
Technical University of Crete
School of Electrical and Computer Engineering

Collaboration Pattern Detection in Hedonic
Cooperative Games with Externalities

Diploma Thesis

Dimitrios Troullinos

Committee
Supervisor : Georgios Chalkiadakis, Associate Professor

Committee Member : Michail G. Lagoudakis, Associate Professor

Committee Member : Vasilis Samoladas, Associate Professor

Chania, September 2019

Πολυτεχνείο Κρήτης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ανίχνευση Μοτίβων Συνεργειών σε Ηδονικά

Συνεργατικά Παίγνια με Εξωτερικές Επιδράσεις

Διπλωματική Εργασία

Δημήτριος Τρουλλινός

Επιτροπή

Επιβλέπων : Γεώργιος Χαλκιαδάκης, Αναπληρωτής Καθηγητής

Μέλος Επιτροπής : Μιχαήλ Γ. Λαγουδάκης, Αναπληρωτής Καθηγητής

Μέλος Επιτροπής : Βασίλης Σαμολαδάς, Αναπληρωτής Καθηγητής

Χανιά, Σεπτέμβριος 2019

Abstract

Cooperative games model the formation of coalitions of rational agents that come
together to gain some form of utility which they would have otherwise been unable to
collect by acting alone. Hedonic games, then, constitute the class of cooperative games
that models agents with hedonic preferences, that is, agents who have preferences over
their very coalitional membership, i.e. the identities of others in their coalition. Thus,
an agent’s utility in such settings mirrors the satisfaction yielded from its assembled
coalition. Now, cooperative games with externalities, or in partition function form,
consider that agent utility is influenced by the partition of the agents space, i.e., the
set of all disjoint coalitions currently in place. Existing studies, however, have not so
far addressed hedonic games with externalities.

At the same time, uncertainty is prevalent in most realistic cooperative game
environments, and hence intra-agent collaboration under uncertainty is a topic widely
studied. However, uncertainty in hedonic game settings has received only limited
attention in the literature to date.

Against this background, in this diploma thesis we first extend the formal defini-
tion of two well-known classes of hedonic games, namely additively separable hedonic
games and boolean hedonic games, to partition function form. Then, we combine the
aforementioned paradigms, and focus on agents in hedonic games with externalities
who are unaware of their own preferences over partitions. We demonstrate how to
extract these hidden preferences by employing well-established supervised learning
methods—namely linear regression, linear regression with basis functions, and feed
forward neural networks—and adapting them to the problem at hand. In the process,
we make use of an evaluation metric specifically designed to evaluate the prediction
accuracy of machine learning methods used to infer the underlying hedonic prefer-
ences over partitions. In addition, we show how an agent can use Gaussian mixture
models to generate sets of potentially satisfactory partitions to propose in multi-agent
negotiations. Finally, we put forward two novel coalition formation protocols that
engage agents with hidden and conflicting preferences; and which are designed with
the aim of maximizing social welfare, without the presence of a centralized entity or
the ability to share information among agents.

Abstract in Greek

Τα συνεργατικά παίγνια μοντελοποιούν την δημιουργία συνασπισμών από ορθολογικούς πράκ-

τορες, οι οποίοι ενώνουν τις δυνάμεις τους για να απολαύσουν κάποιας μορφής ωφέλεια, η

οποία θα ήταν αδύνατον να αποκομιστεί με ατομική δράση. Τα ηδονικά παίγνια, από την άλλη,

είναι μια κατηγορία συνεργατικών παιγνίων που μοντελοποιεί πράκτορες με ηδονικές προτιμή-

σεις, δηλαδή πράκτορες που έχουν προτιμήσεις σχετικά με την ταυτότητα των υπόλοιπων στο

συνασπισμό τους. Ουσιαστικά λοιπόν, οι απολαβές ενός πράκτορα σε τέτοια περιβάλλοντα αν-

τικατοπτρίζουν την ικανοποίηση που αποκομίζει από τον σχηματισμένο συνασπισμό του. Τώρα,

τα συνεργατικά παίγνια με εξωτερικές επιδράσεις ή σε μορφή συνάρτησης διαμέρισης θεωρούν

ότι οι απολαβές επηρεάζονται από τη διαμέριση του χώρου των πρακτόρων, δηλαδή το ποιό

είναι το σύνολο των ήδη σχηματισμένων συνασπισμών. Μέχρι σήμερα, δεν υπάρχουν εργασίες

που να έχουν εξετάσει ηδονικά παίγνια με εξωτερικές επιδράσεις.

Την ίδια στιγμή, η αβεβαιότητα σε περιβάλλοντα μπορεί να παρατηρηθεί σε πολλά ρεαλισ-

τικά περιβάλλοντα συνεργατικών παιγνίων, και ως εκ τούτου η συνεργασία μεταξύ πρακτόρων

υπό αβεβαιότητα είναι ένα θέμα που έχει μελετηθεί ευρέως.

Υπό το πρίσμα αυτό, στην παρούσα Διπλωματική Εργασία αρχικά επεκτείνουμε τον τυπικό

ορισμό δύο πολύ γνωστών κλάσεων ηδονικών παιγνίων, συγκεκριμένα των additively separable
hedonic games και των boolean hedonic games, σε μορφή συνάρτησης διαμέρισης. Κατόπιν,
συνδυάζουμε τις προαναφερθείσες ιδέες και εστιάζουμε σε πράκτορες σε ηδονικά παιχνίδια

με εξωτερικές επιδράσεις που δεν έχουν επίγνωση των ίδιων προτιμήσεων. Δεικνύουμε πώς

να αποσπάσουμε αυτές τις κρυφές προτιμήσεις, χρησιμοποιώντας καθιερωμένες μεθόδους επι-

βλεπόμενης εκμάθησης—και συγκεκριμένα γραμμική παλινδρόμηση, γραμμική παλινδρόμηση με

συναρτήσεις βάσης, και προωθητικά νευρωνικά δίκτυα—αφού τις προσαρμόσουμε στο τρέχον

πρόβλημα. Επιπλέον, αξιοποιούμε μια μετρική ειδικά σχεδιασμένη για την αξιολόγηση της από-

δοσης μεθόδων μηχανικής μάθησης που προσπαθούν να εκμαιεύσουν τις υποβόσκουσες η-

δονικές προτιμήσεις σχετικά με διαμερίσεις. Στη συνέχεια, εξοπλίζουμε τους πράκτορες με την

ικανότητα να δημιουργούν νέες εν δυνάμει ικανοποιητικές για αυτούς διαμερίσεις με χρήση μίξης

Γκαουσιανών μοντέλων, με στόχο την πρόταση διαμερίσεων σε διαπραγματεύσεις πολλαπλών

πρακτόρων. Τέλος, προτείνουμε δύο καινοφανή πρωτόκολλα σχηματισμού συνασπισμών, που

εμπλέκουν πολλαπλούς πράκτορες με κρυφές και συγκρουόμενες προτιμήσεις, και τα οποία

επιχειρούν να μεγιστοποιήσουν την κοινωνική ευημερία, χωρίς την παρουσία μίας κεντρικής

οντότητας.

Acknowledgments

First and foremost, I would like to deeply thank my supervisor, Professor Georgios
Chalkiadakis, for all his guidance and trust throughout this thesis, and for motivating
me to continue my studies on topics related to Multi-Agent Systems. I also thank the
members of the Intelligent Systems Laboratory, Thalia and Antonis, for our fruitful
discussions, and especially Athina for her help and our excellent collaboration.

Second, I wish to thank the members of the committee, Professor Michael G.
Lagoudakis and Professor Vasilis Samoladas, for their helpful comments and time.

Moreover, I want to express my gratitude towards my dear friends and colleagues
Kostas, Michalis and Mike. We matured together, both academically and personally,
and had moments I will always remember. I also feel very grateful to Angeliki for
being by my side and always encouraging me, and to Spyros, Manolis and Chris for
our friendship and all the good times we spent together.

Last but not least, I wish to thank my family for their unconditional love and
support, not only throughout my studies, but also in every part of my whole life.
Without them, I would not be able to fulfill my ambition of studying on this field.

Contents

Abstract v

Abstract in Greek vii

Acknowledgments ix

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis Outline . 3

2 Theoretical Background 5
2.1 Non-Transferable Utility Games . 5

2.1.1 Non-Transferable Utility Games in Partition Function Form . . 6
2.2 Hedonic Games . 6

2.2.1 Additively Separable Hedonic Games 6
2.2.2 Boolean Hedonic Games . 7

2.3 Supervised Learning . 8
2.3.1 Linear Regression . 8
2.3.2 Linear Regression with Radial Basis Functions 9
2.3.3 Feed-Forward Neural Networks 10
2.3.4 Gradient Descent Optimization Algorithms 12

2.4 Hyper-Parameter Optimization . 16
2.4.1 Tree-structured Parzen Estimator Approach (TPE) 16

2.5 k-means Clustering . 17
2.6 Gaussian Mixture Models . 18

3 Our Approach 23
3.1 Hedonic Games in Partition Function Form 23

3.1.1 Complexity in Partition Function Form Settings 23
3.1.2 Additively separable hedonic games in partition function form 24
3.1.3 Boolean hedonic games in partition function form 27

3.2 Learning agent’s preferences . 28
3.2.1 Input encoding . 28

xii Contents

3.2.2 Output encoding - Regression Models 30
3.2.3 Evaluation of regression models 31
3.2.4 Hyper-Parameter Optimization with the QP metric 35

3.3 Generating Satisfactory Partitions via Gaussian Mixture Models . . . 36
3.3.1 Data Selection . 39
3.3.2 Number of Components . 40

3.4 Coalition Formation in Hedonic Games with Externalities 41
3.4.1 Coalition Formation Protocol with Single Deviations 41
3.4.2 Coalition Formation Protocol with Copeland’s Method 44
3.4.3 Coalition Formation with hidden preferences 46

4 Experimental Evaluation 49
4.1 Extracting a Preference Relation . 50
4.2 Generating new Partitions . 53
4.3 Evaluating the different Coalition Formation Protocols 57

5 Conclusions 69
5.1 Summary . 69
5.2 Future Work . 69

Bibliography 71

List of Figures

2.1 Linear Regression with an one-dimensional input vector x 9
2.2 Visual Representation of a Linear Regression Model 10
2.3 Illustration of Linear (with Basis Function) Regression Model 11
2.4 Illustration of a 2-layered Feed Forward Neural Network 12

3.1 Graph G(V,E) for Example 2 . 26
3.2 Visual representation of hyper-parameter optimization 36

4.1 Average QP for PFF-ASHG . 51
4.2 Average QP for PFF-BHG . 52
4.3 GMM Average Utility, PFF-ASHG, 10 agents, 50 samples 53
4.4 GMM Average Utility, PFF-ASHG, 10 agents, 100 samples 54
4.5 GMM Average Utility, PFF-ASHG, 10 agents, 200 samples 54
4.6 GMM Average Utility, PFF-ASHG, 20 agents, 200 samples 55
4.7 GMM Average Utility, PFF-BHG, 10 agents, 200 samples 55
4.8 GMM Average Utility, PFF-BHG, 20 agents, 50 samples 56
4.9 GMM Average Utility, PFF-BHG, 20 agents, 100 samples 56
4.10 GMM Average Utility, PFF-BHG, 20 agents, 200 samples 57
4.11 PFF-ASHG, CFP-CM protocol, 10 agents 59
4.12 PFF-ASHG, CFP-CD protocol, 10 agents 60
4.13 PFF-ASHG Average QP for 10 agents 60
4.14 PFF-BHG, CFP-CM protocol, 10 agents 61
4.15 PFF-BHG, CFP-CD protocol, 10 agents 61
4.16 PFF-BHG Average QP for 10 agents . 62
4.17 PFF-ASHG, CFP-CM protocol, 20 agents 62
4.18 PFF-ASHG, CFP-CD protocol, 20 agents 63
4.19 PFF-ASHG Average QP for 20 agents 63
4.20 PFF-BHG, CFP-CM protocol, 20 agents 64
4.21 PFF-BHG, CFP-CD protocol, 20 agents 64
4.22 PFF-BHG Average QP for 20 agents . 65
4.23 PFF-BHG-Modified, CFP-CM protocol, 10 agents 66
4.24 PFF-BHG-Modified, CFP-SD protocol, 10 agents 66
4.25 PFF-BHG-Modified, CFP-CM protocol, 10 agents with delayed learning 67

List of Abbreviations

ASHG Additively Separable Hedonic Game. 7, 23,
24

BHG Boolean Hedonic Game. 7, 23, 27

EM Expectation Maximization. 19–21

GMM Gaussian Mixture Model. 18, 19, 23, 36–38,
40, 41, 43, 44, 46, 47, 53, 57, 58, 65, 69, 70

LR Linear Regression. 9, 10, 12, 31, 50, 52
LR-RBF Linear Regression with Radial Basis Func-

tion. 9, 31, 50

NN Feed-Forward Neural Network. 10–12, 31, 35,
50, 58

PFF-ASHG Additively Separable Hedonic Game in Par-
tition Function Form. 25, 28, 30, 35, 39, 42,
50, 52, 53, 58, 65, 69, 70

PFF-BHG Boolean Hedonic Game in Partition Function
Form. 28, 30, 35, 39, 40, 42, 50, 52, 53, 58,
65, 69, 70

QP Qualitative Proximity. 32, 33, 35, 36, 47, 50,
52, 57, 58

TPE Tree-structured Parzen Estimator. 17, 35, 36,
40, 50, 57, 58

xvi List of Abbreviations

Chapter 1

Introduction

Hedonic games (Aziz, Savani, and Moulin, 2016) are a class of cooperative games that
model agents with preferences over the composition of their own coalition, specifically
the identities of other agents in the same group. In this context, agents receive
payoff that corresponds to the satisfaction gained by a formed coalition. This payoff
cannot be transferred, therefore hedonic games are a class of non transferable utility
games. Agents can be modelled with hedonic preferences in a plethora of real-life
applications, such as scheduling group activities (Darmann et al., 2012), task allocation
for a swarm of multiple agents (Jang, Shin, and Tsourdos, 2018), network partitioning
algorithms as cooperative games (Avrachenkov et al., 2018) among others. In this
thesis, we study hedonic games with externalities, i.e. games with hedonic preferences
affected by the composition of all coalitions. We are interested in agents in unknown
environments, that attempt to acquire knowledge over their underlying preferences
through interaction with others. We also consider challenging environments with
high complexity of preferences, where agents are not solely interested in their own
coalition.

1.1 Motivation

In cooperative game theory, existing studies on games with externalities, or games in
partition function form (Chalkiadakis, Elkind, and Wooldridge, 2011), (Thrall and
Lucas, 1963), where the valuation of a coalition depends on all formed coalitions
in a given set of agents N , do not consider hedonic game settings. To the best of
our knowledge, all studies on hedonic games so far, suggest that the utility an agent
i assigns to a coalition C depends only on the structure of C. Agents with such
preferences are affected by all synergies in a collaboration scheme, and examine
collaborations among other agents, even beyond their own coalition.

Potential applications can emerge in settings such as competitive teams (e.g.
a coding competition), where contestants can have preferences over a competitive

2 Chapter 1 Introduction

team, as they reckon that each team’s performance will depend on its composition.
Furthermore, we can consider settings where the various synergies in a set of players
affect each individual differently. For example, consider a class course that includes a
group project, and students are classified either as hard-working or lazy. Both types of
students want to collaborate with hard-working students for obvious reasons. Naturally,
for a group to be formed, both parties need to comply. Therefore, this will result in
groups either with multiple hard-working students, or comprised of a majority of lazy
students that could not collaborate. Evidently, this is not a game with externalities,
as each student cares only for its own group. However, a professor who wishes the
utmost participation and knows from experience that hard-working students motivate
the lazy ones, would rather prefer a more uniform distribution of both types into
groups. So, his preferences are hedonic with externalities, and also conflicting with
hard-working students. We can also consider settings such as task allocation strategies
among agents, in which they collaborate to perform various tasks and are interested in
achieving load balance across all different tasks, but can also have potentially different
objectives, or valuations of collaboration schemes.

