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Abstract

Due to the widespread use of the light microscope as a diagnostic tool for many scientific
fields like medicine, biology, chemistry as well as for industrial applications, light microscopy
has been undergoing vast and continuing innovations both regarding the hardware and soft-
ware domain. The optical resolution of light microscopes is physically constrained by the
phenomenon of diffraction. Out-of-focus light and light originated from adjacent areas of a
sample are superposed degrading the quality of the image of the object under study. In this
degradation, the Point Spread Function (PSF) of the optical system is the main culprit and
it is the one that determines the optical resolution. This degradation effect can be eased
by sophisticated and expensive confocal microscopy systems or reversed to some degree by
much cheaper widefield deconvolution microscopy methods.

Deconvolution processes need a PSF as much as accurate it can be in order to provide
satisfactory and realistic results. The description of the PSF can be done either by math-
ematical models or by experimental measurements. Experiments for this purpose include
measurements of fluorescent microbeads as well as estimation of the Modulation Transfer
Function (MTF) of the optical systems which finally yields the PSF.

However, the conditions of capturing a digital image and the type of noise attributed to
the optical systems have led to the creation of many types of deconvolution algorithms that
focus and manage these features in a different way. Thus, even a valid PSF of an optical
system produces different results when using different algorithm. It is known that the visual
perception does not always concur with the quantitative measurements of these processes
and ultimately the human eye is making the final decision about the validity of the decon-
volution results.

This diploma thesis, based on a previous study [28] of the same laboratory and using the
experimental methods of extracting PSF and deconvolution, focuses on developing a method
that attempts to provide a qualitative comparison of the deconvolution results, which is con-
sistent and verifies visual perception. The method was based on specific variables, such as
spatial resolution, noise and image contrast, which were considered to have the greatest con-
tribution to the validity of a result. The final classification list of their algorithms is ranked
according to their relative successful deconvolution in terms of satisfying these variables.
Also, the resulting measurements indicate the behavior of each algorithm in combination
with the selected PSF on each sample.

This work is integrated into a graphical user interface that provides all the tools for extract-
ing experimental PSFs, implementing a range of iterative and non iterative, deconvolution-
algorithms, qualitative analysis of deconvolution results to create ranking list and export
statistics for creating completed reports in each experiment.
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Chapter 1

Introduction

The microscope is a tool that enables humans to magnify tiny objects and microorganisms
so that they can see and study them. Due to this important feature it is used by many sci-
entific fields such as medicine, biology and chemistry as well as industry. The wide range of
applications of the microscope and the development of technology have produced enormous
and continuous innovations in the field of microscopy. It is known that an optical system,
such as a microscope, exhibits intrinsic physical constraints due to the characteristics of the
components constituting it. As discussed in the next chapter, a subject under study is not
depicted as it is in reality. In particular, its image is degraded due to many reasons including
blur, glare, scatter of light and incoming photon related noise.Blur, is a degradation created
by the phenomenon of diffraction of optical elements (e.g., lenses) and results in a reduction
in the optical resolution of the sample. The way the blur overtakes and overlaps the neigh-
boring areas of a sample can be expressed as a degradation function that characterizes an
optical system.

With the help of digital imaging and image processing, this function, also known as Point
Spread Function PSF, can be calculated and reverse the degradation by following a decon-
volution method in order to extract in a more precise and optimal way, the information
of the object under study. Deconvolution processes need a PSF as much as it can be in
order to provide satisfactory and realistic results. The description of the PSF can be done
either by mathematical models or by experimental measurements. Experiments for this pur-
pose include measurement of fluorescent microbeads as well as estimation of the Modulation
Transfer Function MTF of the optical systems which finally yields the PSF.

The various conditions of digital capture of an image and the various forms of deggrada-
tion that can be presented, otherwise affect the results of deconvolution even if a PSF is
quite accurate. This fact has led to the development of many deconvolution algorithms that
attempt to approach this problem in such a way as to achieve the best possible result. It is
known that visual perception does not always coincide with the quantitative measurement
of these processes and ultimately the human eye is the final decision about the validity of
the deconvolution results.

This diploma thesis, based on a previous study [28] of the same laboratory and using the
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2 CHAPTER 1. INTRODUCTION

experimental methods of extracting PSF and deconvolution, focuses on developing a method
that attempts to provide a qualitative comparison of the deconvolution results, which is con-
sistent and verifies visual perception. The method was based on specific variables, such as
spatial resolution, noise and image contrast, which were considered to have the greatest con-
tribution to the validity of a result. The final classification list of their algorithms is ranked
according to their relative successful deconvolution in terms of satisfying these variables.
Also, the resulting measurements indicate the behavior of each algorithm in combination
with the selected PSF on each sample. This work is integrated into a graphical user inter-
face that provides all the tools for extracting experimental PSFs, implementing a range of
iterative and non iterative, deconvolution-algorithms, qualitative analysis of deconvolution
results to create ranking list and export statistics for creating completed reports in each
experiment.

In order for someone to be introduced to the above-mentioned matter, at first the basic
physical concepts are gradually explained. Beginning with how lenses in general work, how
their providing magnification is defined and in which way the optical resolution of an optical
system is limited, one can get to know the basic stuff behind the field of optics. Then, the
anatomy of a modern conventional microscope is described. At this point, the concept of
fluorescence and the anatomy of a fluorescent microscope is explained, since the test images
used in this thesis contain a fluorescence microscope.

Knowing the parts of an optical system and how the its provided images are physically
degraded, one can go deeper into how a PSF can be mathematically modelled and how it
can alternatively be experimentally measured. Since the blur effect in an image is mathemat-
ically described using the concept of convolution, then the de-convolution methods used for
the de-blurring of the captured image are analyzed. Finally, it is described the development
of the proposed method of qualitative assessment of deconvolution results which is driven
around the investigation of selected characteristics.



Chapter 2

Background information and theory

2.1 Microscopy

Microscopy is the technical field of using microscopes to view objects and areas of objects
that cannot be seen with the naked eye (objects that are not within the resolution range
of the normal eye). There are three well-known branches of microscopy: optical, electron,
and scanning probe microscopy. Optical (light) microscopy, which is the case of study, uses
visible light and a system of lenses in order to project a magnified image of a specimen under
study on the eye or on a camera sensor.

2.2 Magnification of lenses

Figure 2.1: Principal interactions of light with a medium
Source:

http://physicsweekly.weebly.com/reflection-refraction-and-diffraction.html

3
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4 CHAPTER 2. BACKGROUND INFORMATION AND THEORY

Light can interact with a medium in many ways, depending on the material of themedium,
the angle of the incidence and the wavelength. Figure 2.1 is self explanatory. As for diffrac-
tion (expounded in Sec.2.4.1), this phenomenon is based on theprincipals of constructive
and destructive wave interference. Light behaves in thesame way as a mechanical wave en-
countering an obstacle or passing through a slit. Itis defined as the bending of light around
the corners of an obstacle or a slit (aperture)into the region of geometrical shadow of the
obstacle. In order to exhibit diffraction, this obstacle or this slit must be comparable in size
with the wavelength of the encountering wave. From this, also it follows that an obstacle
or a slit can have sharp edges. In microscopy, all these kinds of interaction are significant.
Transmission, reflection, refraction are used to build a path for the light rays. Diffraction,
absorption and scattering, though, eventually act as degrading factors for the microscoped
image. For the purposes of light microscopy, the basic components relative to the optical
train are lenses and filters.

Figure 2.2: Different shapes of simple lenses
Source: http://data.allenai.org/tqa/optics_L_0755/

2.3 Lenses

Lenses come in different shapes (Fig. 2.2 ). They can be grouped and form a compound
system with special properties (i.e better focusing, better magnification or eradication of
aberrations). Two are the main characteristics of a lens. The distance over which initially
parallel light rays are brought to a focus (focal length f) and the magnification. Image
formation happens when light rays converge either in real or seem to do so (virtually). [10]

• A real image is formed in the plane where light rays converge in real (using converging
lenses) and the object to be pictured is placed farther than the focal length of the lens.
When the object is placed in between f and 2f the image is bigger than the object,
whereas when it is placed in a distance bigger than 2f the image is smaller. A real
image is always inverted and can be formed in a screen. For a converging lens, the
focal length is said to be positive, which is the reason why they are also called positive.

http://data.allenai.org/tqa/optics_L_0755/
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• A virtual image is formed in the plane where light rays seem to converge (continuing
,virtually backwards, the rays coming out of the lens). This happens in diverging lenses
or when the object to be pictured is placed inside the focal distance of a converging
lens. A virtual image is always erect and cannot be projected onto a screen as it on
the same side of the lens as the object.

2.3.1 Thin lenses

In the simple case of just one thin convex lens(thickness is negligible) (Fig. 2.3), the equation
of the thin lens (Eq. 2.1) and the provided magnification (Eq. 2.2) can be computed, using
the metric relations of the formed triangles: [12]

1

s1

+
1

s2

=
1

f
(2.1)

, where s1: object to lens distance
s2: real image to lens distance
f : focal length

Figure 2.3: Image formation of an object with a convex lens
Source: https://en.wikipedia.org/wiki/Lens_(optics)

M =
yi
yo

=
s2

s1

(2.2)

, where yi: image height
yo: object height

https://en.wikipedia.org/wiki/Lens_(optics)
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Usually, the object is put on the fo, so the above equation becomes:

M =
yi
yo

=
s2

fo
(2.3)

2.3.2 Lenses with important thickness

When the thickness of the lens is not negligible, in order to compute the effective focal length,
radii of the curvature (RoC) of each side of the lens, along with the refractive index (r.i) of
the lens medium must be known. So the corresponding equation is:

1

f
= (n− 1)

[
1

R1

− 1

R2

+
(n− 1)d

nR1R2

]
(2.4)

, where R1: RoC of closer to the light source lens side
R2: RoC of farther to the light source lens side n: r.i of the lens medium
d: lens thickness

2.3.3 Two lenses system (thin lenses)

A compound microscope system of two lenses provides better magnification than that of one
lens. It consists of at least two converging lenses; the objective and the eyepiece. The former
has a focal length fo < 1 cm and the latter has a fe of a few cm. The total magnification
M of the two lenses is given by the product of the magnifications of the individual lenses.
Thus, we have:

M = Mobjective ×Meyepiece (2.5)

The individual magnifications are given by Eq. 2.2, which in order lead to:

M =
S2

S1

× S
′
2

S
′
1

(2.6)

The distances between object-objective lens S1, objective lens-real (first) image S2 and
real image-eyepiece lens S

′
1 may vary. But the distance between the eyepiece lens and the

virtual (final) image S
′
2 is set to 25cm. This is because 25cm is the closest point at which an

object can be brought into focus by a ”normal” human eye. Closest distance is important,
because apparently the image of the object will be the most detailed it can be. Eventually,
the eye perceives the final magnified image as if it were in that distance of 25cm.

When the object is put on the fo, the intermediate image is formed on the fe. Hence the
above equation becomes:

M =
T

fo
× 25 cm

fe
(2.7)

, where T : distance between fo and fe, usually 16 cm
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Figure 2.4: An objective-eyepiece compound
Source: https://physics.stackexchange.com/questions/307050/

why-we-take-objective-of-short-focal-length-and-eye-piece-of-long-focal-length-i

2.3.4 Conventional microscope lenses

In a typical microscope a third lens is added, namely the tube lens, for the reason that
the objective lens projects incoming light into infinity. The tube lens forms the real image
on its focal point. Light rays originating from the two ends of the object are adequate for
the purpose of explaining conventional microscope lenses. To take it from the start: The
objective (Fig. 2.5(2)) is designed to project the incoming light rays of the object (Fig.
2.5(1)) into infinity. Then, the tube lens (Fig. 2.5(3)) produces a magnified intermediate
image (Fig. 2.5(4)) which in turn is captured by the eyepiece (Fig. 2.5(5)) and finally shown
to the eye (Fig. 2.5(6)). The resulting viewing angle δ1 of the case A is much larger than δ2 of
case B, where the object is seen directly from a distance of approximately 25 cm. Regarding
the overall magnification of such a system, it can computed by the product of the individual
magnifications of the objective and the eyepiece lenses. [11]

2.3.5 Using an image capturing system instead of the eyepiece

In cases that recording of the specimen in an imaging system of a sensor and a computer
monitor is preferred, the eyepiece can be omitted. The magnification is produced by the
optical system (i.e objective, tube lens) and the electronic imaging system which provides
a magnification factor due to the optical to electronic system adaptor (computer monitor
adaptor). The total magnification of the system can be computed as:

Moverall = Moptical ×Melectronic (2.8)

https://physics.stackexchange.com/questions/307050/why-we-take-objective-of-short-focal-length-and-eye-piece-of-long-focal-length-i
https://physics.stackexchange.com/questions/307050/why-we-take-objective-of-short-focal-length-and-eye-piece-of-long-focal-length-i
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Figure 2.5: An objective-tube-eyepiece compound

The optical magnification in case of just one objective and an adapter is given by:

Moverall = Mobjective ×Madaptor (2.9)

The electronic magnification is the ratio of the active sensor diagonal and the useful monitor
diagonal:

Melectronic = diagonalmonitor/diagonalsensor (2.10)

2.3.6 Limits of magnification - Useful magnification

As it was mentioned above, greater magnification can be achieved using two or more lenses.
So, the question is if there are any boundaries to magnifying an object infinitely. The short
answer is no. Despite the fact that with an infinite number of lenses an infinite magnification
is achieved, after a point that huge magnification is useless because ”deeper” details of the
magnified object cannot be resolved further. So the maximum useful magnification for a
conventional optical microscope it is known to be 2000x. In terms of the tinyest possible
distinguishable area of an object, the conventional optical microscope can produce a virtual
image of a 200 nm diameter spot of the object. This is approximately the width of an
average-sized bacterium. The smaller this distinguishable area is, the bigger the resolution
of the microscope is. However, in practice this resolution of 200 nm cannot be approached
due to lenses imperfections. Further improvements have been accomplished by the nobel
prize-awarded Super Resolution Microscopy which circumvents the aforementioned limit and
brings it to the nanodimension. The explanation to the existence of a limit to the resolving
power of the microscope, lies in the concept of diffraction which is eventually the reason why
more and more magnification power of lenses lead merely to a magnification of the smallest
distinguishable area, without unveiling further details.
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2.4 Diffraction-limited resolution

2.4.1 Diffraction

Lens-systems have an opening which allows a cone of light to pass through. Here lies the
resolution limitation of the microscope (and of every optical device incorporating apertures).
As it was mentioned in the early introduction of this section, light bends around the corners
of an obstacle or a slit (aperture) into the region of geometrical shadow of the obstacle when
the size of the latter is comparable with the wavelength of the incoming light. From this,
also it follows that light bends around the sharp edges of an obstacle or an aperture.

