial derivative that depends on a single market variable S and provides
some yield in time T. Assuming the interest rate remains stable, the derivative can be valued
as follows:

1. Sampling a random path for variable S in a risk-free environment.
2. Performance calculation of the derivative.
3. Repeat steps 1 and 2 in order to estimate as many performance values possible.

 24

4. Calculate the average of the sample of returns to estimate the expected return in a
no-risk environment.

5. Redemption of the expected return with the risk-free interest rate at present value.

Suppose that the procedure followed by the variable S in a risk-free environment is:

𝑑𝑆 = �̂�𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧 (2.6)

Where 𝑑𝑧 is a Wiener process, �̂� is the expected return in a risk-free environment and 𝜎 is
the volatility. To simulate the path followed by the variable S, the life of the derivative is
divided into N time intervals of size 𝑑𝑡 and the equation (2.6) is approximated as follows:

𝑆(𝑡 + 𝑑𝑡) − 𝑆(𝑡) = �̂�𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝜖√𝑑𝑡 (2.7)

Where S(t) denotes the value of S at time t, 𝜖 is the random sample of a normal distribution
with an average of zero and a standard deviation of one. This process makes it easier to
calculate the value of S at time dt from the initial value of S. A simulation involves creating a
complete path for S using N random samples from a normal distribution.
In practice, it is usually more accurate to simulate ln (𝑆) instead of S. From the lemma Itô for
ln (𝑆) it follows:

𝑑𝑙𝑛𝑆 = (𝜇 −
𝜎2

2
)𝑑𝑡 + 𝜎𝑑𝑧 (2.8)

In order that,

𝑙𝑛𝑆(𝑡 + 𝑑𝑡) − 𝑙𝑛𝑆(𝑡) = (𝜇 −
𝜎2

2
)𝑑𝑡 + 𝜎𝜖√𝑑𝑡 (2.9)

The above equation is used to construct the path for S. The main advantage of the Monte-
Carlo simulation is that it can also be used for returns dependent on both the path followed
by the variable S and its final value. Also returns can take place at various moments in the
time to maturity of the derivative.

2.4.3 Black & Scholes model

In a previous section, the binomial valuation model has been analyzed, based on the
assumption of discrete time. When the number of periods until the expiration of the option
is too high, the discrete time hypothesis can be eliminated and a model valuation in a
continuous time can be developed. This model is known as the Black and Scholes model [9],
from the names of the two researchers who developed it in 1973 and is the main tool
currently used for option pricing.

The development of Black and Scholes model is based on the same logic as the binomial
model. It therefore assumes that it is possible to build a portfolio consisting of an option and
an underlying asset, so the risk is hedged, by achieving a definite result on the expiry of the

 25

option. Such a portfolio should have the same present value as a capital that moves with a
certain interest rate r, until the expiration of the option will have a value equal to the value
of the portfolio.

Assume a portfolio that consists of buying 𝑞𝑠 shares of the underlying asset and issuing 𝑞𝑉
number of option contracts. Then if the value of the underlying product at the time is S and
for the option is C, the value P of the portfolio is 𝑃 = 𝑞𝑆𝑆 + 𝑞𝑉𝑉. Thus the change in portfolio
value for changes in the value of the underlying product and the option (changes denoted as
dS and dV respectively) is 𝑃 = 𝑞𝑆𝑆 + 𝑞𝑉𝑉. Since the portfolio is supposed to be constructed
to offset the risk, the change in its value over any dt period should correspond to the return
of a collateral. In particular, if the value P of the portfolio was invested for a dt period with a
certain r interest rate, then at the end of the dt period would earn a profit of rPdt. Therefore,
in order for the portfolio to be deemed to offset the risk, it should:

𝑟𝑃𝑑𝑡 = 𝑞𝑆𝑑𝑆 + 𝑞𝑉𝑑𝑉 ⇒ 𝑟(𝑞𝑆𝑑𝑆 + 𝑞𝑉𝑑𝑉)𝑑𝑡 = 𝑞𝑆𝑑𝑆 + 𝑞𝑉𝑑𝑉 (2.10)

If the investor buys a piece of the underlying product (𝑞𝑆 = 1), and at the same time issues
𝑞𝑉 = 1 pieces of the option, in order for the portfolio to be free of risk, the value of the
portfolio must remain stable and independent of changes in the price of the underlying
product. Thus it should be:

 𝜕𝑃

𝜕𝑆
= 0 ⇔ 1 + 𝑞𝑉

𝜕𝑉

𝜕𝑆
= 0 ⇔ 𝑞𝑉 = −

1

𝜕𝑉 𝜕𝑆⁄
 (2.11)

This result is replaced in the relation (2.10), while taking into account that (𝑞𝑆 = 1), it appears
that:

𝑟 (𝑆 −

𝑉

𝜕𝑉 𝜕𝑆⁄
) 𝑑𝑡 = 𝑑𝑆 −

𝑉

𝜕𝑉 𝜕𝑆⁄
𝑑𝑉 ⇒

𝑑𝑉 =
𝜕𝑉

𝜕𝑆
𝑑𝑆 − 𝑟𝑆

𝜕𝑉

𝜕𝑆
𝑑𝑡 + 𝑟𝑉𝑑𝑡

(2.12)

Given this relationship, it is now required to define a process that can adequately model the
change in the value of the underlying product dS. This is done through the Wiener process. A
stochastic process (W = Wt: t> 0) is called Wiener, if:

 every Wt of the process at time t is continuous with W0 = 0, and

 the change follows the normal distribution and is independent of the progress of the
process until the time t.

Based on this, the change in the price of the underlying product can be adequately attributed
by the following relationship:

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊 ⇒ 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊 (2.13)

where μ is the instantaneous expected return of the underlying product, σ the corresponding
standard deviation, and dW is a random factor that has the properties of a Wiener process

and therefore follows the normal distribution (0, √𝑑𝑡) with mean value of zero and a standard

 26

deviation √𝑑𝑡. Note that if σ = 0, then the solution of the differential equation (2.13) is 𝑆 =
𝑆0𝑒

𝜇𝑡 where 𝑆0 is the value of the underlying product at the time t = 0.

Since the value of the option is a function of two variables, the value of the underlying product
S and time t, a theorem in the field of stochastic processes can be used. This is the theorem
of Ito. This assumes that if a continuous and double differentiable function𝑓(𝑥, 𝑡), where x is
a random variable that follows a stochastic process of the format𝑑𝑥 = 𝛼𝑑𝑡 + 𝛽𝑑𝑊. Then,
according to the theorem of Ito, it is true that:

𝑑𝑓 = 𝛽
𝜕𝑓

𝜕𝑥
𝑑𝑊 + (𝛼

𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑡
+

1

2
𝛽2

𝜕2𝑓

𝜕𝑥2
)𝑑𝑡 (2.14)

Using this result and replacing 𝑓, 𝑥, 𝛼, 𝛽 with 𝑉, 𝑆, 𝜇, 𝜎 respectively, it follows that:

𝑑𝑉 =

𝜎𝑆
𝜕𝑉

𝜕𝑆
𝑑𝑊 + (𝜇𝑆

𝜕𝑉

𝜕𝑆
+

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
)𝑑𝑡

=
𝜕𝑉

𝜕𝑆
(𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊) +

𝜕𝑉

𝜕𝑡
𝑑𝑡 +

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
𝑑𝑡

=
𝜕𝑉

𝜕𝑆
𝑑𝑆 +

𝜕𝑉

𝜕𝑡
𝑑𝑡 +

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
𝑑𝑡 (2.15)

By substituting the relation (2.12) it follows that:

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+

1

2

𝜕2𝑉

𝜕2𝑆
𝜎2𝑆2 = 𝑟𝑉 (2.16)

This is a stochastic differential equation known as the stochastic differential equation of the
Black & Scholes model. It is noted that the development of this equation was not based on
any assumption regarding the characteristics of the product concerned (in this case the call
option). This indicates that the equation (2.16) has a generic value, thus any derivative product
whose value is determined by the value of S of the underlying product and the time t satisfies
the equation (2.16). In addition, it is noted that in the equation (2.16) the expected return μ of
the underlying product is not displayed, but only the variable σ of volatility. This indicates that
the value of the contract is independent of the expected return and is determined only by the
volatility σ, value S of the underlying product, time and as well as by the interest rate r [1].

2.4.3.1 Closed form solution of Black-Scholes PDE

The solution of the stochastic differential equation (2.16) requires the definition of some
boundary conditions that differ according to the financial product under consideration. In the
case of European call option pricing, these marginal conditions result from the value of the
call option at the end of period T:

 27

𝑉(𝑆𝑇 , 𝑇) = {
(𝑆𝑇 − 𝐾), 𝑆𝑇 > 𝐾
 0, 𝑆𝑇 ≤ 𝐾

 (2.17)

If at some point in time t before the expiration of the Call, the value of the underlying product
is S = 0, then it is apparent from the relation (2.13) that there can be no change in the value
of the underlying product, and therefore it is certain that the option will not be exercised at
its expiration. Therefore, 𝑉(0, 𝑡) = 0 . On the other hand, if at any time t before the expiration
of the call option, the value of the underlying product is 𝑆 → ∞, then it is almost certain that
(𝑆𝑇 ≫ 𝐾), then will exercise the right by yielding (𝑆𝑇 − 𝐾 ≈ 𝑆𝑇). So, the value of the call
option is 𝑉(𝑆, 𝑡) ≈ 𝑆 when𝑆 → ∞.

Under these boundary conditions the solution of the stochastic differential equation of the
relation (2.16) gives the value of the call option by:

𝑉𝑐𝑎𝑙𝑙 = 𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) (2.18)

In addition, using the equation (2.1) which determines the value of a put option in relation to
the value of a corresponding call option, the Black & Scholes model can easily be used to
determine the value of a put. Since the Black & Scholes model is a continuous time model,
the equation (2.1) should be modified using a continuous compounding as follows:

𝑉𝑐𝑎𝑙𝑙 = 𝑆+𝑉𝑝𝑢𝑡 − 𝐾𝑒−𝑟𝑇 (2.19)

By replacing where the value of the call option according to the model, it follows that:

𝑉𝑝𝑢𝑡 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆𝑁(−𝑑1) (2.20)

Where:

And

 σ is the annualized standard deviation of the underlying product yields,

 T is the time remaining until the expiration of the call option, expressed in years.

The relations (2.18) and (2.20) are the mathematical expression of the Black and Scholes
model for the European option, call and put, respectively [1].

𝑑1 =
ln(𝑆 𝐾⁄) + (𝑟 + 𝜎2 2⁄)𝑇

𝜎√𝑇

𝑑2 =
ln(𝑆 𝐾⁄) + (𝑟 − 𝜎2 2⁄)𝑇

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇

 28

Chapter 3:
Finite Difference
and Tridiagonal Solvers

3.1 Introduction

In previous chapter, the basic theories of option valuation were presented. The numerical
methods for solving the Black and Scholes (BS) partial derivative equation (PDE) are going to
be presented. The finite difference (FD) schemes are the explicit, implicit and Crank-Nicolson
(CN). Basic concepts of these schemes are analyzed through the approximation of BS PDE.

In addition, implicit and CN schemes for BS model lead to the need to solve linear systems.
These linear equation systems can be presented in a form of tridiagonal matrix. Thus,
algorithms for solving tridiagonal systems such as LU decomposition, the tridiagonal matrix
algorithm (TDMA), also known as the Thomas algorithm, and Cyclic Reduction are described.

3.2 Black-Scholes PDE approximation with finite difference methods

The finite difference method is used to approximate differential equations by substituting the
latter with difference equations. In this way, the problem ultimately comes to solving a
(usually large) system of algebraic equations, usually by applying repetitive techniques. The
implementation of this method can be broken down into three basic steps:

a) in the discretization of the space with a suitable node grid, which correspond to the
positions of calculating the desired size,

b) in the formulation of difference equations, replacing differential operators with
approximate,

c) to solve the difference equations, taking into account the initial and boundary
conditions of the problem.

For the first step, the most common type of mesh used is uniform, but different choices prove
to be more appropriate in specific cases. Without it being necessary for the discretization step
to be the same everywhere, the ease of making a rectangular grid with uniform density
throughout the computing space makes it the most common choice (Figure 6: Discretization

mesh of the Black Scholes PDE.).

Numerical approaches of differential operators are based on the calculation of their values
based on the values of the dependent variables at adjacent points. For example, calculating
the first derivative of a function f at a point x0 can be approximated by the following
expressions, which use values of the function h distance from the point interest (as h is the
discrete step):

 29

 Forward difference: f ′(x0) ≈
f(x0 + h) − f(x0)

h
+ O(h)

 Backward difference: f ′(x0) ≈
f(x0) − f(x0 − h)

h
+ O(h)

 Central difference: f ′(x0) ≈
f(x0 + h) − f(x0 − h)

2h
+ O(h2)

From the above expressions, the third is also the most reliable, since its accuracy is classified
as a second order 𝑂(ℎ2) (as opposed to the first order 𝑂(ℎ) of the first two expressions) [19].
Note that the precision class of an approach is determined by the class of truncation errors.
As for the second derivative of function f, the centrally defined second-order expression has
the following three-point form:

 Central difference: f ′′(x0) ≈
f(x0 + h) − 2f(x0) − f(x0 − h)

h2
+ O(h2)

The Finite Difference method was applied, for the first time, by the Brennan and Schwartz
[13] in the valuation of options. The BS PDE as have been developed in 2.4.3 is:

𝑟𝑉 =
𝜕𝑉

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+

1

2

𝜕2𝑉

𝜕2𝑆
𝜎2𝑆2 (3.1)

Where:

V: Option price σ: Volatility of underlying product
S: Price of underlying asset K: Strike price
r: Risk-free interest rate Payoff: max {𝑆𝑇 − 𝐾, 0}

The independent variables of the Black-Scholes equation are the value of the underlying
product S and the time t that has passed from the signing of the contract. These two variables
form a two-dimensional space, where the function describing the valuation of option V (S, t)
takes the form of a three-dimensional curve. In this way, instead of trying to find a closed-
form expression for the function V (S, t); by the finite difference method each value is
approached on the discrete points of the space that form a lattice.

3.2.1 Grid selection

The time t takes values in [0, T] where 0 is the moment of the act of buying or selling the
option and T when it matures, that is to say its expiration date. The value of the underlying
product S takes values in space [0, ∞] since a product can get a zero or a positive value. In
order to be able to define a finite number of distinct points in the product dimension, a
maximum value of Smax that the product can take must be defined.

 30

In addition to choosing a maximum limit of S, another issue is how many points the grid should
have; this often has to do with the type of finite difference method to use. In this case is
considered that (S, t) is divided into M point in time dimension and N in the spatial dimension
of S, so there is a grid clogged in [0, Smax] for S and [0, T] for t.

Another element that must been known, before the final form of the grid, is the discretization
step. As aforementioned, the most common type of grid used is rectangular because the ease
of making a rectangular grid with uniform density throughout the computing space makes it
more suitable for its implementation in reconfigurable logic.
For a mesh of uniform density and of size NxM the discretization step is:

 For the dimension of the underlying product: 𝑑𝑆 =
𝑆𝑚𝑎𝑥

𝑁

 For the time dimension: 𝑑𝑡 =
𝑇

𝑀

Figure 6: Discretization mesh of the Black Scholes PDE.

Smax

Smin=0 0*dS

1*dS

i*dS

(N-1)*dS

N*dS

0
*d

t

1*
dt

j*
dt

(M
-1

)*
dt

M
*d

t

t=0 t=T

V(S,t)

dt=T/M

dS
=

S
m

ax
/N

 31

The value of the function at the point of the grid (Si, tj) will now be denoted by 𝑉𝑖,𝑗 and will

approximate the actual value at this point 𝑉𝑖,𝑗 = 𝑉(𝑆𝑖, 𝑡𝑗) (Figure 6).

So the equation (3.1) takes the following form in the discrete computing space:

𝑟 𝑉𝑖,𝑗 =
𝜕𝑉

𝜕𝑡
+ 𝑟𝑆𝑖

𝜕𝑉

𝜕𝑆
+

1

2

𝜕2𝑉

𝜕2𝑆
𝜎2𝑆𝑖

2 (3.2)

The next step is to apply the finite difference schemes as analyzed in the previous sections to
approximate the partial derivatives. Here it is to be noted that in Chapter 2 an analysis was
made for all cases of European and American options. So it is necessary to refer again to the
boundary conditions of this type of option taking into account the analysis that was made in
this chapter with the theory of finite differences.

3.2.2 Boundary conditions

The boundary conditions for the Black-Scholes equation in the case of a European call option,
expressed in the discrete mesh used by the finite differences and expressing the behavior of
the grid boundaries (Dirichlet) are:

For S=0: V(0, t) = 0 (3.3)

For 𝑆 = Smax: V(Smax, t) = Smax − K ∗ e(−r(T−t)) (3.4)

Applying the discretization:

For S=0: V0,j+1 = 0 (3.5)

For 𝑆 = Smax: VΝ,j+1 = 𝑁𝑑𝑠 − K ∗ e−r(j+1)dt (3.6)

In the second case if the price of the derivative changes linearly in relation to the underlying
product, the Von Neumann conditions can be used. For the boundary conditions concerning
the value of the derivatives in the system according to Von Neumann:

For S=0:
𝜕𝑉

𝜕𝑆
= 0 (3.7)

For 𝑆 = Smax:
𝜕2𝑉

𝜕2𝑆
= 0,

𝜕𝑉

𝜕𝑆
= 1 (3.8)

 32

Figure 7: Boundary conditions for European call option.

p
a

y
o

ff
V

(i
,j)

=
m

a
x(

i*
d

s-
K

,0
)

V(N,j+1)=N*ds-exp(-r(j+1)dt)

V(0,j+1)=0

p
a

y
o

ff
V

(i
,j)

=
m

a
x

(i
*d

s-
K

,0
)

∂2 V/∂2 S=0

∂2 V/∂2 S=0

3.2.3 Explicit Scheme

The unknown function V in a random node (Si, tj) of the grid, where i denotes the value line
of the product and the j time step, is denoted by 𝑉𝑖,𝑗 = 𝑉(𝑆𝑖, 𝑡𝑗). At the same node (Si, tj), the

partial derivative of the Black-Scholes equation is approximated with finite difference
expressions.

The first derivative over time is replaced by forward difference expression:

Table 4: Comparison of boundary conditions

 Direchlet

Von Neumann

Advantages

 More accuracy to the shape of the
solution, as their values are known
in advance.

 More general and are embedded
into the method

Disadvantages

 Different for each derivative
product

 Difficult mathematical formulas

 Costly operators for
implementation in hardware.

 Cost of I/O if implemented in CPU.

 The shape of the solution is not
explicitly bound

 Truncation Error in time marching

 Not applicable if linearity
hypothesis does not apply on
subject of the differential
equations.

 33

𝜕𝑉

𝜕𝑡
=

𝑉𝑖,𝑗+1 − 𝑉𝑖,𝑗

𝑑𝑡
 (3.9)

The first and second derivative respect to S, are replaced with center differences. That is,

𝜕𝑉

𝜕𝑆
=

𝑉𝑖+1,𝑗 − 𝑉𝑖−1,𝑗

2𝑑𝑆
 (3.10)

And

𝜕2𝑉

𝜕2𝑆
=

𝑉𝑖+1,𝑗 − 2𝑉𝑖,𝑗 + 𝑉𝑖−1,𝑗

𝑑𝑆2
 (3.11)

Substituting the expressions (3.9)-(3.11) in the equation (3.2) the algebraic equation becomes:

𝑟 𝑉𝑖,𝑗 =
𝑉𝑖,𝑗+1 − 𝑉𝑖,𝑗

𝑑𝑡
+ 𝑟𝑆𝑖

𝑉𝑖+1,𝑗 − 𝑉𝑖−1,𝑗

2𝑑𝑆
+

1

2
𝜎2𝑆𝑖

2 𝑉𝑖+1,𝑗 − 2𝑉𝑖,𝑗 + 𝑉𝑖−1,𝑗

𝑑𝑆2 (3.12)

called finite difference equation.

Figure 8: Explicit Stencil

Si-1

Si

Si+1

tj tj+1

Vi,j

Vi+1,j

Vi+1,j

Vi,j+1

After algebra and separating time steps the equation (3.12) takes the form:

 𝑉𝑖,𝑗+1 = 𝑎𝑖𝑉𝑖−1,𝑗 + 𝑏𝑖𝑉𝑖,𝑗 + 𝑐𝑖𝑉𝑖+1,𝑗 (3.13)

Where

𝑎𝑖 =
1

2
⋅ 𝑑𝑡 ⋅ (𝜎2𝑖2 − 𝑟𝑖) (3.14)

 34

𝑏𝑖 = 1 − 𝑑𝑡 ⋅ (𝜎2𝑖2 + 𝑟) (3.15)

𝑐𝑖 =

1

2
⋅ 𝑑𝑡 ⋅ (𝜎2𝑖2 + 𝑟𝑖) (3.16)

As shown by the equation (3.13), the calculation of the dependent variable V on the node (i, j
+ 1) is done directly from the values of V to nodes (i-1, j), (i, j) and (i + 1, j). Schemes such as
the formula given by the above equation are named explicit, because moving from one time
step to the next is done without the need for solving an algebraic system (Figure 8).

The accuracy of the method can be achieved by limiting the truncation error. The term
truncation error is defined as the error made by truncating an infinite sum and approximating
it by a finite sum. For example, when using Taylor series expansion, first-order 𝑂(𝛥𝑆) schemes
neglect all terms after the first derivative while second-order 𝑂(𝛥𝑆2) schemes neglect all
terms after the second derivative. The neglected terms constitute the truncation error.
Therefore, the higher the scheme order, the lower the truncation error.

In particular, the explicit scheme has spatial truncation error of order 𝑂(𝛥𝑆2) because of the
central difference used in S space. And temporal truncation error of order 𝑂(𝛥𝑡) because of
the forward difference used in time domain.

The necessary condition for the stability of the method is that the factors 𝑎𝑖, 𝑏𝑖 , 𝑐𝑖 should not

be negative for all i [13]. It can be proven that 𝜕𝑡
𝜕2𝑆⁄ ≈ 1 is valid for𝑏𝑖 > 0. This condition

shows us that the time steps must be equal to the squares of the underlying product. These
restrictive conditions create problems in the effective numerical solution of the partial
differential equations, which are related to the maximum limit in the size of the time step dt.
But when the time step is small, the computation cost is large. This disadvantage is greatly
improved by applying the implicit schemes [19].

