
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Parallel Optimization Algorithms for Very Large
Tensor Decompositions

by

Ioannis Marios Papagiannakos

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DIPLOMA DEGREE OF

ELECTRICAL AND COMPUTER ENGINEERING

October 2019

THESIS COMMITTEE

Professor Athanasios P. Liavas, Thesis Supervisor
Professor George N. Karystinos

Associate Professor Vasilis Samoladas

2

3

Abstract

Tensors are generalizations of matrices to higher dimensions and are very powerful tools

that can model a wide variety of multi–way data dependencies. As a result, tensor de-

compositions can extract useful information out of multi–aspect data tensors and have

witnessed increasing popularity in various fields, such as data mining, social network

analysis, biomedical applications, machine learning etc. Many decompositions have been

proposed, but in this thesis we focus on Tensor Rank Decomposition or Canonical Polyadic

Decomposition (CPD) using Alternating Least Squares (ALS). The main goal of the CPD

is to decompose tensors into a sum of rank–1 terms, a procedure more difficult than its

matrix counterpart, especially for large-scale tensors. CP decomposition via ALS consists

of computationally expensive operations which cause performance bottlenecks. In order to

accelerate this method and overcome these obstacles, we developed two parallel versions

of the ALS that implement the CPD. The first one uses the full tensor and runs in parallel

on heterogeneous & shared memory systems (CPUs and GPUs). The second one decom-

poses the tensor in parallel using small random block samples and runs on homogeneous

& shared memory systems (CPUs).

4 Abstract

5

Acknowledgements

First of all, I would like to thank my thesis supervisor, Professor Athanasios Liavas, for his

continuous guidance throughout this work. Also, my friends and colleagues P. Karakasis,

N. Siaminou and C. Kolomvakis for all the help they provided during my thesis. Finally, I

would like to thank my family and my close friends for their support and encouragement

throughout my study years.

6 Acknowledgements

7

Table of Contents

Acknowledgements . 5

Table of Contents . 7

List of Figures . 9

List of Abbreviations . 11

1 Introduction . 13

1.1 Problem Description (Tensor factorization) 13

1.2 Definitions and Notation . 13

1.3 Structure . 15

2 Tensor Factorization . 17

2.1 CPD using ALS . 18

2.2 RBS–CPD using ALS . 20

3 Parallel Implementation using OpenMP 23

3.1 Introduction to Parallel Computing . 23

3.1.1 Multiple Instruction - Multiple Data 23

3.1.2 Shared-memory systems . 23

3.2 OpenMP . 24

3.3 Parallel Implementation of CPD–ALS and RBS–CPD using ALS 27

3.3.1 CPD–ALS . 27

3.3.2 RBS–CPD using ALS . 31

3.4 Numerical Experiments . 31

3.4.1 Setup . 32

3.4.2 Numerical Experiments . 32

4 Parallel Implementation using CUDA . 39

4.1 Introduction to Heterogeneous Computing 39

4.2 GPU Architecture . 40

4.3 CUDA C/C++ . 41

4.3.1 CUDA programming model . 41

4.3.2 CUDA Memory Management . 42

4.3.3 CUDA kernel functions . 43

4.3.4 Thread and Block Hierarchy . 43

8 Table of Contents

4.3.5 CUDA Streams . 43

4.3.6 Multi-GPU Parallelism . 44

4.4 Parallel Implementation of ALS . 46

4.5 Speedups-Experiments . 52

4.5.1 Setup . 52

4.5.2 Numerical Experiments . 52

5 Conclusion and Future Work . 57

Bibliography . 59

9

List of Figures

1.1 A third-order tensor X ∈ RI×J×K . 14

1.2 Mode-n Matricization of X ∈ RI×J×K . 15

2.1 CP Decomposition . 17

2.2 Illustration of block sampling operator for a third–order tensor X ∈ R4×4×4

using a block size of 2× 2× 2. We show how sampling is carried out on the

frontal slices of tensor X . Bold numbers indicate which indices are sampled

at each inner iteration. 22

3.1 Illustration of UMA (left) and NUMA (right) architecture. 24

3.2 Illustration of Fork/Join model. Master–thread is represented by a red

colored arrow and worker–threads by black colored arrows. 25

3.3 Execution time of CPD–ALS, terminated at 10th iteration, for a 1200 ×
1200× 1200 tensor using n threads, where n = 1, 4, 8, 20, 40. 33

3.4 Speedup of CPD–ALS, terminated at 10th iteration, achieved for a 1200×
1200× 1200 tensor using n threads, where n = 1, 4, 8, 20, 40. 33

3.5 Execution time of CPD–ALS using a parallel NUMA aware version vs. a

parallel naive version, using n = 8, 20, 40 threads. 34

3.6 Speedup of CPD–ALS using a parallel NUMA aware version vs. a parallel

naive version, using n = 8, 20, 40 threads. 34

3.7 Execution time of RBS–CPD, terminated at 10th iteration, for a 2000 ×
2000 × 2000 tensor and rank R = 20. We solve Qn = 1, 2, 4, 8, 20, 40 inner

problems, using 1 thread. 35

3.8 Plot of relative factor change during the first 10 iterations of RBS-CPD. . . 36

3.9 Execution time of RBS–CPD, terminated at 10th iteration, for a 2000 ×
2000× 2000 tensor, solving Qn = 4, 8 inner problems. 36

3.10 Speedup of RBS–CPD, terminated at 10th iteration, for a 2000×2000×2000

tensor, solving Qn = 4, 8 inner problems. 37

3.11 Execution time of RBS–CPD, terminated at 10th iteration, for a 2000 ×
2000× 2000 tensor, solving Qn = 40, 80 inner problems 37

3.12 Speedup of RBS–CPD, terminated at 10th iteration, for a 2000×2000×2000

tensor, solving Qn = 40, 80 inner problems. 38

4.1 Illustration of Heterogeneous architecture. 40

4.2 Correspondence between Software & Hardware components. 41

10 List of Figures

4.3 Timeline of a simple CUDA operation with 4 streams (concurrent) and

without (serial). 44

4.4 Illustration of a multi-GPU communication topology within a node. PCI-E

based communication (left) vs NVLink based communication(right). 45

4.5 Experiment 1.A: 1200× 1200× 1200 tensor of rank R = 100 53

4.6 Experiment 1.A: 1200× 1200× 1200 tensor of rank R = 100 53

4.7 Experiment 1.B: 1200× 1200× 1200 tensor of rank R = 200 54

4.8 Experiment 1.B: 1200× 1200× 1200 tensor of rank R = 200 54

4.9 Experiment 2.A: 1500× 500× 1500 tensor of rank R = 40 55

4.10 Experiment 2.A: 1500× 500× 1500 tensor of rank R = 40 55

4.11 Experiment 2.B: 1500× 500× 1500 tensor of rank R = 200 56

4.12 Experiment 2.B: 1500× 500× 1500 tensor of rank R = 200 56

11

List of Abbreviations

ALS Alternating Least Squares

API Application Programming Interface

BCD Block Coordinate Descent

CANDECOMP Canonical Decomposition

CPD Canonical Polyadic Decomposition

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

MIMD Multiple Instruction - Multiple Data

MTTKRP Matricized Tensor Times Khatri-Rao Product

OpenMP Open Multi-Processing

PARAFAC Parallel Factor Analysis

RBS Randomized Block Sampling

SGD Stochastic Gradient Descend

SIMT Single Instruction - Multiple Threads

12 List of Abbreviations

13

Chapter 1

Introduction

1.1 Problem Description (Tensor factorization)

Tensors are mathematical structures that can be described as multidimensional arrays of

numerical values and, therefore, generalize matrices to multiple dimensions. Tensors and

tensor decompositions are important tools that can model multi-way data dependencies.

Tensor decomposition (or factorization) can extract useful information, which would oth-

erwise be lost when analysing the data by matrix factorization approaches by collapsing

some of the modes. Tensor decomposition techniques started in the first quarter of the

20th century in applications related to psychometrics, but gained great popularity recently,

in a variety of fields, such as neuroscience, data mining, machine learning [1],[2],[3].

There are various tensor factorization techniques, but we will focus on one of the most

popular, known as Canonical Polyadic Decomposition (CPD), also referred as CANDE-

COMP or PARAFAC (Parallel Factor Analysis). CPD is a rank decomposition technique

and the main goal is to express a given tensor as the sum of a finite number of rank-one

tensors. In order to solve this problem, we use the ALS algorithm which will be presented

later.

1.2 Definitions and Notation

Vectors are denoted by lower case bold letters (e.g. x), matrices by capital bold letters

(e.g. X), and tensors by calligraphic upper case bold letters (e.g. X). Elements of either

vectors, or matrices, or tensors are denoted by non bold letters, and the appropriate set

of indices. For example for a matrix A, element in the ith row and jth column is denoted

either as aij or as A(i,j).

Definition 1 The outer product of two vectors a ∈ RI and b ∈ RJ is denoted as

a ◦ b ∈ RI×J and gives a rank-one matrix. Likewise, a 3–way outer product of any

three vectors, a ∈ RI , b ∈ RJ , c ∈ RK is denoted as a ◦ b ◦ c ∈ RI×J×K and gives a

rank–one tensor with elements (a ◦ b ◦ c)(i, j, k) = a(i)b(j)c(k).

Definition 2 The Kronecker product of matrices A ∈ RI×R and B ∈ RJ×P is denoted

as A⊗B ∈ RIJ×RP [4], and is computed as follows

A⊗B =

A(1,1)B . . . A(1,J)B

...
. . .

...

A(I,1)B . . . A(I,J)B

 ∈ RIJ×RP . (1.1)

Definition 3 The Khatri-Rao (or column-wise Kronecker) product of matrices

14 Chapter 1. Introduction

A ∈ RI×R and B ∈ RJ×R is denoted as A � B ∈ RIJ×R. The Khatri-Rao product is

computed as

A�B =
[
A(:,1) ⊗B(:,1) . . .A(:,R) ⊗B(:,R)

]
∈ RIJ×R. (1.2)

Definition 4 The Hadamard (or element-wise) product of matrices A,B ∈ RI×R

is denoted as A ~ B ∈ RI×R. The Hadamard product of an element in ith row and jth

column is computed as

[A~B](i,j) = A(i,j) ·B(i,j) (1.3)

Definition 5 The Frobenius Norm of a tensor X ∈ RI×J××K is defined as

||X ||F =

√√√√ I∑
i=1

J∑
j=1

K∑
k=1

X (i, j, k)2 . (1.4)

Definition 6 The order of a tensor is the number of dimensions that it has. More pre-

cisely, scalars can be described as zeroth-order tensors, vectors as first-order tensors, ma-

trices as second-order tensors, and any tensor having order n>2 (e.g. X ∈ RI1×I2×...×IN)

will be referred as nth-order tensor. In this thesis, we focus on third-order tensors (Figure

1.1).

