ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ

ΑΝΑΠΤΥΞΗ ΜΕΘΟΔΟΥ ΚΑΙ ΜΕΤΡΗΣΕΙΣ ΜΑΓΝΗΤΙΚΩΝ ΙΔΙΟΤΗΤΩΝ ΑΡΧΑΙΟΛΟΓΙΚΩΝ ΥΛΙΚΩΝ ΚΑΙ ΠΕΤΡΩΜΑΤΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΓΕΩΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ»

ΜΑΡΚΟΣ ΝΤΟΥΚΑΚΗΣ

ΦΥΣΙΚΟΣ ΚΑΙ ΣΥΝΤΗΡΗΤΗΣ ΑΡΧΑΙΟΤΗΤΩΝ

ΧΑΝΙΑ ΝΟΕΜΒΡΙΟΣ 2019

			ΠΕΡΙΕΧΟΜΕΝΑ	Σελίδα
			Εισαγωγή	1
1			Εντοπισμός του μαγνητικού πεδίου θραυσμάτων κεραμικής και σερπεντινίτη και	
			διερεύνηση της κατευθυντικότητάς του με τη χρήση ενός αισθητήρα fluxgate	2
	1.1		Οργανολογία	3
	1.2		Εντοπισμός του μαγνητικού πεδίου θραυσμάτων αγγείων και σερπεντινίτη	4
			Διερεύνηση της κατευθυντικότητας του μαγνητικού πεδίου θραυσμάτων αγγείων και	
	1.3		σερπεντινίτη	7
2			Υπολογισμός της θερμοπαραμένουσας μαγνήτισης από μετρήσεις του μαγνητικού πεδίου	
			θραυσμάτων αγγείων με 3 αισθητήρες fluxgate σε τρισορθογώνια διάταξη	17
	2.1		Πειραματικές διατάξεις/οργανολογία	17
			Διερεύνηση της εξάρτησης του μετρούμενου μαγνητικού πεδίου από την παραμένουσα	
	2.2		θερμομαγνήτιση του κεραμικού υλικού, σε θραύσματα και δοκίμια από τις βάσεις των	19
			αγγείων 4,5 και 6	
			Διερεύνηση του εύρους και του βαθμού ανισοτροπίας της περιοχής του κεραμικού υλικού που	
		2.2.1	διεγείρει τους αισθητήρες	20
			Διερεύνηση της συνεισφοράς της επαγόμενης μαγνήτισης του κεραμικού υλικού στις	
		2.2.2	μετρήσεις του μαγνητικού πεδίου	23
			Διερεύνηση της εξάρτησης της περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες	
		2.2.3	από το πάχος των οστράκων.	25
			Διερεύνηση της εξάρτησης της περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες	
		2.2.4	από τη θέση τους στην επιφάνεια των οστράκων	29
			Διερεύνηση της εξάρτησης του μετρούμενου μαγνητικού πεδίου από την διαφορετική	
		2.2.5	τοποθέτηση των αισθητήρων στην επιφάνεια των δοκιμίων	31
			Θεώρηση της περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες για τον	
	2.3		υπολογισμό της μαγνήτισης από τις μετρήσεις του μαγνητικού πεδίου	36
	2.4		Υπολογισμός της μαγνήτισης σε ακανόνιστα θραύσματα της βάσης των αγγείων 1,2 & 3	44
			Σύνοψη των πειραματικών αποτελεσμάτων του υπολογισμού της παραμένουσας μαγνήτισης	
	2.5		σε δοκίμια και θραύσματα της βάσης των αγγείων 1-6	47
	2.6		Υπολογισμός της μαγνήτισης σε όστρακα του σώματος των αγγείων 1-6	50
3			Εντοπισμός της θέσης των οστράκων στο σώμα του αγγείου από την κατευθυντικότητα	59
			της παραμένουσα μαγνήτισης	
	3.1		Διαμόρφωση της παραμένουσας μαγνήτισης σε αγγεία με κυλινδρική συμμετρία	60
			Διαμόρφωση της παραμένουσας μαγνήτισης σε αγγεία με τυχούσα περιστροφική συμμετρία	
	3.2			61
			Εύρεση των συνανηκόντων οστράκων και της θέσης τους στα σώματα των αγγείων από τη	
	3.3		θερμοπαραμένουσα μαγνήτισή τους	62
	3.4		Συμπεράσματα και προτάσεις μελλοντικής έρευνας	78

I	Ιαράρτημα Α	Μαγνητική συμπεριφορά των υλικών					
		Εισαγωγή	1				
A1		Διαμαγνητισμός	5				
A2		Παραμαγνητισμός	9				
	A2.1	Κλασική προσέγγιση του παραμαγνητισμού	9				
	A2.2	Κβαντική προσέγγιση του παραμαγνητισμού	12				
A3		Σιδηρομαγνητισμός	19				
	A3.1	Κλασική προσέγγιση του σιδηρομαγνητισμού	20				
	A3.2	Κβαντική προσέγγιση του σιδηρομαγνητισμού	23				
	A3.3	Προέλευση του «μοριακού» πεδίου του Weiss	27				
	A3.4	Μορφολογία και συμπεριφορά των σιδηρομαγνητικών περιοχών	41				
	A3.5	Κατηγορίες φυσικών μαγνητίσεων	51				
	A3.6	Μαγνητικές ιδιότητες του σερπεντινίτη και του ψημένου πηλού	52				
Ι	Ιαράρτημα Β	Συμπληρωματικά πειραματικά αποτελέσματα					

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Α. Βαφείδης
Γ. Αλεβίζος
Π. Παρτσινέβελος
Α. Φιλιππίδης
Ε. Μανούτσογλου
Α. Σαρρής
Η. Hamdan

ΕΠΙΒΛΕΠΩΝ

Θ. Μαρκόπουλος

<u>Ευχαριστήρια</u>

Ευχαριστώ τον καθηγητή κ. Απόστολο Παντινάκη για τη συνδρομή του και την ανεκτίμητη βοήθειά του για την εκπόνηση της διατριβής. Τους καθηγητές κ. Θεόδωρο Μαρκόπουλο και κ. Αντώνη Βαφείδη για την καθοδήγηση και τις πολύτιμες συμβουλές τους. Τους ζωγράφους και συντηρητές κ. Νίκο Κάιλα και κ. Σταύρο Μπαλτογιάννη για τη στήριξη τους σε δύσκολες στιγμές και κυρίως την αγαπημένη μου κ. Σπυριδούλα Κοτσώνα.

Εισαγωγή

Παρότι η συναρμολόγηση των ανασκαφικών θραυσμάτων από τη θερμοπαραμένουσα μαγνήτισή τους προτείνεται ως θεωρητικά δόκιμη μέθοδος στη διεθνή βιβλιογραφία [1], ελάχιστες παλαιότερες (1975) αναφορές [2] υπάρχουν και μόνο σε επίπεδο ερευνητικής προσέγγισης.

Από τη δεκαετία του 80, η διερεύνηση της θερμομαγνήτισης στον τομέα της αρχαιομετρίας, επικεντρώνεται στη χρονολόγηση κεραμικών πλακιδίων από κλιβάνους, ενώ σε πολυάριθμες δημοσιεύσεις [3-33] η ανασυγκρότηση των αγγείων επιχειρείται σχεδόν αποκλειστικά με αλγόριθμους επεξεργασίας οπτικών δεδομένων που βασίζονται σε δεδομένα της μορφολογίας των οστράκων. Παρά το έντονο επιστημονικό ενδιαφέρον της επίλυσης του ζητήματος με τη διερεύνηση των δυνατοτήτων της νέας ψηφιακής τεχνολογίας, εξακολουθεί να παραμένει μια αποκλειστικά εμπειρική διεργασία, λόγω του χρόνου, της πληθώρας και της πολυπλοκότητας των δεδομένων που απαιτούν οι προτεινόμενες μέθοδοι για να τεθούν σε πρακτική εφαρμογή. Βασικό ζητούμενο και προαπαιτούμενο της συναρμογής των θραυσμάτων (οστράκων), δεν αποτελεί η εύρεση της θέσης τους, αλλά η διαλογή των συνανηκόντων οστράκων από τα πολυάριθμα κεραμικά θραύσματα των αρχαιολογικών ανασκαφών, που εκτελείται εμπειρικά και με δυσκολία, ιδιαίτερα στις περιπτώσεις ευρημάτων από χρονίζουσες ανασκαφές ή από ανασκαφές με διαταραγμένα ανασκαφικά στρώματα.

Στην παρούσα μελέτη εξετάζεται το μέτρο και η κατευθυντικότητα της θερμοπαραμένουσας μαγνήτισης των θραυσμάτων που προσανατολίζεται στην κατεύθυνση του γεωμαγνητικού πεδίου κατά την όπτηση των αγγείων και διαμορφώνεται από την περιστροφική συμμετρία τους, ως κριτήρια για την εύρεση των συνανηκόντων ανασκαφικών οστράκων και της θέσης τους στα σώματα των αγγείων.

Οι μετρήσεις πραγματοποιήθηκαν στο εργαστήριο πειραματικής φυσικής της σχολής Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του Πολυτεχνείου Κρήτης. Χρησιμοποιήθηκαν αισθητήρες τύπου fluxgate για μετρήσεις του μαγνητικού πεδίου σε θραύσματα σερπεντινίτη και σε όστρακα από 6 αγγεία των προηγούμενων 2 αιώνων που ψήθηκαν σε παραδοσιακούς ξυλόφουρνους.

Στην ενότητα 1 περιγράφεται η μεθοδολογία εντοπισμού του ασθενούς μαγνητικού πεδίου θραυσμάτων σερπεντινίτη και κεραμικών θραυσμάτων. Ο απροσδόκητα εύκολος προσανατολισμός των γειτονικών θραυσμάτων κατά τον τρόπο συναρμογής τους από την κατευθυντικότητα του μαγνητικού τους πεδίου με τη χρήση του ενός αισθητήρα fluxgate, παρά το ακανόνιστο σχήμα τους και την αναμενόμενη μαγνητική ανισοτροπία του υλικού, αποτέλεσε το κίνητρο για περαιτέρω έρευνα.

Στην ενότητα 2 περιγράφεται η τρισορθογώνια διάταξη αισθητήρων/μαγνητών που κατασκευάστηκε για τη μέτρηση του ασθενούς (nT) μαγνητικού πεδίου των θραυσμάτων, εντός του κατά 1000 φορές μεγαλύτερου γήινου μαγνητικού πεδίου. Με μια σειρά πειραμάτων σε δοκίμια από τις βάσεις των αγγείων, διερευνήθηκε ο τρόπος διέγερσης των αισθητήρων και προσδιορίστηκε η περιοχή του κεραμικού υλικού που διεγείρει τους αισθητήρες για τον υπολογισμό της θερμοπαραμένουσας μαγνήτισης από τις μετρήσεις του μαγνητικού πεδίου. Τα συγκεντρωτικά αποτελέσματα και συμπεράσματα, χρησιμοποιήθηκαν για τον υπολογισμό της μαγνήτισης σε θραύσματα ακανόνιστου σχήματος της βάσης και του σώματος των αγγείων.

Στην ενότητα 3 οι τιμές της μαγνήτισης στα θραύσματα του σώματος των αγγείων συσχετίζονται με την περιστροφική συμμετρία των αγγείων και υπολογίζεται μέσω μετασχηματισμών στροφής η θέση των οστράκων στα σώματα των αγγείων.

Για τη συστηματική διερεύνηση της μαγνήτισης των οστράκων και τη συσχέτιση των αποτελεσμάτων από κάθε πείραμα, όλες οι μετρήσεις λήφθηκαν με συγκεκριμένο προσανατολισμό των αισθητήρων και στις ίδιες θέσεις της βάσης και του σώματος των αγγείων.

Η μαγνητική συμπεριφορά των υλικών και τα συστατικά των θραυσμάτων κεραμικής και σερπεντινίτη στα οποία οφείλεται η θερμοπαραμένουσα μαγνήτισή τους, περιγράφονται στο Παράρτημα Α, με ποιοτικό και απλουστευμένο μαθηματικά τρόπο.

Συμπληρωματικές μετρήσεις των θραυσμάτων που δεν συμπεριλαμβάνονται στο κυρίως κείμενο, παρατίθενται στο παράρτημα Β.

1. Εντοπισμός του μαγνητικού πεδίου θραυσμάτων κεραμικής και σερπεντινίτη και διερεύνηση της κατευθυντικότητάς του με τη χρήση ενός αισθητήρα fluxgate

Το ασθενές μαγνητικό σήμα (nT) περιστρεφόμενων θραυσμάτων κεραμικής και σερπεντινίτη εντοπίζεται [34–36] από τον έναν αισθητήρα του μαγνητόμετρου fluxgate¹ [37] που προσανατολίζεται κάθετα στην κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου, έτσι ώστε η ένδειζή του να είναι μηδενική πριν από την έναρξη των μετρήσεων. Για τον αποκλεισμό των πιθανών μαγνητικών παρεμβολών από τον εργαστηριακό χώρο, τα θραύσματα περιστρέφονται με συγκεκριμένη συχνότητα σε οριζόντια βάση, έτσι ώστε το μαγνητικό πεδίο τους να ανιχνεύεται ως περιοδικό σήμα στη συχνότητα περιστροφής του ηλεκτροκίνητου δίσκου, μέσω της τεχνικής [38] PSD (Phase Sensitive Detection).

Στη συνέχεια διερευνάται η κατευθυντικότητα του μαγνητικού πεδίου των συνανηκόντων θραυσμάτων με τη χρήση γωνιομετρικής διάταζης και του ενός αισθητήρα του μαγνητόμετρου, στην ίδια σταθερή θέση ως προς το μαγνητικό πεδίο της γης. Οι μετρήσεις του μαγνητικού πεδίου λαμβάνονται (σχήμα 1) σε όστρακα των 6 αγγείων.

Σχήμα 1. Οι μετρήσεις του μαγνητικού πεδίου λαμβάνονται σε όστρακα των 6 αγγείων των προηγούμενων 2 αιώνων, που είναι ψημένα σε παραδοσιακό ξυλόφουρνο.

¹ Model MAG 03 IE three independent axes fluxgate magnetometer, Bartington, Witney, Oxon, U. K.

1.1 Οργανολογία

Ο αισθητήρες fluxgate μετρούν τις διανυσματικές συνιστώσες του μαγνητικού πεδίου. Τα κύρια μέρη κάθε αισθητήρα, αποτελούν ο μαγνητικός πυρήνας (σχήμα 2) που περιβάλλεται από το πηνίο μέτρησης και το πηνίο διέγερσης. Η μαγνητική κατάσταση του πυρήνα ελέγχεται με την επιβολή ενός αρμονικά μεταβαλλόμενου ηλεκτρικού ρεύματος στο πηνίο διέγερσης.

Σχήμα 2. Σχηματική απεικόνιση των καταστάσεων λειτουργίας του μαγνητόμετρου fluxgate.

Όταν το ρεύμα στο πηνίο διέγερσης γίνεται μέγιστο (i=i_{max}), ο μαγνητικός πυρήνας βρίσκεται σε κατάσταση κορεσμού (σχήμα 2α) και οι δυναμικές γραμμές του εξωτερικού μαγνητικού πεδίου \vec{B}_{out} δεν εισέρχονται στον μεταλλικό πυρήνα. Όταν το ρεύμα στο πηνίο διέγερσης μηδενίζεται στιγμιαία (i=0), οι δυναμικές γραμμές του πεδίου \vec{B}_{out} (σχήμα 2β) εισέρχονται στον μαγνητικό πυρήνα. Η μεταβολή της μαγνητικής ροής μεταξύ των δυο προηγούμενων καταστάσεων είναι ανάλογη του εξωτερικού πεδίου \vec{B}_{out} και καταγράφεται από το πηνίο μέτρησης.

Το συνολικό μαγνητικό πεδίο \vec{B} εντός του μαγνητικού πυρήνα με μαγνήτιση \vec{M} , προσδιορίζεται από τη σχέση (Παράρτημα Α/Εισαγωγή): $\vec{B} = \mu_{o}.(\vec{H} + \vec{M})$

An χ η μαγνητική επιδεκτικότητα όγκου του πυρήνα και $M=\chi.H$, η προηγούμενη σχέση γράφεται: $\vec{B}=\mu_{o}.(1+\chi).H$. An $\mu_{r}=1+\chi$, η σχετική μαγνητική διαπερατότητα του πυρήνα, η παραπάνω σχέση γράφεται:

$$\vec{B} = \mu_o \cdot \mu_r \cdot \vec{H}$$
 (1)

Αν N ο συντελεστής απομαγνήτισης (Παράρτημα A/A3.3) και $\vec{H}_d = N.\vec{M} = N.\chi.\vec{H}$ το πεδίο απομαγνήτισης, τότε το συνολικό πεδίο \vec{H} εντός του πυρήνα, υπολογίζεται:

$$\vec{H} = \vec{H}_{out} + \vec{H}_{d} \Longrightarrow H = \frac{B_{out}}{\mu_{o}} - N \cdot \chi \cdot H \Leftrightarrow H = \frac{B_{out}}{\mu_{o} \cdot (1 + \chi \cdot N)}$$
(2)

Με αντικατάσταση της σχέσης (2) στη σχέση (1), το συνολικό μαγνητικό πεδίο Β υπολογίζεται:

$$B = \frac{\mu_{\rm r}}{1 + \chi.N} \cdot B_{\rm out} = \frac{\mu_{\rm r}}{1 + N.(\mu_{\rm r} - 1)} \cdot B_{\rm out} \qquad (3)$$

Αν Α το εμβαδόν της διατομής και n ο αριθμός των σπειρών του πηνίου μέτρησης, η τάση V στα άκρα του είναι ανάλογη της χρονικής μεταβολής της μαγνητικής ροής, σύμφωνα με τη σχέση:

.....

$$V = \frac{d\Phi}{dt} = n.A. \frac{dB}{dt} = n.A. \frac{(1-N). \frac{d\mu_r}{dt}}{[1+N.(\mu_r-1)]^2}.B_{out} \qquad (4)$$

Σύμφωνα με την παραπάνω σχέση, η συνιστώσα του πεδίου B_{out} στην κατεύθυνση του αισθητήρα είναι ανάλογη της μετρούμενης τάσης V στα άκρα του πηνίου και μπορεί να προσδιοριστεί εφόσον οι υπόλοιπες ποσότητες είναι γνωστές.

Το σημαντικότερο πρόβλημα στον εντοπισμό του ασθενούς (nT) μαγνητικού πεδίου των θραυσμάτων, αποτελεί η επικάλυψή του από το κατά 1000 περίπου φορές μεγαλύτερο σε ένταση μαγνητικό πεδίο της γης $(B^{\eta\eta\varsigma} \approx 42\mu T)$, καθώς και οι πιθανές μαγνητικές παρεμβολές από τον εργαστηριακό χώρο.