3.2.4 Implicit Scheme

In the implicit scheme the unknown function V in a random node (Si, tj) of the grid, where i
denotes the value line of the product and the j time step, is denoted by 𝑉𝑖,𝑗 = 𝑉(𝑆𝑖, 𝑡𝑗). At

the same node (Si, tj), the partial derivative of the Black-Scholes equation are approximated
with finite difference expressions there are using j+1 points (Figure 9).

The first derivative over time is replaced by finite difference expression:

𝜕𝑉

𝜕𝑡
=

𝑉𝑖,𝑗 − 𝑉𝑖,𝑗+1

𝑑𝑡
 (3.17)

The first and second derivative respect to S, are replaced with center differences. That is,

𝜕𝑉

𝜕𝑆
=

𝑉𝑖+1,𝑗+1 − 𝑉𝑖−1,𝑗+1

2𝑑𝑆
 (3.18)

 35

And

𝜕2𝑉

𝜕2𝑆
=

𝑉𝑖+1,𝑗+1 − 2𝑉𝑖,𝑗+1 + 𝑉𝑖−1,𝑗+1

𝑑𝑆2
 (3.19)

Substituting the expressions (3.17)-(3.19) in the algebraic equation (3.2) becomes:

𝑟 𝑉𝑖,𝑗 =

𝑉𝑖,𝑗 − 𝑉𝑖,𝑗+1

𝑑𝑡
+ 𝑟𝑆𝑖

𝑉𝑖+1,𝑗+1 − 𝑉𝑖−1,𝑗+1

2𝑑𝑆

+
1

2
𝜎2𝑆𝑖

2 𝑉𝑖+1,𝑗+1 − 2𝑉𝑖,𝑗+1 + 𝑉𝑖−1,𝑗+1

𝑑𝑆2

(3.20)

After algebra and separating time steps the equation (3.20) takes the form:

𝑎𝑖𝑉𝑖−1,𝑗+1 + 𝑏𝑖𝑉𝑖,𝑗+1 + 𝑐𝑖𝑉𝑖+1,𝑗+1 = 𝑉𝑖,𝑗 (3.21)

Where:

𝑎𝑖 =
1

2
⋅ 𝑑𝑡 ⋅ (𝑟𝑖 − 𝜎2𝑖2) (3.22)

𝑏𝑖 = 1 + 𝑑𝑡 ⋅ (𝜎2𝑖2 + 𝑟) (3.23)

𝑐𝑖 = −

1

2
⋅ 𝑑𝑡 ⋅ (𝜎2𝑖2 + 𝑟𝑖) (3.24)

The implicit scheme has spatial truncation error of order 𝑂(𝛥𝑆2) because of the central
difference used in S space. And temporal truncation error of order 𝑂(𝛥𝑡) because of the
backward difference used in time domain. The implicit scheme is unconditional stable[19].
The above formulation produces a tridiagonal matrix of the form.

[

𝑎1 𝑏1 𝑐1 ⋯ ⋯ 0
⋮ 𝑎2 𝑏2 𝑐2 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋯ 0
⋮ ⋮ 𝑎𝑁−2 𝑏𝑁−2 𝑐𝑁−2 0
0 0 0 𝑎𝑁−1 𝑏𝑁−1 𝑐𝑁−1]

⋅

[

𝑉0,𝑗+1

𝑉1,𝑗+1

𝑉2,𝑗+1

⋮
𝑉𝑁−2,𝑗+1

𝑉𝑁−1,𝑗+1

𝑉𝑁,𝑗+1]

=

[

𝑉0,𝑗

𝑉1,𝑗

𝑉2,𝑗

⋮
𝑉𝑁−2,𝑗

𝑉𝑁−1,𝑗

𝑉𝑁,𝑗]

The boundary conditions are giving the extra equations that are missing:

𝑉0,𝑗+1 = 2𝑉1,𝑗+1 − 𝑉2,𝑗+1
𝑉𝑁,𝑗+1 = 2𝑉𝑁−1,𝑗+1 − 𝑉𝑁−2,𝑗+1

And the tridiagonal system takes the form:

[

𝑏1 + 2𝑎1 𝑐1 − 𝑎1 ⋯ 0

𝑎2 𝑏2 𝑐2 ⋯
⋱ ⋱ ⋱ ⋯
⋮ 𝑎𝑁−2 𝑏𝑁−2 𝑐𝑁−2

0 0 𝑎𝑁−1 − 𝑐𝑁−1 𝑏𝑁−1 + 2𝑐𝑁−1]

⋅

[

𝑉1,𝑗+1

𝑉2,𝑗+1

⋮
𝑉𝑁−2,𝑗+1

𝑉𝑁−1,𝑗+1]

=

[

𝑉1,𝑗

𝑉2,𝑗

⋮
𝑉𝑁−2,𝑗

𝑉𝑁−1,𝑗]

 36

It is often desirable for the error to be of the same order in the variables S and t. So, bigger
steps in time marching can be taken with having smaller truncation error. This is
accomplished using the Crank-Nicolson method, as it will be seen in the next section.

Figure 9: implicit Stencil

Si-1

Si

Si+1

tj tj+1

Vi,j

Vi+1,j+1

Vi-1,j+1

Vi,j+1

3.2.5 Crank-Nicolson Scheme

In the explicit and implicit schemes of the previous sections, respectively, the discretization
error due to the deduction of terms from the Taylor series is of order 𝑂(𝛥𝑆2) in spatial
dimension and of order 𝑂(𝛥𝑡) in time dimension. The Crank-Nicolson method [20] has
transactions errors of order 𝑂(𝛥𝑆2) and 𝑂(𝛥𝑡2) , which are accomplished by approaching
the Black-Scholes PDE at the point (𝑖, 𝑗 + 1 ⁄ 2) between points of (𝑖, 𝑗 + 1) and (𝑖, 𝑗):

𝑉𝑖,𝑗+1/2 =
𝑉𝑖,𝑗+1 − 𝑉𝑖,𝑗

2
 (3.25)

Applying central expressions of finite differences in all partial derivatives of first and second
order, for the change in time takes the following form:

𝜕𝑉

𝜕𝑡
=

𝑉𝑖,𝑗+1 − 𝑉𝑖,𝑗

𝑑𝑡
 (3.26)

For the change in the price of the underlying product:

𝜕𝑉

𝜕𝑆
=

𝑉𝑖+1,𝑗+1 + 𝑉𝑖+1,𝑗 − 𝑉𝑖−1,𝑗+1 − 𝑉𝑖−1,𝑗

4𝑑𝑆
 (3.27)

And

 37

𝜕2𝑉

𝜕2𝑆
=

𝑉𝑖+1,𝑗+1 + 𝑉𝑖+1,𝑗 − 2𝑉𝑖,𝑗+1 − 2𝑉𝑖,𝑗 − 𝑉𝑖−1,𝑗+1−𝑉𝑖−1,𝑗

2𝑑𝑆2
 (3.28)

For the finite difference Crank-Nicolson method, the approximation of differentials for the
equation (3.2) becomes:

1

2
𝑟𝑉𝑖,𝑗+1 +

1

2
𝑟𝑉𝑖,𝑗 =

𝑉𝑖,𝑗+1 − 𝑉𝑖,𝑗

𝑑𝑡

(3.29)

+
1

2
𝑟𝑖𝑑𝑠 (

𝑉𝑖+1,𝑗+1 − 𝑉𝑖−1,𝑗+1

2𝑑𝑆
) +

1

2
𝑟𝑖𝑑𝑠 (

𝑉𝑖+1,𝑗 − 𝑉𝑖−1,𝑗

2𝑑𝑆
)

+

1

4
𝜎2𝑖2𝑑𝑠2 (

𝑉𝑖+1,𝑗+1 − 2𝑉𝑖,𝑗+1 − 𝑉𝑖−1,𝑗+1

𝑑𝑠2
) +

1

4
𝜎2𝑖2𝑑𝑠2 (

𝑉𝑖+1,𝑗 − 2𝑉𝑖,𝑗 − 𝑉𝑖−1,𝑗

𝑑𝑠2
)

After algebra and separating time steps the equation (3.29) takes the form:

𝑎𝑖𝑉𝑖−1,𝑗+1 + 𝑏𝑖𝑉𝑖,𝑗+1 + 𝑐𝑖𝑉𝑖+1,𝑗+1 = 𝑑0𝑖

𝑉𝑖−1,𝑗 + 𝑑1𝑖𝑉𝑖,𝑗 + 𝑑2𝑖𝑉𝑖+1,𝑗 (3.30)

Where:

𝑎𝑖 =
1

4
⋅ 𝑑𝑡 ⋅ (𝑟𝑖 − 𝜎2𝑖2) (3.31)

𝑏𝑖 = 1 +

1

2
⋅ 𝑑𝑡 ⋅ (𝜎2𝑖2 + 𝑟) (3.32)

𝑐𝑖 = −

1

4
⋅ 𝑑𝑡 ⋅ (𝑟𝑖 + 𝜎2𝑖2) (3.33)

𝑑1𝑖

= 1 −
1

2
⋅ 𝑑𝑡 ⋅ (𝜎2𝑖2 + 𝑟) (3.34)

𝑑0𝑖

= −𝑎𝑖 (3.35)

𝑑2𝑖

= −𝑐𝑖 (3.36)

The Crank- Nicolson stencil is visualized in Figure 10: Crank Nicolson Stencil.

 38

Figure 10: Crank Nicolson Stencil

Si-1

Si

Si+1

tj tj+1

Vi,j

Vi+1,j+1

Vi-1,j+1

Vi,j+1

Vi+1,j

Vi-1,j

Vi,j/2

The above formulation produces a tridiagonal matrix of the form.

[

𝑎1 𝑏1 𝑐1 ⋯ ⋯ 0
⋮ 𝑎2 𝑏2 𝑐2 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋯ 0
⋮ ⋮ 𝑎𝑁−2 𝑏𝑁−2 𝑐𝑁−2 0
0 0 0 𝑎𝑁−1 𝑏𝑁−1 𝑐𝑁−1]

⋅

[

𝑉0,𝑗+1

𝑉1,𝑗+1

𝑉2,𝑗+1

⋮
𝑉𝑁−2,𝑗+1

𝑉𝑁−1,𝑗+1

𝑉𝑁,𝑗+1]

=

[

−𝑎1 𝑑1 −𝑐1 ⋯ ⋯ 0

⋮ −𝑎2 𝑑2 −𝑐2 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋯ 0
⋮ ⋮ −𝑎𝑁−2 𝑑𝑁−2 −𝑐𝑁−2 0
0 0 0 −𝑎𝑁−1 𝑑𝑁−1 −𝑐𝑁−1]

⋅

[

𝑉0,𝑗

𝑉1,𝑗

𝑉2,𝑗

⋮
𝑉𝑁−2,𝑗

𝑉𝑁−1,𝑗

𝑉𝑁,𝑗]

The boundary conditions are giving the extra equations that are missing:

𝑉0,𝑗+1 = 2𝑉1,𝑗+1 − 𝑉2,𝑗+1

𝑉𝑁,𝑗+1 = 2𝑉𝑁−1,𝑗+1 − 𝑉𝑁−2,𝑗+1

And the tridiagonal system takes the form:

 39

[

𝑏1 + 2𝑎1 𝑐1 − 𝑎1 ⋯ 0

𝑎2 𝑏2 𝑐2 ⋯
⋱ ⋱ ⋱ ⋯
⋮ 𝑎𝑁−2 𝑏𝑁−2 𝑐𝑁−2

0 0 𝑎𝑁−1 − 𝑐𝑁−1 𝑏𝑁−1 + 2𝑐𝑁−1]

⋅

[

𝑉1,𝑗+1

𝑉2,𝑗+1

⋮
𝑉𝑁−2,𝑗+1

𝑉𝑁−1,𝑗+1]

=

[

𝑑1 − 2𝑎1 −𝑐1 + 𝑎1 ⋯ 0

𝑎2 𝑑2 𝑐2 ⋯
⋱ ⋱ ⋱ ⋯
⋮ 𝑎𝑁−2 𝑑𝑁−2 𝑐𝑁−2

0 0 −𝑎𝑁−1 + 𝑐𝑁−1 𝑑𝑁−1 − 2𝑐𝑁−1]

⋅

[

𝑉1,𝑗

𝑉2,𝑗

⋮
𝑉𝑁−2,𝑗

𝑉𝑁−1,𝑗]

The Crank-Nicolson scheme needs to solve a tridiagonal system for each time step and refresh
the right-hand member of the equation with new values, where 0 <i <N . Thus, this is the
most demanding finite difference scheme than the three analyzed in terms of computational
complexity. As mentioned at the beginning of the paragraph, an advantage is the second
order precision in temporal change, and the fact that the scheme converges unconditionally.
The precision in the direction of the underlying product remains of second order [19]. The
Crank-Nicolson scheme is implemented in this thesis.

3.3 Algorithms for Solving Linear Equation Tridiagonal Systems

In the previous sections an analysis of Black-Scholes was made using finite difference method.
As discussed in the sections (3.2.4) and (3.2.5), the implicit and Crank-Nicolson methods
respectively lead to a tridiagonal system of linear equations which have to be solved in every
time step. This requires the use of numerical linear algebra methods.

Such systems can be solved directly by more efficient algorithms than those used for more
general linear systems, such as the Gauss Elimination [21]. Some algorithms for solving this
kind of linear systems are LU decomposition [22], the tridiagonal matrix algorithm (TDMA or
Thomas) [23],[24] which is a variant of LU decomposition for tridiagonal systems and Cyclic
Reduction [25]. The following sections will present these methods.

3.3.1 LU decomposition

The LU decomposition or factorization method refers to the problem of breaking a table A in
the form

𝐴 = 𝐿𝑈
Where L is lower triangular and the U is the upper triangular table. If the table A of a linear
system 𝐴𝑥 = 𝑒 can be broken in this way, then the system is written 𝐿𝑈𝑥 = 𝑒 and, as is
obvious, its solution is to solve two simple systems: 𝐿𝑦 = 𝑒 for y with forward substitution
and 𝑈𝑥 = 𝑦 for x with backward substitution.

The procedure can be summarized as follow:

• Given A, find L and U so that A = LU. Hence LUx = e.
• Let y = UX so that Ly = e. Solve this triangular system for y .
• Finally solve the triangular system Ux = y for x.

 40

The benefit of this approach is that tridiagonal systems need to be solved only once.

3.3.1.1 The tridiagonal matrix algorithm (TDMA or Thomas)

A tridiagonal linear system of size N that has the following form:

[

𝑏0 𝑐0 ⋯ 0

𝑎1 𝑏1 𝑐1 ⋯

⋱ ⋱ ⋱ ⋯

⋮ 𝑎𝑁−2 𝑏𝑁−2 𝑐𝑁−2

0 0 𝑎𝑁−1 𝑏𝑁−1]

⋅

[

𝑥0

𝑥1

⋮

𝑥𝑁−2

𝑥𝑁−1]

=

[

𝑒0

𝑒1

⋮

𝑒𝑁−2

𝑒𝑁−1]

Thomas algorithm is implemented as shown below:

Algorithm 1: Thomas algorithm

𝑏′0 = 𝑏0
𝑒′0 = 𝑒0

𝑓𝑜𝑟 = 1 𝑡𝑜 𝑁 − 2 𝑑𝑜:
 #decomposition
 𝑎′𝑖 = 𝑎𝑖/𝑏′𝑖−1
 𝑏′𝑖 = 𝑏𝑖 − 𝑎′

𝑖 ∗ 𝑐𝑖−1
 #forward substitution
 𝑦

𝑖
= 𝑒𝑖 − 𝑎′

𝑖 ∗ 𝑦𝑖−1

𝑒𝑛𝑑 𝑓𝑜𝑟

𝑥𝑁−1 = 𝑒𝑁−1/𝑏′𝑁−1
𝑓𝑜𝑟 = 𝑁 − 2 𝑡𝑜 0 𝑑𝑜:

𝑥𝑖 = (𝑦𝑖 − 𝑐𝑖 ∗ 𝑥𝑖+1)/𝑏′
𝑖

𝑒𝑛𝑑 𝑓𝑜𝑟

This method is efficient in the case of many systems with common A and different right hand
side e, so the factorization is performed only once. The basis for the development of the LU
decomposition method is the Gauss method. The computing time for tridiagonal LU
factorization is linear with respect to system size. However, this algorithm, though fast and
simple, cannot be parallelized without extensive transformations, since there are data
interdependencies in each loop of iteration both in the forward replacement, and backward
replacement. Only the last two operations in the same loop iteration can be paralleled. Thus,
this algorithm cannot scale into massively parallel systems. This, algorithm is used for coarse
grain parallelization such as computing many different options simultaneously [26].

Another algorithm for solving tridiagonal systems is Cyclic Reduction, which together with a
variation is described in detail in the next section.

 41

3.3.2 Cyclic Reduction (CR)

Cyclic reduction is a family of methods for solving tridiagonal systems presented by Hockney
[25]. The basic idea behind these methods is to transform a system of linear equations into
two (or more) systems of linear equations that are independent of each other so that they
can be solved independently.

The Cyclic Reduction algorithm is an iterative technique for solving tridiagonal systems. The
algorithm is divided into two phases, initially removing half of the unknowns, ie the even
elements of the table and creating a new system of half size only with the odd unknowns,
until it reaches a system of size one, where it can easily be calculated the unknown variable.
It is then calculated by reversing the matrix elements that were deleted, using the already
calculated units. These two phases are called forward reduction and backward substitution
respectively.

Figure 11: Cyclic Reduction calculation scheme.

e0

e1

e2

e3

e4

e5

e6

e7

e'6

e'4

e'2

e'0 e'0

e'4

e'0 x0

x4

x0 x0

x4 x4

x2

x6

x2

x6

x1

x3

x5

x7

The operations of the algorithm for each step of forward reduction, is done by the following
equations:

𝑎𝑖
′ = −

𝑎𝑖 ⋅ 𝑎𝑖−1

𝑏𝑖−1
 (3.37)

𝑏𝑖
′ = 𝑏𝑖 −

𝑎𝑖 ⋅ 𝑐𝑖−1

𝑏𝑖−1
−

𝑐𝑖 ⋅ 𝑎𝑖+1

𝑏𝑖+1
 (3.38)

𝑐𝑖
′ = −

𝑐𝑖 ⋅ 𝑐𝑖+1

𝑏𝑖+1
 (3.39)

 42

𝑒𝑖
′ = 𝑒𝑖 −

𝑎𝑖 ⋅ 𝑒𝑖−1

𝑏𝑖−1
−

𝑐𝑖 ⋅ 𝑒𝑖+1

𝑏𝑖+1
 (3.40)

Or:

𝑎𝑖
′ = −𝑎𝑖−1 ⋅ 𝑘1 (3.41)

𝑏𝑖
′ = 𝑏𝑖 − 𝑐𝑖−1 ⋅ 𝑘1 − 𝑎𝑖+1 ⋅ 𝑘2 (3.42)

𝑐𝑖
′ = −𝑐𝑖+1 ⋅ 𝑘2 (3.43)

𝑒𝑖
′ = 𝑒𝑖 − 𝑒𝑖−1 ⋅ 𝑘1 − 𝑒𝑖+1 ⋅ 𝑘2 (3.44)

Where:

𝑘1 =
𝑎𝑖

𝑏𝑖−1
 (3.45)

𝑘2 =
𝑐𝑖

𝑏𝑖+1
 (3.46)

After a step of CR forward reduction, redundant unknown variables and zeros can be
removed, and a half-size matrix is formed of the remaining unsolved equations. Each step of
the backward substitution, defined in Eq. (3.47), solves for unknown variables by substituting
solutions obtained from the smaller system.

𝒙𝒊 =
𝒆𝒊

′ − 𝒂𝒊
′ ⋅ 𝒙𝒊−𝟏 − 𝒄𝒊

′ ⋅ 𝒙𝒊+𝟏

𝒃𝒊
′ (3.47)

Figure 11 depicts the calculation scheme for system size N=8. The total steps for this
procedure are 2*log2(N).

3.3.2.1 Cyclic Reduction with normalized diagonal (Norm-CR)

A variant of CR algorithm [27] is to normalize the main diagonal of the system to the unit by
dividing all original coefficients of the system with bi.

[

1 𝑐0/𝑏0 ⋯ 0
𝑎1/𝑏1 1 𝑐1/𝑏1 ⋯

⋱ ⋱ ⋱ ⋯
⋮ 𝑎𝑁−2/𝑏𝑁−2 1 𝑐𝑁−2/𝑏𝑁−2

0 0 𝑎𝑁−1/𝑏𝑁−1 1]

⋅

[

𝑥0

𝑥1

⋮
𝑥𝑁−2

𝑥𝑁−1]

=

[

𝑒0/𝑏0

𝑒1/𝑏1

⋮
𝑒𝑁−2/𝑏𝑁−2

𝑒𝑁−1/𝑏𝑁−1]

 43

The operations of the Norm-CR algorithm for each step of forward reduction, is done by the
following equations:

𝑡𝑒𝑚𝑝 = 1/(1 − 𝑎𝑖 ⋅ 𝑐𝑖−1 − 𝑐𝑖 ⋅ 𝑎𝑖+1) (3.48)

𝑎𝑖
′ = −𝑎𝑖 ⋅ 𝑎𝑖−1 ⋅ 𝑡𝑒𝑚𝑝 (3.49)

𝑐𝑖
′ = −𝑐𝑖 ⋅ 𝑐𝑖+1 ⋅ 𝑡𝑒𝑚𝑝 (3.50)

𝑒𝑖
′ = (𝑒𝑖 − 𝑎𝑖 ⋅ 𝑒𝑖−1 − 𝑐𝑖 ⋅ 𝑒𝑖+1) ⋅ 𝑡𝑒𝑚𝑝 (3.51)

And for the backward substitution:

𝑥𝑖 = 𝑒𝑖
′ − 𝑎𝑖

′ ⋅ 𝑥𝑖−1 − 𝑐𝑖
′ ⋅ 𝑥𝑖+1 (3.52)

3.3.3 Comparison of tridiagonal solver algorithms

The Thomas algorithm is given in algorithm 1, it has a complexity of O(N) and requires a total
of 8N arithmetic operations to solve an N-tridiagonal system. Cyclic reduction requires log(N)
steps, each of which requires O(N) operations, so total work is O(N log(N)). Serially, cyclic
reduction is therefore inferior to Thomas, which require only O(N) work for a tridiagonal
system. But in parallel, cyclic reduction can exploit up to N-fold parallelism and requires only
O(log(N)) time in best case.