Figure 2.6: Diffraction by Huygens-Fresnel principle
Source: https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle

The significance of the phenomenon of diffraction in the case of image capturing lies in
the fact that light does not travel linearly from the aperture towards the sensor (camera or
human eye), but instead spreads to a cone angle. As it was mentioned earlier, light diffrac-
tion behaves in the same way a mechanical wave behaves entering a slit. The spreading of
the post-aperture light can be explained by the Huygens-Fresnel principle. It argues that
every single point of a wave front (wavelet) acts like a source of new spherical waves. These
emanating waves interfere constructively or destructively with themselves creating a char-
acteristic pattern in the post-aperture area. In Fig. 2.6, this principle is visualized with
the use of 6 wavelets at the level of the aperture. While these waves propagate the total
aggregating wave front takes the form of the green lines, giving the effect of the spreading
of light.

When the spreading light eventually ”hits” the sensor, a two-dimensional diffraction pat-
tern appears on it. This is the resolved image of the point light source. So, as long as the
light bends after it passes through the slit, the resolved image is larger. This means that

https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle
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the final captured image is a degraded form of the true point source. Fig. 2.7 exhibits a
case where light arrives at the aperture in plane wave fronts. That is accomplished when the
light source, the aperture and the sensor are far apart in order for the spherical source waves
to expand in such a degree that their wave fronts become plane or close to plane. Another
occasion is when curved wave fronts enter the objective lens of the microscope and come out
as plane ones. This is the Fraunhofer diffraction. In case where the incoming wave fronts are
curved and sensor is relatively close to the aperture, Fresnel diffraction applies. Fraunhofer
diffraction helps the understanding of the parameters that affect the level of light bending
and the diffraction patterns on the sensor, because of its simplicity compared to Fresnel
diffraction. The figure shows the sensor plane and the intensity of light in each point on it.

Figure 2.7: Fraunhofer diffraction
Source: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html#c1

A wave of light interferes constructively with another of the same wavelength λ when
their path lengths differ by m multiples of λ . They interfere destructively when their path
lengths differ by (m + 1

2
)λ. In Fig. 2.7 rays 3 and 4 arrive 180 degrees out of phase on the

sensor and lead to a minimum light intensity in that point. Rays 1 and 2 arrive in phase
and lead to maximum light intensity.

In order to calculate how much the light diffracts, after it passes the aperture, it is suf-
ficient to calculate the angle of the first intensity minimum over the optical axis (aperture
middle). From Fig. 2.8, using trigonometric small-angle approximations (because Fraun-
hofer approach considers that aperture to slit length L� w and thus (θ

′ ≈ θ) and applying

the destructive interference condition
w

2
sin θ =

λ

2
, it can be shown that the angle of first

intensity minimum (first trough or dark fringe) is:

sin θ = 1.22
λ

w
(2.11)

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html#c1
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Figure 2.8: Angle of first intensity minimum (left) - Diffraction pattern formed on the
sensor across the vertical line the diffraction curve extends (1D) (middle) - Diffraction

pattern formed across the whole sensor plane (2D - Airy disk) (right)
Source: [28]

The above equation makes clear that the longer the wavelength of the incoming light, the
larger the level of light bending after the aperture. Additionally, the bigger the aperture,
the smaller the degree to which the light diffracts. Hence, in order to have a better resolved
image of the true point source regardless its wavelength, the bigger the aperture is, the better
this can be achieved. Bigger aperture means longer lens so as the latter gathers all the light
that passes through the aperture. To express how large cone of light a lens can gather, a
quantity is introduced:

2.5 Numerical aperture and resolution

Numerical Aperture of a lens ( Numerical Aperture (NA)) : characterizes the range of angles
over which the lens can accept (or emmit) light. It is a function of the refractive index n
of the medium in which the lens is working (i.e air, water, oil) and half the angle (θ) of the
largest pencil of light that the lens can accept (or emmit). [12]

NA = n sin θ (2.12)

From this definition along with the aforementioned simple aperture characteristics, it can be
concluded that the bigger the numerical aperture, the smaller the diffraction spreading and
thus the better the resolution of a point source. But in order to quantify the resolution of
the lens-aperture system, the smallest distance between two diffraction patterns, caused by
two point sources, must be found so that they both can be resolved (seen separately). This
distance is called the Rayleigh resolution limit and is defined as the distance between the
crests of the two diffraction patterns, when the crest of the main lobe of the first one meets
the first trough of the second one. It is equivalent to the distance between the crest of the
main lobe and the first dark fringe. This lateral resolution is a function of wavelength and
numerical aperture.

Because of refraction and reflection phenomena that appear when light passes from the
coverslip of the specimen to the objective through a gap of air, it is preferable that an



12 CHAPTER 2. BACKGROUND INFORMATION AND THEORY

immersion oil (high refractive index medium) is used. This allows light to travel straight
towards the objective, leading thus to a larger effective NA. So, the refractive index of the
immersion oil, also, plays a role in the final formation of the diffraction pattern.

rlateral =
1.22λ

2n sin θ
=

0.61λ

NA
(2.13)

, where r: lateral resolution of the lens-aperture system
λ: wavelength of light
n: refractive index of the medium surrounding the point sources
θ: half-angle of the cone of light that enters the lens NA: effective numerical aperture of the
lens-aperture system

A condenser lens is often used so as to focus the illuminating cone of light onto the sample.
This has to be computed too. The lateral resolution is now given by:

rlateral =
1.22λ

NAobj +NAcond
(2.14)

In a properly configured microscope, the condenser must have equal NA with the objective.
So, this leads to the first resolution equation (Eq. 2.13)

2.5.1 Digital Resolution

When it comes to capturing an image and translate it to a digital one, the question of how
the resolution is related to the image pixels arises. The image 2D signal in order to be
aliasing-free and properly represent the analog true signal needs to be sampled accordingly
to the Nyquist theorem. The latter states that a signal in general needs to be sample in
a rate fs > 2fmax, with fmax the highest frequency that is wished to be recorded. In an
image, frequency has the meaning of periodic changes of luminance of the depicted objects.
Thus the corresponding ”period” has to do with distance between this changes. The Nyquist
sampling rate can be modified to: Ds < Dmin/2, where D corresponds to distance (or size).
This gives the imaging sample rate (pixel size) which should be 1/2 the size of the smallest
object (resolution) that is wished to be recorded. In practice, an image pixel usually repre-
sents distance that is 2.3 - 3 times smaller than the optical resolution. [27]

Let it be that the sampling process is completed. In order to find the physical distance
that is represented by a pixel without knowing the sampling rate, the sensor pixel size and
the magnification of the optical system must be known:

physical distance =
sensor pixel size

overall magnification
(2.15)

2.6 Anatomy of an optical microscope

As it was mentioned, this study concentrates on brightfield, fluorescence and confocal mi-
croscopy. Brightfield microscopy is achieved using and configuring appropriately an optical
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microscope. Fig. 2.9 shows the optical train inside a modern optical microscope. Light em-
anated from a source travels through a system of diaphragms (apertures), plates and lenses
in order to be configured in a way that it evenly disperses across the plane of the field of
view of the focused specimen. The final stage of this source light-configuring system is the
condenser, which focuses the cone of light onto the specimen plane. Then, the re-emmitted
light from the sample travels through the objective-eyepiece or/and the objective-camera
sensor system. Focus knobs are used, as the name implies, to adjust the microscope tube
or the specimen stage for proper focusing. The coarse focus knob adjusts in the centimeter
range, whereas the fine focus knob adjusts in the micrometer range. There are also knobs
for the adjustment of the desired field of view of the sample.

Figure 2.9: Basic parts of a typical optical microscope
Source: http://www.doctorc.net/Labs/Lab2/lab2.htm

When specimens, living or non-living, organic or inorganic, absorb and subsequently re-
radiate light, the process is described as photoluminescence. If the emission of light persists
for up to a few seconds after the excitation energy (light) is discontinued, the phenomenon
is known as phosphorescence. Fluorescence, on the other hand, describes light emission
that continues only during the absorption of the excitation light. The time interval be-
tween absorption of excitation light and emission of re-radiated light in fluorescence is of
extraordinarily short duration, usually less than a millionth of a second.

2.7 Fluorescence microscope

For each fluorescent substance, there is a certain range of wavelengths that cause its stimu-
lation. After the absorption of the excitation light, the substance emits light of longer wave-
length which is finally captured. In order to illuminate the specimen with the wavelength
band which excites it, an excitation filter is placed right after the light source. Similarly,

http://www.doctorc.net/Labs/Lab2/lab2.htm


14 CHAPTER 2. BACKGROUND INFORMATION AND THEORY

in order to observe the re-emitted fluorescent light, an emission filter is placed right before
the eyepiece or the camera sensor. These filters are termed barriers, since they block by
absorption the unwanted light. Due to the epi-illumination fluorescence microscope design,
there must be a specialized filter that will reflect the excitation light towards the specimen
and will allow re-emitted light to pass through it. Such a filter is named a dichroic mirror or
else a dichromatic beamsplitter. Reflection occurs via destructive and illuminance-reducing
interference with alternating layers of high and low refractive indeces, whereas transmission
happens via constructive and reinforced interference with the layers. For this reason, such
filters belong to the family of interference filters. Specifically, successive layers of dielec-
tric materials, with thickness values ranging between one-quarter and one-half of the target
wavelength consist the main body of these filters. In many of the current epi-illumination
fluorescence microscopes, the excitation, emmision filters along with the dichroic mirror
are altogether incorporated into a single fluorescence filter cube. The whole design of the
microscope is epigramatically shown in Fig. 2.10 and is termed widefield epi-illumination
fluorescence microscope. [9]

Figure 2.10: Widefield epi-illumination fluorescence microscope schematic
Source: https://en.wikipedia.org/wiki/Fluorescence_microscope

2.7.1 Fluorescence

[18] Fluorescence may be exhibited naturally by some materials or biological structures
(autofluorescence/primary fluorescence) as well as exhibited by artificially added fluorescent
markers (secondary fluorescence). Fluorescent molecules are also called fluorescent probes,
fluorochromes or simply dyes. When they are conjucated to a larger macromolecule, through
absorption or covalent bonds, they are termed fluorophores. Thanks to this attachment, the
distribution of the corresponding macromolecule of a fluorophore can be observed.

https://en.wikipedia.org/wiki/Fluorescence_microscope
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Due to heat transfer within fluorophores or interactions between fluorophores and other
molecules, the re-radiated light has less energy than the absorbed light. So, the emitted
light has a longer wavelength than that of the excitation light. This difference between the
maxima of the excitation-emission bands is termed as Stokes shift. Typically, the emission
band is a mirror of the excitation one. In general, fluorescence investigations are conducted
in the range of ultraviolet to visible spectrum (250 - 270 nm).

The distribution of electrons and the overall molecular geometry can be determined by
electronic states. Several different electronic states exist, depending on the total electron
energy and the symmetry of various electron spin states (paired or unpaired spins - opposite
or same spins in an orbital). The number of unpaired electron spins in an electronic state
defines the state name in the numeration form of singlet, doublet, triplet etc. The ground
state of most organic molecules is an electronic singlet, that is no electron spins are unpaired.
The excitation process has no effect in changing the spin-pairing, hence the excited states
are singlets too. Each electronic state is further subdivided into vibrational and rotational
states associated with the atomic nuclei and the bonding orbitals. In fluorescence, various
transitions are taking place through different paths among energy levels. Transitions in-
volved in absorption and emission of light by a fluorochrome can be shown in a Jablonski
energy diagram (Fig. 2.11).

Figure 2.11: Jablonski energy diagram showing transitions involved in absorption and
emission of light by a fluorochrome. Straight lines show absorption or emission of a photon,

whereas wavy lines show non-radiative processes
Source: https://www.olympus-lifescience.com/en/microscope-resource/primer/

lightandcolor/fluoroexcitation/

Absorption leads the molecule to an excited singlet state depending on the energy of the
incident photon which has to be at least equal to the corresponding energy of an excited

https://www.olympus-lifescience.com/en/microscope-resource/primer/lightandcolor/fluoroexcitation/
https://www.olympus-lifescience.com/en/microscope-resource/primer/lightandcolor/fluoroexcitation/
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state. This takes place ”instantly”, in approximatelly a femtosecond. Afterwards, several
processes will occur with varying probabilities. The most likely will be non-radiative relax-
ation to the lowest vibrational energy level of the first excited state. This is the vibrational
relaxation which can happen directly or through an internal conversion process. From this
point forward, many paths can be taken. One is the desired fluorescence emission which is
usually accompanied by transitions to higher vibrational energy levels of the ground state.
Other roads are energy dissipation nonradiatively as heat or energy transfer due to molecules
collision (i.e quenching) or transition to an intermediate triplet excited state at its lowest
vibrational state. The latter transition is known as intersystem crossing, again with no ra-
diation. From that point, excitement back to the higher-energy singlet state might occur,
resulting in a delayed fluorescence after a radiative relaxation. The other possibility is re-
laxation to the ground state, even though transition from an excited triplet state to the
ground singlet state is forbidden. It might happen again in the form of heat, but also with
the emission of a photon, which is termed phosphorescence. Because of this forbidding law,
phosphorescence is very rare, with a probability of several orders of magnitude lower than
that of fluorescence.

Considering the aforementioned different transition paths, it is clear why fluorescent light
is of longer wavelength than that of the absorption light, justifying the Stokes shift. Bear-
ing energy of light is inversely proportional to the wavelength of it. Specifically, radia-
tive relaxations are of high probability when they start from the lowest vibrational state
of the first excited state and when they culminate in the highest vibrational state of the
ground state. Hence, the emission energy leap is much smaller than the absorption energy
leap. Contributing factors to this phenomenon are heat conversions, resonance energy trans-
fer (RET) and quenching processes. In RET, energy is transfered with non-radiative long
range dipole-dipole interactions between fluorophores. In quenching, energy might be trans-
fered through collisions between fluorophores and other molecules (usually oxygen, halogens
and amines) that are translated as coupling of electronic orbitals between the interacting
molecules. Also, formation of non-fluorescent complexes can reduce the population of active
excitable molecules, thus limiting the absorption of incident light.

Another unwanted pheonomenon, regarding energy and intensity loss, is photobleaching.
Fluorochromes can lose the ability of fluorescence permanently due to long exposition to
high intensity light which cause chemical destruction to them.

