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Περίληψη

Οι Μαρκοβιανές Διαδικασίες Απόφασης (ΜΔΑ) αποτελούν ένα ισχυρό

μαθηματικό μοντέλο για λήψη αποφάσεων υπό αβεβαιότητα. ΄Εχουν εφαρ-

μοστεί σε διάφορα επιστημονικά πεδία, όπως τα οικονομικά, η επιχειρησιακή

έρευνα, η λήψη ιατρικών αποφάσεων, και η ρομποτική. Στη βάση της, η λύση

μιας ΜΔΑ για την απόκτηση μίας βέλτιστης πολιτικής είναι υπολογιστικά

ακριβή, και το πρόβλημα επιδεινώνεται στις μεγάλες διαστάσεις (δηλαδή σε

μεγάλους χώρους κατάστασης - ενέργειας). Με βάση τα παραπάνω, έχει

προταθεί στη βιβλιογραφία πληθώρα προσεγγιστικών μεθόδων για την αντι-

μετώπισης τη χωρικής και χρονικής πολυπλοκότητας υπολογισμού λύσεων

ΜΔΑ.

Μία ενδιαφέρουσα προσέγγιση προτάθηκε το 2015, από τους Παναγόπουλο-

Χαλκιαδάκη-Jennings. Η εν λόγω προσέγγιση χρησιμοποιεί μία εναλλασ-
σόμενη μέθοδο βελτιστοποίησης αποφάσεων σε υποχώρους κατάστασης - ε-

νέργειας. Παρόλο που η ιδέα εργασίας σε υποχώρους λύσεων ενός προβλήμα-

τος βελτιστοποίησης δεν ήταν καινούργια, αυτός ο αλγόριθμος ήταν ίσως ο

πρώτος που πρότεινε μία τέτοια προσέγγιση στα πλαίσια της ΜΔΑ. Η ίδια

δημοσίευση επίσης αναδεικνύει την επιτυχία μίας τέτοιας προσέγγισης στο

χειρισμό ενός φωτοβολταϊκού συστήματος παρακολούθησης ηλίου. Ωστόσο,

η ίδια δημοσίευση δεν ξεκαθαρίζει πώς αυτός ο καινούργιος αλγόριθμος κλιμα-

κώνεται σε σχέση με το μέγεθος του προβλήματος, ούτε πως συγκρίνεται με

τις κλασσικές προσεγγίσεις επανάληψης πολιτικής και επανάληψης ανταμοι-

βής· και δε μπορεί να χρησιμοποιηθεί σε περιβάλλοντα τα οποία δεν αφήνουν

την εκτέλεση των υπολογισμένων ενεργειών έπειτα από την βελτιστοποίηση

στις διαχωρισμένες διαστάσεις. Το τελευταίο συνδέεται εννοιολογικά με κα-

ταστάσεις που έχουμε φαινόμενα “παραποίησης” (aliasing) πληροφορίας. Η
παραποίηση πληροφορίας εμφανίζεται σε διάφορα επιστημονικά πεδία, όπως

οι τηλεπικοινωνίες και η ρομποτική, και αντιστοιχεί στην απώλεια πληροφο-

ρίας έπειτα από τη μείωση των διαστάσεων ενός προβλήματος προκειμένου να

προσεγγιστεί η λύση του.

Ως εκ τούτου, σε αυτή τη διπλωματική εργασία παρουσιάζουμε μία νέα πα-

ραλλαγή του αλγορίθμου της εναλλασσόμενης επανάληψης πολιτικής που επι-

λύει τα προαναφερθέντα θέματα aliasing, και παρέχουμε συγκρίσεις με τους
αλγορίθμους επανάληψης πολιτικής και επανάληψης ανταμοιβής. Δείχνουμε ε-

μπειρικά ότι ο προτεινόμενος Aliasing Aware Alternating Policy Iteration
(AAAPI) αλγόριθμός μας μπορεί να συγκλίνει στις βέλτιστες λύσεις (πολι-
τικές), με την παρουσία φαινομένων aliasing πληροφορίας. Επίσης, η υπο-
λογιστική πολυπλοκότητα αυτού του αλγορίθμου είναι σε άμεση συσχέτιση

με την ένταση της aliasing πληροφορίας. Σε περιβάλλοντα όπου τα φαι-
νόμενα aliasing δεν είναι τόσο έντονα, ο AAAPI συγκλίνει γρηγορότερα σε
σχέση με τις μεθόδους επανάληψης πολιτικής (policyiteration) και επανάλη-
ψης τιμών (valueiteration)· αλλά σε περιβάλλοντα με υψηλό βαθμό aliasing
πληροφορίας, όπως ο Λαβύρινθος, ο ρυθμός σύγκλισης του AAAPI πέφτει
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δραματικά. Μία επιπλέον συνεισφορά της εργασίας μας είναι η διατύπωση μία

πιθανής επέκτασης του AAAPI σε πολυπρακτορικά περιβάλλοντα.
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Abstract

Markov Decision Processes (MDPs) constitute a powerful mathematical
model for decision making under uncertainty. They have been used widely
in a number of application areas such as economics, operation research,
health care and robotics. In their fundamental form, solving an MDP to
derive its optimal policy is computationally expensive, and the problem is
only exacerbated in its high dimensions (i.e., in large state-action spaces).
To this end, a number of approximate solution methods have been proposed
over time, tackling time and space complexity in various ways.

An interesting approach has been proposed in 2015, by Panagopou-
los et al, that utilizes an iterative optimization method to optimize over
state-action sub-spaces. Although the idea of iteratively optimizing over
sub-spaces, is not new in optimization theory, this algorithm was perhaps
the first to propose such an approach in the context of MDPs. The same
paper also illustrates the success of such an approach in controlling a solar
tracking system. Nevertheless, that work does not illustrate clearly how
this new algorithm scales along with problem size, nor how it compares
with typical policy iteration or value iteration approaches; and could not
be used in environments that do not allow the execution of the actions
computed after optimization in each separate dimensions. Intuitively, this
corresponds to situations where we have information aliasing phenomena.
Information aliasing is a concept which appears in many scientific fields,
such as telecommunications and robotics, and describes the loss of infor-
mation due to dimensionality reduction.

As such, in this thesis we provide a novel variant of the alternating pol-
icy iteration algorithm that resolves the aforementioned aliasing issues, and
provide a comparison with policy iteration and value iteration. We show
empirically that Aliasing Aware Alternating Policy Iteration (AAAPI) can
converge to the optimal solutions (policies), in the presence of information
aliasing phenomena. Also, the computational complexity of this algorithm
is directly related to the intensity of information aliasing. In environments
where information aliasing is not intense, AAAPI converges faster than pol-
icy iteration and value iteration; but in high-aliasing environments like the
maze-grid, the AAAPI convergence rate is substantially reduced. Finally,
we provide a discussion on a possible AAAPI multi-agent extension.
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Chapter 1

Introduction

In the field of Artificial Intelligence (AI), one of the main problems that
occur, is related to the need of autonomous agents to take sequential de-
cisions, in order to complete a task or achieve a goal. Sequential decision
making refers to the process, which agents have to decide an action (or re-
action) to take in the current state or their environment, so as to proceed
to the next one. Usually, these actions serve a certain purpose, e.g. a goal,
and the agent needs to plan to achieve it. In figure 1.1 we can see a simple
planning problem, where we have an agent, which needs to reach the goal
via a certain plan.

Planning thus is the procedure followed to compute future actions, de-
pending on the situation (states), in order to complete a task. Planning
is studied in decision analysis, operations research, control theory and eco-
nomics. In real life environments, planning is not always a deterministic
procedure, it contains uncertainty (stochastic process) due to future param-
eters that can change the conditions of decision making. These parameters
can be actions from other agents that cooperate or compete with our agent
(economics) or general conditions that depend on the environment.

These planning problems, which contain stochastic process, can be mod-
eled as Markov decision processes (MDPs)[3] and can be analyzed using the
techniques of decision theory. Decision theoretic planning (DTP)[12] is an
extension of planning; it allows to model problems in which actions have
uncertain effects, the decision maker (agent) has partial knowledge of the
world, and the solutions come from resource consumption of the Markov
model.

Apart from decision theoretic planning, reinforcement learning (RL)[34]
can be seen as another method for plan learning. Reinforcement learning
uses the technique of interactive learning. In this technique, the agent in-
teracts with the environment, by acting inside it, and getting a positive or
negative feedback. Using this feedback, the agent can decide whether or
not its actions are effective, forming its plan in the process. Reinforcement

1
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Figure 1.1: A 5x5 Grid world with an agent starting at S trying to reach
goal G via an ’optimal’ path

learning problems can be modeled as Markov decision processes with un-
known components, and thus the algorithms which are used to solve these
MDPs differ from those used in DTP.

1.1 Motivation

The mathematical model, Markov decision processes [3], it is widely known
and it has been applied in many scientific field, especially those who re-
quire decision making. In the first steps of planning and reinforcement
learning, dynamic programming algorithms (policy iteration and value iter-
ation) came to solve MDPs and produce decision making results. Although
the powerfulness of the model, the higher the dimensions grows, the higher
the time and space complexity grows with it. To encounter this complexity
which makes our model not feasible, approximations and decomposition
techniques came to deal with the problem.

In 2015, the paper towards optimal solar tracking [17] proposes an al-
ternating policy iteration schema that utilizes a long known alternative
optimization technique in the context of policy iteration for optimal solar
tracking. This technique decomposes the solar tracking space in x and y di-
mensions, in order to tackle the curse of dimensionality phenomena (when
the dimensionality increases, the volume of the space increases so fast that
computation becomes infeasible in time), and solve the sub-problems sepa-
rately. In this case, decision theoretic planning can decompose the dimen-
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sions and work separately, since the separate plannings of the space could
be easily combined and produce a global solution. A method like this, is
easy in use and can work fast and efficient, as the paper illustrates, for
solar tracking.