The number of elementary operations of Thomas, CR and the implemented Norm-CR, for a
loop pass per phase can be seen in Table 5. Table 6 depicts the total number of operations for
the aforementioned algorithms. It can be observed that the changes in CR algorithm by
normalizing the main diagonal have increased the computational load from 17(N) to 18(N).
Nevertheless, the divisions with high latency from three have been reduced to one.

Table 5: Number Of Operations For A Loop Pass Per Phase

 Forward Backward

#mult #add/#sub #div #mult #add/#sub #div

Thomas 2 2 1 1 1 1
CR 6 4 2 2 2 1

Norm_CR 9 4 1 2 2 0

 44

Table 6: Total Number Of Operations

 #mult #add/#sub #div #total

Thomas 3(N) 3(N) 2(N) 8(N)

CR 8(N) 6(N) 3(N) 17(N)

Norm_CR 11(N) 6(N) 1 (N) 18(N)

Here, it is worth noting that by applying the normalization there is a gain of one operator with
lower latency, with trade-off in accuracy and stability of the entire system. Changing the
properties of the tridiagonal matrix must be handled with concern. Because there weren’t
any accuracy analysis, in bibliography, for this variant of Norm-CR a precision and robustness
analysis of the entire system can be found in Chapter 5:.

Before that, in the next chapter there is an effort to record all the previous work that has been
done in the field.

 45

Chapter 4:
Hardware Acceleration in Option Pricing
and related work

4.1 Introduction

In this chapter an attempt is made to record the pre-existing research in the field of
acceleration option pricing with hardware. The research is focused on papers with FPGA’s
implementations or designs of all option pricing models. There is also an extensive analysis of
the related literature on our approach to the problem. In the last sections of this chapter,
hardware systems that have applied solvers for tridiagonal systems of linear equations are
recorded.

The contribution of this work is to document prior research in the field since the last decade,
so the reader can have direct access to the information and develop comprehensive view of
the field.

4.2 FPGA based option pricing accelerators

This section records the research that has been done since 2005 in acceleration of option
pricing on reconfigurable logic devices (FPGAs). The collection of bibliographic references has
been made from many different sources and from our knowledge is the first review in the
field.
The references for FPGA based option pricing accelerators are presented in chronological
order, so it can be obvious to identify the evolution in the field. In Table 7 the aggregated
information is presented with seven columns. The first two columns refer to the citation and
year of the publication. The third column shows the financial pricing models that have been
implemented.

The abbreviations used:

 MC → Monte Carlo simulation,

 QUAD → QUADrature,

 BT → Binomial Tree,

 TT → Trinomial Tree,

 E-FD → Explicit Finite Difference,

 I-FD → Implicit Finite Difference,

 CN-FD → Crank -Nicolson Finite Difference.

The other columns have information’s about the specific implementation of the proposed
methods, such as the targeted device, frequency of the design, the Hardware Description
Language or High Level Synthesis tools. The last column “Acc” stand for accuracy of the design
or algorithm, it is “yes” if the work contains accuracy analysis.

 46

Table 7: Chronologically sorted FPGA based option pricing accelerators.

Reference Year Model Device Freq Method Acc

Zhang et al. [28] 2005 MC XC2VP30 (90nm) 50Mhz VHDL No

Thomas et al. [29] 2006 MC XC4VSX55 (90nm) - Handel-C No

Morris, Aubury [30] 2007 MC XV4LX160 (90nm) 61Mhz Handel-C Yes

Tian et al. [31] 2008 MC XV4FX100 (90nm) 53Mhz Verilog-HDL Yes

Tse et al. [32],[33],[34] 2009 QUAD XC4VLX160 (90nm) 100Mhz Handel-C No

Jin et al. [35],[36] 2009 BT,TT XC4VSX55 (90 nm) 76Mhz Handel-C No

Jin, Thomas, Luk [37] 2009 E-FD XC4VLX160 (90nm) 106Mhz Handel-C No

Wynnyk, Magdon-Ismail [38] 2009 BT EP3SE260 (65nm) 150Mhz Verilog-HDL No

Tian , Benkrid [39] 2010 Q-MC XC4VFX100 (90nm) 180Mhz Verilog-HDL Yes

Tse et al. [40] 2010 MC XC5VLX330T (65nm) 200Mhz VHDL No

de Schryver et al. [41] 2011 MC XC5VFX70T (65nm) 100Mhz Visual-HDL No

Jin, Luk, Thomas [42] 2011 framework

Jin, Luk, Thomas [43] 2011 E-FD XC6VLX550T (40nm) 310Mhz HDL No

Becker et al. [44],[45] 2011 E-FD XC6VLX760 (40nm) - VHDL Yes

Chatziparaskevas et al. [27] 2012 E-FD,CN-FD XC5VSX240T (65nm) 145Mhz VHDL No

Sridharan et al. [46] 2012 MC StratixIVE530 (40nm) 125Mhz - No

Chow et al. [47] 2012 MC XC6VSX475T (40nm) 175Mhz - Yes

de Schryver et al. [48] 2013 ML-MC XC6VLX240T (40nm) 120Mhz Vivado HLS No

Sanchez-Roman et al. [49] 2013 MC StratixV5SGSD8 (28nm) 142Mhz Impulse C (HLS) No

Inggs et al. [50] 2013 framework

Morales et al. [51] 2014 BT EP4SGX530 (40nm) 162MhZ OpenCL Yes

Palmer [52] 2014 I-FD Zynq7020 (28nm) 100Mhz VHDL Yes

Brugger et al. [53] 2014 ML-MC Zynq7020 (28nm) 100Mhz Vivado HLS No

Inggs et al. [54] 2014 MC Zynq7Z045 (28nm)
StratixVGXA7(28nm)
XC6VSX475T (40nm)

100Mhz
250Mhz

 200Mhz

Vivado HLS
OpenCL

MaxCompiler

No

Tavakkoli, Thomas [55] 2014 Systolic BT XC7VX980T (28nm) 150Mhz VHDL No

Laszlo et al. [56] 2015 E-FD,I-FD XC7VX690T (28nm) 234Mhz Vivado HLS No

Varela et al. [57] 2015 MC ZynqZC702 (28nm) 100Mhz Vivado HLS No

Ma, Muslim, Lavagno [58] 2016 MC XC5VLX330T (65nm)
XC7VX690T (28nm)

125Mhz
165Mhz

Vivado HLS
Vivado HLS

No

Pham et al. [59] 2016 MC XC6VSX475T (40nm) 140Mhz MaxCompiler No

Stamoulias et al. [60] 2017 BS

B76

BT

XCKU060 (20nm) 262Mhz
277Mhz
237Mhz
273Mhz
253Mhz
225Mhz

VHDL
Vivado HLS

VHDL
Vivado HLS

VHDL
Vivado HLS

Yes

Fabry, Thomas [61] 2017 B-MC XCVU065 (20nm) 300Mhz Vivado HLS Yes

Tavakkoli, Thomas [62] 2017 Systolic BT XC7VX980T (28nm) 100Mhz HLS Yes

Muslim et al. [63] 2017 MC XC7VX690T (28nm) 200Mhz OpenCL No

 47

In Figure 12 a statistical analysis of the literature is presented, where some basic observations
can be made:

 a) As it can be seen in this graph with the papers per year, from 2005 to 2008 there is
only one work per year, only targeting Monte Carlo methods. Afterwards, from 2009
until 2017 there is an average of 3.1 papers per year, with a peak in 2015, where five
papers were published. From this can be derived the conclusion that the research
topic of FPGA based option valuators has a steady demand after the economic crisis
of 2008.

 b) In the second graph of the figure 12 is the frequency of the programming methods
that have been used in the literature. Here, it can be observed that High-Level-
Synthesis (HLS) is used about double times than Hardware-Description-Language
(HDL). This is a trend that applies to every FPGA based research independently of the
specific topic or field that is being tackled. Specially, since 2013 when Xilinx launched
the VivadoHLS tool most of the researches were using this tool (see Table 7).

 c) The third graph shows the financial models that have been implemented on FPGAs.
It is clear that Monte Carlo is by far the most implemented method in the literature.
The main reason for this is that the Monte Carlo method it is not just an algorithm but
it can be characterized more as a procedure. Thus, it gives more flexibility to apply
different algorithms in every step of the process. Also, the MC can be used for pricing
any kind of derivatives. Nevertheless, it must be mentioned , as Jin et al. [42] suggest,
that the FPGA based Monte Carlo solver should only be used when there are no other
solvers available. The other models found in the literature are Financial Differences
and Binomial Trees. Also, there are one work of Quadrature model and one with Black
Scholes analytical solution.

 d) The last graph of the same figure shows the technology of FPGAs. Here, the use of
new technology follows the timeline. Since 2005 the structure width of the FPGAs
changed from 90nm to 20nm.

Afterwards, the statistical analysis it is necessary to explore further the literature. The way
this has been done is by classifying related works based on the methodology. Thus, there are
three major categories the Monte Carlo methods, the Finite Differences and the binomial
trees, which are going to be discussed further.

 48

Figure 12: Statistical analysis of literature of FPGA option pricing.

a) Papers per year. b) Programming method

c) Financial models d) Targeted technology

4.2.1 Monte Carlo based works

The first work this study covers was Zhang et al. [28]. They proposed a generic architecture
for accelerating MC simulation using an on-chip processor, and a hardware path generator.
Also, an illustration of using a generalized number system optimization package named
Computer Arithmetic Synthesis Tool (CAST) was used to provide evaluation of the minimum
resources required to produce at least 4 decimal place accuracy (as required in financial
applications). They examined fixed-point and floating-point number representation.
Additionally, their work contribute specialization of the proposed generic architecture to
support financial computations based on the BGM interest rate model, with methods for
generating Gaussian distributed random numbers, for supporting fast division, and for
pipelining the MC simulation. The evaluation of their MC processor showed that an
implementation involving a Xilinx XC2VP30 device at 50 MHz is over 25 times faster than a
Pentium processor at 1.5 GHz.

In the same concept of Monte Carlo simulation Thomas et al. [29] exploited the nature of MC
model and the ability of FPGA for extensive parallelization, by modularizing the individual
simulation procedures and replicating them as many times needed to achieve performance.
Application of their proposed methodology applied to five different Monte- Carlo simulations

1 1 1 1

4

2

4

3

2

5

2 2

4

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

13

24

2

HDL HLS N/A

19

6 5

1 1

MC FD BT QD BS

8

5

8

11

2

90nm 65nm 40nm 28nm 20nm

 49

such as random walk, random jump, log-normal walk, dual-asset value at risk, and the GARCH
model. Their results showed that hardware implementations on a Xilinx Virtex-4 XC4VSX55
device can run on-average over 80 times faster than software on a 2.66GHz Xeon PC.

Also, Morris and Aubury [30] compared the performance, in terms of acceleration and
accuracy, of various fixed and floating point FPGA implementations of the European option
benchmark. These were compared to implementations using other devises such as GPUs, Cell
BE and CPU. Furthermore, the paper introduced ‘HyperStreams’ a high-level abstraction, built
on the Handel-C programming language.

Baxter et al. [64] presented a generic supercomputer built of 64 FPGAs called Maxwell. One
of the case studies, among others, was the implementation in this supercomputer of the
Monte-Carlo simulation. The Monte-Carlo kernel was repeated 10 times in a FPGA device and
edited by 16 FPGAs. The results showed that FPGAs can overcome more than two orders of
magnitude CPU. In the same supercomputer Maxwell Tian et al. [31] implemented the Monte-
Carlo simulation using the Box-Muller model to create random paths and GARCH model to
compute stochastic volatility. They reported a speedup of 340x by the FPGA implementation
versus an equivalent software implementation running on the 2.8 GHz Xeon processors. In
another work of Tian and Benkrid [39] a new model for generating random number is tested.
Their method used quasi-random or low-discrepancy numbers as random sample sets. Real
hardware implementations on the Maxwell machine showed that FPGAs outperform
equivalent GPP-based software implementations by 2 orders of magnitude, with the speed-
up scaling linearly with the number of processing nodes used (FPGAs/GPPs). The same
implementations showed that FPGAs achieve a 3x speedup compared to equivalent GPU-
based implementations.

In the work of Tse et al. [32], [33], [34] the Quadrature numeric integration method was
applied. This method can be used for derivatives with more than one underlying product. An
automated system for creating architectural material was presented to examine the increase
in system dimensions. The results show acceleration 23 times in FPGA in relation to the CPU.
The GPU performance is roughly the same as FPGA.

The aforementioned works were a first attempt to build option pricing systems on FPGAs
based on different hardware architectures and Monte Carlo algorithms. The next stage on the
literature was to value more complex options like Asian, Barrier and other exotic derivatives.
Also, in this next phase of the field works are characterized by the use of HLS tools.

The work of Tse et al. [40] proposed an FPGA-accelerated Asian option pricing solution, using
a highly-optimized parallel Monte-Carlo architecture. The result of this work reported that an
implementation of their architecture in a Virtex-5 xc5vlx330t FPGA at 200MHz was 313 times
faster than a multi-threaded software implementation running on an Intel Xeon E5420 quad-
core CPU at 2.5GHz; it was also 2.2 times faster than the Tesla C1060.

Schryver et al. [41] used an HLS tool called VisualHDL to implement a Heston model simulating
single asset barrier options. A Virtex V family FPGA outperformed a 2 GHz Core 2 Duo
processor by a factor of 21. Extending the work of Schryver et al. to multi-asset barrier options
Sridharan et al. [46] in their design utilized the full truncation Euler discretization method.

 50

They used payoff calculator kernels to compute various payoffs such as vanilla portfolios,
barriers, look-backs, etc. Also, they had an early termination condition of “out” barrier options
to efficiently schedule MC paths across multiple cores in a single FPGA and across multiple
FPGAs. The target platform was Novo-G, a reconfigurable supercomputer housed at the NSF
Center for High-Performance Reconfigurable Computing (CHREC), University of Florida. Their
design was validated and achieved an average speedup 189 on a Stratix IV FPGA. In the same
concept Schryver et al. [48] presented a multi-level Monte Carlo architecture for FPGAs. The
multi-level method iteratively runs Monte Carlo simulations by adjusting the simulation
numbers and precisions, and has shown reduce of the computational complexity compared
to single-level methods by up to 50%. For a Xilinx Virtex-6 FPGA they report that can simulate
up to 100 million of time steps in an asset path simulation with less than 3.6 W. Continuing
the research of Multi-Level Monte Carlo simulations on FPGA boards Brugger et al. [53]
presented energy-efficient modular option pricing framework called HyPER that is generically
applicable to all kinds of hybrid CPU/FPGA platforms. They reported that the implementation
for barrier options on the Xilinx Zynq 7020 with HyPER platform was 3.4x faster and 36x more
power- efficient than a highly tuned software reference on an Intel Core i5 CPU.

Varela et al. [57] presented a way to price multi-dimensional American options (highly
involved in risk management) targeting heterogeneous CPU/FPGA systems. They
demonstrated how architectural limitation of the Longstaff-Schwartz algorithm was solved by
means of an algorithmic transformation employing the Brownian Bridge technique. They
concluded that the system on FPGAs achieved a 2x improvement in runtime compared to the
state-of-the-art solution and 1.8x more energy efficient than the same reference.

To achieve even better performance researcher started to exploit and other advantages of
FPGAs, such as custom precision. An example is the work of Chow et al. [47] which introduced
a mixed precision methodology applicable to any Monte Carlo (MC) simulation. It involved
the use of data-paths with reduced precision, and the resulting errors were corrected by
auxiliary sampling. An analytical model was developed for a reconfigurable accelerator
system with a field-programmable gate array (FPGA) and a general purpose processor (GPP).
Optimization based on mixed integer geometric programming was employed for determining
the optimal reduced precision and optimal resource allocation among the MC data-paths and
correction data-paths. Experiments showed that the mixed precision methodology requires
up to 11 % additional evaluations while less than 4 % of all the evaluations are computed in
the reference precision; the resulting designs were up to 7.1 times faster and 3.1 times more
energy efficient than baseline double precision FPGA designs, and up to 163 times faster and
170 times more energy efficient than quad-core software designs optimized with the Intel
compiler and Math Kernel Library. Their methodology also produced designs for pricing Asian
options which were 4.6 times faster and 5.5 times more energy efficient than NVIDIA Tesla
C2070 GPU implementations.

The next phase of Monte Carlo FPGA based option pricing was the use of HLS tools and
Heterogeneous Computing. This was necessary so the aggregated knowledge of all this year
of research to become accessible to non-FPGA users and be business ready as automated
pricing systems. The follow works are examples of that trend.

 51

Sanchez-Roman et al. [49] proposed an FPGA implementation of a Monte-Carlo method for
pricing Asian Options using Impulse C and floating-point arithmetic. In an Altera Stratix-V
FPGA, a 149x speedup factor was obtained against an OpenMP-based solution in a 4-core
Intel Core i7 processor.

Inggs et al. [50] presented the Forward Financial Framework (F3), an application framework
for describing and implementing forward looking financial computations on high
performance, heterogeneous platforms. F3 allows the computational finance problem
specification to be captured precisely yet succinctly, and then automatically creates efficient
implementations for heterogeneous platforms, utilizing both multi-core CPUs and FPGAs. The
automatic mapping of a high-level problem description to a low-level heterogeneous
implementation is possible due to the domain-specific knowledge which is built in F3, along
with a software architecture that allows for additional domain knowledge and rules to be
added to the framework. The processor used was an Intel Core i7 870 running at 2.93 GHz
with an 8192 KB Cache and the FPGA platform was a Maxeler Max3 Card, in particular the
Max3424A which makes use of a Xilinx Virtex 6 XC6VSX475T. Their results report that F3
achieves comparable speed and energy efficiency to external manual implementations.
Further, the domain-knowledge guided partitioning scheme suggests a partitioning of
subtasks that is 13% faster than the average, while exploiting domain dependencies to reduce
redundant computations results in an average gain in efficiency of 27%.

In an another work of Inggs et al. [54] they tested their F3 framework using HLS tools such as
Xilinx’s Vivado HLS, the Altera OpenCL SDK and Maxeler’s MaxCompiler. They concluded that
the tools offered by Maxeler and Altera are well-suited for accelerating parallel-friendly
algorithms such as the Monte Carlo pricing algorithm, as parallelism can be made explicit fairly
easily. Xilinx’s offering however was better suited to small, functional unit prototyping and
will not provide optimal results if used by developers with insufficient hardware design
experience. When they applied direct source code translation did not meet performance
expectations, when a combination of techniques applied such as exploiting task or pipeline
parallelism as well as C-slowing, an acceleration of up to 220 times was achieved using these
tools. Compared to the 31 times improvement showed by an optimized Multicore CPU
implementation, the 60 times improvement by a GPU and 207 times by a Xeon Phi.

In the same content of exploring High Level Synthesis Ma, Muslim and Lavagno [58]
implemented the Black-Scholes and Heston models using OpenCL/C++, to allow direct
comparison between GPU and FPGA implementations. The comparison of performance and
energy consumption between GPU and FPGA was done with previous results from the
literature. In particular, they showed that energy per computation by using an FPGA can be
from 5.9% to 9.8% (depending on the algorithm) as much as that by using an GPU as an
accelerator for financial models, while performance can be from 1.71X to 2.56X as fast as the
GPUs. They also concluded that the Virtex-7 FPGA had a better overall performance than the
advanced GPUs in option pricing problems, which is computation-bounded, rather than
memory-bounded. On the energy efficiency aspect, the FPGA is 10X more frugal than the
GPUs. The implementations in this work were also better than those in previous works in the
domain of FPGA acceleration of financial models. For the Black-Scholes model of the Asian
option problem, 2.4X of the performance and 41.7% of energy consumption were obtained
compared to a previous manual RTL design. For the Heston model of the European barrier

 52

option, this paper had achieved 2.56X of the performance and 78.1% of energy consumption
of a previous implementation designed via HLS. Another use of HLS with OpenCL can be found
in Muslim et al. [63].

Another attempt to framework the automatic build of reconfigurable accelerators for option
pricing was the work of Pham et al. [59]. Their framework was based on tools such as XML
format for the option pricing request, the design flow and optimization framework were
developed using Python and Maxeler IDE. The generic Pricing Engines were developed by
Maxj data flow language, the Java High Level Synthesis language from Maxeler, and took
advanced of C-slow optimization techniques. The experiment results were obtained by
implementing and running the engines on Maxeler Workstation model MAX3424A, which
features with a Xilinx Virtex-6 SX475T FPGA device and Intel Core i7 870 2.93 GHz with 16GB
RAM. As a result, they reported a speedup of 2 orders of magnitude compared to SW
implementations.

Before the literature review goes to the other models, featuring in the analysis, the work of
Fabry and Thomas it must be mentioned [61]. They introduced a hybrid model that combines
Binomial with Monte Carlo simulation. They used discrete-space random walk over a binomial
lattice, rather than the continuous space-walks used by existing approaches. They used
limited-precision fixed-point arithmetic for the generation of paths to achieve vast
parallelization, it was found that the size of a discrete-space MC engine can be kept to 370
Flip-Flops and 233 Lookup Tables, allowing up to 3,000 variance-reduced MC cores in one
FPGA. The combination of a highly parallelizable architecture and model-specific
optimizations means that the binomial pricing technique allows for a 50x improvement in
throughput compared to existing FPGA approaches, without any reduction in accuracy.

4.2.2 Trees based works

Tree based methods are used most commonly for pricing American options that are difficult
to price using Monte-Carlo methods. The first, in our knowledge, that implemented the
binomial and trinomial tree method for pricing options on FPGAs were Jin et al. [35],[36]. They
used Handel-C source code which was synthesized to EDIF using the Celoxica DK5 suite, which
supports HyperStreams. Xilinx ISE 9.2i project navigator was used to place and route the
design. Their results showed that the tree-based models executing on a Virtex 4 FPGA at 82.7
MHz with fixed-point arithmetic could run over 160 times faster than a Core2 Duo processor
at 2.2 GHz. The FPGA implementation was two times faster than the nVidia Geforce 7900GTX
processor with 24 pipelines at 650 MHz, and 27%–35% slower than the nVidia Geforce
8600GTS processor with 32 Pipelines at 1450 MHz.