In general, the decay of fluorescence intensity as a function of time in a uniform popula-
tion of molecules excited with a brief pulse of light is described by an exponential function:

I(t) = I(0) e−t/τ (2.16)

, where I(0): initial fluorescence intensity
τ : time in which fluorescence intensity falls in 1/e ≈ 37% of I(0)
The exact decaying degree depends on the particular fluorochrome. In addition to this, other
parameters are also used to describe and compare different fluorochromes:
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• Extinction coefficient: Ability of light to absorb light. Those chromophores that have
a high extinction coefficient also have a high probability of fluorescence emission, in
the expense though of their intrinsic lifetime (below).

• Quantum yield: Gauge of the efficiency of fluorescence emission. It describes the
probability that an excited molecule will end up in emitting a photon, either through
a direct or a delayed fluorescence process.

• Fluorescence lifetime: The characteristic time that a molecule remains in an excited
state prior to returning to the ground state.

2.8 Point Spread Function

Fig. 2.8 shows the formation of a diffraction pattern on the sensor plane. Because this pat-
tern is the spreaded light initially emanated from a point source, it is given the name Point
Spread Function ( PSFs). The term ”function” is valid because the spreading, as it was said,
depends on the NA of the lens-aperture system, the refractive index of the immersion oil (if
it exists) and the λ of the source light.

By simulating the single-slit phenomenon in a computer, the PSF can be visualized. Using
2,3 and 9 in-phase wavelets of the Huygens-Fresnel model (Fig. 2.12), it can be shown how
a PSF is formed across the aperture-sensor plane space. As long as there is no finite number
of wavelets, also a simulation of ”infinite” ones is shown in Fig. 2.13

The resolution on the image plane (lateral resolution) is given by Eq. 2.13 . The tini-
est discernible distance in the optical axis (depth axis) is larger that the lateral one. It can
be computed by:

raxial =
2λn

(NA)2
(2.17)

This leads to the same conclusion as for the lateral resolution. That is, the shorter the λ
or/and the larger the NA, the better the axial resolution. The PSF can either be calculated
theoretically by various models or be measured experimentally.

2.8.1 Theoretical PSF

Taking into account how the wave fronts of light interfere with a propagation medium, a
mathematical expression can be built gradually [19]. This expression will be in terms of
wave amplitude and phase as a function of the 2D coordinates of the propagating wave of
light at a specific, perpendicular to the optical axis, plane z (depth plane). The emission of
waves from a point source can be seen as an input impulse:

u0(x, y)− A0δ(x, y) (2.18)

, where A0 : initial wave amplitude of the emmitting source of light
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Figure 2.12: PSF formed by 2,3 and 9 wavelets of the Huygens-Fresnel mode
Source: Youtube: ”iBioEducation” channel - ”iBiology Microscopy Course” - ”Microscopy:

Point Spread Function (Jeff Lichtman)” - video snapshots

At first, light travels in free space meaning no lenses or apertures are included. The free-
space system has an impulse response, let it be h(x, y; z). Thus, the output wave amplitude
of this system at the depth plane z0 just before the lens, will be:

u(x, y; z0)− h(x, y; z0) ∗ A0δ(x, y) = A0h(x, y; z0) (2.19)

, where ∗ is the convolution operation sign

The affected transmission of light through the lens-aperture system of focal length f can
be described with a pupil function which captures every optical aberration in the amplitude
and phase that takes place between the object focus plane and the image plane. These
aberrations [24] (deviations from the ideal optical path) happen due to irregularities or mis-
alignments in any component of the imaging system light path, especially the objective lens
but also other lenses, mirrors, filters or apertures. Such aberrations are present in various
forms. Speaking about rays of the same wavelength: Astigmatism, where rays that propa-
gate in two perpendicular planes, have different focal spots. Coma, where slanted parallel
rays entering a lens, eventually focus on different spots on the image 3D space. Defocus,
where rays do not focus on the a priori designed focal spot. Chromatic aberration, where
rays of different wavelengths have different focal spots. Spherical aberrations, where rays
from different points across the lens, focus on different spots of the optical axis. Distortion,
where a rectilinear object eventually appears curved. These aberrations can be integrated
to a scale-causing factor as for the wave amplitude. Thus an ideal lens-aperture system will
have a scaling factor of 1 for every point of the pupil plane. Possible deviations will cause the
scaling factor to diminish. Consequently, a pupil function integrates amplitude and phase
factors, thus making it a complex function:

P (x, y) = p(x, y)ejΦ(x,y;f) (2.20)
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Figure 2.13: PSF formed by ”infinite” wavelets of the Huygens-Fresnel model. The
hourglass-like shape of the PSF in the center defines the detail in which the point source is

resolved. The red dotted line is the optical axis along which the light travels
Source: Youtube: ”iBioEducation” channel - ”iBiology Microscopy Course” - ”Microscopy:

Point Spread Function (Jeff Lichtman)” - video snapshots

So, the wave fronts equation when light enters the free-space just after the exit of the lens
becomes:

u′(x, y; z0) = A0h(x, y; z0)p(x, y)ejΦ(x,y;f) (2.21)

Note: no convolution operation here, as the pupil function plays a scaling role.

Finally, when light reaches the image plane, the free-space impulse response function at
the image plane z1 convolves with the so far computed wave front equation. This leads to
the wave function at the image plane which is the 2D PSF (on focus):

PSF (x, y) = u′(x, y; z0) ∗ h(x, y; z1) =
(
A0 h(x, y; z0) p(x, y) ejΦ(x,y;f)

)
∗ h(x, y; z1) (2.22)

The above process can be also done in order to compute the wave function in different
planes from the image focus plane. Hence, a 3D PSF is formed. In reality, though, a single
3D model is not sufficient to completely describe image formation throughout the 3D ob-
ject space. This is because PSF is often a function of the location of the point source in the
object space. Thus, in reality every point of the object corresponds to a different PSF. A sys-
tem, the Point Spread Functions of which behave in this way, is called a shift-variant system.

Different approximations can be made, depending on the nature of diffraction, the possible
consideration of shift-variance and the amount and degree of effect of possible aberrations,
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if the latter are taken into account.

Assuming there are no aberrations and that the Fraunhofer approach is valid, a more specific
PSF can be built. A pupil function for a circular aperture of radius α through which light is
transmitted unaffected has the value 1 inside the area encompassed by the aperture in the
axes system x′, y′. The polar coordinate translation is:

r =
√
x2 + y2 and θ = arctan(y′/x′) (2.23)

At the image plane the axis system (x,y) is translated in polar coordinates as:

ρ =
√
x2 + y2 and ψ = arctan(y/x) (2.24)

According to Principles of Optics by Born and Wolf, as stated in [21], the diffraction pattern
wave function (amplitude) is the Fourier Transform of the pupil function.
From this it follows that:

D(x, y) =

∫ α

0

∫ 2π

0

e−ikrρ cos(θ−ψ) rd θdr (2.25)

, where k = 2π/λ (wavenumber)

Using the Bessel function of the first kind and order 0, the above equation can be mod-
ified as:

D(ρ) = 2πC

∫ α

0

J0(krρ)rdr (2.26)

, where C: constant

PSF is in terms of intensity of light which is proportional to the squared amplitude of
the wave function. So, from the above equation arises that:

PSF (ρ) =

∣∣∣∣2πC ∫ α

0

J0(krρ)rdr

∣∣∣∣2 (2.27)

For an aberration-free and shift-invariant in all directions PSF, the 3D Born and Wolf ap-
proximation can be useful [13]. The constraint is though, that the observed fluorophore
particle is located at the focal plane of the objective lens but right beneath the coverslip.
The model is expressed in the Kirchhoff’s diffraction integral formula as:

PSF (x, y, z) =

∣∣∣∣∣
∫ 1

0

J0

[
k
NA

ni

√
x2 + y2 ρ

]
e
− 1

2
jkρ2z

(
NA2

ni

)
ρdρ

∣∣∣∣∣
2

(2.28)
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, where PSF: scalar
J0: Bessel function of the first kind of order 0 (Bessel function appear in problems of wave
propagation)
k: wavenumber of the emitted light in vacuum (k = 2π/λ),
ni: refractive index of the immersion oil

The Gibson and Lanni PSF model takes into consideration the consequences of the opti-
cal path modifications that occur when light rays follow trajectories other than that for
which the optics were designed. It integrates the optical path difference (ODP),which is the
difference between ideal trajectories and real trajectories, taking into account parameters
determining path fluctuation: thickness (toil) and refractive index (noil) of the immersion oil,
thickness (tg) and refractive index (ng) of the coverslip and the thickness (ts) and refractive
index (ns) of the sample.

Any deviation of any of these parameters from the optimal values for which the optics
were designed will cause spherical aberrations. The resulted prolonged focus spot has the
effect of an assymetry in the 3D PSF on the depth axis. In the case of microscopy, this
is a common phenomenon which increases as the object focal plane moves deeper into the
sample, thus inducing more refractive index mismatches inside the sample as well as between
the sample, the coverslip and the immersion medium. Spherical aberration is the reason why
PSF is shift-variant on the depth axis.

As for the Gibson and Lanni model, it incorporates shift-variance only in the depth axis. It
can be seen as a generalization of Born and Wolf in the sense that the fluorophore particle
can be located at any depth within the sample. It also considers three optical layers (sample-
coverslip-immersion) instead of two (glass-immersion). The model description again in the
Kirchhoff’s diffraction integral formula is:

PSF (x, y, z) =

∣∣∣∣∣∣Czd
∫ 1

0

J0

[
kαρ

√
x2 + y2

z

]
ejW (ρ)ρdρ

∣∣∣∣∣∣
2

(2.29)

, where PSF: scalar,
C: a normalizing constant,
zd: tube lens-detector distance,
W (ρ): phase aberration induced:
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W (ρ) = k

{
nsts

√
1−

(
NAρ

ns

)2

+ ngtg

√√√√1−

(
NAρ

ng

)2

+ noiltoil

√
1−

(
NAρ

noil

)2

− n∗gt∗g

√√√√1−

(
NAρ

n∗g

)2

− n∗i t∗i

√
1−

(
NAρ

n∗i

)2
}

2.8.2 Experimental PSF

Prediction of all the various phenomena that take place in the optical train is proved to be a
complex problem. Thus, the existing theoretical PSF models do not integrate every optical
path deviation from the ideal path. The problem of diffraction pattern formation was exam-
ined using the concept of point sources of light. In fact, this is abstract, since there cannot
be an infinitelly small object. However, from the concept of optical system resolution, it
follows that a sub-resolution object can be considered as an infinitelly small object. Hence,
depicting such an object, a real PSF can be built, which incorporates all optical train defects.

For that reason, several methods have been proposed, such as using quantum dots and fluo-
rescent microbeads. Quantum dots are semiconductor particles with size of some nanometres
that emit light of specific frequencies if electricity or light is applied to them. The disad-
vantage, though, is that good preparations of these are hard to obtain as they easily form
aggregates, thus not being ”single points” anymore.

Fluorescent microbeads are of various materials. [20] Even though in theory, they must
be as small as they can be, this is impractical because these beads exhibit low Signal to
Noise Ratio (Signal to Noise Ratio (SNR)) and meagre signal. Thus, they are usually chosen
to have size more than half the resolution of the optical system, such as 150 nm. A sufficient
fluorescent signal by beads is possible either when they aggregate or when they receive a
bigger quantity of excitation light. Big aggregation hinders the determination of a single
bead because of the overlap by each single bead diffraction pattern. As for more intense
excitation light, this has the danger of causing untimely photobleaching to the beads, thus
diminishing their life span. Since the level of the light signal intensity is meagre, photon
noise of the bead image capture is very pronounced which means a very low SNR.

2.8.3 Modulation Transfer Function

Physical meaning and PSF-MTF-OTF relation

As examined in Seq. 2.4.1 - numerical aperture and resolution, the distance between
the diffraction pattern crests of the images of two point sources of light, defines the resolu-
tion of the optical system. So, expanding this concept to more point sources aligned in a
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straight line, it is safe to say that the closer to each other they are, the more the correspond-
ing diffraction patterns are overlapped, deteriorating thus the depicted contrast among the
point sources. Further expanding to parallel lines of point sources (line sources) in a way that
they form bright and dark stripes upon a plane parallel to the image sensor plane (square
wave), the same conclusion can be made. The depicted line sources will exhibit an overlap
of their diffraction patterns, thus diminishing the contrast among them. Consequently, the
imaging lens, camera sensor, and illumination play key roles in determining the resulting im-
age contrast. The lens contrast is typically defined in terms of the percentage of the object
contrast that is reproduced. The sensor’s ability to reproduce contrast is usually specified
in terms of decibels (dB) in analog cameras and bits in digital cameras.

The term modulation of MTF is exactly the above-mentioned contrast. How well the optical
system can transfer this contrast / modulation from the object to the image, is the second
term. As for the term function, it is so because modulation transfer depends on the partic-
ular distance among the aforementioned line sources (to keep the last example) or otherwise
the spatial frequency of these line pairs. A line pair is a bright (white) and a dark (black)
stripe altogether, mathematically forming a pulse of light. The unit of spatial frequency is
line pairs per milimeter or cycles per milimeter (lp/mm or cycles/mm).

To express the contrast percentage of an image of bright and dark stripes, the maximum and
minimum intensity values must be used. A full-bright stripe is 1- valued, whereas a full-dark
stripe is 0-valued. The contrast expression is given by: [2]

%Modulation =
Imax − Imin
Imax + Imin

× 100 (2.30)

Assuming no resolution loss by the optical system, it is clear that the modulation transfered
is 100%. That is the optical system reproduces the contrast of the object in its whole 100%.

At a particular spatial frequency, the transfered contrast of an object depends on its off-
(optical)axis distance. Specifically, the MTF decreases as the object is farther from the
optical axis. Also, as the line pairs per milimiter get more and more, there is a limit where
the optical system cannot anymore resolve them. At this point the modulation becomes 0%.
The corresponding spatial frequency is the cut-off frequency.

A said above, changes in depicted contrast of an object pattern are described by MTF.
Yet, optical system aberrations also cause changes in PSF intensities which in turn result in
a linear lateral shift of the object pattern. This pattern-phase shift is desbrived by a function
called Phase Transfer Function (PTF). Altogether, these contrast changes and phase shifts
are incorporated in a complex function called Optical Transfer Function (OTF): [3]

OTF = |OTF |eiPTF = MTFeiPTF (2.31)

OTF can also be defined in terms of PSF, as :

OTF (v) =

∫
PSF (x)e−i2πvx (2.32)
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where x is the spatial coordinate in the image plane.