1.2 Εντοπισμός του μαγνητικού πεδίου θραυσμάτων αγγείων και σερπεντινίτη

Για τον αποκλεισμό της μέτρησης του γήινου μαγνητικού πεδίου (σχήμα 3), ο οριζόντιος αισθητήρας προσανατολίζεται επί του θεωρούμενου x-άξονα, κάθετα στην κατακόρυφη συνιστώσα $\vec{B}_z^{\gamma\eta\varsigma}$ και στην οριζόντια συνισταμένη $\vec{B}_{x\psi}^{\gamma\eta\varsigma}$ του γήινου μαγνητικού πεδίου $\vec{B}^{\gamma\eta\varsigma}$, έτσι ώστε η ένδειξη του να είναι μηδενική πριν από την τοποθέτηση των θραυσμάτων. Αν φ_B η γωνία μεταξύ της οριζόντιας συνισταμένης $\vec{B}_{x\psi}$ του μαγνητικού πεδίου \vec{B} του συνισταμένης $\vec{B}_{x\psi}$ του οι ασθητήρας μετρά την χ-συνιστώσα $B_x = B_x$. ημφ_B του πεδίου \vec{B} .

Σχήμα 3. Απεικόνιση του μαγνητικού πεδίου της γης ($B_{\gamma\eta\varsigma}$) και του εντοπιζόμενου μαγνητικού πεδίου $B_x = B_{xy}$.ημφ_B του θραύσματος από τον οριζόντιο x-αισθητήρα, κατά τη διάρκεια της περιστροφής του στη συχνότητα $f_\delta \approx 1$ Hz του ηλεκτροκίνητου δίσκου. Η αρχική γωνία φάσης δ του δίσκου εντοπίζεται μεταξύ του σταθερού σημείου Α της περιστροφικής διάταξης και της εγκοπής του δίσκου. Η αρχική γωνία φάσης φ_B του μαγνητικού πεδίου \vec{B} εντοπίζεται μεταξύ της κάθετης διεύθυνσης του αισθητήρα στην κατεύθυνση του ψ-άξονα και της τυχούσας κατεύθυνσης της $B_{xψ}$ κατά την τοποθέτηση του θραύσματος στον δίσκο.

Για τον εντοπισμό του ασθενούς μαγνητικού σήματος και τον αποκλεισμό των πιθανών μαγνητικών παρεμβολών από τον εργαστηριακό χώρο, τα θραύσματα περιστρέφονται με καθορισμένη συχνότητα ω_{οστράκου} = ω_ο επί του οριζόντιου ηλεκτροκίνητου δίσκου. Εφόσον το μαγνητικό πεδίο **B** των θραυσμάτων εμφανίζει σταθερή κατευθυντικότητα, μετατρέπεται σε περιοδικό σήμα και ανιχνεύεται στη συγκεκριμένη συχνότητα περιστροφής του ηλεκτροκίνητου δίσκου, μέσω της τεχνικής [39] Phase Sensitive Detection (PSD). Το μαγνητικό σήμα των θραυσμάτων που μετατρέπεται σε ηλεκτρικό (1mV/7nT), εισάγεται σε ενισχυτή φάσης [40] (Lock In Amplifier) με όριο ανοχής τάσης/συχνότητας 1V/100KHz και παρατηρείται σε παλμογράφο (1mV/div ή 7 nT/div).

Στον ενισχυτή φάσης, εισάγονται ως σήμα αναφοράς, οι παραγόμενοι ασύμμετροι τετραγωνικοί ηλεκτρικοί παλμοί από την περιστροφή του δίσκου, συχνότητας $f_{\delta} = \omega_{\delta}/2\pi \approx 1,3548\pm0,0001$ Hz που ανιχνεύονται μέσω εγκοπής στην περιφέρειά του, από σταθερό σημείο της περιστροφικής διάταξης.

Πρόκειται για επαναλαμβανόμενους (σχήμα 4) τετραγωνικούς παλμούς ανά 400ms (περίοδος ανοικτού παλμού-space), πλάτους 5V και διάρκειας (mark) 1,36ms, που ο ανιχνευτής φάσης μετατρέπει μέσω ανάλυσης fourier σε ημιτονοειδή κυματομορφή συχνότητας $f_{\delta} = 1$ Hz με ρυθμιζόμενο πλάτος $V_{\delta} = 1$ mV.

Ο ανιχνευτής φάσης που παρέχει τη δυνατότητα επιλογής της περιόδου του ανοικτού παλμού, μεταξύ των θέσεων positive(p)-negative(n) και p-p ή n-n, ρυθμίζεται στη θέση p-p, παρότι το σφάλμα είναι μικρό, της τάξης 1/400 στη μέτρηση της διάρκειάς του. Η διακριτική ικανότητα του ανιχνευτή φάσης ρυθμίζεται στα 16db για την αποκοπή των υψηλότερων συχνοτήτων, μέσω της αύξησης της κλίσης ανόδου και καθόδου των παλμών.

Σχήμα 4. Σχηματική απεικόνιση του εισαγόμενου παλμού αναφοράς του περιστρεφόμενου δίσκου στον ανιχνευτή φάσης.

Αν δ η αρχική γωνία φάσης μεταξύ της εγκοπής του περιστρεφόμενου δίσκου και του σταθερού σημείου εντοπισμού της συχνότητας περιστροφής του (σχήμα 3), το εισερχόμενο σήμα αναφοράς στον ανιχνευτή φάσης περιγράφεται από τη σχέση: $V_{\delta}(t)=\eta\mu(\omega_{\delta}.t+\delta)$

Αν φ_B η αρχική γωνία μεταξύ της οριζόντιας συνισταμένης $\vec{B}_{x\psi}$ του μαγνητικού πεδίου \vec{B} του θραύσματος και του ψ-άξονα κατά την τοποθέτησή του στον δίσκο, τότε το μαγνητικό σήμα απόκρισης του αισθητήρα κατά την περιστροφή του θραύσματος με συχνότητα ω_0 , περιγράφεται από τη σχέση:

$$B_{x}(t) = B_{xy} \cdot \eta \mu(\omega_{o} \cdot t + \varphi_{B})$$

Ο παραγόμενος ηλεκτρικός παλμός $V_o(t)=V.\eta\mu(\omega_o.t+\phi_B)$ από το περιστρεφόμενο θραύσμα, πολλαπλασιάζεται με το σήμα αναφοράς $V_\delta(t)=\eta\mu(\omega_\delta.t+\delta)$ του περιστρεφόμενου δίσκου και το πλάτος του γινομένου των σημάτων διπλασιάζεται, για τη δημιουργία ενός νέου σήματος V['](t) της μορφής:

$$V'(t) = V.\eta\mu(\omega_{\delta}.t + \delta).\eta\mu(\omega_{o}.t + \phi_{B}) = V.\left\{ \sigma \upsilon v \left[(\omega_{\delta} - \omega_{o}).t + (\delta - \phi_{B}) \right] - \sigma \upsilon v \left[(\omega_{\delta} + \omega_{o}).t + (\delta + \phi_{B}) \right] \right\}$$

Το σήμα V(t) διέρχεται από φίλτρο χαμηλών συχνοτήτων (*Low-Pass*), για την αποκοπή των υψηλών συχνοτήτων ($f_o + f_\delta$) και εφόσον η συχνότητα περιστροφής ω_δ του δίσκου είναι ίση με τη συχνότητα περιστροφής ω_o του μαγνητικού πεδίου του θραύσματος, το παραγόμενο σήμα V_{LP} καθίσταται ανεξάρτητο του χρόνου t: $V_{LP} = V.$ συν(δ - ϕ_B)

Σχήμα 5. Σχηματική απεικόνιση του πλάτους $V \equiv V^{(1,2)} = V_{out}^{(1)} + V_{out}^{(2)}$ του μετρούμενου ηλεκτρικού σήματος, από τις ενδείξεις στις οθόνες του ανιχνευτή φάσης.

Sto cronoanexártito shima $V_{LP} \equiv V_1^{out}$, eiságetai autómata próspeth rásh 90° (V_2^{out}) kai ta pláth two shimatur $V_1^{out} = V.sun(\delta - \varphi_B)$ kai $V_2^{out} = V.sun(\delta - \varphi_B + 90^\circ)$ apeinonic stic duo obónec (schima 5) tou aniceuth ráshc. Sth diaqorá arcinéc róds $\delta - \varphi_B$ pou aniceutietai, gínetai ceironínta eisagwyh próspeth; rách si φ_{ast} , φ_{ast} , $V_{out}^{(1)} = V.sun(0^\circ) = V$ megistopointai, ótan to shimato; $V_{out}^{(2)} = V.sun(90^\circ) = 0$ mhdenictai sti denictient obónec (standing $V_{out}^{(2)} = V.sun(90^\circ) = 0$ modenictient stipping obónec tou sinceuth ranket.

Με τον αποκλεισμό της επίδρασης του μαγνητικού πεδίου της γης και των πιθανών μαγνητικών παρεμβολών του εργαστηριακού χώρου, μέσω της τεχνικής PSD διαπιστώνεται η παρουσία μόνιμου μαγνητικού πεδίου \vec{B} , από την καταγραφή σταθερών διαφορών φάσης $\hat{\delta}$ - $\hat{\phi}_{B}$, μεταξύ του μαγνητικού σήματος των θραυσμάτων και του ηλεκτρικού σήματος αναφοράς από την περιστροφή του ηλεκτροκίνητου δίσκου.

1.3 Διερεύνηση της κατευθυντικότητας του μαγνητικού πεδίου θραυσμάτων αγγείων και σερπεντινίτη

Εφόσον εντοπίζεται το ασθενές μαγνητικό πεδίο των θραυσμάτων, διερευνάται η κατευθυντικότητα του πεδίου των συνανηκόντων οστράκων, με τη χρήση του ενός αισθητήρα στην ίδια σταθερή θέση ως προς το γήινο μαγνητικό πεδίο. Με την ίδια πειραματική διάταξη λαμβάνονται 2 σειρές (Ακαι Β) μετρήσεων.

A. Ο αισθητήρας προσανατολίζεται κάθετα στην οριζόντια συνισταμένη και στην κατακόρυφη συνιστώσα του γήινου μαγνητικού πεδίου (σχήματα 6,9), έτσι ώστε η ένδειξή του να είναι μηδενική. Η πιθανή επαγόμενη μαγνήτιση του κεραμικού υλικού από το μαγνητικό πεδίο της γης, προσανατολίζεται στην

κατεύθυνση του $\vec{B}^{\eta\varsigma}$, καθέτως προς τον άξονα του x-αισθητήρα και δεν επηρεάζει τις ενδείξεις του. Τα θραύσματα στηρίζονται σε κυκλική βάση γωνιομετρικής διάταξης, που στρέφεται χειροκίνητα επί του οριζόντιου επιπέδου γύρω από τον άξονα του αισθητήρα, λαμβάνοντας μετρήσεις από την περιοχή του θραύσματος που βρίσκεται στο κέντρο της. Το διαμορφωμένο ηλεκτρικό σήμα (1mV/7nT) του μαγνητικού πεδίου κατά την στροφή των θραυσμάτων, παρατηρείται στον παλμογράφο (1mV/div ή 7 nT/div) και μετριέται από βολτόμετρο με ακρίβεια ±0,1mV ή ±1 nT.

Στην περίπτωση των θραυσμάτων από βάσεις αγγείων και σερπεντινίτη, οι μετρήσεις περιγράφονται με τη θεώρηση δεξιόστροφου τρισορθογώνιου συστήματος αναφοράς² (σχήμα 6), όπου ο z-άξονας είναι κάθετος στα όστρακα, με φορά προς την εξωτερική επιφάνεια των θραυσμάτων.

Σχήμα 6. Σχηματική απεικόνιση της διάταξης διερεύνησης της μεταβολής της παράλληλης \vec{B}_{xy} κα τη κάθετης συνιστώσας \vec{B}_z στην επιφάνεια θραυσμάτων από βάσεις αγγείων κατά την στροφή τους (**a**) επί του οριζόντιου και (**β**) επί του κάθετου επιπέδου γύρω από τον αισθητήρα, με τον άξονά του κάθετο στην κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου.

 $^{^2}$ Η θεώρηση τρισορθογώνιου συστήματος αναφοράς σε μετρήσεις με έναν αισθητήρα δεν είναι απαραίτητη. Γίνεται μόνο για τη διευκόλυνση της περιγραφής και της συσχέτισης των μετρήσεων μεταξύ διαφορετικών πειραμάτων.

Σε κάθε θέση στροφής της βάσης στήριξης του θραύσματος (σχήμα 6α), ο αισθητήρας καταγράφει το μέτρο της προβολής $\mathbf{B}_{x} = \mathbf{B}_{x\psi}$.συνφ_B της $\vec{\mathbf{B}}_{x\psi}$ συνιστώσας του πεδίου επί του x-άξονα.

Σε κάθε ομάδα συγκολλημένων θραυσμάτων σερπεντινίτη (σχήμα 7α) και οστράκων από βάσεις αγγείων (σχήμα 7β), σημειώνονται συνεχόμενες παράλληλες ευθείες γραμμές, που ορίζουν μια τυχαία κοινή κατεύθυνση συναρμογής (σ) στην οποία προσανατολίζονται τα θραύσματα κατά τον τρόπο που επαφίονται.

Σχήμα 7. Σχηματική απεικόνιση επί του οριζοντίου xψ-επιπέδου, της μεθοδολογίας διερεύνησης της κατευθυντικότητας της $\vec{B}_{x\psi}$ συνιστώσας του μαγνητικού πεδίου (α) συνανηκόντων θραυσμάτων σερπεντινίτη και (β) οστράκων της βάσης αγγείου.

Κάθε θραύσμα στηρίζεται στην κυκλική οριζοντιωμένη βάση επί του επιπέδου xψ και προσανατολίζεται στη θέση όπου η κατεύθυνση συναρμογής (σ) συμπίπτει με την x-κατεύθυνση του αισθητήρα. Η κυκλική βάση στρέφεται περί του αισθητήρα, μέχρι η ένδειξη του αισθητήρα επί του x-άξονα μηδενιστεί, όταν $φ_B = 90^\circ$. Στη συγκεκριμένη θέση στροφής της κυκλικής βάσης, σημειώνεται επί της επιφάνειας του θραύσματος η κατεύθυνση όπου η $\vec{B}_{x\psi}$ είναι κάθετη στην x-κατεύθυνση του αισθητήρα και μετριέται η προσανατολισμένη γωνία σ = $90^\circ - φ_B$ μεταξύ της κατεύθυνσης μηδενισμού της $\vec{B}_{x\psi}$ και της σημειωμένης κατεύθυνσης συναρμογής στην κυκλική βάση, με ακρίβεια ±1°.

Από τα πειραματικά αποτελέσματα διαπιστώνεται ότι οι γωνίες $\phi_B = 90^{\circ}$ - σ μεταξύ της \vec{B}_{xv} κατά την αρχική τοποθέτηση των θραυσμάτων από βάσεις αγγείων και σερπεντινίτη στην κυκλική βάση και της x-κατεύθυνσης του αισθητήρα, εμφανίζουν παραπλήσιες τιμές.

Κατά αντίστροφο τρόπο, αν τα γειτονικά θραύσματα τοποθετηθούν έτσι ώστε οι σημειωμένες οριζόντιες συνισταμένες $\vec{B}_{x\psi}$ στην επιφάνεια τους λάβουν παράλληλες κατευθύνσεις (σχήμα 8), τότε τα θραύσματα προσανατολίζονται κατά τον τρόπο που συναρμόζουν.

Σχήμα 8. Απεικόνιση της οριζόντιας συνισταμένης \vec{B}_{xy} του μαγνητικού πεδίου γειτονικών θραυσμάτων (α) από 2 ομάδες σερπεντινίτη και (β) οστράκων βάσης του αγγείου 1 που εμφανίζουν παραπλήσια κατευθυντικότητα. Αν οι οριζόντιες συνισταμένες \vec{B}_{xy} των γειτονικών θραυσμάτων κάθε ομάδας τοποθετηθούν σε παράλληλες κατευθύνσεις, τα θραύσματα προσανατολίζονται στην κατεύθυνση που συναρμόζουν.

Για τη διερεύνηση της κατευθυντικότητας του μαγνητικού πεδίου σε όστρακα από σώματα αγγείων, ακολουθείται η ίδια μεθοδολογία. Οι μετρήσεις στην περίπτωση αυτή περιγράφονται με τη θεώρηση διαφορετικού συστήματος αναφοράς³ (σχήμα 9), όπου ο ψ-άξονας είναι κάθετος στα όστρακα, με φορά προς την εσωτερική επιφάνεια των θραυσμάτων.

Σχήμα 9. Σχηματική απεικόνιση της διάταξης διερεύνησης της μεταβολής των \vec{B}_{y} και \vec{B}_{xz} σε όστρακα από σώματα αγγείων κατά την στροφή τους (a) επί του οριζόντιου και (β) επί του κατακόρυφου επιπέδου γύρω από τον αισθητήρα, με τον άξονά του κάθετο στην κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου.

Ο αισθητήρας (σχήμα 9α), καταγράφει το μέτρο της προβολής $B_x = B_{xz}$.συνφ_B της \vec{B}_{xz} συνιστώσας του πεδίου επί του x-άξονα. Στα θραύσματα από σώματα αγγείων (σχήμα 10), την x-κατεύθυνση συναρμογής (σ) ορίζουν οι εσωτερικές αυλακώσεις στην επιφάνεια των οστράκων. Με τον ίδιο τρόπο, υπολογίζεται η γωνία

³ Η χρήση διαφορετικού συστήματος αναφοράς και άλλων συμβολισμών, γίνεται για τη διευκόλυνση της συσχέτισης των μετρήσεων μεταξύ διαφορετικών πειραμάτων.

 $\varphi_{\rm B} = 90^{\circ}$ - σ μεταξύ της \vec{B}_{xz} και της x-κατεύθυνσης του αισθητήρα κατά την αρχική τοποθέτηση των θραυσμάτων στην κυκλική βάση.

Σχήμα 10. (α) Σχηματική απεικόνιση επί του xz-οριζοντίου επιπέδου, της μεθοδολογίας διερεύνησης της κατευθυντικότητας του μαγνητικού πεδίου συνανηκόντων θραυσμάτων από σώμα αγγείου. (β) Αν οι οριζόντιες συνισταμένες \vec{B}_{xz} των γειτονικών θραυσμάτων τοποθετηθούν σε παράλληλες κατευθύνσεις, τα θραύσματα προσανατολίζονται στις κατευθύνσεις που συναρμόζουν. Όμως αυτό ισχύει μόνο για γειτονικά όστρακα του σώματος, γιατί η κατευθυντικότητα του μαγνητικού τους πεδίου μεταβάλλεται όσο οι θέσεις λήψης των μετρήσεων είναι περισσότερο απομακρυσμένες.

Στην περίπτωση των οστράκων από σώματα αγγείων, η κατευθυντικότητα του μαγνητικού πεδίου (σχήμα 10β) είναι παραπλήσια μόνο σε γειτονικά θραύσματα. Οι υπολογιζόμενες γωνίες $\varphi_B = 90^\circ$ - σ μεταξύ της \vec{B}_{xz} και της x-κατεύθυνσης του αισθητήρα μεταβάλλονται, όσο μεγαλύτερη είναι η απόσταση μεταξύ των θέσεων λήψης των μετρήσεων.