Wynnyk and Magdon-Ismail [38] presented a vector FPGA design which prices American
options by using 4-way parallelism on a single-asset evaluation. They used memory
management techniques to solve single trees of up to 64000 time steps in double precision;
these techniques achieved a 73x speedup over an optimized CPU implementation as they
reported. Their design was coded in Verilog. The work in [51] by Morales et al. is another
vector solver (NV=8) of American options with medium-sized binomial trees (n=1024) using
GPUs and energy-efficient FPGA implementations. They use the OpenCL language and Altera’s

 53

OpenCL compiler to synthesize their design. The implementation could evaluate more than
2000 options/s with an average power less than 20W.

Tavakkoli and Thomas in [55] provided an American option pricer based on a systolic
reconfigurable architecture with n systolic cells. The work presented fixed-point FPGA solvers
with hand-coded RTL blocks and FloPoCo [65] floating-point cores. Their design achieved, on
a Xilinx Virtex-7 xc7vx980t FPGA for a single option with 768 time steps, to be priced with a
latency of less than 22 micro-seconds and a pricing rate of more than 100 K options/sec.
Although their design gained considerable accelerations, both in terms of latency and
throughput, compared to scalar and vector approaches, relocation of the hand-coded RTL
solution to other data precisions limited the productivity of this design. So they came up with
a new work [62] that presented a formal mathematical framework that captures a large class
of binomial-tree problems, and provided a systolic data-movement template that maps the
framework into digital hardware. Their solution is based on a fully-automated design flow,
which takes C-level user descriptions of binomial trees, with custom data types and tree
operations, and automatically generates fully-pipelined reconfigurable hardware solutions in
FPGA bit-stream files. Their results indicate that on a Xilinx Virtex-7 xc7vx980t FPGA at a 100-
MHz clock frequency can be required 54-µs latency to solve three 876-step 32-bit fixed-point
American option binomial trees; with a pricing rate of 114k trees/s. Except the updated results
they also provide a brief comparison with previous works in this paper.

Finally, in the work of Stamoulias et al. [60] comparison between VHDL and HLS
implementations is made, with three different financial models (Black & Scholes, Black-76 and
Binomial). The latter financial model is Binomial trees. They concluded that HLS can achieve
higher accuracy due to the floating point, but requires up to 20% higher number of resources
in terms of DSPs while the fixed-point implementations developed in HDL can save significant
space in terms of resources but with limited accuracy compared to the software code.

4.2.3 Finite Differences based works

As it was presented in Chapter 3: there are three schemes of finite differences: explicit,
implicit and Crank-Nicholson. The latter can be interpreted as the combination of explicit and
implicit scheme. The big difference between explicit and implicit is the computational effort
needed for these two approaches. Explicit can solve straightforward the Black Scholes PDE by
going forward in the dimension of time; in contrast implicit involves solving a system of linear
equations. Thus, the literature is divided in two subcategories: Explicit Finite Differences (E-
FD) and Implicit or Crank-Nicolson Finite Differences (I-FD or CN-FD).

4.2.3.1 Explicit Finite Differences (E-FD)

The first work that examined the E-FD scheme on FPGAs, in pricing option concept, was the
work of Jin, Thomas and Luk [37]. They defined two levels of parallelism for the E-FD model:

 Coarse granularity to be the ability to valuate different options at the same time.

 Fine granularity to be the ability to valuate different nodes in a grid at the same time.

 54

The higher the coarse granularity, the more options can be priced at the same time; the higher
the fine granularity, the faster the valuation speed per option. Their FPGA implementation of
the Fine Core logic for the E-FD option pricing model was based on HyperStreams and the
Handel-C programming language.

Figure 13 : The data flow of the E-FD hardware implementation on FPGA (Source: Jin et al. [37])

In results they mentioned that the peak performance occurs when aggregation of all Fine
Cores is made into one Coarse Core, as no logic is wasted to glue the Coarse Cores. The
implementation on a Xilinx xc4vlx160 FPGA at 106MHz for the 32-bit single-precision offers a
1.5 times acceleration over the software on an Intel Pentium 4 at 3.6 GHz, while the 64-bit
double precision version offers 1.2 times speedup. Eight single-precision Fine Cores can be
replicated on the xc4vlx160, and was estimated to achieve 12.2 times acceleration. The
authors did not report absolute time measurements for their implementation, neither
accuracy analysis.

Continuing their research Jin et al. [43] extended the previous work by presenting a unifying
framework for describing and automatically implementing financial explicit finite difference
procedures in reconfigurable hardware. The implementation of the framework was based on
a Virtex-6 XC6VLX550T device and Flopoco [65] floating point library was used to generate
the floating point pipelines. Results showed that an implementation targeting a Virtex-6
device at 310MHz is more than 24 times faster than a software implementation fully
optimized by the Intel compiler on a four-core Xeon CPU at 2.66GHz.

To achieve better performance for the E-FD scheme, the same team of Becker, Jin, Thomas
and Luk proposed in [44] , the reconfiguration of slowly changing constants in an explicit finite
difference solver for option pricing. The approach for this was that a specialized circuit can be
design with use of fixed-coefficient multipliers, because the coefficients α, β and γ are
constant throughout the pricing of one option. Their design was implemented on the Xilinx
Virtex-6 XC6VLX760 FPGA using the FloPoCo [65] to generate fixed-point arithmetic cores,

 55

which then applied with the dynamic constant reconfiguration approach. The fixed-point
error analysis was based on the MPFR library [66] and they provided in the paper [45]. Their
results showed that by applying the dynamic designs on Coarse grain parallelism can
significantly reduce execution times. In the case of 16 Coarse Cores, the execution time for
pricing one option was reduced from 26.8 ms (static design) to 5.7 ms (reconfigurable design)
which represents a speed-up by a factor of 4.7.

Finally, Jin, Luk and Thomas [42] proposed a framework that could compare different financial
on different FPGA hardware implementations. They provide analytical functions to calculate
performance metrics such as:

 Execution time (e.g. in seconds), which is based on the assumption that FPGA
implementations are fully pipelined and they link the clock rate to execution time with
a metric called Asset Price Observation (APO) points.

 Accuracy (e.g. relative error to the reference), they measuring it by utilizing a Monte
Carlo simulation technique with randomly generated parameters for the target solver
and measuring the root mean squared error over this random sample.

 Resource consumption (e.g. in LUTs and DSPs), by approximating with a methodology
that links resource consumption of all the arithmetical operators and aggregates them
based on the complexity of the mathematical model.

The two first bullets can be combined (Figure 14) to provide characteristics curves of the
different FPGA solvers.

Figure 14 : Root mean squared error against time for European option (Source: Jin et al. [42])

 56

 In the results of the implemented framework, they conclude that:

 The quadrature method implemented on an XC4VLX160 device produces the most
accurate result in terms of RMSE the fastest for European options.

 The trinomial tree tends to be more accurate than binomial tree on a XC4VLX160
device for European options, but they tend to converge to the same result when
number of APO points gets larger.

 The explicit finite difference solver provides a more accurate result than the tree
based method when number of APO points reaches 10K.

In practice the quadrature solver should be used if applicable. Otherwise the tree based
solvers should be used if the result is time critical and the explicit finite difference method
should be used if the result is accuracy critical.

4.2.3.2 Implicit or Crank-Nicolson Finite Differences (I-FD or CN-FD)

The previous subsection covered the literature of E-FD schemes for option pricing in FPGAs.
This section will cover the few works that implemented I-FD or CN-FD schemes. These
schemes need a solution of tridiagonal linear systems in every time step, thus a categorization
can be based on the algorithm used to solve the system. But, only papers in the field of option
pricing are going to be mentioned here, general tridiagonal solvers on hardware are discussed
in next section.

The first paper, in our knowledge, that implemented the CN-FD on FPGA was the work of
Chatziparaskevas et al. [27]. They used as tridiagonal solver a variant of Cyclic Reduction with
normalization of main diagonal (Norm-CR). The hardware architecture was based on a FPGA-
based parallel processor, which included a pipelined FPU consisting of a single adder, divider
and multiplier. This FPU could compute in serial execution a number of loops of the forward
and backward phase. The parallel execution was based on batches of loops in separate FPUs.
The architecture for the FPU is showed in the next figure.

Figure 15 : Internal architecture of Floating Point Unit (Source: Chatziparaskevas et al. [27])

 57

In their results there is no reference for accuracy and absolute timings. The design had been
implemented on a Xilinx Virtex5 FPGA XC5VSX240T device, with clock frequency of 145 MHz.
FP multipliers, adders and dividers had selected latencies of 4, 8 and 14 clock cycles
respectively. They reported that 64 cores could fit in the device and achieved speedup 3.7x
over LU CPU implementation.

The aforementioned paper is the base of our research, as the same algorithm (Norm-CR) is
used for solving the tridiagonal systems produced by the CR-FD scheme for option pricing
with Black-Scholes PDE. Details for the hardware architecture are unfolded in the next
Chapters.

Another work, Palmer and Thomas [26], tried to provide a design and implementation of the
TDMA or Thomas algorithm optimized for hardware acceleration on FPGA. The hardware
based algorithm optimized to achieve overall complexity from 8N down to 5N arithmetic
operations, and memory overheads to only 2 N-length vectors per N-tridiagonal system to be
solved (see Figure 16). The parallelization of the procedure aroused from coarse replication
of the Thomas Core that can solve multiple tridiagonal systems. They also provide a
theoretical analysis for fixed-point arithmetic used in the design and how affects the error
propagation. No results were provided for the implementation as they reference a problem
with the vendor hardware compiler.

Figure 16 : Data dependency graph for the Thomas algorithm (Source: Palmer and Thomas [26])

The pending results were presented by Palmer in [52]. The hardware, that Thomas algorithm
was implemented, was the ZedBoard Xilinx Zynq7020 Evaluation Kit. Four different settings

 58

were compared, one floating-point design with maximum clock frequency of 100MHz and
three different fixed-point at 200MHz. The average time (ms) for computing the solution to
tridiagonal systems (N=100) of FPGA Thomas solver for I-FD scheme can be seen in the
following Figure 17.

Figure 17 : Timing of FPGA Thomas solver on Zynq7020 (Source: Palmer [52])

Finally, the third paper which present an FPGA solver for the Black-Scholes PDE, using I-FD
scheme is the work of Laszlo et al. [56]. They examined further the architectural,
programmability and development issues regarding CPU, GPU and FPGA architectures. They
proposed a parallel processor for implicit solver utilizing the Thomas algorithm (TDMA). The
parallelization of the method was achieved by coarse grain parallelism, that is, independent
processors are performing the calculation of independent options. Some of the
implementations details the authors had reference are:

 Each of these processors is capable of pipelining the computation of more options into
the same processor with the associated cost of storing the temporary (c∗, d∗) arrays
of each option.

 The number of options that can be pipelined is defined by the depth of the forward
sweep of the Thomas algorithm, which was 67 clock cycles, without referencing if it
was on double or single floating point format.

 The temporary storage was implemented in the available Block RAM memories, but
due to the deep pipeline the BRAM memory requirement limits the number of
deployable processors.

The targeted FPGA device was Xilinx Virtex 7 VX690T. The replication of the processor cores
was 11 and 5, for single and double precision respectively. The authors had reported results
in terms of resources and performance for both formats of floating point; single and double
respectively (see Figure 18).

They also reference a problem with the HLS compiler that failed to recognize that no data
hazard exist between c∗i and c∗i−1 in the two consecutive iterations of the forward pass in the
tridiagonal algorithm and therefore refused to properly pipeline the loop. They patched the
problem by using a secondary temporary array to store a copy of the temporary array.

 59

Figure 18 : Resource and Performance of FPGA Thomas solver (Source: Laszlo et al. [56])

In conclusion, the aforementioned four papers provide insights about architectures on FPGAs,
for solving the Black-Scholes PDE with implicit finite difference scheme, by using a tridiagonal
solver as core of their designs.

Nevertheless, the volume of the literature is too low to make safe assumptions about the best
alternative to address the problem. Also, the results of the works are not clear enough, as
there is no specific benchmark to evaluate each on with the others, because either timing is
not in absolute numbers (ms) and is expressed with speedup terms; either the error analysis
is theoretical or is not presented at all.

This subsection can be characterized as related work to this research. However, the
disadvantages mentioned in the previous paragraph and the fact that there wasn’t found an
efficient FPGA implementation of Cyclic Reduction for option pricing, were a motivation to
extend further the literature review to thoroughly cover the tridiagonal solver accelerators;
as it is the part of the procedure with the biggest complexity. Thus, in the next section some
interest works of the literature for FPGA and GPU based tridiagonal solvers are presented.

 60

4.3 FPGA and GPU based tridiagonal solvers

This section is dedicated to tridiagonal solvers implemented on FPGAs or GPUs. The search of
relative literature has been done with Cyclic Reduction being in the center of this research, as
it is the algorithm that is used in this thesis.

Here the classification of the literature is following a two level hierarchy. The first is the
targeted hardware device, i.e. FPGA or GPU, and the second level is characterized by the
algorithms that are presented in the papers, i.e. TDMA or Thomas and Cyclic Reduction.

The FPGAs implementations are few in numbers and only the TDMA solver is consider in the
literature. In the paper [67] of Oliveira et al. a custom processor is proposed for the TDMA.
This solver was intended for use in Computational Fluid Dynamics (CFD) application, thus is
specific to that particular CFD. Warne et al. in [68] proposed a more general architecture for
the TDMA on FPGAs. They designed a custom circuit that is well suited for applications that
require solving many independent tridiagonal systems (see Figure 19). The design supports
user specified precision thought the use of a custom floating point VHDL.

Figure 19 : TDMA solver pipeline (Source: Warne et al. [68])

 61

In [69] they provide results for the same design implemented on Xilinx and Altera devices with
Vivado HLS and OpenCL respectively. For a tridiagonal system of size 1024 the results in terms
of accuracy and speed are presented in the next figure.

Figure 20 : Results of TDMA solver pipeline (Source: Warne et al. [69])

Unlike the FPGAs based works, GPUs have plenty implementations of tridiagonal solvers as it
is common in many graphic problems to solve multiple times tridiagonal systems [70]. In
paper [71] Zhang et al. provided a detailed comparison of the performance of three parallel
algorithms and their hybrid variants for solving tridiagonal linear systems on a GPU: cyclic
reduction (CR), parallel cyclic reduction (PCR) and recursive doubling (RD). The results for the
CR are depicted in figure below.

Figure 21 : Timings in milliseconds of CR for problem size 512x512 (Source: Zhang et al [71])

Also they measured the residual error for the algorithms in single floating precision (see
Figure 22). The CR is stable both for diagonally dominant matrices and matrices with close
values in a row.

 62

Figure 22 : Accuracy Analysis of tridiagonal solvers (Source: Zhang et al [71])

In contrast, Göddeke and Strzodka in [72] proved that attempting to solve the system in single
precision fails, while double precision suffices to reduce the error of the finite scheme; and
hence, to guarantee the result accuracy. In single precision, however, further refinement of
the increases the error again: The additional refinement results in a solution that is objectively
worse, although more unknowns are involved and hence more work is performed. Adding to
the detriment, this behavior is difficult to notice without ground truth, because the solver still
converges and reduces the residuals as expected. They implement the CR with optimizations
in memory and they declare that execution time is 0.445 ms for 513 systems of 513-unknowns
on the same GPU (NVIDIA GTX 280).

Another work that implement CR on GPU (NVIDIA GeForce GTX 295) is [73] of Quesada-
Barriuso et al. They analyzed the cyclic reduction method, as example of fine-grained
parallelism, and Bondeli’s algorithm, as a coarse-grained example of parallelism. Both
algorithms were implemented for GPU architectures using CUDA and multi-core CPU with
shared memory architectures using OpenMP. The results for the different implementations
for a 220-equations tridiagonal system using single floating point’s arithmetic are shown in the
next figure.

Figure 23 : Performance of different tridiagonal solvers (Source: Quesada-Barriuso et al. [73])

 63

In [74] Zhao and Yu developed a GPU shared memory-based chunked cyclic reduction (see
Figure 24) under the constraint of the capacity of the shared memory. Computational results
showed that GPU shared memory chunked cyclic reduction exhibits high efficiency by Nvidia
TITAN with 48k shared memory, and GPU shared memory chunked cyclic reduction can solve
a tridiagonal system with 262,144-by-262,144 coefficient matrix in 1.768 ms.

Figure 24 : Chunking for cyclic reduction of a 16x16 tridiagonal system (Source: Zhao and Yu

[74])

Other interesting works for various tridiagonal solvers on GPUs can be found in [75], [76], [77]
and [78] .

4.4 Summary

In conclusion, there is a rich literature for option pricing on FGPAs, but few works have been
done in Implicit Finite Different Scheme and only one for the Crank-Nicolson. Cyclic Reduction
has many implementations on GPUs but it hasn’t been ported on FGPA.

This research continues in the next chapter with accuracy analysis of Crank-Nicolson scheme
for solving Black-Scholes PDE with use of the Normalized Cyclic Reduction variant.

 64

Chapter 5:
Accuracy Analysis of Crank-Nicolson
Finite Difference Method with
Normalized-Cyclic Reduction as a
Tridiagonal Solver for Option Pricing

5.1 Introduction

Since numerical instability of algorithms can be derived from many sources such as truncation
error of the Finite Difference scheme, round-off errors of floating precision, arithmetic
overflow and ill-conditioned problems, a process has to be designed to measure these risks.
In this chapter experiments for measuring the precision of the proposed method had been
designed and implemented. These experiments are divided in two categories, the first
category is based on a mixed-precision process and the second category is a process to
determine a custom precision of floating point arithmetic that the method produces good
enough results.

As described in Chapter 4:, some research works provide accuracy analysis for option pricing
either theoretical or experimental. In our opinion, in such systems that combine heavy
mathematical background and numerical analysis methods with heterogeneous computing
systems, an accuracy analysis must always be performed. A work that describes clear well the
behavior of errors in finite difference methods for option pricing is [79].

The work of Goddeke and Strzodka [72] analyzes the failure of single precision in Cyclic
Reduction on a GPU implementation, also in Conjugate Gradient Solver [80] for general PDE
solvers on FPGAs, and suggests a mixed-precision process called iterative refinement [81].
From this work the first category of experiments were designed, where three different
approaches are measured in various error metrics. The first is single precision, the second
approach is a mixed-precision where initialization of parameters of the tridiagonal system are
computed in double precision and the solver makes computations in single precision, last all
computation are made in double precision.

5.2 Error metrics

Several different error measures were used to calculate the errors. To measure the error
across the solution vector, the l2 norm was used to measure two kinds of errors:

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = ‖�̂� − 𝑥‖2 (5.1)

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =

‖𝑥 − 𝑥‖2

‖𝑥‖2
 (5.2)

 65

Where,

‖𝑥‖2 = (∑|𝑥𝑖|
2)

1 2⁄

Also to measure the quality of the solution at values near the money, as these are the intervals
in the solution vector that the market is interested in, the absolute and relative error was
measured at points left and right of the strike price:

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = |𝑥 − 𝑥| (5.3)

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =

|𝑥 − 𝑥|

|𝑥|
 (5.4)

Where �̂� is the approximation of the method and 𝑥 is the true value obtained by the analytical
solution of Black-Scholes model as described in section 2.4.3.1.

For the second sets of experiments, with the MPFR library where the arithmetic precision is
determined, the root mean squared error is used:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖 − 𝑥𝑖)

2

𝑛

𝑖=1

 (5.5)

The RMSE is a quadratic scoring rule that also measures the average magnitude of the error.
It’s the square root of the average of squared differences between prediction and actual
observation. Taking the square root of the average squared errors has some interesting
implications for RMSE. Since the errors are squared before they are averaged, the RMSE gives
a relatively high weight to large errors. This means the RMSE should be more useful when
large errors are particularly undesirable.

5.3 First set of experiments

There are four experiments in this first set, which try to explore the behavior of the proposed
method in terms of accuracy. These are:

1. Which boundary conditions?
2. Which system size?
3. How many time steps?
4. Different parameters

The first three experiments have same parameters for the European Call Option and the last
one different.

5.3.1 Experiment 1: Which boundary conditions?

In this experiment, the goal was to ascertain how different the algorithm works for the
different boundary conditions. The errors were measured with the l2 norm in two cases, one
for the whole vector and the second for the underlying product values from 45 to 55. The
values that do not belong to some point of the lattice are found by linear interpolation.

 66

The first set of experiments was made with values for the European Call Option (see 3.2):

Smax = 100, Κ = 50, σ =0.3, r = 0.01, T = 1

The experiments were:

N M ds dt

9 8 100/9 1/8

17 16 100/17 1/16

33 32 100/33 1/32

65 64 100/65 1/64

129 128 100/129 1/128

257 256 100/257 1/256

513 512 100/513 1/512

1025 1024 100/1025 1/1024

2049 2048 100/2049 1/2048

4097 4096 100/4097 1/4096

8193 8192 100/8193 1/8192

16385 16384 100/16385 1/16384

32769 32768 100/32769 1/32768

N here corresponds to the lattice method and is chosen in such a way as to give a tridiagonal
system of 2n size and M is the corresponding number of time steps.

5.3.1.1 Relative error (l2-norm) near strike price

The relative error for the two cases of boundary conditions is shown in the following tables:

Table 8: Relative error near strike price of European call option.