This equation implies that OTF is the Fourier transform of PSF. Intuitively, this can be
comprehensible and be deduced from the below thinking using only the MTF (no lateral
phase shifts of the image pattern): The point source acts like an input impulse to the sys-
tem, resulting to an impulse response which is the PSF. It is known that, mathematically,
in order to build an impulse, ”all” frequences are needed. So, the Fourier Transform of an
impulse is a plane wave, integrating infinite frequences. Ideally, if the PSF was identical to
the point source, that plane wave would be the Fourier Transform. But since the PSF is
different incorporating a resolution limit, instead of a plane wave, only a range of spatial
frequencies will contribute to the formation of the PSF. Yet, these contributing frequen-
cies form the MTF. The upper boundary of this spectrum depends on the above-mentioned
resolution limit. As for an ideal aberration-free PSF, the cut-off frequency of its MTF is:
1/2λf .

2.9 Experimental Measurement of MTF - Slanted Edge

Method

Generally, there are 3 ways of measuring a MTF. Either by using a square wave as examined
in 2.8.3 or by a sine wave (smoother changes between dark and bright areas) or by the slanted
edge method. What is examined below is related to the slanted edge method.

From the aforementioned relation between inpulse response and infinite frequencies,it is
safe to say that in order to measure what band of spatial frequencies are resolvable by an
optical system, its output with an impulse as input must be found. Specifically, the impulse
is a 2D signal, allowing thus the imaging measurement of this line profile which it turn gives
the line spread function. In practice, the theoretical impulse is not directly feasible as it
requires zero width and infinite intensity. So, eventually the measurent of the MTF is done
indirectly with experimental processes termed edge-gradient methods. [14]

Firstly, an edge profile is measured. An edge profile is ideally a step function. In the
case of images, it is a dark 2D area followed by a bright one, forming thus a ”step of light”.
The reproduced edge is translated through the optical system in a degraded degree. Specifi-
cally, there is no immediate change in light intensity from dark to bright, rather a smoother
ESF. So, the acquired image of the edge can be called an ESF. The terms edge profile and
ESF are used alternately. Then the computation of the discrete first derivative of the ESF
will give the PSF. Finally, the modulus of the Fourier Transform of the PSF will grant the
wanted MTF.

The above method can be executed with more than one ways. An edge profile can be
taken from picturing a very precisely designed edge for this purpose, thus with no deforma-
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Figure 2.14: The true analog ESF (along 1 spatial direction for simplification) (top left)
will be digitized but with a quantization error which depends on the number of pixels in

the horizontal axis of the sensor and the single pixel size. Top right, bottom left and
bottom right show 2, 0 and 1 samples respectively which define the edge.
Source: http://dougkerr.net/Pumpkin/articles/MTF_Slant_Edge.pdf

tions along the edge. As a second way, an edge feature from image data can be captured
providing the wanted edge profile. However, this requires a captured edge of sufficiently high
optical quality, meaning negligible noise and clear edge details.

Regarding the first approach, in order to capture the edge profile, it must be sampled.
As a first thought, the edge can be sampled parallel to the pixel columns of the camera
sensor. However, the theoretical resolution of a sensor array is not sufficient to discern the
luminance change of the edge with sufficient resolution. There can be different digitization
occasions depending on the sensor. This can be visualized in Fig. 2.14.

2.9.1 Slanted Edge Principle

[22] Fortunately, ”fake” enhanced resolution of the sensor can be realized by rotating the
edge profile (usually by 5 degrees), thus forming an angle between it and the pixel grid (Fig.
2.15).

Since every evenly spaced vertical line, parallel to the edge, has the same luminance, it
can be observed that every center of a pixel is assumed the role of a sample of the ESF. Hence,
this ”trick” provides a much better sampling of the ESF. By applying trivial trigonometric
equations: Spacing of ESF samples = pixel pitch× sin(α), where α is the angle of rotation
of the edge profile. So, the smaller the pixel pitch and the angle are, the better the sampling
is. Because, though, the pixel detectors actually do not pick up the luminance at a point
(dots in the example of Fig. 2.15), but rather respond to an average of some sort over a
region (bin) approaching the domain of the pixel, certain special steps have to be taken in
the evaluation of the ESF from the set of collected pixel detector values (examined below).

http://dougkerr.net/Pumpkin/articles/MTF_Slant_Edge.pdf
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Figure 2.15: Every center a pixel is assumed the role of a sample of the ESF
Source: http://dougkerr.net/Pumpkin/articles/MTF_Slant_Edge.pdf

2.9.2 Standardized MTF Evaluation Method

The whole process of measuring the MTF is standardized by the ISO 12233 and implemented
by little or no modifications to the latter: [14]

• ROI identification: First, the region of interest (ROI) (m lines, n pixels) surrounding
the edge is selected. The luminance from each RGB photosensor of the ROI is measured
(a pixel consists of 1 red 2 green and 1 blue photosensors).

• OECF transformation: The image data are transformed with an opto-electronic con-
version function (OECF). This function is a relationship between input luminance and
digital output levels for an opto-electronic digital image capture system.

• Luminance record computation: A luminance array is computed as a weighted sum of
red, green, and blue image records at each pixel.

• Derivative of each data line: The 1D discrete derivative of each line along the hori-
zontal axis of the sensor is taken. In that way, the edge location and direction can
be estimated. Note: the derivative of each line gives the 1D PSF which with the rest
PSFs form the Line Spread Function (LSF).

• Centroid computation for each line: The centroid of a straight 1D line is actually its
middle point. It is a translation of the line ”weight”. When, though, each point of the
line has an intensity integrated to it, the centroid is found in a different point along
the line depending on the intensity distribution. In the case of a first derivative of a
line, the centroid is located upon or near the spike of the derivative.

http://dougkerr.net/Pumpkin/articles/MTF_Slant_Edge.pdf
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• Linear fit of the centroids: In order to define the slanted edge, all the locations of the
centroids are fitted with a linear equation.

• Projection of the image data along the edge direction: As stated in the slanted edge
principle of this subsection, each pixel or more precisely each element of the luminance
arrays, plays the role of a sample for the ESF. So, with a linear fit to line, a 1D ”super
sampled” ESF is formed.

• Data binning with 1/4 of original sampling rate: The previous step results in a 4x
oversampling. At this step, a binning process (replacing of each 4 samples with a value
that represents them) is done with a 1/4x sampling rate.

• Derivative of ESF and windowing: This grants the LSF.

• Fourier transform of LSF: A discrete FT of the LSF (1D LSF = PSF) gives the OTF,
as examined in 2.8.3

• Modulus of OTF and normalization: As the wanted MTF describes a percentage of
modulation transfer, the modulus of the OTF must be normalized in range 0-1.
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Chapter 3

Image formation and deblurring
technologies

3.1 Sources of image degradation

Through different stages in the opto-electronic digital image capture system, many aspects
of unwanted noise are introduced. The sources of degradation to the image can be classified
as: [29]

• Photon shot noise: Due to the particle nature of light and the irregular distribution of
photons among the pixels, some fluctuations of photon events occur. This is heavily
observed when the light of the environment of the object is of low intensity. Random
arrivals of photons can be modeled with Poisson distributions.

• Thermal noise: Electronics of the imaging system while in operation cause thermal
agitation of electrons that were previously at equibrium. This results in faulty pixel
electron charge measurements. The random activation of electrons due to heat can be
modeled with Gaussian distributions.

• Scatter: Specimens with high heterogeneity of refractive indeces cause a scattering of
light that because of its intrinsic complexity cannot be predicted and therefore to be
modeled. Scatter increases as specimen thickness.

• Glare: Imperfections or misalignments of the components across the optical train cause
a glare effect that can corrected with material and alignment improvement.

• Blur: Diffraction phenomena put a limit in image resolution. So, when an optical
system magnifies an object close to its intrinsic resolution, a blurred version of the
true object is observed. Also, blurring happens when light from out-of-focus parts of
the sample is recorded on the focus image plane and/or light of adjacent areas mix
among each other. This form of noise is independent from the above-mentioned types
of degradation. Blur removal is possible with the use of deblurring techniques.

Currently used microscopy technologies are targeted in different aspects of blur removal.
One target is the eradication of effects related to diffraction phenomena or more specifically

29
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the improvement of the Airy disk so as to have a smaller radius and the surrounding diffrac-
tion pattern so as to exhibit ripples of lower intensity. This goal has been achieved by the
nobel-awarded Super Resolved Fluorescence Microscopy technologies. They allow images
to be taken with a higher resolution than the diffraction limit of an optical microscope,
enhancing the resolution from 200 nm to 100 nm. Two different methods accomplish the su-
per resolution goal; Stimulated Emission Depletion Microscopy (STED) and Single-Molecule
Microscopy, just for mention. The other target is the removal of defocused light from the
focused image and of superpositioned light of on-plane neighboring areas. For this goal there
exist two solutions: Confocal Microscopy and Deconvolution Microscopy.

3.2 Deblurring technologies

3.2.1 Conofocal Fluorescence Microscopy

[25] The basic element of a fluorescence confocal microscope is a pinhole that is place before a
light detector (i.e photomultiplier tube or PMT). This pinhole allows only light coming from
planes very close to the focal one to pass through. The advantage arising from this is that
lateral as well as axial resolution are enhanced. One disadvantage is though, that blocking
a significant percentage of the incoming cone of light leads to low signal intensity. This can
be solved by long exposures to fluorescent light. However, this has the danger of quicker
photobleaching, thus allowing less time for fluorescence observation as well as photoxicity
phenomena. The latter incorporate the toxic danger of some fluorochromes when the are
attached to cells under study. Light activates some processes within the labeled cells that
eventually compromise them entirely and damage their subcellular components. This danger
increases as fluorochromes are repeatedly or heavily exposed to light.

3.2.2 Widefield Fluorescence Deconvolution Microscopy

[29] An alternative way to remove the out-of-focus light is to record images at a series of focal
planes using a widefield microscope and then use a detailed knowledge of the imaging process
to correct it by computer image processing. Apart from defocused light, superpositioned light
from on-plane neighboring areas has a blurring effect across this single plane. This happens
since PSFs of adjecent points on a plane mix with each other. Fortunately, altogether the
defocused and the on-plane superpositioned light can be restored back to their area of origin.
Restoration has the meaning of reversing the process of blurring and ultimately the effect
of the PSF on the image (either on a 2D or a 3D image). The image of an object can be
divided in individual areas. Through the linearity property of optical systems, the image of
all the individual areas is equal to the ensemble of the images of each area seperately. This
means that:

Image(object) =Image(α1 + α2 + ...+ αn)

=Image(α1) + Image(α2) + ...+ Image(αn)
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, where α corresponds to a particular individual point.

Since, it is known that the depiction of an individual area of a particular lumincance is
spreaded by the weights of the PSF of the optical system and assuming a shift-invariant
PSF, it can be deduced from the above equation that:

Image(object) =
∑
A1

α1 � PSF +
∑
A2

α2 � PSF + ...+
∑
An

αn � PSF

=α ∗ PSF

, where �: element-wise multiplication,
α: vector consisting of all the ’α’ areas of the image,
∗: convolution operation sign,
Ak: number of elements of αk area; same size as PSF.
Thus, the convolution result y (with an omnipresent noise) of a true underlying fluorescent
signal x with the PSF h is given by:

y = h ∗ x+ n (3.1)

where the images and the noise are represented by matrices.

So, in order to reverse as said the above process of the convolution of the object with
the PSF, a de-convolution process must be realised. Deconvolution methods vary, as de-
convolution is not just a simple step back to the original underlying image of the object to
be depicted. These methods are computationally complex to some significant degree and
so a trade-off between restored image quality and time consumed to produce it has to be
determined.

Brief explanation of convolution: Let it be two matrices x and y. x will be convolved
with y and the result will be z. y has to be at most the size of x. The operation is as
follows: y matrix or else the convolution kernel ”scans” x in a top to down and left to right
direction. This ”scan” is defined as the element-wise multiplication of x and y elements and
the assignment of the sum of the multiplications to the central element of the sub-matrix of
z that is scanned at that moment. The discrete convolution is mathematically defined as:

y[p] = (x ∗ h)[p] =
∑
N3

x[r]h[p− r] (3.2)

, given at a 3D location p ∈ N3

The above equation can be transformed via notation of linear algebra into a more easily
read one:

y = Hx+ n (3.3)
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, where n: additive noise
x, y: vectors corresponding to true and observed image respectively. For a 2D image a vector
consists of the concatenation of the image rows.
H: circulant matrix corresponding to the convolution operation.

It is not needed to examine further this concept of the convolution with a circulant ma-
trix, since for deconvolution of large or a big group of images it is way too timeconsuming
for realistic applications.
Instead, the discrete FT of the Eq. 3.1 is used mostly in the deconvolution algorithms due
to higher speed of computation and less used memory compared to non-FT solutions:

Ŷ = Ĥ � X̂ + N̂ (3.4)

, where the capital letters indicate the corresponding Fourier Transforms. Note: FT of a
convolution in the spatial domain gives element-wise multiplication in the frequency domain.

As Fourier analysis states, a periodic signal is considered an infinite sum of sines and cosines
of different harmonic frequencies with each sine and cosine contributing with varying ampli-
tude. This can be extended to non-periodic signals, assuming their period is allowed to reach
infinity. So, generally FT gives all the frequencies that contribute in building the original
signal. In that notion, there exist another transform that uses signals limited in time and
frequency, which are termed wavelets, in order to decompose a signal to its contributing
wavelets. This transform is called Wavelet Transform. When a wavelet transform is exe-
cuted, one wavelet from a wide family of wavelets is used. The used wavelet is scaled in
time in order to handle higher or lower frequencies of the signal to be decomposed. Wavelet
Transforms are used in the algorithm explained at the end of this section Fast Iterative
Soft-Thresholding Algorithm (FISTA).

Thinking about solutions to the deconvolution problem, the first thing that comes to mind
is to modify Eq. 3.3 (assuming the noise power is low) as x = H−1y. This naive approach
is proved not to work. The reason is that the inverse problem of deconvolution is known to
have a high condition number (rendering it an ill-conditioned problem) which means that
a small error in the input causes a big error in the output. This means that from a set
of observed images with little differences among them, the estimated ”true” images of each
observed one will differ significantly. Specifically, the explicit solution is a poor choice since
it is sensitive to any noise in the observed image. From the above, it occurs that there is no
single solution to the naive inverse deconvolution method.

Thus, the best solution is to find the estimate which provides the best approximation of
the true image. To know if a good estimate has been found, the deconvolved image is con-
volved again with the PSF and it is expected the difference of the observed image with the
re-convolved image estimate to be infinitesimal in some way. This difference can be com-
puted in many ways which will be examined in the next chapter.
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Generally, the best estimate minimizes a cost function which corresponds to the aforemen-
tioned difference or otherwise residual:

C (x) =‖y −Hx‖2 (3.5)

Continuing with the FT-form of the cost function, the argmin
x

C (x) is to be found, or else

the x that makes the first derivative of the cost function to be zero. It is true that:

C (x) = (y −Hx)T (y −Hx) = yTy − xTHTy − yTHx+ xTHTHx (3.6)

, where T denotes the transpose matrix.