Για τη συστηματική διερεύνηση της κατευθυντικότητας του μαγνητικού πεδίου στο σώμα των 6 αγγείων, σημειώνονται κάθετες γραμμές (στήλες) σε επιλεγμένες αυλακώσεις (γραμμές) των συγκολλημένων αγγείων.

Σχήμα 12. (α) Στα θραύσματα του σώματος οι αυλακώσεις προσανατολίζονται στην κατεύθυνση του αισθητήρα και οι μετρήσεις λαμβάνονται στις ακμές του σχηματιζόμενου πλέγματος. (β) Στις βάσεις των αγγείων, οι θέσεις μέτρησης λαμβάνονται επί των παράλληλων ευθειών σε μια τυχαία κατεύθυνση συναρμογής (σ), που προσανατολίζεται ο x-αισθητήρας, κατά την αρχική τοποθέτηση κάθε θραύσματος στη βάση της γωνιομετρικής διάταξης.

Για τη σύγκριση των πειραματικών αποτελεσμάτων μεταξύ των θέσεων μέτρησης στη βάση και στο σώμα, οι γωνίες φ_B παρατίθενται ενδεικτικά σε φωτογραφική απεικόνιση (σχήμα 13) του αγγείου 1. Τα πειραματικά αποτελέσματα των υπολοίπων αγγείων (2-6) παρατίθενται στα σχήματα B1,B3,B5,B7 και B9 που περιέχονται στο Παράρτημα B.

ΑΓΓΕΙΟ 1

Σχήμα 13. Απεικόνιση των μετρούμενων γωνιών $\varphi_{\rm B}$ μεταξύ της \vec{B}_{xz} και των εγκάρσιων αυλακώσεων του σώματος (α) και των γωνιών $\varphi_{\rm B}$ μεταξύ της \vec{B}_{xy} και της σημειωμένης κατεύθυνσης συναρμογής στα θραύσματα της βάσης (β) του αγγείου 1 στα θεωρούμενα συστήματα αναφοράς για τα όστρακα του σώματος και της βάσης των αγγείων. Οι μετρήσεις γίνονται από έναν αισθητήρα σε σταθερή οριζόντια θέση, καθέτως προς την κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου.

B. Με την ίδια πειραματική διάταξη υπολογίζεται η γωνία $\gamma_B = \sigma \upsilon v^{-1} \frac{B_z}{B}$ του μαγνητικού πεδίου $B = \sqrt{B_{x\psi}^2 + B_z^2}$ και τα σφάλματα⁴ δB, δγ̂_B, στις θέσεις μέτρησης της βάσης των αγγείων, από μετρήσεις της

$$\delta \mathbf{B} = \sqrt{\left(\frac{\partial \mathbf{B}}{\partial \mathbf{B}_{x\psi}}\right)^2 \cdot \left(\Delta \mathbf{B}_{x\psi}\right)^2 + \left(\frac{\partial \mathbf{B}}{\partial \mathbf{B}_z}\right)^2 \cdot \left(\Delta \mathbf{B}_z\right)^2}, \text{ for ou:}$$
$$\frac{\partial \mathbf{B}}{\partial \mathbf{B}_{x\psi}} = \left(\mathbf{B}_{x\psi}^2 + \mathbf{B}_z^2\right)^{\frac{1}{2}} \cdot \mathbf{B}_{x\psi}, \quad \frac{\partial \mathbf{B}}{\partial \mathbf{B}_z} = \left(\mathbf{B}_{x\psi}^2 + \mathbf{B}_z^2\right)^{\frac{1}{2}} \cdot \mathbf{B}_z \quad \text{ for } \Delta \mathbf{B}_z = \Delta \mathbf{B}_{x\psi} = 1 \text{ nT}$$
(5a)

To spálma $\delta \hat{\gamma}_{\scriptscriptstyle B}$, upologizetai súmpona me th qewría metádosh; two spalmáton apó th scésh:

$$\delta\hat{\gamma}_{B} = \sqrt{\left(\frac{\partial\gamma_{B}}{\partial B_{z}}\right)^{2} \left(\Delta B_{z}\right)^{2} + \left(\frac{\partial\gamma_{B}}{\partial B_{x\psi}}\right)^{2} \left(\delta B_{x\psi}\right)^{2}} = \sqrt{\left[1 - \left(\frac{B_{z}}{B_{x\psi}}\right)^{2}\right]^{-1} \left[B_{x\psi}^{-2} \left(\Delta B_{z}\right)^{2} + B_{x\psi}^{-4} B_{z}^{2} \left(\delta B_{x\psi}\right)^{2}\right]}, \quad (5\beta)$$

Τα σφάλματα των μετρούμενων μεγεθών G συμβολίζονται ΔG.Τα σφάλματα των υπολογιζόμενων μεγεθών F με τη θεωρία μετάδοσης σφαλμάτων από τις πειραματικές μετρήσεις των μεγεθών G, συμβολίζονται δF.

⁴ Το σφάλμα δB του πεδίου υπολογίζεται σε κάθε θέση μέτρησης, σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων:

 B_z (σχήμα 6β) και της B_{xy} (σχήμα 6α), στη θέση στροφής του δίσκου (±1°) όπου η ένδειξη του αισθητήρα αποκτά τη μέγιστη θετική τιμή.

Με τον ίδιο τρόπο υπολογίζεται η γωνία $\theta_B = \sigma_{UV}^{-1} \frac{B_{\psi}}{B}$ και το σφάλμα $\delta \hat{\theta}_B$, του μαγνητικού πεδίου $B = \sqrt{B_{xz}^2 + B_{\psi}^2}$, στις θέσεις μέτρησης του σώματος των αγγείων, από μετρήσεις της B_{ψ} (σχήμα 9β) και της B_{xz}

(σχήμα 9α), στη θέση στροφής του δίσκου όπου η ένδειξη του αισθητήρα αποκτά τη μέγιστη θετική τιμή.

Για τη σύγκριση των πειραματικών αποτελεσμάτων, οι γωνίες γ_B και θ_B στα θραύσματα της βάσης και του σώματος, παρατίθενται ενδεικτικά σε φωτογραφική απεικόνιση (σχήμα 14) των συγκολλημένων οστράκων του αγγείου 1.

Σχήμα 14. Απεικόνιση των υπολογιζόμενων γωνιών $\theta_{\rm B}$ μεταξύ της $\vec{\rm B}$ και της ψ-κατεύθυνσης του αισθητήρα από μετρήσεις της B_{xz} και της B_{ψ} σε όστρακα του σώματος (*a*) και των γωνιών γ_B μεταξύ της $\vec{\rm B}$ και της z-κατεύθυνσης του αισθητήρα από μετρήσεις της $B_{x\psi}$ και της B_z , σε θραύσματα της βάσης (β) του αγγείου 1, από έναν αισθητήρα σε σταθερή οριζόντια θέση, καθέτως προς την κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου.

Τα συγκεντρωτικά πειραματικά αποτελέσματα των μετρήσεων του μαγνητικού πεδίου σε όστρακα του αγγείου 1 παρατίθενται στον πίνακα 1, που περιέχει 2 υποπίνακες για τις μετρήσεις στις βάση (β) και στο σώμα (α). Σε κάθε γραμμή του υποπίνακα (α) που επισημαίνεται από τον ίδιο αριθμό, παρατίθενται τα πειραματικά αποτελέσματα από τις θέσεις μέτρησης που ανήκουν στην ίδια αυλάκωση του σώματος του αγγείου. Σε κάθε στήλη του υποπίνακα που επισημαίνεται με το ίδιο γράμμα, περιέχονται τα πειραματικά αποτελέσματα από τις θέσεις μέτρησης που ανήκουν στην ίδια κάθετη γραμμή στις αυλακώσεις του σώματος του αγγείου. Στις μετρήσεις των θραυσμάτων της βάσης των αγγείων, οι γραμμές κάθε υποπίνακα (β) που επισημαίνονται με γράμματα, αντιστοιχούν σε παράλληλες ευθείες στην τυχαία κατεύθυνση συναρμογής των συνανηκόντων θραυσμάτων όπου προσανατολίζεται ο αισθητήρας, επί της οποίας επιλέγονται οι θέσεις μέτρησης που επισημαίνονται με αριθμούς.

Τα πειραματικά αποτελέσματα των υπολοίπων αγγείων (2-6) παρατίθενται στα σχήματα B2,B4,B6,B8 και B10 και στους πίνακες B1-B5 που περιέχονται στο Παράρτημα B.

Όπως διαπιστώνεται από τα πειραματικά αποτελέσματα (σχήματα 13β, B1β,B3β,B5β,B7β,B9β και πίνακες 1β, B1β-B5β), οι γωνίες φ_B μεταξύ της \vec{B}_{xy} και της x-κατεύθυνσης του αισθητήρα επί των τυχαίων διευθύνσεων συναρμογής των θραυσμάτων της βάσης διατηρούν σε κάθε αγγείο παραπλήσιες τιμές. Η εύρεση του προσανατολισμού συναρμογής των θραυσμάτων της βάσης, με τον εντοπισμό της κατεύθυνσης μηδενισμού της \vec{B}_{xy} συνιστώσας του μαγνητικού τους πεδίου από έναν κάθετο αισθητήρα στην κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου, μπορεί να γίνει εύκολα με τη γωνιομετρική διάταξη του σχήματος 6α, χωρίς να απαιτούνται μετρήσεις του μέτρου της \vec{B}_{xy} . Η μεθοδολογία θα μπορούσε να χρησιμοποιηθεί για την εύρεση του προσανατολισμού συναρμογής ανασκαφές. Αυτό δε θα ήταν ιδιαίτερα χρήσιμο για τα όστρακα βάσεων που η συναρμογή για τη συγκόλλησή τους μπορεί να γίνει ευκολότερα με εμπειρικό τρόπο, σε σύγκριση με τα συνανήκοντα όστρακα από σώματα αγγείων που εμφανίζουν ποικιλία σχημάτων και σώζονται σε μεγάλο αριθμό θραυσμάτων.

Όμως στην περίπτωση των οστράκων από σώματα αγγείων (σχήματα 13α, B1a,B3a,B5a,B7a,B9a και πίνακες 1a, B1a-B5a), οι μετρούμενες γωνίες φ_B μεταξύ της \vec{B}_{xz} και της x-κατεύθυνσης του αισθητήρα στη διεύθυνση των αυλακώσεων είναι παραπλήσιες μόνο σε γειτονικά θραύσματα. Η γωνία φ_B εμφανίζει πλησιέστερες τιμές σε κάθε στήλη και μεγαλύτερες αποκλίσεις κατά μήκος κάθε αυλάκωσης, όσο αυξάνεται η απόσταση μεταξύ των θέσεων λήψης των μετρήσεων. Παρότι η γωνία φ_B δεν καθορίζει τις κατευθύνσεις συναρμογής απομακρυσμένων οστράκων, από τις μετρήσεις διαπιστώνεται ότι οι τιμές της αυξάνονται συστηματικά προς μια συγκεκριμένη κατεύθυνση σε κάθε στήλη και σε κάθε αυλάκωση του σώματος του αγγείου.

Από τα πειραματικά αποτελέσματα (σχήμα 6β,9β) διαπιστώνεται ότι το μέτρο (πίνακες 1β, B1β-B5β) και η κατευθυντικότητα (σχήματα 14β, B2β,B4β,B6β,B8β και B10β) του μαγνητικού πεδίου ($\hat{\gamma}_{B}$) των συνανηκόντων θραυσμάτων της βάσης εμφανίζουν παραπλήσιες τιμές. Σε αντίθεση με τα όστρακα της βάσης, το μέτρο (πίνακες 1α, B1α-B5α) και η κατευθυντικότητα (σχήματα 14α, B2α,B4α,B6α,B8α και B10α) του πεδίου ($\hat{\theta}_{B}$) σε συνανήκοντα όστρακα του σώματος μεταβάλλονται, όσο αυξάνεται η απόσταση μεταξύ των θέσεων λήψης των μετρήσεων στα σώματα των αγγείων.

Όπως οι τιμές της γωνίας $φ_B$, έτσι και οι τιμές της γωνίας $θ_B$ μεταβάλλονται κατά συστηματικό τρόπο κατά μήκος μιας συγκεκριμένης κατεύθυνσης σε κάθε αυλάκωση και σε κάθε στήλη του σώματος των αγγείων.

Ι ΑΒΓΔΕΖΗ ΘΙ		Αγγείο 1	Μετρήσεις του μαγνητικού πεδίου στην κατεύθυνση της Bxz									
2		α. Σώμα	Α	В	Г	Δ	Е	Z	Н	Θ	Ι	
3		B _{xz} (±1) nT	50	33	18	2	15	40	55	80		
4		Β _ψ (±1) nT	25	33	33	36	31	30	25	7		
5	1	Β (δB=1 nT)	55	47	38	36	34	50	60	80		
6 19 0 0 0 0	1	$\theta_{B}^{o} \pm \delta \theta_{B}$	65±1	47±1	30±2	5±2	32±2	55±1	68±1	85±1		
		φ _B °(±1°)	19	9	10	205	169	170	160	142		
7		B _{xz} (±1) nT	67	33	20	9	25	38	64	83		
8	2	Β _ψ (±1) nT	22	31	35	35	33	31	24	5		
9 0 0 0 0 0	2	B (δB=1 nT)	71	45	40	36	41	49	68	83		
		$\theta_{\rm B}$ $\pm \delta \theta_{\rm B}$	72±1	45±1	32±1	16±1	36±1	54±1	70±1	86±1		
		$\Phi_{\rm B}$ (±1°)	26	18	29	109	154	163	154	142		
		$\mathbf{B}_{xz}(\pm 1)$ nT	71	37	22	16	31	48	73	81		
	3	$\mathbf{B}_{\psi}(\pm 1) \mathrm{nT}$	20	32	35	34	31	28	18	2		
	5	Β (δB=1 nT)	74	49	41	38	44	56	75	81		
		$\Theta_{\rm B} = \pm \delta \Theta_{\rm B}$	75±1	51±1	31±1	26±1	42±1	63±1	//±1	88±1		
		$\mathbf{\Phi}_{B}(\pm 1)$	32	37	51	97	137	150	148	142	02	
		$\mathbf{B}_{xz}(\pm 1)$ ni	75	55	37	32	33	54	70	83	82	
	4	B _ψ (±1) ΠΙ B (SD-1 mT)	17	25	31	31	33	26	19	-5	-8	
	_	B (0B=1 11)	77+1	67+1	40 //2+1	45	47	64+1	75 75+1	05 86+1	01	
		$\theta_{\rm B} = 00_{\rm B}$	37	30	40±1 57	40±1 92	128	143	145	142	139	
		$\Psi_B (\pm 1) pT$	78	63	44	37	44	66	75	81	79	
	5	$B_{xz}(\pm 1)$ nT	15	24	32	32	32	33	15	-6	-9	
		B (δB=1 nT)	79	67	54	49	54	70	76	81	80	
		$\theta_{\rm B}^{\rm o} \pm \delta \theta_{\rm B}$	78±1	71±1	55±1	48±1	55±1	71±1	79±1	-86±1	-83±1	
		$\Phi_{\rm B}^{\rm o}(\pm 1^{\circ})$	37	44	65	97	120	138	142	143	140	
		B _{xz} (±1)nT	76	70	63	58	68	79				
		Β _ψ (±1) nT	12	17	27	27	21	13				
	6	B (δB=1 nT)	77	72	69	64	71	80				
		$\theta_{B}^{o} \pm \delta \theta_{B}$	82±1	76±1	66±1	64±1	72±1	79±1				
		$\phi_B^{o}(\pm 1^{\circ})$	42	55	71	93	113	132				
		B _{xz} (±1)nT	85	78	73	66	71	81				
	_	Β _ψ (±1) nT	2	12	19	22	20	8				
	7	Β (δB=1 nT)	85	79	75	70	74	81				
		$\theta_B^{o} \pm \delta \theta_B$	89±1	81±1	75±1	71±1	73±1	84±1				
		φ _B ^o (±1 [°])	41	54	74	94	113	132				
		B _{xz} (±1)nT	86	76	76	69	73	80				
	8	Β _ψ (±1) nT	1	13	17	18	19	8				
	0	B (δB=1 nT)	86	77	78	71	75	80				
		$\Theta_{\rm B}$ $\pm \delta \Theta_{\rm B}$	89±1	82±1	77±1	76±1	77±1	84±1				
		$\Phi_{B}(\pm 1)$	42	58	72	90	110	130				
		B _{xz} (±1)nf		/9	/9	/6	/8	82				
	9	B _ψ (±1) NI		5	14	16	14	4				
	Ĺ	р (ов=т UI)		79 96±1	80±1	/ð 70⊥1	79 70±1	02 97±1				
				00±1	80±1	/0±1	/9±1 110	0/±⊥ 121				
		φ _B (±⊥)		50	13	92	113	131				

Πίνακας 1α-ΑΓΓΕΙΟ 1 (α-Σώμα)

Πίνακας 1α. Συγκεντρωτικά αποτελέσματα μετρήσεων του μαγνητικού πεδίου με τον αισθητήρα στην κατεύθυνση της \vec{B}_{xz} σε όστρακα του σώματος του **αγγείου 1**.

Πίνακας 1-ΑΓΓΕΙΟ 1 (β-Βάση)

		Αγγείο 1	Μετρήσεις του μαγνητικού πεδίου στην κατεύθυνση της Βχψ							
α		β.Βάση	α	β	γ	δ				
		Β_{xψ} (±1) nT	62	64	63	63				
A 3 - 2 - B		B _z (±1) nT	24	23	23	24				
2-0-1		B (δB=1 nT)	69	68	67	67				
	1	$\gamma_B^{o}(\delta\gamma_B = 1^{\circ})$	70	70	70	69				
		$\phi_B^{o}(\pm 1^{\circ})$	143	145	147	146				
δ		Β_{xψ} (±1) nT	63	65	67	65				
		B _z (±1) nT	23	23	25	25				
4	2	B (δB=1 nT)	67	69	72	70				
		$\gamma_B^o(\delta\gamma_B = 1^o)$	70	71	70	69				
		$\phi_B^{o}(\pm 1^{\circ})$	146	144	144	145				
	3	Β _{xψ} (±1) nT	64	65	68	61				
		B _z (±1) nT	25	25	24	23				
		B (δB=1 nT)	69	70	72	65				
		$\gamma_B^o(\delta\gamma_B = 1^o)$	69	69	71	69				
		$\phi_B^{o}(\pm 1^{\circ})$	144	144	143	144				
		Β_{xψ} (±1) nT	66	64		65				
		B _z (±1) nT	24	24		24				
	4	Β (δB=1 nT)	70	68		69				
		$\gamma_B^o(\delta\gamma_B = 1^o)$	70	69		70				
		$\phi_B^{o}(\pm 1^{\circ})$	142	142		143				
		B _{xψ} (±1) nT		63						
	_	B _z (±1) nT		22						
	5	B (δB=1 nT)		67						
		$\gamma_{B}^{o}(\delta\gamma_{B}=1^{\circ})$		71						
		$\phi_B^{o}(\pm 1^{\circ})$		143						

Πίνακας 1β. Συγκεντρωτικά αποτελέσματα μετρήσεων του μαγνητικού πεδίου με τον αισθητήρα στην κατεύθυνση της \vec{B}_{xy} σε όστρακα της βάσης του **αγγείου 1**.