Von Neumman

double mixed single

8.14599E-03 8.14622E-03 8.14642E-03

8.30628E-04 8.30196E-04 8.30413E-04

2.98362E-04 2.98165E-04 2.98235E-04

7.03640E-05 7.16543E-05 7.36810E-05

1.60649E-05 1.62187E-05 1.15297E-05

3.06370E-06 4.12824E-06 1.05068E-05

6.73908E-07 2.32333E-06 2.23407E-04

1.32458E-06 1.91304E-05 5.36277E-04

1.49318E-06 2.64121E-05 1.54130E-03

1.53934E-06 2.79831E-05 9.65004E-03

1.54954E-06 8.29981E-04 9.19101E-03

1.54851E-06 5.28387E-03 9.81547E-03

1.54710E-06 7.63115E-03 8.10463E-03

Direchlet

double mixed single

8.02717E-03 8.02708E-03 8.02735E-03

8.40478E-04 8.40727E-04 8.40349E-04

3.02087E-04 3.02190E-04 3.02130E-04

7.15014E-05 7.17693E-05 7.51174E-05

1.65372E-05 1.63748E-05 1.22624E-05

3.30894E-06 2.43035E-06 1.24487E-05

5.81642E-07 5.96971E-06 2.15250E-04

1.23176E-06 8.28769E-05 6.10406E-04

1.42512E-06 3.26163E-06 1.33036E-03

1.48367E-06 1.46631E-04 9.30834E-03

1.54954E-06 1.50014E-06 8.81434E-03

1.50227E-06 4.98263E-03 9.42968E-03

1.50258E-06 8.58467E-03 8.14261E-03

 67

The figures are presented with the corresponding precision and the relative error. It can be
noticed that in double precision Direchlet boundary condition have the same effect as Von
Neuman for the vector near the exercise price. Subsequently, in mixed precision procedure,
it is noticed that, up to size N = 512 the algorithm converges after that system size the error
grows again, the Direchlet conditions give a strange behavior to the algorithm, depending on
the discretization of the mesh as can be seen in the following figure. Last, for the single
precision there is no difference between the two different ways of calculating boundary
conditions, but it appears that above system size N = 256 the algorithm stops producing
exploitable results.

Figure 25: log relative error (l2-norm) near strike price versus system size.

Double
precision

Mixed
precision

Single
precision

5.3.1.2 Relative error (l2-norm) of the solution vector

Then the errors for the entire solution vector are presented:

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

Von Neuman Direchlet

0.000001

0.00001

0.0001

0.001

0.01

0.00001

0.0001

0.001

0.01

 68

Table 9: Relative error for solution vector of European call option.

Von Neumman

double mixed single

4.84475E-03 4.84505E-03 4.84510E-03

1.84694E-03 1.84704E-03 1.84815E-03

1.11829E-03 1.11832E-03 1.12059E-03

8.90308E-04 8.89097E-04 8.97297E-04

7.94075E-04 7.94420E-04 8.08792E-04

7.48155E-04 7.55384E-04 7.60216E-04

7.25943E-04 7.31925E-04 5.77633E-04

7.14268E-04 7.25708E-04 7.91591E-04

7.08654E-04 6.81829E-04 4.07170E-03

7.05851E-04 7.54879E-04 9.26380E-03

7.04449E-04 1.19082E-03 8.48195E-03

7.03750E-04 5.66508E-03 5.54274E-03

7.03398E-04 1.29623E-02 9.90065E-03

Direchlet

double mixed single

3.85424E-03 3.85429E-03 3.85427E-03

9.56507E-04 9.56729E-04 9.56497E-04

5.72960E-04 5.72937E-04 5.72884E-04

6.18929E-04 6.18963E-04 6.18998E-04

6.49852E-04 6.50600E-04 6.52963E-04

6.63416E-04 6.63933E-04 6.39119E-04

6.69536E-04 6.73679E-04 6.43812E-04

6.72422E-04 6.58684E-04 7.06323E-04

6.73821E-04 6.45955E-04 9.50025E-04

6.74510E-04 6.41741E-04 4.48241E-03

6.74852E-04 1.28191E-03 3.57771E-03

6.75022E-04 5.46239E-03 2.95378E-03

6.75107E-04 1.10744E-02 1.20695E-02

Same as before the figures show the error for the three precision (double, mixed and single).

Figure 26: Relative error (l2-norm) for the solution vector.

Double precision

Mixed precision

Single precision

0.0001

0.001

0.01

Von Neuman Direchlet

0.0001

0.001

0.01

0.0001

0.001

0.01

 69

In the overall vector, Direchlet boundary conditions seem to work better, but the gain is very
small compared to the advantages of Von Neumman. The result of the experiment shows that
the decision to choose Von Neumman boundary conditions is correct, because at bigger
systems of size N there is no practically any difference.

However, some worrying phenomena have arisen for the algorithm behavior. At first sight it
seems to be a problem of arithmetic precision, but it may also come from other type of errors,
such as discretization errors. For this reason, a more extensive analysis needs to be done.

5.3.2 Experiment 2: Which system size?

Following the first experiment results, in the second experiment the algorithm has been
changed so that it could solve systems of size 2n-1. This has been done to measure the effect
of arithmetic precision on space discretization of S. So there are two systems of size 2n-1 and
2n, the former can be perfectly represented by floating point arithmetic as ds is calculated by
dividing with number of power of two. Thus, no information is lost due to round off errors of
floating arithmetic.

The comparison between these two versions of the same algorithm is done exactly at the
exercise price as a point measurement, while the error for the whole vector continues to be
calculated in this and in all subsequent experiments.

The scope of this experiment is to exclude some sources of errors and to see in absolute terms
the behavior of the error. The errors in all experiments are derived from the difference
between the analytical solution and the approximation solution of the Black-Scholes model
for European call option. The same parameters for the option have been used as in the first
experiment.

The reference solution for this experiment is from BS closed form solution:

Exact solution = 6.18413565

 70

Table 10: Price approximation of European call option for different discretization and precision.

System size 2n

double mixed single
6.60771900 6.60771680 6.60771596

6.30098177 6.30097699 6.30098009

6.21501272 6.21501112 6.21501207

6.19207869 6.19208980 6.19210410

6.18614537 6.18614578 6.18610024

6.18463590 6.18460250 6.18466663

6.18425530 6.18424869 6.18562269

6.18415982 6.18427801 6.18106198

6.18413594 6.18398738 6.17630887

6.18412998 6.18391466 6.24365950

6.18412851 6.17915797 6.24124098

6.18412814 6.15170574 6.24446893

6.18412805 6.14018035 6.14028072

System size 2n-1

double mixed single
5.587887165 5.58788681 5.587884426

6.055699279 6.055704117 6.055699348

6.152834152 6.152838707 6.152839661

6.176349122 6.176352978 6.176347733

6.182185393 6.182200909 6.18214035

6.183642177 6.183616638 6.183702469

6.184006391 6.184035301 6.185444832

6.184097527 6.18379879 6.181346893

6.184120357 6.184527397 6.180389404

6.184126087 6.184597015 6.246400356

6.184127532 6.18431139 6.243336678

6.184127899 6.171162605 6.220122814

6.184127991 6.099887848 6.132685661

5.3.2.1 Absolute error at strike price

The accuracy at the exercise value was measured with absolute error while for the whole
vector the relative error l2-norm was used. The following tables show the absolute error in
the exercise price for the two types of systems.

Table 11: Absolute error at strike price of European call option.

System size 2n

double mixed single
4.23583E-01 4.23581E-01 4.23580E-01

1.16846E-01 1.16841E-01 1.16844E-01

3.08771E-02 3.08755E-02 3.08764E-02

7.94305E-03 7.95415E-03 7.96845E-03

2.00972E-03 2.01013E-03 1.96460E-03

5.00249E-04 4.66850E-04 5.30985E-04

1.19656E-04 1.13037E-04 1.48704E-03

2.41682E-05 1.42363E-04 3.07367E-03

2.88208E-07 1.48270E-04 7.82678E-03

5.66539E-06 2.20987E-04 5.95238E-02

7.14231E-06 4.97768E-03 5.71053E-02

7.50602E-06 3.24299E-02 6.03333E-02

7.59524E-06 4.39553E-02 4.38549E-02

System size 2n-1

double mixed single
5.96251E-01 5.96249E-01 5.96248E-01

1.28436E-01 1.28432E-01 1.28436E-01

3.13015E-02 3.12969E-02 3.12960E-02

7.78653E-03 7.78267E-03 7.78792E-03

1.95026E-03 1.93474E-03 1.99530E-03

4.93472E-04 5.19010E-04 4.33180E-04

1.29257E-04 1.00347E-04 1.30918E-03

3.81217E-05 3.36859E-04 2.78876E-03

1.52920E-05 3.91748E-04 3.74624E-03

9.56144E-06 4.61367E-04 6.22647E-02

8.11645E-06 1.75741E-04 5.92010E-02

7.74966E-06 1.29730E-02 3.59872E-02

7.65725E-06 8.42478E-02 5.14500E-02

The figure below shows the absolute error at strike price. The results appear to have exactly
the same behavior as the previous experiment. For system size 2048 this extreme value is
formed with a value of K = 50 and Smax = 100 in the system 2n-1 because the value S = 50 in

 71

the discretization belongs to a lattice point, whereas in the system 2n it is calculated by linear
interpolation. For this set of measurements, the algorithm works perfectly up to the 2048
system where for each doubling system the error is doubling, whereas after this size the
system converges to an error of less than 0.00001.

In the mixed precision process there is no great difference between the two types of systems.
Here the systems work the same up to size 512 and for larger ones they have similar behavior.
The algorithm works correctly up to 512 size where it doubles and here the error for each
doubling of the system, as shown in the figure below.

Exactly, the same behavior as mixed precision is also present in the single precision with the
only difference that the algorithm stops working correctly in an order of magnitude earlier, ie
in system 256, as shown in the figure.

Figure 27: Absolute error in log scale at strike price versus system size.

Double precision

Mixed precision

Single precision

5.3.2.2 Relative error (l2-norm) of the solution vector

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

2^n 2^n-1

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

 72

Below are the tables with the relative error across the vector of the solution, for the different
sizes and different representation precisions.

Table 12: Relative error for solution vector of European call option.

System size 2n

double mixed single

4.84475E-03 4.84505E-03 4.84510E-03

1.84694E-03 1.84704E-03 1.84815E-03

1.11829E-03 1.11832E-03 1.12059E-03

8.90308E-04 8.89097E-04 8.97297E-04

7.94075E-04 7.94420E-04 8.08792E-04

7.48155E-04 7.55384E-04 7.60216E-04

7.25943E-04 7.31925E-04 5.77633E-04

7.14268E-04 7.25708E-04 7.91591E-04

7.08654E-04 6.81829E-04 4.07170E-03

7.05851E-04 7.54879E-04 9.26380E-03

7.04449E-04 1.19082E-03 8.48195E-03

7.03750E-04 5.66508E-03 5.54274E-03

7.03398E-04 1.29623E-02 9.90065E-03

System size 2n-1

double mixed single

1.40259E-02 1.40261E-02 1.40263E-02

3.88609E-03 3.88544E-03 3.88660E-03

1.61936E-03 1.61883E-03 1.61864E-03

1.04093E-03 1.04250E-03 1.04525E-03

8.52094E-04 8.50744E-04 8.63026E-04

7.73792E-04 7.65470E-04 6.01098E-04

7.37585E-04 7.33991E-04 5.83041E-04

7.20117E-04 7.60407E-04 8.56222E-04

7.11534E-04 6.82754E-04 6.55896E-03

7.07279E-04 6.01126E-04 9.30001E-03

7.05161E-04 1.18990E-03 8.96651E-03

7.04106E-04 4.00538E-03 4.79462E-03

7.03580E-04 1.24239E-02 7.18956E-03

And as chart form are presented in the following figure:

Figure 28: Relative error (l2-norm) for the solution vector versus system size.

Double precision

Mixed precision

Single precision

0.0001

0.001

0.01

0.1

2^n 2^n-1

0.0001

0.001

0.01

0.1

0.0001

0.001

0.01

0.1

 73

It can be observed that the tridiagonal system size does not play a role if it is odd or even
number, eg 512 or 511. In terms of relative error, it seems to work better for small grids the
2n tridiagonal system size. The analysis will continue with this size because architecture in
Hardware is designed for 2n tridiagonal system size.

The graph below shows the absolute error in the exercise price only for the above size case.
It seems clear that the failure of single precision to reduce the error after 256. It is encouraging
that with a simple input of data from the phase initialization of coefficients a, c, d, e to double
precision leads the algorithm to function as it should for a even doubling a system. This fact
shows us that with a better mixed precision process it can deliver better results.

Figure 29: Absolute error in log scale at strike price versus system size.

5.3.3 Experiment 3: How many time steps?

The two previous experiments responded to questions that had to do with what boundary
conditions should be used and the role of 2n or 2n-1 sized tridiagonal system. Also, some initial
conclusions were extracted for the interdependence of the precision with the errors. The
increase for above a system size makes the solution worsen.

In this experiment, the question of how many time steps the algorithm in order to achieve a
good solution is examined. This was based on the choice of Crank Nicolson's scheme versus
the implicit, that in the course of time, larger dt steps can be made.

For each system size from N= 28 = 256 to N= 214 = 16384, different dt = T / M discrete time
steps are tested. The absolute error is measured at three values, from left and right of the

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

lo
g(

ab
so

lu
te

 E
rr

o
r)

System Size

double mixed single

 74

exercise price, the underlying product values S = 45 and S = 55 respectively, as well as the
exercise price. For completeness purposes, other types of errors are also calculated.

The figure below shows that for a tridiagonal system size of N = 8192 as the time steps are
increased the mixed precision loses precision and then gained again across the solution
vector. This indicates instability for the results for mixed precision. Double precision achieved
the same accuracy in every setting of this experiment.

Figure 30: Relative error (l2-norm) for the solution vector versus time steps.

In the charts below, it can be noticed that for system size N = 8192 only 2048 time step are
needed to achieved the best absolute error.

In this experiment, it turned out that the algorithm works just as well for fewer iterations than
M = N. This was expected and was the main reason that Crank Nicolson was chosen as a finite
difference over implicit, because it can do bigger dt steps.

Also this experiment showed the weakness and the complete failure to produce prices for
stock options that can be used by the market due to single precision.

0.0001

0.001

0.01

0.1
double mixed single

 75

Figure 31: Absolute error in log scale around strike price with N = 8192 versus time steps.

S = 45 S = 50 S = 55

Time Steps M

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

double mixed

single

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

 76

5.3.3.1 Payoff functions and vector error

Figure 32: Payoff functions for European call option with different arithmetic precision and

absolute error.

 77

 78

5.3.4 Experiment 4: Different parameters

Next, knowing the problems for single precision, what is being sought was to look at whether
the same behavior continues for different option parameters. The parameters that changed
here are Smax = 500 from 100, this was a choice for measuring the errors far enough from
the boundaries. Also, various values for interest rate r from 1% to 20% are also tested. The
other parameters remain constant as in the other experiments. As far as the discretization is
concerned, N = M was chosen for this experiment.

5.3.4.1 Increase of Smax = 500

In this first test, only Smax has changed:

Smax = 500, Κ = 50, σ =0.3, r = 0.01, T = 1

It can be observed that the relative norm l2 error has different behavior than previous
experiments. Note that for double precision it must reach N = 8192 to stabilize at 1E-08 the
error. The other two precisions started from a good accuracy in terms of relative error, and
as the system grows, the error was increased:

Figure 33: Relative error for Smax = 500.

In terms of absolute error, measuring the same values as in previous experiment 3, it can be
observed that the algorithms are all working correctly for larger systems for Smax = 500 rather
than Smax = 100. This is perfectly reasonable since the discretization spatial step ds = Smax /
N has grown. The same behavior it is observed with the previous experiments the different
versions of the algorithm.

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

System Size

double mixed single

 79

Figure 34: Absolute error in log scale around strike price for Smax = 500 .

S = 45 S = 50 S = 55

System Size N

Next, the absolute error for N = M = 8192 is displayed on a logarithmic scale, compared to the
same execution for Smax = 100. It can be noticed, that close to the exercise value gives the
same quality of solution while the algorithm gives better solution quality for the rest vector,
for double precision. Therefore, it seems that there is a golden ratio for choosing between a
K-value and an upper barrier of the value of the underlying Smax product.

In the other two executions of the code, the same phenomena emerged; the failure to
produce a good solution at any point in the vector, as shown in the figure below left for the
whole vector, right zoomed in showing only up to S = 100.

Figure 35: Log scale absolute error European call option with Smax = 500.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

double mixed

single

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

 80

5.3.4.2 Increase of interest rate from 1% to 20%

Increasing the interest rate from r = 1% to r = 20% does not change the error behavior
compared to the previous settings. The different implementations produce a smoother error
results with more diverging effect. The experiment was done for all the intermediate interest
rates (i.e 5%, 10%, 20%) results for r=20% are presented.

Smax = 500, Κ = 50, σ =0.3, r = 0.2, T = 1

The relative error across the solution vector:

Figure 36: Relative error for Smax = 500 and r=20%.

The absolute errors in prices are presented. It now seems that for this return and risk settings
the single precision does not work neither for small size systems.

Figure 37: Absolute error in log scale around strike price for Smax = 500 and r = 20%.

S = 45 S = 50 S = 55

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

double mixed single

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

double mixed

single

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

 81

The absolute error for the solution vector for N = 8192 and M = 8192 is shown in the figure
below, at the left is Smax = 500 and the same graph right only up to S = 100:

Figure 38: Log scale absolute error European call option with Smax = 500 and r=20%.

It can be observed that for a single precision the numerical solution goes far beyond analytical.

Figure 39: Payoff functions for European call option with Smax = 500 and r = 20%.

 82

 83

5.4 Arithmetic precision experiment with MPFR

In the previous experiments it was clearly shown that parameter selection is of great
importance in order to produce a quality solution that can be used for a range of option
values. Again, it turns out that the system is not working for single precision.

The analysis so far has clearly shown that the combination of Crank-Nicolson, norm-CR and
single precision does not work. So, an arithmetic precision that produce acceptable results for
the market must be found. Because resources are finite in FPGAs and also the performance
deteriorates from single to double precision about 25% [43]. Thus, an experiment was design
to determine floating point arithmetic precision that passes the market threshold and balance
the tradeoffs accuracy with performance.

5.4.1 The MPFR Library

The Multiple Precision Floating-Point Reliably is a GNU portable C library for arbitrary-
precision binary floating-point computation with correct rounding, based on GNU Multi-
Precision Library. The computation is both efficient and has a well-defined semantics: the
functions are completely specified on all the possible operands and the results do not depend
on the platform. This is done by copying the ideas from the ANSI/IEEE-754 standard for fixed-
precision floating-point arithmetic [66].

More precisely, its main features are:

 Support for special numbers: signed zeros (−0), infinities and not-a-number (a single
NaN is currently supported).

 Each number has its own precision (in bits since MPFR uses radix 2). The floating-point
results are correctly rounded to the precision of the target variable, in any of the four
IEEE-754 rounding modes.

 Supported functions: MPFR implements all mathematical functions from C99 and
other usual mathematical functions: the logarithm and exponential in natural base,
base 2 and base 10, the log(1+x) and exp(x)−1 functions (log1p and expm1), the six
trigonometric and hyperbolic functions and their inverses, the gamma, zeta and error
functions, the arithmetic geometric mean, the power (xy) function. All those functions
are correctly rounded over their complete range.

5.4.1.1 Implementation of Crank-Nicolson scheme with MPFR

In order to make further experiments for option pricing accuracy of the proposed method, all
the algorithms had to be implemented again with MPFR library. The code is parameterized to
change precision. All functions were design in double precision except Forward Phase (FP),
Backward Phase and Right Hand Side “e” Phase, which are calculated in custom precision.
Below is the code of inner loop of RHS “e” Phase and shows how the operations work with
MPFR.
mpfr_mul(d0_u, d0[l-1], u[l-1], MPFR_RNDN);//d0[l-1]*u[l-1]
mpfr_mul(d1_u, d1[l-1], u[l], MPFR_RNDN);//d1[l-1]*u[l]
mpfr_mul(d2_u, d2[l-1], u[l+1], MPFR_RNDN);//d2[l-1]*u[l+1];
mpfr_add(add1_du, d0_u, d1_u, MPFR_RNDN);//d0[j-1]*u[j-1] + d1[j-1]*u[j]
mpfr_add(e[l-1], add1_du, d2_u, MPFR_RNDN);//e[j-1] =(d0[j-1]*u[j-1] +d1[j-1]*u[j])+d2[j-1]*u[j+1];

 84

5.4.2 Monte Carlo simulation with custom precision
Due to the unpredictable nature of solution convergence, solver accuracy cannot be
measured accurately in a single run as in the analysis performed in section 5.3. To minimize
the possible biases from individual runs we followed the work [42] made by Wayne Luk's team
at Imperial College, funded by J.P. Morgan and FP7. An attempt has been made to compare
all the different FPGA-based valuation models, not in a speed up terms, but to an absolute
degree. The trade-off between precision and time was measured. The comparison
methodology that has been proposed was a Monte Carlo simulation with random parameter
generation for options. The performance of each model was measured with the root mean
square error (RMSE).

In this work there is an effort to follow the same path. The differences with the
aforementioned work are that: the arithmetic precision is taken into account using MPFR
library, they measured RMSE with double precision. Also, the performance comparison is not
presented with the time but with the spatial step of discretization Δs. The process that has
been followed is:

1. Set the parameters for Option and precision. Here the choices for the experiment
were: Smax = 200, S = [50, 100], K = S ± [0, 10], σ = [0.1, 0.3], r = [0.02, 0.2], T =1.0,
arithmetic precision from s24e8 to s53e11. For each system size N the same procedure
was followed with dt = 0.001.

2. Generate random values for the option parameters with variables boundaries as
initialize in step 1.

3. Calculate the price with numerical scheme of Crank- Nicolson
4. Calculate the price for the same parameters with analytical form of Black-Scholes.
5. Calculate the RMSE with equation (5.5).
6. Do 2-5 for all precision and system sizes.

All functions in the experiment were implemented in MPFR. For each set of the selected
parameters 1000 trials have been done. Also, the selection of dt = 0.001 denotes that it is
1000 time steps per option, so the solver workload was from 1.6K to 16,384K grid points for
each experiment. The results are presented in Table 13.

Table 13: RMSE of European call option for precision against Δs with dt = 0.001.

