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Abstract: We develop a control design for stabilization of traffic flow in congested regime, based on
an Aw-Rascle-Zhang-type (ARZ-type) Partial Differential Equation (PDE) model, for traffic consisting
of both ACC-equipped (Adaptive Cruise Control-equipped) and manual vehicles. The control input
is the value of the time-gap setting of ACC-equipped and connected vehicles, which gives rise to a
problem of control of a 2×2 nonlinear system of first-order hyperbolic PDEs with in-domain actuation.
The feedback law is designed in order to stabilize the linearized system, around a uniform, congested
equilibrium profile. Stability of the closed-loop system under the developed control law is shown
constructing a Lyapunov functional. The performance improvement of the closed-loop system under
the proposed strategy is illustrated in simulation, also employing four different metrics, which quantify
the performance in terms of fuel consumption, total travel time, and comfort.

1. INTRODUCTION

Although traffic congestion may be unavoidable nowadays, due
to the continuous increase in the number of vehicles and in
the traffic demand, some of its ramifications may be allevi-
ated employing real-time traffic control strategies Chen et al.
(2001). Among other reasons, certain traffic flow instability
phenomena, such as, for example, stop-and-go waves, are some
of the causes of traffic congestion’s negative consequences on
fuel consumption, total travel time, drivers’ comfort, and safety
Treiber & Kesting (2013). One promising avenue to traffic flow
stabilization is the development of control design tools that
exploit the capabilities of automated and connected vehicles
Diakaki et al. (2015), while retaining the distributed nature of
traffic flow dynamics. It is the aim of this paper to develop a
feedback law for traffic flow stabilization utilizing a PDE traffic
flow model and exploiting the capabilities of ACC-equipped
and connected vehicles.

Since second-order, PDE traffic flow models (i.e., systems
that incorporate two PDE states, one for traffic density and
one for traffic speed) constitute realistic descriptions of the
traffic dynamics, capturing important phenomena, such as, for
example, stop-and-go traffic, capacity drop, etc. Delis et al.
(2015), Fan et al. (2014), Ngoduy (2013) boundary control
designs are recently developed for such systems Belletti et al.
(2015), Karafyllis et al. (2018), Yu & Krstic (2019), Zhang
& Prieur (2017a), Zhang & Prieur (2017b) some of which
are based on techniques originally developed for control of
systems of hyperbolic PDEs, such as, for example, Bastin
& Coron (2016), Herty & Yong (2016), Lamare & Bekiaris-
Liberis (2015), Zhang & Prieur (2017a), Vazquez & Krstic
(2014). Even though simpler, first-order traffic flow models,
in conservation law or Hamilton-Jacobi PDE formulation, are
also important for modeling purposes. For this reason, PDE-

based control design techniques exist for this class of systems
as well Bekiaris-Liberis & Bayen (2014), Blandin et al. (2017),
Claudel & Bayen (2010), Delle Monache et al. (2017), Goatin
et al. (2016), Li et al. (1995).

While most of the above PDE-based traffic control techniques
rely on traditional implementation means such as, ramp me-
tering and variable speed limits, more rare are PDE-based,
traffic flow control methodologies that exploit connected and
automated vehicles capabilities. In particular, Swaroop & Ra-
jagopal (1999), Yi & Horowitz (2006) develop control designs
via in-domain manipulation of acceleration of ACC-equipped
vehicles, considering traffic with only automated vehicles, and
Piacentini et al. (2018), Yu et al. (2018) develop control designs
via speed manipulation of an autonomous vehicle. Furthermore,
although in microscopic simulation it is reported that it may be
beneficial for traffic flow, to appropriately manipulate in real
time the ACC settings of vehicles already equipped with an
ACC feature Kesting et al. (2008), Schakel & van Arem (2014),
Spiliopoulou et al. (2018), the problem of systematic feedback
control design via time-gap manipulation hasn’t, heretofore,
been tackled from a PDE viewpoint.

In this work, we design a feedback control strategy for stabi-
lization of traffic flow in congested regime, manipulating the
time-gap setting of vehicles equipped with ACC and utiliz-
ing a control-oriented, ARZ-type model with ACC (which is
shown to possess certain important traffic flow-theoretic prop-
erties). The control strategy is developed for the linearized
system around a uniform, congested equilibrium profile, which
is proved to be open-loop unstable. Due to the presence (on
average) of a certain penetration rate of ACC-equipped vehicles
in a given freeway stretch, the traffic flow control problem is
recast to the problem of stabilization of a 2× 2 linear sys-
tem of first-order, heterodirectional hyperbolic PDEs with in-
domain actuation. The closed-loop system under the proposed



controller is shown to be exponentially stable (in C1 norm),
constructing a Lyapunov functional. The benefits in traffic flow
of employing the proposed strategy are illustrated in simulation,
also including the quantification of the performance improve-
ment in terms of various indices, measuring total travel time,
fuel consumption, and comfort level.