Σε κάθε περίπτωση, ο εντοπισμός ασθενούς μαγνητικού πεδίου με σταθερή κατευθυντικότητα που προσανατολίζει γειτονικά θραύσματα σερπεντινίτη και όστρακα κεραμικής κατά τον τρόπο που συναρμόζουν, είναι αποτέλεσμα παραμένουσας μαγνήτισης από την έκθεση του πετρώματος και των αγγείων στο μαγνητικό πεδίο της γης πριν από τη θραύση τους. Η απόκτηση παραμένουσας μαγνήτισης είναι αποτέλεσμα της θέρμανσης και του προσανατολισμού των μαγνητικών κόκκων κατά την ψύξη των υλικών (παράρτημα A) στην κατεύθυνση του γήινου μαγνητικού πεδίου.

Η θερμοπαραμένουσα μαγνήτιση του κεραμικού υλικού, αναμένεται να διατηρεί παραπλήσιο μέτρο σε συνανήκοντα όστρακα αγγείων που συνίστανται από την ίδια πρώτη ύλη και ψήθηκαν στον ίδιο τόπο, κατά τον ίδιο χρόνο και υπό τις ίδιες συνθήκες. Στα θραύσματα της βάσης αναμένεται να διατηρεί παραπλήσια κατευθυντικότητα στη διεύθυνση του μαγνητικού πεδίου της γης κατά την όπτηση, ενώ στα τοιχώματα να διαμορφώνεται κατά τον τρόπο που υπαγορεύει η περιστροφική συμμετρία των αγγείων, χωρίς να αποκλείονται τοπικές διαφοροποιήσεις, που μπορεί να οφείλονται σε ελλιπή ομογενοποίηση του μίγματος των πηλών ή των ευτηκτικών υλών, σε διακυμάνσεις της θερμοκρασίας ή του αερισμού στον κλίβανο όπτησης και σε μεταγενέστερες μαγνητίσεις.

Παρά τη μαγνητική ανισοτροπία του κεραμικού υλικού, η συναρμογή των γειτονικών θραυσμάτων από το μαγνητικό τους πεδίο και οι παραπλήσιες τιμές του μέτρου και της κατευθυντικότητας σε θραύσματα της βάσης των αγγείων ακανόνιστου σχήματος, προϋποθέτουν τον προσανατολισμό του στην κατεύθυνση της θερμοπαραμένουσας μαγνήτισης.

Ο έλεγχος της παραπάνω διαπίστωσης γίνεται με μετρήσεις του μαγνητικού πεδίου, με εξέταση των γεωμετρικών παραμέτρων των θραυσμάτων που καθορίζουν τον τρόπο που ευαισθητοποιείται ο μαγνητικός αισθητήρας για τον υπολογισμό της θερμοπαραμένουσας μαγνήτισης.

2. Υπολογισμός της θερμοπαραμένουσας μαγνήτισης από μετρήσεις του μαγνητικού πεδίου θραυσμάτων αγγείων με 3 αισθητήρες fluxgate σε τρισορθογώνια διάταξη

Οι μετρήσεις των συνιστωσών του μαγνητικού πεδίου πραγματοποιούνται από τους 3 αισθητήρες του μαγνητόμετρου fluxgate σε τρισορθογώνια διάταξη. Οι δύο αισθητήρες προσανατολίζονται στις διευθύνσεις της οριζόντιας συνισταμένης και της κατακόρυφης συνιστώσας του μαγνητικού πεδίου της γης, ενώ ο τρίτος αισθητήρας εμφανίζει μηδενική ένδειξη. Το πεδίο της γης στους δύο αισθητήρες αντισταθμίζεται από δύο κυλινδρικούς μαγνήτες, ενώ το μη αζονικό πεδίο των δύο μαγνητών στον τρίτο αισθητήρα εξουδετερώνεται από τρίτο μαγνήτη κατά μήκος του άζονά του. Με μια σειρά πειραμάτων προσδιορίζεται η περιοχή του κεραμικού υλικού της οποίας το μαγνητικό πεδίο εντοπίζεται από τους αισθητήρες, για τον υπολογισμό της θερμοπαραμένουσας μαγνήτισης σε θραύσματα και δοκίμια της βάσης των αγγείων.

2.1 Πειραματικές διατάζεις/οργανολογία

Ο οριζόντιος x-αισθητήρας προσανατολίζεται κάθετα στην οριζόντια συνισταμένη και την κατακόρυφη συνιστώσα του γήινου μαγνητικού πεδίου (σχήμα 15), που μετριούνται από τους y και zαισθητήρες αντίστοιχα. Οι ενδείξεις των αισθητήρων (1mV/7nT) μηδενίζονται με μέγιστη ακρίβεια 0,01 mV ή 0,1nT με ρύθμιση της αξονικής απόστασής τους από κυλινδρικούς μαγνήτες (M = 400 KA/m) τύπου Al-Ni-Co, με στροφή των κοχλιών στήριξής τους. Η περιοχή διέγερσης κάθε αισθητήρα, εντοπίζεται επί του άξονα που διέρχεται από το κέντρο της τετραγωνικής διατομής του πλευράς 2d=6,5cm και σε απόσταση α=6,5cm από το καμπύλο άκρο τους.

Σχήμα 15. Απεικόνιση της τρισορθογώνιας διάταξης αισθητήρων/μαγνητών για την αντιστάθμιση του μαγνητικού πεδίου της γης και τον μηδενισμό των ενδείξεών τους.

Κάθε μαγνήτης παράγει εκτός από το αξονικό του πεδίο στη διεύθυνση του αισθητήρα και πλευρικά πεδία που διεγείρουν τους κάθετους αισθητήρες.

Σχήμα 16. Απεικόνιση του πεδίου της γης $B_{\eta\eta\varsigma}$ και των πεδίων $B_{\mu}^{\ \alpha}$ των μ=x,ψ,z μαγνητών στους α=x,ψ,z αισθητήρες.

Τα μετρούμενα αξονικά πεδία B_z^z , B_{ψ}^{ψ} , B_x^{x} (σχήμα 16) των κυλινδρικών μαγνητών με μαγνήτιση M, ακτίνα b και ύψος H_{μ} , με διπολικές ροπές m =M.π.b². H_{μ} και σε αξονικές αποστάσεις ξ_{μ}^{α} από τους αισθητήρες,

προσεγγίζονται (πίνακας 2) από τη σχέση [41] (pp. 394–399) : $B_{\mu}^{\alpha=\mu} = \frac{\mu_{o} \cdot M.b^{2} \cdot H_{\mu}}{2\xi_{\mu}^{3}}, (\mu=x, \psi, z)$ (6)

Τα πλευρικά πεδία $B_{\mu}^{\alpha\neq\mu}$ των μαγνητών σε αξονικές αποστάσεις $g_{\mu}^{\alpha\neq\mu}$ και πλευρικές αποστάσεις $h_{\mu}^{\alpha\neq\mu}$ από

τους αισθητήρες προσεγγίζονται από τη σχέση:
$$B_{\mu}^{\alpha\neq\mu} = \frac{3\mu_{o} \cdot M \cdot b^{2} \cdot H_{\mu}}{4} \cdot \frac{g_{\mu}^{\alpha} \cdot h_{\mu}^{\alpha}}{\left[\left(g_{\mu}^{\alpha}\right)^{2} + \left(h_{\mu}^{\alpha}\right)^{2}\right]^{\frac{5}{2}}}, (\mu, \alpha = x, y, z)$$
(7)

Το συνολικό μαγνητικό πεδίο σε κάθε αισθητήρα προσεγγίζεται από τις σχέσεις:

$$B_{z} = B_{\mu=z}^{\alpha=z} + B_{\mu=\psi}^{\alpha=z} + B_{\mu=x}^{\alpha=z} + B_{z}^{\gamma\eta\varsigma}, \quad B_{\psi} = B_{\mu=z}^{\alpha=\psi} + B_{\mu=\psi}^{\alpha=\psi} + B_{\mu=x}^{\alpha=\psi} + B_{\psi}^{\gamma\eta\varsigma}, \quad B_{x} = B_{\mu=z}^{\alpha=x} + B_{\mu=\psi}^{\alpha=x} + B_{\mu=x}^{\alpha=x}$$
(8)

Μετά τον μηδενισμό των αισθητήρων, τα όστρακα στηρίζονται σε οριζοντιωμένη περιστρεφόμενη βάση γωνιομετρικής διάταξης που ανυψώνεται με μηχανισμό ακριβείας μέχρι την επαφή των οστράκων με την τρισορθογώνια διάταξη των αισθητήρων που διατηρεί σταθερό προσανατολισμό σε σχέση με το γήινο μαγνητικό πεδίο.

Οι συνιστώσες του πεδίου B_{μ}^{δ} των μ=x,ψ,z μαγνητών και του πεδίου της γης στις δ=x,ψ,z αξονικές αποστάσεις (πίνακας 2) από τους αισθητήρες στις οποίες μηδενίζονται οι ενδείξεις τους (σχήμα 17), προσεγγίζονται [41] στην περιοχή λήψης των μετρήσεων από τις σχέσεις:

$$B_{z}^{z} = -\frac{\mu_{o} \cdot M \cdot b^{2} \cdot H_{z}}{2z^{3}}$$
(9a)

$$B_{\mu=x,\psi}^{\delta=\mu} = -\frac{\mu_{o} \cdot M \cdot b^{2} \cdot H_{\mu}}{4} \cdot \frac{2\delta^{2} \cdot d^{2}}{(\delta^{2} + d^{2})^{5/2}}$$
(9b)

$$B_{\mu=x,\psi}^{\delta=z} = -\frac{3\mu_{o} \cdot M \cdot b^{2} \cdot H_{\mu}}{4} \cdot \frac{\mu \cdot d}{(\mu^{2} + d^{2})^{5/2}}$$
(9c)

Σχήμα 17. Απεικόνιση των επιμέρους πεδίων B_{μ}^{δ} των μ=x,ψ,z μαγνητών και της γης (α) και του συνολικού πεδίου (β) στην περιοχή λήψης των μετρήσεων, στην κατεύθυνση της οποίας προσανατολίζεται η επαγόμενη μαγνήτιση M^* του κεραμικού υλικού.

To sunolikó magnitikó pedío se kábe dieúbunst stin periocá láýng two metrásewn, proseggizetai apó tic scéseic: $B_z = B_{\mu=z}^{\delta=z} + B_{\mu=y}^{\delta=z} + B_{\mu=x}^{\delta=z} + B_{z}^{\eta\varsigma}, \quad B_{\psi} = B_{\mu=z}^{\delta=\psi} + B_{\psi}^{\eta\varsigma}, \quad B_x = B_{\mu=x}^{\delta=x}$ (10)

	Αποστάσεις	Πεδία(nT) στους z,y,z αι	ισθητήρες	Πεδία(μΤ) στην περιοχή λήψης των μετρήσεων στις z,y,x διευθύνσεις						
Μαγνήτες	μαγνητών αισθητήρων (mm)	z y x		X	Μαγνήτες	Z	у	X			
Z		-61830,98									
	44,91841		60880,61		Z	-22,2					
				60880,61							
у	45,63295	17197,76									
			-112658,65		у	-4,3	-19,9				
				35669,95							
		12633,18									
Х	41,33643		24378,01		х	-3,2		-13,2			
				-95550,59							
		32000									
Πεδίο γης			27400			32,0	27,4				
		0,0	0,0	0,0							
Συνολ	ικά πεδία					2,3	7,5	-13,2			

Πίνακας 2. Υπολογισμός των πεδίων στους αισθητήρες, στις αποστάσεις x,ψ,z των μηδενισμού των ενδείξεών τους. Στις αποστάσεις αυτές υπολογίζεται το μαγνητικό πεδίο στην περιοχή λήψης των μετρήσεων.

Οι επόμενες μετρήσεις λαμβάνονται από την τρισορθογώνια διάταξη των αισθητήρων/μαγνητών στην ίδια σταθερή θέση ως προς το γεωμαγνητικό πεδίο. Η συνεισφορά της επαγόμενης μαγνήτισης του κεραμικού υλικού στις μετρήσεις του μαγνητικού πεδίου, ελέγχεται σε επόμενο πείραμα, με τη σύγκριση μετρήσεων που λαμβάνονται εντός μηδενικού μαγνητικού πεδίου.

2.2 Διερεύνηση της εξάρτησης του μετρούμενου μαγνητικού πεδίου από την παραμένουσα θερμομαγνήτιση του κεραμικού υλικού, σε θραύσματα και δοκίμια από τις βάσεις των αγγείων 4,5 και 6

Η εξάρτηση και ο υπολογισμός της παραμένουσας μαγνήτισης Μ από τις μετρήσεις των συνιστωσών του μαγνητικού πεδίου Β, διερευνάται με σειρά πειραμάτων, με σκοπό τη διερεύνηση:

2.2.1 Του εύρους και του βαθμού ανισοτροπίας της περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες.

2.2.2 Της συνεισφοράς της επαγόμενης μαγνήτισης του κεραμικού υλικού από το μαγνητικό πεδίο (<15,4 μΤ) της τρισορθογώνιας διάταζης αισθητήρων/μαγνητών στις μετρήσεις του μαγνητικού πεδίου των οστράκων.

2.2.3 Την διερεύνηση της εξάρτησης της περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες από το πάχος των οστράκων.

2.2.4 Την διερεύνηση της εξάρτησης της περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες από τη θέση λήψης των μετρήσεων στην επιφάνεια των οστράκων.

2.2.5 Την διερεύνηση του βαθμού ευαισθητοποίησης του κάθετου και των παράλληλων αισθητήρων, λόγω της διαφορετικής τοποθέτησής τους στην επιφάνεια των οστράκων.

Από τα αποτελέσματα των πειραμάτων διαπιστώνεται ότι οι αισθητήρες διεγείρονται από μια κυλινδρική περιοχή του κεραμικού υλικού και υπολογίζονται οι διαστάσεις της, που εξαρτώνται από το μέτρο, την κατευθυντικότητα της παραμένουσας μαγνήτισης, το πάχος των οστράκων και τη θέση λήψης των μετρήσεων. Για τον υπολογισμό της παραμένουσας μαγνήτισης από τις μετρήσεις του μαγνητικού πεδίου, διορθώνονται οι ενδείζεις του κάθετου αισθητήρα λόγω του μικρότερου βαθμού διέγερσής του σε σχέση με τους παράλληλους αισθητήρες.

2.2.1 Διερεύνηση του εύρους και του βαθμού ανισοτροπίας της περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες

Η τρισορθογώνια διάταξη των αισθητήρων/μαγνητών (σχήμα 18) παραμένει στην ίδια θέση ως προς το γεωμαγνητικό πεδίο, με τον x-αισθητήρα (B_x=0) κάθετο στην οριζόντια και την κατακόρυφη συνιστώσα του γεωμαγνητικού πεδίου, πριν από την τοποθέτηση των θραυσμάτων.

Σχήμα 18. Απεικόνιση του μαγνητικού πεδίου που ανιχνεύεται από τη διάταξη του σταθερού τρισορθογώνιου συστήματος των αισθητήρων κατά την περιστροφή οστράκων του (α) σώματος και της (β) βάσης των αγγείων στα θεωρούμενα συστήματα αναφοράς.

Τα θραύσματα στηρίζονται επί του οριζοντιωμένου δίσκου της γωνιομετρικής διάταξης και οι μετρήσεις λαμβάνονται ανά 30°, από τη θέση στροφής του δίσκου όπου η ένδειξη του κάθετου z-αισθητήρα στον x-άξονα εμφανίζει μηδενική τιμή και $B_x > 0$. Οι μετρήσεις παρατίθενται στα θεωρούμενα συστήματα αναφοράς για τα θραύσματα του σώματος (σχήμα 18α) και της βάσης (σχήμα 18β) των αγγείων.

Apó tiς n=12 μετρήσεις των συνιστωσών B_i (i=x,y,z) με ακρίβεια ΔB_i =1nT, σε κάθε θέση στροφής φ_δ ανά 30° του δίσκου στήριξης των θραυσμάτων της βάσης με ακρίβεια Δφ_δ =1°, υπολογίζεται η συνισταμένη $B=\sqrt{B_x^2+B_y^2+B_z^2}$ του μαγνητικού πεδίου και το σφάλμα⁵ δB = 1nT.

 5 Το σφάλμα δB του πεδίου $B=\sqrt{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}$ υπολογίζεται σε κάθε θέση μέτρησης, σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων

$$a\pi \delta \tau \eta \, \sigma \chi \delta \sigma \eta \, \epsilon \, \delta B = \sqrt{\left(\frac{\partial B}{\partial B_x}\right)^2 \cdot \left(\Delta B_x\right)^2 + \left(\frac{\partial B}{\partial B_y}\right)^2 \cdot \left(\Delta B_y\right)^2 + \left(\frac{\partial B}{\partial B_z}\right)^2 \cdot \left(\Delta B_z\right)^2}, \ \delta \pi \sigma \upsilon :$$

$$\frac{\partial B}{\partial B_x} = \left(B_x^2 + B_y^2 + B_z^2\right)^{\frac{1}{2}} \cdot B_x, \quad \frac{\partial B}{\partial B_y} = \left(B_x^2 + B_y^2 + B_z^2\right)^{\frac{1}{2}} \cdot B_y \quad \kappa \alpha \iota \quad \frac{\partial B}{\partial B_z} = \left(B_x^2 + B_y^2 + B_z^2\right)^{\frac{1}{2}} \cdot B_z \quad (11)$$

Στις παραπάνω σχέσεις, $\Delta B_x = \Delta B_y = \Delta B_z = 1 nT$

 $\Sigma \varepsilon \ \kappa \acute{a}\theta \varepsilon \ \theta \acute{e}\sigma\eta \ \mu \acute{e}\tau \rho\eta \sigma\eta \varsigma \ \upsilon \pi o \lambda og (\zeta ontal \eta gin (a g_B = \sigma \upsilon)^{-1} \frac{B_z}{B}, to sometimes defined in the equilibrium of the equilibrium o$

σώματος των αγγείων.

Οι μετρήσεις λαμβάνονται σε 2 θραύσματα της βάσης και σε 2 θραύσματα του σώματος ακανόνιστου σχήματος, για καθένα από τα 6 αγγεία, στις ίδιες θέσεις με αυτές του πειράματος στην παράγραφο 1.3 για τη σύγκριση των αποτελεσμάτων. Τα πειραματικά αποτελέσματα παρατίθενται στους πίνακες B6-B11 του παραρτήματος B. Ενδεικτικά αποτελέσματα από τις μετρήσεις των θραυσμάτων του σώματος και της βάσης του αγγείου 1, παρατίθενται παρακάτω.