This approximation technique it is not easily implemented in every en-
vironment. There are environments where the decomposition of their space
into sub-problems, and the combination of their solutions is not feasible.
These kind of environments usually have information aliasing phenomena,
which appears in dimensionality reduction attempts and describes the loss
of information. It is essential to improve this method, in order to be applied
in more complicated environments with information aliasing phenomena.
Also, a more compact analysis of the complexity and the efficiency of the
algorithm is required for further applications.

1.2 Contributions

In this thesis we provide a novel alternating policy iteration (AltPI) al-
gorithm and its convergence rate. This algorithm created in order to en-
counter the problem of information aliasing, which we face due to decompo-
sition process. Also, for the need of performance comparison and optimality
results, we implemented two classical decision making algorithms, Policy
iteration and Value iteration.

The environment we used to test and evaluate our algorithms is a grid-
world with obstacles (walls). This environment provides a good generaliza-
tion for our algorithms, since many static environments, proper for decision
making problems-algorithms, can be reduced in a grid-world. Also, with
the obstacles in the grid-world and the decomposition method, which our
algorithm uses, we create information aliasing phenomena. An interesting
parameter is that the more the obstacles in the grid-world the more intense
is the aliasing phenomena. The worst case with the most information alias-
ing phenomena is a grid-world with the maximum obstacles (maze).

As we have mentioned, information aliasing appears in dimensionality
reduction (i.e. decomposition), creating difficult conditions for our algo-
rithm to perform due to loss of information in the lower dimensions. Alter-
nating policy iteration can work under these conditions and can, not only,
produce optimal results (policies) in out environments, but also outper-
form, in time complexity, the two classic algorithms in some environmental
cases. We noticed that AltPI works faster in grid-worlds where information
aliasing phenomena is not so intense, rather than environments with many
obstacles. This property of our algorithm, makes clear the cases/environ-
ments where it can be used.

Finally, this algorithm idea can be extended in a multi-agent environ-
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ment. These types of environment contain more than one agents, that can
cooperate or compete. The planning methods in these situations require
reinforcement learning (like Q-Learning) and not DTP algorithms, since
RL can work with more than one agent and less information about the
environment, while DTP is proper for one agent and static environments
where all the information is available.



Chapter 2

Theoretical Background

In this chapter we will discuss decision theoretic planning (DTP), rein-
forcement learning, and information aliasing. We will provide a detailed
introduction to Markov decision processes (MDPs).

Firstly, we will build the problem of planning formalizing the concepts
defined to solve MDPs. These concepts include properties of the Markov
model, equations that are used for planning, and properties of these equa-
tions. We will also discuss the first approaches of planning, which include
dynamic programming (DP) techniques, and introduce two classic DP al-
gorithms.

Finally, we will provide an introduction to reinforcement learning (RL),
which can be considered as an extension of DTP since it is used to compute
a planning for the agent, but with less information regarding the environ-
ment. RL handles environment; where there are parameters that require
estimation. We will introduce a classic RL algorithm, Q-learning. Follow-
ing that, we will discuss the information aliasing problem.

2.1 Decision-Theoretic Planning

The classical planning problem is that of producing a sequence of actions
that guarantees the achievement of certain goal when applied to a specified
starting state [6]. The problem of decision-theoretic planning involves the
design of plans or policies in situations where the initial conditions and the
effects of actions are not known with certainty, and potentially actions must
be traded against one another to determine an optimal course of action [12].
A DTP problem can be viewed as a problem of optimal stochastic control,
for this reason Markov decision process have been proposed as a semantic
and computational framework to formulate DTP. This model allows the
formulation of actions with stochastic effects and the specification of states
or objectives of differing importance.

5
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2.1.1 MDP & Markov Property

Markov Decision Process (MDP) is a discrete time stochastic process that
was first introduced by Bellman and it is useful for studying optimization
problems solved via dynamic programming or other reinforcement learning
techniques. A planning task that satisfied the Markov property (we will
define what Markov property is below) is called a Markov Decision Process
[34].

A particular MDP is defined by a five attribute tuple, {S, A, P, R,
γ}, where S stands for the set of possible states and A stands for the set
of actions. The transition model P is actually a probability distribution
over the next states and it is dependent from the current state and the
taken action in that state: P (s

′ |s, a). The reward model depends on three
variables, the current state, the next state and the taken action: R(s, a, s

′
).

This value model can be stochastic and the value which returns is usually
scaled with the previous probability distribution (transition model P) and
the discount factor γ ∈ (0, 1). The discount factor γ is a number, which
weights the expected value return. In practice, the discount factor is used
to make uncertain the decisions in the next instants of the environment.

Given the above parameters, we can fully determine our Markov deci-
sion process. The discount factor, the probability and reward tables are
dynamics that are determined from the environment of the problem, and
can be changed given the conditions. In figure 2.1, we can see a classic ex-
ample of a recycling robot. It has two states, high and low, three actions,
search, wait and recharge, the rewards given the action, the current and
the next state, and finally the transition probabilities. It is noticeable that
from every state the transition probabilities, given the action, always sum
to 1.

Figure 2.1: MDP: Transition graph example of a recycling robot [34]

Now that we have formulated Markov decision processes, we can talk
about an important property that characterizes them, the Markov property.
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Assuming we have a finite number of states and reward values a general
environment will respond at a time t+ 1 to the action taken at time t. In
the general environmental case, the response may depend on everything
that has happened earlier. So the dynamics can be defined by specifying
the complete probability distribution:

Pr{Rt+1 = r, St+1 = s
′ |S0, A0, R1..., St−1, At−1, Rt, St, At} (2.1)

for all r, s
′
, and all possible values of the past events: S0, A0, R1..., St−1,

At−1, Rt, St, At. If the state signal has the Markov property, then the en-
vironment’s response at t + 1 depends only on the state and action repre-
sentations at t, in which case the environment’s dynamics can be defined
as:

p(s
′
, r|s, a) = Pr{Rt+1 = r, St+1 = s

′|St, At} (2.2)

for all r, s
′
, St and At. In other works, a state signal has the Markov

Property, and is a Markov state, if and only if 2.1 is equal to 2.2 for all
r, s

′
. In this case, the environment and task as a whole are also said to

have the Markov property.

2.1.2 Bellman equation

As we have discussed, almost all planning or reinforcement learning prob-
lems have as an ultimate goal the estimation of a value function-function
of states. This function estimates how good the states of the problem are
for our agent.

Via the value function, the agent can determine a policy, so in each
state it can decide which action to choose in order to get better value.
First lets define the term policy. The policy is actually a mapping from
each state, s ∈ S, to an action, a ∈ A(s), with probability π(a|s) of taking
that action a when in state s. So we would like to choose the best policy
for each state. To accomplish this, we can combine the value function and
the policy definitions and see that the more accurate the value function we
can estimate is, the better the policy.

To calculate value functions, we have to estimate the value of a state s
under a policy π, vπ(s). This is the expected return when starting in s and
following π thereafter, so formally we can define vπ(s) as:

vπ(s) = Eπ[Gt|St = s] = Eπ[
∞∑
k=0

γkRt+k+1|St = s] (2.3)

where Gt is the discounted reward value, Eπ is the expected value of a
random variable given that the agent follows the policy π, R is the reward
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model, γ the discounted factor, while t is any time step. The function
vπ(s), is the state-value function for policy π.

Similarly, we can define the value of taking action a in state s under a
policy π, qπ(s, a), as the expected return starting from s, taking action a
and then following policy π:

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[
∞∑
k=0

γkRt+k+1|St = s, At = a] (2.4)

qπ is called the action-value function for policy π.
One fundamental property of the value function used throughout rein-

forcement learning and dynamic programming is that it satisfies particular
recursive relationships. For any policy π and any state s, the following con-
sistency condition holds between the value of s and the value of its possible
successor states:

vπ(s) = Eπ[Gt|St = s]

= Eπ[
∞∑
k=0

γkRt+k+1|St = s]

= Eπ[Rt+1 + γ
∞∑
k=0

γkRt+k+2|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s
′
, r|s, a)[r + γ Eπ[

∞∑
k=0

γkRt+k+2|St+1 = s
′
]]

=
∑
a

π(a|s)
∑
s′ ,r

p(s
′
, r|s, a)[r + γvπ(s

′
)]

(2.5)

The equation 2.5 is the Bellman equation for vπ [4]. It expresses a rela-
tionship between the value of a state and the values of its successor states.
The Bellman equation 2.5 is a weighting average for all the possibilities.
In other words, the value of a state s is equal to the discounted value of
the next state. This value function vπ refers to the unique solution of the
Bellman equation.

For a finite MDP, we can define an optimal policy in the following
way. Value functions define a partial ordering over policies. A policy π

′

is better or equal to a policy π, if its expected return is greater than or
equal to that of π for all states. In other words, π

′ ≥ π, if and only if,
vπ′ (s) ≥ vπ(s) ∀s ∈ S. The optimal state-value function, we denote it as
v∗ and defined as:
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v∗(s) = maxπuπ(s),∀s ∈ S (2.6)

Optimal policies also share the same optimal action-value function, de-
noted q∗, and defined as:

q∗(s, a) = maxπqπ(s, a),∀s ∈ S and a ∈ A(s) (2.7)

Defining these, v∗ is the value function of a specific policy π∗. So,
through the property of the value functions, it must satisfy the self-consistency
condition from the Bellman equation 2.5 we saw above for state values. This
is the Bellman equation for v∗, or the Bellman optimality equation 2.6 and
it can be written in a form without any reference to a specific policy [4]:

v∗(s) = maxa∈A(s)qπ∗(s, a)

= maxa Eπ∗ [Gt|St = s, a = At]

= maxa Eπ∗ [
∞∑
k=0

γkRt+k+1|St = s, a = At]

= maxa Eπ∗ [Rt+1 + γ
∞∑
k=0

γkRt+k+2|St = s, a = At]

= maxa Eπ∗ [Rt+1 + γv∗(St+1)|St = s, a = At]

= maxa∈A(s)
∑
s′ ,r

p(s
′
, r|s, a)[r + γv∗(s

′
)]

(2.8)

The equation 2.8 is the Bellman optimality equation for v∗. For q∗, the
Bellman optimality equation is:

q∗(s, a) = Eπ∗ [Rt+1 + γmaxa′q∗(St+1, a
′
)|St = s, a = At]

=
∑
s′ ,r

p(s
′
, r|s, a)[r + γmaxa′q∗(s

′
, a
′
)] (2.9)

2.1.3 Policy Evaluation & Policy Improvement

Dynamic programming (DP) is a collection of algorithms that can solve and
Markov decision processes optimally, building progressively on previously
estimated solutions. Having determined our planning purpose, MDPs,
value function (given the Bellman equations), we can now consider how
we can evaluate our given policy π and how to improve our policy π every
time given the value function vπ(s).