Notation: For u ∈ C[0,D] we denote ‖u‖C = maxx∈[0,D] |u(x)|
and for u ∈C1[0,D] we define ‖u‖C1 = ‖u‖C +‖u′‖C.

2. ARZ-TYPE MODEL WITH ACC IN CONGESTED
REGIME

2.1 Description of the model

We consider the following system

ρt(x, t) =−ρx(x, t)v(x, t)−ρ(x, t)vx(x, t) (1)

vt(x, t) =−
(

v(x, t)+ρ(x, t)
∂Vmix (ρ(x, t),hacc(x, t))

∂ρ

)
×vx(x, t)+

Vmix (ρ(x, t),hacc(x, t))− v(x, t)
τmix

(2)

qin = ρ(0, t)v(0, t) (3)

vt(D, t) =
Vmix (ρ(D, t),hacc(D, t))− v(D, t)

τmix
, (4)

where

Vmix (ρ,hacc) = τmix

(
α

τacc
Vacc (ρ,hacc)+

1−α

τm
Vm (ρ)

)
(5)

Vacc (ρ,hacc) =
1

hacc

(
1
ρ
−L
)
, ρmin < ρ <

1
L

(6)

Vm (ρ) =
1

hm

(
1
ρ
−L
)
, ρmin < ρ <

1
L

(7)

τmix =
1

α

τacc
+ 1−α

τm

, (8)

ρ is traffic density, 0 < v ≤ vf is traffic speed, with v f being
some maximum achievable speed (or, free-flow speed), D > 0
is length of a given freeway stretch, L > 0 is average effective
length of each vehicle, α ∈ [0,1] is the percentage of ACC-
equipped vehicles with respect to total vehicles, ρmin > 0 is the
lowest value for density for which the model is accurate (see
Section 2.2), t ≥ 0 is time, x ∈ [0,D] is spatial variable, qin > 0
is a constant external inflow, τacc, τm > 0 are the time constants
of the ACC-equipped and manual vehicles, respectively, hm > 0
is the time-gap of manual vehicles, and hacc > 0 is the time-gap
of ACC-equipped vehicles, which is the control input.

2.2 Traffic flow-oriented properties of the model

The motivation for model (1)–(4) is the following. First, note
that equation (1) is the conservation-of-vehicles equation, as
q = ρv is the traffic flow. Equation (2) is the speed equation,
which is inspired by the speed dynamics of the ARZ model
Zhang (2002). In fact, the ARZ model may be viewed as
both a model of traffic flow dynamics for traffic with only
manual vehicles Zhang (2002) as well as a model for traffic
flow dynamics with only ACC-equipped vehicles Swaroop &
Rajagopal (1999) (Section 3.2). In particular, for fixed time-
gaps of ACC-equipped (and manual) vehicles, when α = 1

(only ACC-equipped vehicles exist) or α = 0 (only manual
vehicles exist) the model reduces to the ARZ model with
fundamental diagram given by (6) or (7) (which corresponds
to the so-called constant time-gap policy, see, e.g., Bose &
Ioannou (2003), Swaroop & Rajagopal (1999), Yi & Horowitz
(2006)), respectively. However, to account for the case of mixed
traffic, i.e., when both manual and ACC-equipped vehicles are
present, we define a new equilibrium (fundamental diagram)
relation for speed as in (5), which is also written as

Vmix (ρ,hacc) =
1

hmix (hacc)

(
1
ρ
−L
)
, (9)

where the effective (or, mixed) time-gap is defined as

hmix (hacc) =
α +(1−α) τacc

τm

α +(1−α) τacc
τm

hacc
hm

hacc. (10)

We show in Fig. 1 the mixed time-gap as a function of the
penetration rate α for τacc

τm
= 0.1, hm = 1, and four different

values for the time-gap of ACC-equipped vehicles.
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Fig. 1. Mixed time-gap (10) for hm = 1, τacc
τm

= 0.1, and four
different values of hacc, as a function of the penetration
rate α .