 6 To σφάλμα $\delta \hat{\gamma}_{B}$ της γωνίας $\gamma_{B} = \sigma \upsilon v^{-1} \frac{B_{z}}{B}$, υπολογίζεται σε κάθε θέση μέτρησης σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων

$$\alpha\pi\delta \tau\eta \,\sigma\chi\delta\sigma\eta: \,\delta\hat{\gamma}_{B} = \sqrt{\left(\frac{\partial\gamma_{B}}{\partial B_{z}}\right)^{2} \cdot \left(\Delta B_{z}\right)^{2} + \left(\frac{\partial\gamma_{B}}{\partial B}\right)^{2} \cdot \left(\delta B\right)^{2}} = \sqrt{\left[1 - \left(\frac{B_{z}}{B}\right)^{2}\right]^{4} \cdot \left[B^{-2} \cdot \left(\Delta B_{z}\right)^{2} + B^{-4} \cdot B_{z}^{2} \cdot \left(\delta B\right)^{2}\right]} \quad (12)$$

⁷ Το σφάλμα $\delta \hat{\phi}_B$ της γωνίας $\phi_B = \epsilon \phi^{-1} \frac{B_{\psi}}{B_x}$, υπολογίζεται σε κάθε θέση μέτρησης σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από

$$\tau\eta \, \sigma\chi\dot{\epsilon}\sigma\eta: \quad \delta\hat{\varphi}_{\rm B} = \sqrt{\left(\frac{\partial\varphi_{\rm B}}{\partial B_{\rm \psi}}\right)^2 \cdot \left(\Delta B_{\rm z}\right)^2 + \left(\frac{\partial\varphi_{\rm B}}{\partial B_{\rm x}}\right)^2 \cdot \left(\Delta B_{\rm x}\right)^2} = \sqrt{\left[1 + \left(\frac{B_{\rm \psi}}{B_{\rm x}}\right)^2\right]^2 \cdot \left[B_{\rm x}^{-2} \cdot \left(\Delta B_{\rm \psi}\right)^2 + B_{\rm x}^{-4} \cdot B_{\rm \psi}^2 \cdot \left(\Delta B_{\rm x}\right)^2\right]} \quad (13)$$

Στις παραπάνω σχέσεις, $\Delta B_x = \Delta B_y = \Delta B_z = \Delta B = 1 nT$

Πίνακας 3. Μεταβολή της υπολογιζόμενης γωνίας $φ_B$ από τις ενδείξεις των αισθητήρων, σε σχέση με τη γωνία στροφής $φ_\delta$ του δίσκου σε 2 όστρακα της βάσης (β3,δ3) και 2 όστρακα του σώματος (B1,Z7) του αγγείου 1.

Διάγραμμα 1. Μεταβολή των υπολογιζόμενων γωνιών θ_B , γ_B , στις γωνίες στροφές ϕ_δ του δίσκου, σε 2 όστρακα του σώματος (a) και 2 όστρακα της βάσης (β) του αγγείου 1.

Διάγραμμα 2. Μεταβολή των μετρούμενων συνιστωσών B_y , B_z και του υπολογιζόμενου μέτρου B του μαγνητικού πεδίου στις γωνίες στροφής φ_{δ} του δίσκου, σε 2 όστρακα (B1,Z7) του σώματος (a) και 2 όστρακα (β3,δ3) της βάσης (β) του αγγείου 1.

Από τα πειραματικά αποτελέσματα διαπιστώνεται:

 Το μαγνητικό πεδίο των θραυσμάτων που μετριέται στις ίδιες θέσεις από την τρισορθογώνια διάταξη των αισθητήρων/μαγνητών (πίνακες B6-B11) και από τον έναν αισθητήρα (πίνακες 1, B1-B5) εμφανίζουν παραπλήσιες τιμές, κοντά στα όρια του πειραματικού σφάλματος. Στις μετρήσεις με έναν αισθητήρα, η επαγόμενη μαγνήτιση στο κεραμικό υλικό από το μαγνητικό πεδίο της γης προσανατολίζεται στην κατεύθυνσή του, καθέτως προς τον άξονα του αισθητήρα και δε συνεισφέρει στις μετρήσεις του μόνιμου μαγνητικού πεδίου των θραυσμάτων. Επομένως, η επαγόμενη μαγνήτιση του κεραμικού υλικού στη θέση λήψης των μετρήσεων, που προσανατολίζεται στην κατεύθυνση της συνισταμένης των πεδίων της γης και της τρισορθογώνιας διάταξης των μαγνητών (σχήμα 17), δεν αλλοιώνει τις μετρήσεις του πεδίου που οφείλεται στην θερμοπαραμένουσα μαγνήτιση του κεραμικού υλικού υλικού στη θερμοπαραμένουσα μαγνήτιση του κεραμικού υλικού στη θερμοπαραμένουσα μαγνήτιση του κεραμικού υλικού.

• Στις θέσεις στροφής των θραυσμάτων της βάσης και του σώματος (πίνακας 3) η υπολογιζόμενη γωνία φ_B του μαγνητικού πεδίου είναι παραπλήσια της μετρούμενης γωνίας φ_δ στροφής του δίσκου. Οι αισθητήρες δε λαμβάνουν μετρήσεις από όλη την έκταση του οστράκου, αλλά από μια περιορισμένη, περιστροφικά συμμετρική περιοχή γύρω από τον άξονα του κάθετου αισθητήρα στην επιφάνεια των θραυσμάτων, που μπορεί να θεωρηθεί μαγνητικά ισότροπη. Για τον λόγο αυτόν, ακανόνιστα θραύσματα της βάσης και γειτονικά θραύσματα του σώματος των αγγείων προσανατολίζονται από το μαγνητικό τους πεδίο κατά τον τρόπο που συναρμόζουν. Το μετρούμενο ασθενές μαγνητικό πεδίο (B < 100 nT) των οστράκων μηδενίζεται σε απόσταση μεγαλύτερη από ~1,5 cm των αισθητήρων από την επιφάνεια των θραυσμάτων, όταν η διάταξη μέτρησης επιτρέπει την ανίχνευση πεδίων μεγαλύτερα από 0,1nT.

• Σε αντίθεση με τις υπολογιζόμενες τιμές B_z , B, γ_B στα συνανήκοντα και παραπλήσιου πάχους θραύσματα της βάσης κάθε αγγείου (διαγράμματα 1,2), οι αντίστοιχες τιμές των B_y , B, θ_B διαφοροποιούνται στο σώμα των αγγείων. Οι μεγάλες αποκλίσεις στο μέτρο του μαγνητικού πεδίου στα συνανήκοντα όστρακα του σώματος δεν μπορούν να δικαιολογηθούν από τις διαφορές στο πάχος και στο σχήμα τους ή στη μαγνητική ανισοτροπία του κεραμικού υλικού, εφόσον στα θραύσματα της βάσης από το ίδιο υλικό εμφανίζει παραπλήσιες τιμές σε όστρακα ακανόνιστου σχήματος.

2.2.2 Διερεύνηση της συνεισφοράς της επαγόμενης μαγνήτισης του κεραμικού υλικού στις μετρήσεις του μαγνητικού πεδίου

Από όστρακα της βάσης που εμφανίζουν παραπλήσιο μαγνητικό πεδίο, κατασκευάζονται κυλινδρικά δοκίμια (σχήμα 19) που τεμαχίζονται σε ισομεγέθη πλακίδια. Με προσανατολισμό της Β_{xy} στην ίδια κατεύθυνση συναρμολογείται στήλη πλακιδίων με μαγνητικό πεδίο παραπλήσιου μέτρου και κατευθυντικότητας με το μητρικό δοκίμιο, από τις βάσεις των αγγείων 4,5 & 6.

Σχήμα 19. Απεικόνιση της πειραματικής μεθοδολογίας και των μετρούμενων συνιστωσών του πεδίου B στο θεωρούμενο σύστημα αναφοράς.

Οι μετρήσεις λαμβάνονται από τη τρισορθογώνια διάταξη των αισθητήρων στο μέσον προσανατολισμένου σωληνοειδούς (σχήμα 21) στη διεύθυνση του γεωμαγνητικού πεδίου, όπου αντισταθμίζεται από το μαγνητικό πεδίο του πηνίου. Το αξονικό μαγνητικό πεδίο στο μέσον του πηνίου (πίνακας 4) ρυθμίζεται από μεταβλητή αντίσταση r σε κύκλωμα RL (σχήμα 20), που προσεγγίζεται [41] (pp. 223–226) από τη σχέση:

$$B = \frac{\mu_{o}.n.V}{R_{o} + R + R_{L} + r} \cdot (1 + \frac{4b^{2}}{l^{2}})^{\frac{1}{2}} \quad (14)$$

Σχήμα 20. Στοιχεία κυκλώματος RL με μεταβλητή αντίσταση r σε ρόλο ροοστάτη.

Πίνακας 4. Αντιστάθμιση (±1nT) του γεωμαγνητικού πεδίου από το αξονικό πεδίο του σωληνοειδούς με ρύθμιση της αντίστασης r (±1 mΩ), γύρω από την τιμή μηδενισμού του ολικού πεδίου στο μέσον του σωληνοειδούς.

Οι μετρήσεις λαμβάνονται, στο δοκίμιο της βάσης και στις θέσεις στροφής ανά 30° της στήλης των θυγατρικών πλακιδίων, από τη θέση όπου η B_{xy} είναι προσανατολισμένη (B_{xy} >0, B_y =0) στην κατεύθυνση του x-αισθητήρα. Οι μετρήσεις επαναλαμβάνονται κάθε φορά που το πάχος L_m =m. L_o της στήλης της αυξάνεται κατά ένα πλακίδιο. Από τις μετρήσεις στα δοκίμια της βάσης των αγγείων 4,5 και 6 που παρατίθενται στους πίνακες **B12β-B14β** του παραρτήματος B, διαπιστώνεται ότι:

 Το μετρούμενο μαγνητικό πεδίο οφείλεται μόνο στην παραμένουσα μαγνήτιση του κεραμικού υλικού και δεν αλλοιώνεται από την επαγόμενη μαγνήτισή του.

Οι μετρήσεις (πίνακες B12β-B14β) σε μηδενικό πεδίο είναι παραπλήσιες με αυτές του επόμενου πειράματος (πίνακες B12α-B14α), που λαμβάνονται στα ίδια δοκίμια από την τρισορθογώνια διάταξη αισθητήρων/μαγνητών, στις οποίες η επαγόμενη μαγνήτιση M^{*} του κεραμικού υλικού στην περιοχή λήψης των μετρήσεων (σχήμα 17) προσανατολίζεται στην κατεύθυνση του εναπομένοντος πεδίου (15,4 μT) της γης και των μαγνητών.

 Καθώς αυξάνεται το ύψος της στήλης το μαγνητικό πεδίο αυξάνεται και αποκτά σταθερή τιμή (πίνακες B12β-B14β), μετά την πρόσθεση διαφορετικού αριθμού πλακιδίων σε κάθε στήλη πλακιδίων από τη βάση των αγγείων 4,5 &6.

Τα πειραματικά συμπεράσματα της εξάρτησης του μετρούμενου μαγνητικού πεδίου από το πάχος των οστράκων παρατίθενται στο επόμενο (παρ. 2.2.3) πείραμα.

Σχήμα 21 . Απεικόνιση της μεθοδολογίας μέτρησης του μαγνητικού πεδίου κυλινδρικών δοκιμίων εντός μηδενικού πεδίου, στο μέσον προσανατολισμένου σωληνοειδούς στο μαγνητικό πεδίο της γης.

2.2.3 Διερεύνηση της εξάρτησης της περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες από το πάχος των οστράκων.

Οι μετρήσεις εντός του σωληνοειδούς σε θέσεις στροφής ανά 30° της στήλης των πλακιδίων από τη βάση των αγγείων 4,5&6, κάθε φορά που το πάχος της αυξάνεται κατά ένα πλακίδιο, επαναλαμβάνονται από την τρισορθογώνια διάταξη των αισθητήρων/μαγνητών (σχήμα 22), με τον x-αισθητήρα κάθετο στην κατακόρυφη και την οριζόντια συνιστώσα του γεωμαγνητικού πεδίου.

Σχήμα 22. Απεικόνιση της μεθοδολογίας μέτρησης του μαγνητικού πεδίου από τη διάταξη του τρισορθογώνιου συστήματος των αισθητήρων/μαγνητών, κατά την περιστροφή κυλινδρικών δοκιμίων από τη βάση (α) των αγγείων. Με τον ίδιο τρόπο μετριέται το μαγνητικό πεδίο στήλης μεταβλητού πάχους από λεπτότερα πλακίδια (γ), που κατασκευάζονται από τα ίδια δοκίμια και τοποθετούνται κατά τη διάταξη κοπής τους (β), με προσανατολισμό της \vec{B}_{xy} στην ίδια κατεύθυνση.

Στις n =12 θέσεις στροφής του δοκιμίου πάχους L_δ (σχήμα 22α), λαμβάνονται μετρήσεις των συνιστωσών B_i (i = x,y,z) με ακρίβεια $\Delta B_i = 0,2nT$ και υπολογίζεται η συνισταμένη $B=\sqrt{B_x^2+B_\psi^2+B_z^2}$ του

μαγνητικού πεδίου με σφάλμα $\delta B = 0,2nT$ (11), οι γωνίες $\gamma_B = \sigma v v^{-1} \frac{B_z}{B}$, $\varphi_B = \epsilon \varphi^{-1} \frac{B_{\psi}}{B_x}$ και τα σφάλματα $\delta \hat{\gamma}_B$

(12) kai $\delta \hat{\phi}_{B}$ (13).

Από τις n =12 τιμές των μεγεθών $\iota_n = B_{z(n)}, B_n, \hat{\gamma}_{B_n}$ σε κάθε γωνία στροφής ανά 30° των κυλινδρικών δοκιμίων και της στήλης των πλακιδίων κάθε αγγείου (σχήμα 22β,γ), υπολογίζεται η μέση τιμή $\overline{\iota} = \frac{1}{n} \sum_{n=1}^{n=12} \iota_n$

 $(B.15\alpha)$ και ο μέσος όρος των απόλυτων αποκλίσεων από τη μέση τιμή από τη σχέση: $\delta \overline{\iota} = \frac{1}{n} \sum_{n=1}^{n=12} |\iota_n - \overline{\iota}|$ (B.15β)

Η ίδια διαδικασία ακολουθείται για τη στήλη των κυλινδρικών δοκιμίων μεταβλητού πάχους $L_m = m.L_o$, κάθε φορά που το ύψος της αυξάνεται κατά $L_o = 3mm$ κατά την τοποθέτηση των m = 8 πλακιδίων.

Από τα πειραματικά αποτελέσματα που παρατίθενται στους πίνακες **B12α-B14α** του παραρτήματος B, διαπιστώνεται:

• Από τις παραπλήσιες μέσες τιμές του μέτρου \overline{B} και της κατευθυντικότητας $\overline{\gamma}_{B}$ του μαγνητικού πεδίου (πίνακες B12- B14) που διαπιστώνονται στις θέσεις στροφής των δοκιμίων, σε σύγκριση με τις μετρήσεις από έναν αισθητήρα (πίνακες B3β-B5β) και από τους 3 αισθητήρες σε τρισορθογώνια διάταξη

(πίνακες B9-B11) σε ακανόνιστα θραύσματα της βάσης των αγγείων 4,5 και 6, επιβεβαιώνεται η ευαισθητοποίηση των αισθητήρων από μια περιορισμένη και περιστροφικά συμμετρική περιοχή γύρω τον κάθετο αισθητήρα στην επιφάνεια των οστράκων.

τον x-άξονα (διάγραμμα 3α), είναι παραπλήσια της μετρούμενης γωνίας στροφής φ_δ του δίσκου στήριξης των στηλών από τα πλακίδια κάθε αγγείου. Αυτό σημαίνει ότι η περιοχή ευαισθησίας των x,ψ-αισθητήρων διατηρεί την περιστροφική συμμετρία περί του z-άξονα κατά την αύξηση του ύψους κάθε στήλης.

• Από τη σύγκριση των μετρήσεων στις στήλες αυξανόμενου πάχους από διαφορετικά αγγεία, διαπιστώνεται ότι παρά το διαφορετικό μέτρο \overline{B} και τη διαφορετική κατευθυντικότητα $\overline{\gamma}_{\rm B}$ του μαγνητικού τους πεδίου, τα μέτρα των B_x , B_y αυξάνονται με μειούμενο ρυθμό μέχρι τη μεγιστοποίηση των τιμών τους με την τοποθέτηση των τελευταίων πλακιδίων.

Διάγραμμα 3. Ενδεικτικές μετρήσεις των B_x, B_y (a) και της B_z (b) στις γωνίες φ_δ στροφής της στήλης από πλακίδια της βάσης του **αγγείου 5**. Η αύξηση του πάχους $L_m = m.L_o$ (m=1-4) της στήλης με την προσθήκη επιπλέον πλακιδίων δε μεταβάλλει τις ενδείξεις των αισθητήρων.

Με την πρόσθεση των πλακιδίων, το μέτρο του μαγνητικού πεδίου B αυξάνεται με μειούμενο ρυθμό και σταθεροποιείται σε ένα συγκεκριμένο πάχος της στήλης (διάγραμμα 3β), διαφορετικό για κάθε αγγείο. Η αύξηση της μέσης τιμής \overline{B} του μαγνητικού πεδίου, με την αύξηση του πάχους της στήλης των κυλινδρικών πλακιδίων από κάθε αγγείο (διάγραμμα 4), είναι αποτέλεσμα της αύξησης του αριθμού των μαγνητικών κόκκων του υλικού εντός του χώρου όπου ευαισθητοποιούνται οι αισθητήρες. Η μέση τιμή \overline{B} του μέτρου του μαγνητικού πεδίου σε κάθε στήλη υλικού από τα 3 αγγεία αυξάνεται με μειούμενο ρυθμό με την αύξηση του πάχους $L_m = m.L_o$ της κάθε στήλης και φαίνεται να προσεγγίζει μια οριακή τιμή. Όμως με προσεκτική σύγκριση των μετρήσεων μεταξύ των στηλών από τα 3 αγγεία, διαπιστώνεται ότι το μέτρο \overline{B} του μαγνητικού

πεδίου δεν προσεγγίζει μια οριακή τιμή, αλλά σταθεροποιείται σε μια τιμή παραπλήσια της οριακής. Αυτό σημαίνει ότι το κεραμικό υλικό των πλακιδίων που αυξάνουν το ύψος της στήλης περισσότερο από ένα κρίσιμο πάχος L, βρίσκεται εκτός του χώρου ευαισθητοποίησης των αισθητήρων.

Διάγραμμα 4. Μεταβολή της μέσης τιμής \overline{B} του μέτρου του μαγνητικού πεδίου σε σχέση με την αύξηση του πάχους $L_m=m.L_o$ (m=1-8) της στήλης των πλακιδίων από τις βάσεις των αγγείων 4,5&6. Η μέση τιμή \overline{B} υπολογίζεται από τις ενδείξεις των αισθητήρων στις 12 θέσεις στροφής της στήλης των πλακιδίων.