J
K

I

Figure 1.1: A third-order tensor X ∈ RI×J×K

Definition 7 The rank of a tensor X is denoted as rank(X) and defines the minimum

number of rank-one tensors which are needed to produce X as their sum. For example, let

X be a third-order tensor with rank(X) = R, then

X =
R∑

r=1

ar ◦ br ◦ cr. (1.5)

Definition 8 In general, we can extract lower order tensors from a nth-order tensor. In

our case, from a third-order tensor, we can extract a first and second order one (vectors

and matrices correspondingly). More precisely, if we fix all but one indices, a fiber is

created, otherwise if we fix all but two indices, we create a slice. From a third-order

tensor X ∈ RI×J×K , fibers are given as x:jk, xi:k and xij:, and slices are given as X::k,

X:j: and Xi::.

1.3. Structure 15

Definition 9 The Mode-n Matricization of X ∈ RI×J×K is denoted as

X(1) ∈ RI×JK ,X(2) ∈ RJ×IK ,X(3) ∈ RK×IJ , (1.6)

and defines the operation that reorders a tensor into a matrix, by turning the mode-n fibers

of tensor X into the columns of matrix X(n).

X

Mode 1 fibers Mode 1 matricization

Mode 2 fibers Mode 2 matricization

Mode 3 fibers Mode 3 matricization

K

I x J

J

I x K

I

J x K

KJ

I

Figure 1.2: Mode-n Matricization of X ∈ RI×J×K

Definition 10 The Moore–Penrose pesudoinverse of matrix A ∈ RM×N is denoted

as A† , is in RN×M and has the following properties

• AA†A = A

• A†AA† = A†

• (AA†)T = AA†

• (A†A)T = A†A

If A ∈ RM×M is invertible, then

A† = A−1 (1.7)

1.3 Structure

In Chapter 2, we present the ALS algorithm for tensor factorization and RBS; a ran-

domized block sampling approach to CPD. In Chapter 3, we introduce OpenMP, an API

designed for shared-memory parallelism and we present parallel implementations on CPD

and RBS–CPD via ALS. At the end of this chapter, we also present the corresponding

speedups obtained from the parallel versions. In Chapter 4, we present CUDA, a parallel

computing platform and API for general computing on graphical processing units (GPUs),

in which we implemented parts of ALS, in order to accelerate its execution. This chap-

ter contains also the respective speedups obtained from the parallel version. Finally, in

Chapter 5, we end our thesis with some ideas for improvement as a future work.

16 Chapter 1. Introduction

17

Chapter 2

Tensor Factorization

As mentioned before, CPD is one of the most popular tensor rank factorizations. The

CPD of a three-mode tensor X ∈ RI×J×K , where rank(X)= R, is the sum of three-way

outer products,

X ≈
R∑

r=1

ar ◦ br ◦ cr (2.1)

where, ar ∈ RI , br ∈ RJ , cr ∈ RK .

Using vectors ar, br, cr we construct the respective factor matrices A, B, C, which are

formed as:

A = [a1 a2 ... aR] ∈ RI×R,

B = [b1 b2 ... bR] ∈ RJ×R,

C = [c1 c2 ... cR] ∈ RK×R.

Thus, equation 2.1 can also be written as:

X = JA, B, CK (2.2)

c
1

b
1

a
1

c
2

b
2

a
2

c
R

b
R

a
R

. . .

X

Figure 2.1: CP Decomposition

18 Chapter 2. Tensor Factorization

2.1 CPD using ALS

Alternating Least Squares (ALS) is a widely used algorithm for CPD. For a third-order

tensor X with given rank R, in order to be decomposed, we solve the following optimization

problem:

min
A,B,C

∥∥∥∥∥X −
R∑

r=1

ar ◦ br ◦ cr

∥∥∥∥∥
2

F

= min
A,B,C

∥∥∥∥X − JA,B,CK
∥∥∥∥2
F

(2.3)

Let fX be the function used as quality measure for the above factorization problem.

Function fX is non–convex if we try to optimize all three factor matrices at once. However,

if we fix two of them and try to optimize the non–fixed one, it reduces to a matrix least

squares; and therefore it becomes convex. ALS is a type of block coordinate descent

algorithm (BCD). This means that instead of using the whole gradient, we select a block

of coordinates in each iteration. Cost function fX can be expressed as:

fX (A,B,C) =
1

2

∥∥X(1) −A(B�C)T
∥∥2
F

=
1

2

∥∥X(2) −B(C�A)T
∥∥2
F

=
1

2

∥∥X(3) −C(B�A)T
∥∥2
F
.

(2.4)

ALS algorithm works repeatedly, until a terminating criterion is satisfied (e.g. conver-

gence of cost function). The main steps are:

Ak+1 ← arg min
Ak

fX (Ak,Bk,Ck)

Bk+1 ← arg min
Bk

fX (Ak,Bk,Ck)

Ck+1 ← arg min
Ck

fX (Ak,Bk,Ck)

The optimal solution of the above optimization problems is given by the following closed

form:

A∗k+1 = X(1)[(Bk �Ck)]† = X(1)(Bk �Ck)(BT
k Bk ~CT

k Ck)†

(1.7)
= X(1)(Bk �Ck)(BT

k Bk ~CT
k Ck)−1

B∗k+1 = X(2)[(Ck �Ak)]† = X(2)(Ck �Ak)(CT
k Ck ~AT

k Ak)†

(1.7)
= X(2)(Ck �Ak)(CT

k Ck ~AT
k Ak)−1

C∗k+1 = X(3)[(Bk �Ak)]† = X(3)(Bk �Ak)(BT
k Bk ~AT

k Ak)†

(1.7)
= X(3)(Bk �Ak)(BT

k Bk ~AT
k Ak)−1

Products X(1)(B�C), X(2)(C�A), X(3)(B�A) are referred as Matricized Tensor Times

Khatri–Rao Product (MTTKRP); and are of paramount importance since are a bottleneck

operation in ALS.

Using the Khatri–Rao expression, the Matricized Tensor can be expressed approxi-

2.1. CPD using ALS 19

mately as:

X(1) = A(B�C)T

X(2) = B(C�A)T

X(2) = C(B�A)T

(2.5)

Except of the aforementioned steps, ALS also contains two optional steps. The first

one is the column normalization of each matrix factor and the second one is “accelera-

tion”step. The first one offers stability to the algorithm [2]. Function Normalize() nor-

malizes each column of updated factors Bk+1,Ck+1 to unit Euclidean norm, collecting all

the power on the corresponding columns of Ak+1. This function’s output is denoted as

(ANk+1,B
N
k+1,C

N
k+1). Function Accelerate() acts as an accelerating technique and despite

the fact that this step has a significant computational cost, it can reduce the number of

iterations that are needed for ALS to converge. It is a line search technique, similar to

technique used in[5] and can be described shortly as follows.

After normalization step, we compute

Anew = ANk + sk+1(A
N
k+1 −ANk), Bnew = BNk + sk+1(B

N
k+1 −BNk),

Cnew = CNk + sk+1(C
N
k+1 −CNk),

where sk+1 a decreasing positive number, computed as sk+1 = (k + 1)
1
3 .

If fX (Anew,Bnew,Cnew) ≤ fX (Ak+1,Bk+1,Ck+1) then the acceleration step is successful

and we set each factor as: Ak+1 = Anew, Bk+1 = Bnew, Ck+1 = Cnew, else it is ignored

and we keep the normalized factors, Ak+1 = ANk+1, Bk+1 = BNk+1, Ck+1 = CNk+1.

Presenting more theoretical analysis about this function is out of the scope of this

thesis. For further reading on accelerating techniques on CPD, one can read [6].

It is important to mention that the way the algorithm is initialized has a big impact

on performance. ALS may take several steps to converge and it is not always guaranteed

that a global optimum is attained. Thus, in our thesis, the terminating criterion of ALS

in not only determined by convergence, but also, by the maximum number of iterations.

Algorithm 1 describes how ALS works.

We expect that the most time consuming steps are those where the factors are up-

dated. Each step consists of one Khatri–Rao product, one Hadamard product, one matrix

inversion and four matrix multiplications. The Khatri–Rao product of two factors, say

C ∈ RK×R and B ∈ RK×R, has computational complexity O(KJR) (KJR element–wise

multiplications). The Hadamard product of two matrices, C ∈ RK×R and B ∈ RK×R, has

computational complexity O(KR) (KR element–wise multiplications). The linear system

solution of a square matrix A ∈ RN×N has in the worst case scenario computational com-

plexity O(N3) (matrix inversion). Also, naive matrix multiplication of two matrices, say

A ∈ RM×N and B ∈ RN×K , has computational complexity O(MNK). Therefore, the

20 Chapter 2. Tensor Factorization

Algorithm 1 CPD-ALS algorithm

1: procedure CPD-ALS(X ,R,ε,MAX ITERS)
2: initialize k, fX and matrix factors A0,B0,C0

3: while fX /‖X‖2F > ε or k < MAX ITERS do
4: Ak+1 ← X(1)(Bk �Ck)(CT

k Ck ~BT
k Bk)−1

5: Bk+1 ← X(2)(Ck �Ak+1)(C
T
k Ck ~AT

k+1Ak+1)
−1

6: Ck+1 ← X(3)(Bk+1 �Ak+1)(B
T
k+1Bk+1 ~AT

k+1Ak+1)
−1

7: Compute fX /‖X‖2F
8: (ANk+1,B

N
k+1,C

N
k+1) ← Normalize(Ak+1,Bk+1,Ck+1)

9: (Ak+1,Bk+1,Ck+1) ← Accelerate(ANk+1, ANk , BNk+1, BNk , CNk+1, CNk)
10: k ← k + 1
11: end while
12: return matrix factors (Ak,Bk,Ck)
13: end procedure

computational complexity of each step is computed as :

O(IJKR)︸ ︷︷ ︸
MTTKRP

+ O(KJR)︸ ︷︷ ︸
Khatri–Rao

+ O(KR2)︸ ︷︷ ︸
CTC

+ O(JR2)︸ ︷︷ ︸
BTB

+ O(R3)︸ ︷︷ ︸
lin. sys. sol. of Matrix

+ O(R2)︸ ︷︷ ︸
Hadamard

= O
(
IJKR

)

We ignore terms O(KR2),O(JR2), O(R3), O(R2) since typically for a large tensor X ,

rank R < min(I, J,K).