In many realistic applications, complete information about hedonic preferences
is not available, and current studies have focused in hedonic games with incomplete
information. In Sliwinski and Zick, 2017, the authors examine the ability of agents to
learn their hidden preferences in various hedonic game classes, with a probabilistic
model (Probably Approximately Correct (PAC)) that approximates the “true” utility
function with a polynomial number of samples, and also attempt to find a stable
coalition structure. Additionally, in Georgara, Ntiniakou, and Chalkiadakis, 2018, the
authors propose the use of Probabilistic Topic Modeling (via the online version of
Latent Dirichlet Allocation) to capture an agent’s underlying utility function. However,
to the best of our knowledge, no studies exist on extracting underlying preferences
over partitions in hedonic games.

1.2 Contributions

Against this background, we combine the aforementioned paradigms, that of hedonic
games in partition function form and of uncertainty. This thesis focuses on agents
with hidden preferences over partitions. We attempt to acquire an approximation
of their utility function via supervised learning techniques, and equip them with
the ability to propose new partitions from past observations via generative models.
Additionally, we put forward two coalition formation protocols specifically designed
for partition function games, aiming to maximize the social welfare of participating
agents, considering that no centralized entity exists. In our approach, we:

1.3 Thesis Outline 3

• Extend two well-known hedonic games classes, namely additively separable hedonic
games and boolean hedonic games to partition function form
• Demonstrate how supervised learning methods can be utilized in order to extract

an agent’s hidden preferences for both game settings, propose an input encoding
of partitions and employ an evaluation metric, specifically designed for this
problem
• Show for the first time how an agent can employ a generative model in order to

propose new partitions. We examine Gaussian Mixture Models for generating
new partitions that attempt to satisfy an agent’s preferences
• Propose two coalition formation protocols that contain multiple agents with

hidden and conflicting preferences over partitions

Part of this work has already been published in ”Extracting Hidden Preferences
over Partitions in Hedonic Cooperative Games”, coauthored by Athina Georgara, Dim-
itrios Troullinos and Georgios Chalkiadakis, and published In Proc. of the 12th Interna-
tional Conference on Knowledge Science, Engineering, and Management (KSEM-2019),
Athens, Greece, August 2019.

1.3 Thesis Outline

In Chapter 2 we provide the necessary theoretical background regarding both hedonic
games and machine learning. Next, in Chapter 3 we formally define two hedonic games
classes in partition function form, and also discuss our approach regarding these new
game settings. Then, in Chapter 4 we demonstrate our experimental evaluations,
discuss results and various trade-offs that emerge. And finally, in Chapter 5 we
summarize our approach and consider potential future work.

Chapter 2

Theoretical Background

In this chapter we discuss the Theoretical Background of topics regarding this Thesis.
Discussion topics involve hedonic games, regression models, k-means & Gaussian
mixture models (unsupervised learning models) and hyper-parameter optimization.

2.1 Non-Transferable Utility Games

For a non-empty set of agents N = {1, · · · ,n} and a set of all possible coalitions,
i.e. all subsets of agents ∀S ⊆ N that collaborate for a task or a common goal, a
characteristic function game G assigns a utility (payoff) υ(S) for any coalition S of a
set of agents N . When the distribution of this payoff υ(S) to agents i, ∀i ∈ S, is not
determined, then we refer to transferable utility games. However, there are instances
where the utility is not transferable among agents who collaborate. Games with these
settings are referred to as non-transferable utility games (NTU games).

Instead of a characteristic function game, NTU games involve a set of choices
Λ = {λ,λ1, · · · } for each coalition S, and agents have preferences over these choices,
captured from preference relations (Chalkiadakis, Elkind, and Wooldridge, 2011).

Definition 2.1. (Chalkiadakis, Elkind, and Wooldridge, 2011) A preference relation
on Λ is a binary relation % ⊆ Λ × Λ, which is required to satisfy the following
properties:

1. Completeness: For every {λ,λ′} ⊆ Λ, we have λ % λ
′ or λ′ % λ;

2. Reflexivity: For every λ ∈ Λ, we have λ % λ; and
3. Transitivity: For every {λ1,λ2,λ3} ∈ Λ, if λ1 % λ2 and λ2 % λ3, then λ1 % λ3.

6 Chapter 2 Theoretical Background

2.1.1 Non-Transferable Utility Games in Partition Function Form

NTU-games can be extended to games in partition function form or games with
externalities, as there are settings where the choices Λ can be affected by the coalition
structure formed by all agents in N , that is, the set of all coalitions that form a
partition π of the game.

Definition 2.2 (NTU games in Partition Function Form (Saad et al., 2012)). A
coalitional game in partition function form (PFF) with non-transferable utility (NTU)
is defined by a pair 〈N ,V 〉, where N is the set of players, and V is a mapping such that
for every π ∈ Π and every coalition S ⊆ N , S ∈ π, V (S, π) is a closed convex subset
of R|S| that contains the payoff vector that players in S can achieve. Alternatively,
if we consider a payoff vector in Rn for every coalition S ⊆ N (let for any i 6∈ S the
corresponding payoff be 0 or −∞), then V can be viewed as a mapping V : EN → Rn

that assigns to n-vector of real numbers to each embedded coalition (S, π).

2.2 Hedonic Games

Hedonic games (Banerjee, Konishi, and Sönmez, 2001) are a subclass of NTU-games
that aim to capture an agent’s hedonic preferences over coalitions S. In this setting,
agents have preferences only over the identities of other agents they collaborate with,
and their preference relations reflect this.

Definition 2.3. (Aziz, Savani, and Moulin, 2016) Let N be a finite set of agents. A
coalition is a non-empty subset of N . Let Ni = {S ⊆ N : i ∈ S} be the set of all
coalitions (subsets of N) that include agent i ∈ N . A coalition structure is a partition
π of agents N into disjoint coalitions. A hedonic coalition formation game is a pair
(N ,%), where % is a preference profile that specifies for every agent i ∈ N a reflexive,
complete, and transitive binary relation %i on Ni. We call %i a preference relation.

2.2.1 Additively Separable Hedonic Games

Separability of preferences in cooperative game settings states that adding an agent
i in a particular coalition S, then S

′
= S ∪ {i} preference to S is dependent on the

preference for agent i.

Definition 2.4. (Separability (Aziz, Savani, and Moulin, 2016)) A game (N ,%) is
called separable if for every agent i ∈ N , coalition S ∈ Ni, and agent j not in S, we
have the following:
• S ∪ {j} �i S if and only if {i, j} �i {i};

2.2 Hedonic Games 7

• S ∪ {j} ≺i S if and only if {i, j} ≺i {i}; and
• S ∪ {j} ∼i S if and only if {i, j} ∼i {i}.

Additive separable preferences are a subclass of separable preferences. In an
Additively Separable Hedonic Game (ASHG) , an agent’s utility for a given coalition is
the sum of the utilities it assigns to other members of that coalition. Formally, each
agent i ∈ N assigns to each agent j ∈ N a value bji ∈ R and the utility of coalition S

is defined as υi(S) =
∑
j∈S b

j
i (Elkind and Wooldridge, 2009).

Utility of an agent i in a singleton coalition is υi({i}) = 0, ∀i ∈ N . For coalitions
S,T ∈ Ni, we have S %i T if and only if υi(S) ≥ υi(T). ASHGs are symmetric if
bji = bij , and non-symmetric otherwise (Aziz, Savani, and Moulin, 2016).

2.2.2 Boolean Hedonic Games

Boolean Hedonic Games (Aziz, Harrenstein, et al., 2016) (BHGs) are Hedonic Games
with dichotomous preferences. For agent i, any coalition S ⊆ N , where i ∈ S, is either
satisfactory or unsatisfactory. So, there are two disjoint sets N+

i and N−i , and S ∈ N+
i

if S is satisfactory, or S ∈ N−i otherwise. Agent i strictly prefers any coalition in N+
i

in relation to any coalition in N−i , and is indifferent between coalitions that belong to
the same set.

Example 1. Consider a BHG with 4 agents, whose dichotomous preferences are as
follows (coalitions separated by comma indicate that the agent is indifferent):

• agent 1: {1, 2}, {1, 3}, {1, 4} �1 {1}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}
• agent 2: {2, 1}, {2, 3}, {2, 4}, {2, 3, 4} �2 {2}, {2, 1, 3}, {2, 1, 4}, {2, 1, 3, 4}
• agent 3: {3}, {3, 1}, {3, 1, 2}, {3, 1, 4} �3 {3, 2, 4}, {3, 2}, {3, 4}, {3, 1, 2, 4}
• agent 4: {4}, {4, 1, 2, 3} �4 {4, 1}, {4, 2}, {4, 3}, {4, 1, 2}, {4, 1, 3}, {4, 2, 3}

We can observe that agent 1 strictly prefers coalitions of size 2 to any other
coalitions and agent 2 strictly prefers coalitions of size 2 or a coalition with players 3
and 4. Furthermore, agent 3 prefers either a singleton coalition or any coalition with
agent 1 (except the grand coalition) and agent 4 strictly prefers to either being a
singleton or be in the grand coalition.

Modelling of Boolean Preferences

Instead of providing a complete preference profile (as showcased in example 1) by
aggregating all possible coalitions with their pairwise relations, we can adopt a
compact representation, introduced by Aziz, Harrenstein, et al., 2016 and as described

8 Chapter 2 Theoretical Background

by Georgara, Ntiniakou, and Chalkiadakis, 2018. The proposed formula γi consists of
two subsets of agents, the ”must be included” set includedi, and ”must be excluded”
set excludedi. Agent i is satisfied with a coalition S when ∀j ∈ includedi, j ∈ S and
∀j ∈ excludedi, j /∈ S. Agent i can have multiple pairs of 〈includedi, excludedi〉, and
a coalition S ∈ N+

i if it satisfies at least one pair. Thus, the DNF 1 form of a formulae
with multiple γi’s is:

γi =
∨

l=1:L
γi,l = γi,1

∨
γi,2

∨
· · ·

∨
γi,L (2.1)

where l denotes the index of formula γi,l, L is the size of pairs, and:

γi,l = 〈includedi,l, excludedi,l〉 (2.2)

2.3 Supervised Learning

In the context of Machine Learning, Supervised Learning (SL) methods learn from
available labeled data. The goal of SL is to approximate the function that labels data.
It is called “supervised” because of the presence of the outcome variable to guide the
learning process (Hastie, Tibshirani, and Friedman, 2001). Examples such as labeling
an email as spam or not spam, in which the aim is to assign each input vector to
one of a finite number of discrete categories, are called classification problems. If the
desired output consists of one or more continuous variables, then the task is called
regression (Bishop, 2006).

2.3.1 Linear Regression

y(x, w) = w0 +
N∑
i=1

wixi (2.3)

This model is a linear function of the input variables xi, i = 1, ...,N , where
x = (x1, ..., xN)T . Weight parameters w = (w0, ...wN)T are estimated based on
training data. w0 is a bias parameter that allows for any fixed offset on target values.
y(xk, w) = yk is the approximation value for a given input xk, and attempts to
predict the target value tk. The model creates the same linear function for all training
data by adjusting its weight parameters.

1Disjunctive normal form, a logical formula consisting of a disjunction of one or more conjunctions, i.e.
an OR of multiple ANDs.

2.3 Supervised Learning 9

For an one-dimensional input vector x, and a set of samples containing (xk, tk),
figure 2.1 shows the approximated function y(x, w):

Figure 2.1: Linear Regression with an one-dimensional input vector x

Weights are estimated by applying the normal equations for the least squares
problem for LR: (Bishop, 2006):

W = (XTX)−1XT t (2.4)

• W : weights’ vector, with dimensions M × 1 (M = number of weight parameters)
• X : vector of xk values, with dimensions K ×M (K = number of samples)
• t : target values’ vector, with dimensions K × 1

2.3.2 Linear Regression with Radial Basis Functions

To overcome the problem of bias (assumption of linearity) that LR introduces, radial
basis functions can be used to approximate non-linear functions, resulting in Linear
Regression with Radial Basis Function (LR-RBF).

y(x, w) =
M−1∑
i=0

wiφi(x) (2.5)

10 Chapter 2 Theoretical Background

x2

x1

xN

Σ

w0

y

w1
w2

wN

Figure 2.2: Visual Representation of a Linear Regression Model

φ0(x) = 1 is defined in order to have w0 as a bias parameter, regardless of the form
of φ. M is the number of basis functions that the model uses. This model’s efficiency
depends on the form of the basis function and the size of M. The determination of the
set of the basis functions depends on the problem at hand.

Gaussian Basis Functions are frequently used, with the form:

φi(x) = exp
{
− ‖x−mi‖2

2σ2

}
(2.6)

where mi reflects the location of each φi in the N-dimensional space, and σ the
scale of each value, which is common for every φi. Now, each basis function φi, is
an exponential, related with a centre vector mi ∈ R‖X‖, and a standard deviation
σ ∈ R+. For computing the centre vector mi of each φi, clustering methods such as
k-means (discussed below, (2.5)) are used, while the standard deviation is usually the
same for all φi.

Weights estimation Equation (2.4) is modified for this model, in order to integrate
φi(x):

W = (ΦTΦ)−1ΦT t (2.7)

• Φ: vector of φi(xk) values, with dimensions K ×M (K = number of samples)

2.3.3 Feed-Forward Neural Networks

Thinking of a Feed Forward Neural Network (NN), one can easily interpret the
mathematical expression of one LR model as a simple NN. But the structure of a NN
can have more layers. The basic form of a neural network model is a series of layers

2.3 Supervised Learning 11

φ2

φ1

φM−1

x Σ

w0

y

w1
w2

wM−1

Figure 2.3: Illustration of Linear (with Basis Function) Regression Model

of computational units (Goodfellow, Bengio, and Courville, 2016). First we have M
linear combination of the inputs, which take the form:

aj = w
[1]
j0 +

N∑
i=1

w
[1]
ji xi (2.8)

where j = 1, ...,M and M is the number of combinations. i = 1, ...,N is the index
of vector x and w0 is the bias parameter. [1] indicates that these parameters are in the
first layer of the network. This equation is identical to Equation (2.3). An activation
function h (possibly non-linear) can be used for all aj . Outputs h(aj) are the input
for the next layer of computations:

bl = h2

(
w
[2]
j0 +

M∑
j=1

w
[2]
lj h1(aj)

)
(2.9)

where l = 1, ...,L is the number of output values and [2] indicates that these
parameters are in the second layer of the network. We can express the relationship
between input of the first layer and output of the second layer by combining Equations
(2.8),(2.9):

bl = h2

(
w
[2]
j0 +

M∑
j=1

w
[2]
lj h

(
w
[1]
j0 +

N∑
i=1

w
[1]
ji xi

))
(2.10)

For a 2-layered NN (1 hidden layer and 1 output layer), bl are the output values,
so: yl(x, w) = bl.

yl(x, w) = h2

(
w
[2]
j0 +

M∑
j=1

w
[2]
lj h1

(
w
[1]
j0 +

N∑
i=1

w
[1]
ji xi

))
(2.11)

12 Chapter 2 Theoretical Background

x2

x1

xN

Σ

Σ

Σ

h1

h1

h1

Σ

Σ

Σ

h2

h2

h2

y1

y2

yL

Figure 2.4: Illustration of a 2-layered Feed Forward Neural Network (1 hidden layer). Weights on the edges
and bias weights are not visible.

In essence, this structure is a combination of multiple LR models with non-linear
activation functions that can approximate a wide range of functions. Beyond two
layers, the same philosophy is extended for a much more complex network.

Activators of hidden layers hi need to be non-linear, since linear activators will
result in a network with capabilities equivalent to a LR model. Popular choices for
activator functions are:
• Sigmoid:

σ(x) =
1

1 + exp(−x)
(2.12)

• Rectified Linear Unit (ReLU):

ReLU(x) = max(0,x) (2.13)

• Hyperbolic tangent (tanh):

tanh(x) = 2σ(2x)− 1 (2.14)

NNs that serve as regression models have linear output activators (identity
activation function), as they approximate target values t ∈ Rd, whereas in classification
models, sigmoid or hyperbolic tangent functions are preferred.