Στις τιμές εντός των χρωματισμένων πλαισίων, η μέση τιμή \overline{B} σταθεροποιείται και δε μεταβάλλεται με την προσθήκη επιπλέον πλακιδίων σε κάθε στήλη.

Με τη συσχέτιση της διαμέτρου δ = 40mm των δοκιμίων, των μέσων τιμών της B_z και της $B_x = B_{xy}$ ($\varphi_\delta = 0^\circ$), που υπολογίζονται στο πάχος της στήλης για το οποίο το μαγνητικό πεδίο αποκτά σταθερή τιμή και επισημαίνεται στους πίνακες B12-B14 με γκρίζο χρώμα, διαπιστώνεται ότι σε κάθε αγγείο (πίνακας 5) το μετρούμενο πάχος L προσεγγίζεται⁸ από τη σχέση:

$B_{x\psi} = \epsilon \phi^* \gamma_B$, δB_z												
Αγγείο	Διάμετρος πλακιδίων δ(±0,5)mm	m	Μετρούμενο πάχος L=m.L _o (mm)	ΔL (mm)	B _{xψ} (nT)	$\Delta B_{x\psi}$ (nT)	B _z (nT)	δĒ _z (nT)	Υπολογιζόμενο πάχος L (mm)	δL (mm)		
4	40	6	18,0	0,5	38,0	0,2	17,6	0,1	18,5	0,2		
5	40	4	12,0	0,5	59,8	0,2	16,4	0,1	11,1	0,2		
6	40	8	24,0	0,5	24,2	0,2	13,8	0,2	23,1	0,1		

- uboool inderate area til ove						
$L = \frac{\frac{\delta}{2} \cdot (\lambda \cdot \overline{B}_z)}{B_{xw}} = \frac{\frac{\delta}{2}}{\epsilon \phi^* \gamma_B},$	όπου	$\epsilon \phi^* \gamma_{\rm B} = \frac{B_{\rm x\psi}}{\lambda B_{\rm z}}$	και	$\lambda \approx 2$	(16)	

Πίνακας 5. Σύγκριση του μετρούμενου πάχους της στήλης κάθε αγγείου, πέραν του οποίου το μετρούμενο μαγνητικό πεδίο \overline{B} με τη διάταξη των αισθητήρων/μαγνητών αποκτά σταθερή τιμή και του υπολογιζόμενου από τα γεωμετρικά χαρακτηριστικά της στήλης και τις μετρήσεις των αισθητήρων.

⁸ Στο θεωρούμενο σύστημα αναφοράς για τα θραύσματα ή τα δοκίμια της βάσης των αγγείων, όπου ο κατακόρυφος z-άξονας κατευθύνεται προς την γη, από τις μετρήσεις διαπιστώνεται ότι $B_z > 0$. Επειδή η $\vec{B}_{x\psi}$ προσανατολίζεται στην κατεύθυνση του xάξονα όταν $B_{x\psi} > 0$ η προσανατολισμένη γωνία $\gamma_B = \epsilon \varphi^{-1} (B_{x\psi}/2B_z)$ λαμβάνει πάντα θετική τιμή. Για τον λόγο αυτόν στο συγκεκριμένο πείραμα και στα επόμενα πειράματα, όπου χρησιμοποιούνται οι τριγωνομετρικοί αριθμοί της γωνίας γ_B για τον υπολογισμό αποστάσεων, δε χρησιμοποιούνται οι απόλυτες τιμές τους.

Η υπολογιζόμενη τιμή L του πάχους της στήλης από κάθε αγγείο προσεγγίζει τη μετρούμενη, εντός των ορίων του σφάλματος⁹ δL, με διπλασιασμό $(2.\overline{B}_z)$ της ένδειξης του κάθετου z-αισθητήρα και την ανάλογη διόρθωση της γωνίας απόκλισης $({}^*\gamma_{\rm B}=\varepsilon \varphi^{-1} \frac{B_{x\psi}}{\lambda B_z})$ του μαγνητικού πεδίου από τον z-άξονα. Από τη σχέση υπολογισμού (16) του πάχους και τη γεωμετρία του πειράματος (σχήμα 23α), μπορεί να θεωρηθεί ότι οι αισθητήρες ευαισθητοποιούνται από μια κυλινδρική περιοχή επί της διεύθυνσης του πεδίου ${}^*\overline{B}$, που εκτείνεται από τη θέση λήψης των μετρήσεων έως το άκρο της στήλης.

Σχήμα 23. Για τη γεωμετρική ερμηνεία (β-δ) των αποτελεσμάτων, η B_{xy} σχεδιάζεται (α) στην κατεύθυνση του xαισθητήρα.

Με τη θεώρηση αυτή, η ποσότητα του κεραμικού υλικού που βρίσκεται εντός του μήκους $\boldsymbol{\ell}_{m} = \frac{L_{m}}{\sigma \upsilon v^{*} \gamma_{B}}$ της κυλινδρικής περιοχής ευαισθητοποίησης των αισθητήρων (σχήμα 23β), αυξάνεται μέχρι το κάτω άκρο της να συμπέσει στην περιφέρεια της κυκλικής βάσης (σχήμα 23γ), όταν το πάχος L_{m} της στήλης γίνει $L = \frac{\delta}{2\epsilon \phi^{*} \gamma_{B}}$. Το μέτρο του μαγνητικού πεδίου ^{*}B σταθεροποιείται (σχήμα 23δ) όταν η πρόσθεση επιπλέον πλακιδίων δε

μεταβάλλει πλέον το ύψος ℓ_m της κυλινδρικής περιοχής διέγερσης των αισθητήρων. • Η παραπάνω θεώρηση, έγινε με την παραδοχή ότι το μέτρο της z-συνιστώσας του πεδίου είναι περίπου διπλάσιο από το μετρούμενο. Από τη σύγκριση της πρώτης και της τελευταίας μέτρησης του μαγνητικού πεδίου κατά την αύξηση του πάχους κάθε στήλης, διαπιστώνεται ότι ο ρυθμός και η συνολική αύξηση του μέτρου της B_z συνιστώσας του πεδίου είναι εμφανώς μικρότερες από αυτές των B_x και B_ψ συνιστωσών. Όπως διαπιστώνεται παρακάτω (παρ. 2.2.5) η περιοχή ευαισθητοποίησης του κεραμικού υλικού και η διέγερση του κάθετου z-αισθητήρα σε σχέση με τους παράλληλους x,ψ-αισθητήρες δεν είναι ίδιες,

$$\delta L = \sqrt{\left(\frac{\partial L}{\partial \delta}\right)^2 (\Delta \delta)^2 + \left(\frac{\partial L}{\partial \overline{B}_z}\right)^2 (\delta \overline{B}_z)^2 + \left(\frac{\partial L}{\partial B_{x\psi}}\right)^2 (\Delta B_{x\psi})^2}, \ \delta \pi \sigma \upsilon:$$
$$\frac{\partial L}{\partial \delta} = \overline{B}_z \cdot (B_{x\psi})^{-1}, \quad \frac{\partial L}{\partial \overline{B}_z} = \delta \cdot (B_{x\psi})^{-1}, \quad \frac{\partial L}{\partial B_{x\psi}} = -\delta \cdot (B_{x\psi})^{-2} \cdot \overline{B}_z \quad \kappa \alpha \iota \quad \Delta \delta = 0,5 \text{ mm}, \ \Delta B_{x\psi} = 0,2 \text{ nT}$$
(16β)

Η μέση τιμή \overline{B}_z και η μέσος όρος $\delta\overline{B}_z$ των απόλυτων αποκλίσεων από τη μέση τιμή υπολογίζεται από τις σχέσεις (15).

λόγω της διαφορετικής τοποθέτησή τους στην επιφάνεια των θραυσμάτων.

⁹ Το σφάλμα δL στον υπολογισμό του πάχους L της στήλης στο οποίο το μαγνητικό πεδίο (B) αποκτά σταθερή τιμή, υπολογίζεται από τη σχέση (16), σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων:

Με την παραπάνω θεώρηση, οι μετρήσεις των αισθητήρων δεν εξαρτώνται μόνο από το πάχος των θραυσμάτων, αλλά και από τη θέση των αισθητήρων στην επιφάνεια των οστράκων, όπως επιβεβαιώνεται στο επόμενο πείραμα.

2.2.4 Διερεύνηση της εξάρτησης της περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες από τη θέση τους στην επιφάνεια των οστράκων

Από την τρισορθογώνια διάταξη αισθητήρων/μαγνητών (σχήμα 24) στην ίδια θέση ως προς το γεωμαγνητικό πεδίο, λαμβάνονται μετρήσεις σε κυλινδρικά δοκίμια από θραύσματα της βάσης αγγείων 4,5 & 6, διαμέτρου 40,0±0,5 mm και διαφορετικού πάχους L.

$$\begin{split} \Sigma & \text{th bash kabe kuludrikoù dokimiou lambavovtai n} = 14 \\ & \text{metrhseig se isapécouseg béseig epi thg } \vec{B}_{x\psi} \quad \text{pou} \\ & \text{prosanatolizetai sthn kateùbunsh tou x-aisbhthra, ótan } \\ & B_x = B_{xy} > 0 \text{ kai } B_y = 0. \end{split}$$

Σχήμα 24. Απεικόνιση του τρόπου διερεύνησης της εξάρτησης της περιοχής ευαισθητοποίησης των αισθητήρων από τη θέση τους στην επιφάνεια του δοκιμίου, με μετρήσεις του μαγνητικού πεδίου κατά μήκος της \vec{B}_{xy} .

Η απόσταση D_n (±0,2)mm της κάθε θέσης, μετριέται από το άκρο του δοκιμίου που βρίσκεται στην κατεύθυνση της $\vec{B}_{x\psi}$. Από τις μετρήσεις των B_{xy} και B_z σε κάθε θέση μέτρησης με ακρίβεια 0,2 nT, υπολογίζεται η συνισταμένη $B=\sqrt{B_{x\psi}^2+B_z^2}$ του μαγνητικού πεδίου με σφάλμα δB = 0,2 nT (11), η γωνία $\gamma_B=\sigma_{y}v^{-1}\frac{B_z}{B}$ και το σφάλμα δ $\hat{\gamma}_B$ (12).

Σχήμα 25. Γεωμετρική ερμηνεία των πειραματικών αποτελεσμάτων.

Από τα πειραματικά αποτελέσματα που παρατίθενται στους πίνακες **B15-B17** του παραρτήματος B, διαπιστώνεται:

• Το μέτρο του μαγνητικού πεδίου B σε κάθε κυλινδρικό δοκίμιο εμφανίζει παραπλήσια τιμή στις πρώτες μετρήσεις περίπου στο μέσο της βάσης και ελαττώνεται με αυξανόμενο ρυθμό (διάγραμμα 6), όσο μειώνεται η απόσταση D_n των θέσεων λήψης των μετρήσεων από το άκρο του δοκιμίου.

Στη θέση $D_n = d = L.εφ^* γ_B (σχήμα 25γ), η$ μετρούμενη απόσταση D_n για κάθε δοκίμιο της βάσης των αγγείων 4, 5 και 6 προσεγγίζεται από το πάχος του L, και τις ενδείξεις του μαγνητικού πεδίου (πίνακας 6), όταν η ένδειξη του κάθετου z-αισθητήρα διπλασιαστεί και γίνει η ανάλογη διόρθωση της γωνίας απόκλισης (*γ_B=εφ⁻¹ $\frac{B_{x\psi}}{\lambda B_z}$) του μαγνητικού πεδίου από τον z-άξονα. Το ύψος ℓ_n της κυλινδρικής περιοχής των

εξαρτάται

κατευθυντικότητα (^{*}γ_B) του μαγνητικού πεδίου

από

 ${}^{*}\vec{B}$ και από τη θέση τους στην επιφάνεια.

αισθητήρων,

Διάγραμμα 6. Μεταβολή του μέτρου B συναρτήσει της απόστασης D_n σε δοκίμια από τις βάσεις των αγγείων 4,5 & 6. Από τις τιμές σε κόκκινο πλαίσιο το B ελαττώνεται όσο μειώνεται η απόσταση D_n .

- Όταν $D_n > d$ (σχήμα 25β), το μέτρο B δε μεταβάλλεται, γιατί το ύψος $\boldsymbol{\ell} = L/\sigma \upsilon v^* \gamma_B$ της κυλινδρικής περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες εξαρτάται από το πάχος L του δοκιμίου, που παραμένει σταθερό.

-Όταν $D_n < d$ (σχήμα 25δ), το ύψος $\ell_n = D_n/\eta \mu^* \gamma_B$ εξαρτάται από την απόσταση D_n και το πεδίο B μειώνεται, όσο οι αισθητήρες μετακινούνται προς το άκρο του δοκιμίου γιατί ελαττώνεται το ύψος της περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες.

Αγγεία	L(±0,2)mm	D_n=d (±0,2)mm μετρούμενη	B _{xy} (±0,2)nT	B z (±0,2)nT	B (±0,2)nT	$\gamma_B{}^o$	d (mm) υπολογιζόμενη
4	20,0	22,0	38,2	17,7	42,1	65,1±0,3	21,6±0,3
5	12,0	22,0	60,1	16,6	62,4	74,6±0,2	21,7±0,3
6	21,0	20,0	24,2	13,2	27,6	61,4±0,5	19,3±0,3

Πίνακας 6. Σύγκριση της μετρούμενης και της υπολογιζόμενης απόστασης D_n =d από τη γεωμετρία του δοκιμίου και τις μετρήσεις των αισθητήρων.

Η μετρούμενη απόσταση d προσεγγίζεται από το πάχος L των δοκιμίων και τις μετρήσεις των B_{xy} , B_z στη θέση μέτρησης που αρχίζει η μείωση των τιμών του μαγνητικού πεδίου, η οποία στους πίνακες B15-B17

επισημαίνεται με γκρίζο χρώμα, από τη σχέση: d=L.εφ^{*}γ_B, όπου: εφ^{*}γ_B= $\frac{B_{xy}}{\lambda B_z}$, για λ ≈ 2 (17α)

την

Η μέγιστη επαρκής απόσταση d που υπολογίζεται για κάθε δοκίμιο, εμφανίζει παραπλήσια τιμή εντός των ορίων του πειραματικού σφάλματος¹⁰ δd με την μετρούμενη απόσταση D_n στη θέση μέτρησης από τα άκρα του οστράκου όπου το μέτρο του μαγνητικού πεδίου αρχίζει να μειώνεται με αυξανόμενο ρυθμό.

2.2.5 Διερεύνηση της εξάρτησης του μετρούμενου μαγνητικού πεδίου από την διαφορετική τοποθέτηση των αισθητήρων στην επιφάνεια των δοκιμίων

Η τρισορθογώνια διάταξη αισθητήρων/μαγνητών τοποθετείται στην ίδια θέση (σχήμα 26), ως προς το γήινο μαγνητικό πεδίο. Από τα συνανήκοντα θραύσματα της βάσης των αγγείων 4,5 και 6, κόβονται κυλινδρικά πλακίδια με διάμετρο $\delta = 40,0$ mm. Με προσανατολισμό της \vec{B}_{xy} στην ίδια κατεύθυνση συναρμολογείται δοκίμιο, με ύψος L ίσο με τη διάμετρο δ των πλακιδίων.

ακρίβεια 0,2 nT.

Σχήμα 26. Απεικόνιση της πειραματικής μεθοδολογίας για τη μέτρηση της ίδιας συνιστώσας (B_{xy},B_z) του πεδίου B από τον κάθετο και τον παράλληλο αισθητήρα, σε ισαπέχουσες θέσεις κατά D_n από τα άκρα, στη βάση και στην πλευρά των δοκιμίων από τις βάσεις των αγγείων 4,5&6.

Οι μετρήσεις λαμβάνονται σε n = 10 θέσεις στη βάση (B) και στην πλευρά (s) κάθε δοκιμίου που ισαπέχουν κατά μετρούμενες αποστάσεις D_n (±0,2mm) από το άκρο του, επί του προσανατολισμένου αξονικού επιπέδου xz στην κοινή κατεύθυνση της $B_{x\psi}$ και του x-αισθητήρα, όταν $B_x = B_{xy}>0$ και $B_y = 0$. Με τον τρόπο αυτόν, στις ισαπέχουσες θέσεις μέτρησης από το άκρο του κάθε δοκιμίου στη βάση και τα πλευρικά τοιχώματα, μετριέται η ίδια συνιστώσα $(B_{x\psi}^{\ /\prime}, B_{x\psi}^{\ /\prime}, B_{z}^{\ /\prime}, B_{z}^{\ /\prime})$ του μαγνητικού πεδίου με τον άξονα του αισθητήρα σε παράλληλη (//) και κάθετη θέση (\Box) ως προς την επιφάνεια των κυλινδρικών δοκιμίων, με

Ενδεικτικά πειραματικά αποτελέσματα για το δοκίμιο από τη βάση του αγγείου 5 παρατίθενται στον πίνακα 7. Τα πειραματικά αποτελέσματα των μετρήσεων στις βάσεις των αγγείων 4 και 6 παρατίθενται στους πίνακες **B18 και B20** του παραρτήματος B.

¹⁰ To spálma dd the apóstashe d=L. $\frac{B_{x\psi}}{2B_z}$ upologi(zetai súmpona me th bewria metádoshe spalmáton apó th scéshe: $\delta d = \sqrt{\left(\frac{\partial d}{\partial L}\right)^2 (\Delta L)^2 + \left(\frac{\partial d}{\partial B_{x\psi}}\right)^2 (\Delta B_{x\psi})^2 + \left(\frac{\partial d}{\partial B_z}\right)^2 (\Delta B_z)^2}, \text{ since}$ $\frac{\partial d}{\partial L} = \frac{1}{2} \cdot B_{x\psi} \cdot B_z^{-1}, \quad \frac{\partial d}{\partial B_{x\psi}} = \frac{1}{2} \cdot L \cdot B_z^{-1} \quad \text{kal} \quad \frac{\partial d}{\partial B_z} = -\frac{1}{2} \cdot L \cdot B_{x\psi} \cdot B_z^{-2}, \text{ gia } \Delta L = 0,2\text{mm} \quad \text{kal } \Delta B_{x\psi} = \Delta B_z = 0,2\text{nT} \quad (17\beta)$

Σχήμα 27. Σχηματική απεικόνιση του μετρούμενου πεδίου στη βάση και στα πλευρικά τοιχώματα των δοκιμίων από τις βάσεις των αγγείων 4,5 και 6 από την τρισορθογώνια διάταξη των αισθητήρων.