In the present work, we restrict our attention to congested
regime, and thus, it is sufficient to define only the right part (i.e.,
for 1

L > ρ > ρmin) of fundamental diagrams (6), (7). However,
one may utilize any appropriate extension for the left part (i.e.,
for 0 < ρ ≤ ρmin), such as, for example, a fundamental diagram
that corresponds to a constant (free-flow) speed. We show in
Fig. 2 an example of potentially meaningful fundamental dia-
grams (6) for different (but fixed) values of hacc. Specifically,
Qhmin is fundamental diagram that corresponds to some mini-
mum possible time-gap, say hmin, which is related to ρmin via

hmin =
1

ρmin
−L

vf
, defined as 1

Qhmin (ρ) =

{ vfρ, 0≤ ρ ≤ ρmin
1

hmin
(1−Lρ) , ρmin < ρ ≤ 1

L
. (11)

The fundamental diagram that corresponds to some maxi-
mum possible time-gap, say hmax, is defined respectively as
Qhmax (ρ) = vfρ for 0≤ ρ ≤ ρ̄min and Qhmax (ρ) =

1
hmax

(1−Lρ)

1 Although Qhmin is not differentiable at ρmin, one could obtain a differentiable
approximation of the original fundamental diagram.
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Fig. 2. Different fundamental diagrams (6) for hacc ∈
[hmin,hmax].

for ρ̄min < ρ ≤ 1
L , where hmax satisfies hmax =

1
ρ̄min
−L

vf
(for

further details on realistic values of hmax and hmin that may
appear in practice see Section 5 as well as, e.g., Nowakowski
et al. (2011), Spiliopoulou et al. (2018)). Every other funda-
mental diagram (6) that may appear, for different time-gaps
of ACC-equipped vehicles within the interval [hmin,hmax], lies
between Qhmax and Qhmin . Furthermore, for a given penetration
rate, since relation (10) implies that min{hacc,hm} ≤ hmix ≤
max{hacc,hm}, for all α ∈ [0,1], it follows that whenever
min{hacc,hm}≥ hmin and max{hacc,hm}≤ hmax, all of the pos-
sible mixed fundamental diagram relations (9) that may appear,
for any α ∈ [0,1], lie between Qhmax and Qhmin , and hence, as
long as ρ > ρmin = 1

L+vfhmin
the mixed fundamental diagram

relation (9) corresponds to congested traffic.

In addition, from (8) it follows that min{τacc,τm} ≤ τmix ≤
max{τacc,τm}, for all α ∈ [0,1], and hence, when τacc < τm,
which is typically the case in practice, τmix is a decreasing
function of α . Since for given values of vf (dependent, for ex-
ample, on the specific freeway stretch) and L, the requirements
min{hacc,hm} ≥ hmin and max{hacc,hm} ≤ hmax guarantee that
0 < Vmix (ρ,hacc) < vf, for all α ∈ [0,1] and ρmin < ρ < 1

L , we
obtain a speed equation that may serve as a reasonable model
for speed in case of mixed traffic in congested conditions.

Since we are concerned with the case of congested traffic con-
ditions we restrict our attention in a nonempty, connected open
subset Ω of the set Ω̄ =

{
(v,ρ,hacc) ∈ R3 : 0 < v < vf,

1
L+vfhmin

< ρ < 1
L , hmin ≤ hacc ≤ hmax}, such that v+ρ

∂Vmix(ρ,hacc)
∂ρ

<0,
for all α ∈ [0,1], whenever (v,ρ,hacc) ∈ Ω, see, e.g., Belletti
et al. (2015), Treiber & Kesting (2013). In fact, from (9), it is
evident that (1)–(4) is a 2× 2 system of first-order hyperbolic
PDEs with (real and distinct) eigenvalues given by λ1 = v and
λ2 = v+ρ

∂Vmix(ρ,hacc)
∂ρ

= v− 1
hmix(hacc)ρ

, which implies that infor-
mation propagates forward with traffic flow at the traffic speed,
whereas speed information travels backward. Thus, model (1)–
(4) is anisotropic, see, e.g., Zhang (2002).

2.3 Boundary conditions of the system

The boundary condition (3) at the inlet of the considered
freeway stretch implies that the flow at the entrance of the
freeway stretch is equal to some external inflow with value qin.
To obtain a realistic downstream boundary condition as well as

to obtain a well-posed system we impose the dynamic boundary
condition (4), which implies free downstream traffic conditions,
see also, e.g., Karafyllis et al. (2018). This is reasonable, even
under congested conditions (consider, e.g., the case where at
the outlet of the considered stretch there is the end of a tunnel
or the end of high-curvature or the end of an upgrade, etc.).