In order to validate the above theoretical analysis, we developed a serial version of

ALS algorithm and we measured the execution time of each step. We observed that for

a large enough tensor (e.g. 500× 500× 500 and rank R = 20 on a 8GB memory system)

the most time consuming steps were: update of each factor A, B and C (≈ 25% of total

time each) and also acceleration step (≈ 24%). These four steps consume almost 99% of

the total time and cause the main bottleneck.

2.2 RBS–CPD using ALS

As mentioned in the previous section, ALS is a widely used block coordinate descent

algorithm, used to compute CPD. However, this algorithm has big computational and

memory complexity, especially for large–scale tensors. In order to reduce this problem,

many methods have been proposed and one of them is randomized block sampling (RBS).

RBS–CPD is a combination of two optimization techniques, block coordinate descent

and stochastic gradient descent (SGD) [7]. The first one was introduced previously and

the second one we will presented shortly in this section.

SGD is a simple and also powerful technique, used mostly in convex optimization and

also other applications e.g. machine learning [8]. Suppose that we want to minimize a

decomposable function f with respect to x

f(x) =
1

N

N∑
n=1

fn(x) . (2.6)

2.2. RBS–CPD using ALS 21

In order to update parameter x in each kth iteration, gradient ∇f is estimated from a

random sample point nk ∈ [1, N] instead of the whole vector x. This can be generalized

on CPD. More specifically, problem (2.3) can be written as an optimization problem of a

decomposable function f

f =
1

2

∥∥∥∥∥X −
R∑

r=1

ar ◦ br ◦ cr

∥∥∥∥∥
2

F

=
1

2

I∑
i=1

J∑
j=1

K∑
k=1

(
X (i, j, k)−

R∑
r=1

(
ar(i)br(j)cr(k)

))2

.

(2.7)

Since f is decomposable, CPD can be solved using ALS, but instead of applying it on the

full tensor and factors, we select randomly sampled blocks (RBS–CPD). Furthermore, in

order to update the whole factors at the same rate, we use a sampling operator (modi-

fied RBS–CPD). Sampling operator ensures that blocks are not overlapping, allowing the

blocks to be decomposed in parallel.

For each lth sub–problem that will be solved in parallel, let Bln ⊆ In, be the subset

that contains each block Bn of indices. Each subset Bln contains indices from index set

In of the full tensor X . We also define integer Qn = In/Bn as the number of blocks

per dimension. Finally, let Xsub be the sampled sub–tensor and Asub,Bsub,Csub be each

corresponding sampled sub–factor.

Factors are updated at each kth iteration, where each one contains Qn inner iterations.

In order to ensure that each factor is fully updated in every iteration and that each

block is mutually independent, sampling operator works as follows. During each inner

iteration l, new blocks of indices and new samples are generated. From each factor, we

sample Bn rows and from tensor X we sample blocks of size B1 × B2 × B3. At the first

iteration (k = 1), indices Bln are selected consecutively from In based to the following

form Bln = In((l − 1) · Bn + 1 : l · Bn), where l ≤ Qn, until inner iterations are ended.

Then, at the next iteration, set In is shuffled and the same procedure is repeated, except

that this time block indices are sorted in order to succeed better locality. This leads to

performance improvement, especially for larger block size.

As a convergence measure we used relative factor change function, instead of fX (2.4)

which has much more computational complexity. Relative factor change function is com-

puted as :

frel(Ak+1,Ak) =
‖Ak+1 −Ak‖2
‖Ak‖2

. (2.8)

The algorithm is said to have converged if

max(frel(Ak+1,Ak), frel(Bk+1,Bk), frel(Ck+1,Ck)) < ε, (2.9)

where ε is a small constant, e.g. 10−2.

Figure (2.2) illustrates how sampling operator works and Algorithm 2 summarizes

RBS–CPD.

22 Chapter 2. Tensor Factorization

 I : {1,3,2,4}
 J : {1,4,2,3}
 K : {2,4,1,3}

 outer iteration iter iterationation = 2 (k = 2)

 I : {1,3,2,4}
 J : {1,4,2,3}
 K : {2,4,1,3}

 Inner iteration = 1 (l = 1)

 Inner iteration = 2 (l = 2)

Figure 2.2: Illustration of block sampling operator for a third–order tensor X ∈ R4×4×4

using a block size of 2× 2× 2. We show how sampling is carried out on the frontal slices
of tensor X . Bold numbers indicate which indices are sampled at each inner iteration.

Algorithm 2 Modified RBS–CPD algorithm

1: procedure RBS–CPD(X)
2: initialize k and matrix factors A,B,C
3: while no convergence do
4: l = 1
5: if k > 1 then
6: Shuffle indices In
7: end if
8: while l ≤ Qn do
9: Generate Bln for n = 1, 2, 3

10: Sample A
(l)
sub,B

(l)
sub,C

(l)
sub,X

(l)
sub

11: new A
(l)
sub ← update

(
X (l)
sub(1),B

(l)
sub,C

(l)
sub

)
12: new B

(l)
sub ← update

(
X (l)
sub(2),C

(l)
sub,new A

(l)
sub

)
13: new C

(l)
sub ← update

(
X (l)
sub(3), new B

(l)
sub,new A

(l)
sub

)
14: Merge new sub-factors with corresponding factors
15: l← l + 1
16: end while
17: k ← k + 1
18: end while
19: return matrix factors A,B,C
20: end procedure

23

Chapter 3

Parallel Implementation using

OpenMP

Both algorithms described in previous chapter, ALS and RBS, can be performed in par-

allel. For that reason, we will present OpenMP (MP stands for multiprocessing), an

API developed for shared–memory parallel programming. The reason that we selected

OpenMP rather than other interfaces, like POSIX threads (Pthreads), is that the first one

is higher level, allowing us to parallelize tasks and assign them to threads easier.

3.1 Introduction to Parallel Computing

In parallel computing there are four different types of computer architectures according to

Flynn’s Taxonomy. Systems are classified according to the number of instruction streams

and the number of data streams that can be managed simultaneously. Modern CPUs are

classified as MIMD (Multiple Instruction – Multiple Data).

3.1.1 Multiple Instruction - Multiple Data

MIMD systems support multiple cores which operate asynchronously on multiple data

streams. This means that each core executes independent instructions. MIMD systems can

have either distributed memory (multi–node with distributed memory) or shared memory

(multiprocessor with shared memory). In this thesis, we will focus on shared memory

computers.

3.1.2 Shared-memory systems

Most shared-memory systems use one or more multi–core processors. Multiple cores that

belong to the same chip are organized in groups, known as sockets. A typical desktop PC

has a single socket, while standard servers use two to four sockets that share the same

memory. Usually, each core has a private level 1 cache and each socket has a private level

2 cache, which is shared between cores. Each socket can be connected to a global main

memory or to a local memory, which in both cases is shared between sockets. Systems

that have the first topology are characterized as uniform memory access (UMA) and

therefore, the memory access time between cores that belong to different sockets is equal.

In contrast, the second ones are called nonuniform memory access (NUMA), which means

that memory access time differs between cores that are directly connected to local memory

and cores that belong to different sockets. This makes UMA systems easier to program,

since the programmer does not need to worry about different access times for memory

24 Chapter 3. Parallel Implementation using OpenMP

locations. On the contrary, NUMA systems have higher overall memory bandwidth and

also have the potential to use larger amount of memory.

Core#0 Core#N...

Core#0 Core#N...

Main
MemoryInterconnect

Core#0 Core#N...

Core#0 Core#N...

Interconnect

Memory

Memory

Figure 3.1: Illustration of UMA (left) and NUMA (right) architecture.

3.2 OpenMP

Before talking about OpenMP, we should define the terms process and thread. Process

is an instance of a program that is being executed on a processor. Thread is a basic

unit of CPU utilization and one ore more threads are contained within processes, so

they can use the same executable and they usually share the same resources (except

stack and program counter). Processes, in contrast, can only share resources through

techniques such as shared memory and message passing. In most systems, context switch

time between threads is lower compared to process context switch. This is because threads

are “lightweight” processes. Therefore, multithreading is a better parallelism scheme than

multiprocessing, in a shared–memory system.

OpenMP is directive–based programming model designed as an extension of C and

C++ [9] [10]. This can be done using special preprocessor instructions, known as pragmas,

which are added in order to extend existing capabilities of basic C/C++ specification.

More precisely, pragmas in OpenMP always begin with #pragma omp. OpenMP consist

of a collection of directives and also a library of functions and macros which are included

in header file <omp.h>.

3.2. OpenMP 25

OpenMP directives

The most basic directive is parallel and it specifies that the block of code that follows

should be executed in parallel by multiple threads.

#pragma omp parallel

{
structured block

}

In this structured block, code that branches into or out of it is prohibited. The group

of threads that execute the parallel block is called a team, the original thread is called the

master and the additional threads are called slaves or workers. The number of threads

started can be defined either by the user or by the system, and then the number of threads

is typically equal to the number of available cores.

OpenMP follows the Fork/Join programming model (Figure 3.2). More analytically,

program begins as a single process – master thread. The master thread executes sequen-

tially until the first parallel region construct is encountered. When threads start their

execution, they are forked by a process and when it is completed they join initial process.

master
thread

parallel region

F
O
R
K

master
thread

J
O
I
N

thread 0

thread 1

thread n-1

thread n

.

.

.

Figure 3.2: Illustration of Fork/Join model. Master–thread is represented by a red colored
arrow and worker–threads by black colored arrows.

In the case where a block of code (that exists in a parallel region) must be executed

only once by a single thread of the team, then a single directive is provided (#pragma omp

single). If this single thread has to be also the master thread, OpenMP provides the

master directive #pragma omp master. Note that there is no implied barrier, either

on entry to or exit from the master section. So, in order to synchronise threads that

belong in the same team, an explicit barrier is needed. OpenMP provides #pragma omp

barrier and, when a thread encounters a barrier, it blocks until all threads that belong

to the same team reach that barrier.

Since threads that belong to the same team share their resources, variables that are

declared outside the parallel region are by default shared (shared scope). On the other

26 Chapter 3. Parallel Implementation using OpenMP

hand, variables declared inside the parallel region are private to each thread (private

scope). This can be changed using clauses shared() and private().

When multiple threads try to access and simultaneously change a shared variable, a

race condition occurs; for example, reduction

result = local result + result;

inside a parallel block. This problem can be solved using clause reduction(<operator>:

<variable list>). Adding this clause in a parallel region, one can define the de-

sired reduction operator (+ , ∗ ,− , / ,& , | , ,̂&& , ||) and one or more reduction variables.

OpenMP creates a private variable for each thread and, at run–time, system stores each

thread’s result in this variable. Also, a critical section is created and when the threads

are done, all values stored in private variables are combined into a single shared reduction

variable.