Δs 32bit-Single 40bit 48bit -Extended 64bit -Double

11.76 6.93E-01 7.11E-01 6.20E-01 7.92E-01
6.06 4.84E-02 4.64E-02 4.01E-02 4.32E-02
3.08 2.68E-02 7.99E-03 6.55E-03 6.61E-03
1.55 3.89E-02 1.48E-03 1.41E-03 1.40E-03
0.78 5.13E-02 3.90E-04 3.67E-04 3.57E-04
0.39 1.74E-01 1.80E-04 1.10E-04 1.00E-04
0.20 1.00E+00 6.93E-04 3.05E-05 2.75E-05
0.10 - 3.76E-03 1.28E-05 1.01E-05
0.05 - - 3.58E-05 4.71E-06
0.02 - - 1.55E-04 2.25E-06
0.01 - - - 2.00E-06

 85

Figure 40: RMSE for precision against Δs with dt = 0.001.

Figure 40 depicts RMSE against Δs (spatial time step) with dt = 0.001 for all the experiments.
The market acceptable threshold is to produce an option pricing with less than 10-3 error. So,
here the line for RMSE was drawn at 0.001. It must be noticed that RMSE penalizes errors that
are away from the mean value, because of the squared error. This can be interpreted that the
solver may have better results than those given by the graph but may failed to produce good
enough results for some cases. Nevertheless, the above analysis can be taken as the working
characteristics of our proposed algorithm.

To summarize, the Crank - Nicolson scheme with use of norm-CR can achieve market
acceptable results with Δs < 1. The minimum arithmetic precision needed for achieving this
accuracy is 48bits. With this precision good behavior of the algorithm is maintained in terms
of accuracy.

In the next chapter, the 48bits arithmetic precision is going to be discussed along with
hardware decisions that have been made and how it affects the performance of the FPGA
option solver.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0.010.101.0010.00

lo
g(

R
M

S
E

)

log(Δs)

s24e8

s32e8

s40e8

s53e11

Market Acceptable Threshold

 86

Chapter 6:
Hardware Architectures and Design
Decisions

6.1 Introduction

As described in previous chapters, normalized cyclic reduction algorithm has been chosen
for solving the tridiagonal system produced by Crank-Nicolson scheme. In this chapter, the
hardware architectures and the design decisions are going to be presented.

First of all, the mathematical operations and the modeling of the algorithm will be explained.
Secondly, the implemented architectures will be shown. The first architecture is simple, non-
pipeline, the second one includes a three operand adder and the last, that is the proposed
one, has fused multiply adder. Each design had been implemented in different periods of time
with different technology of FPGAs, different precision of floating-point numbers and
different versions of Xilinx tools.

6.2 Modeling the Crank-Nicolson scheme

The solution to the Crank-Nicolson Finite Difference Scheme is divided into two parts:

 In solving the tridiagonal linear system:

𝑎𝑖 ∗ 𝑥𝑖−1
𝑛+1 + 𝑏𝑖 ∗ 𝑥𝑖

𝑛+1 + 𝑐𝑖 ∗ 𝑥𝑖+1
𝑛+1 = 𝑒𝑖

𝑛

 And in the renewal of the right member “e” of the above equation through the
relationship:

𝑒𝑖
𝑛 = 𝑑0,𝑖 ∗ 𝑥𝑖−1

𝑛 + 𝑑1,𝑖 ∗ 𝑥𝑖
𝑛 + 𝑑2,𝑖 ∗ 𝑥𝑖+1

𝑛

These two procedures must be performed for each time step n.

The solution of the tridiagonal linear system is done with a variant of the classic cyclic
reduction algorithm, having the main diagonal bi=1. The algorithm, in turn, is also divided
into two phases:

 Forward Phase or forward elimination

 Backward Phase or backward substitution

The procedure for the numerical solution of the Black-Scholes equation is shown in the
figure.

 87

Figure 41: Flow diagram of Crank-Nicolson scheme.

start end
Forward

Phase
Backward

Phase

Update
RHS e
Phase

cyclic reduction

Crank-Nicolson scheme

next time step

In the subsections below, the three phases are analyzed separately and their operations are
modeled.

6.2.1 Forward Phase

In Forward Phase (FP) the steps of the algorithm are:

1. The elements a0,i , c0,i , e0,i are read for each i , from 0 to N-1 of an initial system size N,
step k=0.

2. A new system of size N/2 is calculated, eliminating the even matrix rows through the
algorithm operations, step k=1.

3. The elements ak,i , ck,i , ek,i of reduced system are read and a new system of size Nk/2 is
calculated, step k=k+1.

4. Step 3 is being repeated until system becomes of size Nk=1, step k=log2N. The output
of FP is all the reduced systems.

Figure 42: Flow diagram of Forward Phase.

initial
system
ai, ci, ei

step k=0

eliminate
odd

indices
i i+2

half
system

size
ai/2, ci/2, ei/2

start

Forward Phase

next phase step k = k+1

k = log2N

when
end

 88

The operations executed for the process of reduction, as discussed above, for a loop iteration
of the algorithm, are as follows:

𝑡𝑒𝑚𝑝 = 1/(1 − 𝑐𝑖−1 ∗ 𝑎𝑖 − 𝑐𝑖 ∗ 𝑎𝑖+1)
𝑎𝑘+1,𝑖/2 = −𝑡𝑒𝑚𝑝 ∗ 𝑎𝑖−1 ∗ 𝑎𝑖

𝑏𝑘+1,𝑖/2 = 1

𝑐𝑘+1,𝑖/2 = −𝑡𝑒𝑚𝑝 ∗ 𝑐𝑖 ∗ 𝑐𝑖+1

𝑒𝑘+1,𝑖/2 = 𝑡𝑒𝑚𝑝 ∗ (𝑒𝑖 − 𝑒𝑖−1 ∗ 𝑎𝑖 − 𝑐𝑖 ∗ 𝑒𝑖+1)

As shown in the figure, the sequence of operations, 2 simultaneous multiplications → addition
→ subtraction, is repeated twice, one for calculating the “temp” variable and one for
calculating “ei”.

Figure 43: Modeling the operations of Forward Phase.

x

x

x

x

+ - /

x

x

x
+ -

ai-1

ai

ai

1

ei

ai+1

ci-1

ci

ai+1

ci

ei+1

ei-1

ci

ci+1

ak+1,i/2

ck+1,i/2

ek+1,i/2

x

x

1

6.2.2 Backward Phase
Backward Phase (BP) starts when Forward Phase is over. In detail, the steps of this phase are
as follows:

1. Element x0=ek,0 is calculated, initial step k=log2N.

 89

2. The odd elements ak,i , ck,i , ek,i and x0 are read and xN/2 is calculated, step k=log2N – 1.
3. For each i, from 1 to Nk-1, new elements x are calculated, using variables x of the

previous steps and the odd elements of this step ak,i , ck,i , and ek,i.
4. Step 3 is being repeated until algorithm step becomes k=0, and all variables of array x

of size N are calculated.

Figure 44: Flow diagram of Backward Phase of Cyclic Reduction.

initial out
Forw. Phase

x0 = ek,0

k = log2N

system size

Nk=N/2k

calculate
odd indices

of x (xi2
k
)

i i+2

start

Backward Phase

next phase step k = k-1

k = 0

when
end

The operations executed for the process of substitution, as discussed above, for a loop
iteration of the algorithm, are as follows:

𝑥𝑖2𝑘 = 𝑒𝑘,𝑖 − 𝑎𝑘,𝑖 ∗ 𝑥(𝑖−1)2𝑘 − 𝑐𝑘,𝑖 ∗ 𝑥(𝑖+1)2𝑘

As shown in the figure, for each xi2^k element, 2 multiplications, 1 addition, 1 subtraction are
needed, in the same order as the FP.

Figure 45: Modeling the operations of Backward Phase.

x

x

+ -

x(i-1)2^k

ak,i

ck,i

ek,i

x(i+1)2^k

x2^k

6.2.3 Update Right Hand Side “e” Phase

Update “e” Phase (UpeP) starts after the procedure of solving the tridiagonal linear system
has finished. As soon as BP calculates all variables of x array, the right side of the system is
renewed through the operations:

 90

𝑒𝑖 = −𝑎𝑖 ∗ 𝑥𝑖−1 + 𝑑1,𝑖 ∗ 𝑥𝑖 − 𝑐𝑖 ∗ 𝑥𝑖+1

As shown in the figure, for each ei element, 3 multiplications, 1 addition, 1 subtraction are
needed, in the same order as the BP.

Figure 46: Modeling the operations of Update RHS e Phase.

x

x

+

-

x(i-1)

ai

ci

x(i+1)

ei

x
xi

d1,i

After UpeP is finished, arrays a, c and the updated e form a new tridiagonal linear system that
needs to be solved, for the next time step m of Crank-Nicolson scheme.

6.3 The first two architecture designs

At the beginning of the first design, the first issue to be addressed was the data. From Crank-
Nicolson scheme, there is a tridiagonal matrix of size N (a, c, e), an array of the same size (d)
and the solution array (x) with floating-point numbers. It was decided that all these vectors
would be stored on FPGA’s BRAMs and there will be a basic core where the mathematical
operations are done. As shown in Figure 47, the data are read from memories and go into the
core. The results of the core’s calculations will be stored back to the BRAMs. This procedure
will be repeated M times, where M is the number of time steps chosen in Crank-Nicolson.
New data overwrite the old ones where permitted. There is also two-level hierarchy in control
units. At the bottom level, two different FSMs control the data storage and the core and at
the top level there is one FSM to rule them all. This dataflow is kept in all three designs that
will be presented in the next sections.

 91

Figure 47: Top block diagram.

control

BRAM

memory
control

memory

DATA

DATA

calculation

core control

core

The second issue was the calculation unit and the arrangement of operations. From the
analysis of previous sections, it is obvious that the forward phase is the most resources
consuming phase and needs 14 floating-point operations, while backward phase needs only
4 and update “e” only 5. Also, there is a pattern in the sequence of operations in all three
phases; simultaneous multiplications followed by addition and subtraction. As a result, the
initial approach for the design was to follow exactly the modeling of operations in forward
phase and the other two phases would be covered. However, if this approach had been
utilized, the design would have required many floating-point operators and DSPs, which
would have been used only in forward phase and have remained idle during the other two
phases. In a design like this, it could have been difficult to add many cores and make it parallel.
Therefore, the next goal was to reduce floating-point operators and reuse them wherever
needed.

6.3.1 First architecture design

In the first architecture design, each element of the original tridiagonal system was stored in
a single memory location. Variables a, c, and e are put into three separate BRAMs, at the
positions 0 to N-1, where N is the system size. Every new (half-sized) system that is produced
in each k phase step of FP is stored in the same memories as the initial. The first element of
each “new” system is stored in the next position of the last item of the old system. For
example, for phase step k=1, new elements are stored from position N and beyond. The
elements of vectors x and d are stored in two BRAMs of size N, same size as the vectors’.

 92

It was noted that variable temp has to be calculated first because it is necessary to export all
three new a, c and e. Thus, the operations from modeling were reordered taking into account
three things: 1) some of the FPOs must be used more than one time in FP in order to reduce
the needed resources, 2) keep the basic sequence: two parallel multiplications followed by
addition and subtraction, because it appears in all three phases, 3) the number of FPOs that
stay idle in BP and UpeP must be the minimum possible.

6.3.1.1 Forward Phase

Initially, in calculation unit were used 2 multipliers, 1 add unit, 1 sub unit and 1 divider.
However, the large number of multiplications during FP, led to the addition of a third
multiplier. An FPO per operation is used. The FPOs that have been used were generated with
the Xilinx Floating-Point Operator v5.0.

Figure 48: Forward Phase of first design.

x

x

x

+
-

/
m

u
x

m
u

x
m

u
x

m
u

x
m

u
x

m
u

x

m
u

x
m

u
x

ai

div_result

ci-1
ei-1

sub_result2

ci

ai+1

div_result

ei+1

mult3_result1
div_result

ai
ci

mult3_result2

ai-1
ci+1

div_result

1
1

ei

OUT
ck+1,i/2

sub_result2

OUT
ek+1,i/2

OUT
ak+1,i/2

mult3_result2

mult3_result1

The architecture shown in Figure 48 is the block diagram for core’s calculation unit. In the
other two phases some of these FPOs stay idle. This happens in each architecture design. The
calculation unit is explained separately at each phase, but the overall circuit is the same one
with FP and the other two phases use the same resources.

The design in Figure 48 is not pipelined but has registers to keep values from intermediate
results that need to be used for the final results. For simplicity, they are not shown in the
scheme.

It must be noted, that this first and simple architecture was designed before the numerical
analysis, that was presented on chapter 4, and the floating-point numbers are single-
precision, 32 bits. The latency of Xilinx’s FPOs, as well as the number of DPSs and LUTs used

 93

are different for different precisions. At the beginning of the design, the FPOs had the
maximum latency values. After the system was completed and the clock period was
estimated, the latency gradually decreased, a feature provided by Xilinx’s FPO. After each
decrease, Synthesis and Implementation were running and the clock value was checked. The
combination of the smaller latency that did not increase the clock period more than 5 ns is
that of the Table 14. The purpose of this method was to find the critical path inside an FPO,
in order to make sure that no more optimization could have been done. This method was
used at all the later designs, and from this point on, the number of cycles presented is the
final.

Table 14: Latency of FPOs for first architecture.

floating point operator maximum latency used latency

multiplier 8 5
adder 12 6

sub 12 7
divider 28 14

The number of cycles to produce a result in Forward Phase, for single precision numbers, is
42 and is shown in Figure 49. Any extra cycle or register that was added in the datapath, had
been done at the end of the design, taking into account the critical path and the final clock
frequency. Figure 49 shows the sequence of FP operations in time, not the FPOs, and latency
is measured in cycles.

 94

Figure 49: Datapath with latency for First architecture of the Forward Phase.

x

x

x

+

x

x

x

-

-+

/

x

x

x

0 2 7 8 13 19 20 21 27 35 36 41 42

start
FP

end
FP

ai

div_resultci-1

ei-1

ci

ai+1

ei+1

mult3_result1

ai

ci

ai-1

ci+1

1 1

ei

OUT
ck+1,i/2

sub_result2

OUT
ek+1,i/2

OUT
ak+1,i/2

mult3_result2

ai

ci

6.3.1.2 Backward Phase
Backward Phase (BP) starts when FP is over. As shown in the figure TADE, in step k = log2N, e0
is equal to x0. In each of the following steps, k = k-1, the variables x are used that have been
calculated in the previous steps, and also the variables ak,i, ck,i, ek,i, that have been calculated
in FP of the same step. For Backward Phase, the order of operations is the same as for
Forward. Therefore, no changes were made to the basic calculation unit; simply the variables
were linked to the FPOs.

Figure 50: First architecture of the Backward Phase.

x

x

+ -

m
u

x
m

u
x

m
u

x
m

u
x

ak,i

x(i-1)2^k

ck,i

x(i+1)2^k

ek,i

OUT
xi2^k

m
u

x
m

u
x

 95

The number of cycles to produce a result in Backward Phase, for single precision numbers is
21 and is shown in Figure 51. The figure shows the sequence of BP operations in time, not the
FPOs, and latency is measured in cycles.

Figure 51: Latency for First architecture of the Backward Phase.

x

x

+ -

ai,k

x(i-1)^2k

x(i+1)^2k

0 2 7 13 20 21

start
BP

ei,k

ci,k

end
BP

6.3.1.3 Update Right Hand Side “e” Phase

Update RHS “e” Phase (UpeP) starts after the end of Backward Phase. The elements a and c
of the original system, the elements of vector d and the calculated x export the new e, which
is stored in memory E, to positions 0 to N-1, overwriting the vector that had been initially
stored there. For Update RHS “e” Phase, the order of operations is the same as BP and FP.
Therefore, there was no need to add anything to the basic calculation unit.

Figure 52: First architecture of the Update “e” Phase.

x

x

x

+
-

m
u

x
m

u
x

m
u

x
m

u
x

m
u

x
m

u
x

m
u

x
m

u
x

ai

xi-1

ci

xi+1

xi

d1,i

OUT
updated

ei

 96

The number of cycles to produce a result in UpeP, for single precision numbers is 21, same as
BP and is shown in Figure 53.

Figure 53: Latency for First architecture of the Update “e” Phase.

x

x

x

+

-

0 2 7 13 20 21

start
UpeP

ai

xi-1

xi+1

xi

ci

d1,i

end
UpeP

OUT
updated

ei

6.3.2 Second architecture design with custom 3-operand adder

In the second architecture design, the first optimization was to make the datapath pipelined.
The designs that will be presented, from now on, are pipelined. Three multipliers were added,
increasing the total number of multipliers to 6, from 3. These multipliers were used only in
FP. Because of the sequence of the operations, with the addition of 3 multipliers, the
calculation unit receives new input numbers every two cycles in FP. In order to make the unit
receive new input in every cycle, there were needed 9 multipliers total, an option that would
increase the resources without much to gain. In BP and UpeP, the pipeline rate is one cycle.
Subsequently, the next optimization was about FPOs. The idea to create custom floating-point
operators that make the same plain operations as the ones that were already used was
abandoned quickly, as pointless. There was an attempt to create a custom multiplier but it
was hard to make it better, faster, and with fewer resources than Xilinx’s ip core. The idea to
find new floating-point operators that make complex and fused operations was attractive and
it was further explored.

The first FPO that was tried was a 3-operand adder, based on [82], [83] and [84]. The 3
operand adder that was created had latency 8 cycles, compared to the adder-sub units that
had total latency 13 cycles which was a decrease. In Figure 54 block diagram of operator’s
design is shown.

 97

Figure 54: Three operand adder (Source: [84]).

Clock frequency of total design did not increase; the critical path was still inside Xilinx’s FPO.
With the usage of 3 operand adder, in place of an adder and a sub unit, the total latency of
each phase reduced to 35 cycles (from 42) for FP and to 13 cycles (from 21) for BP and UpeP.
These numbers were calculated for single precision floating-point adders. The decrease of
latency was sufficient in BP and UpeP but not in FP.

The following figures show the block diagram and latency of each phase.

 98

6.3.2.1 Forward Phase

Figure 55: Architecture of the FP with 3-operand adder.

m
u

x

+

x

x

x

/

m
u

x
m

u
x

m
u

x
m

u
x

m
u

x
m

u
x

ai

ci-1

ei-1

ci

ai+1

ei+1

mult3_result1
ai
ci

ai-1
ci+1

1

1

ei

OUT
ck+1,i/2

3op_adder
_result2

OUT
ek+1,i/2

OUT
ak+1,i/2

mult3_result2

mult3_result1

3op_adder
_result2

x

x

x
mult3_result2

Figure 56: Latency of the FP with 3-operand adder.

x

x

x

+

x

/

x

x

x

0 5 13 27 35

ai

div_resultci-1

ai+1

mult3_result1
ai

ci

ai-1

ci+1

1

1

OUT
ck+1,i/2

OUT
ek+1,i/2

OUT
ak+1,i/2

mult3_result2ci

1

x

x

+
ei-1

ci

ei+1

ei

ai

6

 99

6.3.2.2 Backward Phase

Figure 57: Architecture of the BP with 3-operand adder.

x

x

+

m
u

x
m

u
x

m
u

x
m

u
x

m
u

x

ak,i

x(i-1)2^k

ck,i

x(i+1)2^k

ek,i

OUT
xi2^k

Figure 58: Latency of the BP with 3-operand adder.

x

x

+

ai,k

x(i-1)^2k

x(i+1)^2k

0 5 13

ei,k

ci,k

OUT
x2^k

 100

6.3.2.3 Update Right Hand Side “e” Phase

Figure 59: Architecture of the UpeP with 3-operand adder.

x

x

+

m
u

x
m

u
x

m
u

x
m

u
x

m
u

x

x

m
u

x
m

u
x

xi

d1,i

ai

xi-1

ci

xi+1

OUT
updated

ei

Figure 60: Latency of the UpeP with 3-operand adder.

x

x

x

+

0 5 13

ai

xi-1

xi+1

xi

ci

d1,i

OUT
updated

ei

 101

6.4 The proposed architecture with fused multiply-adder operator

The two previous designs were implemented in single precision arithmetic, before the error
analysis, shown in Chapter 4. This analysis has led to the need of increasing the arithmetic
precision in order to achieve valuable results. Thus, the proposed architecture must include
custom precision arithmetic, with the final goal being the achievement of better or similar
performance to the previous designs. In the next subsections, design decisions are going to
be discussed.

6.4.1 Modeling design with FMA

The next FPO that was studied, and it showed to fit better with the sequence of operations,
was the fused multiply-add unit. Xilinx, on floating-point ip core version 7.1 has incorporated
this operation. Modeling of operations for all three phases is shown in Figure 61, Figure 62,
and Figure 63.

Figure 61: Modeling the FP with fused multiply adder operand.

fmadd

fmadd

fmadd div

mult

mult

mult

ai-1

ai

ci

ci+1

ak+1,i/2

ck+1,i/2

ek+1,i/2

mult

mult

1

ai

ei-1

ei

ci
ai+1

fmaddci
ei+1

ai

ci-1
1

 102

Figure 62: Modeling the BP with fused multiply adder operand.

fmadd fmadd

ek,i
ak,i

x(i-1)2^k

ck,i
x(i+1)2^k

x2^k

Figure 63: Modeling the UpeP with fused multiply adder operand.

fmadd fmaddmult

x(i-1)

ai ci
x(i+1)

ei
xi

d1,i

It is obvious from the figures that the number of operations is reduced for all phases. In Table
15 the number of operators that are needed is presented, for every modeling that has been
made, for all phases.

Table 15: Number of operations per architecture.

modeling \ phase FP #operations BP #operations UpeP #operations

first-simple 14 4 5

with 3-operand adder 12 3 4

with fmadd 10 2 3

It had to be examined whether the latency was also reduced. Xilinx’s floating-point operator
v.7.1 offers many options regarding the arithmetic precision, the number of DSPs to be used

and the latency of the core. In Table 16, the number of DSPs and the maximum latency are

presented, for single precision and for the custom precision that has been chosen.