From this it follows that:
∂C (x)

∂x
= 0⇒ x = H−1y (3.7)

or in the Fourier domain:

X̂ =
Ŷ

Ĥ
(3.8)

As it can be seen, this solution corresponds to the aforementioned naive solution, but in
the frequency domain. Since, the FT of the observed image is divided by the FT of the PSF
which may contain close to zero elements, it is very probable for the estimate to exhibit very
large values, thus resulting in amplifying the already existing noise. A better approach is to
add some constraints (regularization) in the cost function which helps easing noise amplifi-
cation problem.
All the algorithms explained below are in agreement with [20] and [26].

3.3 Inverser Filter Algorithms

3.3.1 Tikhonov Regularization (TRIF)

The cost function is modified as:

C (x) =‖y −Hx‖2 + λ‖x‖2
2 (3.9)

, where λ is the regularizing parameter that balances the contribution of the two terms and
penalizes absolute high values of the solution. It consists a trade-off between data fidelity
and regularization, since transition in absolute high values might be image details as well as
noise. So, higher λ gives a smoother image. Minimization of such a problem (where more
than one unkown terms appear) can be solved with Lagrange multipliers. The solution is
given by:

x = (HTH + λI)−1HTy (3.10)
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, where I is the identity matrix. This can be expressed in the Fourier domain as:

X̂ =
ĤŶ

ĤĤ + λ1
(3.11)

, where Ĥ denotes the conjucate of Ĥ and 1 is a matrix of ones. When equations refer to
the frequency domain, � is omitted for simplification.

3.3.2 Regularized Inverse Filtering (RIF)

This method uses a cost function that when minimized it imposes smoothness on the esti-
mate. That is accomplished by penalizing high values of the 2nd derivative of X̂ . That is,
the cost function becomes:

C (x) =‖y −Hx‖2 + λ‖Lx‖2
2 (3.12)

, where L is a differential operator, like the Laplacian operator ∇2.

Differentiation of an image acts as a high-pass filter, so minimization also of the 2nd term
of the C (x) ends up in a smoother solution. But yet again, the ”amount” of smoothness
imposed, depends on λ. Again the method of Lagrange multipliers gives the solution:

x = (HTH + λLTL)−1HTy (3.13)

In the Fourier domain, this is expressed as:

X̂ =
ĤŶ

ĤĤ + λL̂L
(3.14)

Note: this FT solution gives a generalization of the classic Wiener filtering solution. To
derive Wiener filtering solution, λ is defined as 1/σn, with σn the noise variance. Also LTL
must impose a whitening transformation on x.

3.3.3 Wiener Filter

The Wiener filter integrates an estimated Noise-to-Signal power ratio (NSR). The solution
is expressed as:

X̂ =
ĤŶ

ĤĤ +NSR
(3.15)
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3.4 Constrained Iterative Algorithms

Inverse filtering algorithms suffer from sensitivity to the PSF. Small errors in the estimation
of the PSF may result in major artifacts in the solution. An alternative to this, is the option
of iterative methods. They minimize a residual/cost function as well as inverse algorithms
do, but by generating a series of improving approximate solutions. Often, the Wiener Filter
solution is used as the initial guess. The advantage of them in contrast to the inverse
solutions is that estimates exhibit better stability and less sensitivity to errors of the PSF.
The disadvantage is though, that they are computationally intense.

3.4.1 Landweber LW

This algorithm minimizes the unregularized C (x)‖y −Hx‖2 using the iterative gradient de-
scent approach. More specifically, one way to find the local minimum of a general function
F (x) starting from a particular point α, is to iteratively take steps proportional to the neg-
ative of the gradient of the function at the current point. This is because F (x) decreases
faster if we move against the direction of ∇F (α)

So, starting with α and with b being the next point closer to the local minimum of F (x) (or
global if F (x) is convex), we reach b via: b = α − γ∇F (x), with γ being the step size or
relaxation factor describing the speed of convergence of this method.

Thus, this can be expanded to more iterations and with an initial guess x0 and the sequence
x0, x1, x2, ..., xn we take the gradient descent general solution:

xn+1 = xn − γn∇F (xn), n ≥ 0 (3.16)

The importance of the step size can be explained with the concept of the level sets. A level
set is a set where the function takes on a given constant value. This can be visualized in
Fig. 3.1. In the center, the minimum of the function resides. In this case, the wider the
“circle”, the bigger the value of the function. So, taking little steps each time against the
derivative of the function in a point of a “circle”, directs us to the minimum in the center.
Here, we can see that the size of the step plays an important role, in the issue of convergence
to our solution. Specifically, A small step-size guarantees convergence, but leads to very slow
convergence, meaning more time to reach the center. On the other hand, A big step leads
to faster but less stable convergence (more like circling around the center).

To continue with the gradient descent solution the gradient of C (x) must be computed.

∇C (x) = −HTy +HTHx = −HT (y −Hx) (3.17)

The same applies for vector functions, so substituting the gradient in the Eq. 3.16 gives:

xn+1 = xn + γHT (y −Hx), 0 < γ < 2/σ2
1 (3.18)

where σ1 the largest singular value of H, that is
√
λmax(HTH)
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Figure 3.1: Gradient descent

Source: https://en.wikipedia.org/wiki/Gradient_descent

When Fourier Transforms signals are inversed, the spatial-domain result exhibits some over-
shoots and undershoots, especially in high-contrast areas where the signal drops or rises
abruptly. When undershoots happen they may cause the signal to have negative values at
some points. For this reason, a non-negative projection must be imposed to the values of
the result:

P(<+){x} = max(x, 0) (3.19)

Hence, the final form of the solution becomes:

xn+1 = P(<+){xn + γHT (y −Hxn)}, 0 < γ < 2/σ2
1 (3.20)

For the sake of speed, the above equation can be modified as below. In that way, each
iteration performs fewer operations. Thus, the solution becomes:

xn+1 = P(<+){Axn +G}, 0 < γ < 2/σ2
1 (3.21)

, where A = I − γHTH and G = γHTy
In the practical form for algorithms, this is expressed as:

xn+1 = P(<+){F−1{ÂX̂ + Ĝ}}, 0 < γ < 2/σ2
1 (3.22)

, where F−1: inverse Fourier Transform

Â = 1− γĤĤ and Ĝ = γĤŶ

https://en.wikipedia.org/wiki/Gradient_descent
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3.4.2 Iterative Constrained Tikhonov-Miller (ICTM)

Iterative Constrained Tikhonov-Miller algorithm (ICTM) uses iterative gradient descent to
minimize the Regularized Inverse Filter (RIF) cost function (Eq. 3.12). The gradient of C
(x) is:

∇C (x) = −HTy + (HTH + λLTL)x (3.23)

Substituting in the gradient descent equation (Eq. 3.16) with projection to <+ gives the
ICTM solution:

xn+1 = P(<+){xn + γ(HTy − (HTH + λLTL)xn) } (3.24)

As in the LandWeber algorithm (LW) solution, the ICTM solution is modified as:

xn+1 = P(<+){Axn +G} (3.25)

,where A = I − γ(HTH + λLTL) and G = γHTy

In the practical form for algorithms, this is expressed as:

xn+1 = P(<+){F−1{ÂX̂ + Ĝ}} (3.26)

, where Â = 1− γ(ĤĤ + λL̂L̂) and Ĝ = γĤŶ

3.4.3 Jansson-Van Cittert (JVC)

The Eq. 3.3 can be manipulated in the following way:

y −Hx = 0⇒ y −Hx+ x = x (3.27)

In iterative form, along with the use of some weighting coefficients and the nonnegative
projection, the Jansson-Van Cittert algorithm (JVC) solution is:

xn+1 = P(<+){xn + w � (y −Hx)} (3.28)

, where W: weighting coefficient matrix defined as:

K[1− 2

B − A
|xn −

A+B

2
|] (3.29)
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A,B: min and max values of xk respectively, K: constant

In the practical form for algorithms, this is expressed as:

xn+1 = P(<+){xn + w �F−1{Ŷ − ĤX̂}} (3.30)

This algorithm is quite straightforward and simple, but it exhibits slow convergence to an
acceptable solution. This might mean that more iterations are needed. However, due to
the fact that JVC does not take into account the additive noise of the image, as iterations
increase it is possible that resonance effects will be created and constructive image artifacts
will be generated. To partially overcome these problems, the initial guess is filtered with a
Gaussian or a Wiener filter and each of 4-7 iterations is smoothed with a Gaussian filter of
variable width.

3.4.4 Gold

This algorithm manipulates the Eq. 3.3 in a way to form an iterative multiplicative solution.
Note: the multiplications and division are element-wise.

y = Hx⇒ y

Hx
= 1⇒ y

Hx
x = x⇒

xn+1 = P(<+)

{
xn

y

Hx

}
In the practical form for algorithms, this is expressed as:

xn+1 = P(<+)

{
xn

y

F−1{ĤX̂}

}
The same conclusions of JVC apply to the GOLD algorithm, although multiplicative formu-
lation of GOLD gives a more rapid convergence than JVC.

3.4.5 Richardson-Lucy (RL)

The previously examined algorithms did not took into consideration any existing noise. But,
the statistical information of the noise in the observed image y can be used in order to re-
construct a more precise image. To find the estimate x, one must answer to the question:
Which image of the very many possible ones, is the most likely to be the desired underlying
true image x, given the noisy image y?. The meaning of probability is actually in terms of
a normalized frequency of photon events in each image pixel.

The above x and y symbols denote the image matrices. So, the unknown x is expressed
as:

x̂ = argmax
x

p(x|y) (3.31)
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, where x̂ denotes the estimated image x.

Thus, the estimate is the image with the Maximum A Posteriori (MAP) probability.
It is known that:

p(x|y) =
p(x, y)

p(y)
=
p(y|x)p(x)

p(y)
(3.32)

From the two above equations it follows that:

x̂ = argmax
x

p(y|x)p(x) (3.33)

This is equal to minimizing the negative logarithm of the argument, providing the cost
function:

C (y, x) = − ln p(y|x)− λ ln p(x) = L(y, x) + λΩ(x) (3.34)

, where λ: regularization parameter, Ω(x): smoothing function.

There are two subfamilies of algorithms. Those that do not use the regularization func-
tion and follow a Poisson-distributed noise and those that use the regularization function
but follow a Gaussian-distributed noise for the sake of math simplification. Richardson-Lucy
belongs to the first category, which minimizes the likelihood y|x, thus making it a Maximum
Likelihood Estimation (MLE) algorithm.

In the Richardson Lucy algorithm (RL) concept, every image pixel follows the Poisson dis-
tribution, that is the probability of obtaining a noisy pixel ym given its noise-free averaged
value µm, which is expressed as:

p(ym|µm) =
µymm e−µm

ym!
(3.35)

Every pixel is statistically independent from the others, so the probability of the whole image
is equal to the product of the individual probabilities, giving:

p(y|x) = p(y|µ) =
∏
m

p(ym|µm) =
∏
m

µymm e−µm

ym!
(3.36)

Substituting the above expression into the cost function C (y, x) = −ln p(y|x) gives:

C (y, x) =
∑
m

(µm − ym ln µm + ln ym! ) (3.37)

Since µ is the image of the noise-free averaged pixel values, it is true that µ is actually the
noise-free convolution of the true image x and the PSF h (see Eq. 3.1). That is: µ = y ∗ h.
Since, though, the C (y, µ) contains a sum, it is better to express the convolution (for a single

image pixel) in the sum form as: µm =
∑
l

hl−m xl
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So, by setting the derivative of the C (y, xl) to zero, with respect to xl, it follows that:

∂C (y, xl)

∂xl
=
∑
l

hm−l yl∑
n

hn−l xn

− 1 = 0 (3.38)

Manipulating the above equation in order to convert it to an iterative multiplicative form,
it gives:

xk+1
m = K xkm

∑
l

hm−l yl∑
n

hn−l xn


 (3.39)

, where K: normalizing energy constant.

This can be written back again to the convolution and matrix notation, as in this way
the solution can be executed in the Fourier Transform domain:

xk+1 = xk � hT ∗
(

y

h ∗ xk

)
(3.40)

, where multiplication and division are element-wise and hT is the flipped PSF matrix.

From the above solution it is apparent that the implementation of the RL algorithm is
easy as long as no extra parameters are included. Since noise is integrated in the algo-
rithm, RL is generally more robust to noise than the aforementioned methods. However,
RL exhibits very slow convergence to an acceptable image-solution, because it takes more
computing time per iteration than the previously mentioned classical algorithms.

3.4.6 Richardson-Lucy Total Variation (RL-TV)

As examined in the previous methods, a regularization in the final solution helps counter-
balancing noise amplification. The same can be applied in the RL solution. Specifically,
regularization is achieved by minimizing the total variation of the image which is defined as
the integral of the absolute gradient of the image. To put it practically, the total variation
of a 1D signal is the length of the curve defining the signal itself. This can be expanded for
images too. So, to derive the solution image, a mutual minimization of the cost function of
the RL (Eq. 3.37) plus the total variation of the image must happen. In a convolution and
matrix notation along with a regularization factor, this can be expressed as:

C (x) = h ∗ x− y ln(h ∗ x) + λ ‖Dx ‖1 (3.41)

, where D: 1st order differentiation operator of x,
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λ: regularization parameter.

To derive the minimized solution from the C (x)) a multiplicative form of the gradient descent
method is used:

xk+1 = xk
[
−λ∇C (xk)

]
⇒

⇒ xk+1 = xk � hT ∗
(

y

h ∗ xk

)
� 1

1 + λ gk

, where gk: the derivative of a regularized version of ‖Dx ‖1

Note: The L1 norm penalization is known to better preserve image discontinuities compared
to L2 norm.

3.4.7 Fast Iterative Soft-Thresholding Algorithm (FISTA)

Alternative regularization terms to the cost function of RIF (Eq. 3.12) can be considered. In
particular, sparsity (regularization) constraints in the wavelet domain have proven to yield
better preservation of image details and discontinuities. The associated cost function is:

C (x) =‖ y −Hx ‖2
1 + λ ‖W x ‖1 (3.42)

, where W : a Wavelet Transform operator

Due to the nonsmoothness of the l1 norm, gradient-descent algorithms cannot be used.
However, the problem can be solved efficiently by fast iterative soft-thresholding with the
following iterations:

zn+1 = sn − γHT (H sn − y) (3.43)

xn+1 = W T T (Wzn+1, γ λ) (3.44)

, where T (·, τ): a soft-thresholding operator with threshold τ .