Except of parallel directive, there is also parallel for directive, which forks a

team of threads to execute a block of code, that begins with a for loop. Iterations are

divided among the additional threads. Usually, block partitioning is selected, which means

that, for a total of n iterations and t number of threads, each thread executes n
t iterations.

Note that the loop variable is by default private (each thread has its own copy) and its

value is updated in the same way as reduction variables.

Assignment to threads can have a very significant effect on performance. This can

be achieved through scheduling. Schedule clause modifies the default scheduling option

and has the form schedule(<type>, <chunksize>). “Chunk ”refers to a block of

iterations that would be executed consecutively in the serial loop and chunksize is the

number of iterations in the block, defined by a positive integer. Type can be {static,

dynamic, guided, auto, runtime} and chunksize is optional. In static scheduling, iterations

can be assigned to threads, before the loop is executed, following a round–robin scheduler.

In dynamic and in guided scheduling, the loop iterations are assigned to each thread during

execution. In both dynamic and guided scheduling, each thread executes a chunk and

when it finishes, it requests another one from the run–time system. However, dynamic

uses fixed size chunks and guided uses chunks that have a decreasing chunksize as the

number of iteration increases. Runtime scheduling can be defined at runtime using specific

environment variables and is useful when the cost of each iteration cannot be determined.

OpenMP on NUMA systems

In NUMA systems and, more specifically, in cache coherent NUMA systems (cc–NUMA),

performance can also be affected by thread and data placement [11]. Selecting the optimal

thread placement depends not only on the topology, but also on the characteristics of

desired application. Threads can be placed either close (same socket) or far (different

sockets). Putting threads far apart may improve memory bandwidth, combined cache

size available for the application but can decrease performance on synchronization. In

contrast, placing threads close may improve performance of synchronization constructs,

3.3. Parallel Implementation of CPD–ALS and RBS–CPD using ALS 27

but may decrease the available memory bandwidth and cache size. In order to understand

how caches and threads are correlated, we present a short background.

Caches are faster than main memory and their design takes into consideration the

principles of temporal and spatial locality. When a processor needs to access a location in

main memory, rather than transferring data only from this location, a block of memory

containing data from nearby locations is transferred to or from the processor. This block

of memory is called a cache line (or cache block). Now cache coherent systems ensure that

caches on different sockets are coherent. So, when multiple threads try to update different

data that belong to the same cache line, the cache coherent control acts as if the threads

were accessing the same memory location. This means that when one thread updates its

data and others try to read them, they will have to retrieve them from main memory.

This is called false sharing and can add extra latency, degrading the performance of a

shared–memory program.

Thread placement can be achieved with OpenMP clauses and routines, but data place-

ment on the other hand cannot. For that reason, one can use an other alternative, library

libnuma. This library is developed for NUMA control and can be combined with OpenMP.

This library is included in header file <numa.h>.

3.3 Parallel Implementation of CPD–ALS and RBS–CPD

using ALS

In this section, we will describe a parallel implementation of ALS and RBS. We used

OpenMP in order to execute both algorithms in parallel. Matrix operations are imple-

mented using routines of the C++ library Eigen. Some Eigen’s algorithms can exploit

multi threading using OpenMP. We preferred to enable this feature only in sections that

are outside of the parallel blocks, in order to have more control on resources.

3.3.1 CPD–ALS

In Chapter 2, we presented the ALS algorithm (Algorithm 1) without mentioning how

it can be parallelized. In distributed systems, a parallel implementation of ALS can be

similar to parallel NTF (Nonnegative Tensor Factorization) implementation, proposed in

[5]. More specifically, a third–order tensor X can be partitioned into p sub–tensors, where

p is the number of processing elements and can be factorized as p = pA×pB×pC , forming

a three–dimensional Cartesian grid. Each factor is also partitioned into blocks of rows,

pA, pB, pC respectively. Certain communication groups between processors are created

and used for the efficient collaborative implementation of specific computational tasks.

However, in a shared–memory system this type of communication is not needed, since all

threads can access the same main memory. Therefore we followed a different approach to

solve ALS in parallel. We tried to develop a parallel version of this algorithm, capable to

run with equally high performance across most shared–memory systems.

In Chapter 2, we showed that there are four steps that include the main bottlenecks

of ALS. Those are:

28 Chapter 3. Parallel Implementation using OpenMP

• update factor A,

• update factor B,

• update factor C,

• acceleration step.

At the first three steps, both Hadamard and Khatri–Rao products are computed very

fast (≈ 1% the total time spent for each step). Most of the time is spent to compute each

MTTKRP matrix W and multiplication with matrix Z, where:

WA = X(1)(B�C) ∈ RI×R, ZA = (BTB~CTC)−1 ∈ RR×R ,

WB = X(2)(C�A) ∈ RJ×R, ZB = (CTC~ATA)−1 ∈ RR×R ,

WC = X(3)(B�A) ∈ RK×R, ZC = (BTB~ATA)−1 ∈ RR×R .

(3.1)

Each matricized Tensor can be expressed as follows:

X(1) =

[
X(:,1,:) ... X(:,J,:)

]
=

[
X1

(1) ...X
J
(1)

]
, Xj

(1) ∈ RI×K

X(2) =

[
[X(:,:,1)]

T ... [X(:,:,K)]
T

]
=

[
X1

(2) ...X
K
(2)

]
, Xk

(2) ∈ RJ×I

X(3) =

[
[X(:,1,:)]

T ... [X(:,J,:)]
T

]
=

[
X1

(3) ...X
J
(3)

]
, Xj

(3) ∈ RK×I .

(3.2)

The Khatri–Rao product can be written as:

(B�C) =

B(1,:) �C

...

B(J,:) �C

 , (3.3)

(C�A) =

C(1,:) �A

...

C(K,:) �A

 , (3.4)

(B�A) =

B(1,:) �A

...

B(J,:) �A

 . (3.5)

Using eq. (3.2 - 3.5), each matrix W can be computed as :

WA =
J∑

j=1

Xj
(1)(B(j,:) �C)

WB =

K∑
k=1

Xk
(2)(C(k,:) �A)

WC =
J∑

j=1

Xj
(3)(B(j,:) �A).

(3.6)

3.3. Parallel Implementation of CPD–ALS and RBS–CPD using ALS 29

At the acceleration step, in order to compute function fX for the new factors, we need

to compute the corresponding MTTKRP:

Waccel
C =

J∑
j=1

Xj
(3)(B

accel
(j,:) �Aaccel) (3.7)

Each term can be computed in a parallel for loop, since there are no dependencies.

More specifically, in a parallel for loop, each available thread can compute its own term

and when it completes its task, the result is reduced using reduction clause, as described

before. In case of a NUMA system, each N–mode matricized tensor and the respective

Khatri–Rao products are partitioned in s blocks, where s is the number of available sockets.

The main goal here is to exploit locality and increase cache usage as much as possible. In

few words, threads in each socket compute their partial sum and when it is completed,

the result is reduced. Then, also in parallel, only threads that are in the same socket with

master thread, compute the product WZ and update each factor respectively. In both

parallel for loops, the static scheduling clause was selected, since all iterations have equal

cost. The parallel section of ALS that is related to factor update is given in Algorithm 3.

30 Chapter 3. Parallel Implementation using OpenMP

Algorithm 3 Parallel CPD-ALS algorithm

1: procedure Parallel CPD-ALS(X ,R)
2: initialize k, fX and matrix factors A0,B0,C0

3: while terminating condition is FALSE do
4: ZA = (BTB~CTC)†

5: In parallel, for b = 1, ..., s, do

6: Wb
A =

bJ
s∑

j=(b−1)J
s
+1

Xj
(1)(B(j,:) �C)

7: end parallel for

8: WA =
s∑

b=1

Wb
A

9: Ak+1 = WAZA

10: ZB = (CTC~ATA)†

11: In parallel, for b = 1, ..., s, do

12: Wb
B =

bK
s∑

j=(b−1)K
s
+1

Xk
(2)(C(k,:) �A)

13: end parallel for

14: WB =
s∑

b=1

Wb
B

15: Bk+1 = WBZB

16: ZC = (BTB~ATB)†

17: In parallel, for b = 1, ..., s, do

18: Wb
C =

bJ
s∑

j=(b−1)J
s
+1

Xj
(3)(B(j,:) �A)

19: end parallel for

20: WC =
s∑

b=1

Wb
C

21: Ck+1 = WAZA

22: k ← k + 1
23: end while
24: return matrix factors (Ak,Bk,Ck)
25: end procedure

3.4. Numerical Experiments 31

3.3.2 RBS–CPD using ALS

As explained previously, the number of blocks per dimension in RBS is defined as Qn. In

each outer iteration, we sample Qn samples and, therefore, we solve Qn problems. Each

problem can be solved independently, since blocks are not overlapping. This means that

we can solve Qn problems in parallel, assigning each one to a corresponding thread. If

Qn > t (number of available threads), then Qn problems are divided in task-groups, and

each thread executes Qn

t tasks sequentially.

For large–scale tensors, we expect that, using small Qn (large block sizes), computa-

tional tasks can be performed significantly well in parallel. However, the number of data

accesses is very high, which causes overhead during sampling. In contrast, for large Qn,

the computational cost decreases dramatically and even though that the number of data

accesses is lower, sampling remains a bottleneck since it is very difficult to achieve locality.

The parallelized version of RBS using ALS is shown in Algorithm 4.

Algorithm 4 Parallel RBS–CPD algorithm

1: procedure RBS–CPD(X)
2: initialize k and matrix factors A,B,C
3: while no convergence do
4: l = 1
5: if k > 1 then
6: Shuffle indices In
7: end if
8: In parallel, for thread = 1...t, do
9: for l = 1...Qn

t , do
10: Generate Bln for n = 1, 2, 3

11: Sample A
(l)
sub,B

(l)
sub,C

(iter)
sub ,X (l)

sub

12: new A
(l)
sub ← update

(
X (l)
sub(1),B

(l)
sub,C

(l)
sub

)
13: new B

(l)
sub ← update

(
X (l)
sub(2),C

(l)
sub, new A

(l)
sub

)
14: new C

(l)
sub ← update

(
X (l)
sub(3), new B

(l)
sub,new A

(l)
sub

)
15: Ak+1(Bln, :) = new A

(l)
sub

16: Bk+1(Bln, :) = new B
(l)
sub

17: Ck+1(Bln, :) = new C
(l)
sub

18: end for
19: end parallel for
20: k ← k + 1
21: end while
22: return matrix factors A,B,C
23: end procedure

3.4 Numerical Experiments

In this section, we present results obtained from the parallel OpenMP implementation of

ALS and RBS respectively.