Firstly, we examine again the Bellman equation for state-value function
2.5. If we look more carefully into this equation, we will notice that the



10 CHAPTER 2. THEORETICAL BACKGROUND

value function is estimated under a policy π. Also it calculates a weighed
sum of the values for the next state, under the examined policy. In other
words this equation calculates the expected reward for every state, of our
MDP, under the policy π. In the book of Sutton and Barto [34], they
provide an iterative way (algorithm 1) to estimate the value of a policy, in
solved by Eq 2.5.

Algorithm 1 Iterative Policy Evaluation [34]

Input π, the policy to be evaluated
while ∆ < θ do . Where θ a small positive number

∆← 0
for each s ∈ S do

v ← V (s)
v(s)←

∑
a π(a|s)

∑
s′ ,r p(s

′
, r)|s, a)[r + γV (s

′
]

∆← max ∆, |v − V (s)|)
Output V ≈ vπ

Furthermore, having a way to evaluate our policy π for our MDP and
eventually estimate a state-value function for our agent, a step for finding
better actions is required. To this end a greedy method, in the spirit of
dynamic programming, has come to propose an optimal solution. Suppose
that we have to compute a state-value function vπ(s) for a deterministic
policy π. We would like to know, for some states s, whether or not the
policy should be changed in order to choose an action a 6= π(s) determin-
istically. The value of this behaving is:

Q(s, a) = Eπ∗ [Rt+1 + γvπ(St+1)|St = s, a = At]

=
∑
s′ ,r

p(s
′
, r|s, a)[r + γvπ(s

′
)] (2.10)

The criterion to this equation is whether this is greater or less than
vπ(s). If it is greater, it means that selecting action a, when in state s and
then follow the policy π, is a better option.

The above criterion, indicates the policy improvement theorem. If π
and π

′
are any pair of deterministic policies such that, for all s ∈ S,

qπ(s, π
′
) ≥ vπ(s) (2.11)

Then the policy π
′

must be as good as π, or even better. Thus, with
the new policy π

′
we should obtain greater or equal expected return from

all states s ∈ S:

vπ′ (s) ≥ vπ(s) (2.12)
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If there is a strict inequality of 2.11 at any state, then there must be
strict inequality of 2.12 in at least one state. Thus, if qπ(s, a) > vπ(s),
then the changes policy is indeed better than π. The proof of the policy
improvement is straightforward. It’s a greedy way to update your policy
π, based on the update of the estimated state-value function vπ(s). The
proof is on the book [34] pages 94-96.

Having understood the two above steps, policy evaluation and policy
improvement, two classic algorithms created by using them, within the
family of Dynamic Programming (DP)[4]. DP may not be practical for very
large problems, but compared with other methods for solving MDPs[14][5],
DP methods are actually quite efficient. The worst case time complexity
for a DP method, is polynomial in the number of states and actions. If
we denote n the states space, and m the actions space, we can find a
polynomial function of n and m, that the complexity of our DP algorithms
will be analogous to it.

2.1.4 Policy iteration

Policy iteration [14], is one of the first dynamic programming algorithms.
The idea behind the algorithm is that once we improve our policy π, by
using vπ to find a better policy π

′
, then we can compute our new vπ′ , with

the new policy π
′
, and improve it again to find an even better π

′′
. This

method can be characterized as a greedy one, since it chooses (greedily)
every time the best actions. The greedy algorithms of DP are widely known
and are used to solve (optimal) problems. We can thus obtain a sequence
of monotonically improving policies and value functions as we see in the
figure 2.2.

Figure 2.2: Policy Iteration steps till convergence [34]

Each policy is guaranteed to be strict improvement over the previous
one, unless it has converged to optimal value function u∗π and thus policy
π∗. This happens because in a finite MDP (in this thesis we deal with finite
a grid worlds) has a finite number of policies, where the number of possible
combinations is mn (m actions space, n states space). So this process must
converge to an optimal policy and optimal value function in a finite number
of iterations [34].

Below, we have illustrated the pseudo-code of the algorithm:
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Algorithm 2 Policy Iteration [34]

initialize policy π . Initialization
initialize V (s) = 0 ∀s ∈ S
while π is not stable do

for each s ∈ S do . Policy Evaluation step
V (s)←

∑
s′ P (s, a, s

′
)(Ra(s, s

′
) + γV (s

′
))

for each s ∈ S do . Policy Improvement step
π(s)← argmaxa∈A

∑
s′ P (s, a, s

′
)(Ra(s, s

′
) + γV (s

′
))

return V, π

As we see, in this algorithm the steps policy evaluation and policy
improvement are iteratively executed until the process converges.

2.1.5 Value Iteration

Noticing policy iteration, we see that each of its iterations involves policy
evaluation, which may itself be a protracted iterative computation requir-
ing multiple sweeps through the state set. If policy evaluation is done
iteratively, then convergence exactly to vπ occurs only in the limit.

The policy evaluation step of policy iteration can be truncated in several
ways without losing the convergence guarantees of it. One important case
is when policy evaluation is stopped after one sweep. The above procedure
is known as value iteration. It can be written as a particularly simple
backup operation that combines the policy improvement and truncated
policy evaluation steps.

vk+1(s) = maxa E[Rt+1 + γvk(St+1)|St = s, At = a]

= maxa
∑
s′ ,r

π(s
′
, r|s, a)[r + γvk(s

′
)] (2.13)

for all s ∈ S. For arbitrary v0, the sequence vk (where k is the number
of v estimations) can be shown to converge to v∗ under the same conditions
that guarantee the existence of v∗ [34].

We have to consider how value iteration method terminates. Value
iteration, like policy evaluation, formally requires an infinite number of
iterations to converge exactly to v∗ [34]. In practice, this method stops
when the value function change by only a small amount. Algorithm 3
illustrates the value iteration method with the above termination condition.
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Algorithm 3 Value Iteration [34]

initialize policy π . Initialization
initialize V (s) = 0 ∀s ∈ S
choose θ < 0.01.

while δ < θ do . Policy Evaluation
for each s ∈ S do

V ← V (s)
V (s)← maxα

∑
s′ P (s, a, s

′
)(Ra(s, s

′
) + γV (s

′
))

δ ← max(δ, |V − V (s)|)
return π(s) = argmaxα

∑
s′ P (s, a, s

′
)(Ra(s, s

′
) + γV (s

′
)) . Policy

Improvement

In Value Iteration, the evaluation part is changed, as we described
above. It is as efficient as the normal policy evaluation method and al-
though it seems to be better than policy iteration method, since in the first
look seems to execute less steps, the complexity of this algorithm is similar
to that of policy iteration [34].

2.2 The Reinforcement Learning Problem

The idea that we learn by interacting with our environment is probably the
first to occur to us when we think about the nature of learning. Learning
from interaction is a foundational idea underlying nearly all theories of
learning and intelligence [34].

Reinforcement learning is the process by which the agent interacts with
its environment, evaluates its feedback and continues with ”better” (up-
dated) actions. This method can be considered as a planning process for
agents in uncertain environments. RL problems can also be modeled as
MDPs having all the properties we mentioned in the previous section, but
now the transition model is unknown, meaning that the agent can learn di-
rectly from raw experience without a model of the environment’s dynamics;
and also the reward model is potentially unknown.

2.2.1 The Agent’s Environment Interface

The problem of reinforcement learning is meant to be a straightforward
framing of the problem of interactive learning to achieve a goal [34]. The
thing it interacts with, comprising everything outside the agent, is called
the environment. By interacting continually, the agent selects actions and
the environment responds to those actions by presenting new situations
to the agent. To make the agent understand whether he is making good
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actions, the environment returns except from the new states, a reward for
them also. To make things clearer in Figure 2.3, we provide an example of
how the agent interacts in a realistic problem.

Figure 2.3: Interaction between agent and his environment [34]

More specifically, the agent interacts with its environment in a discrete
time steps, t = 0, 1, 2, 3, ..., . At each time step t, the agent selects an
action at ∈ A at its current state st ∈ S, then the environment, one time
step later, responds to the agent with a reward rt+1 ∈ R and a new state
st+1, due to the action that the agent has made.

At each time step, the agent chooses an action from its policy π, which is
a mapping from its states to the actions. Reinforcement learning methods
specify how the agent changes its policy as a result of its experience. The
agent’s goal, roughly speaking, is to maximize the total amount of reward
it receives over the long run.

2.2.2 Reinforcement Learning Methods

In standard reinforcement learning model, an agent is connected to its
environment via perception and action, as described above. The agents
behavior, should choose actions that tend to increase the long run sum of
values of the reinforcement signal. It can learn to do this over time through
the interaction guided by a wide variety of methods (algorithms).