When a NN is trained, its weights are actually “tuned” in order to approximate
the desired function. This task is not trivial, and NNs rely primarily on Gradient
Descent Optimization Algorithms for training.

2.3.4 Gradient Descent Optimization Algorithms

Gradient Descent (GD) is a way to minimize an objective function J(θ) with parameters
θ ∈ Rd by updating θ in the opposite direction of the gradient of the objective

2.3 Supervised Learning 13

function ∇θJ(θ). In all variants of GD, a parameter η is used as the learning rate, that
determines the size of the steps we make in each update to reach a (local) minimum
(Ruder, 2016).

Batch gradient descent

Batch gradient descent (BGD) computes parameters θ by calculating the gradient of
the cost function J(θ) for the entire training dataset.

θ = θ− η · ∇θJ(θ) (2.15)

This means that only one update of the parameters is performed. Although this
method is guaranteed to reach a (global or local, depending on the form of function)
minimum of J(θ), this computation can be very slow for a large dataset, and very
demanding if it cannot fit in main memory (Ruder, 2016). Furthermore, it cannot be
used for online training.

Stochastic gradient descent

Unlike BGD, stochastic gradient descent (SGD) performs an update of parameters θ
for each training sample (x(i), y(i)).

θ = θ− η · ∇θJ(θ;x(i), y(i)) (2.16)

SGD is much faster than BGD, as it calculates gradients for each sample, and
is suited for online training. Characteristic of SGD is that it fluctuates, i.e. does
not monotonically decrease the value of J(θ), and it can result in big changes in θ
(especially for large values of η). This can potentially be beneficial, as it might result
in a new and better local minima. However, fluctuation also makes convergence much
more difficult (Ruder, 2016).

Mini-batch gradient descent

Mini-batch gradient descent (MGD) combines the benefits of BGD and SGD by
performing updates for every mini-batch of n training samples.

θ = θ− η · ∇θJ(θ;x(i:i+n), y(i:i+n)) (2.17)

14 Chapter 2 Theoretical Background

MGD has more stable convergence than SGD, and computes gradients much faster
than BGD, as it requires a batch of fixed number of samples n for each update.

A big challenge for the aforementioned algorithms is the choice of learning rate
η. Performance is highly affected by this choice, and our data. Especially for sparse
data, choosing the same learning rate for all parameters might not be effective. Thus,
algorithms with adaptive learning rate have been developed and are discussed below.

Adaptive Gradient Algorithm (Adagrad)

Adagrad was introduced by Duchi, Hazan, and Singer, 2011 and adapts its learning
rate to the parameters, by performing larger updates for infrequent, and smaller
updates for frequent parameters (Ruder, 2016).

θt+1,i = θt,i −
η√

Gt,ii + ε
· ∇θtJ(θt,i) (2.18)

Adagrad updates at each time step t its parameters θ. Index i denotes the learning
rate for different parameters in each time step. Gt ∈ Rd×d is a diagonal matrix, and
each diagonal value Gt,ii is the sum of squares of gradients up to time step t. ε is a
smoothing term that avoids division by zero.

θt+1 = θt −
η√

Gt + ε
�∇θtJ(θt) (2.19)

Equation 2.19 is a vectorized form of Equation 2.18 for all i.

The main issue of Adagrad is that by adding the sum of squares of gradients for
Gt,ii, this value increases as t increases. This results in making the fraction η√

Gt,ii+ε

(the adaptive learning rate) smaller after each update. Thus, after many timesteps t,
new updates are extremely small. The following algorithm overcomes this weakness.

Root Mean Square Propagation (RMSProp)

RMSProp was introduced in a lecture by Hinton, Srivastava, and Swersky, n.d. and is
an unpublished method. It overcomes Adagrad’s drawback of monotonically decreasing
learning rate by defining the decaying average of squared gradients as:

E[g2]t = γE[g2]t−1 + (1− γ)g2
t (2.20)

2.3 Supervised Learning 15

where gt = ∇θtJ(θt). E[g2]t is the decaying average that is dependent only on the
previous one E[g2]t−1 and the current squared gradients g2

t , using a parameter γ as
momentum, that is suggested by Hinton to be set to 0.9 (Ruder, 2016).

Replacing Adagrad’s Gt with E[g2]t we obtain:

θt+1 = θt −
η√

E[g2]t + ε
�∇θtJ(θt) (2.21)

Adaptive Moment Estimation (Adam)

Adam optimization algorithm was introduced by Kingma and Ba, 2014 and attempts
to further improve upon the prior methods by computing the mean mt of gradients
with a decaying parameter β1, and the squared mean υt of gradients with a decaying
parameter β2.

mt = β1mt−1 + (1− β1)gt (2.22)

υt = β2υt−1 + (1− β2)g
2
t (2.23)

β parameters, ranging from 0 to 1, introduce bias to the above estimates due to
the recursive nature of Equations (2.22), (2.23). This leads to ignoring past gradients
as the distance from current timestep t increases. However, bias-correction is performed
to avoid this phenomenon.

m̂t =
mt

1− βt1
(2.24)

ût =
ut

1− βt2
(2.25)

Thus, Adam’s parameters’ update takes the form:

θt+1 = θt −
η√
υ̂t + ε

�∇θtJ(θt)m̂t (2.26)

16 Chapter 2 Theoretical Background

2.4 Hyper-Parameter Optimization

With Hyper-Parameter Optimization, we want to find the value xi that minimizes a
function f(x), i.e. argminx(f(x)). When f is computationally expensive, Sequential
Model-Based Global Optimization (SMBO) algorithms can be used (J. S. Bergstra
et al., 2011).

Algorithm 1 SMBO algorithm
1: function SMBO(f ,M0,T ,S). M0:initial model, T:timesteps and S:surrogate function
2: H ← ∅ . H:observations history
3: for t = 1 to T do . for every timestep
4: x∗ ← argminxS(x,Mt−1)
5: Evaluate f(x∗)
6: H ← H ∪ (x∗, f(x∗))
7: Fit a new model Mt to H
8: return H

In every iteration, SMBO chooses a x∗ based on a surrogate function or a model,
then evaluates it with f and stores the set (x∗, f(x∗)) to observation history H. The
final step before the next iteration is to create a new model based on H. As t increases,
Mt models become more accurate, which results to new values for x∗ that tend to
minimize f .

Knowing that evaluation of f for a single x∗ is computationally expensive, x∗ values
are obtained using a surrogate function or a model of f , and using observation history
H. Algorithms in (J. S. Bergstra et al., 2011) optimize the Expected Improvement
(EI), that is:

EIy∗(x) =
∫ ∞
−∞

max(y∗ − y, 0)pM (y|x)dy (2.27)

”Expected improvement is the expectation under some model M : X → RN that
f(x) will exceed (negatively) some threshold y∗.”(J. S. Bergstra et al., 2011)

2.4.1 Tree-structured Parzen Estimator Approach (TPE)

This approach has the advantage that it can be used in cases where our hyper-
parameters do not have a strict number of values, and when there are dependencies,
e.g. for a neural network that we choose the number of hidden layers and number of
nodes as a hyper-parameter, we first choose the number of layers and then the number
of nodes for each layer. Another example is when we want to compare different models

2.5 k-means Clustering 17

that might use a different set of hyper-parameters. The TPE algorithm instead of
modeling p(y|x), it models p(x|y) using two different densities:

p(x|y) =

l(x) if y < y∗

g(x) if y ≥ y∗
(2.28)

This means that l(x) is the distribution formed using observations x∗, where
f(x∗) < y∗ and g(x) is formed with observations that satisfy f(x∗) ≥ y∗. TPE has a
parameter γ = p(y < y∗) in order to choose y∗. Applying TPE to (2.27), we get:

EIy∗(x) =
γy∗l(x)− l(x)

∫ y∗
−∞ p(y)dy

γl(x) + (1− γ)g(x) ∝ (γ +
g(x)

l(x)
(1− γ))−1 (2.29)

To maximize the EI, we need to minimize the ratio g(x)
l(x) , i.e. the algorithm chooses

values of x that maximize l(x) and minimize g(x) in every iteration.

2.5 k-means Clustering

k-means is an Unsupervised Learning 2 method that creates a specified number of k
clusters from training data (unlabeled) and was first introduced by MacQueen et al.,
1967.

For a given dataset X = {x1, ..., xN} of N observations of a random variable x,
where each xn ∈ RD, D is the dimensionality of x, we want to partition this dataset
to a specified number of clusters K. Mean values µk ∈ RD, 1 ≤ k ≤ K are assigned
to corresponding clusters Ck, and they are calculated from the assigned data points
∀xn ∈ Ck. The objective function to be minimized is:

J =
N∑
n=1

K∑
k=1

rnk‖xn −µk‖2 (2.30)

Variable rnk ∈ {0, 1} is an indicator that describes in which cluster a data point
xn is assigned. If xn ∈ Ck, then rnk = 1, else rnk = 0. Equation (2.30) is the sum of
squares of the distances of each data point to its assigned vector µk (Bishop, 2006).

2Unsupervised Learning methods attempt to find patterns on unlabeled data and capture their internal
structure.

18 Chapter 2 Theoretical Background

The intention is to acquire values for rnk and µk, that is to compute the clusters Ck,
that minimize J (Bishop, 2006). For this optimization problem, an iterative algorithm
can be used, in which each iteration contains two successive steps, the Expectation
Step (E-step), and the Maximization Step (M-step). First, choose randomly µk values.
Then follow the E-step, M-step and repeat until convergence, i.e. no further changes
after update, or a maximum number of iterations is exceeded. Although convergence
is assured, as each update of variables reduces the value of J , it converges to a local
minimum of J , that might not be global.

• E-step: update rnk values from Equation (2.31), i.e. assign data points to clusters
• M-step: update µk values from Equation (2.32)

rnk =

1, if k = argminj‖xn −µk‖2

0, otherwise
(2.31)

µk =

∑
n rnkxn∑
n rnk

(2.32)

2.6 Gaussian Mixture Models

Gaussian Mixture Models (GMMs), introduced by McLachlan and Basford, 1988, can
be used either as a generative or clustering model. They can be viewed as an extension
of k-means clustering in the context of Unsupervised Learning. Every cluster generated
from GMMs, apart from the mean value mi, contains a covariance matrix Σi. This
allows for more flexible cluster shapes compared to k-means, i.e. can cluster data
with higher complexity more efficiently. One of the powerful attributes of the GMM is
its ability to form smooth approximations to arbitrarily shaped densities (Reynolds,
2009).

A GMM is a weighted sum of Gaussian component densities. They are commonly
used as a parametric model of the probability distribution of continuous measurements
or features in biometric systems. (Reynolds, 2009)

The Gaussian mixture distribution is defined with the form:

p(x) =
K∑
k=1

πkN (x|µk, Σk) (2.33)

2.6 Gaussian Mixture Models 19

where index k denotes each Gaussian component and the multivariate Gaussian
distribution takes the form:

N (x|µk, Σk) =
1

(2π)D/2
1

|Σk|1/2 exp
{
− 1

2(x−µk)
TΣ−1

k (x−µk)
}

(2.34)

Mixing coefficients πk correspond to probabilities of each Gaussian component k
and must satisfy both (2.35) and (2.36).

K∑
k=1

πk = 1 (2.35)

0 ≤ πk ≤ 1 (2.36)

γ(zk) is defined as the conditional probability p(zk = 1|x), where zk is the random
variable that denotes which Gaussian component is active. Therefore zk = {0, 1} and∑
zk = 1.

γ(zk) ≡ p(zk = 1|x) = p(zk = 1)p(zk = 1|x)∑
l p(zl = 1)p(x|zl = 1) =

πkN (x|µk, Σk)∑
l πlN (x|µl, Σl)

(2.37)

For a given dataset D = {x1, · · · , xn} and N = |D|, the log of the likelihood
function takes the form:

ln p(X|π, µ, Σ) =
N∑
n=1

ln
{ K∑
k=1

πkN (xn|µk, Σk)
}

(2.38)

Expectation Maximization for Gaussian Mixture Models

Expectation Maximization (EM) was introduced by Dempster, Laird, and Rubin, 1977
and applied to GMMs by G. Saari and Merlin, 1996.

In GMMs, for a given set of unlabeled data X, we want to maximize (2.38).
Parameters of (2.38) are µ, Σ and π arrays. When maximizing a differentiable function
f(x), we obtain the derivative df(x)

dx and set it to zero. Maximizing the log-likelihood
function, with respect to the µk values, we obtain:

µk =
1
Nk

N∑
n=1

γ(znk)xn (2.39)

20 Chapter 2 Theoretical Background

Using the conditional probability γ(znk) for each point xn, we obtain Nk, that
expresses the size of cluster k.

Nk =
N∑
n=1

γ(znk) (2.40)

Setting the derivative of 2.38 to zero with respect to Σk, we obtain:

Σk =
1
Nk

N∑
n=1

γk(xn −µk)(xn −µk)
T (2.41)

Finally, for the mixing coefficients πk, a Lagrange multiplier is used in order to
satisfy the constraint in 2.35.

ln p(X|π, µ, Σ) + λ
(K∑
k=1

πk − 1
)

(2.42)

We then maximize by setting the derivative of 2.38 to zero with respect to Σk.
Thus, we obtain:

πk =
Nk
N

(2.43)

These results (2.39), (2.41), (2.43) can be used for the iterative EM algorithm
to maximize (2.38). First, choose some initial values for all parameters (µ, Σ and π).
Then, repeat the following two steps until convergence (or a maximum number of
iterations).

• E-step (expectation step): Calculation of the posterior probabilities (2.37) for
every cluster k, using the assigned values of all parameters.
• M-step (maximization step): Re-estimate parameters (µ, Σ and π) from Equa-

tions (2.39), (2.41), (2.43), with the assigned values of parameters. Finally,
calculate the log-likelihood (2.38) and check for convergence (log-likelihood in-
crease is below a threshold e). After each iteration, it is certain that the value of
the log-likelihood will not decrease.

EM resembles a hill-climbing technique. It reaches a local maximum, and it is not
right to assume that this is the global maximum value. However, a global maximum
for log-likelihood does not necessarily provide us with a better model when taking
singularities into account. Singularities can occur when any Gaussian component k has

2.6 Gaussian Mixture Models 21

µk = xn (xn can be any point of the training set), Σk is a zero matrix and πk 6= 0. By
observing (2.34) and (2.38), one can see that the log-likelihood will tend to infinity. EM
avoids singularities, contrary to a simple maximum likelihood approach, as noted by
Bishop, 2006. The use of EM for mixture models instead of a gradient-based optimizer
is preferred due to the need for constraints in such models, as discussed in Murphy,
2012.

Chapter 3

Our Approach

In this chapter we present our approach for enabling collaboration pattern detection
in hedonic games with externalities. Topics include extending hedonic games in
partition function form for two particular classes, namely ASHGs and BHGs; encoding
partitions and utility for supervised learning; employing a novel metric for evaluating
approximations of preference relations; “auto-tuning” learning algorithms’ parameters
with hyper-parameter optimization; generating new partitions via GMMs and engaging
multiple agents to two coalition formation protocols.

3.1 Hedonic Games in Partition Function Form

We extend the formal definition of Hedonic Games to Partition Function Form (Geor-
gara, Troullinos, and Chalkiadakis, 2019). Essentially, the structure of all coalitions
affects each agent’s preferences.

Definition 3.1. A hedonic game (HG) in partition function form (PFF) (Georgara,
Troullinos, and Chalkiadakis, 2019) is defined by a pair 〈N ,%〉, where N is the set of
players, and %= {%π1 , ·,%πm}, with |Π| = m; and for all πj ∈ Π %πj= {%πj

1 , ·,%πj
n },

and each %
πj

i ∈ Ni ×Ni is a complete, reflexive and transitive preference relation
describing agent i’s preferences over coalitions it can participate in when πj is in place.