 103

Table 16: Number of DSPs and Cycles per operator per precision.

floating point operator v7.1 precision DSP48E1 maximum latency

fused multiply-add 32 bits 2 16 cycles

fused multiply-add 32 bits 4 19 cycles

fused multiply-add 48 bits 5 21 cycles
fused multiply-add 48 bits 8 24 cycles

fused multiply-add 64 bits 10 26 cycles
fused multiply-add 64 bits 13 29 cycles

multiplier 32 bits 0 8 cycles
multiplier 32 bits 1 8 cycles
multiplier 32 bits 2 8 cycles
multiplier 32 bits 3 6 cycles

multiplier 48 bits 0 8 cycles
multiplier 48 bits 6 12 cycles
multiplier 48 bits 7 13 cycles

multiplier 64 bits 0 9 cycles
multiplier 64 bits 6 12 cycles
multiplier 64 bits 7 12 cycles
multiplier 64 bits 8 13 cycles

divider 32 bits 0 28 cycles

divider 48 bits 0 44 cycles

divider 64 bits 0 57 cycles

For each precision, single and the custom that has been chosen, every possible combination
of values among the two basic characteristics (DSPs and latency) was tried.

 The primary goal was to determine the critical path inside an FPO and to keep the
clock frequency above 250MHz.

 A secondary goal was the usage of DSPs to be the minimum possible, which would
allow fitting the design in various FPGA devices, small or large. It turns out that to
achieve replication of the basic calculation unit at least 32 times (i.e. have a design
with 32 cores) in small devices, the number of DSPs must be examined with caution.
After exhausting trials, for 48 bits precision, the values that have been chosen are
shown in Table 17.

 104

Table 17: Used DSPs and latency per operator.

floating point operator v7.1 precision DSP48E1 Used latency

fused multiply-add 48 bits 5 8 cycles

multiplier 48 bits 6 5 cycles

divider 48 bits 0 22 cycles

 105

6.4.2 Proposed architecture with FMA

Here, the hardware architectures are presented for each phase in figures Figure 64, Figure 65
and Figure 66. At this point, it was left to decide how many ip cores could be replicated on
FPGA board, taking into account the aforementioned designs’ goals. Therefore, 2 fmadd, 3
multipliers and 1 divider were used. For simplicity, in all the figures, the pipeline registers are
omitted.

Figure 64: Proposed Architecture of the FP with fused multiply adder operand.

ai

ci-1

1 m
u

x
m

u
x

m
u

x
m

u
x

fmadd div

m
u

x

fmadd1_result1

ci

ai+1

m
u

x
m

u
x fmadd

m
u

x
fmadd2_result1

ei

ei-1

ai

ci

ei+1

mult

mult

m
u

x
m

u
x

mult

ai-1

ai

ci

ci+1

div_result

mult1_result1

div_result

mult2_result1

fmadd2_result2

div_result

OUT
ck+1,i/2

div_result

OUT
ak+1,i/2

OUT
ek+1,i/2

fmadd2_result1

fmadd2_result2

mult1_result1

mult2_result1

1

 106

Figure 65: Proposed Architecture of the BP with fused multiply adder operand.

fmadd

fmadd

ek,i

ak,i

x(i-1)2^k ck,i

x(i+1)2^k

OUT
x2^k

m
u

x
m

u
x

m
u

x

m
u

x
m

u
x

m
u

x

Figure 66: Proposed Architecture of the UpeP with fused multiply adder operand.

mult

ai

ci

x(i+1)

OUT
ei

m
u

x
m

u
x

x(i-1)

m
u

x
m

u
x fmadd

m
u

x

xi

d1,i

m
u

x
m

u
x fmadd

m
u

x

 107

6.4.3 Latency of the proposed architecture with FMA per CR phase

In figures Figure 67, Figure 68 and Figure 69 is shown the number of cycles that are needed to

produce a result in each phase. For FP this number is 44 cycles, for BP is 16 and for UpeP is
21.

Figure 67: Latency of proposed architecture of FP with FMA.

fma

0 85 17 39 44

ai

div_result
ci-1

ci

ai

ei

ai-1

ci+1

1 1

OUT
ck+1,i/2

OUT
ek+1,i/2

OUT
ak+1,i/2

ci

fma

ai

ei-1

fma

ai+1

ci fma

ei+1

mul

mul

9

div

mul

mul

mul

fmadd2_result2

mult1_result1

mult2_result1

 108

Figure 68: Latency of proposed architecture of BP with FMA.

fma

fma

0 8 16

OUT
x2^k

ai,k

x(i-1)^2k

x(i+1)^2k

ei,k

ci,k

Figure 69: Latency of proposed architecture of UpeP with FMA.

fma

fma

13

mul

0

ai

xi-1

d1,i

5

xi

21

OUT
updated

ei

xi+1

ci

 109

6.4.4 Data Storage

A challenging issue of Cyclic Reduction is the data storage; the manipulation of the memory
scheme can make the difference in terms of performance [71], [74]. In this section memory
optimizations are discussed for the proposed architecture.

Memory reading is done in series at each cycle. In previous designs, on element was stored in
a memory position. In order to reduce one cycle at the beginning of every FP phase step, it
would be better to store two elements in a memory position, so two elements would be read
in one cycle. Figure 70 shows how elements of a, c, e vectors of size 16 are being written in
the BRAMs, at each phase step k of FP.

Figure 70: Shared memory for FP.

0 1
2 3
4 5
6 7
8 9

10 11
12 13
14 15

phase
step
k=0

0 1
2 3
4 5
6 7
8 9

10 11
12 13
14 15
0 1
2 3
4 5
6 7

initial
system
N=16

phase
step
k=0

half
system

size

phase
step
k=1

0 1
2 3
4 5
6 7
8 9

10 11
12 13
14 15
0 1
2 3
4 5
6 7
0 1
2 3

initial
system
N=16

phase
step
k=0

half
system

size

phase
step
k=1

step
k=2

0 1
2 3
4 5
6 7
8 9

10 11
12 13
14 15
0 1
2 3
4 5
6 7
0 1
2 3
0 1

initial
system
N=16

phase
step
k=0

half
system

size

phase
step
k=1

step
k=2
k=3

0 1
2 3
4 5
6 7
8 9

10 11
12 13
14 15
0 1
2 3
4 5
6 7
0 1
2 3
0 1
0

initial
system
N=16

phase
step
k=0

half
system

size

phase
step
k=1

step
k=2
k=3
k=4log216

The elements of vector x are stored in a BRAM of size N, same size as the system. Figure 71
shows how elements of vector x, of size 16, are written in the BRAMs, at each phase step of
BP. As it can be seen, reading and writing the variables x is not done in series. Thus, complex

 110

counters and a separate control unit (see Figure 47) have been implemented to help the
pointers get the right address.

Figure 71: Shared memory for BP.

0 0

8

0

4

8

12

0

2

4

6

8

10

12

14

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

x0=ek,0
step
k = 4

system
size

Nk = 2
k = 3

system
size

Nk = 4
k = 2

system
size

Nk = 8
k = 1

system
size

Nk = 16
k = 0

For UpeP, a new vector d is used, only for reading, which is stored in a separate BRAM, mem
D. The updated e variables that are calculated in this phase are stored in mem E, overwriting
the old system.

After the design had been completed for 1 core, the goal was to replicate the basic core to
achieve a multicore architecture to calculate large tridiagonal systems faster. The number of
units that needed to be added is based on the FPGA that is being used and its resources.

An initial approach, which was implemented from early in the first hardware architecture,
was that all cores use one large shared memory. The disadvantage of this design was the
storage of data in BRAMs and the interconnection of BRAMs with the units. Using one
memory for all units and in series reading and writing data from and to them was time-
consuming. The solution was to store the vectors in more than one memories, specifically
each core should have its own memory.

In a later version of this design, the coefficients of the tridiagonal system to be solved were
separated in many memories. An example is shown in Figure 72. The initial system is of size
32 and the number of cores is four, hence each memory has a sub-system of size 8. In this
way, each memory is attached to one core and at the same time each core has its own
tridiagonal system which is reduced in half and stored back to its own memory at the next
positions.

 111

The basic idea was that all the pairs memory-core would work just like the nodes from cyclic-
odd even reduction. With this way a core can get data from both its memory and other certain
memories (not from all of them), but the results it exports, go only to its own memory.

In the example of Figure 72, until phase step k=3 all cores take inputs and produce results that
are being written to their own memories. On step k=4 only cores 0 and 2 are working while
on the last step only core 0 calculates the last value. The cores are working in a way that
simulates the cyclic reduction algorithm. The same method is applied to BP too, as it can been
seen in Figure 73.

 112

Figure 72: Distributed memory per Core for FP.

0 1
2 3
4 5
6 7

8 9
10 11
12 13
14 15

16 17
18 19
20 21
22 23

k=0

24 25
26 27
28 29
30 31

mem0

mem1

mem2

mem3

k=0

k=0

k=0

0 1
2 3
4 5
6 7
0 1
2 3

8 9
10 11
12 13
14 15
4 5
6 7

16 17
18 19
20 21
22 23
8 9

10

k=1

24 25
26 27
28 29
30 31
12 13
14 15

mem0

mem1

mem2

mem3

k=1

k=1

k=1

11

0 1
2 3
4 5
6 7
0 1
2 3
0 1

8 9
10 11
12 13
14 15
4 5
6 7
2 3

16 17
18 19
20 21
22 23
8 9

10

k=2

4 5

24 25
26 27
28 29
30 31
12 13
14 15
6 7

mem0

mem1

mem2

mem3

k=2

k=2

k=2

11

0 1
2 3
4 5
6 7
0 1
2 3
0 1
0 1

8 9
10 11
12 13
14 15
4 5
6 7
2 3

16 17
18 19
20 21
22 23
8 9

10

k=3

4 5
2 3

24 25
26 27
28 29
30 31
12 13
14 15
6 7

mem0

mem1

mem2

mem3

k=3

k=3

11

0 1
2 3
4 5
6 7
0 1
2 3
0 1
0 1

mem0

k=40 1

0 1
2 3
4 5
6 7
0 1
2 3
0 1
0 1

mem0

k=5
0 1
0

k=3

16 17
18 19
20 21
22 23
8 9

10
4 5
2 3

mem2

k=4

11

2 3

 113

Figure 73: Distributed memory per Core for BP.

0

x0=ek,0

k = 5

mem0

mem1

mem2

mem3

0

16

mem0

mem1

mem2

mem3

system
size

Nk = 2
k = 4

0

8

16

24

mem0

mem1

mem2

mem3

system
size

Nk = 4
k = 3

0

4

8

12

16

20

24

28

mem0

mem1

mem2

mem3

system
size

Nk = 8
k = 2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

mem0

mem1

mem2

mem3

system
size

Nk = 16
k = 1

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

mem0

mem1

mem2

mem3

system
size

Nk = 32
k = 0

 114

6.5 Summary and results

In previous sections, three different hardware architectures were presented and designs’
decisions were thoroughly discussed. Here, implementation details are going to be presented
with their results. It must be reminded that first (naïve) and second (3-opadder) designs were
implemented in 32 bit single floating point arithmetic on different Xilinx FPGAs boards,
xc5vlx330T with clock frequency 210.421MHz and xc6vsx475T with different with clock
frequency 250.247MHz respectively. The proposed design (FMA) was implemented with
48bits custom precision on Ultrascale xcvu9p with clock frequency 263MHZ. Resources
utilization is summarized in the next Table 18.

Table 18: Utilization Summary for all Designs

Device Utilization Summary - XC5VLX330T

32-bit precision Number of cores

non-pipeline 1 4

Resource Available Used Util. Used Util.

LUTs 207360 3442 1,66% 13985 6,74

Regs 207360 5025 2,43% 12749 6,18

BRAM 288 58 20,13% 80 27,77%

DSPs 192 3 1,57% 12 6,25%

Device Utilization Summary - XC6VSX475T

32-bit precision Number of cores

pipeline 3op adder 1 4

Resource Available Used Util. Used Util.

LUTs 297600 8656 2.91% 39817 13.38%

Regs 595200 5294 0.89% 26470 4.45%

BRAM 1064 61 5.73% 72 6.77%

DSPs 2016 6 0.30% 24 1.19%

Device Utilization Summary - XCVU9P

48-bit precision Number of cores

pipeline fmadd 1 4

Resource Available Used Util. Used Util.

LUTs 2364480 7135 0.30% 32821 1.38%

Regs 1182240 6662 0.56% 33310 2.81%

BRAM 2160 46 2.11% 52 2.41%

DSPs 6840 25 0.37% 100 1.46%

 115

The rest of the performance analysis is presented only for the proposed architecture with the
FMA operator, as the other two don’t provide usable results for option pricing the comparison
in absolute numbers cannot be valid. For comparability reasons with other or future works
the results are presented separately for Crank-Nicolson and Cyclic Reduction. For the
normalized Cyclic Reduction the timings results are in milliseconds and are showed in Figure
74. Here, results are for solving one tridiagonal system per system size.

Figure 74: Timings (milliseconds) for Cyclic Reduction.

Figure 75: Speed up for Cyclic Reduction.

256 512 1024 2048 4096 8192 16384

1 0.0041 0.0070 0.0128 0.0245 0.0479 0.0946 0.1880

4 0.0020 0.0028 0.0044 0.0074 0.0134 0.0252 0.0487

8 0.0016 0.0021 0.0029 0.0045 0.0075 0.0134 0.0252

16 0.0015 0.0018 0.0022 0.0031 0.0046 0.0077 0.0136

32 0.0015 0.0017 0.0020 0.0025 0.0033 0.0049 0.0079

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

m
ill

i s
e

co
n

d
s

System Size

0
2
4
6
8

10
12
14
16
18
20
22
24

256 512 1024 2048 4096 8192 16384

Sp
e

e
d

u
p

System size

4 8 16 32

 116

This figure 75 shows the speed up from 1 core for different system sizes. It can be observed
that it cannot achieve linear increase of speedup when the system size and the number of
cores are doubled. Also, for small system sizes it can be observed that there is no speedup
with increase of #cores. For large system sizes the FPGA implementation with 32 cores can
speed up the process, from one core, 23 times.

Next figure 76 shows the parallel efficiency (Speedup/#cores) for the same architectures. In
order to achieve parallel efficiency above 90%, it must be used low number of cores with large
system size. As an example, this stands for 4 cores with system size 4096.

Figure 76: Efficiency for Cyclic Reduction.

Overall the implementation of normalized Cyclic Reduction algorithm can solve a tridiagonal
system of size 16384x16384 in 0.0079ms with parallel efficiency of 75%.

These were the results for Cyclic Reduction solver, which is the implicit part of the Crank-
Nicolson Finite Difference method. To obtain the results for the whole Crank-Nicolson scheme
the Update e Phase must be considered, as it is the explicit part of CN-FD. In Figure 77, timing
results are presented in millisecond for the CN-FD for various system sizes. It must be noticed
that, these results are for pricing an option with M = 1000 steps for the discretization in the
direction of time. This choice had been made for reasons of consistency with the accuracy
analysis of the Subsection of 5.4.2.

0.1

1.0

256 512 1024 2048 4096 8192 16384

4 8 16 32

 117

Figure 77: Timings (milliseconds) for Crank-Nicolson.

Figure 78: Speed up for Crank-Nicolson.

256 512 1024 2048 4096 8192 16384

1 5.13 9.03 16.83 32.41 63.56 125.83 250.36

4 2.33 3.42 5.48 9.49 17.39 33.07 64.32

8 1.82 2.41 3.49 5.54 9.54 17.43 33.10

16 1.64 1.99 2.58 3.66 5.72 9.71 17.60

32 1.62 1.86 2.22 2.82 3.91 5.98 9.99

0.00

50.00

100.00

150.00

200.00

250.00

300.00

m
ill

i s
e

co
n

d
s

System Size

0
2
4
6
8

10
12
14
16
18
20
22
24
26

256 512 1024 2048 4096 8192 16384

Sp
e

e
d

u
p

System size

4 8 16 32

 118

In Figure 78 can be observed that there is the same behavior for CN-FD with the CR, but the
speed up for a system size 16384 with 32 cores is 25x, when the CR for the same settings had
23x speedup. This is because Update e Phase utilizes all the cores, in contrast of CR which is
bounded by the system size and the number of cores. The same explanation stands for the
parallel efficiency which is slightly better than CR (Figure 76).

Figure 79: Efficiency for Crank-Nicolson.

Combining the above results with the error analysis interest conclusions can be exported. In
Figure 80 the log of RMSE against the time in milliseconds is presented. For this graph some
assumptions were made. From the accuracy analysis it is known that the 48bit precision for a
system size and above, even if produce market acceptable error, worsen the quality of the
solution. Thus, it has no meaning to include points, in this graph, that have the same error but
take more time. So, for system size up to 2048, the values of RMSE for 48bit precision are
used, and for 4096 to 16384 the RMSE in double precision are used. This change gives the
opportunity to obtain characteristic operation curves and extrude useful conclusion for the
Option Pricing Accelerator. Similarly assumptions were made in [42], hardware
implementation was in single precision and RMSE was obtained from double precision.

Figure 81 shows the Parallel efficiency against time (milliseconds) in log scale. It can be
observed that to achieve efficiency around 80% for any multicore design are needed 10ms to
produce a value for the Option.

0.1

1.0

256 512 1024 2048 4096 8192 16384

P
ar

al
le

l E
ff

ic
ie

n
cy

System size

4 8 16 32

 119

Figure 80: log(RMSE) against log(time in ms) for Crank-Nicolson.

Figure 81: log(parallel efficiency) against log(time in ms) for Crank-Nicolson.

Operational limits of the hardware designs are examined through the application of different
scenarios, for real situations that may arise in the finance sector, especially for Option Pricing.
The criteria for the evaluation of every scenario are Time, Accuracy and Efficiency.

0.000001

0.00001

0.0001

0.001

1.00 10.00 100.00

Lo
g

(R
M

SE
)

Log(Time in ms)

4 8 16 32

0.1

1

1.00 10.00 100.00

P
ar

al
le

l E
fi

ci
e

n
cy

Log(Time in ms)

4 8 16 32

 120

 Scenario 1: Price an option as fast as it possible.

Cores Time Accuracy Efficiency

4 2.33ms 3.67E-04 55.0%

8 1.82ms 3.67E-04 35.3%

16 1.64ms 3.67E-04 19.5%

32 1.62ms 3.67E-04 10.0%

In this scenario, designs with 8, 16, 32 cores have small differences in time, with same
acceptable accuracy and differ in the parallel efficiency. A rational choice would be 16
cores, as it is 0.02ms slower than 32 cores but has double efficiency.

 Scenario 2: Price an option as fast as it possible with maximum accuracy.

Cores Time Accuracy Efficiency

4 33.07ms 2.25E-06 95.1%

4 64.32ms 2.20E-06 97.3%

8 17.43ms 2.25E-06 90.3%

8 33.10ms 2.20E-06 94.6%

16 9.71ms 2.25E-06 80.1%

16 17.60ms 2.20E-06 88.9%

32 5.98ms 2.25E-06 65.8%

32 9.99ms 2.20E-06 78.3%

In this scenario, the first observation is that a gain of 0.05E-06 for RMSE makes almost
double the time of computations. Thus, if this improvement of accuracy is not critical
for the application, the best choice for the preferences that fulfill this scenario is
design with 32 cores, where the pricing is done in 5.98ms with efficiency 65.8%.

 Scenario 3: Price an option under 10ms with Efficiency above 75%.

Cores Time Accuracy Efficiency

4 5.48ms 3.05E-05 76.8%

4 9.49ms 1.28E-05 85.4%

8 9.54ms 4.71E-06 83.3%

16 9.71ms 2.25E-06 80.1%

32 9.99ms 2.20E-06 78.3%

All the above alternatives are covering the criteria thresholds. It is up to the designer
of the option pricing system, who has financial domain knowledge, to choose the most
appropriate setting. An alternative that works without losses for 48bit precision is the
4 cores with time = 9.49ms, RMSE = 1.28E-05 and Efficiency = 85.4%.

Overall, to achieve near 80% efficiency every core of any multicore architecture must be fed
with a system size of 512.

 121

Chapter 7:
Conclusions and Future work

This work presented a hardware accelerator on FPGAs for Option Pricing using Crank-Nicolson
Finite Difference scheme with normalized Cyclic Reduction algorithm as Tridiagonal Solver.
Low-level optimizations were implemented to produce a parallel system that scale ups
efficiently. These optimizations, such as custom precision arithmetic, fused operators,
pipelined designs etc., were on level of hardware design and had scope to produce a highly
parallel hardware architecture.

Three different hardware architectures for the main computation core were presented. First
a naïve non-pipelined at 32bit precision, next a pipelined architecture using a custom 3
operand adder, also at 32bit precision and finally the proposed hardware architecture with a
Fused Multiply Addition operator (FMA or fmadd). This architecture was implemented with
48bit precision, which was selected after taking into account error analysis with MPRF library
and design decisions. The implementation was on a Xilinx FPGA device, Ultrascale xcvu9p, and
achieved clock frequency 263MHZ.

The results of this research showed that a Tridiagonal System of size 16384x16384 can be
solved by normalized Cyclic Reduction on FPGA in 0.0079ms with parallel efficiency of 75%
with 32 cores architecture. A European call option can be valued, from the FPGA based
accelerator of the Crank-Nicolson finite difference scheme with 4 cores, in 9.49ms with RMSE
error at 1.28E-05 and parallel efficiency of 85.4%.

For future work, the followings are recommended:

 Coarse grain parallelism must be explored. This work did a fine grain parallelism by
trying to replicate cores that can price an option as faster as it could with the Crank-
Nicolson method. Results showed that 4 cores are enough to achieve good results
utilizing only 2.81% of Regs resource, this means that about 30 replications of the
4core design can be made. Thus, 30 options can be priced at the same time.

 Cloud implementation must be explored. This was the reason for choosing the specific
Xilinx FPGA device (Ultrascale xcvu9p) as Amazon Cloud uses them in F1 instances. For
1 FPGA the cost is 1.65$/per hour, taking account fine grain and coarse grain
parallelism the throughput of the system would make this hardware Crank-Nicolson
finite difference accelerator very competitive.

 122

Bibliography

[1] J. C. Hull, Options, Futures and Other Derivatives, vol. 1542, no. 9. 2015.

[2] J. V. Duca, “Subprime Mortgage Crisis | Federal Reserve History,” Federal Reserve
Bank of Dallas, 2013. [Online]. Available:
https://www.federalreservehistory.org/essays/subprime_mortgage_crisis.
[Accessed: 01-Aug-2018].

[3] M. Fleming and A. Sarkar, “The Failure Resolution of Lehman Brothers,” FRBNY
Econ. Policy Rev., vol. 20, no. March, pp. 1–54, 2014.