As we have mentioned Markov decision processes is a mathematical
model that is been used to describe a variety number of problems. Like in
DTP, MDPs are able to model reinforcement learning problems, but with
not the exact same way, since DTP and RL are different planning methods.
The MDP in DTP is usually a four dimensional tuple {S,A,R, P}, the
states S, the actions A, the reward table R and the probability transition
table P . In RL things are different, there are cases where the problem, by
its nature, does not give us all the required informations. These cases are
model free problems, where MDPs do not have the transition probability
table or the reward function and hence, the algorithms are beyond the
perspective of dynamic programming.



2.2. THE REINFORCEMENT LEARNING PROBLEM 15

Monte Carlo (MC) methods are ways of solving the RL problem through
sampling [34]. With MC methods we use episodic tasks, which are created
from our policy. With these episodes we evaluate the actions-states to
estimate our value function Q(s, a) and update our policy in order to create
new episodes. Now, as we have described in previous sections, the value
of a state is the expected return—expected cumulative future discounted
reward—starting from that state [34]. To estimate the value function from
experience, we can simply average the observed returns after visiting a
state. The more observations we get the more accurate the value function
will be. This technique implies all Monte Carlo methods. Some of these
methods are first-visit and every-visit Monte Carlo which relies on the
number of times we estimate the value of the state we visit during the
episodic task. The other two are on-policy and off-policy Monte Carlo
methods, which refer to the ways (what policy do we use) we generate our
episodes, every time at the end of an epoch. Finally, both first-visit and
every-visit MC converge quadratically to the expected values qπ(s, a) as the
number of visits (or first visits) to each state–action pair goes to infinity
[34].

Considering a central idea to reinforcement learning, we should think of
the temporal-difference (TD) learning [34]. TD learning combines Monte
Carlo and dynamic programming (DP) ideas. From the aspect of Monte
Carlo methods, TD method learns from raw experience without the need
of the environment’s dynamics. While from the aspect of DP, TD methods
updates its estimations without the final outcome. An advantage of TD
methods is, as we referred, that they do not use any of the environment’s
dynamics [34].

All these methods DP, MC, TD are fundamental for reinforcement
learning. They have been the basis for many years in RL problems and
cover a variety of cases. Based on them many algorithms have been pro-
posed like PI and VI (DP algorithms), which we have seen in the previous
section and many more. We now present one of the most important ones,
which will also concern us in this thesis in Chapter 6.

2.2.3 The Q-Learning Algorithm

One of the most important breakthroughs in reinforcement learning was
the development of an off-policy TD control algorithm known as Q-learning
(Watkins)[36]. Q-learning is a form of model-free reinforcement learning
and it can also viewed as a method of asynchronous dynamic programming.
It provides agents with capability of learning to act optimally in Markovian
domains by experiencing the consequences of actions, without requiring
them to build maps of the domains.

Its simplest form, one-step Q-learning, is defined by:
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Q(s, a) = Q(s, a) + α(r + γ argmaxa′ (Q(s
′
, a
′
)−Q(s, a)) (2.14)

where {s, a, r, a′} is the tuple that describes our MDP, while the α param-
eter refers to the learning rate. If the learning rate is large then at every
time step we make more greedy decisions/steps whereas if it is low then we
take small steps.

In this case, the action-value function Q, approximates q∗, the opti-
mal action-value function, without considering the policy π. This dra-
matically simplifies the analysis of the algorithm and enabled early con-
vergence proofs [34]. Although, the policy π is still used to determine
which state–action pairs are visited and updated. However, for the right
convergence we require that all pairs will continue to be updated. This
requirement is needed in order to find optimal policies and any general
case must require it [34]. Under this assumption and the usual stochastic
approximation conditions on the sequence of step-size parameters, Q has
been shown to converge with probability 1 to q∗ [34].

The algorithm of Q-learning is described below:

Algorithm 4 Q-Learning [36]

initialize Q(s, a),∀s ∈ S, a ∈ A, arbitrarily, and Q(terminal− state, .) =
0 . Initialization
repeat(for each episode)

initialize S
repeat(for each step of episode):

Choose a from S using policy derived from Q
Take action a, observe R, s

′

Q(s, a)← Q(s, a) + a[r + γ argmaxa′ Q(s
′
, a
′
)−Q(s, a)]

s← s
′

until s is terminal
until episodes end

This algorithm has been altered into many variants in order to run
faster and optimal in complex and realistic environments. Some of these
variants are Deep Q learning [30], Double Q learning [13], Deep Double Q
[32] and more.

2.3 Information Aliasing

Information aliasing describes the loss of information. Information aliasing
phenomena appear in many scientific fields usually in data processing and
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especially when dimensionality reduction is involved. In telecommunica-
tions, and more specifically in signal processing, aliasing is an effect that
causes different signals to become indistinguishable when sampled [8]. It
also refers to the distortion or artifact that results when the signal recon-
structed from samples is different from the original continuous signal.

Apart from signal processing, aliasing exists in other fields also. In
computing, for example, it describes a situation in which a data location in
memory can be accessed through different symbolic names in the program.
Thus, modifying the data through one name implicitly modifies the value
associated with all aliased names, which may not be expected.

Finally, in problems where dimensionality reduction and decomposition
happens, aliasing also appears. In this case, lower dimensions may not
be able to represent and contain all the information from the higher di-
mensions. Thus, while working in lower dimensions approximations and
prediction for the loss of information is required, since we do not want to
lose optimality.

Aliasing phenomena thus occur in many cases, and the need to overcome
this problem is intense. We will discuss in Chapters 4 and 5, how aliasing
appears in our work and how we were able to counteract this phenomena
with success. In fact, the problem we faced can be described as a perceptual
aliasing problem.

2.3.1 Perceptual Aliasing

In robotic mapping which is related to computer vision and cartography, the
goal for the robot is to be able to construct or use a map trying to localize
itself [23]. While this process is on going, there can be times that the robot
will not be in a position from which can determine a single state from others.
That’s when aliasing happens in robots. This aliasing phenomena is called
perceptual aliasing and describes the hidden states of the environment [7].
The mapping between states of the world and sensations of the agent is
not one-to-one. If perceptual limitations allow the agent to perceive only
a portion of its world, then many different world states can produce in the
same percept. Also, if the agent has an active perceptual system, meaning
that it can redirect its sensors to different parts of its surroundings then
the reverse will also be true—many different percepts can result from the
same world state.

Perceptual aliasing situation of a double meaning. From the good mean-
ing, perceptual aliasing is useful, since we can represent equivalent states
with the same action. [7]. From the bad meaning. with perceptual alias-
ing we can confuse these states, since the required actions are different [7].
Thus, with perceptual aliasing we can have generalization for the states,
but we can sometimes over-generalize it. To avoid this over-generalization
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we have to do a selection to the hidden states we want to remove them
and uncover the correct states that impedes task performance. The tech-
niques that identify the states usually use history information to uncover
the hidden state [31].



Chapter 3

Related Work

The methods and the algorithms, which have been proposed in order to
solve and encounter problems in the first steps of DTP were not efficient in
the terms of time and space complexity, and they are thus difficult to use
in realistic environments. This raised the need of approximations, based
on the primary methods to achieve better convergence rates and optimality
results.

In this chapter we will analyze some of the most important RL and
DTP approximations in the terms of dynamic programming. We will high-
light the methods they used in order to modify and improve the classic
algorithms and their complexity advantages.

3.1 Least-Squares Policy Iteration

Least-Squares Policy Iteration (LSPI) [28] was inspired by the Least-Squares
Temporal Difference (LSTD) [2] learning algorithm. LSPI is an off-policy
learning algorithm for control problems and can use any collection of train-
ing data from any sampling distribution. Finally, LSPI is a model-free
method, since it does not require to use or learn a model.

LSPI learns Q̂π(s, a;w) as an approximation of the real value function
Qπ(s, a), where w are the parameters of the approximation architecture.
LSPI focuses on linear architectures, which consist of combinations of k
basis functions:

Q̂π(s, a;w) =
k∑
j=1

φj(s, a)wj (3.1)

where the wj are the parameters and φj(s, a) are the basis functions. An
important requirement for the φj(s, a) basis functions is that they have to
be linearly independent.

19
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The entire approximate value function can be written in a matrix mul-
tiplication form:

Q̂π = Φwπ (3.2)

where Φ is a |A||S| × k matrix and wπ is a column vector of length k.

We can recall from Chapter 2 that action-state value function Qπ is the
fixed point (solution) of the Bellman equation: Qπ = R+γPΠQπ. Thus, if
our approximate state-action value function can be a ”close-enough” fixed
point to the above equation, then it will be “close-enough” fixed point to
the real action-state value function:

Q̂π = P
(
R + γPΠQ̂π

)
(3.3)

where P is the orthogonal projection back to the sub-space of the k-basis
functions. Plugging in the approximation of Equation 3.2 leads to a square
linear system and solving for w yields this “fixed point” solution. LSPI uses
the training data to estimate the matrices of this linear system and iterates
over different w, which correspond to improving policies, until convergence.

3.2 Regularized Policy Iteration

In the core of RL and DTP, the procedures of evaluating and updating a
policy π are the basis. The goal of these steps is to find or approximate a
state V or action-state Q value function. In the context of control, these
value functions are not known in advance and the cost of calculating them
is high. Regularized policy iteration [24] is an approximate policy-iteration
based reinforcement learning algorithm. There are two different regularized
PI algorithms, which use two policy evaluation methods. The first one is
Bellman residual minimization (BRM) and the second one is least-squares
temporal difference (LSTD).