3.1.1 Complexity in Partition Function Form Settings

Now agents have preferences over partitions π, instead of their assembled coalition
Si ∈ π. The partition space Π (set of all possible partitions) is broad and grows
exponentially as the number of agents increases. For a non-empty set of agents
N = {ag1, ag2, · · · , agn}, the size of all possible partitions is measured by Bell
Numbers (Bell, 1934):

24 Chapter 3 Our Approach

Bn+1 =
n∑
k=0

(
n

k

)
Bk, B0 = B1 = 1 (3.1)

All possible coalitions for |N | agents are all the subsets of N (except the empty
set ∅), i.e. 2|N | − 1. For an agent i that has preferences only over the coalitions that
it belongs, then all possible coalitions that contain i are 2|N |−1, 1 so for 10 agents,
all possible coalitions are 29 = 512, and for 20 agents, all possible coalitions are
219 = 524288. By contrast, when agents have preferences over partitions, for 10 agents,
|Π|N |=10| = B10 = 115975, and for 20, |Π|N |=20| = 51724158235372. Considering an
agent who is completely unaware of its utility function, we assume an underlying
structure of this function that can be exploited via machine learning methods without
the need of a substantial proportion of partitions from Π.

3.1.2 Additively separable hedonic games in partition function form

Generalizing ASHGs to partition function form, each agent assigns a value to any
agent within each partition π ∈ Π, i.e, agent i assigns the value bji (π) to agent j when
partition π is formed. Thus, the utility of embedded coalition (S, π) is now defined as
vi(S, π) = ∑

j∈S b
j
i (π). As such, it is more natural to model ASHGs like NTU games

due to their properties. Therefore, there is a mapping V : EN → R such that for every
embedded coalition there is an n-vector of reals:

V (S, π) =

v1(S, π)
v2(S, π)

...
vn(S, π)

 =

∑
j∈S b

j
1(π)∑

j∈S b
j
2(π)...∑

j∈S b
j
n(π)

 (3.2)

In contrast to what is usual in Characteristic Function Games settings, some value
that agent i gets from the fact that S has been formed within π. Given this, each agent
forms a preference relation that refers to embedded coalitions (rather than coalitions).
This preference relation is as follows: agent i prefers embedded coalition (S, π) to
(T ,π′), (S, π) %i (T ,π′), where i ∈ S, i ∈ T , if and only if vi(S, π) ≥ vi(T ,π′), even
if S and T consist of exactly the same set of agents.

As discussed above 3.1.2, utility functions in ASHGs are dependant on bji ,∀i, j ∈ N
values. In a PFF setting, agent i ’s values need to depend not only on its coalition

1Agent i considers all possible coalitions with all other agents N \ i, |N \ i| = |N | − 1, so it considers
2|N |−1 − 1 possible coalitions, but i can also form a singleton coalition S = {i}. So, all possible combinations
that contain i are 2|N |−1.

3.1 Hedonic Games in Partition Function Form 25

Ni ∈ N , but on the whole partition π. Here, we suggest that the values bji are derived
from a weighted (positive weights) undirected graph, reminiscent of a social network,
that describes the “communication links” between the agents.

Therefore, we now consider these values as a function bji (π) of a partition π and
a graph g, containing the following three properties:

1. the distance between agent i and j; and
2. the distances between agent i and all coalitions in π; and
3. the distances between agent j and all coalitions in π.

with the form:

bji (π) = κi ·
1

distg(i, j)
+ λi ·

∑
S∈{π}

distg(i,S) + ξi ·
∑

S∈{π}

1
distg(j,S)

(3.3)

where distg(i, j) is the shortest distance between agent i and j in graph g,
calculated using Dijkstra’s algorithm2. distg(i,S),S ∈ N , i.e. distance between an
agent i and a coalition S in graph g is defined as follows:

distg(i,S) =
1
|S|

∑
j∈S

distg(i, j) (3.4)

This Equation (3.4) expresses the distance of an agent i from a coalition S as the
sum of distances from agents j,∀j ∈ S, divided by the size of coalition S.

Parameters κi,λi, ξi are unique for every agent i and they serve to differentiate
each agent’s preferences. They are generated from a uniform distribution κi,λi, ξi ∼
U(0, 10).

Example 2. Consider a PFF-ASHG game with 4 agents, i.e. N = {ag1, ag2, ag3, ag4}
and the graph G(V ,E) in Figure 3.1. For g = G(V ,E), we obtain the following:

• distg(1, 2) = 5
• distg(1, 3) = 6
• distg(1, 4) = 8
• distg(2, 3) = 3
• distg(2, 4) = 5
• distg(3, 4) = 2

Let:
2Evidently, distg(i, i) = 0, ∀i ∈ N .

26 Chapter 3 Our Approach

• κ1 = 5,λ1 = 2, ξ1 = 8
• κ2 = 10,λ2 = 0, ξ2 = 0
• κ3 = 7,λ3 = 4, ξ3 = 1
• κ4 = 2,λ4 = 8, ξ4 = 5

ag1 ag2

ag3 ag4

5

36

2

Figure 3.1: Graph G(V,E) for Example 2

Now consider a partition πk = {{ag1, ag3}, {ag2, ag4}}. Values bji are calculated
from Equation (3.3). For agent ag1:

υ1(S, πk) =
∑
j∈S

bj1(πk) = b31(πk)

= 5 · distg(1, 3) + 2 ·
∑

S∈{π}
distg(1,S) + 8 ·

∑
S∈{π}

1
distg(3,S)

= 5 · 6 + 2 · (5 + 8
2) + 8 · (2

3 + 2)

= 30 + 2 · 6.5 + 8 · 0.2 = 30 + 13 + 1.6 = 44.6

While the sum contains only agents from ag1’s coalition, bj1 values are dependant
on the structure of all coalitions. For πk,2 = {{ag1, ag3}, {ag2}{ag4}}, payoff υ1(S, πk)
will be different, as bj1 values will change according to Equation (3.3).

υ1(S, πk,2) =
∑
j∈S

bj1(πk,2) = b31(πk,2)

= 5 · distg(1, 3) + 2 ·
∑

S∈{π}
distg(1,S) + 8 ·

∑
S∈{π}

1
distg(3,S)

= 5 · 6 + 2 · (5 + 8) + 8 · (1
3 +

1
2)

= 30 + 2 · 13 + 8 · 0.83 = 30 + 26 + 6.64 = 62.64

3.1 Hedonic Games in Partition Function Form 27

3.1.3 Boolean hedonic games in partition function form

Boolean hedonic games provide a concise representation of hedonic games with di-
chotomous preference relations (Aziz, Harrenstein, et al., 2016). According to the
dichotomous preferences model, each agent i can partition Ni = {S ⊆ N \ {∅} : i ∈ S}
into two disjoint sets N+

i and N−i ; and i strictly prefers all coalitions in N+
i to those

in N−i , and is indifferent about coalitions in the same set. In boolean hedonic games,
each agent i, instead of explicitly enumerating the preference relation that leads to
dichotomous preferences, defines a logic formula γi that intuitively represents its goal
of being with preferred partners; and i is satisfied if its goal is achieved, or dissatisfied
otherwise. This formula can be of any form of a propositional logic language, but γi in
(Aziz, Harrenstein, et al., 2016) involves only propositional variables relative to agent
i, that is, denoting agents i wants or does not want to be grouped with.

Expanding BHGs to partition function form, the key idea is to partition the Π
space into two disjoint sets P+

i and P−i , i.e. into a set with the partitions agent i prefers,
and a set with the partitions i does not. In its generality, the use of propositional logic
formulae allows us to have a compact representation, but γi in (Aziz, Harrenstein, et al.,
2016) was meant to capture i’s preferences regarding the composition of its coalition
only. We extend into PFF by introducing a specific form for γi, which is as follows:
each γi is not restricted to variables relative to agent i, but consists of multiple pairs
〈Incli, Incli〉 connected via the logical connective or (∨). 〈Incli, Incli〉 is a pair of two
disjoint sets of subcoalitions. Now, each pair is interpreted as follows: Incli is a set of
“must-include” subsets of coalitions, while Incli is a set of “must-not-include” subsets
of coalitions. In words, the set Incli represents desirable patterns of collaborations
that a preferable to i partition must contain; while the set Incli indicates cooperation
among agents that must be excluded from a preferable partition. Thus, a partition π
satisfies the pair 〈Incli, Incli〉 if:

• ∀c ∈ Incli ∃S ∈ π : c ⊆ S; and
• ∀c ∈ Incli 6 ∃S ∈ π : c ⊆ S

that is, for every desirable pattern c ∈ Incli there is a coalition S ∈ π that contains c
(i.e. c ⊆ S); while for each unwanted pattern c ∈ Incli there is no coalition S ∈ π such
that c is contained in S. In general, a formula γi is of the form: γi = 〈Incli,1, Incli,1〉 ∨
〈Incli,2, Incli,2〉 ∨ · · · ∨ 〈Incli,p, Incli,p〉, and a partition π satisfies γi (we write π |= γi)
if there is a pair 〈Incli,j , Incli,j〉 such that π satisfies 〈Incli,j , Incli,j〉. Therefore, the
partition space Π is the disjoint union of the sets: P+

i = {π ∈ Π : π |= γi} and
P−i = {π ∈ Π : π 6|= γi}.

Example 3. Consider a BHG of a set of 7 agentsN = {ag1, ag2, ag3, ag4, ag5, ag6, ag7}

28 Chapter 3 Our Approach

in PFF settings, and partitions:

π1 = {{ag1, ag2}, {ag3, ag4, ag5}, {ag6, ag7}}
π2 = {{ag1, ag3}, {ag2, ag4}, {ag5, ag6, ag7}}

and ag1’s preferences as follows:

γ1 =
〈
{〈ag3, ag4〉, 〈ag6, ag7〉}, {〈ag5, ag7〉}

〉
∨
〈
{〈ag1, ag2〉}, {〈ag5, ag6〉}

〉

We observe through γ1 that ag1 is satisfied with a partition that:
• contains a subcoalition with agents ag3 & ag4, a subcoalition with agents ag6 &
ag7 and does not contain a subcoalition with agents ag5 & ag7 (γ1,1); or
• contains a subcoa*lition with agents ag1 & ag2 and does not contain a subcoali-

tion with agents ag5 & ag6 (γ1,2)
Thus, we conclude that π1 is satisfactory (via γ1,1), and π2 is not satisfactory,

meaning that π1 ∈ P+
1 and π2 ∈ P−1 .

Henceforth, PFF-BHGs will refer to boolean hedonic games in partition function
form and PFF-ASHGs to additively separable hedonic games in partition function
form.

3.2 Learning agent’s preferences

In this section we discuss how agents who are unaware of their own preferences can
learn to predict their own utility function via supervised learning models, and evaluate
them in a way that is fitting for our game settings.

3.2.1 Input encoding

In a hedonic game G in PFF, a given partition πk is encoded to an input vector xk,
where index k denotes a specific partition of our dataset. Our encoding uses (n2) input
variables3 (n is the number of agents), such that each variable contains information for
a specific pair of agents 〈agi, agj〉, regarding their coexistence in the same coalition,
and this information is depicted with boolean variables (integer values of 1 or 0). Input

3From (3.5), we can observe that the number of elements is
∑i=n−1

i=1 i = n·(n−1)
2 = n!

2!·(n−2)! = (n
2)

3.2 Learning agent’s preferences 29

size equals to the size of unordered pairs for all agents. Thus, a partition πk is encoded
to xk as follows.

xk = [1ag2∈π(ag1),1ag3∈π(ag1), · · · ,1agn∈π(ag1)︸ ︷︷ ︸
n−1 elements

,

1ag3∈π(ag2),1ag4∈π(ag2), · · · ,1agn∈π(ag2)︸ ︷︷ ︸
n−2 elements

,

...
1agi+1∈π(agi),1agi+2∈π(agi), · · · ,1agn∈π(agi)︸ ︷︷ ︸

n−i elements

,

...
1agn−1∈π(agn−2),1agn∈π(agn−2)︸ ︷︷ ︸

2 elements

,1agn∈π(agn−1)︸ ︷︷ ︸
1 element

]T (3.5)

where 1agj∈π(agi), for the pair (agi, agj), contains the value of 1 if agent j is in
i’s coalition, otherwise the corresponding value is 0.

We can argue that ∀πi, πj ∈ Π, i 6= j, where Π is the set of all possible partitions,
it holds true that their encoded inputs xi 6= xj 4. This property is essential, otherwise
our models could potentially perceive two different partitions as the same one. This
encoding of input xk is utilized in all game scenarios.

Example 4. Consider a game with 5 agents N = {ag1, ag2, ag3, ag4, ag5} and a
partition πk of this set of agents πk = {{ag1, ag3}, {ag2, ag4, ag5}}. From Equation
(3.5), the obtained xk will be

4From an input vector xk, the corresponding partition πk can be obtained via a function that creates
all correlations between agents, as specified in xk, thus generating the initial πk. Therefore, two different
partitions cannot have the same input vector.

30 Chapter 3 Our Approach

xk = [1ag2∈π(ag1),1ag3∈π(ag1),1ag4∈π(ag1),1ag5∈π(ag1)︸ ︷︷ ︸
4 elements

,

1ag3∈π(ag2),1ag4∈π(ag2),1ag5∈π(ag2)︸ ︷︷ ︸
3 elements

,

1ag4∈π(ag3),1ag5∈π(ag3)︸ ︷︷ ︸
2 elements

,1ag5∈π(ag4)︸ ︷︷ ︸
1element

]T

xk = [0 , 1 , 0 , 0 ,
0 , 1 , 1 ,
0 , 0 , 1]T

Starting from a partition with singletons, πk,o = {{ag1}, {ag2}, {ag3}, {ag4}, {ag5}},
we examine xk, i.e. we observe that ag3 ∈ π(ag1), ag4 ∈ π(ag2), ag5 ∈ π(ag2) and
ag5 ∈ π(ag4). In order to satisfy all conditions, we merge ag1’s and ag3’s coalitions, then
ag4’s and ag2’s coalitions and so forth. Finally, πk,o = {{ag1, ag3}{ag2, ag4, ag5}} = πk
is obtained.

3.2.2 Output encoding - Regression Models

Regression Models essentially attempt to approximate a function and a labeled dataset
is required for this task. In a setting where an agent agi attempts to acquire an
approximation of its utility function via a labeled dataset D = {〈x1, t1〉, · · · , 〈xd, td〉}
of data xk and labels tk, we specify that xk is the encoding for a given partition πk
and tk captures the corresponding utility of πk.

In PFF-ASHGs, a utility function is formally defined in 3.1.2, thus labels tk =
υi(S, πk), where agi ∈ S and S ∈ πk. Since S ∈ πk, we can simply denote the utility
function as υi(πk).

For agent agi in PFF-ASHG settings:

tk = υi(πk) (3.6)

In PFF-BHGs 3.1.3, a utility function is not formally defined, as a partition πk
belongs either in P+

i or in P−i (is satisfactory or not). Consequently, a utility value
can express the payoff (satisfaction) for πk. Considering that we will employ regression
models for both game settings, we define labels for dichotomous preferences as:

3.2 Learning agent’s preferences 31

tk =

+c if πk ∈ P+
i

−c if πk ∈ P−i
(3.7)

where c ∈ R is a constant, and the regression model will map a predicted real
value t̂k to +c if t̂k > 0 and to −c otherwise. This mapping procedure will be applied
for LR and LR-RBF.

For NNs, a sigmoid output activator is used, thus target values for tk,NN are:

tk,NN =

 1 if πk ∈ P+
i

0 if πk ∈ P−i
(3.8)

While from a given dataset D we obtain an approximation of the utility function
ûi, we implicitly extract an approximation of the hidden preference relation %ûi

i for
any pair of partitions 〈πl, πm〉 in the partition set Π by simply comparing ûi(πl) with
ûi(πm).

3.2.3 Evaluation of regression models

In order to evaluate our experimental results, it is essential to determine the nature of
the desirable outcomes. We work with hedonic games, a class of cooperative games
which, unlike others, possess some particular properties. Specifically, in such games,
we care little about the actual coalitions’ utilities, since our interest lies mainly on the
preference relation formed. The modelling of the games studied within the scope of
this thesis (i.e. the interpretation of a game instance into input data for a learning
model), allows us to extract the desired preferences. Thus, a question arises: do we
care to learn the best function ûi(π) that resembles the actual ui(π); or do we desire
a ûi(π) that encodes a preference relation best matching the actual one?