Aπό τις μετρήσεις των $B_{x\psi}^{"}$ και $B_z^{\ }$ (σχήμα 27) σε κάθε θέση της βάσης των δοκιμίων υπολογίζεται (πίνακες 7α, B18α, B20α), η συνισταμένη $B_B \equiv B_{Bάση} = \sqrt{(B_{x\psi}^{"})^2 + (B_z^{\perp})^2}$ του μαγνητικού πεδίου με σφάλμα $\delta B_B = 0,2nT$ (11), η γωνία $\gamma_B = \epsilon \varphi^{-1} \frac{B_{x\psi}^{"}}{B_z^{\perp}}$ και το σφάλμα $\delta \hat{\gamma}_B$ (13). Από τις μετρήσεις των $B_{x\psi}^{\ }$ και $B_z^{"}$ στην κυρτή επιφάνεια των δοκιμίων, υπολογίζεται σε κάθε θέση η συνισταμένη $B_s \equiv B_{πλευρά} = \sqrt{(B_{x\psi}^{\perp})^2 + (B_z^{"})^2}$ του μαγνητικού πεδίου με σφάλμα $\delta B_s = 0,2nT$, η γωνία $\gamma_s = \epsilon \varphi^{-1} \frac{B_z^{"}}{B_{x\psi}^{^n}}$ και το σφάλμα $\delta \hat{\gamma}_s$.

Με τον ίδιο τρόπο (πίνακες 7β, B18β, B20β), υπολογίζονται τα μέτρα B^{\perp}, B'' και οι γωνίες γ^{\perp}, γ'' του μαγνητικού πεδίου, από τις ενδείξεις μόνο των κάθετων ($B_{x\psi}^{\ \ }, B_z^{\ \ })$ και μόνο των παράλληλων αισθητήρων ($B_{x\psi}^{\ \ \prime\prime}, B_z^{\ \prime\prime}$), στις αντίστοιχες ισαπέχουσες θέσεις μέτρησης στη βάση και στα πλευρικά τοιχώματα των δοκιμίων, σύμφωνα με τις σχέσεις:

$$\mathbf{B}^{\perp} = \sqrt{(\mathbf{B}_{x\psi}^{\perp})^{2} + (\mathbf{B}_{z}^{\wedge})^{2}}, \ \mathbf{B}^{\prime\prime} = \sqrt{(\mathbf{B}_{x\psi}^{\prime\prime})^{2} + (\mathbf{B}_{z}^{\prime\prime})^{2}} \quad \kappa \alpha \iota \qquad \gamma^{\perp} = \epsilon \phi^{-1} \frac{\mathbf{B}_{x\psi}^{\perp}}{\mathbf{B}_{z}^{\perp}}, \ \gamma^{\prime\prime} = \epsilon \phi^{-1} \frac{\mathbf{B}_{x\psi}^{\prime\prime}}{\mathbf{B}_{z}^{\prime\prime}}$$

Epeid $D_n < d = L.$ εφη_{B,s}, τα ύψη $\boldsymbol{\ell}_B = \frac{D_n}{\eta \mu \gamma_B} \neq \boldsymbol{\ell}_s = \frac{D_n}{\eta \mu \gamma_s}$ των κυλινδρικών περιοχών διέγερσης των

αισθητήρων και το μετρούμενο πεδίο B_B , B_s (παρ.2.2.4), αυξάνονται στις ισαπέχουσες θέσεις μέτρησης στη βάση και στην πλευρά κάθε δοκιμίου, με την αύξηση της απόστασης D_n .

-Αν η κατευθυντικότητα του πεδίου είναι σταθερή στο κεραμικό υλικό, ως αποτέλεσμα της ομοιόμορφης μαγνήτισής του, τότε οι υπολογιζόμενες γωνίες στις θέσεις μέτρησης της βάσης (γ_B) πρέπει να εμφανίζουν παραπλήσιες τιμές. Το ίδιο πρέπει να ισχύει και για τις γωνίες (γ_s) στην πλευρά των δοκιμίων.

-Αν επιπλέον οι διαφορετικά προσανατολισμένοι αισθητήρες στην επιφάνεια των δοκιμίων διεγείρονται στον ίδιο βαθμό, τότε επειδή στις ισαπέχουσες θέσεις κατά D_n στη βάση και στην πλευρά των δοκιμίων μετριέται η ίδια συνιστώσα του πεδίου από τον κάθετο και τον παράλληλο αισθητήρα, οι υπολογιζόμενες γωνίες γ_B, γ_s πρέπει να είναι συμπληρωματικές. Στην περίπτωση αυτή, οι αποκλίσεις στην τιμή του αθροίσματος γ_B + γ_s ≈ 90° μπορούν να προσδιοριστούν, γιατί οφείλονται αποκλειστικά στο διαφορετικό ύψος $\boldsymbol{\ell}_{\rm B} \neq \boldsymbol{\ell}_{\rm s}$ των κυλινδρικών περιοχών διέγερσης των αισθητήρων που μεταβάλλονται κατά υπολογίσιμο τρόπο.

Υπό τις παραπάνω προϋποθέσεις, ελέγχεται η κατευθυντικότητα του μαγνητικού πεδίου στη μάζα του κεραμικού υλικού και συγκρίνεται ο βαθμός διέγερσης του κάθετου και του παράλληλου αισθητήρα από μετρήσεις της ίδιας συνιστώσας του πεδίου, σε θέσεις μέτρησης που απέχουν την ίδια απόσταση από τα άκρα του δοκιμίου για την κανονικοποίηση των ενδείξεών τους.

A	ΓΓΕΙΟ 5																4	2	
Π	ίνακας α	1	a a a															Y	X
		1	4 6	0					А	ГГЕІС) 5							2	
L	=40,4±0,2		A	10cm ð	Μετοήσει	από	τον κά	Aeto Kal	τ ον π ο	ιοάλλη	չը ազգի	ιτήρα	στην ίδι	a Aéan u	ézona	mc		-	
	(mm)		- 4	D/	methiloer	uno		20210 Kui	101 10	ւիսչչվե		Trilba	01111 101	α υσοιη μ	erhilo	ς, μ			1
	D (mm)	р //		Βάσ				D km D //			ΠΛευρες(s)			_			<u>,</u>		
n	$(\pm 0,2)$	Β _{xψ} (±0	(n1) ,2)	$\mathbf{B}_{z}(n1)$ (±0,2)	$\mathbf{B}_{\mathbf{B}}(n1)$ (±0,2)	γ ₁ (±0,	в 2°)	$\mathbf{B}_{\mathbf{x}\psi}(n1)$ (±0,2)	(((n1) (±0,2)	$\mathbf{B}_{\mathbf{s}}(\mathbf{n})$	1) 2) (γ _s (±0,3°)	λ _{xψ}	< A _x (±0,	.ψ> 1 01)	٨ _z	< ^z> (±0,01)	
1	14,0	56	,9	15,9	59,1	74,	,4	29,2		31,4	42,9	9	47,1	1,95		1,	,97		
2	15,4	58	,1	16,1	60,3	74,	,5	29,5		31,7	43,3	3	47,1	1,97		1,	,97		
3	16,8	58	,6	16,2	60,8	74,	,5	29,7		32,0	43,	7	47,1	1,97		1,	,98	_	
4	18,2	59	,1	16,2	61,3	74,	,7	29,8		32,4	44,0	0	47,4	1,98		2,	,00		
5	19,6	59	,2	16,3	61,4	74,	,6	29,9		32,5	44,2	2	47,4	1,98	1 0	1	,99		1 99
0	21,0	59	,/	16,3	61,9	74,	,/	30,0	_	32,6	44,	3	47,4	1,99	1,5		,00		1,55
8	22,4	59	,9 2	16,4	62,1	74	,/	30,0		32,8	44,	5 6	47,6	2,00		2,	,00		
9	25,0	60	,Ζ Λ	16,4	62,4	74,	,0 7	30,1		32,9	44,	٥ ٥	47,5	2,00		2,	,01 01		
10	25,2	60	,4 6	16.5	62,8	74	8	30,2		33,2	44,	0	47,7	2,00		2	,01 02	\neg	
	20,0	00	,0	10,5	Μοποήσοι		, o	30,2		00,0 00 01 0		aan Rá	-π, je	2,01	-) en of	ές (g)	,02		
п	ívarcac B	(h		(6)	νιετρησει	, με τ	ijv tot	10/100E	uloil 1	00 010	ortrilba (a)	օւղթա	юц (b) к (b)	ui ori, 1	ιλευμι	ες (S)			
- 11	D (mm)	D //	リ (mT)	(S) D //(nT)	D ^{//} (nT)		/	~~//> d/)		T)	$\mathbf{D}^{\perp}(\mathbf{n}T)$	D ^L (m	T)	٥r			d ^L (mm)
n	$(\pm 0,2)$	Δ _{xψ} (±0	(11) ,2)	$\mathbf{b_{z}}(11)$ (±0,2)	$(\pm 0,2)$	γ (±0,	2°)	$(\pm 0,1^{\circ})$	u (1 (±(),4)	$\mathbf{D}_{\mathbf{x}\mathbf{\psi}}$ (n (±0,2))	$\mathbf{D}_{\mathbf{z}}(111)$ (±0,2)	b (ii (±0,	2)	γ (±0,3°)	(±	γ> 0,0°)	u (IIIII) (±0,4)
1	14,0	56	,9	31,4	65,0	61,	,1				29,2		15,9	33,	2	61,4			
2	15,4	58	,1	31,7	66,2	61,	,4				29,5		16,1	33,	6 61	61,4			
3	16,8	58	,6	32,0	66,8	61,	,4				29,7		16,2	33,	8	61,4			
4	18,2	59	,1	32,4	67,4	61,	,3				29,8		16,2	33,	9	61,5			
5	19,6	59	,2	32,5	67,5	61,	,2	61 3°	73 7		29,9		16,3	34,	1	61,4	6	61,4° 74	74 1
6	21,0	59	,7	32,6	68,0	61,	,4	0_)0		.,.	30,0		16,3	34,	1	61,5	-		,-
/	22,4	59	,9 2	32,8	68,3	61,	,3				30,0	16,4		34,	2	61,3			
8	23,8	60	,Z A	32,9	68,6	61,	,3				30,1	30,1 1		34,	3	61,4	-		
10	25,2	60	,4 6	33,2	69.1	61	2				30,2		16,5	34,	4	61 3			
10	20,0	00	,0	55,5	05,1	01,	,2		A 0 .		30,2		10,5	34,	-	01,5			
П.	avaca				Dá m (D)			1	Διορθά	υμενες	μετρησι	εις		T) en -	6a(a)				
110	D. (mm)	в //	(nT)	* B (*^	0		*р	^L (nT)	P ///	(nT)		د <u>ر</u> (۶)	*			
n	$(\pm 0,2)$	Δ _{xψ} (±0	(111) ,2)	$\mathbf{b}_{\mathbf{z}}(11)$ (±0,6)	$(\pm 0,3)$		ŶΒ	(m	B m)	D _X (±	y (111) 0,9)	D _z ((11)	$(\pm 0,8)$	($(\pm 0,2^{\circ})$		(m	s m)
1	14,0	56	,9	31,7	65,1	60),9±0,	5 16,0	±0,2	5	8,0	31	,4	65,9		28,4		29,4	±0,5
2	15,4	58,	,1	32,1	66,4	63	1,1±0,	5 17,6	±0,2	5	8,6	31	,7	66,6		28,4		32,3	±0,5
3	16,8	58,	,6	32,3	66,9	63	1,1±0,	4 19,2	±0,2	5	8,9	32	2,0	67,1		28,5		35,2	±0,5
4	18,2	59,	,1	32,3	67,4	63	1,3±0,	4 20,7	±0,2	5	9,1	32	2,4	67,4		28,7		37,9	±0,5
5	19,6	59,	,2	32,5	67,5	63	1,2±0,	4 22,4	±0,2	5	9,3	32	2,5	67,7		28,7		40,8	±0,5
6	21,0	59	,7	32,5	68,0	6:	1,4±0,	4 23,9	±0,2	5	9,5	32	2,6	67,9	_	28,7		43,7	±0,5
/	22,4	59	,9 ว	32,7	68,3	63	1,4±0,-	4 25,5	±0,3	5	9,5	32	2,8	68,0	_	28,8		46,4	±0,5
0	23,8	60	,Z A	32,7	68,5	0.	1,5±0,4 1 4±0	4 27,1	±0,3	5	9,7	32	.,9	08,2 69 E	_	20,0		49,3	±0,5 ±0,5
10	25,2	60	, 4 .6	32,9	69,0	6	1.5+0.	<u>4 28,7</u> 4 30 3	+0.3	5	9,9	33	1.3	68.6		29,0	+	54 8	+0.5
	20,0		,-	52,5	00,0		_,5_0,		_0,0				.,-	00,0				5 1,0	_0,0
Πίν	ακας δ	n	D _n	(mm)	$\mathbf{B}_{\mathbf{x}\mathbf{\psi}}(\pm 0,2)$	nT)	Bz	$t_{c}(nT)(\pm 0,2)$	nT)		M _z (mA	/m)		M _x	ψ(mA/	'm)			γ_
		10	26	,6±0,2	30,2			16,5			26,3±0),3		48	3,1±0,3	3		61,	3±0,3°

Πίνακας 7. Ενδεικτικές μετρήσεις της ίδιας συνιστώσας $(B_{x\psi}, B_z)$ του πεδίου από τον κάθετο (L) και τον παράλληλο (//) αισθητήρα σε ισαπέχουσες θέσεις κατά D_n από τα άκρα, στη βάση (B) και στην πλευρά (s) του δοκιμίου από τη βάση του αγγείου 5.

Από τα πειραματικά αποτελέσματα (πίνακες 7, B18 ,B20) των μετρήσεων σε δοκίμια της βάσης των αγγείων 5,4 και 6 διαπιστώνεται:
• Η κατευθυντικότητα του μαγνητικού πεδίου (πίνακες 7α, B18α, B21α) στη βάση (γ_B) και στις πλευρές (γ_s) όλων των δοκιμίων εμφανίζει μικρή αύξηση με την αύξηση της απόστασης D_n που δεν οφείλεται στη μαγνητική ανισοτροπία του κεραμικού υλικού. Η κατευθυντικότητα του πεδίου στις ισαπέχουσες θέσεις μέτρησης της βάσης και των πλευρών σε όλα τα δοκίμια ($\gamma_s \neq \gamma_B$) είναι διαφορετική. Επειδή $\gamma_B + \gamma_s \neq 90^\circ$, ο κάθετος και ο παράλληλος αισθητήρας δεν διεγείρονται κατά τον ίδιο βαθμό από το μαγνητικό πεδίο του κεραμικού υλικού.

Oi timés tou métrou tou magnitikoú pedíou aukánontai me tinn apóstast D_n kai stis isapéxouses béseis sti bást (B_B) kai stis pleupés (B_s) kábe dokimíou empanízoun diapopetikés $(B_s \neq B_B)$ metakú tous timés.

• Όταν στις ισαπέχουσες θέσεις μέτρησης στη βάση και στην πλευρά (πίνακες 7β, B18β, B20β) κάθε δοκιμίου υπολογιστούν το μέτρο (B^{''}, B[\]) και η κατευθυντικότητα (γ^{''}, γ[\]) του πεδίου, μόνο από τις ενδείξεις του παράλληλου (//) και μόνο του κάθετου (L) αισθητήρα, διαπιστώνεται ότι $B^{''} \neq B^{\scriptscriptstyle L}$, $\gamma^{''} \approx \gamma^{\scriptscriptstyle L}$ και $B_i^{''} \neq B_i^{\scriptscriptstyle L}$ (i = xy,z). Οι ενδείξεις του παράλληλου και του κάθετου αισθητήρα για τη μέτρηση της ίδιας συνιστώσας του

πεδίου, διαφοροποιούνται κατά τον ίδιο παράγοντα λ, έτσι ώστε: $ε \phi^{-1} \frac{B_{x\psi}^{''}}{B_z^{''}} = \gamma^{''} \approx \gamma^{\perp} = ε \phi^{-1} \frac{\lambda . B_{x\psi}^{\perp}}{\lambda . B_z^{\perp}}$

Apó tic mésec timéc $<\!\gamma''\!>$, $<\!\gamma'\!>$ prosdioriζovtai oi mégistec apostáseic $d''=L.\epsilon\varphi<\!\gamma''\!>$, $d^{\rm L}=L.\epsilon\varphi<\!\gamma''\!>$ kai ta antístoica spálmata¹¹ dd'', dd' the béshe two aisbhthreen apó to ákro tou ostrákou, étsi úste h perioch diégershe va ekteínetai se ólo to pácos two dokimíwn. Apó touc parapánánu upologismoúc kai ton prosdiorismó two spalmátwo d< $\!\gamma''\!>$, $d^{\rm L}$ kai dd'', dd' diapistov dokimíwn. Apó touc parapánánu upologismoúc kai ton posdiorismó two spalmátwo d< $\!\gamma''\!>$, $d^{\rm L}$ kai dd''', dd' diapistov tou stréinetai se d'. Epeidh $D_n < d''$ kai $D_n < d^{\rm L}$ to métro tou magnitikoú pedíou (par.2.2.4) augánetai me thn apóstash D_n .

• Metá thn diórqust ${}^*B_z{}^{\scriptscriptstyle \perp} = \langle \lambda_z \rangle \cdot B_z{}^{\scriptscriptstyle \perp}$, ${}^*B_{x\psi}{}^{\scriptscriptstyle \perp} = \langle \lambda_{x\psi} \rangle \cdot B_{x\psi}{}^{\scriptscriptstyle \perp}$ (19a) twn endeixewn $B_z{}^{\scriptscriptstyle \perp}$, $B_{x\psi}{}^{\scriptscriptstyle \perp}$ tou káqetou aisquitúra (scúma 28), ton upologismó twn sqalmátwn¹² $\delta^*B_z{}^{\scriptscriptstyle \perp}$, $\delta^*B_{x\psi}{}^{\scriptscriptstyle \perp}$ kai ton epanaposdiorismó twn

$$\mu \acute{\epsilon}\tau \rho \omega \nu \quad ^{*}B_{B} = \sqrt{(B_{x\psi}^{''})^{2} + (^{*}B_{z}^{\perp})^{2}}, \quad ^{*}B_{s} = \sqrt{(B_{z}^{''})^{2} + (^{*}B_{x\psi}^{\perp})^{2}}, \quad \tau \omega \nu \quad \gamma \omega \nu \iota \acute{\omega} \nu \quad ^{*}\gamma_{B} = \epsilon \varphi^{-1} \frac{B_{x\psi}^{''}}{*B_{z}^{\perp}}, \quad ^{*}\gamma_{s} = \epsilon \varphi^{-1} \frac{B_{z}^{''}}{*B_{x\psi}^{\perp}}, \quad \kappa \alpha \iota \quad \tau \omega \nu = \epsilon \varphi^{-1} \frac{B_{z}^{''}}{*B_{z}^{\perp}}, \quad \epsilon = \epsilon \varphi^{$$

σφαλμάτων $\delta^* B_{_B}, \delta^* B_{_s}, \delta^* \gamma_B, \delta^* \gamma_s$ (πίνακες 7γ, B18γ, B20γ), σε κάθε ισαπέχουσα θέση μέτρησης κατά D_n από τα άκρα κάθε δοκιμίου στη βάση και στα πλευρικά τοιχώματα, διαπιστώνεται ότι $^* B_B ≈ ^* B_s$ και $^* \gamma_B + ^* \gamma_s ≈ 90^\circ$.

$$\delta d^{j} = \sqrt{\left(\frac{\partial d^{j}}{\partial L}\right)^{2} \left(\Delta L\right)^{2} + \left(\frac{\partial d^{j}}{\partial \overline{\gamma}^{j}}\right)^{2} \left(\delta \overline{\gamma}^{j}\right)^{2} = \sqrt{\left(\epsilon \varphi \overline{\gamma}^{j}\right)^{2} \left(\Delta L\right)^{2} + \left(L \cdot \sigma \upsilon \upsilon^{-2} \overline{\gamma}^{j}\right)^{2} \left(\delta \overline{\gamma}^{j}\right)^{2}}, \quad \forall a \Delta L = 0, 2mm \quad (18)$$

Οι μέσες τιμές $\overline{\gamma}^{j}$ και οι μέσοι όροι $\delta \overline{\gamma}^{j}$ των απόλυτων αποκλίσεων από τη μέση τιμή, υπολογίζονται από τις σχέσεις (15α,β).