BRM comes from the fixed-point equation for the Bellman operator
Qπ − T πQπ = 0. If we replace the Qπ with another function Q and the
magnitude of the Bellman residual ‖Q− T πQ‖, is small, then Q function
is a good approximation of Qπ. Another way to calculate the magni-
tude of the Bellman residual is with the use of L2-norm, where it leads
to an optimization problem for the function Q. Hence, we define the loss
function LBRM(Q; π) = ‖Q− T πQ‖2v, where v is the stationary distribu-
tion of states in the input data. Using samples (Xt, At) and by replac-
ing (T πQ)(Xt, At) with its sample-based approximation (T̂ πQ)(Xt,At) =
Rt + γQ(Xt+1, π(Xt+1)), the empirical counterpart of LBRM(Q; π) can be
written as:
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L̂BRM(Q; π, n) =
1

nM

n∑
t=1

[Q(Xt, At)− (Rt + γQ(Xt+1, π(Xt+1)))]
2 (3.4)

Unlike BRM that minimizes the distance of Q and T πQ, LSTD min-
imizes the distance of Q and ΠT πQ, the back-projection of the image of
Q under the Bellman operator, T πQ. Formally, this means that LSTD
minimizes the loss function LLSTD(Q; π) = ‖Q− ΠT πQ‖2v. The LSTD so-
lution can therefore be written as the solution of the following optimization
problems:

h∗Q = argminh∈FM

∥∥∥h− T̂ πQ∥∥∥2
v
, Q̂LSTD = argminQ∈FM [

∥∥Q− h∗Q∥∥2v (3.5)

where the first equation finds the projection, and the second one mini-
mizes the distance of Q and the projection.

Concluding, the creation of a regularized PI algorithm can be done with
two ways. As it is clear, the first way to do it is to use the approximate
policy evaluation of Bellman residual minimization and the second one the
least-squares temporal difference method. These two methods are mini-
mization problems in their basis, and has shown that can work well for the
Q approximation, providing optimal results under certain conditions [24].

3.3 Approximate Lambda Policy Iteration

Lambda policy iteration [16] is an approximate dynamic programming al-
gorithm based on policy iteration and on the notion of temporal differ-
ences. This method is related with DP problems with discounted and
undiscounted cost. The idea behind this approach is that the discount
factor λ, can be reduced without updating the value function of a given
policy.

The motivation for this method was large-scale problems where other
approximations of the value functions become interesting. With the Monte
Carlo method we evaluated the policy, and as we can see from the definition
of ∆t, the λ parameter has a dominant role.

∆t(s) =
∞∑
π=0

E[(αλ)πdt(sπ, sπ+1)|s0 = s],∀s. (3.6)

where this sum over the policies π denote the new calculated policies
over time and αλ denotes the discounted DP problem, for λ ∈ [0, 1].

In cases where policy evaluation step does not perform well, a reasonable
approach is to choose a policy π with the best tolerance from the optimum.
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Acknowledging this, the rate of the cost function Jt, and the usage of the λ
parameter, require more number of policy iteration steps to perform well.

Thus, an appropriate λ-PI method with a linear approximation archi-
tecture will look like this:

Ĵ(s, r) = r(0) +
K∑
k=1

r(k)φk(s), (3.7)

where r(k), k = 0, 1, 2...K, are the components of the parameter vector
r, and φk are fixed basis functions. The r values helps to approximate the
cost function Ĵ(i, r).

πt(i) = argminu∈S

m∑
j=0

ps,j(g(s, u, j) + Ĵ(j, rt)), ∀s (3.8)

We obtain our M trajectories and the parameter vector rt+1 as:

rt+1 = argminr

M∑
m

Nm∑
k

(Ĵ(im,k, r)− Ĵ(im,k, rt)−
Nm−1∑
s=k

λs−kdt(im,s, im,s+1))
2

(3.9)
Concluding, λ policy iteration can be viewed as the prior method of

TD(λ). TD(λ) uses gradient-like methods, while λ policy iteration linear
algebra packages [16].

3.4 The Alternating Policy Iteration Method

In the context of solar tracking systems, in 2015 Panagopoulos, Chalki-
adakis and Jennings [17] created an approximate dynamic programming
method to attack the solar tracking problem. Inspired by policy iteration
they created an approximation approach where they solve alternately the
parts of the decomposed space.

In the context of approximations and optimization the alternating method
is not new, it is used in problems where the need of dimensionality reduction
or decomposition is necessary. In the field of decision-theoretic planning
and reinforcement learning this approach was the first to be implemented.
Thus, it is worth studying and extending.

3.4.1 Dimensions Decomposition

The main and interesting part of this approach is the decomposition process
in their environment. Their environment was a photovoltaic system with
two dimensions of freedom(Azimuth and Slope) and the goal, for this case,
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Figure 3.1: Dimension decomposition in a dual-axis photovoltaic system
[17]

is to move each dimension in the right position in order to obtain the
maximum energy from the sun. In Figure 3.1 we can see an example of a
dual axis photovoltaic system, where the two dimensions can be handled
independently. This alternating policy iteration (AltPI) method they used
has many applications in every static environment and in all kind of decision
making problems.

Therefore, in our thesis we note that AltPI can be applied in the most
general environment, the grid-world. A grid-world can simulate many en-
vironmental cases, since the use of obstacles (walls) in it or the different
combinations of possible actions create many different scenarios of envi-
ronments. The decomposition process in a grid-world will split the two
dimensions into two vectors, which we call columns and rows. With the
combination of these vectors, we will get the global grid again. As we can
see in the Figure 3.2, we have the two vectors, the row and the column,
and the global grid which can be produced from the two vectors. We can
represent every as square in the grid with the combination of aci and ari
respectively and vice versa. An advantage of this method, is that we can
represent the same information with fewer states. As it is obvious, the row
and column states are eight (four in each vector) in comparison with the
global grid, which are sixteen.
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Figure 3.2: Decomposition in an empty grid-world

3.4.2 Alternating Method

Having introduce the decomposition process, now we can proceed to de-
scribe the alternating method [17], re-defined here in the context of grid
worlds, which every decomposed dimension can converge independently to
their policies and produce a global result from their combination.

More specifically, the alternating method contain an initialization of a
single policy πi, where i represents each of the decomposed dimension(in
the grid-world case we have row policy and column policy), for every de-
composed state space. After this initialization, for every πk, where k ∈ i,
the policy iteration procedure starts by holding all the πi−k policies stable.
The output of that algorithm, πk, is then fed in a second policy iteration
algorithm to compute another πk′ policy. By the time of these alternating
iteration and at the end of them, all these policies πi, are combined to
produce the global policy of the whole state space, π. In algorithm 5, we
present the overall technique, where all these policies πi are alternating run
until convergence.
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Algorithm 5 Alternating Policy Iteration

procedure Alt PI(π)
initialize V (s) = 0 ∀s ∈ S . Initialization
initialize πrow, πcol based on π

while πrow and πcol is not stable do . Main procedure
πcol = policy iteration on column(πcol, πrow, π)
πrow = policy iteration on row(πcol, πrow, π)
π
′ ← Comb(〈πcol, πrow〉) => see Alg. 7

return π
′

The highlight of this algorithm is the PI procedure in each dimension.
In the context of this thesis we created a grid world, which we will briefly
discuss in the next chapters, so the decomposed dimensions are columns
and rows. In Algorithm 6, we describe the policy iteration procedure for
the dimension of rows, since the procedure for columns is the same. As
we see we combine every row state with the column states to create the
global states of our grid. After that we combine the actions, by checking
of course the validity of the combination given the conditions of the grid,
doing policy evaluation and policy improvement steps iteratively, until the
row policy stabilize (and the column policy).

The procedure for each dimension together with the combination of
actions method is described below:

We would like to discuss the combination of actions method (algorithm
7). As we can see in the pseudocode we have an if − else state, which cal-
culates the global action from the decomposed actions. If the combination
of πrow and πcol is invalid, then we need to search for a new global action,
which will not include the result of the calculated decomposed actions. In
the environment of the solar tracking systems there was no validity problem
of action combination. The reason we present this method, is to point out
that in case we can not combine these actions (validity problem for some
reasons) we have to find a new action, feasible for the current state of the
grid-world.
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Algorithm 6 Policy Iteration in each dimension

procedure PI for Rows(πrow, πcol, π)

while πrow is not stable do

for each sr ∈ Srow do . Policy Evaluation Step
for each sc ∈ Scol based on πcol and can be combined with sr

do
s← 〈sr, sc〉
a← π(s)
V (s)←

∑
s′ P (s, a, s

′
)(Ra(s, s

′
) + γV (s

′
))

for each sr ∈ Srow do . Policy Improvement Step
for each sc ∈ Scol based on πcol and can be combined with sr

do
s← 〈sr, sc〉
πrow(sr)← argmaxarow

∑
s′ P (s, a, s

′
)(Ra(s, s

′
) + γV (s

′
)),

where a = Comb(〈acol = πcol(sc), arow〉) => see Alg. 7

return πrow

Algorithm 7 Combination of actions(original method)

procedure Comb(arow, acol)

α
′ ← 〈acol, arow〉

if α
′
is valid action then

leave α
′
unchanged

else
Improvement Step
find α

′
which is feasible

return α
′



Chapter 4

A Novel Alternating Policy
Iteration Algorithm

In the previous chapter, we have described the AltPI method [17]. In this
chapter we will introduce a novel method based on AltPI, which encounters
the phenomena of information aliasing and performs promisingly better
from the classic approaches. These phenomena appeared in our problem
from the decomposition process we applied in our environment. Also, we
will describe the first steps we tried that finally led us to the novel method.

4.1 Grid World

Because of the nature of our algorithms, we needed an environment that
will be generic and static. Also this environment should have the ability
to scale its state space dimensions, for more stable and accurate results.

Thus, we created a grid-world with NxN dimensions, where N deter-
mines the column and the row number of states. As we have mentioned
in a previous chapter, in the grid-world we will use some kind of obstacles.
These obstacles will be referred to as walls, and the purpose of them is to
not let the methods to create a straightforward policy, but instead a more
complex policy π. To understand better the meaning of these walls, imag-
ine a policy π in a maze full of them. It would be an environment with the
maximum difficulties for the algorithms. These obstacles will also create
aliasing phenomena in the grid-world, which led us in our novel method.
The more the walls the more intense information aliasing phenomena will
be in our environment.