The norm in evaluation of such supervised models is the mean square error (MSE)
or root mean square error (RMSE) metrics, that depict the average squared distance
of a model’s predictions to the actual values.

MSE(ui, ûi) =
1
|D|

∑
π∈D

(
ui(π)− ûi(π)

)2
(3.9)

RMSE(ui, ûi) =
√

MSE (3.10)

In our case, we care more about finding a function that will correctly predict
pairwise relations between two partitions, and not the actual utility function. This
resulted in considering the following metric.

32 Chapter 3 Our Approach

Qualitative Proximity metric

When a utility function of an agent agi is “learned” based on training data, we
implicitly extract a preference relation %ûi

i , over partitions. Then we can measure
the percentage of equivalence between ui and ûi by counting the average of pairwise
relations that are identically encoded by ui and ûi. Thus, we utilize the Qualitative
Proximity (QP) (Georgara, Troullinos, and Chalkiadakis, 2019), which in fact could
be thought of as a variant of Kendall Tau metric (Kendall, 1948), as follows:

QP(ui, ûi) =
∑
π,π′∈D CHK

(
ui, ûi, π, π′

)
|D|(|D| − 1)/2 (3.11)

CHK
(
ui, ûi, π, π′

)
=

1 if
(
π %ui

i π′ ∧ π %ûi
i π′

)
0 otherwise

(3.12)

Essentially, QP performs all possible pairwise relations and calculates the propor-
tion of preferences that our modelled function predicted correctly.

While Equations (3.11),(3.12) suggest that all possible pairwise relations are
examined (D is our dataset), i.e. for d = |D| we have (d− 1)2 combinations (there are
d− 1 pairwise combinations for each partition π ∈ D). If (3.12) also asserts whether
(π′ %ui

i π ∧ π′ %ûi
i π), then we only observe a pair 〈πl, πm〉 once and we automatically

need to perform approximately half of these combination, specifically d(d−1)
2 (size of

unordered pairs). Hence the denominator in (3.11).

Example 5. Consider 3 partitions D = {π1, π2, π3} and an agent agi with the
following preference relation %ui

i .

π2 �i π1 �i π3

The extracted preference relation %ûi
i is as follows:

π1 �i π2 �i π3

Listing all unordered pairs with the corresponding results gained from 3.12 (also
checking for (π′ %ui

i π ∧ π′ %ûi
i π))

Thus, QP(ui, ûi) = 2
3 .

3.2 Learning agent’s preferences 33

〈π1,π2〉 CHK
(
ui, ûi,π1,π2

)
= 0

〈π1,π3〉 CHK
(
ui, ûi,π1,π3

)
= 1

〈π2,π3〉 CHK
(
ui, ûi,π2,π3

)
= 1

Table 3.1: Distance of predicted and actual preferences

Parallelization of the QP metric

The Algorithm (2) for computing the QP metric for a set of predicted and true labels
of partitions, is presented below.

Algorithm 2 Calculate the QP metric of predicted t̂ and true t labels for a set of partitions
1: procedure CalculateQP(t̂, t) . predicted labels: t̂, true labels: t
2: valid← 0 . valid counts the size of correct preference predictions
3: labelsSize← length(t)
4: for i in [1, labelsSize− 1] do
5: for j in [i+ 1, labelsSize] do
6: isCorrect← checkOrder(ˆt[i], ˆt[j], t[i], t[j])
7: if isCorrect then
8: valid← valid+ 1
9: QP ← valid/combinations(labelsSize)

10: return QP

As it can be observed, this algorithm has O(k2)5 time complexity, where k
denotes the size of partitions. Since no dependencies exist on the computation for each
unordered pair 〈i, j〉, this algorithm can be efficiently parallelized.

In order to avoid communication overhead, we choose to do coarse-grained par-
allelism (split the algorithm into large tasks). This approach raises the prospect of
load imbalance, meaning that not all tasks have the same load, thus resulting in poor
utilization of available computational resources. Merely dividing indices of the outer
for-loop 6 results in large load imbalance on different processes, as the computation
of the inner for-loop depends on the value of i. For larger i, inner for-loop has less
computations, due to the smaller range of j (j always starts from (i+ 1) until the
constant size of labels)

Algorithm 3 contains the task of each process, and Algorithm 4 is the parallel
version of the initial QP computation in Algorithm 2.

5size of all unordered pairs is k(k−1)
2 = 0.5k2 + 0.5k

6E.g. for 20 partitions and 2 processes, process 0 computes indices [0, 9] and process 1 computes indices
[10, 19]

34 Chapter 3 Our Approach

Aiming to overcome the load imbalance, createIndices function in Algorithm 4
attempts to evenly distribute the computations across processes, as demonstrated in
Table 3.2.

Algorithm 3 Process to calculate the QP metric of predicted t̂ and true t labels for a
specified subset of indices

1: procedure ProcessCalculateQP(t̂, t,indices,valid) . predicted labels: t̂, true
labels: t, subset of indices

2: labelsSize← length(t)
3: for i in indices do
4: for j in [i+ 1, labelsSize] do
5: isCorrect← checkOrder(ˆt[i], ˆt[j], t[i], t[j])
6: if isCorrect then
7: valid← valid+ 1

Algorithm 4 Parallel computation of QP metric of predicted t̂ and true t labels
1: procedure ParallelQP(t̂, t,numOfProcesses) . predicted labels: t̂, true labels: t,

number of processes: numOfProcesses
2: labelsSize← length(t)
3: indicesArray ← createIndices(labelsSize, numOfProcesses)
4: for p in numOfProcesses do
5: process[p]← NewProcess(ProcessCalculateQP , t̂, t, indicesArray[p], valid[p])
6: process[p].startProcess()
7: for p in numOfProcesses do
8: process[p].join()
9: QP ← sum(valid)/combinations(labelsSize)

10: return QP

Example 6. Consider K = 19 partitions and N = 3 processes, and the corresponding
distribution Table 3.3. Process 0 will compute indices indices0 = {1, 6, 7, 12, 13, 18}.
Summing all computations required for these indices, we obtain:

computations0 =
19∑

1+1
1 +

19∑
6+1

1 +
19∑

7+1
1 + · · ·+

19∑
18+1

1

= 18 + 13 + 12 + 7 + 6 + 1 = 57

Process 1 will compute indices1 = {2, 5, 8, 11, 14, 17} with computations1 =
17 + 14 + 11 + 8 + 5 + 2 = 57, and process 2, indices2 = {3, 4, 9, 10, 15, 16} with
computations2 = 16 + 15 + 10 + 9 + 4 + 3 = 57. Load balance across all processes is
apparent.

3.2 Learning agent’s preferences 35

Process 0 Process 1 · · · Process N − 2 Process N − 1
K − 1 K − 2 · · · K − (N − 1) K −N
K − 2N K − (2N − 1) · · · K − (N + 2) K − (N + 1)

K − (2N + 1) K − (2N + 2) · · · K − (3N − 1) K − (3N)
· · · · · · ·
· · · · · · ·
· · · · · · ·

Table 3.2: Distribution of indices in createIndices function for K partitions and N processes

Process 0 Process 1 Process 2
18 17 16
13 14 15
12 11 10
7 8 9
6 5 4
1 2 3

Table 3.3: Distribution of indices in createIndices function for 19 partitions and 3 processes

3.2.4 Hyper-Parameter Optimization with the QP metric

NNs are applied to different game scenarios, namely PFF-ASHGs and PFF-BHGs,
both with ranging number of agents and complexity of hidden preferences, so manual
fine tuning of hyper-parameters (number of hidden layers, size of each layer), or
exhaustive search algorithms create a significant bottleneck on speed performance.
Merely selecting a big network will overfit in cases where the underlying function
is not rather complex (and will take significantly more time to train). Moreover, an
adaptable model that can adjust its parameters to learn both simple and complicated
functions is apparently quite useful and desirable.

As discussed in 2.4.1, the TPE hyper-parameter optimization algorithm is fitting
for a NN with a dynamic size of hidden layers. This algorithm attempts iteratively
to minimize a loss function floss. In 3.2.3, we indicate that the QP metric best fits
the problem at hand. Consequently, QP best determines the loss of an approximated
function (or a preference relation). Thus, the selected loss function is:

floss =
1

QP (3.13)

since TPE seeks for the parameters that minimize this loss function, while QP
expresses the ratio of correct preference relations between the true and approximated
function.

36 Chapter 3 Our Approach

However, knowledge of the underlying function is absent, and agents compare true
labels from labeled data with predicted labels, in order to calculate the QP. Performing
an evaluation on the same data creates bias in the choices of TPE, as it evaluates on
the training set. Therefore, we perform k-fold cross validation (Refaeilzadeh, Tang,
and Liu, 2009) on our training dataset, that is, for a training dataset of size d, and
a choice of k, training data are split to training and testing k times ((k − d)/k for
training , and d/k for testing). In each iteration a different portion of data is selected
for testing. After evaluation (calculation of QPkfold) for all splits, we obtain an average
QPavg,kfold that is used for the TPE loss function.

Figure 3.2: Visual representation of hyper-parameter optimization

3.3 Generating Satisfactory Partitions via Gaussian Mixture
Models

With the use of a generative model, an agent can create new partitions to offer,
based on partitions observed in the past. Gaussian Mixture Models (GMMs) use
unlabeled data to construct (mixtures of) distributions we can then sample in order to
(subsequently, via Algorithm below) generate new data (i.e., partitions). Agents utilize
GMMs as generative models using a subset of observed partitions as training data. As
discussed in Section 3.2, partitions are converted to a 1-dimensional input array with

3.3 Generating Satisfactory Partitions via Gaussian Mixture Models 37

binary values 1 & 0, that express the correlation of two agents, i.e. whether they are
on the same coalition or not. Sampling from GMMs, we obtain an array that contains
real values, and thus cannot be converted to a partition. A function is created for this
task, that converts a generated sample to a partition.

As stated before, GMMs can also be used as generative models. After training,
a number k of Gaussian distributions are generated by unlabeled training data. A
random sample S can be drawn from this mixture of distributions, hence generating
a new value x. As discussed in Subsection 3.2.1, a partition is converted to a vector
containing binary values that express whether two agents are in the same coalition.
GMMs view training data as real values, thus the obtained vector S that is generated,
contains real values. Simply rounding values to one or zero is not suitable as it may
generate conflicts. For example, for 3 agents N = {ag1, ag2, ag3}, where a generated
sample S’s values are rounded, if Srounded specifies that ag1 ∈ π(ag2) and ag2 ∈ π(ag3),
but ag1 /∈ π(ag3) , then we have an obvious conflict, as agl and ag3 must be in the
same coalition if the first two expressions hold true.

We propose Algorithm 5 that takes S as input, and creates a partition. S’s values
are in the range [0, 1]. The key idea here is that each value expresses how likely it is
that agent i needs agent j and k to be in the same coalition or not. Values close to
1 indicate that agent i needs the corresponding agents in the same coalition, while
values close to 0 show the opposite. Thus, the first step is to order correlation values
in descending order and split them between correlations that agent i “desires” and
correlations that agent i does not7. The second step is to start from the partition
that contains only singletons, and then modify this partition according to the S array.
Iterating the desirable correlations in descending order, for a desirable correlation
〈agj , agk〉, the agent attempts to merge two coalitions C1 and C2, where agj ∈ C1,
agk ∈ C2. This merging will be realised only if no pair of agents 〈agl, agm〉, where
agl ∈ C1, agm ∈ C2 is in the undesirable list. This ensures that there will be no
subcoalitions of pairs that agent i does not want, according to S vector. At the end of
this process, a partition πg is generated from S.

Example 7. Consider a PFF-HG with 4 agents {ag1, ag2, ag3, ag4}. Input samples
are x ∈ R6, as size of input for 4 agents is 3 + 2 + 1 = 6. From Equation (3.5), we
can observe that every sample xk has information about the correlation between two
agents in partition πk. For 4 agents, we know from Subsection 3.2.1 that the input
will take the form:

xk = [〈ag1, ag2〉, 〈ag1, ag3〉, 〈ag1, ag4〉, 〈ag2, ag3〉, 〈ag2, ag4〉, 〈ag3, ag4〉]T (3.14)

For example, if xk = [1, 0, 0, 1, 0, 1, 0]T , then the corresponding correlations of

7If input value is Sl > 0.5, then the correlation of agents is considered desirable, else undesirable

38 Chapter 3 Our Approach

Algorithm 5 Convert a generated sample S to a partition πg

1: procedure convertSampleToPartition(S, agent,N) . N = number of agents
2: desirable,undesirable← sampleToPriorityList(S, agent,N) .
desirable,undesirable contain pairs < agj , agk > of agents

3: πg ← πsingletons . πsingletons =
{
{ag1}, {ag2}, ..., {agN}

}
4: for {aga, agb} in desirable do
5: coalitiona ← findAgentCoalition(aga,πg)
6: coalitionb ← findAgentCoalition(agb,πg)
7: if canBeMerged(coalitiona, coalitionb,undesirable) then
8: πg ← mergeCoalitions(coalitiona, coalitionb,πg)

9: return πg

agents that exist in πk are 〈ag1, ag2〉, 〈ag1, ag4〉, 〈ag2, ag4〉. So, the encoded partition
had the form πk = {{ag1, ag2, ag4}, {ag3}}.

After training a GMM with a number of samples xk, for agent i, we can sample
from the model, thus obtaining a generated sample Sigen:

Sigen = [0.98, 0.81, 0.42, 0.04, 0.51, 0.68]T (3.15)

We now show step by step how our algorithm works. From Sigen, two lists are
created, a desirable (list of correlations with values Sigen,l > 0.5, in descending order)
and undesirable (list of correlations with values Sigen, ≤ 0.5, without specified ordering)
list, with the values:

desirable = [〈ag1, ag2〉, 〈ag1, ag3〉, 〈ag3, ag4〉, 〈ag2, ag4〉]T (3.16)

and
undesirable = [〈ag1, ag4〉, 〈ag2, ag3〉]T (3.17)

We always start with a singleton partition πg = {{ag1}, {ag2}, {ag3}, {ag4}}, and
then iterate sequentially for all sets in desirable list.

• For 〈ag1, ag2〉, no conflicts will occur by merging coalitions that contain ag1 and
ag2, so, new partition is now πg =

{
{ag1, ag2}, {ag3}, {ag4}}

}
.

• For 〈ag1, ag3〉, if we merge coalitions containing ag1 and ag3, our new partition will
contain coalition {ag1, ag2, ag3}, but undesirable list contains the subcoalition
〈ag2, ag3〉, thus creating a conflict. So, partition πg will remain as is in this
iteration.

3.3 Generating Satisfactory Partitions via Gaussian Mixture Models 39

• For 〈ag3, ag4〉, if we merge coalitions containing ag3 and ag4, our new partition
will contain coalition {ag3, ag4}, thus creating no conflict. So, partition πg will
take the form: πg =

{
{ag1, ag2}, {ag3, ag4}

}
.

• For 〈ag2, ag4〉, if we merge the corresponding coalition, new partition will be
the grand coaliition, that creates conflicts for both sets of undesirable, thus not
updating πg.

Finally, the new partition obtained from this process is:

πg =
{
{ag1, ag2}, {ag3, ag4}

}
(3.18)

Note that the order of sets in desirable will affect πg, as different conflicts will
occur from merging the same coalitions in a different order.

3.3.1 Data Selection

For PFF-BHGs, observed partitions that belong to P+
i are selected as training data.

For PFF-ASHGs, preferences are not dichotomous, and a utility threshold rt needs to
exist that defines “good” partitions. This threshold is a real value in the range [0, 1].
For a given partition’s utility uk, the following inequality needs to be true in order to
add it to training data:

rt <=
uk − umin
umax − umin

(3.19)

where:

umin = min
∀uk∈Ud

(uk),umax = max
∀uk∈Ud

(uk) (3.20)

Ud is the set of all utilities from observed partitions.

This can potentially result in too few samples for training. A greater number
of samples that contain a small subset of partition below rt is better, when few
labeled data are available. As a result, a minimum number of samples is an essential
requirement, even if for some partition this inequality does not hold true.