In general, soft-thresholding means that a signal is srunk into a region determined by the
following. When a particular signal value x ∈ [−τ, τ ], it becomes 0. When x > |τ |, then it
acquires the value sign(x) · (|x| − τ).

pn+1 =
1

2

(
1 +

√
1 + 4p2

n

)
(3.45)

sn+1 = xn+1 +
pn − 1

pn+1

(xn+1)− xn (3.46)

Again, it is better the equations containing convolution operations to be expressed in the
Fourier domain.
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3.4.8 Blind Deconvolution

All the previously examined algorithms demand the knowledge of the PSF. But when acquir-
ing the PSF is proved to be difficult for reasons of any kind, then an alternative approach
is the use of blind deconvolution methods. They are termed ”blind” because they try to
estimate the true image out of the blurred one without knowing the impulse response func-
tion of the optical system (PSF). So, in order to start making guesses about the estimate,
they must apply some constraints both on the estimate and the PSF. The constraints on the
estimate may have the form of non-negativity, finite support with the latter referring to the
smallest rectangle within which the true object is contained. Finite support has effect on
fluorescence and astronomy images where objects are easily identified. The constraints on
the PSF may have the form of symmetry, finite support, known parametric form with the
latter meaning a particular type of blurring like defocus or camera motion blur.

Implementations of this category of algorithms may vary. In the next chapter, the blind
deconvolution is realised with the algorithm explained below (as implemented in the Image
Processing Toolbox of MATLABR ). Again, x denotes the true image vector, y the observed
image vector and h the PSF image vector.

The algorithm uses the standard MLE algorithm described above, together with a PSF
estimation for each iteration. The object is computed, using the MLE estimation, as follows:

xk+1 = Kxk � hT ∗
(

y

h ∗ xk

)
(3.47)

Using exactly the same mathematical reasoning, PSF is estimated by maximizing the log
likelihood function with respect to h, which gives:

hk+1 =
1

N
hk � xT ∗

(
y

x ∗ hk

)
(3.48)

, where N is a normalization constant relating to the unit volume.

The following iterations take place as implemented in MATLAB. At first, estimate and
PSF predictions (j and k respectively) using the non-negativity constrained are made:

j = P(<+)

{
xn + λx,n(xn − xn−1)

}
(3.49)

k = P(<+)

{
hn + λh,n(hn − hn−1)

}
(3.50)

As for the h0, an initial PSF is assumed. The critical part of the assumption is the initial
PSF image size, rather than an attempt to find a good PSF approach. Note: k is normalised
so that the PSF pixels sum to the value 1. Normalization is a necessary constraint because
given only input image, the algorithm cannot know how much power is in the image vs the
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PSF.

λx,n is a coefficient for the estimate prediction that is computed by:

λx,n = αTx,n βx,n / β
T
x,n βx,n , 0 ≤ λx,n ≤ 1 (3.51)

Where:
αx,n = xn − j (3.52)

and
βx,n = αx,n−1 (3.53)

λh,n is a coefficient for the estimate prediction that is computed by:

λh,n = αTh,n βh,n / β
T
h,n βh,n , 0 ≤ λh,n ≤ 1 (3.54)

Where:
αh,n = hn − k (3.55)

and
βh,n = αh,n−1 (3.56)

The above computed estimate and PSF predictions are used in the Richardson-Lucy al-
gorithm that produces the deconvolved estimate of the true image in each iteration.

3.4.9 Self-Deconvolving Data Reconstruction Algorithm (SeD-
DaRA)

The Self-Deconvolving Data Reconstruction Algorithm (SeDDaRA), [16] is based on the
premise that there is enough knowledge of the scene statistics that a suitable model of the
scene can be found. Thus, a reference image with similar spatial frequency content, but no
blur, is used as a model to extract the blur from the target image.

The mathematical representation of the blurred image g(x, y) is

g(x, y) = f(x, y)� d(x, y) + w(x, y) (3.57)

, where f(x, y) is the real scene d(x, y): the point spread function (PSF) w(x, y): a noise
term �: indicates convolution.
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Application of a Fast Fourier Transform (FFT) produces:

G(u, v) = F (u, v)D(u, v) +W (u, v) (3.58)

, where u, v: the coordinates in frequency space, and the transformed functions are repre-
sented by capital letters.

If d(x, y) is known, a deconvolution process can be applied to g(x, y) to estimate f(x, y). For
this effort, a pseudo-inverse filter, an approximation of the Wiener filter, has been used. It
is a fast process and very robust, and has been shown as effective as iterative deconvolution
approaches. [7], [15] The deconvolution is given by:

F (u, v) ≈ G(u, v)D∗(u, v)

|D(u, v)|2 + C2

(3.59)

where the parameter C2 is typically chosen as 0.01 multiplied by the average of |D(u, v)|.
The constant acts as a tuning parameter to guard against amplification of the image noise.

The SeDDaRA process assumes the PSF is space-invariant and has the form:

D(u, v) =
[
KG S

{
|G(u, v)−W (u, v)|

}]α(u,v)

(3.60)

, where α(u, v) is a tuning parameter
KG is a real, positive scalar chosen to ensure |D(u, v)| ≤ 1 S{...} a smoothing filter which
its application assumes that D(u, v) is a slowly varying function.
Assumptions for this calculation are explained in reference [16].

After some derivation, α(u, v) is found to be:

α(u, v) ≈
ln
[
KG S

∣∣G(u, v)−W (u, v)
∣∣ ]− ln [KF ′ S

{∣∣F ′(u, v)
∣∣}]

ln
[
KG S

∣∣G(u, v)−W (u, v)
∣∣] (3.61)

, where F ′(u, v) is a reference image that satisfies:

KF ′ S
{∣∣F ′(u, v)

∣∣} ≈ KF S
{∣∣F (u, v)

∣∣} (3.62)

The presence of a smoothing filter greatly relaxes this condition. In Equation 3.61 KG and
KF ′ must be determined such that |D(u, v)| ≤ 1. This condition is satisfied if we set:
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KG =
1

max

[
S
{∣∣G(u, v)

∣∣}] (3.63)

KF ′ =
1

max

[
S
{∣∣F ′(u, v)

∣∣}] (3.64)

However, as first reported in Reference [23], SeDDaRA can be approximated by express-
ing α(u, v) as a constant of frequency α. The value α depends on scene statistics, but often
α = 0.5 is an appropriate choice. The constant-frequency approximation is often as effective
as Equation 3.61, particularly when the PSF has rotational symmetry. Once D(u, v) has
been extracted from the averaged image, both functions are inserted into Equation 3.59 to
remove the blur. Application of an inverse FFT produces the restored image.

3.5 Artifacts

3.5.1 Ghost Artifacts, Zero-Padding and Edge Tapering

Data subjected to a FFT must necessarily be assumed to be periodic. This implies that
borders at opposite sides of the image are implicitly adjoined once periodization is taken
into account. Consequently, structures near the borders of an image, once processed, will
spill over the opposite border, letting ghosts appear. For this reason, images can be padded
with zeros beyond all edges, resulting in an expanded image with dark regions around. If
the padding is sufficient the ghost artifacts appear only in the dark regions. Finally, ghosts
are cropped out. If it is not wanted images to be expanded, another solution is to blur
the regions near the boundaries with the PSF, easing in that way the effect of ghosts after
deconvolution. This technique is called edgetapering.

3.5.2 Ringing Artifacts and Early Stopping

As far as all the algorithms are concerned, as it was previously explained in the Landweber
algorithm section, inversed signals from the Fourier domain to the spatial one exhibit some
overshoots and undershoots in areas of discontinuities and high signal jumps. Fourier Trans-
form is performed in a discretized form allowing a finite number of harmonics to contribute in
building the original signal. It is apparent that, the more harmonics included the better the
representation of the original signal and the less the oscillations. However, these oscillations
do not die out as the number of harmonics increases, but they reach a limit. This peculiar
fact is known as the Gibbs phenomenon and explains the cause of ringing artifacts in images
being processed with Fourier Transforms.

Hence, oscillations are imposed progressively on oscillations caused by FT. So, in order
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to avoid ringing artifact amplification in high contrast areas of images, the number of itera-
tions is preferable not to exceed a limit which can be better found by eye-evaluation of the
resulted image. Algorithms in general though, can integrate such an early stopping criterion
with the aid of quantitative metrics. Specifically they choose to stop the iterations, when
they ”see” that no substancial changes are made to the image.



Chapter 4

Quantitative Metrics

After the deconvolution process is done, evaluating the quality of the result can be done in
several ways.

4.1 Residual Norm

By reblurring the true image estimate (x) after the deconvolution process, it can be seen how
similar this degraded image is with the original (y). If the reblurred image is close to the
original image, this means that the deconvolution process worked effectively. The reblurred
image is constructed convolving the deconvolution result with the PSF (circulant matrix H).

Hence, the difference y − Hx is desired to be computed. This is called the residual be-
tween y and Hx. In order to obtain a single scalar number index, the sum of the squared
values of the elements of the residual image [4] or equivalently the squared l2 norm of the
residual image is computed and normalized by the square root of the total number of the
residual elements. This is written as:

ResidualNorm =
1√

numel
‖y −Hx‖2

2

, where numel: total number of residual image pixels

4.2 I-Divergence

Based on the Kullback–Leibler divergence [17] which is a measure of how a probability
distribution diverges from a second expected probability distribution, a metric of difference
between images can be computed. Probability distributions are substituted by the images
which therefore gives a modified Kullback-Leibler measure, called I-divergence:

I − divergence =
∑
ij

{
(Hx)ij ∗ ln

(Hx)ij
yij

−
(
(Hx)ij − yij

)}
, where subscripts i, j denote the image pixel of the i-th row and the j-th column.

47
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4.3 Structural Similarity Index (SSIM)

Structural SIMilarity indexs (SSIMs) [30] is a perception-based model that considers image
degradation as perceived change in structural information, while also incorporating impor-
tant perceptual phenomena, including both luminance masking and contrast masking terms.
Structural information is the idea that the pixels have strong inter-dependencies especially
when they are spatially close. These dependencies carry important information about the
structure of the objects in the visual scene. Luminance masking is a phenomenon whereby
image distortions tend to be less visible in bright regions, while contrast masking is a phe-
nomenon whereby distortions become less visible where there is significant activity or ”tex-
ture” in the image. The SSIMs index is calculated on various windows of an image. The
SSIMs formula u and v (of Hx and y respectively) of common size N×N . These comparison
measurements concern luminance (l), contrast (c) and structure (s). The product of them
produces the following formula in its final form:

SSIM(u, v) =
(2µuµv + c1)(2σuv + c2)

(µ2
u + µ2

v + c1)(σ2
u + σ2

v + c2)

, where µu: average of u
µv: average of v
σ2
u: variance of u
σ2
v : variance of v
σuv: covariance of u and v
c1, c2: variables to stabilize divisions with weak denominators.

4.4 Full Width At Half Maximum (FWHM)

4.4.1 Spatial Resolution

[6] Spatial Resolution refers to the ability of the camera to image two separate objects as
they are moved closer and closer to each other in space. One measure of spatial resolution
is known as the Full-Width at Half Max (FWHMs) resolution, and is probably the correct
method to accurately determine the resolving Power of the camera. If the two objects must
be 2 mm apart to be seen as two distinct objects, (as opposed to one single blurred object),
the spatial resolution is said to be 2 mm.

Use two sources of the isotope to be imaged:

Figure 4.1: Two sources of the isotope
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Move the sources toward each other and measure the separation at which the images of
the two points cannot be distinguished.

Figure 4.2: Moving sources toward each other

Note that the images will blur together completely at a separation approximately equal
to the full-width at half maximum (FWHM) of the image of the point. When the resolution
is specified as a single number, that number is usually the FWHM of the point-source image.

Figure 4.3: The images of the two points cannot be distinguished at fwhm separation

The smaller the number of FWHM, the Better the Spatial Resolution

4.4.2 FWHM in astronomy

[1] The technical term Full-Width Half-Maximum, or FWHM, is used to describe a measure-
ment of the width of an object in a picture, when that object does not have sharp edges.
A simple box can be described just by its width, and a rectangle by its width and height.
However, the image of a star in an astronomical picture has a profile which is closer to a
Gaussian curve, given mathematically by exp(−x2/2σ2) or graphically as:

Figure 4.4: The Full Width at Half Maximum

In order to compare different profiles, we can use the Gaussian parameter in the de-
nominator of the mathematical expression, usually represented by the Greek letter sigma
(σ). This does not really describe the extent of the profile, but we cannot use the ”total
width” of the profile, because it extends forever, albeit at a very low level after a distance
of a few times sigma. An alternative, which better reflects the approximate size of the star’s
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image as seen by the eye, is the width across the profile when it drops to half of its peak,
or maximum, value (shown in the graph above). This is the full width of the image at half
maximum value, or full-width half-maximum, or FWHM. It is a simple and well-defined
number which can be used to compare the quality of images obtained under different ob-
serving conditions. In the usual sort of astronomical image, the FWHM is measured for a
selection of stars in the frame and the ”seeing” or image quality is reported as the mean value.

As far as microscopy is concerned, we can use this technique by taking manually selected
profiles of a microscope image that include a peak, and measuring FWHM. As we will see
below, we can use these metrics as a benchmark for spatial analysis that deconvolution al-
gorithms achieve, since we are interested in seeing the differences between algorithms rather
than the value of FWHM itself.

4.5 Deconvolution Results Comparison Method

Having all the results in our hands, an important question that arises is that of comparing
them. By comparing we mean, evaluating and classifying them according to their perfor-
mance in specific features. In the present diploma the results are approached from various
angles so as to create a relatively complete comparison between them. The features examined
in this diploma are described below:

4.5.1 Peak Score

The main feature of interest is the quantification of the increase in spatial resolution of the
image. This is what we try to achieve locally by measuring FWHMs, at manually selected
signal peaks. The smallest value means that the algorithm is more aggressive and the result
is better focused. If we have an equal FWHM, we also take into account the maximum
value of each peak (Fig. 4.5). This easily results in a ”Peak Score” where is the ratio of the
maximum value of peak to FWHM. The higher the ”Peak Score” the greater and the spatial
resolution and the value of the contrast.