Moreover, the action space A was defined in order to cover all directions
in grid-world. More specifically the actions space is defined below:

27
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A = {right, left, down, up, up− right,
up− left, down− right, down− left, stay}

(4.1)

This flexibility in actions, provides a better handling in the case of
alternating policy iteration. In this case, due to decomposition, we have
to combine actions from column space with actions from row space. More
specifically:

Arows = {up, down, stay}
Acol = {right, left, stay}

(4.2)

We can see, that the straight forward, combination of the Arows and
Acol action spaces, gives us as result the A space.

We define the rest dynamics of our Markov decision process, transition
probability table and reward table, appropriately. For the reward table,
in each grid-world we initialize, we have one coordinate that we pointed
as goal. This coordination could be anywhere, but in the maze should be
the state for the exit (to create an exit policy from it). So for every state,
where the taken action led to the goal, we have a reward. Furthermore, for
the transition probability table we tried to initialize it as good as we could
in order to run well the algorithms. Moreover, if we are in state s0, and
we choose action aright, then the probability that will take us to the next
states is described below:

s0

s1

s2

s3

s7

s8

s4

s5

s6

a0,0.8

0.025

0.025

0.025

0.025

0.025

0.025
0.025

0.025

Figure 4.1: Example of transition probability table for our MDP

It is noticeable, that with probability 0.8 we go to the correct state, in
this case from s0 to s4. The rest of the remaining probability, 0.2, is equally
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distributed to the rest of its neighbours (0.025, since the rest neighbors are
8). With these probabilities, we tried to create a consistent environment,
to make the actions more safe. In any case, this probability can easily
change, to create a more inconsistent environment for further results.

Having described how the initialization of our MDP is done, and what
type of environment we used, it would be a proper moment to talk about
the obstacles walls and their meaning.

Firstly, there are three types of grid-world that we created and tested
our algorithms. The first one is the simplest one, where there are no walls
in the grid-world. In the second case, we initialize a number of walls (the
number of them was analogous to the grid size, but they were not many)
with random coordinates, but not the same with the goal. These walls
was placed with a specific order to not block a state from its way to goal
(i.e. the goal it could be reached from every state). For the last and more
complex case we created a maze. which contains the maximum number of
walls in the grid-world. To create a maze we used a recursive algorithm,
which is based on depth-first search algorithm [29].

Figure 4.2: 25x25 Grid-World with random walls
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Figure 4.3: 25x25 Maze Grid-World

Figure 4.4: 60x60 Grid-World with random walls
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Figure 4.5: 60x60 Maze Grid-World

In Figures 4.3, 4.2, 4.5, 4.4, we see an example of two grid-world cases
with random walls (1 − 5%walls of the total space) and two maze grid-
world cases (38− 42%walls of the total space). For the simplest case of an
empty grid-world, we have an example of it in Figure 1.1.

The reason we choose these type of environments is not random. Infor-
mation aliasing is a well defined phenomena, which appears when dimen-
sionality reduction or decomposition happens.
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Figure 4.6: Grid-world decomposition with walls

As we can see in Figure 4.6, we have an example of decomposition
process in a grid-world with walls. When we decompose the whole grid
into row vector and column vector, we notice that the information of walls
can not be passed in the vectors. As a result we lose the wall information
in the lower dimensions, and that creates a problem in the combination of
actions. Thus, if one state of the row vector, has the information of wall,
we lose the action of that state and consequently we lose optimality in the
global policy. In the action spaces we see in Eq. 4.2, only the combination
of them can give us the global action space of Eq. 4.1.

In addition, it is clear that an optimal global policy π, will be provided
by optimal decomposed policies, πrow and πcol. In addition, the information
of goal states and wall states are reachable from the composition of row
and column vector. So, the approximate alternating algorithm, can find
optimal decomposed policies, πrow and πcol, which subsequently will provide
optimal global policy π. The challenge of this algorithm would be to find
optimal global policy π, even when the decomposed policies, πrow and πcol,
are sub-optimal. This case is the one we face with the information aliasing,
since the walls do not allow the combination of column and row policies.
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4.2 Principal Component Analysis

In the previous section we defined our environment, our MDP and the infor-
mation aliasing phenomena, which appear through decomposition process
in a grid-world. To tackle aliasing phenomena the first approach we took
was to focus on value function approximation. The idea behind this approx-
imation was to obtain a prior knowledge from a converged value function
(produced by PI or VI methods) and use it in the initialized value function
of alternating policy iteration algorithm. This value function would contain
the proper information of the grid-world i.e. the hidden states (the walls in
the grid), which is lost from decomposition process and help the algorithm
to converge in an optimal (or sub-optimal) value function. With this value
function the algorithm should be in position to tackle information aliasing
and produce a proper policy π for the grid-world.

There are many ways to extract information from a value function and
many ways to approximate a new one. For our case the most suitable
method is principal component analysis (PCA). Principal component anal-
ysis [10], is a statistical procedure that uses an orthogonal transformation
to convert to a set of possibly correlated variables into a set of values of lin-
early uncorrelated variables called principal component. PCA can be done
by eigenvalue decomposition of a data covariance matrix or singular value
decomposition [33] [20] of a data matrix, usually after a normalization step
of the initial data. The results of a PCA are usually discussed in terms of
component scores, sometimes called factored scores. The weight of these
scores, present the correlation of the data which perform the analysis.

In the grid-world, we performed PCA in the column and row vectors
as a pair, to see and extract any kind of correlation, which could appear
between them. This correlation would mean that the vectors ”hide” in-
formation, which appears in the global grid, and subsequently leads to
wall information, which create the aliasing phenomena. The information
of correlation between them would be extracted from the first principal
component of the PCA and would be used as a prior knowledge to the
value function of alternating policy iteration method.

After applying the procedure of PCA in our vectors, we calculate the
component score of the first principal component. In Figures 4.7, 4.8 and
4.9 we can see that the outcome variables of PCA coincide with the first
principal component.
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Figure 4.7: PCA analysis in 10x10 grid-world

Figure 4.8: PCA analysis in 20x20 grid-world
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Figure 4.9: PCA analysis in 50x50 grid-world

These results end up with a component score of zero, subsequently we
do not get any correlation between row and column vectors. The interesting
part here is that the converged value function did not gave us the correlation
we expected from the hidden walls and that led us to new approaches in
order to encounter information aliasing. These approaches focus on policies
improvement steps and ways that concern decision theory, based on value
functions.

4.3 A novel approach

After changing the whole approach of the problem and focusing in ways of
policy decision making we ended up with a novel method. This method
is based on alternating policy iteration algorithm, but since this method
may create information aliasing phenomena in some environmental cases,
we improved the part of the algorithm which lacks and could not tackle
aliasing.

In Chapter 3 we talked about the ways that AltPI works and calculates a
value function and a global policy. Specifically, in the algorithmic method,
which calculates a global action from the two separate actions (row and
column action) is where the aliasing phenomena affects the algorithm. The
walls do not appear in the decomposed dimensions and hence, when we
combine two (valid for the decomposed space) actions the new one has
chances to not be feasible. This means that the produced action will lead
to a wall-state and thus we can not use it for a future value function
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calculation.
One of the practical problems that aliasing creates is that we cannot

find a way to calculate a global action, in case that the produced action
is invalid. The reasons that the AltPI could not calculate another proper
global action are two. The first one has to do with the nature of the
algorithm, since to alternate between the decomposed space it has to keep
the rest of the space frozen and hence there is only one dimension of freedom
in the action selection. The second reason is a combination of the first
reason and the decomposition process. Because the algorithm works in
lower dimensions and drops the information of the walls and since it keeps
only one dimension of freedom, this dimension can not decide by itself
what local action to choose in order to be the best global action for the
grid-world. These observations helped us to provide a method, which can
handle the aliasing phenomena.

To introduce our method we have to consider some things. Firstly, we
need to know the original goal of the decision making problems, which is
to calculate a value function vπ and produce via this function a greedy
method the global policy π. This global policy will help to calculate a new
value function, in turn, until this procedure converge. The AltPI method
decomposes the state-action space in order to make the above procedure
faster, i.e. to find a value function and a global policy. The question here
is if we can use the whole state-action space in the states that we have
information aliasing phenomena in order to counteract it. In other words,
when the algorithm cannot combine the two separate action because of the
wall, we will choose an action from the global space where the information
of it is known.

In algorithm 8, we can see the pseudocode of action combination with
the improvement step that counteract information aliasing.

Algorithm 8 Combination of actions (Improved)

procedure Comb(arow, acol)

α
′ ← 〈acol, arow〉

if α
′
is valid action then

leave α
′
unchanged

else. This is a policy improvement step for the information aliasing
case

α
′ ← argmaxa∈A

∑
s′ P (s, a, s

′
)(Ra(s, s

′
) + γV (s

′
)),

. With this policy improvement step we calculate a global action,
which is different from the combination of arow and acol

return α
′

In the above method observe the case where the two decomposed action
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cannot be combined because of the aliasing phenomena. In that case, we use
the whole space to calculate a global action, ignoring the two decomposed
actions.

To understand better this method, we need to mention that because of
the nature of the environment (static), all the dynamics of the MDP are
known. Consequently, at any time we have full access in the sets of state
space S and action space A. The idea that algorithm 8 was based is the
following: In the combination process of decomposed actions arow and acol
we face a problem when the result, a, is invalid, i.e. information aliasing. At
this part, because we know exactly when the actions are valid, we thought
that if and only if the combined action is invalid, then we face walls. So, a
solution to this problem would be to to run a complete policy improvement
step for that state. This extra step will illustrate us the information of
wall and will let us decide, based on value function, a global action which
avoids the wall. We named this method aliasing-aware alternating policy
iteration (AAAPI), since it focuses and counteracts information aliasing
phenomena.