40 Chapter 3 Our Approach

3.3.2 Number of Components

GMMs have as a parameter the number of components, i.e. the number of Gaussian
Distributions (or the number of clusters). For a small number of components, generated
partitions are very likely to be unobserved, and their true utility is not likely to be
in the desired range (primarily in PFF-BHGs); while for a very large number of
components, the opposite is true. However, in the case that we gravitate towards
exploitation in a protocol by which someone makes proposals, generating already
observed partitions is not a drawback.

Three different metrics are examined in order to determine the number of compo-
nents.

• Akaike information criterion (AIC) (Akaike, 1974):

AIC = −2(loglikelihood) + 2K (3.21)

where K is the number of input parameters
• Bayesian information criterion (BIC) (Schwarz et al., 1978):

BIC = −2(loglikelihood) + ln(n) ·K (3.22)

where K is the number of input parameters and n the number of samples
• Silhouette (SIL) (Rousseeuw, 1987):

SIL =
1
M

M−1∑
i=0

b(i)− a(i)
max{a(i), b(i)} (3.23)

a(i) =
1

|Ci| − 1
∑

j∈Ci,j 6=i
d(i, j) (3.24)

b(i) = mini6=j
1
|Ci|

∑
j∈Ci

d(i, j) (3.25)

where a(i) is the average distance of a data point i ∈ Ci, from all other data
points in cluster Ci. b(i) is the minimum average distance of a data point i ∈ Ci
from other clusters Cj , j 6= i.

For a given metric value mGMM (c), where c is the number of components, we
can benefit from the TPE algorithm, and avoid an exhaustive search for finding the
appropriate c, by using the loss function floss =

1
mGMM (c) .

Ideally, for an agent i, its GMM model will generate partitions that satisfy the
following two properties.

3.4 Coalition Formation in Hedonic Games with Externalities 41

• agi’s utility for its generated partitions πg is in the desired values range (as
discussed in 3.3.1); and
• πg are unobserved, i.e. agi has not yet observed the generated partition.

The first property is self-evident as agents want to offer partitions that satisfy
themselves. Second property exists considering that we want to use GMMs as generative
models. If obtained partitions are already observed, then GMMs are unnecessary, as a
simple random selection of observed partitions would be adequate and equivalent to
our method.

3.4 Coalition Formation in Hedonic Games with Externalities

In this section we discuss how multiple agents with conflicting preferences can col-
laborate by employing the supervised & unsupervised methods discussed above. Two
different coalition formation approaches are discussed, with the purpose of discovering
partitions that maximize the social welfare. The motivation behind our approaches is
to construct a general protocol that can be applied to any game settings, which can
be modelled as one of the two considered classes of hedonic games with externalities.
Thus, our formation protocols are generic, as they are not tied to a specific application
domain. Literature on formation protocols in hedonic games does not address games
with externalities, as existing approaches do not consider agents that are interested in
the structure of all coalitions, as seen in (Taywade, Goldsmith, and Harrison, 2019)
and (Janovsky and Deloach, 2016) among others.

Since agents are affected by all coalitions on a partition, we consider it essential
that agents should affect the structure of all coalitions. This led us to approach this
problem as a negotiation game, where agents create offers (partitions of all participating
agents) and vote on them. Offers can be generated via GMMs as in Section 3.3 and
agents can vote on partitions based on their preference profile, that can be obtained
by a regression model (Section 3.2).

3.4.1 Coalition Formation Protocol with Single Deviations

The aforementioned approach regarding an agent’s ability to learn a function that
approximates the true utility of any partition, and the use of GMMs to create partitions
is utilized in the following coalition formation protocol (CFP-SD). This protocol is
created with the purpose of combining each agent’s hidden preferences and form
coalitions that maximize the social welfare (SW), where SW for a given partition πk
is the sum of utilities of all agents for πk.

42 Chapter 3 Our Approach

SW(πk) =
N−1∑
i=0

υi(πk) (3.26)

The SW of a partition πk in Boolean Hedonic Games reflects the number of agents
who consider their coalition satisfactory (Si ∈ N+

i), that is SW = |{i ∈ N : πk(i) ∈
N+
i }|8 (Aziz, Harrenstein, et al., 2016). The same philosophy can be extended to

PFF-BHGs, considering partition preferences instead of coalitional preferences, i.e.
SW = |{i ∈ N : πk ∈ P+

i }|. Hence the reason we choose the utility function as defined
in 3.27 for PFF-BHGs. In PFF-ASHGs, we could choose the utility function as defined
in 3.1.2, but agents do not have the same utility range. Thus, a sum of these utilities
would not be equally representative of all agents, as agents with wider values’ ranges
would influence SW more than agents with narrower ranges. Therefore, we define a
normalized utility function for PFF-ASHGs in order to overcome this effect.

υi,BHG(πk) =

 1 if πk ∈ P+
i

0 if πk ∈ P−i
(3.27)

υi,ASHG(πk) =
υi(πk)−minobs(υi)

maxobs(υi)−minobs(υi)
(3.28)

where minobs(υi), maxobs(υi) are the minimum and maximum utility value that
agent i has observed.

As discussed, our game settings include agents with conflicting preferences, thus
the same set of coalitions will satisfy each agent differently. In this protocol, all agents
are negotiating in each iteration and are arranged in a circular layout, such that
in iteration t, agent agt(modn) (n:number of agents) starts negotiation by offering a
partition π. Then, the next agent (agt+1(modn)) modifies πoffer to π∗offer, and negotiating
partition πoffer is updated to π∗offer only if:

n−1∑
i=0

choice(agi, π∗offer, πoffer) > 0 (3.29)

where:

8πk(i) = Si: coalition of πk that contains agent i

3.4 Coalition Formation in Hedonic Games with Externalities 43

choice(agi, π∗offer, πoffer) =

+1 if π∗offer �i πoffer
−1 if πoffer �i π∗offer
0 if π∗offer ∼i πoffer

(3.30)

This procedure is performed for each agent, until agent agt+n−1(modn). Thus, each
agent can potentially change the resulting partition according to its preferences.

The initial partition πoffer in every iteration is derived by the GMM of the
corresponding agent. Then, agents form counter-proposals π∗offer based on πoffer, aiming
to improve their own satisfaction by modifying the structure of π to an extend.
Essentially, each agent takes πoffer as an input, examines all possible single deviations
9, and selects the partition that best satisfies its preferences according to its regression
model, i.e. it chooses the partition with the highest utility.

Example 8. Consider 4 agents and a partition π = {{ag1, ag4}, {ag2}, {ag3}}. All
possible single deviations are
• For agent ag1

{{ag1}, {ag4}, {ag2}, {ag3}}
{{ag4}, {ag1, ag2}, {ag3}}
{{ag4}, {ag2}, {ag1, ag3}}

• For agent ag2

{{ag1, ag2, ag4}, {ag3}}
{{ag1, ag4}, {ag2, ag3}}

• For agent ag3

{{ag1, ag3, ag4}, {ag2}}
{{ag1, ag4}, {ag2, ag3}}

• For agent ag4

{{ag1}, {ag2}, {ag3}, {ag4}}
{{ag1}, {ag2, ag4}, {ag3}}
{{ag1}, {ag2}, {ag3, ag4}}

Note that agents examine single deviations not only for themselves, as we focus
on games with externalities.

9For N agents, all possible single deviations have Worst-case time complexity of O(N2) when partition
contains only singletons, i.e. π = {{ag1}, {ag2}, · · · , {agN}} and Best-case time complexity of Ω(N) when
partition is the grand coalition π = {{ag1, ag2, · · · , agN}}.

44 Chapter 3 Our Approach

By performing a modest modification, it is less likely to affect a substantial number
of agents. Using the criterion for update from Equation (3.29), we know that the
majority of agents prefer π∗offer to πoffer. So, when an update is performed, we move
towards partitions that satisfy more agents. In this sense, we attempt to greedily
improve the SW of the initial partition πoffer without a centralized entity that has
information about the utility of all agents. This approach is demonstrated in the
following example.

Example 9. Consider 4 agents N = {ag1, ag2, ag3, ag4} in the above-mentioned
protocol. At the first iteration we start from agent ag1, who proposes a partition
πoffer,1 from its own GMM model, which is the current candidate, thus πoffer = πoffer,1.

• Then ag2 offers a counter proposal with partition π∗offer,2, and all agents have to
choose between πoffer and π∗offer,2. Let:

n−1∑
i=0

choice(agi, π∗offer,2, πoffer) = 1

Now the proposed partition πoffer is updated to π∗offer,2.
• Agent ag3 now proposes partition π∗offer,3, but:

n−1∑
i=0

choice(agi, π∗offer,3, πoffer) = −2

thus resulting in no change in πoffer.
• Finally, ag4 offers partition π∗offer,4, and

n−1∑
i=0

choice(agi, π∗offer,4, πoffer) = 3

thus updating πoffer to π∗offer,4.

The first iteration is complete and partition πoffer is formed. In the next iteration,
the same process is performed, but now ag2 proposes the first offer.

3.4.2 Coalition Formation Protocol with Copeland’s Method

We now view formation under a social choice theory (Brandt et al., 2016) perspec-
tive, and propose an alternative coalition formation protocol that makes use of the
Copeland’s Method (G. Saari and Merlin, 1996) on offering partitions (CFP-CM). This
method allows agents with pairwise preferences to select a partition that satisfies most
agents.

3.4 Coalition Formation in Hedonic Games with Externalities 45

Condorcet Criterion

In environments with multiple agents and multiple choices (more than two), the
Condorcet Winner is the choice that defeats all other candidate choices in pairwise
elections, by gaining a majority of votes from agents. While a Condorcet Winner does
not always exist, Copeland’s Method serves as a voting rule that satisfies the Condorcet
Criterion; that is, when a Condorcet Winner exists, it will be the prevailing choice of
Copeland’s Method (Procaccia, 2008).

Copeland’s Method

The Copeland’s Method voting rule chooses the candidate who beats the highest
number of other candidates in pairwise elections (Procaccia, 2008). In this method,
each pair of candidates is compared, and all agents vote to determine which of the
two is more preferred. The winner of each pair earns 1 point. In case of a tie, both
candidates earn half a point. Finally, when all pairwise comparisons are performed,
the winner candidate is the one with the highest number of points (Lippman and
College, 2013).
Example 10. Consider Table 3.4, with 3 choices {a, b, c} and 4 players {1, 2, 3, 4}.

Players: 1 2 3 4
1st choice b a b c

2nd choice c b c a

3rd choice a c a b

Table 3.4: Ranking of choices for 4 players

Comparing all pairs of choices {a, b, c}:
• 〈a, b〉: 2 out of 4 players prefer choice a over b, so both a and b earn half a point.
• 〈a, c〉: 3 out of 4 players prefer c over a, so c earns a point.
• 〈b, c〉: 3 out of 4 players vote for choice b over c, resulting in 1 point for b.
Overall, choice a received 0.5 points, choice b received 1.5 points and choice c

received 1 point. Thus, choice b is the winner, based on this voting rule.

According to Copeland’s Method, scores are assigned to partitions as follows. In a
pairwise relation between πm and πn, score snm is assigned for πm, where:

snm =

1 if πm � πn
1
2 if πm ∼ πn

0 if πn � πm

(3.31)

46 Chapter 3 Our Approach

Example 11. Consider an example of 5 agents N = {ag1, ag2, ag3, ag4, ag5}, a set of
4 partitions ΠCM = {π1, π2, π3, π4} and the following preference profiles.

Agent Preference Profile
ag1 π1 �1 π3 ∼1 π2 �1 π4
ag2 π2 �2 π3 �2 π4 �2 π1
ag3 π1 �3 π4 �3 π2 �3 π3
ag4 π2 �4 π1 �4 π3 �4 π4
ag5 π3 �5 π2 �5 π1 �5 π4

Below is a list of all pairwise comparisons and their scores based on each agent’s
preferences.

Pairwise Comparisons Score Winner
π1 − π2 2− 3 π2
π1 − π3 3− 2 π1
π1 − π4 4− 1 π1
π2 − π3 2.5− 2.5 tie
π2 − π4 4− 1 π2
π3 − π4 4− 1 π3

The final score of each partition is: π1 = 2 points, π2 = 2.5 points, π3 = 1.5 point
and π4 = 0 points. Thus, πCM = π2 is the chosen partition.

With Copeland’s Method, our agents are now able to select the best partition
from a set of partitions ΠCM . This set will contain generated partitions from GMMs.
Each agent is requested to offer a number of partitions q, in order to create the set
ΠCM of N · q offered partitions from all agents. Then, agents vote on all partitions of
this set, except their own, and the best partition is the one πCM with the best score,
as demonstrated in Example 11. Finally, agents collaborate and form the coalitions of
πCM . This process is repeated for a specified number of iterations.

3.4.3 Coalition Formation with hidden preferences

Agents that participate in both protocols need to collect labeled data in order to
employ a regression model that extracts their utility function, since they are unaware
of their preferences. Thus, agents offer and select partitions randomly when they
are uncertain. This randomness serves the learning process, as it provides a more
distributed representation of data. Each agent i learns from data, and considers itself

3.4 Coalition Formation in Hedonic Games with Externalities 47

aware of its preferences when it reaches a confidence level, that is when QP exceeds a
threshold QPthreshold.

After training a regression model, each agent initially continues to act randomly,
but also performs predictions with its approximated function. When it retrains its
model on new data, it also calculates the QP between predicted and observed labels.
Once QP exceeds this threshold (evaluated on the last 2 · Batch (see Table 4.6)
partitions observed), then this agent participates by generating partitions from a
GMM model when required by the protocol, and also by evaluating and voting on
partitions via its approximated preference relation %ûi

i . Thus, our agents initially act
randomly in both formation protocols, until they are certain about their approximated
utility function.

Chapter 4

Experimental Evaluation

In this chapter we conduct systematic evaluation of our approach, analyze and compare
the performance of our methods.

LR models, k-means and GMM implementations were derived from the scikit-learn
library (Pedregosa et al., 2011), while NNs and their optimization algorithms from
the tensorflow library (Mart́ın Abadi et al., 2015). Hyper-parameter optimization for
our models was achieved through the hyperopt library (J. Bergstra, Yamins, and Cox,
2013). In Table 4.1 we provide a table with our parameter choices and ranges across
all experiments.

n Graph Formulae
κ,λ, ξ |edges| edgeweight #〈Incli, Incli〉/agent #agents/〈Incli, Incli〉

5 ∼ U(0, 10) ∼ U(4, 10) U(1, 5) U(2, 3) U(1, 4)
10 ∼ U(0, 10) ∼ U(9, 45) U(1, 5) U(4, 7) U(4, 6)
20 ∼ U(0, 10) ∼ U(19, 190) U(1, 5) U(9, 11) U(5, 7)
50 ∼ U(0, 10) ∼ U(49, 1225) U(1, 5) U(12, 15) U(8, 12)

Table 4.1: Game environment parameters

Randomness of Generated Game Parameters

Random partitions are generated by the following algorithm 6. Starting from an empty
partition P and a set of available agents N, coalitions S are formed until all agents
belong in the partition scheme. The process initiates by selecting randomly the size s
of S, and then sampling randomly s agents from the available agents, thus creating
S. Then, the available agents’ set is updated, and new coalition is now part of the
generated partition P. This procedure is repeated until the set of available agents is
empty.

50 Chapter 4 Experimental Evaluation

Algorithm 6 Generate a random partition P from a set of agents N
1: procedure generateRandomPartition(N) . N = set of agents
2: P← ∅ . start from an empty partition
3: remainingN← N
4: while length(remainingN) > 0 do . in each iteration, a new coalition is formed
5: s← randomInteger(1, length(remainingN)) . size of new coalition
6: S← randomSample(remainingN, s) . sample s agents from remaining set
7: remainingN← remainingN \ S . update remaining Agents’ set
8: P← P∪ {S} . append formed coalition S to the new partition
9: return P

#Partitions Average execution time of QP
Single Process 2 Processes

10000 Samples 22.8 sec 11.9 sec
20000 Samples 93.4 sec 56.2 sec

Table 4.2: Execution time of QP metric

Parallelization of QP

In table 4.2 average computation time is provided for the QP, in order to demonstrate
the effectiveness of parallelization.