In the case where the lowest value of our signal, as in our case, is not zero, we assume
that the peak height starts from the lowest value, more specifically, the background intensity
value as shown in Fig. 4.6

Finally, the formula for Peak Score is:

Peak Score =
Peak Height

FWHM
=
fmax − fbg
FWHM

4.5.2 Signal And Background Score

Even if one result has a better spatial resolution than another, it may not be valid because of
the increase in variance and noise due to the aggressiveness and sensitivity of the algorithm
to it. In an image whose tensions belong to a small range of values (i.e. monochromatic),
noise can be considered the expected value of the deviation of the stresses from their mean
value. By measuring the standard deviation in manually selected areas of the same intensity
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Figure 4.5: FWHM and Peak Height measures

values of each sample’s image, for both the background and the signal, we can approximate
the noise of the image in these areas. This results in two new values, the ”signal score”
being the mean value of the signal decreasing the noise degradation (i.e., standard deviation
of signal) and respectively the ”background / noise score” that is the background / noise
average plus the ”upgrading” due to noise (ie, standard deviation of background).

Signal Score = SignalMean − Signalstd

Background Score = BackgroundMean +Backgroundstd

4.5.3 SNR Score

Qualitatively, the existence of noise results in visually confusing high noise levels (background-
noise) with low (and not only) signal values ( for example signal score) so that the structural
features of the image not to become discrete or even to change their structure. Thus, it
would be legitimate to have an indicator that quantifies this relationship of signal and noise.
This can be expressed by the signal-to-noise ratio (SNR). [5]

We consider ”SNR score” the signal score to the background-noise score. The higher the
SNR score, the more distinct are the structural features of the image and the noise has a
lesser effect on the image.

SNR Score =
Signal Score

Background Score
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Figure 4.6: FWHM and Peak Height measures with non zero background

4.5.4 Histogram Score

Another feature we look at is the change in the histogram of the image.[8] When the values
of the intensities from the useful image data are better distributed, then we have a better
overall contrast. The standard deviation of the histogram shows how ”stretched” are the
intensities in the histogram are. The smaller the value of the standard deviation, the more
concentrated the intensity values are in a range, the contrast of the image is smaller than an
image with a larger standard histogram deviation, where the values are spread over or over
the range prices. We consider ”Histogram Score”, the standard deviation of the histogram
of the image.

Histogram Score = Histogram std

4.5.5 Final Score

At this point, it is advisable to point out that the way the areas are selected for the mea-
surements, because it is manual and it is at the discretion of the user to choose the right
areas affects the results, but not in a way that changes the classification of the algorithms
among them. Also for the same reason, this comparison method can not be generalized and
automated for each different sample and should be done on each sample separately. How-
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Figure 4.7: Application GUI - start page

ever, each classification could be considered a guide for samples of the same type each time.
Having these metrics, in the end, we create a ranking of algorithms and we have a general
score of success and validity of the results they produce. We also have a hint on what the
practical behavior of each algorithm is in each sample.

The formula that gives us the final score results from the combination of all the ”score-
scores” as shown below:

Final Score = Peak Score ∗ SNR Score ∗Histogram Score
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Chapter 5

GUI Explanation

The GUI developed for this diploma thesis is built on MATLABR App Designer and is
supported in versions: R2017a +. The GUI integrates a set of deconvolution inverse and
repetitive algorithms, the ability to export MTF and PSF using the ”Slanted Edge” method
(and optionally the ”Fluorescence Microspheres” method), creating, processing, and ex-
porting comprehensive results comparison reports with final classification according to the
validity of the results (Final Score) accompanied by the corresponding files (pictures, di-
agrams, etc.). There is also the ability to import focused image to compare and produce
deconvolution results for further research (such as artificially constructed images and more).

5.1 Getting to know the GUI

By opening the application, it can be seen that it consists of 5 tabs (in red), the order of
which is consistent with the order of functions required to produce and compare deconvolu-
tion results.

The first tab (”Import Image”) includes the function of inserting the specimen we want
to investigate (in orange), importing a focused specimen if necessary (in green) and editing
the background, where it attempts to lower the values background intensities and background
noise (in blue) as shown below.

55
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Figure 5.1: Application GUI - start page

(a) original (b) processed

Figure 5.1: An example of background processing
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If we want to create a comparison of results that contains a final algorithm ranking from
the Peak Comparison Method, we can initialize the parameters of this method from the
bottom of this screen (in purple color). Starting from left to right, we have the option to
manually select the signal area, the background area, the peaks to be examined, and at the
same time we can see their profiles as shown below. In the yellow selected areas, for example,
we see how to manually select a signal and how that profile appears on the chart.

Figure 5.2: Application GUI - signal selection

The following tab (”Deconvolution”) includes a variety of options related to the decon-
volution process and the production of reference and ranking results.

At the top there is a series of tabs with the names of the deconvolution algorithms (in
red), and in the end two tabs, ”Decovnolution All” and ”Report” (in green). On the decon-
volution algorithms tabs (in red) there is a basic structure where it is made so that it is easy
to parameterize the algorithms and produce the results.

As we see on the left, in the blue contour area, there are the parameters of the algorithm that
can be managed by the user, as well as the ”Deconvolve” button, where the output process
begins according to the existing parameters. In this area there is a choice of PSF to be used
if the algorithm is configured with PSF, as shown for Richardson Lucy - Total Variation
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Figure 5.3: Application GUI - Deconvolution options example for RLTV algorithm

algorithm (RLTV). The choice of PSF can be multiple, so the program will produce results
for each PSF.

In the bottom-right area with a purple contour, there is an initialization parameter stor-
age table for massive output. The user can enter as many initializations of the algorithm
as he wants and then produce all the results together. This function is very useful, first, to
save time, due to automation, and the necessity of user existence, to produce each result
separately, and secondly, it helps to organize and make easier the comparison of the results
produced. Simply, we select the parameters we want from the blue border, and then click
on the ”Import Settings” button to create and save all the parameters in the table. It is
also possible to delete an entry, as well as edit the entries directly on the table. Finally, the
”Deconvolve All” button starts the automated output process.

Continuing to the right, in the area with the orange outline, we look at the top of the
list of results, from where we can select one of them if we want to appear in the central box.
When selecting the result, I-Divergence, SSIM, Residual Norms are displayed at the bottom
of the screen in the form of a conter. We can also delete the selected result with the ”Delete
Result” button. If we want the result to be included in the final report, then we press the
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”Import to Report” button, which copies it to the report mode on the Report tab. Finally,
you can choose to display the statistics of all the results of each algorithm by pressing the
corresponding buttons (”Residual Norm”, ”SSIM”, ”I-Divergence”).

The penultimate tab, ”Deconvolve All”, contains functions of mass production of decon-
volution results and production and export of reports and ranking list. There are check
boxes for each algorithm we want to include. There is a separate option to create a reference
folder for the ”Deconvolve All” button and the ”Deconvolve” button. In the case of choosing
to create a reference folder, then a folder containing all the necessary files associated with
this research (example original image, algorithm results, comparison statistics, ranking list,
and much more) is created. It is also possible to set a prefix for the folder name if two or
more different searches are required for the same sample. The different prefix will result in
the creation of a reference folder and output of results.

Figure 5.4: Application GUI - Deconvolve All Tab Functionality

Also, if we want to extract a list of algorithms, then select ”Run Peak Analysis”. There is
also the ability to create a ranking list from a single-channel image analysis where it converts
the sample and results into a gray scale automatically. Finally, if mass deconvolution has
been performed with one of the two buttons, but we want to add more results in a second
time, then select the ”ADD NEW RESULTS TO OLD” button and start the Deconvolution
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process again.

The last ”Report” tab is a combination of the ”Deconvolve All” tab and the algorithm
tabs. In fact, the results transferred with the ”Import to Report” button from the algorithm
tabs on this tab now appear all together, and it is possible to create comparison and ranking
lists as in the previous tab (button ” Extract Report ”). It is also possible to store the data
of the record as a reference (”Save Report” button) if data is to be rechecked in a second
and not only time, or if additional result is needed and a new list of rankings and a total
report are generated.

Figure 5.5: Application GUI - Report Manager Tab Functionality
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The ”Slanted Edge MTF” tab incorporates the PSF output function with the Slanted
Edge method. Initially (in red), the user enters the sample with the ”Import Slanted Edge
Image” button. Then (in green), select the area of interest (”Select ROI” button). Finally
(in blue), the capture parameters (pixel size and magnification) belonging to the inserted
sample must be adjusted correctly before starting the PSF calculation (”Estimate PSF”
button). The calculated PSF and MTF can be displayed in three-dimensional form using
the corresponding buttons (in yellow) as shown below.

Figure 5.6: Application GUI - Slanted Edge Tab Functionality (PSF Extraction)
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Figure 5.7: Application GUI - Slanted Edge tab showing otf example

Once the PSF has been calculated, the deconvolution algorithms can be entered in the
lists to be used, by writing the desired name and by pressing the ”Import To PSFs (One
channel)” button. As additional functionality, the ability to create three-channel PSF (red,
green, blue) has been added to take place at the bottom of the screen. Each add button
(”AddRed”, ”AddGreen”, ”AddBlue”) adds the already calculated PSF of a channel shown
in the central box.

5.2 Code Implementation

The code of the above-mentioned application consists of a file system that follows a strict
structure.
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In the application folder are the following files with the following properties:

1. ”DeconvolutionCompare.mlapp” (file): The file where the application opens

2. ”DirectoryOrganisation.m” (file): a class that is responsible for managing the file sys-
tem

3. ” Deconvolution Algorithms” (folder): Folder with the kernels of the Deconvolution
algorithms

• Naive Inverse Filters (NIFs), RIFs, Tikhonov Regularized Inverse Filters (TRIFs),
GOLD, JVCs, LW, ICTM, FISTA and SeDDaRA algorithms are implemented by
the transfer of the formulae that give the particular image estimates (Subsec.
2.4.2) into MATLAB code. The corresponding files are namesake (except SeD-
DaRA with file ”deconvSeDDaRA var.m”) and have the suffix ” var.m”

• For the RL, Wiener, Regularized and Blind Deconvolution algorithms, their im-
plementations of the Image Processing Toolbox of MATLAB are used (deconvrl,
deconvwnr and deconvblind respectively). RL and Blind Deconvolution are mod-
ified only for integrating residual norm computation and early stopping criterion.
These algorithms are located in ”rl var.m”, ”deconvWiener var.m”, ”deconvReg-
ularized var.m” and ”deconv blind var.m” files respectively.

• For the RLTV algorithm, the Total Variation factor is ”attached” to the RL result
in each iteration. It is located in ”rltv var.m” file.

4. ” Utils” (folder): a folder with all the necessary tools for the program

• ”EdgeAnalysisUtils” (folder) :

– ”DeconvolutionResultEdgeAnalysis.m” (file) : matlab classdef, which con-
tains all functions that are responsible for the results peak comparison method
and final ranking export.

– EdgeAnalysisData.m (file) : matlab classdef. Auxiliary file for “Deconvolu-
tionResultEdgeAnalysis.m”, with data management functions.

• ”FluerescentBeadsUtils” (folder) :

– “MicrosphereToMtfPsfHandler.m” (file) : matlab classdef, responsible for
mtf-psf extraction with Fluerescent Beads method

• ”MtfExtractionUtils” (folder) :

– “SlantedEdgeToMtfPsfHandler.m” (file) : matlab classdef, responsible for
mtf-psf extraction with Slanted Edge method

• “Parsers” (folder) : this folder has data parsers and extra functions that are used
in deconvolution algorithms funstions entries.

• “ProgramStateUtils” (folder) :

– “DeconvolutionReportHandler.m” (file) : matlab classdef, which manages the
report creation and extaction
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– “DeconvolutionResultStore.m” (file) : matlab classdef, each object keeps and
manage data from one deconvolution result ( images, paths ect)

– “DeconvolutionStore.m” (file) : matlab classdef, data manager. Each object
represents and manages the results collection of a deconvolution algorithm

• “DeconvolutionCaller.m” (file) : matlab classdef, responsible for data entries
preperation. Collect users selections and parse them to the right forms. Finally
call the right deconvolution algorithm/function.

• “deconvolutionWalk.m” (file) : matlab function. Gets collection of initialization
variables and psfs, and run deconvolution algorithm for all combinations.

• “PsfHandler.m” (file) : matlab classdef, manages psfs (read/write) data.

• “OtherUtils” (folder) : this folder contains extra functionality

5. ”Samples” (folder): folder where the samples to be examined exist

6. ”Results” (folder): folder that stores all the results from deconvolution

7. ”Reports” (folder): Output folder, all reports and related files

8. ” PSFs” (folder): folder that stores all PSFs calculated by the Slanted Edge method
and used by the program for deconvolution

9. ” 1.ProgramState” (folder): folder that stores files related to creating reports. main
use of the ”Report” tab of the program.
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Experiment And Results

6.1 Preparation

For this test, two images were used, from a fluorescence microscope. The first is a Slanted
Edge sample and the other one is a sample of cells. The microscope set to the maximum
magnification which is x21,9. Images are RGB, size 3096x2080, and taken with 10 second
exposure. The Slanted Edge sample is converted to gray scale, and PSFs is extracted from
it. It is also possible to manufacture three-dimensional PSFs using different wavelength
samples, combining them into an RGB-PSF result. The capture information is:

[ZWO ASI178MC]
Pan=0
Tilt=0
Output Format=PNG files (*.png)
Binning=1
Capture Area=3096x2080
Colour Space=RGB24
Temperature=34,1
Hardware Binning=Off
High Speed Mode=On
Turbo USB=60(Auto)
Flip=Both
Frame Rate Limit=Maximum
Gain=55
Exposure=10
Timestamp Frames=Off
White Bal (B)=86
White Bal (R)=70
Brightness=0
Auto Exp Max Gain=255
Auto Exp Max Exp M S=30000
Auto Exp Target Brightness=100
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Mono Bin=Off
Apply Flat=None
Subtract Dark=None
#Black Point
Display Black Point=0
#MidTone Point
Display MidTone Point=0,5
#White Point
Display White Point=1
TimeStamp=2018-05-17T13:01:50.1220601Z
SharpCapVersion=3.1.5059.0

The experimental process aims to produce results of comparing and classifying algorithms
according to the characteristics of interest, such as the level of deblur, noise etc, as described
in 4.5.

6.2 Process

Beginning with the image of the sample, manually selected five (5) of sharp profile and dis-
tinct peak intensities, that measurements be done without problems. In the event that other
marks surround the area of a peak, the correctness of the results may be affected. Then,
manually, a signal profile and a background profile are also selected. The options are also
easily confirmed by viewing profiles in the corresponding windows of the Import Image tab
in the application.