This procedure will provide our a solution with global policies π that
follow the value function, but the decomposed policies, arow and acol, will
be in a state of sub-optimality, since the combination of them will not give
us the global policy. Indeed, the goal of the problem is to obtain a global
value function and a global policy. A drawback of this algorithm is that
adds extra complexity to the action calculation. In the next chapter we will
see how this method compares with the classic decision making algorithms.

4.4 Discussion

In this chapter we have seen the steps of this thesis and how they evolved.
We saw the first part, which was the initialization and creation of our
MDP environment. Thereafter, we continued with our first approach that
would led us to the solution of the information aliasing problem. Finally,
we introduced a novel method AAAPI based on a DTP algorithm AltPI,
which counters information aliasing phenomena and solves our MDP.
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Chapter 5

Experimental Evaluation

After the creation of a novel algorithm in the context of DTP, which can en-
counter the information aliasing phenomena, the next step is to evaluate it
against two classic DP algorithms and AltPI. The evaluation will be in two
contexts. Firstly, we will compare these algorithms in their computational
time and secondly to their optimality.

5.1 Experimental Setup

For the needs of this thesis, to experimental evaluate a DP algorithm like
AAAPI and AltPI, we had to implemented some classical DP algorithms, PI
and VI, proper for the problem (DTP). Firstly, we setup the environment,
as we have described in Chapter 4, creating three different grid-worlds in
order to cover the most of the cases. These cases has to be the same for
our algorithms, otherwise the results would not be valid and correct. The
first algorithm we implemented was PI, which is the most common DP
algorithm for DTP and the one that alternating PI was based. Subse-
quently, the second DP algorithm we implemented was VI, which follows
the same principals with PI, such as policy evaluation and policy improve-
ment. These two algorithms (analyzed in Chapter 2) provide a baseline to
solve MDP, in the context of DTP with DP.

Continuing, the next method we implemented is AltPI. In the previ-
ous chapter, we have discussed the information aliasing phenomena, which
appears in decomposition process, and how they can effect the original
alternating PI method. This algorithm will not perform optimally in en-
vironments with obstacles. The reason is, as we have referred, that the
decomposed policies, πrow and πcol, will not produce a global optimal pol-
icy π, since the walls will ”block” the combined action. Despite this, our
AAAPI variant of AltPI is more general and can perform well in every
static environment with aliasing phenomena.

To this end, we have implemented the algorithms and the methods we

39
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used for the need of our thesis. The final step is to run these algorithms
to produce their convergence rates, compare them under the same environ-
mental conditions and check their optimality.

5.2 Experiments and Results

In this section, after having built our environment and implemented our
methods, we will discuss and present our results.

Firstly, we would like to mention that the results we will present, are
under the terms of computational time in a state growing environment. In
other words, for a state space S, which is getting bigger and bigger, we
calculate the computational time of our methods. The results will be ex-
perimental and not mathematically formalized, but since there are bounds
for the time complexity of PI and VI, we can evaluate our results under
these bounds.

Figure 5.1: Time convergence rate in grid-world without walls

In Figures 5.1 and 5.2, we have the time convergence of the algorithms
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Figure 5.2: Time convergence rate in grid-world with random walls
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in two different types of grid-worlds. In the first one, we run the algorithms
in an empty grid, where no walls appear, so the AltPI will run exactly as
it was proposed, and hence will be the same with the AAAPI. This means
that the combination of actions can happen normally, because there will
be no information aliasing phenomena in the decomposition process. In
the second one, we run a grid-world with walls in random coordinates
analogous to the state space S. In this situation, information aliasing
appears and the new combination method (algorithm 8) is necessary to
converge the AAAPI algorithm in the right policy.

Concerning the Figures, we notice that the required time, until the algo-
rithms converge, follows a polynomial form. For the two classic algorithms,
PI and VI, the time convergence seems to be similar, with a little differ-
ence of course, since their iterative way of solving policy evaluation step
and policy improvement step, in VI, is more efficient. AltPI is the same
with the AAAPI in the first environmental case, since there are no walls
in the grid-world and hence no aliasing phenomena. Their performance in
this environment is better that the two classic methods, as a result of the
alternating technique they use. For the second environmental case with
the aliasing phenomena, we notice that AAAPI outperforms all three algo-
rithms. This AAAPI method for solving MDP, by decomposing the state
space and action space, converges faster, even when information aliasing
phenomena takes place and we need the extra steps of policy improvement
to calculate for a global policy π. The AltPI does not perform that well
in this case, since it struggles with the aliasing phenomena to find a global
policy and is even worse than PI and VI. We have to mention that in these
two cases, information aliasing was not so intense, in the first case we did
not have these phenomena, in the second case the number of walls was the
1− 5% and the number of walls in the maze was around 40%, of the total
state space size S. Hence, in the decomposed space the lost information of
the walls did not effect our new method.

Furthermore, except from the computational time of the algorithms,
we considered that the number of iteration, which these algorithms take
until they convergence, would be a good metric to study and explain. In
Figure 5.3, we output the number of iterations for these four algorithms in
a grid-world similar to that in Figure 5.2, i.e with random walls in it. The
number of iterations has immediate relation with the computational time
of these methods, since the polynomial theoretical upper bound depends
on the number of steps until the methods calculate the policy. As we
can see, PI and VI methods take the same iterations until they converge,
while AAAPI uses almost the half of them. The reason of this result, has
to do with dimensions of action and state space. In AAAPI the global
result comes from the combination of lower dimension, and hence it is
reasonable to have less number of iteration in this case. The AltPI uses
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Figure 5.3: Iterations until convergence in grid-world with random walls
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Figure 5.4: Time convergence rate in maze grid-world



5.2. EXPERIMENTS AND RESULTS 45

the most iterations in comparison with all three methods, since the aliasing
phenomena do not allow it to combine the decomposed policies, and thus it
cannot come to a decision for the global policy. This metric, also indicates
the computational time of the methods in these two environmental cases.

For our final experiment, we used as an environment a maze grid-world.
Mazes create paths from states to the goal inside a grid, and the reason we
use this type of grid-world is maximize the number of walls, inside the grid,
and still maintain a path from the states to the goal. A grid-world, which
contain many walls has a huge impact in the decomposition process, since
the row vector and the column vector will loose a lot of information. In this
environment, information aliasing phenomenon reach the maximum level
and the performance of AAAPI is expected. As we can see in Figure 5.4
(the results in a maze environment), PI and VI time performance follows
the same polynomial form, as we saw in the previous cases. The interesting
thing here is the computational time of the AAAPI method, since it does
not perform so well having the third performance of the four algorithms.
The reason of this performance is information aliasing phenomena, which
do not help our algorithm to use the advantage of decomposition process,
but instead obliges it to use, many times, the extra policy improvement
steps. The first expectation here would be that the AAAPI should have
the same computational time with PI, since the policy improvement steps
are the same. A reasonable explanation that AAAPI doesn’t perform the
same as PI, would be the dimension freezing and the low degrees of freedom
(one dimension at each process) that AAAPI uses. Thus it is natural, in
environments were information aliasing phenomena are intense, the AAAPI
to not perform well, since the advantage of decomposition and the process in
lower dimensions can’t exploit. Finally, the AltPI continues to not perform
well in environments with aliasing phenomena, thing that is expected since
there is no way to counteract the problem of the action infeasibility.

Concluding, all these four methods have been evaluated in terms of
optimality with the backward induction method [1], in every environmental
case and for every state space S. The three of the four algorithms, PI, VI
and AAAPI performed optimally to the goal achievement, as we can see
in Figure 5.5 all the actions lead to the goal state. The fourth and final
algorithm, AltPI, because of the lack of action combination in environments
with aliasing phenomena, could not find the proper global policy and hence
could not reach the goal from every state. In Figure 5.6 we have an example
of a not optimal policy, since there are states that if we follow the action
we will not reach the goal.
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Figure 5.5: Optimal policy in a 5x5 Grid-World

Figure 5.6: Not optimal policy in a 5x5 Grid-World
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5.3 Discussion

To summarize, in this chapter we have experimentally evaluated the compu-
tational time of four DP algorithms in the context of DTP. We implemented
all the needed algorithms in order to have an accurate evaluation, both in
computational time and in policy optimality. The creation of proper envi-
ronments, helped us have a better view of our novel method and learn its
advantages and limitations. As we have seen, the novel AAAPI algorithm
should be applied in environments without, or with some, information alias-
ing phenomena. But, in cases like the maze where these aliasing phenomena
reach the maximum level, AAAPI should be avoided and simpler classic
methods like PI are suggested.
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Chapter 6

A Multi-Agent Extension

In this chapter, we will introduce an extension of the AAAPI method in the
context of RL. This extension considers a stochastic environment, where
more than one agent takes place. These type of environments contain
concepts from the game theory field, appropriate for the approximation of
a state-action value function q. This value function will be the key for our
agent’s policy calculation, which has to maximize its utility, depended on
other agents polices.

A multi-agent system[37] is a computerized system composed of multi-
ple interacting intelligent agents. These systems can solve problems that
are difficult or impossible for an individual agent to solve. Moreover, in
game theory, and more specific in competitive zero sum games[26], multi-
agent environment are in use. In a zero sum game, the agents are in a
situation in which the gain or loss of utility is exactly balanced by the
losses or gains of the utility of the other agents. In the context of zero
sum games, M.L. Littman proposed a reinforcement learning algorithm
(minimax-Q)[38][21], which we will analyse in the next sections, in order
to estimate better value functions in the games. Under these conditions,
an alternating approach of the minimax-Q algorithm is proposed.