32 Chapter 3. Parallel Implementation using OpenMP

3.4.1 Setup

Both programs are executed on ARIS (Advanced Research Information System), a Greek

supercomputer, deployed and operated by Greek Research and Technology Network (GR-

NET) 1. ARIS consists of 532 computational nodes separated in four “islands”. The one

that we used is called “fat node”and consists of a DELL PowerEdge R820 system with

processor type Sandy Bridge - Intel(R) Xeon(R) CPU E5-4650v2 (44 nodes in total - 4

sockets per node - 10 cores per socket) and 512 GB RAM per node.

3.4.2 Numerical Experiments

The following results are obtained using synthetic data. More precisely, each rank R tensor

is generated from random factor matrices, each with uniform distribution U(−1, 1). Data

presented in the following figures are obtained by repeating each experiment 5 times, using

the same input data. Note that we focus on performance, rather than convergence. Hence

we restrict the number of iterations to 10.

CPD–ALS

In Figure 3.3, we plot the execution time of CPD–ALS, terminated at 10th iteration, for

a 1200 × 1200 × 1200 tensor using n = 1, 4, 8, 20, 40 threads. In Figure 3.4 we plot the

corresponding speedup. Speedup measures the relative performance between two systems

processing the same problem, and is defined as

S =
T1
T2
, (3.8)

where T1 and T2 denote the execution time of each system. More precisely, each St is

calculated as St = T1/Tt, where Tt denotes the execution time of a parallel implementation

using t number of threads and T1 denotes the execution time of a serial implementation

(t = 1).

In Figure 3.5, we plot the execution time of CPD–ALS, implemented in two versions,

one NUMA aware and one naive. For a small number of threads, less than 8, both versions

performed well, but as the number of threads increases, the NUMA aware version performs

bettter. The corresponding speedup is illustrated in Figure 3.6.

1Greek Research and Technology Network - High Performance Computing Services https://hpc.

grnet.gr

https://hpc.grnet.gr
https://hpc.grnet.gr

3.4. Numerical Experiments 33

1 4 8 20 40

Number of threads

10 1

10 2

10 3

10 4
T

im
e

(s
ec

)
Total Time

610.4

162.0

 87.2

 49.3

 30.9

1084.0

 294.2

 151.6

 71.8
 47.2

R=40
R=100

Figure 3.3: Execution time of CPD–ALS, terminated at 10th iteration, for a 1200×1200×
1200 tensor using n threads, where n = 1, 4, 8, 20, 40.

1 4 8 20 40

Number of threads

0

5

10

15

20

25

30

35

40

S
pe

ed
up

Speedup

 1.0

 3.8

 7.0

12.4

19.8

 1.0

 3.7

 7.1

15.1

23.0

R=40
R=100
linear speedup

Figure 3.4: Speedup of CPD–ALS, terminated at 10th iteration, achieved for a 1200 ×
1200× 1200 tensor using n threads, where n = 1, 4, 8, 20, 40.

34 Chapter 3. Parallel Implementation using OpenMP

8 20 40

Number of threads

10 1

10 2

10 3

T
im

e
(s

ec
)

Total Time

87.2

49.3

30.9

151.6

 71.8

 47.2

88.6

56.4

36.5

153.5

 82.9

 48.7

R=40 - NUMA aware version
R=100 - NUMA aware version
R=40 - naive version
R=100 -naive version

Figure 3.5: Execution time of CPD–ALS using a parallel NUMA aware version vs. a
parallel naive version, using n = 8, 20, 40 threads.

8 20 40

Number of threads

5

10

15

20

25

30

35

40

S
pe

ed
up

Speedup

 7.0

12.4

19.8

 7.1

15.1

23.0

 6.9

10.8

16.7

 7.1

13.1

22.3

R=40 - NUMA aware version
R=100 - NUMA aware version
R=40 - naive version
R=100 - naive version
linear speedup

Figure 3.6: Speedup of CPD–ALS using a parallel NUMA aware version vs. a parallel
naive version, using n = 8, 20, 40 threads.

3.4. Numerical Experiments 35

RBS–CPD using ALS

The following results are obtained using a 2000 × 2000 × 2000 tensor with rank R = 20.

In Figure 3.7 we plot the execution time of RBS–CPD for several values of Qn, using 1

thread. In Figure 3.8 we plot the relative factor change during the first 10 iterations, for

the aforementioned values of Qn. We observe that for larger block sizes (Qn = 1, 2, 4, 8),

RBS–CPD achieves lower relative factor change.

In Figures 3.9, 3.10 we plot the execution time of block sizes (Qn = 4, 8, block size

B = 500, 250) which attain the best speedup, while in Figures 3.11, 3.12 we plot the

execution time of block sizes (Qn = 40, 80, block size B = 50, 25) which attain the worst

speedup.

Q
n

1 2 4 8 20 40 80

T
im

e
(s

ec
.)

10 -1

10 0

10 1

10 2

10 3

10 4

2006.4

 521.5

 152.3

 53.4

 8.7

 2.5

 0.9

RBS-CPD using ALS - 10 iterations

block size = 2000
block size = 1000
block size = 500
block size = 250
block size = 100
block size = 50
block size = 25

Figure 3.7: Execution time of RBS–CPD, terminated at 10th iteration, for a 2000×2000×
2000 tensor and rank R = 20. We solve Qn = 1, 2, 4, 8, 20, 40 inner problems, using 1
thread.

36 Chapter 3. Parallel Implementation using OpenMP

Iteration k
1 2 3 4 5 6 7 8 9 10

R
el

at
iv

e
fa

ct
or

 c
ha

ng
e

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2
RBS-CPD using ALS

Q
n
= 1 (FULL)

Q
n
= 2

Q
n
= 4

Q
n
= 8

Q
n
=20

Q
n
=40

Q
n
=80

Figure 3.8: Plot of relative factor change during the first 10 iterations of RBS-CPD.

Number of threads
1 2 3 4 5 6 7 8

T
im

e
(s

ec
)

0

20

40

60

80

100

120

140

160

Q
n
 = 4

Q
n
 = 8

Figure 3.9: Execution time of RBS–CPD, terminated at 10th iteration, for a 2000×2000×
2000 tensor, solving Qn = 4, 8 inner problems.

3.4. Numerical Experiments 37

Number of threads
1 2 3 4 5 6 7 8

S
pe

ed
up

1

2

3

4

5

6

7

8

Q
n
 = 4

Q
n
 = 8

linear speedup

Figure 3.10: Speedup of RBS–CPD, terminated at 10th iteration, for a 2000×2000×2000
tensor, solving Qn = 4, 8 inner problems.

Number of threads
1 2 4 8 20 40

T
im

e
(s

ec
)

0

0.5

1

1.5

2

2.5

3

Q
n
 = 40

Q
n
 = 80

Figure 3.11: Execution time of RBS–CPD, terminated at 10th iteration, for a 2000×2000×
2000 tensor, solving Qn = 40, 80 inner problems

38 Chapter 3. Parallel Implementation using OpenMP

Number of threads
1 2 4 8 20 40

S
pe

ed
up

0

5

10

15

20

25

30

35

40

Q
n
 = 40

Q
n
 = 80

linear speedup

Figure 3.12: Speedup of RBS–CPD, terminated at 10th iteration, for a 2000×2000×2000
tensor, solving Qn = 40, 80 inner problems.

39

Chapter 4

Parallel Implementation using

CUDA

For many years, computers contained only general–purpose CPUs designed to run general

programming tasks. In the late 80’s, new graphic interfaces and 2D applications led

in development of special display accelerators that replaced simple video display cards.

Almost one decade later, the first generation of graphics processing units came out and

few years later General Purpose Computing GPUs (GPGPUs) were introduced. Since

their first appearance, GPGPUs have become more powerful and have begun making

computational inroads against the CPUs in many fields, such as 3D applications, linear

algebra and, more recently, in machine learning.

4.1 Introduction to Heterogeneous Computing

A modern heterogeneous computational node consists of multicore CPU sockets and hard-

ware accelerators such as GPUs or even FPGAs. The most common hardware accelerators

are GPUs, used to accelerate the execution of a program section. A GPU is currently not

a stand-alone platform but works as a co–processor to a CPU. Therefore, GPUs must op-

erate in conjunction with a CPU-based host through a PCI–Express bus. For that reason,

the CPU is called the host and the GPU is called the device (Figure 4.1).

The code of a heterogeneous application consists of two parts, the host code and device

code or kernel. Host code runs on CPUs and device code runs on GPUs. In a program

implemented on Heterogeneous Platforms, the host is responsible for data initialization,

synchronization across all devices, managing the environment, code and data for the device

before loading tasks on the device.

It is important to mention that GPU computing is not meant to replace CPU comput-

ing, since each approach has advantages for certain kinds of programs. CPU computing

is good for control–intensive tasks and, on the other hand, GPU computing is good for

data-parallel computation-intensive tasks. Furthermore, if a problem has a small data

size, complicated control logic and low level parallelism, then CPU is a good choice due to

its ability to handle heavy weighted tasks. On the other hand, if the problem has a large

data size and exhibits massive data parallelism, then the GPU is more suitable, since it

can support massive multi–threading and has larger bandwidth than a CPU. More details

about their differences will be presented in the following section and also a background on

the GPU architecture is given. Figure 4.2 illustrates the hierarchy and relation between

components.

40 Chapter 4. Parallel Implementation using CUDA

 CPU GPU
 (host) (device)

DRAM DRAM

Cache

 P P P P

SM SM SM SM

PCI-E

Figure 4.1: Illustration of Heterogeneous architecture.

4.2 GPU Architecture

The architecture of general–purpose computing GPUs is classified as Single Instruction

– Multiple Threads(SIMT). This means that multiple threads are organized in groups

and execute the same instruction. However, each thread has its own instruction address

counter, register state and carries out the current instruction on its own data. Unlike

CPUs, which have multiple large cores and where each core is designed with a complicated

control, optimized to execute sequential tasks, GPUs have many cores (often hundreds or

even thousands) smaller in size, with a simpler control and are ideal for data–parallel

tasks. Also, GPU cores can handle threads more easily than the CPU does, due to the

fact that they are extremely light–weight and are organized in groups, making them more

easy to schedule.

The key component of a GPU is the Streaming Multiprocessor (SM). Using multiple

copies of this building block, GPU hardware parallelism is achieved. Each SM consists

of many cores, where each core executes one corresponding thread. SM is designed to

support concurrent execution of hundreds of threads, and since there are multiple SMs on

a single GPU, it is possible to execute thousands of threads concurrently. All threads that

belong to the same SM are called a thread block and if the number of threads in one block

is equal to 32, which is the optimal in terms of performance, then this block is also called

as a warp. All threads that belong to the same device are called grid.