4.1 Extracting a Preference Relation

In Figures 4.1, 4.2 average QP results are provided for different game scenarios. Table
4.5 contains the size of datasets and 4.4 the average execution time.

LR models do not contain any parameters to tune, but LR-RBF, benefiting from
k-means in order to acquire the centers mk, have a parameter k that defines the size
of clusters. This parameter is calculated using the TPE algorithm, in the range of
k = [5, 25]. NNs use the Adam (discussed in Subsection 2.3.4) optimization algorithm,
as Adam was created as an improved version of AdaGrad and RMSProp by combining
both, and is adopted more extensively. For all settings, the number of layers is 1 or
2, while the nodes per layer are in [n2 , n(n−1)

2], both selected by the TPE algorithm.
Parameters choices for NNs are presented in Table 4.3.

As we can see, NN models outperform LR and LR-RBF, both in PFF-ASHGs
and PFF-BHGs, especially as the number of agents increases. This is, in fact, an
anticipated result since the hyper-parameters optimization makes NN models more
adaptive to the problem.

4.1 Extracting a Preference Relation 51

Neural Networks Parameter Choices
Optimization Algorithm Adam

Epochs 200
Hidden Layers Activators ReLU

Output Activator (PFF-ASHG) Linear
Output Activator (PFF-BHG) Sigmoid
Error Function (PFF-ASHG) MSE
Error Function (PFF-BHG) binary crossentropy

Table 4.3: Parameter choices for Neural Networks

n PFF-ASHGs PFF-BHGs
LR LR-RBF NN LR LR-RBF NN

5 0.05sec 1.2sec 14sec 0.04sec 1sec 45sec
10 2.4sec 17sec 1.7min 1.3sec 12sec 2.9min
20 10sec 1.7min 8.3min 5.5sec 1.2min 8.4min
50 3.2min 25.3min 5.5hr 1.7min 30.6min 2.5hr

Table 4.4: Approximate time needed per game for training & testing

Figure 4.1: Average QP for all PFF-ASHG games with 5, 10, 20, and 50 agents

52 Chapter 4 Experimental Evaluation

n Partition samples

Training Testing
5 200 500
10 2000 5000
20 5000 10000
50 20000 40000

Table 4.5: Samples per setting

Figure 4.2: Average QP for all PFF-BHG games with 5, 10, 20, and 50 agents

Additional results for Neural Networks are showcased alongside our formation
protocols (Figures 4.13,4.16,4.19,4.22), that illustrate the the average QP in an online
setting.

Evaluation of our 3 different models is observed in Figures 4.1 and 4.2. As expected,
the NN architecture, combined with the adaptive capabilities of TPE, outperforms the
other models. However there is a trade-off between execution time and performance 4.4.
As we can observe, PFF-ASHGs scale better, while in PFF-BHGs, there is a noticeable
drop in performance as the number of agents increase. This can be attributed to
the higher complexity of Formulae as the number of agents increase. Comparing the
results of LR, they give us more insight about the higher complexity in PFF-BHGs,
especially beyond 20 agents.

4.2 Generating new Partitions 53

4.2 Generating new Partitions

In Figures 4.3,4.4,4.5,4.7,4.10 we showcase the performance of our method, specifically
the average utility and unobserved ratio of generated partitions. Especially in PFF-
BHG settings, the trade off between ”good” generated partitions and them being
unobserved is apparent. In PFF-ASHG settings, as discussed in 3.3.1, a threshold
needs to exist in order to classify a partition as ”good”. In our experiments we set
rt = 0.8.

Experimental results show that the number of components does not affect the
average utility of generated partitions. But, for higher number of training samples,
average utility tends to increase, even for the same threshold rt = 0.8. This is expected,
as for a small number of samples, we will choose more samples that might be below
the defined threshold. A requirement of a minimum number of samples (20) exists for
each model. In each setting, GMM generates 1000 samples for evaluation/computation
of the average utility and unobserved ratio.

2 3 4 5 6 7 8 9
Number of Components

0.0

0.2

0.4

0.6

0.8

1.0

AIC
BIC
SIL
AIC/KFOLD

BIC/KFOLD

SIL/KFOLD

GMM Accuracy ASHG 10 Agents, 50 samples
Average Utility
Unobserved Ratio

Figure 4.3: Average utility, Unobserved ratio of generated samples for a PFF-ASHG game with 10 agents
and 50 samples.

54 Chapter 4 Experimental Evaluation

2 3 4 5 6 7 8 9 10
Number of Components

0.0

0.2

0.4

0.6

0.8

1.0

AIC
BIC

SIL

AIC/KFOLDBIC/KFOLD

SIL/KFOLD

GMM Accuracy ASHG 10 Agents, 100 samples
Average Utility
Unobserved Ratio

Figure 4.4: Average utility, Unobserved ratio of generated samples for a PFF-ASHG game with 10 agents
and 100 samples.

2 3 4 5 6 7 8 9
Number of Components

0.0

0.2

0.4

0.6

0.8

1.0

AIC
BIC

SIL

AIC/KFOLD

BIC/KFOLD

SIL/KFOLD

GMM Accuracy ASHG 10 Agents, 200 samples

Average Utility
Unobserved Ratio

Figure 4.5: Average utility, Unobserved ratio of generated samples for a PFF-ASHG game with 10 agents
and 200 samples.

4.2 Generating new Partitions 55

5 10 15 20 25 30 35 40
Number of Components

0.0

0.2

0.4

0.6

0.8

1.0

AIC
BIC

SIL

AIC/KFOLD
BIC/KFOLDSIL/KFOLD

GMM Accuracy ASHG 20 Agents, 200 samples

Average Utility
Unobserved Ratio

Figure 4.6: Average utility, Unobserved ratio of generated samples for a PFF-ASHG game with 20 agents
and 200 samples.

0 6 12 18 24 30 36 42 48
Number of Components

0.0

0.2

0.4

0.6

0.8

1.0

AIC
BICSIL
AIC/KFOLD
BIC/KFOLD

SIL/KFOLD

GMM Accuracy BHG 10 Agents, 200 samples
Average Utility
Unobserved Ratio

Figure 4.7: Average utility, Unobserved ratio of generated samples for a PFF-BHG game with 10 agents and
200 samples.

56 Chapter 4 Experimental Evaluation

2 4 6 8 10 12
Number of Components

0.0

0.2

0.4

0.6

0.8

1.0

AIC
BIC

SIL

AIC/KFOLDBIC/KFOLDSIL/KFOLD

GMM Accuracy BHG 20 Agents, 50 samples
Average Utility
Unobserved Ratio

Figure 4.8: Average utility, Unobserved ratio of generated samples for a PFF-BHG game with 20 agents and
50 samples.

3 6 9 12 15 18 21
Number of Components

0.0

0.2

0.4

0.6

0.8

1.0

AIC
BIC

SIL

AIC/KFOLDBIC/KFOLD

SIL/KFOLD GMM Accuracy BHG 20 Agents, 100 samples
Average Utility
Unobserved Ratio

Figure 4.9: Average utility, Unobserved ratio of generated samples for a PFF-BHG game with 20 agents and
100 samples.

4.3 Evaluating the different Coalition Formation Protocols 57

4 8 12 16 20 24 28 32 36
Number of Components

0.0

0.2

0.4

0.6

0.8

1.0

AIC
BIC

SIL AIC/KFOLDBIC/KFOLD

SIL/KFOLD

GMM Accuracy BHG 20 Agents, 200 samples
Average Utility
Unobserved Ratio

Figure 4.10: Average utility, Unobserved ratio of generated samples for a PFF-BHG game with 20 agents
and 200 samples.

All aforementioned metrics (Subsection 3.3.2) that select the number of compo-
nents with the maximum score are examined. We also test these metrics along with
k-fold cross validation of our data, as the use of this technique further enhances the
choices of these metrics, resulting in models that combine both properties. For a given
unlabeled dataset D = {x1, · · · , xd}, and a number of components n, k-fold splits D
to two datasets. The model’s training can be performed on the training split of k-fold,
while each metric can be examined with the testing dataset for each iteration of k-fold.
On average, the SIL\KFOLD metric provides us with a model that best combines
both properties in most settings. All results were obtained with exhaustive search for
the number c of components. The TPE algorithm is utilized alongside GMMs in the
formation protocols.

4.3 Evaluating the different Coalition Formation Protocols

Experimental evaluation of both formation protocols is showcased below. As discussed
in Section 3.4.3, agents act randomly in order to collect data, and only after a certain
threshold of QP is exceeded, then agents exploit our methods for predicting preferences
and offering partitions. Note that QP from observed data will not be the same as
average QP from a large test dataset, as observed data will be far less, thus making it
less likely to detect deviations in predicted labels. Figures 4.13,4.16,4.19,4.22 provide
QP results, specifically QP− Test, which is the average QP from a dataset of 5000

58 Chapter 4 Experimental Evaluation

samples (used only for evaluation, agents do not exploit this data for training) and
QP−Observed which is the average QP of the last 2 ·Batch partitions observed. Since
QP−Observed is averaged across all agents, this value is closer to a more accurate
QP− Test, but each individual agent may have higher deviation. Table 4.6 contains
our parameter choices.

In all settings, we compare two types of agents:

• RationalAgent: the agent resulting from our approach, who is unaware of its
preferences, and initially acts as a random agent.
• InformedAgent: the agent who has access to its true preference relation, and

only exploits a GMM model in order to produce new offers in a collaboration
protocol.

We implicitly also compare both types of agents with a RandomAgent who
perform random actions, via the behaviour of rational agents in the beginning, when
they are uncertain. Additionally, the impact of GMMs can be observed on agents with
the true preference relation (InformedAgent).

NNs were used as the regression model due to their adaptability, and GMMs with
SIL\KFOLD metric, alongside the TPE algorithm, as a partition generator for new
offers.

Evaluation on both formation protocols is showcased in Figures 4.11,4.12,4.14,4.15,
4.17, 4.18,4.20, 4.21, alongside the corresponding QP values for each game setting
(Figures 4.13,4.16,4.19,4.22). Agents initially act randomly, as discussed in Subsection
3.4.3, and naturally, games with 20 agents require more samples for agents to exceed
the desired threshold QPthreshold, as the preferences are more complex. PFF-BHGs
exhibit more fluctuation in the resulting social welfare, especially for 20 agents. This
behaviour can be attributed to the fact that formulas contain many pairs (see Table
4.1). In settings with 20 agents, agents in PFF-ASHG settings become ”confident”
about their approximated utility function earlier than in PFF-BHG. This behaviour
is expected, as showcased in Figures 4.1, 4.2.

In settings with 10 agents, little to no performance gain can be obtained from
GMMs, by observing the behaviour of informed agents. This can be attributed either
to the fact that Informed Agents do not have as distributed data as Rational Agents,
who act with random behaviour initially, or perhaps that the social welfare cannot
improve further with this method. In settings with 20 agents, performance gain is
quite distinct.

4.3 Evaluating the different Coalition Formation Protocols 59

Parameter 10 agents 20 agents
Regression Model Neural Network Neural Network

QPthreshold 0.85 0.75
Offers per agent q (Copeland) 5 2

Batch (Training after every #Batch samples) 50 samples 100 samples

Table 4.6: Parameters choices for Coalition Formation

0 100 200 300 400 500 600 700 800 900 1000
Iterations

0

2

4

6

8

10Coalition Formation on PFF-ASHG, 10 Agents, CFP-CM
RationalAgent
InformedAgent

Figure 4.11: Average Social Welfare for 1000 iterations, for a PFF-ASHG game with 10 agents, using CFP-CM
protocol for a RationalAgent and an InformedAgent.

60 Chapter 4 Experimental Evaluation

0 100 200 300 400 500 600 700 800 900 1000
Iterations

0

2

4

6

8

10Coalition Formation on PFF-ASHG, 10 Agents, CFP-SD
RationalAgent
InformedAgent

Figure 4.12: Average Social Welfare for 1000 iterations, for a PFF-ASHG game with 10 agents, using CFP-SD
protocol for a RationalAgent and an InformedAgent.

150 300 450 600 750 900
Iterations

0.0

0.2

0.4

0.6

0.8

1.0Average QP on PFF-ASHG, 10 Agents

QP-Observed
QP-Test

Figure 4.13: Average QP for a PFF-ASHG game with 10 agents, for a RationalAgent.

4.3 Evaluating the different Coalition Formation Protocols 61

0 100 200 300 400 500 600 700 800 900 1000
Iterations

0

2

4

6

8

10Coalition Formation on PFF-BHG, 10 Agents, CFP-CM

RationalAgent
InformedAgent

Figure 4.14: Average Social Welfare for 1000 iterations, for a PFF-BHG game with 10 agents, using CFP-CM
protocol for a RationalAgent and an InformedAgent.

0 100 200 300 400 500 600 700 800 900 1000
Iterations

0

2

4

6

8

10Coalition Formation on PFF-BHG, 10 Agents, CFP-SD
RationalAgent
InformedAgent

Figure 4.15: Average Social Welfare for 1000 iterations, for a PFF-BHG game with 10 agents, using CFP-SD
protocol for a RationalAgent and an InformedAgent.

62 Chapter 4 Experimental Evaluation

150 300 450 600 750 900
Iterations

0.0

0.2

0.4

0.6

0.8

1.0Average QP on PFF-BHG, 10 Agents

QP-Observed
QP-Test

Figure 4.16: Average QP for a PFF-BHG game with 10 agents, for a RationalAgent.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations

0

5

10

15

20Coalition Formation on PFF-ASHG, 20 Agents, CFP-CM
RationalAgent
InformedAgent

Figure 4.17: Average Social Welfare for 2000 iterations, for a PFF-ASHG game with 20 agents, using CFP-CM
protocol for a RationalAgent and an InformedAgent.

4.3 Evaluating the different Coalition Formation Protocols 63

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Iterations

0

5

10

15

20Coalition Formation on PFF-ASHG, 20 Agents, CFP-SD
RationalAgent
InformedAgent

Figure 4.18: Average Social Welfare for 2000 iterations, for a PFF-ASHG game with 20 agents, using CFP-SD
protocol for a RationalAgent and an InformedAgent.

1000 1200 1400 1600 1800 2000 2200 2400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0Average QP on PFF-ASHG, 20 Agents

QP-Observed
QP-Test

Figure 4.19: Average QP for a PFF-ASHG game with 20 agents, for a RationalAgent.

64 Chapter 4 Experimental Evaluation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iterations

0

5

10

15

20Coalition Formation on PFF-BHG, 20 Agents, CFP-CM
RationalAgent
InformedAgent

Figure 4.20: Average Social Welfare for 1000 iterations, for a PFF-BHG game with 20 agents, using CFP-CM
protocol for a RationalAgent and an InformedAgent.

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Iterations

0

5

10

15

20Coalition Formation on PFF-BHG, 20 Agents, CFP-SD
RationalAgent
InformedAgent

Figure 4.21: Average Social Welfare for 2000 iterations, for a PFF-BHG game with 20 agents, using CFP-SD
protocol for a RationalAgent and an InformedAgent.

4.3 Evaluating the different Coalition Formation Protocols 65

1000 1200 1400 1600 1800 2000 2200 2400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0Average QP on PFF-BHG, 20 Agents
QP-Observed
QP-Test

Figure 4.22: Average QP for a PFF-BHG game with 20 agents, for a RationalAgent.

Both protocols illustrate similar performance, but CFP-CM exhibits more conver-
gence towards a social welfare value after agents stop acting randomly, while CFP-SD
retains a level of randomness. For this reason, we examine CFP-SD for more iterations
for 10 agents, in order to capture a potential increase in performance. Rational agents,
after training on a large enough dataset, perform very similarly to informed agents,
even though they are not aware of their preference relations, further illustrating the
effectiveness of our approach on preference extraction (Section 3.2). CFP-CM provides
us with slightly better results in PFF-BHGs, while in PFF-ASHGs, results are quite
similar. Overall, CFP-CM is the dominant protocol in our settings.