2.4 Equilibria of the system

The equilibria of (1)–(4) dictated by constant inflow qin and
constant, steady-state time-gap for ACC-equipped vehicles, say
h̄acc, which results in a steady-state mixed time-gap given by

h̄mix =
α +(1−α) τacc

τm

α +(1−α) τacc
τm

h̄acc
hm

h̄acc, (12)

are uniform and satisfy

v̄ =
qin

ρ̄
, (13)

as well as the fundamental diagram relation

1
ρ̄
−L = h̄mixv̄. (14)

To see this, first note that relations (1) and (3) imply that the
equilibrium values for ρ and v, say ρe and ve, respectively,
satisfy ρe(x)ve(x) = qin, for all x ∈ [0,D]. From (2) and (4) it
then follows, using (9), that the equilibrium profile of the speed
satisfies the following ODE in x

ve′(x) =− 1
τmix

ve(x)+ L
h̄mix− 1

qin

ve(x)
, (15)

with final condition ve (D) =− L
h̄mix− 1

qin

. Thus,

ve(x) =
L

1
qin
− h̄mix

= v̄, for all x ∈ [0,D], (16)

which can be seen noting that ve = v̄ is an equilibrium of (15).
In order to guarantee that ρmin < ρ̄ < 1

L , ∀α ∈ [0,1], which also

implies from (13), (14) that 0 < v̄ < 1
h̄mix

(
1

ρmin
−L
)
≤ vf, we

require time-gaps and inflow to satisfy 0 < qin <
vfhmin

hmax(L+vfhmin)
.

3. CONTROL DESIGN FOR THE LINEARIZED SYSTEM

3.1 Linearization and diagonalization of the system

We start defining the error variables ρ̃(x, t) = ρ(x, t) − ρ̄ ,
ṽ(x, t) = v(x, t)− v̄, and h̃acc(x, t) = hacc(x, t)− h̄acc. Lineariz-
ing system (1)–(4) around the uniform, congested equilibrium
profile we get

ρ̃t(x, t)+ v̄ρ̃x(x, t)+ ρ̄ ṽx(x, t) = 0 (17)

ṽt(x, t)− c4ṽx(x, t) =−c1ρ̃(x, t)− c2ṽ(x, t)

−c3h̃acc(x, t) (18)

ρ̃(0, t)+ c5ṽ(0, t) = 0 (19)

ṽt(D, t) =−c1ρ̃(D, t)− c2ṽ(D, t)

−c3h̃acc(D, t), (20)



where c1 = 1
ρ̄2τmixh̄mix

, c2 = 1
τmix

, c3 = α

τacch̄2
acc

(
1
ρ̄
−L
)

, c4 =

L
h̄mix

, and c5 =
ρ̄

v̄ . Defining z̃(x) = e
c2x

v̄
(
ρ̃(x)+ h̄mixρ̄2ṽ(x)

)
, as

c2− c1h̄mixρ̄2 = 0, we re-write (17)–(20) in diagonal form as

z̃t(x, t)+ v̄z̃x(x, t) =−e
c2x

v̄ h̄mixρ̄
2c3h̃acc(x, t) (21)

ṽt(x, t)− c4ṽx(x, t) =−c1e−
c2x

v̄ z̃(x, t)− c3h̃acc(x, t) (22)

z̃(0, t) =−L
ρ̄2

v̄
ṽ(0, t) (23)

ṽt(D, t) =−c1e−
c2
v̄ Dz̃(D, t)− c3h̃acc(D, t). (24)

3.2 Control law

Besides improving performance, feedback control is needed
because (21)–(24) for hacc = h̄acc is unstable, see Bekiaris-
Liberis & Delis (2018) (Appendix A). The control law is

hacc(x, t) = h̄acc +
1
c3

(
−c1e−

c2x
v̄ z̃(x, t)+ kṽ(x, t)

)
(25)

= h̄acc +
1
c3

(−c1ρ̃(x, t)+(k− c2) ṽ(x, t)) , (26)

with k > 0 being arbitrary, which gives z̃t(x, t) + v̄z̃x(x, t) =
c2z̃(x, t)− ke

c2x
v̄ h̄mixρ̄2ṽ(x, t), ṽt(x, t)− c4ṽx(x, t) = −kṽ(x, t),

z̃(0, t) = −L ρ̄2

v̄ ṽ(0, t), and ṽt(D, t) = −kṽ(D, t). From this sys-
tem it is evident that the feedback law aims at eliminating
the source term in (22), which may cause instability due to a
feedback connection between the states z̃ and ṽ, while rendering
the ṽ(D) subsystem exponentially stable (and autonomous).