[4] J. C. Shambaugh, “The Euro’s Three Crises,” Brookings Pap. Econ. Act., vol. 2012, no.
1, pp. 157–231, 2012.

[5] A. Afonso, D. Furceri, and P. Gomes, “Sovereign credit ratings and financial markets
linkages: Application to European data,” J. Int. Money Financ., vol. 31, no. 3, pp. 606–
638, Apr. 2012.

[6] P. Boumparis, C. Milas, and T. Panagiotidis, “Economic policy uncertainty and
sovereign credit rating decisions: Panel quantile evidence for the Eurozone,” J. Int.
Money Financ., vol. 79, pp. 39–71, Dec. 2017.

[7] ECB Bulletin, “The Information Content of Option Prices During the Financial
Crisis,” European Central Bank, 2011.

[8] Standard & Poor’s, “United States of America Long-Term Rating Lowered To ’ AA +
’ On Political Risks And Rising Debt Burden ; Outlook Negative,” vol. 5 August, pp.
1–8, 2011.

[9] F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,” J. Polit.
Econ., vol. 81, no. 3, pp. 637–654, 1973.

[10] R. C. Merton, “Theory of rational option pricing,” Bell J. Econ. Manag. Sci., vol. 4, no.
1, pp. 141–183, 1973.

[11] J. C. Cox, S. A. Ross, and M. Rubinstein, “Option pricing: A simplified approach,” J.
financ. econ., vol. 7, no. 3, pp. 229–263, 1979.

[12] J. C. Cox and M. Rubinstein, Options Markets. Prentice-Hall, 1985.

[13] M. Brennan and E. Schwartz, “Finite Difference Methods and Jump Processes
Arising in the Pricing of Contingent Claims : A Synthesis,” J. Financ. Quant. Anal., vol.
13, no. 3, pp. 461–474, 1978.

[14] G. Courtadon, “A More Accurate Finite Difference Approximation for the Valuation
of Options,” J. Financ. Quant. Anal., vol. 17, no. 5, pp. 697–703, 1982.

[15] J. Hull and A. White, “Valuing Derivative Securities Using the Explicit Finite
Difference Method,” J. Financ. Quant. Anal., vol. 25, no. 1, p. 87, 1990.

[16] P. Boyle, “Options: a Monte Carlo approach,” J. financ. econ., vol. 4, no. 3, pp. 323–
338, 1977.

[17] G. Barone-Adesi and R. E. Whaley, “Efficient Analytical Approximation of American
Option Values,” J. Finance, vol. XLII, , no. 2, pp. 301–320, 1987.

 123

[18] F. A. Longstaff and E. S. Schwartz, “Interest Rate Volatility and the Term Structure :
A Two-Factor General Equilibrium Model,” J. Financ., vol. 47, no. 4, pp. 1259–1282,
1992.

[19] W. F. AMES, Numerical Methods for Partial Differential Equations, 3rd ed.
ACADEMIC PRESS, 1992.

[20] J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions
of partial differential equations of the heat-conduction type,” Math. Proc.
Cambridge Philos. Soc., vol. 43, no. 1, pp. 50–67, 1947.

[21] L. N. Trefethen and D. Bau, Numerical Linear Algebra, vol. 50. 1997.

[22] J. R. Bunch and J. E. Hopcroft, “Triangular factorization and inversion by fast matrix
multiplication,” Math. Comput., vol. 28, no. 125, pp. 231–231, 1974.

[23] L. . Thomas, “Elliptic Problems in Linear Differential Equations over a Network,”
Watson Sci. Comput. Lab Report,Columbia University, New York, 1949.

[24] S. D. Conte and C. De Boor, Elementary numerical analysis: an algorithmic approach,
no. July. McGraw-Hill, 1972.

[25] R. W. Hockney, “A Fast Direct Solution of Poisson’s Equation Using Fourier
Analysis,” J. ACM, vol. 12, no. 1, pp. 95–113, 1965.

[26] S. Palmer and D. Thomas, “Accelerating Implicit Finite Difference Schemes Using a
Hardware Optimised Implementation of the Thomas Algorithm for FPGAs,”
Computational Finance, Feb. 2014.

[27] G. Chatziparaskevas, A. Brokalakis, and I. Papaefstathiou, “An FPGA-based parallel
processor for Black-Scholes option pricing using finite differences schemes,” in
Design, Automation Test in Europe Conference Exhibition (DATE), 2012, 2012, pp.
709–714.

[28] G. L. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi, D. U. Lee, C. C. C. Cheung, R. C. C.
Cheung, and W. Luk, “Reconfigurable acceleration for Monte Carlo based financial
simulation,” in Proceedings - 2005 IEEE International Conference on Field
Programmable Technology, 2005, vol. 2005, pp. 215–222.

[29] D. B. Thomas, J. A. Bower, and W. Luk, “Hardware architectures for Monte-Carlo
based financial simulations,” Proc. - 2006 IEEE Int. Conf. F. Program. Technol. FPT
2006, pp. 377–380, 2006.

[30] G. W. Morris and M. Aubury, “Design space exploration of the European option
benchmark using hyperstreams,” Proc. - 2007 Int. Conf. F. Program. Log. Appl. FPL,
pp. 5–10, 2007.

[31] X. Tian, K. Benkrid, and X. Gu, “High Performance Monte-Carlo Based Option Pricing
on FPGAs,” Eng. Lett., vol. 16, no. 3, pp. 434–442, 2008.

[32] A. H. T. Tse, D. Thomas, and W. Luk, “Accelerating quadrature methods for option
valuation,” Proc. - IEEE Symp. F. Program. Cust. Comput. Mach. FCCM 2009, pp. 29–
36, 2009.

[33] A. H. T. Tse, D. B. Thomas, and W. Luk, “Option pricing with multi-dimensional
quadrature architectures,” in Proceedings of the 2009 International Conference on
Field-Programmable Technology, FPT’09, 2009, pp. 427–430.

 124

[34] A. H. T. Tse, D. Thomas, and W. Luk, “Design exploration of quadrature methods in
option pricing,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 5, pp. 818–
826, 2012.

[35] Q. Jin, D. Thomas, W. Luk, and B. Cope, “Exploring reconfigurable architectures for
binomial-tree pricing models,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2008, vol. 4943 LNCS, pp. 245–255.

[36] Q. Jin and D. Thomas, “Exploring reconfigurable architectures for tree-based option
pricing models,” ACM Trans. Reconfigurable Technol. Syst., vol. 2, no. 4, pp. 1–17,
2009.

[37] Q. Jin, D. Thomas, and W. Luk, “Exploring reconfigurable architectures for explicit
finite difference option pricing models,” in Field Programmable Logic and
Applications, 2009, pp. 73–78.

[38] C. Wynnyk and M. Magdon-Ismail, “Pricing the American Option Using
Reconfigurable Hardware,” in 2009 International Conference on Computational
Science and Engineering, 2009, no. 2, pp. 532–536.

[39] X. Tian and K. Benkrid, “High-performance quasi-monte carlo financial simulation:
FPGA vs. GPP vs. GPU,” ACM Trans. Reconfigurable Technol. Syst., vol. 3, no. 4, pp. 1–
22, 2010.

[40] A. H. T. Tse, D. B. Thomas, K. H. Tsoi, and W. Luk, “Efficient reconfigurable design
for pricing asian options,” ACM SIGARCH Comput. Archit. News, vol. 38, no. 4, p. 14,
2010.

[41] C. De Schryver, I. Shcherbakov, F. Kienle, N. Wehn, H. Marxen, A. Kostiuk, and R.
Korn, “An energy efficient FPGA accelerator for Monte Carlo option pricing with the
Heston model,” Proc. - 2011 Int. Conf. Reconfigurable Comput. FPGAs, ReConFig
2011, pp. 468–474, Nov. 2011.

[42] Q. Jin, W. Luk, and D. Thomas, “On comparing financial option price solvers on
FPGA,” in Proceedings - IEEE International Symposium on Field-Programmable
Custom Computing Machines, FCCM 2011, 2011, no. Mc, pp. 89–92.

[43] Q. Jin, W. Luk, and D. Thomas, “Unifying finite difference option-pricing for
hardware acceleration,” in Proceedings - 21st International Conference on Field
Programmable Logic and Applications, FPL 2011, 2011, pp. 6–9.

[44] T. Becker, Q. Jin, W. Luk, and S. Weston, “Dynamic constant reconfiguration for
explicit finite difference option pricing,” in Proceedings - 2011 International
Conference on Reconfigurable Computing and FPGAs, ReConFig 2011, 2011, pp. 176–
181.

[45] Q. Jin, T. Becker, W. Luk, and D. Thomas, “Optimising explicit finite difference option
pricing for dynamic constant reconfiguration,” in Proceedings - 22nd International
Conference on Field Programmable Logic and Applications, FPL 2012, 2012, pp. 165–
172.

[46] R. Sridharan, G. Cooke, K. Hill, H. Lam, and A. George, “FPGA-based reconfigurable
computing for pricing multi-asset barrier options,” Symp. Appl. Accel. High-
Performance Comput., pp. 34–43, 2012.

[47] G. C. T. Chow, A. H. T. Tse, Q. Jin, W. Luk, P. H. W. Leong, and D. B. Thomas, “A mixed

 125

precision Monte Carlo methodology for reconfigurable accelerator systems,” Proc.
ACM/SIGDA Int. Symp. F. Program. Gate Arrays - FPGA ’12, p. 57, 2012.

[48] C. de Schryver, P. Torruella, and N. Wehn, “A Multi-Level Monte Carlo FPGA
Accelerator for Option Pricing in the Heston Model,” Des. Autom. Test Eur. Conf.
Exhib. (DATE), 2013, pp. 248–253, 2013.

[49] D. Sanchez-Roman, V. Moreno, S. Lopez-Buedo, G. Sutter, I. Gonzalez, F. J. Gomez-
Arribas, and J. Aracil, “FPGA acceleration using high-level languages of a Monte-
Carlo method for pricing complex options,” J. Syst. Archit., vol. 59, no. 3, pp. 135–
143, 2013.

[50] G. Inggs, D. Thomas, and W. Luk, “A heterogeneous computing framework for
computational Finance,” Proc. Int. Conf. Parallel Process., pp. 688–697, 2013.

[51] V. M. Morales, P.-H. Horrein, A. Baghdadi, E. Hochapfel, and S. Vaton, “Energy-
efficient FPGA implementation for binomial option pricing using OpenCL,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014, 2014,
pp. 1–6.

[52] S. Palmer, “Accelerating Implicit Finite Difference Schemes Using a Hardware
Optimized Tridiagonal Solver for FPGAs,” ArXiv ID:402.5094, Feb. 2014.

[53] C. Brugger, C. De Schryver, and N. Wehn, “HyPER: A runtime reconfigurable
architecture for monte carlo option pricing in the Heston model,” Conf. Dig. - 24th
Int. Conf. F. Program. Log. Appl. FPL 2014, 2014.

[54] G. Inggs, S. Fleming, D. Thomas, and W. Luk, “Is high level synthesis ready for
business? A computational finance case study,” in Proceedings of the 2014
International Conference on Field-Programmable Technology, FPT 2014, 2014, pp.
12–19.

[55] A. Tavakkoli and D. B. Thomas, “Low-latency option pricing using systolic binomial
trees,” in Proceedings of the 2014 International Conference on Field-Programmable
Technology, FPT 2014, 2014, vol. 1, pp. 44–51.

[56] E. Laszlo, Z. Nagy, M. B. Giles, I. Reguly, J. Appleyard, and P. Szolgay, “Analysis of
parallel processor architectures for the solution of the Black-Scholes PDE,” Proc. -
IEEE Int. Symp. Circuits Syst., vol. 2015–July, no. 1, pp. 1977–1980, May 2015.

[57] J. A. Varela, C. Brugger, C. De Schryver, N. Wehn, S. Tang, and S. Omland, “Exploiting
the brownian bridge technique to improve longstaff-schwartz American option
pricing on FPGA systems,” in International Conference on ReConFigurable
Computing and FPGAs, ReConFig 2015, 2015.

[58] L. Ma, F. Bin Muslim, and L. Lavagno, “High Performance and Low Power Monte
Carlo Methods to Option Pricing Models via High Level Design and Synthesis,” in
2016 European Modelling Symposium (EMS), 2016, pp. 157–162.

[59] N. K. Pham, K. Mi, M. Aung, and A. Kumar, “AUTOMATIC FRAMEWORK TO
GENERATE RECONFIGURABLE,” in 2016 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), 2016, pp. 1–8.

[60] I. Stamoulias, C. Kachris, and D. Soudris, “Hardware accelerators for financial
applications in HDL and High Level Synthesis,” in 2017 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
2017, pp. 278–285.

 126

[61] P. Fabry and D. Thomas, “Efficient Reconfigurable Architecture for Pricing Exotic
Options,” ACM Trans. Reconfigurable Technol. Syst., vol. 10, no. 4, p. 29:1--29:22,
2017.

[62] A. Tavakkoli and D. B. Thomas, “A High-Level Design Framework for the Automatic
Generation of High-Throughput Systolic Binomial-Tree Solvers,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 26, no. 2, pp. 341–354, Feb. 2017.

[63] F. Bin Muslim, L. Ma, M. Roozmeh, and L. Lavagno, “Efficient FPGA Implementation
of OpenCL High-Performance Computing Applications via High-Level Synthesis,”
IEEE Access, vol. 5, pp. 2747–2762, 2017.

[64] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. Trew, A.
Mccormick, G. Smart, R. Smart, A. Cantle, and R. Chamberlain, “Maxwell – a 64 FPGA
Supercomputer,” no. Ahs, pp. 1–8, 2007.

[65] F. De Dinechin and B. Pasca, “Designing Custom Arithmetic Data Paths with
FloPoCo,” IEEE Des. Test, vol. 28, no. 4, pp. 18–27, 2011.

[66] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, “MPFR: A
Multiple-Precision Binary Floating-Point Library With Correct Rounding,” ACM
Trans. Math. Softw., vol. 33, no. 2, p. 13–es, 2007.

[67] F. Oliveira, C. S. Santos, F. A. Castro, and J. C. Alves, “A Custom Processor for a TDMA
Solver in a CFD Application,” in Reconfigurable Computing: Architectures, Tools and
Applications, 2008, vol. 4943, no. Lecture Notes in Computer Science, pp. 63–74.

[68] J. D. Warne, N. A. Kelson, and R. F. Hayward, “Solving Tri-Diagonal Linear Systems
using Field Programmable Gate Arrays,” in 4th International Conference on
Computational Methods (ICCM2012), 2012, no. November, pp. 25–28.

[69] D. J. Warne, N. A. Kelson, and R. F. Hayward, “Comparison of high level FPGA
hardware design for solving tri-diagonal linear systems,” in Procedia Computer
Science, 2014, vol. 29, pp. 95–101.

[70] M. Kass, A. Lefohn, and J. Owens, “Interactive Depth of Field Using Simulated
Diffusion on a GPU,” Computing, 2006.

[71] Y. Zhang, J. Cohen, and J. D. Owens, “Fast tridiagonal solvers on the GPU,” ACM
SIGPLAN Not., vol. 45, no. 5, p. 127, 2010.

[72] D. Göddeke and R. Strzodka, “Cyclic reduction tridiagonal solvers on GPUs applied
to mixed-precision multigrid,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 1, pp.
22–32, Jan. 2011.

[73] P. Quesada-Barriuso, J. Lamas-Rodríguez, D. B. Heras, M. Bóo, and F. Argüello,
“Selecting the Best Tridiagonal System Solver Projected on Multi-Core CPU and
GPU Platforms,” Int. Conf. Parallel Distrib. Process. Tech. Appl. PDPTA2011, vol. 2, no.
2, pp. 839–845, 2011.

[74] D. Zhao and J. Yu, “Efficiently solving tri-diagonal system by chunked cyclic
reduction and single-GPU shared memory,” J. Supercomput., vol. 71, no. 2, pp. 369–
390, 2014.

[75] A. Davidson, Y. Zhang, and J. D. Owens, “An auto-tuned method for solving large
tridiagonal systems on the GPU,” Proc. - 25th IEEE Int. Parallel Distrib. Process.
Symp. IPDPS 2011, pp. 956–965, 2011.

 127

[76] L. W. Chang, J. A. Stratton, H. S. Kim, and W. M. W. Hwu, “A scalable, numerically
stable, high-performance tridiagonal solver using GPUs,” Int. Conf. High Perform.
Comput. Networking, Storage Anal. SC, pp. 1–11, Nov. 2012.

[77] M. Giles, E. Laszlo, I. Reguly, J. Appleyard, and J. Demouth, “GPU Implementation of
Finite Difference Solvers,” Proc. WHPCF 2014 7th Work. High Perform. Comput.
Financ. - Held conjunction with SC 2014 Int. Conf. High Perform. Comput. Networking,
Storage Anal., pp. 1–8, 2014.

[78] E. Laszlo, M. Giles, and J. Appleyard, “Manycore Algorithms for Batch Scalar and
Block Tridiagonal Solvers,” ACM Trans. Math. Softw., vol. 42, no. 4, pp. 1–36, 2016.

[79] A. Sottoriva and B. R. June, “Investigating Finite Difference Methods for Option
Pricing,” 2007.

[80] R. Strzodka and D. Göddeke, “Pipelined mixed precision algorithms on FPGAs for
fast and accurate PDE solvers from low precision components,” Proc. - 14th Annu.
IEEE Symp. Field-Programmable Cust. Comput. Mach. FCCM 2006, pp. 259–270,
2006.

[81] C. Moler, “Iterative refinement in floating point,” J. ACM, no. 2, pp. 316–321, 1967.

[82] A. F. Tenca, “Multi-operand floating-point addition,” Proc. - Symp. Comput. Arith.,
pp. 161–168, 2009.

[83] T. Yao, D. Gao, X. Fan, and X. Ren, “Three-operand floating-point adder,” Proc. - 2012
IEEE 12th Int. Conf. Comput. Inf. Technol. CIT 2012, pp. 192–196, 2012.

[84] J. Sohn and E. E. Swartzlander, “A Fused Floating-Point Three-Term Adder,” IEEE
Trans. CIRCUITS Syst. Regul. Pap., vol. 61, no. 10, pp. 2842–2850, 2014.

	Table of Contents
	Chapter 1: Introduction
	1.1 The derivatives market
	1.2 High Performance Computing in Finance
	1.3 Motivation and objectives
	1.4 Thesis Overview

	Chapter 2: Financial Derivatives
	2.1 Introduction
	2.2 Vanilla Options
	2.2.1 Call Option
	2.2.2 Put Option

	2.3 Option Pricing Mechanics
	2.3.1 Minimum Price of Call Option
	2.3.2 Exercise of American Options
	2.3.3 Put-Call parity relationship

	2.4 Option Pricing Models
	2.4.1 The Binomial model
	2.4.2 Monte Carlo Simulation
	2.4.3 Black & Scholes model
	2.4.3.1 Closed form solution of Black-Scholes PDE

	Chapter 3: Finite Difference and Tridiagonal Solvers
	3.1 Introduction
	3.2 Black-Scholes PDE approximation with finite difference methods
	3.2.1 Grid selection
	3.2.2 Boundary conditions
	3.2.3 Explicit Scheme
	3.2.4 Implicit Scheme
	3.2.5 Crank-Nicolson Scheme

	3.3 Algorithms for Solving Linear Equation Tridiagonal Systems
	3.3.1 LU decomposition
	3.3.1.1 The tridiagonal matrix algorithm (TDMA or Thomas)

	3.3.2 Cyclic Reduction (CR)
	3.3.2.1 Cyclic Reduction with normalized diagonal (Norm-CR)

	3.3.3 Comparison of tridiagonal solver algorithms

	Chapter 4: Hardware Acceleration in Option Pricing and related work
	4.1 Introduction
	4.2 FPGA based option pricing accelerators
	4.2.1 Monte Carlo based works
	4.2.2 Trees based works
	4.2.3 Finite Differences based works
	4.2.3.1 Explicit Finite Differences (E-FD)
	4.2.3.2 Implicit or Crank-Nicolson Finite Differences (I-FD or CN-FD)

	4.3 FPGA and GPU based tridiagonal solvers
	4.4 Summary

	Chapter 5: Accuracy Analysis of Crank-Nicolson Finite Difference Method with Normalized-Cyclic Reduction as a Tridiagonal Solver for Option Pricing
	5.1 Introduction
	5.2 Error metrics
	5.3 First set of experiments
	5.3.1 Experiment 1: Which boundary conditions?
	5.3.1.1 Relative error (l2-norm) near strike price
	5.3.1.2 Relative error (l2-norm) of the solution vector

	5.3.2 Experiment 2: Which system size?
	5.3.2.1 Absolute error at strike price
	5.3.2.2 Relative error (l2-norm) of the solution vector

	5.3.3 Experiment 3: How many time steps?
	5.3.3.1 Payoff functions and vector error

	5.3.4 Experiment 4: Different parameters
	5.3.4.1 Increase of Smax = 500
	5.3.4.2 Increase of interest rate from 1% to 20%

	5.4 Arithmetic precision experiment with MPFR
	5.4.1 The MPFR Library
	5.4.1.1 Implementation of Crank-Nicolson scheme with MPFR

	5.4.2 Monte Carlo simulation with custom precision

	Chapter 6: Hardware Architectures and Design Decisions
	6.1 Introduction
	6.2 Modeling the Crank-Nicolson scheme
	6.2.1 Forward Phase
	6.2.2 Backward Phase
	6.2.3 Update Right Hand Side “e” Phase

	6.3 The first two architecture designs
	6.3.1 First architecture design
	6.3.1.1 Forward Phase
	6.3.1.2 Backward Phase
	6.3.1.3 Update Right Hand Side “e” Phase

	6.3.2 Second architecture design with custom 3-operand adder
	6.3.2.1 Forward Phase
	6.3.2.2 Backward Phase
	6.3.2.3 Update Right Hand Side “e” Phase

	6.4 The proposed architecture with fused multiply-adder operator
	6.4.1 Modeling design with FMA
	6.4.2 Proposed architecture with FMA
	6.4.3 Latency of the proposed architecture with FMA per CR phase
	6.4.4 Data Storage

	6.5 Summary and results

	Chapter 7: Conclusions and Future work