The SIMT architecture is similar to the Single Instruction - Multiple Data (SIMD)

architecture, was the basis for vector supercomputers. Both architectures implement par-

allelism by broadcasting the same instruction to multiple execution units. However, one

main difference is that SIMD requires that all elements in a vector execute together in

a unified synchronous group, whereas SIMT allows multiple threads in the same warp to

execute independently. In other words, even though all threads in a warp start simultane-

ously at the same program address, it is possible for individual threads to have different

behaviour (e.g. branches).

4.3. CUDA C/C++ 41

 Thread Core

Thread Block SM

 Grid Device

...

...

...

...

...

 Software Hardware

Figure 4.2: Correspondence between Software & Hardware components.

4.3 CUDA C/C++

CUDA is a parallel computing platform and API, with a small set of extensions to the

C/C++ language and is developed by NVIDIA [12]. Using CUDA as a programming

model, one can execute applications on heterogeneous systems that consists of CPUs

and NVIDIA CUDA-enabled GPUs only. This means that CUDA is not compatible with

different setups, unlike other frameworks, like OpenCL, which is an open standard without

hardware limitations. Despite those limitations, we prefered to use CUDA rather than

other frameworks due to reasons that will be explained below.

CUDA provides both a low level API (CUDA Driver API) and a higher level API

(CUDA Runtime API). Due to the higher complexity of the first one, we prefered to use

the second one. It comes also with a wide variety of math libraries (cuBLAS for basic

Linear Algebra applications, cuFFT for Fast Fourier Transform computations, cuSOLVER

for dense and sparse operations, etc.) and other software components for compilation,

debugging and performance improvement. Unlike OpenCL, where device code is compiled

during run-time, CUDA toolkit offers a dedicated compiler, called nvcc. This compiler

separates each code, sends host code to a C/C++ compiler and device code to the GPU.

The device code (kernel) is further compiled by nvcc, is optimized according to the target

GPU and then is linked to the main program.

4.3.1 CUDA programming model

As mentioned before, a C/C++ application developed in heterogeneous platform using

CUDA consists of two parts, the host code and the kernel. Host code is written in ANSI

C/C++ and kernel is written using CUDA C/C++, all in one ore in separated source

files. A typical processing flow of a CUDA program has the following pattern. At first,

42 Chapter 4. Parallel Implementation using CUDA

GPU memory needs to be allocated and then data are copied from CPU memory to

GPU memory. Then, host invokes kernel execution on device and waits until execution is

completed. When it finishes, data from GPU are copied back to CPU memory.

4.3.2 CUDA Memory Management

Memory management in CUDA programming is similar to C programming, with the

added programmer responsibility of explicitly managing data movement between the host

and device. CUDA runtime provides functions to allocate, transfer and deallocate device

memory.

Memory allocation:

In order to allocate global memory on the host, one can use the following function:

cudaError t cudaMalloc(void **devPtr, size t count);

where count is the number of bytes to be allocated in global memory on the device and

devPtr the pointer of the location in which data are allocated. In the case of failure, the

cudaMalloc function returns cudaErrorMemoryAllocation.

Memory deallocation:

The same allocated memory can be freed when is not needed using the function:

cudaError t cudaFree(void *devPtr);

This function can fail if devPtr is not valid or if memory is already freed. It is important

to mention that both operations are expensive and for that reason, one should use them

as less frequently as possible.

Memory transfer:

Once global memory is allocated, data can be transferred from host to the device through

the following function:

cudaError t cudaMemcpy(void *dst, const void *src, size t count,

enum cudaMemcpyKind kind);

where src is the source memory location, dst is the destination memory location and

count is the number of bytes to be transferred. Enumerated variable kind specifies the

direction of the copy and its value can be one of the following:

cudaMemcpyHostToHost Host → Host

cudaMemcpyHostToDevice Host → Device

cudaMemcpyDeviceToHost Device → Host

cudaMemcpyDeviceToDevice Device → Device

4.3. CUDA C/C++ 43

4.3.3 CUDA kernel functions

Kernel functions in CUDA use the prefix global which is placed before the type def-

inition (e.g. global <type> <function name>(<function parameters)>).

When a kernel function is launched from the host side, execution is moved to a device

where a large number of threads are generated and each thread executes the statements

specified by the kernel function.

Kernel functions are called by the host, in a similar way to ANSI C/C++. The

only difference is that host also defines the grid-size and the block-size using <<<, >>>

symbols, according to the following syntax:

kernel name <<<gridsize, blocksize>>>(parameters);

4.3.4 Thread and Block Hierarchy

All threads in a grid share the same global memory space, all threads in a block can

cooperate with each other using block-local synchronization and shared memory, and each

thread has its own private register. Threads rely on two unique coordinates to distinguish

themselves from each other, variable blockIdx (block index within a grid) and variable

threadIdx (thread index within a block). Both are of type uint3, a CUDA built-in vector

type that contains fields x, y, z and are accessed as threadIdx.x (threadIdx.y ,

threadIdx.z) and blockIdx.x (blockIdx.y, blockIdx.z). Also, block-size and

grid-size are defined using two uint3 type variables, blockDim and gridDim which are

accessed similar to indices. Separate threads in different blocks can be distinguished using

a unique global thread id, which is calculated using coordinate variables

thread id dim = blockIdx.dim*blockDim.dim + threadIdx.dim, where

dim={x,y,z}.

4.3.5 CUDA Streams

In most cases, more time is spent to execute the kernel than transferring the data. One

can exploit this situation through CUDA streams and may be able to hide the CPU–

GPU latency. A CUDA stream refers to a sequence of asynchronous CUDA operations

that execute on a device in the order issued by the host code. A stream encloses these

operations, maintains their ordering, allows operations to be queued in the stream to be

executed after all preceding operations and also, allows for querying the status of queued

operations. These operations can include host–device data transfer, kernel launches, and

other commands that are issued by the host but handled by the device. The execution

of an operation in a stream is always asynchronous with respect to the host. In other

words, the functions in the CUDA runtime API, can be classified as either synchronous

or asynchronous. Functions with synchronous behavior block the host thread until they

complete. On the other hand, functions with asynchronous behavior return control to the

host immediately after being called. Asynchronous functions may require extra synchro-

nization with the host, which can be accomplished using cudaDeviceSynchronize().

44 Chapter 4. Parallel Implementation using CUDA

Also, since all CUDA stream operations are asynchronous, the CUDA API provides a

blocking function

cudaError t cudaStreamSynchronize(cudaStream t stream);

which forces the host to block until all operations in the provided stream have completed.

When a stream is no longer in use, its resources can be released using function

cudaError t cudaStreamDestroy(cudaStream t stream); .

MEMCPY (H->D) MEMCPY (D->H)

H-D1 KE 1 D-H1

H-D2 KE 2 D-H2

H-D3 KE 3 D-H3

time

Serial

Concurrent
performance
gained

H-D4 KE 4 D-H4

Figure 4.3: Timeline of a simple CUDA operation with 4 streams (concurrent) and without
(serial).

4.3.6 Multi-GPU Parallelism

There are many reasons for adding multi-GPU support to an application. The most

common reasons are:

1. increase available GPU memory (e.g. data sets are too large to fit into the memory

of a single GPU),

2. increase throughput and efficiency (e.g. execute multiple tasks concurrently).

In order to use multi-GPU systems, it is important to understand the connection

topologies. In a shared memory system, two or more GPUs can be connected either

via PCI-E bus (through CPU), or via NVLink, a multi-lane near-range communication

link (compatible only for NVIDIA GPUs), a communication protocol that offers higher

bandwidth. Figure 4.4 illustrates the two types of a simplified GPU-CPU communication

topology within a node.

4.3. CUDA C/C++ 45

GPU#0

GPU#1

PCI-E
Switch NVlink

GPU#0

GPU#1

 CPU
PCI-E
Switch CPU

Figure 4.4: Illustration of a multi-GPU communication topology within a node. PCI-E
based communication (left) vs NVLink based communication(right).

GPUs that belong to different nodes, can also communicate through computer-networking

communication protocols (e.g. InfiniBand), but are beyond the scope of this thesis. Also,

due to hardware limitations, we will only focus on PCI-E based communication.

Peer-to-Peer Communication

Kernels executed on modern GPUs can access directly the global memory of any GPU

connected to the same PCIe root node. This can be achieved using CUDA peer-to-peer

(P2P), which offers P2P Access and P2P Transfer directly between multiple GPUs. In case

where this protocol is not supported, CUDA P2P API will perform peer-to-peer transfer

between these devices, but the driver will transfer data through host memory for those

transactions rather than directly across the PCIe bus. However this method adds extra

latency in our application. In our implementation, we used the second approach due to

hardware limitations.

Managing Multiple GPUs

Multiple GPUs in one node can be used at once from either one single thread (using

non blocking methods) or multiple threads. Since most of the operations were executed

synchronously, we used the second approach, where each host thread cooperates with each

GPU using one stream. We used OpenMP in order to fork the necessary threads.

In general, in order to use multiple devices, the first step is to determine the number

of CUDA-enabled devices that are available in a system using the following function:

cudaError t cudaGetDeviceCount(int* count);.

If there are more than one CUDA compatible GPUs, one can select the current device

with the following function:

46 Chapter 4. Parallel Implementation using CUDA

cudaError t cudaSetDevice(int id);

where id ∈ [0, ..., count−1]. Once the current device is selected, all CUDA operations will

be applied to that device as described before.

The next step is to allocate all resources needed in each device, in particular, create

a stream and allocate memory on each device. Then, tasks are launched through the

corresponding stream, one stream per device, and when the operations of each stream

are completed, data are transferred back to the host. When the execution is completed,

all allocated resources in each device must be freed. Algorithm 5 summarizes the above

workflow.

Algorithm 5 multiGPU management

1: Get number of GPUs (count)
2: Fork count threads
3: In parallel, for gpu id = 0, ..., count− 1, do
4: Select current GPU with id = gpu id
5: Create stream for current GPU
6: Allocate device resources
7: Launch task(s) on current GPU through the corresponding stream
8: Use stream to synchronize devices
9: Destroy stream and free resources

10: end parallel for

4.4 Parallel Implementation of ALS

As we shown in Chapter 3, the main bottleneck of CPD is the computation of MTTKRP

for each factor. In this section, we will present an alternative version of CPD, where we

calculate MTTKRP using partial Khatri–Rao product, instead of the full product. The

reason that we followed this approach is that the computation of full Khatri–Rao product

does not perform better on a GPU than on a CPU. More specifically, the time spent on

the computation can be compared to the time spent on copying the data to and from

GPU. Also, the Hadamard product of small matrices (rank R < 100) is a low-performing

operation on GPU since the memory bandwidth becomes the main bottleneck for such a

small computational workload. That is why partial Khatri–Rao and Hadamard product

are both computed on CPU. On the contrary, matrix multiplication performs much better

on GPUs than on CPUs, especially after a certain threshold matrix size (it takes at least

matrix sizes of around 100× 100).