Then, on the Deconvolution tab, the algorithm options are set as shown below:

Wiener: NSR = 0.001
RIF: lambda = 0.01

TRIF: lambda = 0.01
LW: iterations = 15 gamma = 1.7

ICTM: iterations = 25 gamma = 1 lambda = 0.01
GOLD: iterations = 25
JVC: iterations = 25
RL: iterations = 25

RLTV: iterations = 25 lambda = 0.01
FISTA: iterations = 40 gamma = 1 lambda = 0.001

wavelet: symlet2 decomposition levels = 3
BLIND: psfSsize : 11

SEDDARA: filter type: average filter size = 148 filter sygma = 74
Alpha = 0.01 alpha scalar: enable alpha mean correction: enable

noise estimation: enable

* Those algorithms that are susceptible to early stop, the option was enabled.
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Then, on the Slanted Edge MTF tab, the Slanted Edge sample is selected and a ROI is
selected which is a 200x200 pixels square centered on the edge so that the amount of pixels
at low intensity is approximately the same as the percentage of pixels with high intensity.
The pixel size is 0.0024mm and the magnification is the maximum x21.9. Then, with the
Estimate PSF and Import to PSFs buttons, the computed PSF is calculated and entered
into the table of algorithms that accept PSF in their parameters. Then we define the PSF
algorithms we just entered by selecting it from each table.

On the ”Deconvolve All” tab, select all the algorithms from the list to enter their results in
the final report, select the ”Click to create report folder” checkbox to create a new folder
with the completed report and the checkbox ”Run peak analysis” to calculate and extract
the comparison results of the algorithms in the report. Finally, press the ”Deconvolve” but-
ton and wait for the entire process to be completed by monitoring its progress from the
corresponding progress bars that appear.

6.3 Results Organization

At the end of the process, the folder ”Reports” displays a folder with the corresponding pre-
fix (if provided) and the name of the original image being studied in that report. Included in
this folder are all necessary and produced records and results related to this report as shown
below:

1. The original image

2. Images-results of deconvolutions

3. ”Deconvolution Statistics Table From Original Image.txt” file with detailed measure-
ments of I-Divergences, SSIMs and Residual Norms for each channel (RGB).

4. * .png files with the corresponding charts (for I-Divergence, SSIM and Residual Norm)

5. A PeakAnalysis folder that includes the Peak Analysis records and results as shown
below:

(a) ”Channel” CreatedPeakAnalysisStats.txt where it has the necessary measure-
ments to produce the final score of each result (formula)

(b) ”Channel” CreatedOneMeasureAnalysisStats.txt, a simpler form of comparison
results based only on a profile peak

(c) ”Channel” FWHM TABLE.txt where all FWHMs are included for each selected
peak

(d) ”Channel” FWHM SCORES TABLE.txt where all FWHM SCORES for each
peak are included

(e) ”Channel” SNR ”algorithm used” .png, image files that together show the signal
and background profiles on a chart for additional comparison
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(f) FinalGeneralRankingTable.txt the final ranking tables

All .txt files can be copied to a spreadsheet with a column separator (”,”) for further
processing and presentation.

The final ranking according to the procedure described in 4.5 and the one that we are inter-
ested in is in the file ”FinalGeneralRankingTable.txt”. Only the final Scores of deconvolved
images for all channels are included, as well as two types of ranking one that summarizes
”Histogram Score” and one without it. The following are the images and the ranking tables
according to which the comparison of the results is assumed.
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6.4 Results View

Figure 6.1: The original sample image.

Figure 6.2: The slanted edge sample image.



70 CHAPTER 6. EXPERIMENT AND RESULTS

(a) Original sample image. (b) Blind

(c) Regularized filter (d) SeDDaRA

(e) Wiener (f) Fista

(g) Gold (h) ICTM

Figure 6.3: Deconvolution image results (part 1)
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(i) JVC (j) LW

(k) RIF filter (l) RL

(m) RLTV (n) TRIF

Figure 6.3: Deconvolution image results (part 2)
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(a) original image. (b) Blind

(c) Regularized filter (d) SeDDaRA

(e) Wiener (f) Fista

(g) Gold (h) ICTM

Figure 6.4: Deconvolution results SNR Score estimation (part 1)
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(i) JVC (j) LW

(k) RIF filter (l) RL

(m) RLTV (n) TRIF

Figure 6.4: Deconvolution results SNR Score estimation (part 2)
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(a) original image. (b) Blind

(c) Regularized filter (d) SeDDaRA

(e) Wiener (f) Fista

(g) Gold (h) ICTM

Figure 6.5: Deconvolution results peak profiles (part 1)
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(i) JVC (j) LW

(k) RIF filter (l) RL

(m) RLTV (n) TRIF

Figure 6.5: Deconvolution results peak profiles (part 2)
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Figure 6.6: Full Width at Half Maximum Table for chosen peaks

Figure 6.7: Peak Scores for chosen peaks
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Figure 6.8: Full Peak Analysis Table

Algorithm Peak Score Snr Score Histogram Score Final Score
fista 0.87 1 1 1
rltv 0.93 0.98 0.95 0.99
lw 0.82 0.95 1 0.89

ictm 0.82 0.95 1 0.89
rl 0.89 0.9 0.89 0.82
rif 0.88 0.9 0.88 0.79

deconvWiener 0.85 0.87 0.88 0.74
trif 0.85 0.87 0.88 0.74

deconv blind 1 0.79 0.73 0.65
jvc 0.94 0.61 0.82 0.53

deconvSeDDaRA 0.73 0.74 0.81 0.5
gold 0.9 0.64 0.73 0.48

deconvRegularized 0.19 0.02 0.85 0

Table 6.1: Final Score Results Table
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Figure 6.9: The final Scores diagram

Figure 6.10: The final Scores Details Diagram



Chapter 7

Explanation Of Software Experiments
Results

7.1 Conclusions

Qualitative assessment of microscopic images is a chapter that the scientific community has
researched for many years. The differences and discrepancies in the eye’s view with digital
image measurements are a factor that makes this process more difficult and complicated.
Each visual system has a different effect on capturing an image, and each algorithm treats
its statistics differently. This has the effect of rendering virtually impossible the theoretical
modeling of these systems, making their prediction and evaluation of the results impossible.
Thus, there is a need to approach this problem from another direction by analyzing the
requirements of the applications that serve these systems each time. So, drawing on the
parameters of interest and finding ways to measure them, we constructed a method that
can explain in numbers the degree of satisfaction of the human eye. In other words, the
evaluation method developed in this diplomatic research attempts to answer the question of
”which image is better than the other” according to eye view.

Based on an optical system, ie the microscope used and a series of deconvolution algo-
rithms, we extracted results that show us the behavior of each algorithm in our samples.
This measure of behavior is expressed in a number so that it is comparable and expresses the
qualitative appearance of the results. Thus, looking at the final classification of the produced
images, we can perceive and compare them in terms of noise, spatial analysis and universal
opposition. We also have the ability to classify them according to one characteristic, and to
evaluate the behavior of the algorithms with respect to the other features. For example, if
we want to see which algorithm produced the best spatial resolution irrespective of the final
noise.

7.2 FWHM and Peak Score results

Starting from the table 7.1 showing the table of FWHMs extracted from our experiment,
we notice that blind deconvolution has the most acceptable spatial resolution. As explained
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in section 4.4, the less FWHM the better spatial resolution we have. This means that the
top selected is sharper than the rest. RLTV, JVC, RL, FISTA, GOLD, RIF, WIENER,
TRIF, ICTM, LW, SeDDaRA, and Regularized are ranked as shown in the table. Seeing the
Peak Score table we see that best top score is achieved in a similar way. It is recalled that
Peak Score takes into account the FWHM and peak height (see 4.5.1). The resulting order
for Peak Score is as follows: blind deconvolution, JVC, RLTV, GOLD, RL, RIF, FISTA,
WIENER, TRIF, ICTM, LW, SeDDaRA and Regularized. The two ranking tables are listed
below for easier comparison. The results are normalized to the largest of each column,
because we are interested in the comparison between them and not the individual results.
The result of the original image is included in the first line without being classified for
comparison of the price difference.

Algorithm FWHM Mean
origin 0.53

deconv blind 0.39
rltv 0.43
jvc 0.43
rl 0.44

fista 0.44
gold 0.44
rif 0.44

deconvWiener 0.45
trif 0.45

ictm 0.46
lw 0.46

deconvSeDDaRA 0.47
deconvRegularized 1

Algorithm Peak Score Mean
origin 0.52

deconv blind 1
jvc 0.94
rltv 0.93
gold 0.9

rl 0.89
rif 0.88

fista 0.87
deconvWiener 0.85

trif 0.85
ictm 0.82
lw 0.82

deconvSeDDaRA 0.73
deconvRegularized 0.19

Table 7.1: FWHM and Peak Score Results Comparison

As we can see in the comparison of tables 7.1, the second place is claimed by RLTV with
a slightly better FWHM than JVC, which eventually presents a better Peak Score. This is
because the maximum peak value with the RLTV algorithm is less than the maximum value
of the same peak as JVC while having the same FWHM. So JVC has a better contrast. This
actually serves the use of Peak Score. Corresponding phenomena are also presented with the
other algorithms, which eventually gain a more distinct position in the Peak Score table.

7.3 Background(Noise) Score, Signal Score and SNR Score

In order to understand the importance of SNR Score, the results of Background Score and
Signal Score should be explained. Background Score is the sum of the average value of
the background with the standard deviation. This practically means that the higher Back-
ground Score value indicates either higher background values or higher standard deviation,
or both. In any case, it entails a ”worst quality” background than a lower Background Score
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image. Signal Score is the difference in the mean value of the signal minus the standard de-
viation. This indicates that the larger Signal Score implies either increased intensity values
or lower standard deviation ie noise, or both. So larger Signal Score equals ”better quality”
of the signal. Ultimately, what interests us is whether noise and image processing affect the
quality of the signal and the noise and the noise tendency to weaken the distinction between
signal and noise. So the Signal Score/Background Score ratio, SNR Score, shows us the
value of the ”quality” of the contrast (noise-driven) compared to the other effects as well as
the original image.

Algorithm Bckgrnd Score
origin 0.88

deconvRegularized 0.47
fista 0.88
ictm 0.88
lw 0.88

rltv 0.89
deconvWiener 0.91

trif 0.91
rl 0.91
rif 0.92

deconvSeDDaRA 0.95
jvc 0.95

deconv blind 0.96
gold 1

Algorithm Signal Score
origin 0.77
rltv 1
fista 0.98

rl 0.98
rif 0.97
lw 0.96

ictm 0.96
deconvWiener 0.95

trif 0.95
gold 0.95

deconv blind 0.94
jvc 0.93

deconvSeDDaRA 0.87
deconvRegularized 0.15

Algorithm Snr Score
origin 0.78
fista 1
rltv 0.98
lw 0.95

ictm 0.95
rl 0.9
rif 0.9

deconvWiener 0.87
trif 0.87

deconv blind 0.79
deconvSeDDaRA 0.74

gold 0.64
jvc 0.61

deconvRegularized 0.02

Table 7.2: Background Score, Signal Score and SNR Score Results Comparison

By looking at the results of our experiment in the table 7.2, we see that the better-less
Background Score has first the Regularized algorithm then FISTA, and in ascending order
ICTM, LW, RLTV, TRIF, WIENER, RL, RIF, SeDDaRA, JVC , BLIND and GOLD. Unlike
Background Score, Regularized has the worst Signal Score, this is confirmed by viewing the
image produced by this algorithm. At Signal Score we have the following ranking, with
RLTV first, FISTA followed by RL, RIF, LW, ICTM, WIENER, TRIF, GOLD, BLIND,
JVC, SeDDaRA and Regularized. So far there is no clear picture of how the result is
processed by the processing of each algorithm for this answer gives the SNR Score ranking
where the higher value implies a better image.

7.4 Final Score

By combining the above results with Histogram Score where we are a general improvement
of the universal image contrast we get the table Final Score (table 6.1) where is the final
proposition of the algorithms according to the desired result. This list tells us that an image
with a higher value of Final Score fits better to the general requirements of deconvolution
processing than a picture with a lower value of Final Score. Also, this ranking shows us
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which image satisfies the ”eye” better. That is, an image with a larger Final Score has a
relatively better definition than another with a smaller one. So the resulting final ranking is
as follows. In the first place is the FISTA algorithm and almost the same rating, RLTV is
second. The next two positions then go to LW and ICTM respectively. RL, RIF, WIENER,
TRIF, BLIND, JVC, SeDDaRA, GOLD and Regularized algorithms are followed by a lower
score and a descending order.

7.5 Conclusion

Finally, the proposed ranking of results expresses a more general success of algorithms in
meeting the selected criteria set at the beginning of the experiment. However, more spe-
cialized information can be deduced for the behavior of these algorithms, if needed. For
example, if we want to investigate more specifically which algorithm produces more focused
results regardless of noise, or if we have a restriction on the maximum allowable noise limit or
Background Score, then we can look at the Peak Score table and sort the results by flipping
what do not meet the noise criterion.

Also in the same way it can be used to evaluate different PSFs, if they are produced by differ-
ent methods, such as the various theoretical models or experimental MTF extraction models.
This can be implemented by having a fixed algorithm as a fixed parameter and performing
the experiment for many different PSFs. The program developed in this thesis supports
this process, as well as selecting multiple PSFs and multiple algorithms at the same time,
extracting the results for combining all options exhaustively. Thus, it can be investigated
how each algorithm reacts to each PSF output method, displaying ”success” correlations
between deconvolution algorithms and PSF extraction methods for specific samples.

7.6 Discussion

It is known that the processing of the image as a field is not completely independent of the
human factor, which means that the visual perception of images in many cases may con-
tradict mathematical models, relationships or results in general. This vacuum attempts to
cover this thesis, proposing a new way of correlating visual opacity with the mathematical
assessment of the results. The initial results of this method seem to be usable as a compass
for the automated rank and success rate of deconvolution results.

Due to the ability of this method to compare results on specific characteristics such as
spatial analysis, noise effects and changes in the overall contrast of the image, it could play a
catalytic role in the manufacture of both PSF extraction methods and building new improved
deconvolution algorithms that can ”be aware” of their effect on the image and accordingly
adapt themselves to achieve the best possible results according to the needs of the user or
purpose of their application. In the context of this idea and knowing that the method of
this thesis depends on the human factor for the selection of background, signal and edge
areas, we could suggest extending the method to automatic search for these domains so that
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it can be used , as an independent and integrated method, either to be used singly or to be
incorporated into new methods of deconvolution.

Finally, the characteristics examined and considered by the method developed were the
basic features that were necessary for the characterization of specific microscope specimens
used for this thesis. Correspondingly, other features and factors can be added in the future
that will contribute to the production of even more targeted and integrated comparisons and
rankings so that it can be universally established as the method of evaluation and assessment
of deconvolution algorithms and not only.
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