We also examine our approach on a PFF-BHG game that was modified in order
to contain partitions that satisfy all agents, by adjusting an existing generated game’s
formulas with 10 agents. Results of rational agents performance is showcased in Figures
4.23, 4.24. Both protocols perform better in this environment, but the dominance of
CFP-CM protocol is unambiguous in this setting. However, a partition that satisfies
all agents was observed only in CFP-SD, due to its randomness. CFP-CM protocol
was examined again, but now, since offers depend on GMMs and a small amount of
data was collected, we attempt to delay the learning process to collect more data.
Delaying the learning process did not have an effect on other games, possibly due
to the already large collection of data in other games. Figure 4.25 demonstrates the
obtained results with this method.

66 Chapter 4 Experimental Evaluation

0 100 200 300 400 500 600 700 800 900 1000
Iterations

0

2

4

6

8

10Coalition Formation on PFF-BHGs, 10 Agents, CFP-CM
Social Welfare

Figure 4.23: Average Social Welfare for 1000 iterations, for a PFF-BHG modified game with 10 agents, using
CFP-CM protocol for a RationalAgent.

0 100 200 300 400 500 600 700 800 900 1000
Iterations

0

2

4

6

8

10Coalition Formation on PFF-BHGs, 10 Agents, CFP-SD
Social Welfare

Figure 4.24: Average Social Welfare for 1000 iterations, for a PFF-BHG modified game with 10 agents, using
CFP-SD protocol for a RationalAgent.

4.3 Evaluating the different Coalition Formation Protocols 67

0 150 300 450 600 750 900 1050 1200 1350 1500
Iterations

0

2

4

6

8

10Coalition Formation on PFF-BHGs, 10 Agents, CFP-CM
Social Welfare

Figure 4.25: Average Social Welfare for 1500 iterations, for a PFF-BHG modified game with 10 agents, using
CFP-CM protocol for a RationalAgent with delayed learning process.

Chapter 5

Conclusions

5.1 Summary

This thesis focused on agents in Hedonic Games with Externalities who are unaware
of their underlying utility function and have conflicting preferences over partitions.
We extended two hedonic game classes to partition function form, applied supervised
learning techniques for these new settings, and evaluated approximations with a
suitable metric. Moreover, GMMs allowed us to generate new satisfiable partitions
from available data. Finaly, we proposed two coalition formation protocols for agents
with preferences over partitions, and incorporated the aforementioned methods in these
protocols in order to examine their effectiveness in a multi-agent setting, attempting
to maximize the social welfare of such agents.

Throughout our experimental evaluation, we conclude that agents in these settings
can approximately extract their own preferences, even for a large set (50 agents).
Moreover, generated partitions in PFF-BHG (Boolean Hedonic Games in Partition
Function Form) settings create a trade-off between partition that satisfy agents and
partitions that are unobserved, while in PFF-ASHG (Additively Separable Hedonic
Games in Partition Function Form) this is hardly noticeable. Both coalition formation
protocols undoubtedly improve upon a random policy, and succeed in forming partitions
that approximately satisfy at least 60% of agents, even in settings with 20 agents,
environments with high complexity, conflicting preferences and without the presence
of a centralized entity or exchange of information between agents.

5.2 Future Work

Since our work is focused on a novel class of games, many future work extensions can
be considered. Recurrent Neural Networks can be employed as regression models for
our problem at hand, due to their property for no predetermined input size. A different
input encoding can be considered, possibly with a non-fixed input size, which might

70 Chapter 5 Conclusions

be befitting to encoding partitions, as they contain a dynamic size of coalitions. We
could also adopt Preference Learning (Fürnkranz and Hüllermeier, 2010) methods that
can be utilized for ranking partitions based on observed data, as they are seemingly
suitable for extracting preferences over partitions. Additionally, it would be interesting
to study hedonic games in partition function form with PAC learning, and extend the
work in (Sliwinski and Zick, 2017), especially in the context of finding stable partitions
for PFF-ASHGs and PFF-BHGs.

Furthermore, we could consider different metrics on GMMs. A preliminary notion
for a metric could be to combine a model’s accuracy with the ratio of unobserved
partitions. Additionally, our method for generating partition (in Section 3.3) could
be examined in different environments, i.e. in other games with externalities or any
domain that requires effective partitioning for a given set of objects and labeled data
are provided.

Moreover, instead of a single deviation on CFP-SD, each agent in the formation
protocol could consider searching in a different partition space. A preliminary notion
could be for each agent to select a new partition that performs one merge or split
operation of different coalitions on the last proposed partition (inspired by Apt and
Witzel, 2009). Another interesting consideration is to approach the problem of coalition
formation of agents with preferences over partitions and incomplete information with
Multi-agent Reinforcement Learning techniques, i.e. attempt to model the coalition
formation process as a state-action function, with a reward function, combined with
the various methodologies for this multi-agent domain.

Bibliography

Akaike, H. (Dec. 1974). “A new look at the statistical model identification”. In: IEEE
Transactions on Automatic Control 19.6, pp. 716–723. issn: 0018-9286. doi: 10.1109/
TAC.1974.1100705 (cit. on p. 40).

Apt, Krzysztof R and Andreas Witzel (2009). “A generic approach to coalition formation”.
In: International Game Theory Review 11.03, pp. 347–367 (cit. on p. 70).

Avrachenkov, Konstantin E. et al. (Oct. 2018). “Network partitioning algorithms as coop-
erative games”. In: Computational Social Networks 5.1, p. 11. issn: 2197-4314. doi:
10.1186/s40649-018-0059-5. url: https://doi.org/10.1186/s40649-018-0059-5
(cit. on p. 1).

Aziz, Haris, Paul Harrenstein, et al. (2016). “Boolean Hedonic Games”. In: Proc. of the
Fifteenth International Conference on Principles of Knowledge Representation and
Reasoning. KR’16. AAAI Press, pp. 166–175 (cit. on pp. 7, 27, 42).

Aziz, Haris, Rahul Savani, and Hervé Moulin (2016). “Hedonic Games”. In: Handbook of
Computational Social Choice. Ed. by Felix Brandt et al. Cambridge University Press,
pp. 356–376 (cit. on pp. 1, 6, 7).

Banerjee, Suryapratim, Hideo Konishi, and Tayfun Sönmez (Jan. 2001). “Core in a simple
coalition formation game”. In: Social Choice and Welfare 18.1, pp. 135–153. issn:
1432-217X. doi: 10 . 1007 / s003550000067. url: https : / / doi . org / 10 . 1007 /
s003550000067 (cit. on p. 6).

Bell, E. T. (1934). “Exponential Polynomials”. In: Annals of Mathematics 35.2, pp. 258–277.
issn: 0003486X. url: http://www.jstor.org/stable/1968431 (cit. on p. 23).

Bergstra, James S et al. (2011). “Algorithms for hyper-parameter optimization”. In: Proc.
of NIPS-2011, pp. 2546–2554 (cit. on p. 16).

Bergstra, James, Daniel Yamins, and David Daniel Cox (2013). “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision architectures”.
In: (cit. on p. 49).

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag (cit. on pp. 8, 9, 17, 18, 21).

Brandt, Felix et al. (2016). Handbook of computational social choice. Cambridge University
Press (cit. on p. 44).

Chalkiadakis, Georgios, Edith Elkind, and Michael Wooldridge (2011). Computational Aspects
of Cooperative Game Theory (Synthesis Lectures on Artificial Inetlligence and Machine
Learning). 1st. Morgan & Claypool Publishers. isbn: 1608456528, 9781608456529 (cit. on
pp. 1, 5).

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1186/s40649-018-0059-5
https://doi.org/10.1186/s40649-018-0059-5
https://doi.org/10.1007/s003550000067
https://doi.org/10.1007/s003550000067
https://doi.org/10.1007/s003550000067
http://www.jstor.org/stable/1968431

72 Bibliography

Darmann, Andreas et al. (2012). “Group Activity Selection Problem”. In: Proceedings of the
8th International Conference on Internet and Network Economics. WINE’12. Liverpool,
UK: Springer-Verlag, pp. 156–169. isbn: 978-3-642-35310-9. doi: 10.1007/978-3-642-
35311-6_12. url: http://dx.doi.org/10.1007/978-3-642-35311-6_12 (cit. on
p. 1).

Dempster, Arthur P, Nan M Laird, and Donald B Rubin (1977). “Maximum likelihood from
incomplete data via the EM algorithm”. In: Journal of the Royal Statistical Society:
Series B (Methodological) 39.1, pp. 1–22 (cit. on p. 19).

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient methods for
online learning and stochastic optimization”. In: Journal of Machine Learning Research
12.Jul, pp. 2121–2159 (cit. on p. 14).

Elkind, Edith and Michael Wooldridge (2009). “Hedonic Coalition Nets”. In: Proceedings
of The 8th International Conference on Autonomous Agents and Multiagent Systems -
Volume 1. AAMAS’09. Budapest, Hungary: International Foundation for Autonomous
Agents and Multiagent Systems, pp. 417–424. isbn: 978-0-9817381-6-1 (cit. on p. 7).

Fürnkranz, Johannes and Eyke Hüllermeier (2010). Preference learning. Springer (cit. on
p. 70).

G. Saari, Donald and Vincent Merlin (Feb. 1996). “The Copeland method (*).” In: Economic
Theory 8, pp. 51–76. doi: 10.1007/BF01212012 (cit. on pp. 19, 44).

Georgara, Athina, Thalia Ntiniakou, and Georgios Chalkiadakis (2018). “Learning Hedonic
Games via Probabilistic Topic Modeling”. In: European Conference on Multi-Agent
Systems. Springer, pp. 62–76 (cit. on pp. 2, 8).

Georgara, Athina, Dimitrios Troullinos, and Georgios Chalkiadakis (2019). “Extracting
Hidden Preferences over Partitions in Hedonic Cooperative Games”. In: Knowledge
Science, Engineering and Management. Ed. by Christos Douligeris, Dimitris Karagiannis,
and Dimitris Apostolou. Cham: Springer International Publishing, pp. 829–841. isbn:
978-3-030-29551-6 (cit. on pp. 23, 32).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press
(cit. on p. 11).

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2001). The Elements of Statistical
Learning. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.
(cit. on p. 8).

Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky (n.d.). “Neural Networks for Machine
Learning Lecture 6a Overview of mini–batch gradient descent”. In: () (cit. on p. 14).

Jang, I., H. Shin, and A. Tsourdos (Dec. 2018). “Anonymous Hedonic Game for Task
Allocation in a Large-Scale Multiple Agent System”. In: IEEE Transactions on Robotics
34.6, pp. 1534–1548. issn: 1552-3098. doi: 10.1109/TRO.2018.2858292 (cit. on p. 1).

Janovsky, P. and S. A. Deloach (Oct. 2016). “Multi-agent Simulation Framework for Large-
Scale Coalition Formation”. In: 2016 IEEE/WIC/ACM International Conference on
Web Intelligence (WI), pp. 343–350. doi: 10.1109/WI.2016.0055 (cit. on p. 41).

Kendall, Maurice G. (1948). Rank correlation methods. London: Griffin. VII, 160 (cit. on
p. 32).

https://doi.org/10.1007/978-3-642-35311-6_12
https://doi.org/10.1007/978-3-642-35311-6_12
http://dx.doi.org/10.1007/978-3-642-35311-6_12
https://doi.org/10.1007/BF01212012
https://doi.org/10.1109/TRO.2018.2858292
https://doi.org/10.1109/WI.2016.0055

73

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”.
In: (cit. on p. 15).

Lippman, David and Pierce College (2013). Math in Society (cit. on p. 45).
MacQueen, James et al. (1967). “Some methods for classification and analysis of multivariate

observations”. In: Proc. of the fifth Berkeley symposium on mathematical statistics and
probability. Vol. 1. 14. Oakland, CA, USA, pp. 281–297 (cit. on p. 17).

Mart́ın Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. url: http://tensorflow.org/ (cit. on
p. 49).

McLachlan, Geoffrey J and Kaye E Basford (1988). “Mixture models: inference and applica-
tions to clustering”. In: (cit. on p. 18).

Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.
isbn: 0262018020, 9780262018029 (cit. on p. 21).

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12, pp. 2825–2830 (cit. on p. 49).

Procaccia, Ariel D. (June 2008). “Mathematical Foundations of AI”. http://www.cs.cmu.
edu/˜arielpro/mfai_papers/lecture6.pdf. Lecture 6 (cit. on p. 45).

Refaeilzadeh, Payam, Lei Tang, and Huan Liu (2009). “Cross-Validation”. In: Encyclopedia
of Database Systems. Ed. by LING LIU and M. TAMER ÖZSU. Boston, MA: Springer
US, pp. 532–538. isbn: 978-0-387-39940-9. doi: 10.1007/978-0-387-39940-9_565.
url: https://doi.org/10.1007/978-0-387-39940-9_565 (cit. on p. 36).

Reynolds, Douglas A. (2009). “Gaussian Mixture Models”. In: Encyclopedia of Biometrics
(cit. on p. 18).

Rousseeuw, Peter J. (1987). “Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis”. In: Journal of Computational and Applied Mathematics 20, pp. 53–
65. issn: 0377-0427. doi: https://doi.org/10.1016/0377-0427(87)90125-7. url:
http://www.sciencedirect.com/science/article/pii/0377042787901257 (cit. on
p. 40).

Ruder, Sebastian (2016). “An overview of gradient descent optimization algorithms”. In:
(cit. on pp. 13–15).

Saad, W. et al. (2012). “Coalitional Games in Partition Form for Joint Spectrum Sensing
and Access in Cognitive Radio Networks”. In: IEEE Journal of Selected Topics in Signal
Processing, pp. 195–209 (cit. on p. 6).

Schwarz, Gideon et al. (1978). “Estimating the dimension of a model”. In: The annals of
statistics 6.2, pp. 461–464 (cit. on p. 40).

Sliwinski, Jakub and Yair Zick (2017). “Learning Hedonic Games”. In: Proc. of the 26th
IJCAI-17, pp. 2730–2736 (cit. on pp. 2, 70).

Taywade, Kshitija, Judy Goldsmith, and Brent Harrison (Jan. 2019). “Decentralized Multia-
gent Approach for Hedonic Games: 16th European Conference, EUMAS 2018, Bergen,
Norway, December 6–7, 2018, Revised Selected Papers”. In: pp. 220–232. isbn: 978-3-
030-14173-8. doi: 10.1007/978-3-030-14174-5_15 (cit. on p. 41).

http://tensorflow.org/
http://www.cs.cmu.edu/~arielpro/mfai_papers/lecture6.pdf
http://www.cs.cmu.edu/~arielpro/mfai_papers/lecture6.pdf
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
http://www.sciencedirect.com/science/article/pii/0377042787901257
https://doi.org/10.1007/978-3-030-14174-5_15

74 Bibliography

Thrall, R. M. and W. F. Lucas (1963). “N-person games in partition function form”. In:
Naval Research Logistics Quarterly 10.1, pp. 281–298 (cit. on p. 1).

	Abstract
	Abstract in Greek
	Acknowledgments
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Theoretical Background
	Non-Transferable Utility Games
	Non-Transferable Utility Games in Partition Function Form

	Hedonic Games
	Additively Separable Hedonic Games
	Boolean Hedonic Games

	Supervised Learning
	Linear Regression
	Linear Regression with Radial Basis Functions
	Feed-Forward Neural Networks
	Gradient Descent Optimization Algorithms

	Hyper-Parameter Optimization
	Tree-structured Parzen Estimator Approach (TPE)

	k-means Clustering
	Gaussian Mixture Models

	Our Approach
	Hedonic Games in Partition Function Form
	Complexity in Partition Function Form Settings
	Additively separable hedonic games in partition function form
	Boolean hedonic games in partition function form

	Learning agent's preferences
	Input encoding
	Output encoding - Regression Models
	Evaluation of regression models
	Hyper-Parameter Optimization with the QP metric

	Generating Satisfactory Partitions via Gaussian Mixture Models
	Data Selection
	Number of Components

	Coalition Formation in Hedonic Games with Externalities
	Coalition Formation Protocol with Single Deviations
	Coalition Formation Protocol with Copeland's Method
	Coalition Formation with hidden preferences

	Experimental Evaluation
	Extracting a Preference Relation
	Generating new Partitions
	Evaluating the different Coalition Formation Protocols

	Conclusions
	Summary
	Future Work

	Bibliography