6.1 Matrix Games

In game theory we have a fundamental game, which is the matrix game.
Matrix games are defined by a matrix R, where contains the reward of the
agents. In these type of games usually the solution (policy of the agent)
is computed by minimax theorems [38]. In Figure 6.1, we have a classic
example if the matrix game “rock, paper, scissors.”

The agent’s policy is a probability distribution over actions, π ∈ Pr(A).
For “rock, paper, scissors,” π is made up of three components: πrock, πpaper,
and πscissors. According to the notion of optimality, the optimal minimum
expected reward for our agent should be as large as possible. If we could
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Figure 6.1: The matrix game for ”rock, paper, scissors” [21]

have a policy that would guarantee an expected score, then we would not
care about the opponents policy. Then in the game of πrock, πpaper, and
πscissors, the optimal optimal policy π could not be stable.

For π to be optimal, we must identify the largest V for which there is
some action of π that makes the matrix game stable. To identify these
actions we calculate:

V = max
π∈Pr(A)

min
o∈O

∑
a∈A

Ro,a,πa (6.1)

where
∑

a∈ARo,a,πa express the expected reward to the agent for using
policy π, against the opponent’s action o.

As an extension of the matrix games, we can define a general-sum grid
game. In this type games we will have two agents (ours and the ”oppo-
nent”). To define a one-stage general-sum game with 2-players, we will
need their action-choice sets A1 and A2 and their payoff functions R1 and
R2. Each payoff function Ri maps an action choice for each of the players
to a scalar reward value. For the player i the expected-payoff when players
adopt one-stage policies π1, π2 is Ri(π1, π2). This is the expected value of
Ri weighted by the probabilities under the given one-stage policies [22].

A general-sum grid game consists of a finite set of states S, where each
of the states s ∈ S has its own payoff functions. Moreover, there is a
transition table that maps the state-action pair to probability distribution
over the next states. The value for a player in a game, given discount factor
γ ∈ (0, 1), is the discounted sum of payoffs and is defined as:

Qi(s, a1, a2) = Ri(s, a1, a2) + γ
∑
s′∈S

T (a1, a2, s
′
)Qi(s

′
, π1, π2) (6.2)

where Qi(s
′
, π1, π2) is the weighted sum of the values of Qi(s, a1, a2).

The equation 6.2 represents the value to player i in state s while the players
choose actions a1 and a2.

There are some cases, in these kind of games, where the opponent player
can be defined as a friend or as a foe. In these situations the agents either
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cooperate in order to maximize their utility or they compete for their in-
dividual profit. In figure 6.2, we can see two cases where the profile of the
other player matters, i.e. we need to know whether he is a friend or a foe.

Figure 6.2: The general-sum grid games [22]

It is obvious that in order to reach the goals, the agent A and B, have
to develop a policy, which requires the opponents profile, since if the agents
”collide” then their action will not be feasible.

6.2 The minimax-Q Algorithm

Given Q(s, a), an agent can maximize its reward using the greedy method
as a strategy, choosing the action with highest Q-value. This strategy
focuses on the immediate value gain, and it is optimal because the Q-
function is accurate for the future rewards. In the zero-sum grid games we
define the V (s) to be the expected reward for the policy in the s state, and
the Q(s, a, o) as the expected reward for choosing the action a, when the
opponent chooses the action o in the state s. Thus, the Q(s, a, 0) can be
characterized as the immediate payoff. The V (s) function is the define as
the V in equation 6.1 and the Q(s, a, o) as:

Q(s, a, o) = R(s, a, o) + γ
∑
s′

T (s, a, o, s
′
)V (s

′
) (6.3)

In the Q-learning formulation, an update is performed by an agent
whenever a reward r is taken by choosing action a and transitioning from
s to s

′
. This update is Q(s, a) = r + γV (s

′
), which is the one we saw in

the Q-learning algorithm. For the zero-sum grid-games we can replace the
max procedure with the minimax generating a new algorithm proper for
these type of games.
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Algorithm 9 Minimax Q-learning [21]

Initialization :
Q(s, a, o) = 1
V (s) = 1

Pr(s, a) =
1

|A|
alpha = 1, learning rate
decay : controls the rate at which the learning rate decays
explor : a probability which controls the exploration

Choose an action :
with probability explor, return an action uniformly random
Otherwise, return Pr(s, a) for the current state s

Learn :
After receiving reward r for moving from state s to s

′

via action a and opponent’s action o
Q(s, a, o) = (1− alpha)Q(s, a, o) + alpha(r + γV (s

′
))

π(s, .) = argmaxπ′ (s,.) mino′
∑

a′ π(s, a
′
)Q(s, a

′
, o
′
)

V (s) = mino′
∑

a′ π(s, a
′
)Q(s, a

′
, o
′
)

alpha = alpha ∗ decay

The algorithm 9, demonstrates the minimax − Q learning algorithm
for zero-sum games.

6.3 The Alternating minimax-Q Algorithm

In the previous chapters we have discussed the advantages and the im-
portance of working in lower dimension. In this thesis we illustrated an
alternating method, which decomposes the space of the problem and works
separately in the decomposed space. This technique is not, always, per-
forming well as we have seen. In environments with intense information
aliasing phenomena can be forbidden from use.

In Markov games, and more specific in zero-sum 2-player grid games,
like the ones we saw in figure 6.2, the conditions that can develop aliasing
phenomena are not that much. We have two cases where the feasibility
problem of the decomposed action can exist. The first one appears in the
right grid of figure 6.2, where we can have obstacles (walls). The second
one appears in both grids, where the action of our agent a and the action
of the opponent agent o lead them to the same (next) state s

′
. These

cases, which create aliasing phenomena seems to be at the same level as
the ones we had in the second grid-world, with the random amount of walls.



6.3. THE ALTERNATING MINIMAX-Q ALGORITHM 53

Thus, an alternating method, in the context of reinforcement learning and
the zero-sum grid game, with these environmental conditions should be
appropriate.

We create a new algorithm based on minimax−Q learning, which uses
the alternating method as a way to compute faster the functions Q(s, a)
and V (s) and produce optimal policies π for the zero-sum grid games.

Algorithm 10 Aliasing Aware Alternating Minimax Q-learning

Initialization :
Q(s, a, o) = 1
V (s) = 1

Pr(s, a) =
1

|A|
alpha = 1, learning rate
decay : controls the rate at which the learning rate decays
explor : a probability which controls the exploration

Choose an action :
with probability explor, return an action uniformly random
Otherwise, return Pr(s, a) for the current state s

Alternative Learning :
After receiving reward r for moving from state s to s

′

via action a and opponent’s action o

row learning :
for srow ∈ Srow and arow ∈ Arow
combine them with the ”frozen” column space, to produce global s and
a in order to compute Q, π and V
Q(s, a, o) = (1− alpha)Q(s, a, o) + alpha(r + γV (s

′
))

π(s, .) = argmaxπ′ (s,.) mino′
∑

a′ π(s, a
′
)Q(s, a

′
, o
′
)

V (s) = mino′
∑

a′ π(s, a
′
)Q(s, a

′
, o
′
)

column learning :
for scol ∈ Scol and acol ∈ Acol
combine them with the ”frozen” row space, to produce global s and a
in order to compute Q, π and V
Q(s, a, o) = (1− alpha)Q(s, a, o) + alpha(r + γV (s

′
))

π(s, .) = argmaxπ′ (s,.) mino′
∑

a′ π(s, a
′
)Q(s, a

′
, o
′
)

V (s) = mino′
∑

a′ π(s, a
′
)Q(s, a

′
, o
′
)

alpha = alpha ∗ decay
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The algorithm 10, illustrates the alternating minimax−Q method. At
each separate learning stage we compute a part of the Q, V and π, but at
the end of both procedures we have the a full approximation of them. This
is another novel algorithm in the field of reinforcement learning, focused
on time complexity improvement.

6.4 Discussion

In this chapter, we focused in a different concept of learning with more
than one agent. We combined the knowledge of RL methods with the
field of zero-sum grid games. The main difference with the classic RL
problems, is that we try to approximate our value functions considering
the opponents policies with the minimax method. We introduced a very
interesting algorithm, the minimax−Q, and we created a novel algorithm
by combining the alternating method with the minimax−Q.



Chapter 7

Conclusions & Future Work

In this thesis, we considered an analysis of decision-theoretic planning
methods for MDP solving. In these contexts, we implemented two classic
DP algorithms, policy iteration and value iteration, and we created a new
algorithm based on the alternating policy iteration method. We faced in-
formation aliasing phenomena, which appear in dimensionality reduction or
in decomposition process. These phenomena become very intense in some
environmental cases, like a maze grid-world, and we managed to encounter
them with the new method. Finally, we compared all the implemented
algorithms in the terms of time complexity and optimality in different en-
vironmental cases, where the aliasing phenomena are more or less intense.
The results we produced showed that the new algorithm can outperform
the two classic method in the majority of environments, which do not have
aliasing or the phenomena are not so intense. In the worst environmental
case, which the aliasing phenomena is at the maximum level, our algo-
rithm did not performed so well. This alternating idea can be extended for
future work and the next step would be an application in a multi-agent en-
vironment, as we have described in chapter 6, as an reinforcement learning
method.

Moreover, in computing, a parallel programming model[19] is an ab-
straction of parallel computer architecture. It contains many parallel mod-
els, such as shared memory model [11], message passing [35], implicit in-
teraction [15] etc. In message passing model, parallel processes exchange
data through passing messages to one other. These communications can
be asynchronous, where a message can be sent before the receiver is ready,
or synchronous, where the receiver must be ready. So, in the content of
DTP - RL and the optimal MDP solving, we envisage a parallel model of
the alternating policy iteration. Each thread of the process working on one
dimension and the communication between them should be synchronous,
since they would need an update to the decomposed policies in order to
continue. With this model, the time complexity should be improved and

55
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give even better results in the cases we saw, such as in environments where
information aliasing phenomena are being intense.
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