Taking into account that the traffic system operates in congested
regime, the operating point of the controller, as this is seen via
the steady-state time-gap for ACC-equipped vehicles h̄acc, may
vary considering, for example, safety, comfort, or total travel
time criteria. For instance, in cases in which safety is a primary
goal, the time-gap h̄acc may take large values (which implies
that h̄mix also takes large values, according to (12)), whereas,
when comfort is of significant importance, then no action (e.g.,
as recommendation to drivers of ACC-equipped vehicles or as
direct manipulation of the ACC settings of individual vehicles)
may be taken (in order to not disrupt the driver) from the
controller for imposing the value of h̄acc, which implies that
the driver alone may set the value for the time-gap h̄acc, see,
e.g., Spiliopoulou et al. (2018). Moreover, it may be beneficial,
from a total travel time point of view, the time-gap h̄acc to take
large values, since, for given inflow, lower steady-state densities
may be achieved (via the achievement of higher steady-state
speeds), as it can be seen from relations (13), (16). We consider
a specific scenario and further discuss about the choice of h̄acc
(as well as of hm) in Section 5.

In practice, under a vehicle-to-infrastructure (V2I) communi-
cation paradigm, the control authority may implement the pro-
posed strategy either as time-gap recommendations to drivers of
ACC-equipped vehicles or via direct manipulation of the ACC
settings of such vehicles, see, e.g., Spiliopoulou et al. (2018).
Furthermore, the simple controller (26), requires measurements
of average speed and density (or, average speed and flow, in
case flow measurements are available instead) throughout the
spatial domain. This information could be obtained by the cen-
tral control authority via utilization of connected vehicles (i.e.,
ACC-equipped and any vehicle able to exchange information

with the central monitoring and control unit) reports (e.g., re-
porting speed, position, or other information) as well as mea-
surements from fixed detectors and, potentially, also employing
a traffic state estimation method, see, e.g., Bekiaris-Liberis et
al. (2017), Claudel & Bayen (2010), Wang et al. (2017).

4. STABILITY ANALYSIS

We establish stability in the stronger C1 norm in order to guar-
antee additional stability properties for the closed-loop system
that may be desirable from a traffic flow control viewpoint, see,
e.g., Yi & Horowitz (2006). Stability in other norms may be also
proved, following the lines of the following theorem’s proof,
provided in Bekiaris-Liberis & Delis (2018) (Appendix B).
Theorem 1. Consider a closed-loop system consisting of sys-
tem (17)–(20) and control law (26). For all initial conditions
(ρ̃ (·,0) , ṽ(·,0)) ∈C1[0,D]×C1[0,D], which satisfy first-order
compatibility with boundary conditions, there exists a positive
constant µ such that the following holds for all t ≥ 0

‖ρ̃(t)‖C1 +‖ṽ(t)‖C1 ≤ µ (‖ρ̃(0)‖C1 +‖ṽ(0)‖C1)e−
k
2 t . (27)

5. SIMULATION RESULTS

5.1 Model parameters and numerical implementation

The parameters of system (1)–(4) utilized in the simulation
investigations are shown in Table 1. The chosen parameters are

Table 1. Parameters of system (1)–(4).

qin 1200
( veh

h

)
τacc 2 (s) hm 1 (s)

ρmin 37
( veh

km

)
α 0.15 D 1000 (m)

τm 60 (s) L 5 (m)

considered reasonable for a traffic flow model, see, e.g., Belletti
et al. (2015), Delis et al. (2015), Fan et al. (2014), Ngoduy
(2013). In particular, we choose a value for the time-gap of
manually driven vehicles hm that is close to reported average
values of about 1.2 s, see, e.g., Nowakowski et al. (2011),
Spiliopoulou et al. (2018), but slightly lower than this to reflect
evidence that drivers may follow a preceding vehicle at smaller
time-gaps in congested traffic, compared to the case of light
traffic conditions, see, e.g., Nowakowski et al. (2011).