The main goal is to decompose each computational demanding operation into more,

less computational expensive tasks. This leads to a more efficient GPU parallelization,

since we can allocate significant less memory (e.g. I×K rather than I×J×K in MTTKRP

WC), exploit many optimization tricks such as CUDA Streams and also, achieve better

multi-GPU parallelism. In this implementation of CPD-ALS, we tried to reuse part of

the MTTKRP in order to update both factors A and B. Later we will prove that both

MTTKRPs WA,WB can be computed using the same matrix Xpart
(1) which is computed

as follows.

4.4. Parallel Implementation of ALS 47

Xpart
(1) = [X1

(1)C ... XJ
(1)C]. (4.1)

For the remainder of this thesis, we will refer to it as Partial MTTKRP.

Each MTTKRP is computed as shown below:

WA = X(1)(B�C) =
J∑

j=1

Xj
(1)[(B(j,:) �C)]

=

J∑
j=1

[Xj
(1)C]DB(j,:)

=

J∑
j=1

[Xpart
(1)](:,(j−1)R:jR)DB(j,:)

,

(4.2)

where DB(j,:)
= diag

(
BT

(j,:)

)
∈ RR×R. We remind to the reader that matrix WB is defined

as WB = X(2)(C �A). Each row of WB can be computed as

[WB](j,:) = 1T ([Xpart
(1)](:,(j−1)R:jR) ~A), (4.3)

where 1 = [1 1 ... 1 1] ∈ RI×1, and WC is calculated as:

WC = X(3)(B�A) =
J∑

j=1

Xj
(3)(B(j,:) �A)

=
J∑

j=1

(Xj
(3)A)DB(j,:)

=
J∑

j=1

Xj
(3)(ADB(j,:)

)

=

J∑
j=1

B(j,:) � (Xj
(3)A).

(4.4)

Proof of 4.3:

Since WB = X(2)(C�A) =
K∑
k=1

Xk
(2)(C(k,:) �A), each jth row is equal to

[WB](j,:) = [X(2)](j,:)(C�A) =

K∑
k=1

[Xk
(2)](j,:)(C(k,:) �A)

(3.2)
=

K∑
k=1

[X(:,j,k)]
T (C(k,:) �A) =

K∑
k=1

[X(:,j,k)]
TADC(k,:)

=

K∑
k=1

1T [X(:,j,k)C(k,:)]~A = 1T

(K∑
k=1

[X(:,j,k)C(k,:)]~A

)
= 1T

(
[X(:,j,:)C]~A

)
= 1T

(
[X j

(1)C]~A

)
= 1T

(
[X part

(1)](:,(j−1)R:jR) ~A

)
�

48 Chapter 4. Parallel Implementation using CUDA

Depending on whether K > I or not, we use the following formulas to compute matrix

WC , if K > I:

WC =

J∑
j=1

Xj
(3)(B(j,:) �A), (4.5)

otherwise,

WC =

J∑
j=1

B(j,:) � (Xj
(3)A). (4.6)

Using this trick we can reduce Khatri–Rao product operations to min(I ×R,K ×R) for

each j-th term.

Based on the equations 4.1 - 4.6, operations that are performed on GPU are:

• full matrix Xpart
(1) ,

• each term[X part
(1)](:,(j−1)R:jR)DB(j,:)

of WA,

• matrix multiplications BTB and CTC,

• factor update A = WAZA
−1,

• matrix multiplications CTC and ATA,

• factor update B = WBZB
−1,

• matrix WC ,

• matrix multiplications BTB and ATA,

• factor update C = WCZC
−1,

• matrix Waccel
C , used after acceleration step.

Matrix multiplications are implemented using two different methods, a low level im-

plementation using tiled matrix multiplication and a high level using cuda Dgemm from

cuBLAS API. On the one hand, tiled matrix multiplication is a simple algorithm that

exploits two very important factors compared to naive matrix multiplication. The first

one is that more shared memory is used, which reduces global memory accesses and also,

improves thread scheduling and execution, especially when tiles have the size of a warp

(32× 32).

Tiled Matrix Multiplication

More precisely, for matrices A ∈ RM×N ,B ∈ RN×K and C ∈ RM×K , where C = AB,

each element C(i, j) is computed as:

C(i, j) =

N∑
n=1

A(i, n) ·B(n, j) =

N
|Tile|∑
s=1

|T ile|∑
t=1

A(i, t) ·B(t, j) . (4.7)

4.4. Parallel Implementation of ALS 49

Therefore, matrix C can be partitioned into square sub-matrix (tiles), all threads that

belong to the same block compute one square sub-matrix and each thread an element

of this sub-matrix. Threads access global memory using their global id, data from the

global memory is then copied in the shared memory, and each thread inside that block

uses its local id to access the corresponding cell. If the matrix dimensions are not divisible

by the block dimensions, then extra operations are needed (such as zero-padding and

extra control logic) in order to include the leftover elements, which causes performance

degradation. Thus, this method is very efficient when the sizes of the matrix dimensions

are multiples of the tile dimensions, and also, performs better than cuda Dgemm for small

matrices. In contrast, for large matrices, cuda Dgemm achieves higher performance. As a

result, we opt for the second method for our implementation.

Matrix Multiplication using function cuda Dgemm()

Function cuda Dgemm() (in general cuda <type>gemm - D stands for double precision)

implements Level-3 (matrix-matrix operations) Basic Linear Algebra Subprograms. This

function performs the matrix–matrix multiplication as follows:

C = α · op(A)op(B) + β ·C, (4.8)

where α, β are scalars, A,B,C are matrices in column-major format and operator op(M) =

{M or MT or MH}. In order to use this function, an additional variable is needed (han-

dle variable cublasHandle t). The cublasHandle t type is a pointer type to an opaque

structure holding the cuBLAS library context. This variable must be initialized using

cublasCreate() and should be destroyed at the end using cublasDestroy(). Cre-

ating a new handle can add extra overhead but, on the other hand, can be reused for

multiple cuBLAS operations. Note that in a multi-GPU application multiple handles

must be used, each one is created by a host thread, since each thread can only hold one

GPU context.

Each sub-matrix of Xpart
(1) can be computed separately using cuda Dgemm(). The

MTTKRPs WC and Waccel
C are computed in a way similar to “tiled matrix multiplication”,

as presented below in Algorithm 6 and 7.

From all the above operations, three of them are the main bottleneck of the algorithm

and therefore, due to their demanding complexity can be computed efficiently on multiple

GPUs. Those are the computations of Xpart
(1) , WC and Waccel

C which consist of 90% of the

total execution time.

The Partial MTTKRP Xpart
(1) as in (4.1) can be computed independently. Therefore,

each part of Xpart
(1) , Xj

(1)C with j ∈ {1, ..., J}, can be assigned to the corresponding GPU

as we show in Algorithm 8. MTTKRPs WC and Waccel
C can be partitioned in as many

blocks as the number of available GPUs. Each block is calculated independently and when

the procedure is completed, all block results are gathered and summed, as presented in

Algorithm 9.

50 Chapter 4. Parallel Implementation using CUDA

Algorithm 6 MTTKRP K

1: procedure MTTKRP K((WC ,A,B,X(3), j, I,K))
2: Initialize Alocal, Xlocal, result = WC(global row, global col)
3: set Tile = 32, b = floor(I/T ile), tx = threadIdx.x, ty = threadIdx.y, bx =
blockIdx.x, by = blockIdx.y, global row = bx∗TILE+tx, global col = by∗TILE+ty

4: for t=0...b-1 do
5: set local row = t ∗ TILE + tx, local col = t ∗ TILE + ty
6: if global row < K and local col < I then
7: Xlocal(ty, tx) = X(global row, local col + j ∗K)
8: else
9: Xlocal(ty, tx) = 0

10: end if
11: if local row < I and global col < R then
12: Alocal(ty, tx) = A(local row, global col)
13: else
14: Alocal(ty, tx) = 0
15: end if
16: syncthreads()
17: for k = 0...T ile− 1 do
18: result = result+ Xlocal(ty, tx) ∗Alocal(ty, tx)
19: end for
20: syncthreads()
21: end for
22: if global row < K and global col < R then
23: WC(global row, global col) = result ∗B(j, global col)
24: end if
25: end procedure

4.4. Parallel Implementation of ALS 51

Algorithm 7 MTTKRP I

1: procedure MTTKRP I((WC ,A,B,X(3), j, I,K))
2: Initialize Alocal, Xlocal, result = WC(global row, global col)
3: set Tile = 32, b = floor(I/T ile), tx = threadIdx.x, ty = threadIdx.y, bx =
blockIdx.x, by = blockIdx.y, global row = bx∗TILE+tx, global col = by∗TILE+ty

4: for t=0...b-1 do
5: set local row = t ∗ TILE + tx, local col = t ∗ TILE + ty
6: if global row < K and local col < I then
7: Xlocal(ty, tx) = X(global row, local col + j ∗K)
8: else
9: Xlocal(ty, tx) = 0

10: end if
11: if local row < I and global col < R then
12: Alocal(ty, tx) = A(local row, global col) ∗B(j, global col)
13: else
14: Alocal(ty, tx) = 0
15: end if
16: syncthreads()
17: for k = 0...T ile− 1 do
18: result = result+ Xlocal(ty, tx) ∗Alocal(ty, tx)
19: end for
20: syncthreads()
21: end for
22: if global row < K and global col < R then
23: WC(global row, global col) = result
24: end if
25: end procedure

Algorithm 8 Compute Xpart
(1)

1: procedure ComputePartialMTTKRP(X(1),C,count)
2: In parallel, for gpu id = 0, ..., count− 1, do
3: for j = gpu id J

count + 1, ..., (gpu id+ 1) J
count

4: [Xpart
(1)]((j−1)I:jI,:) = X1

(j)C
5: end for
6: end parallel for
7: return Xpart

(1)
8: end procedure

52 Chapter 4. Parallel Implementation using CUDA

Algorithm 9 Compute Parallel MTTKRP WC

1: procedure ComputeParallelMTTKRP(X(3),B,A,count)
2: set WC = zeros(K,R)
3: In parallel, for gpu id = 0, ..., count− 1, do
4: if K > I then
5: for j = gpu id(J/count)...(gpu id+ 1)(J/count)− 1 do

6: MTTKRP K(Wgpu id
C ,A,B,X(3), j, I,K)

7: end for
8: else
9: for j = gpu id(J/count)...(gpu id+ 1)(J/count)− 1 do

10: MTTKRP I(Wgpu id
C ,A,B,X(3), j, I,K)

11: end for
12: end if
13: end parallel for
14: In parallel, for gpu id = 0, ..., count− 1, do
15: WC = WC + Wgpu id

C

16: end parallel for
17: return MTTKRP WC

18: end procedure

4.5 Speedups-Experiments

In this section, we present results obtained from the parallel CUDA implementation of

ALS .

4.5.1 Setup

As we mentioned in Chapter 3, the experiments are carried out on a GPU accelerated

node of the ARIS supercomputer. This node consists of a DELL PowerEdge R730 system

with processor type Haswell - Intel(R) Xeon(R) E5-2660v3 (44 nodes in total - 2 sockets

per node - 10 cores per socket), 64 GB RAM per node and 2 NVIDIA Tesla K40 GPUs

per node.

4.5.2 Numerical Experiments

Tensors are generated from synthetic data, as described in previous chapter. For the

sake of comparison, we also developed a version that solves the modified CPD–ALS and is

executed only on CPUs. The following results are obtained after conducting 5 independent

trials using the same input data.

In the following figures, we plot the execution time and the corresponding speedup

obtained by using a serial CPU, a single–GPU and a dual–GPU implementation that

solves the modified CPD-ALS. In Figures 4.5 - 4.8 we used a 1200 × 1200 × 1200 cubic

tensor of rank R = 100, 200 and in Figures 4.9 - 4.12 we used a 1500 × 500 × 500 tensor

of rank R = 40, 200.

We observe that the obtained speedup increases according to dimensions and rank R

of the tensor. We attribute this fact to the computational cost, which as increases, it

overcomes the respective transferring cost from and to device.

4.5. Speedups-Experiments 53

CPU (serial) 1 GPU 2 GPUs
0

500

1000

T
im

e
(s

ec
)

Total Time

647.3

121.2 80.8

CPU (serial) 1 GPU 2 GPUs
0

100

200

300

T
im

e
(s

ec
)

Computation of Partial MTTKRP

219.1

 28.6 18.4

CPU (serial) 1 GPU 2 GPUs
0

100

200

300

T
im

e
(s

ec
)

Computation of MTTKRP Wc

223.2

 41.8 25.1

{I, J, K, R}={1200, 1200, 1200, 100} (10 CPD-ALS Iterations)

CPU (serial) 1 GPU 2 GPUs
0

100

200

T
im

e
(s

ec
)

Acceleration step
182.4

 34.3
 20.6

Figure 4.5: Experiment 1.A: 1200× 1200× 1200 tensor of rank R = 100

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Total Speedup

1.0

5.3
8.0

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Computation of Partial MTTKRP

 1.0

 7.7

11.9

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Computation of MTTKRP Wc

1.0

5.3

8.9

{I, J, K, R}={1200, 1200, 1200, 100} (10 CPD-ALS Iterations)

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Acceleration step

1.0

5.3
8.8

Figure 4.6: Experiment 1.A: 1200× 1200× 1200 tensor of rank R = 100

54 Chapter 4. Parallel Implementation using CUDA

CPU (serial) 1 GPU 2 GPUs
0

500

1000

1500

T
im

e
(s

ec
)

Total Time

1251.5

 171.0 109.7

CPU (serial) 1 GPU 2 GPUs
0

200

400

600

T
im

e
(s

ec
)

Computation of Partial MTTKRP

410.7

 35.7 20.4

CPU (serial) 1 GPU 2 GPUs
0

200

400

600

T
im

e
(s

ec
)

Computation of MTTKRP Wc

420.7

 57.0 31.5

{I, J, K, R}={1200, 1200, 1200, 200} (10 CPD-ALS Iterations)

CPU (serial) 1 GPU 2 GPUs
0

200

400

T
im

e
(s

ec
)

Acceleration step
344.0

 47.0 26.0

Figure 4.7: Experiment 1.B: 1200× 1200× 1200 tensor of rank R = 200

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Total Speedup

 1.0

 7.3

11.4

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Computation of Partial MTTKRP

 1.0

11.5

20.1

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Computation of MTTKRP Wc

 1.0

 7.4

13.4

{I, J, K, R}={1200, 1200, 1200, 200} (10 CPD-ALS Iterations)

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Acceleration step

 1.0

 7.3

13.2

Figure 4.8: Experiment 1.B: 1200× 1200× 1200 tensor of rank R = 200

4.5. Speedups-Experiments 55

CPU (serial) 1 GPU 2 GPUs
0

100

200

T
im

e
(s

ec
)

Total Time195.4

 55.5
 38.4

CPU (serial) 1 GPU 2 GPUs
0

50

100

T
im

e
(s

ec
)

Computation of Partial MTTKRP

68.3

15.0 10.5

CPU (serial) 1 GPU 2 GPUs
0

50

100

T
im

e
(s

ec
)

Computation of MTTKRP Wc

68.4

20.7
13.4

{I, J, K, R}={1500, 500, 1500, 40} (10 CPD-ALS Iterations)

CPU (serial) 1 GPU 2 GPUs
0

20

40

60

T
im

e
(s

ec
)

Acceleration step
56.1

16.6
10.9

Figure 4.9: Experiment 2.A: 1500× 500× 1500 tensor of rank R = 40

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Total Speedup

1.0
3.5

5.1

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Computation of Partial MTTKRP

1.0
4.5

6.5

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Computation of MTTKRP Wc

1.0
3.3

5.1

{I, J, K, R}={1500, 500, 1500, 40} (10 CPD-ALS Iterations)

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Acceleration step

1.0
3.4

5.1

Figure 4.10: Experiment 2.A: 1500× 500× 1500 tensor of rank R = 40

56 Chapter 4. Parallel Implementation using CUDA

CPU (serial) 1 GPU 2 GPUs
0

500

1000

T
im

e
(s

ec
)

Total Time

801.8

101.6 68.4

CPU (serial) 1 GPU 2 GPUs
0

100

200

300

T
im

e
(s

ec
)

Computation of Partial MTTKRP
268.3

 21.5 13.8

CPU (serial) 1 GPU 2 GPUs
0

100

200

300

T
im

e
(s

ec
)

Computation of MTTKRP Wc
271.1

 35.1 21.0

{I, J, K, R}={1500, 500, 1500, 200} (10 CPD-ALS Iterations)

CPU (serial) 1 GPU 2 GPUs
0

100

200

300

T
im

e
(s

ec
)

Acceleration step

221.5

 29.1 17.7

Figure 4.11: Experiment 2.B: 1500× 500× 1500 tensor of rank R = 200

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Total Speedup

 1.0

 7.9

11.7

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Computation of Partial MTTKRP

 1.0

12.5

19.5

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Computation of MTTKRP Wc

 1.0

 7.7

12.9

{I, J, K, R}={1500, 500, 1500, 200} (10 CPD-ALS Iterations)

CPU (serial) 1 GPU 2 GPUs
0

10

20

S
pe

ed
up

Acceleration step

 1.0

 7.6

12.5

Figure 4.12: Experiment 2.B: 1500× 500× 1500 tensor of rank R = 200

57

Chapter 5

Conclusion and Future Work

We considered the CPD model for tensor rank factorization via ALS and RBS–CPD

methods. We used two APIs that support parallelism in modern heterogeneous & shared

memory systems and described in detail parallel implementations of the aforementioned

methods. In extensive numerical experiments, our parallel implementations were proven

very efficient and attained significant speedup.

Since tensor factorization is a very useful and popular tool, we suggest some ideas for

future work. One could impose constraints on factors, such as nonnegativity, sparsity,

and orthogonality. For some applications, it might be also usable to extend to higher

tensor orders and also try other tensor factorization models, such as Tucker (also known

as Multilinear SVD), PARAFAC2, etc.

Finally, in order to handle and decompose large tensors faster, other stochastic frame-

works could be also considered.

58 Chapter 5. Conclusion and Future Work

59

Bibliography

[1] M. Morup, “Applications of tensor (multiway array) factorizations and decomposi-

tions in data mining,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, vol. 1, no. 1, pp. 24–40, 2011.

[2] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors for data mining

and data fusion: Models, applications, and scalable algorithms,” ACM Trans.

Intell. Syst. Technol., vol. 8, no. 2, pp. 16:1–16:44, Oct. 2016. [Online]. Available:

http://doi.acm.org/10.1145/2915921

[3] S. Rabanser, O. Shchur, and S. Gnnemann, “Introduction to tensor decompositions

and their applications in machine learning,” 11 2017.

[4] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM

Review, vol. 51, no. 3, pp. 455–500, September 2009.

[5] A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D. Sidiropoulos, “Nesterov-

based alternating optimization for nonnegative tensor factorization: Algorithm and

parallel implementation,” IEEE Transactions on Signal Processing, vol. 66, no. 4, pp.

944–953, Feb 2018.

[6] M. Rajih and P. Comon, “Enhanced line search: A novel method to accelerate

parafac,” in 2005 13th European Signal Processing Conference, Sep. 2005, pp. 1–4.

[7] N. Vervliet and L. De Lathauwer, “A randomized block sampling approach to canon-

ical polyadic decomposition of large-scale tensors,” IEEE Journal of Selected Topics

in Signal Processing, vol. 10, no. 2, pp. 284–295, March 2016.

[8] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” Proc. of

COMPSTAT, 01 2010.

[9] P. Pacheco, An Introduction to Parallel Programming, 2011.

[10] OpenMP Architecture Review Board, “Openmp application program interface,”

Specification, 2015. [Online]. Available: https://www.openmp.org/wp-content/

uploads/openmp-4.5.pdf

[11] L. Huang, H. Jin, L. Yi, and B. Chapman, “Enabling locality-aware computations in

openmp,” Sci. Program., vol. 18, no. 3-4, pp. 169–181, Aug. 2010.

[12] T. M. John Cheng, Max Grossman, Professional CUDA C Programming, 2014.

http://doi.acm.org/10.1145/2915921
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	Introduction
	Problem Description (Tensor factorization)
	Definitions and Notation
	Structure

	Tensor Factorization
	CPD using ALS
	RBS–CPD using ALS

	Parallel Implementation using OpenMP
	Introduction to Parallel Computing
	Multiple Instruction - Multiple Data
	Shared-memory systems

	OpenMP
	Parallel Implementation of CPD–ALS and RBS–CPD using ALS
	CPD–ALS
	RBS–CPD using ALS

	Numerical Experiments
	Setup
	Numerical Experiments

	Parallel Implementation using CUDA
	Introduction to Heterogeneous Computing
	GPU Architecture
	CUDA C/C++
	CUDA programming model
	CUDA Memory Management
	CUDA kernel functions
	Thread and Block Hierarchy
	CUDA Streams
	Multi-GPU Parallelism

	Parallel Implementation of ALS
	Speedups-Experiments
	Setup
	Numerical Experiments

	Conclusion and Future Work
	Bibliography