For the numerical solution of the hyperbolic system (1)–(4) in
open-loop as well as under (26), a modified Rusanov scheme,
which is an explicit finite-volume scheme of centered type with
added numerical diffusion, with time and spatial discretization
steps of 0.1 s and 10 m, respectively, is employed, see, e.g.,
Dolejsi & Gallouet (2008). The ODE (4) that corresponds to
the downstream boundary condition for the speed is numeri-
cally solved utilizing a forward Euler method with the same
time step. The upstream and downstream boundary values for
density and speed, respectively, are obtained from the bound-
ary conditions (3) and (4), whereas for obtaining the “miss-
ing” upstream and downstream boundary values for speed and
density, respectively, we use fictitious cells, extrapolating the
corresponding values from the interior of the domain.

5.2 Controller’s parameters and performance evaluation

The operating point of the traffic system, as it is dictated by
the steady-state value of the mixed time-gap according to (12),



it is selected such that h̄acc = 1.5 s. Such a value reflects the
fact that the equilibrium of the time-gap for ACC-equipped
vehicles may be dictated from drivers’ choices rather than from
interventions of the control authority, for a control strategy
that aims at minimizing controller’s interventions, which may
be disrupting for the driver. Consequently, we choose a value
for h̄acc close to what drivers of ACC-equipped vehicles set in
congested conditions, which is evidenced to be larger compared
to manual driving in heavy traffic and which is reported to be
around the selected value, see, e.g., Nowakowski et al. (2011).

The steady-state values for density and speed are derived from
(13), (14) as ρ̄=105.8 veh

km , v̄=11.35 km
h . We show in Fig. 3

the open-loop response for initial conditions ρ(x,0) = ρ̄ +
10cos

( 8πx
D

)
, v(x,0)= qin

ρ(x,0) . From Fig. 3 it is evident that the
open-loop response exhibits an unstable and quite oscillatory
behavior. In contrast, as it is shown in Fig. 4, the traffic flow
is stabilized and, in particular, the oscillations (stop-and-go
waves) in the speed response are considerably suppressed when
the feedback law (26) is applied. The control effort (26) for
k = 0.25 1

s is shown in Fig. 5. One can observe that the resulting
values for the time-gap of ACC-equipped vehicles lie within
the bounds typically implemented in ACC-equipped vehicles
settings, namely, approximately within the interval [0.8,2.2] s,
see, e.g., Nowakowski et al. (2011), Spiliopoulou et al. (2018).
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Fig. 3. Open-loop response of (1)–(4) with parameters in Ta-
ble 1 for h̄acc=1.5, ρ(x,0)=ρ̄+10cos

( 8πx
D

)
, v(x,0)= qin

ρ(x,0) .

To quantify the benefits of controller (26) we compare the
closed- and open-loop performances in terms of fuel consump-
tion, comfort, and total travel time (TTT). We use the perfor-
mance indices from Treiber & Kesting (2013) (Chapter 21)
Jfuel =

∫ T
0
∫ D

0 J̄fuel (v(x, t),a(x, t))ρ(x, t)dxdt, Jcomfort =
∫ T

0
∫ D

0
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Fig. 4. Closed-loop response of (1)–(4) with parameters in
Table 1, under the feedback law (26) with k = 0.25, for
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Fig. 5. Feedback control law (26) with k = 0.25 and h̄acc = 1.5.(
a(x, t)2 +at(x, t)2

)
ρ(x, t)dxdt, and JTTT =

∫ T
0
∫ D

0 ρ(x, t)dxdt,
where J̄fuel (v,a) = max

{
0,b0 +b1v+b3v3 +b4va

}
, a = vt +

vvx, T = 350 s, and b0, b1, b3, b4 are provided in Treiber &
Kesting (2013) (page 485). Application of the controller results
in better performance in all metrics. Specifically, the reported
percentage improvement of Jfuel, Jcomfort, and JTTT is 3.9%,
90%, and 4%, respectively. The improvement in fuel consump-
tion and comfort is attributed to the fast homogenization of the
speed field.



6. CONCLUSIONS

We presented a control design methodology for stabilization of
traffic flow in congested regime exploiting the capabilities of
vehicles with ACC features and utilizing an ARZ-type model
for mixed traffic. The closed-loop system, under the developed
control law, was shown to be exponentially stable. The numeri-
cal investigation showed that the performance of the considered
traffic system, under the proposed controller, is improved and
the improvement, in terms of fuel consumption, travel time, and
comfort, was quantified utilizing various performance indices.
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