¹² Το σφάλμα υπολογισμού $\delta^* B_z^{\perp}$ της κανονικοποιημένης τιμής $*B_z^{\perp}=<\lambda_z>.B_z^{\perp}$ του κάθετου αισθητήρα στις θέσεις μέτρησης στη βάση των δοκιμίων, υπολογίζεται σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση:

$$\delta^* \mathbf{B}_{z}^{\perp} = \sqrt{\left(\frac{\partial^* \mathbf{B}_{z}^{\perp}}{\partial < \lambda_{z} >}\right)^2 \cdot \left(\delta < \lambda_{z} >\right)^2 + \left(\frac{\partial^* \mathbf{B}_{z}^{\perp}}{\partial \mathbf{B}_{z}^{\perp}}\right)^2 \cdot \left(\Delta \mathbf{B}_{z}^{\perp}\right)^2 = \sqrt{\left(\mathbf{B}_{z}^{\perp}\right)^2 \cdot \left(\delta < \lambda_{z} >\right)^2 + \left(<\lambda_{z} >\right)^2 \cdot \left(\Delta \mathbf{B}_{z}^{\perp}\right)^2} , \ \gamma \iota \alpha \quad \Delta \mathbf{B}_{z}^{\perp} = 0, 2nT$$
(19β)

Η μέση τιμή $<\lambda_z>$ και ο μέσος όρος $\delta<\lambda_z>$ των απόλυτων αποκλίσεων από τη μέση τιμή, υπολογίζονται από τις σχέσεις (15α,β). Με τον ίδιο τρόπο από τις παραπάνω σχέσεις, υπολογίζεται το σφάλμα $\delta^* B_{x\psi}^{\perp}$ της κανονικοποιημένης τιμής $*B_{x\psi}^{\perp}=<\lambda_{x\psi}>.B_{x\psi}^{\perp}$ του κάθετου αισθητήρα στις θέσεις μέτρησης στα πλευρικά τοιχώματα των δοκιμίων.

¹¹ To spálma dd^j the apóstashe $d^j = L.eq\overline{\gamma}^j$ apó tie metríseie two aisquitírwou me tou áková toue káqeto (j = b) ή parállylo (j = b/c) sthue priveries two dokimíwou, upologiízetai súmqwa me th qewría metádoshe spalmátwou apó th szésh:

Σχήμα 28. Σχηματική απεικόνιση του μετρούμενου πεδίου στη βάση και στα πλευρικά τοιχώματα των δοκιμίων από τις βάσεις των αγγείων 4,5 και 6 και των περιοχών του κεραμικού υλικού που διεγείρουν τους αισθητήρες, μετά από τη διόρθωση των ενδείξεων του κάθετου αισθητήρα.

Εφόσον στις ισαπέχουσες θέσεις μέτρησης από τα άκρα στη βάση και στα πλευρικά τοιχώματα των δοκιμίων, το μαγνητικό πεδίο εμφανίζει παραπλήσιο μέτρο και παρόμοια κατευθυντικότητα (^{*}γ_s ≈ 90°-^{*}γ_B), σύμφωνα με την παραπάνω θεώρηση, τα μήκη $\boldsymbol{\ell}_{\rm B} = \frac{D_{\rm n}}{\eta\mu^*\gamma_{\rm B}}$, $\boldsymbol{\ell}_{\rm s} = \frac{D_{\rm n}}{\eta\mu^*\gamma_{\rm s}}$ (20a) των κυλινδρικών περιοχών του κεραμικού υλικού που διεγείρουν τους αισθητήρες θα έπρεπε να έχουν παραπλήσιο μήκος. Παρά τις μικρές υπολογιζόμενες διαφορές (λίγων mm) στα δοκίμια των σφαλμάτων¹³ δ $\boldsymbol{\ell}_{\rm B}$ και δ $\boldsymbol{\ell}_{\rm s}$. Οι μικρές διαφορές στα μήκη $\boldsymbol{\ell}_{\rm B}$, $\boldsymbol{\ell}_{\rm s}$ είναι διαφορετικά, όπως διαπιστώνεται από τη συνεκτίμηση των σφαλμάτων¹³ δ $\boldsymbol{\ell}_{\rm B}$ και δ $\boldsymbol{\ell}_{\rm s}$. Οι μικρές διαφορές στα μήκη $\boldsymbol{\ell}_{\rm B}$, $\boldsymbol{\ell}_{\rm s}$ σφείλονται στην τιμή της γωνίας απόκλισης ^{*}γ_B του μαγνητικού πεδίου από την κάθετο στην επιφάνεια, η οποία είναι περίπου 45°, παραπλήσια της έγκλισης του γήινου μαγνητικού πεδίου στον τόπο και κατά το χρόνο κατασκευής των αγγείων.

• Oi aktíves r_B , r_s two kulindrikón periozón pou diegeíroun tous aistrtíres, me múku $\boldsymbol{\ell}_B = \frac{D_n}{n u^* v_n}$

και $\boldsymbol{\ell}_{s} = \frac{D_{n}}{\eta \mu^{*} \gamma_{s}}$ (20α), στην κατεύθυνση που ορίζουν οι συμπληρωματικές γωνίες απόκλισης ^{*}γ_B, ^{*}γ_s ≈ 90°-^{*}γ_B του μαγνητικού πεδίου από την κάθετο στην επιφάνεια στις ισαπέχουσες θέσεις μέτρησης από τα άκρα κατά

¹³ To σφάλμα δ $\boldsymbol{\ell}_{B}$ του μήκους $\boldsymbol{\ell}_{B} = \frac{D_{n}}{\eta \mu} \frac{1}{\gamma_{B}}$ της θεωρούμενης κυλινδρικής περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες, υπολογίζεται σε κάθε θέση μέτρησης στη βάση των δοκιμίων σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση: $\delta\boldsymbol{\ell}_{B} = \sqrt{\left(\frac{\partial \boldsymbol{\ell}_{B}}{\partial D_{n}}\right)^{2} \cdot \left(\Delta D_{n}\right)^{2} + \left(\frac{\partial \boldsymbol{\ell}_{B}}{\partial}^{*} \gamma_{B}\right)^{2}}$, όπου:

$$\frac{\partial \boldsymbol{\ell}_{B}}{\partial \boldsymbol{D}_{n}} = \eta \boldsymbol{\mu}^{-1} \boldsymbol{\gamma}_{B} \kappa \alpha \iota \frac{\partial \boldsymbol{\ell}_{B}}{\partial \boldsymbol{\gamma}_{B}} = -\boldsymbol{D}_{n} \cdot \eta \boldsymbol{\mu}^{-2} \boldsymbol{\gamma}_{B} \cdot \boldsymbol{\sigma} \upsilon \boldsymbol{\nu}^{*} \boldsymbol{\gamma}_{B}, \boldsymbol{\gamma} \iota \alpha \Delta \boldsymbol{D}_{n} = 0,2mm \qquad (20\beta)$$

To spálma $\delta^* \gamma_B$ the giving ${}^* \gamma_B = \exp^{-i} \frac{B_{\chi \psi}}{B_Z^\perp}$ upologizetai se káqe qésh méteristi apó th szésh (13).

Με τον ίδιο τρόπο, από τις παραπάνω σχέσεις, υπολογίζεται το σφάλμα δ $\boldsymbol{\ell}_s$ του μήκους $\boldsymbol{\ell}_s = \frac{D_n}{\eta \mu^* \gamma_s}$, σε κάθε θέση μέτρησης στα πλευρικά τοιχώματα των δοκιμίων.

 D_n στη βάση και στα πλευρικά τοιχώματα των δοκιμίων, πρέπει να μεταβάλλονται κατά τέτοιον τρόπο, ώστε τα μέτρα *B_B , *B_s του μαγνητικού πεδίου να διατηρούν σταθερή τιμή.

An hewrhhei óti oi aktínec exartwintai apó thn kateuhuntikóthta tou magnitikoú pedíou, súmpwna me tic scéseic $r_B = a.sun^* \gamma_B$ kai $r_s = a.sun^* \gamma_s$ (21) tóte ${}^*B_B = {}^*B_s$ kai oi lógoi r_B/ℓ_B kai r_s/ℓ_s paraménoun staheroí, eqóson $\mu_*^* \gamma_B \approx sun^* \gamma_s$ kai sun $\gamma_B \approx \eta \mu^* \gamma_s$, súmpwa me tic scéseic (20a, 21):

$$\frac{\mathbf{r}_{\mathrm{B}}}{\boldsymbol{\ell}_{\mathrm{B}}} = \frac{\alpha.\sigma \upsilon v^{*} \gamma_{\mathrm{B}}}{\frac{\mathrm{D}_{\mathrm{n}}}{\eta \mu^{*} \gamma_{\mathrm{B}}}} = \frac{\alpha.\eta \mu^{*} \gamma_{\mathrm{B}}.\sigma \upsilon v^{*} \gamma_{\mathrm{B}}}{\mathrm{D}_{\mathrm{n}}}, \qquad \frac{\mathbf{r}_{\mathrm{s}}}{\boldsymbol{\ell}_{\mathrm{s}}} = \frac{\alpha.\sigma \upsilon v^{*} \gamma_{\mathrm{s}}}{\frac{\mathrm{D}_{\mathrm{n}}}{\eta \mu^{*} \gamma_{\mathrm{s}}}} = \frac{\alpha.\eta \mu^{*} \gamma_{\mathrm{s}}.\sigma \upsilon v^{*} \gamma_{\mathrm{s}}}{\mathrm{D}_{\mathrm{n}}}$$
(22)

Σχήμα 29. Απεικόνιση του κυλινδρικού χώρου που διεγείρει τους αισθητήρες στις θέσεις μέτρησης στη βάση των κυλινδρικών δοκιμίων, κατά μήκος της $B_{x\psi}$ που προσανατολίζεται στην κατεύθυνση του x-αισθητήρα. Οι διαστάσεις του $\ell_{\rm B}$, $r_{\rm B}$ εξαρτώνται από την απόσταση $D_{\rm n}$ της θέσης λήψης των μετρήσεων από το άκρο του δοκιμίου και από την κατευθυντικότητα ${}^*\hat{\gamma}_{\rm B}$ του πεδίου ${}^*\vec{B}_{\rm B}$ και από την παράμετρο α, που γεωμετρικά αποτελεί την ακτίνα ευαισθησίας των αισθητήρων γύρω από τη θέση λήψης των μετρήσεων.

Η ακτίνα $r_B = 2\alpha.\sigma vv^* \gamma_B$ του κυλινδρικού χώρου που διεγείρει τους αισθητήρες (σχήμα 29), εξαρτάται από την κατευθυντικότητα γ_B του πεδίου \vec{B}_B και από την παράμετρο α, που γεωμετρικά αποτελεί την ακτίνα ευαισθησίας των αισθητήρων γύρω από τη θέση λήψης των μετρήσεων.

2.3 Θεώρηση της περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες για τον υπολογισμό της μαγνήτισης από τις μετρήσεις του μαγνητικού πεδίου

Με την παραπάνω θεώρηση, το μαγνητικό πεδίο εμφανίζει την ίδια τιμή (${}^*B_B = {}^*B_s$) στις ισαπέχουσες θέσεις από τα άκρα στη βάση και τα πλευρικά τοιχώματα, γιατί οι λόγοι r_B/ℓ_B , r_s/ℓ_s των κυλινδρικών περιοχών ευαισθητοποίησης των αισθητήρων δε μεταβάλλονται καθώς αυξάνεται η απόσταση D_n , όπως το αξονικό πεδίο δύο σωληνοειδών διαφορετικού μεγέθους με τον ίδιο αριθμό σπειρών $n(m^{-1})$, όταν διαρρέονται από το ίδιο ρεύμα I και οι λόγοι της ακτίνας r προς το μήκος ℓ διατηρούνται σταθεροί, σύμφωνα με τη σχέση [41]

(pp.223-226):
$$B = \frac{\mu_o.n.l}{2.\sqrt{1 + (\frac{r}{\ell})^2}}$$
 (23)

Η κυλινδρική περιοχή διέγερσης των αισθητήρων ακτίνας r και ύψους $\boldsymbol{\ell} \equiv \boldsymbol{\ell}_{B}$, μπορεί να διαιρεθεί σε στοιχειώδη τεμάχια εμβαδού dw και πάχους d $\boldsymbol{\ell}$ ή ισοδύναμους βρόχους (σχήμα 30α) με μαγνητικές διπολικές ροπές $m_{o} = M.dw.d\boldsymbol{\ell} = dI.dw$ κατά την αξονική διεύθυνση [41] (pp.413-418), με ομοιόμορφη μαγνήτιση M= dI/d $\boldsymbol{\ell}$.

Λόγω της αλληλεξουδετέρωσης των αντίθετων ρευμάτων από τα γειτονικά πλακίδια (σχήμα 30β), κάθε λεπτός δίσκος ακτίνας r και ύψους d ℓ με μαγνητική διπολική ροπή m=dI.(π.r²)=M.(π.r²).d ℓ , είναι ισοδύναμος με βρόχο ρεύματος dI=M.d ℓ , με αξονικό μαγνητικό πεδίο που προσεγγίζεται [41] (pp. 223–226) από τον νόμο των *Biot-Savart*.

Σχήμα 30. Το μετρούμενο μαγνητικό πεδίο Β της κυλινδρικής περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες, προσεγγίζεται με το μαγνητικό πεδίο ενός σωληνοειδούς ίδιων διαστάσεων.

Σε κάθε σημείο του z-άξονα οι συνιστώσες dB_{xy} αλληλοεξουδετερώνονται λόγω της περιστροφικής συμμετρίας και το πεδίο $B \equiv B_B$ έχει μόνο αξονική z-συνιστώσα (σχήμα 30γ) που προσεγγίζεται από τις επιμέρους συνεισφορές dB_z των στοιχειωδών επικαμπύλιων τμημάτων ds σε κάθε πλακίδιο πάχους d ℓ :

$$dB_{z} = dB.\sigma vv\phi = \frac{\mu_{o}.dI.d\vec{s}xR}{4\pi R^{2}}.\frac{r}{R} = \frac{\mu_{o}.(M.d\ell).r}{4\pi R^{3}}.ds \quad (24)$$

Το αξονικό μαγνητικό πεδίο B στο άκρο του κυλίνδρου, ακτίνας r = R.ημα και ύψους ℓ , είναι αποτέλεσμα της συνεισφοράς των επιμέρους πλακιδίων πάχους $d\ell = R$.du/ημα και προσεγγίζεται από το ολοκλήρωμα:

$$B=B_{z}=\frac{\mu_{o}.M.r}{4\pi R^{3}}.\int_{s=2\pi r}ds\int d\ell = \frac{\mu_{o}.M.r^{2}}{2R^{3}}.\int\frac{R.du}{\eta\mu u} = \frac{\mu_{o}.M}{2}\int_{u=\sigma vv^{-1}\frac{\ell}{r}}^{u=90^{\circ}}\eta\mu u.du = \frac{\mu_{o}.M}{2\sqrt{1+(\frac{r}{\ell})^{2}}}$$
(25)

ópou $r = \alpha$. sung kai $\boldsymbol{\ell} = D_n / \eta \mu \gamma$.

Οι διαστάσεις r, ℓ της κυλινδρικής περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες (σχήμα 30) εξαρτώνται από τη γωνία απόκλισης γ της μαγνήτισης \vec{M} από την κάθετο στη θέση λήψης των μετρήσεων και από το πάχος L του θραύσματος ή από την απόσταση D μεταξύ της θέσης μέτρησης και του άκρου του θραύσματος στη διεύθυνση της προβολής της μαγνήτισης \vec{M} στην επιφάνεια του οστράκου.

Σύμφωνα με την παραπάνω θεώρηση:

- Όταν $D \ge d = L.εφγ$ (παρ.2.2.4), τότε οι αισθητήρες (**σχήμα 31α,β**), λαμβάνουν μετρήσεις από όλο το πάχος L του οστράκου. Η ακτίνα r = α.συνγ και το μήκος l = L/συνγ της κυλινδρικής περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες εξαρτώνται από τη γωνία γ και από το πάχος L του θραύσματος.

Το αξονικό μαγνητικό πεδίο προσεγγίζεται από τη σχέση επαρκούς μήκους:

$$B = \frac{\mu_{o}.M}{2.\sqrt{1 + (\frac{\alpha.\sigma \upsilon v^{2}\gamma}{L})^{2}}}$$

Οι συνιστώσες M_i (i=x,y,z) της μαγνήτισης προσεγγίζονται από τη σχέση:

$$\mathbf{M}_{i} = \frac{2\mathbf{B}_{i}}{\mu_{o}} \cdot \sqrt{1 + (\frac{\alpha.\sigma \upsilon v^{2} \gamma}{L})^{2}} \quad (26\alpha)$$

-Όταν D \leq d (παρ.2.2.5), τότε οι αισθητήρες (σχήμα 31γ), δε λαμβάνουν μετρήσεις από όλο το πάχος του οστράκου. Η ακτίνα r = α.συνγ και το μήκος l = D/ημγ της κυλινδρικής περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες εξαρτώνται από τη γωνία γ και την απόσταση D μεταξύ της θέσης μέτρησης και του άκρου του θραύσματος στη διεύθυνση της \vec{B}_{xy} . Το αξονικό μαγνητικό πεδίο προσεγγίζεται από τη

σχέση ανεπαρκούς μήκους: $B = \frac{\mu_{o}.M}{2.\sqrt{1 + (\frac{\alpha.\eta\mu\gamma.\sigma\nu\nu\gamma}{D})^{2}}}$

Oi sunistwses M_i (i=x,y,z) the magnitudes prosegned one and the scésh:

$$M_{i} = \frac{2B_{i}}{\mu_{o}} \cdot \sqrt{1 + (\frac{\alpha.\eta\mu\gamma.\sigma\nu\nu\gamma}{D})^{2}}$$
 (26β)

Σχήμα 31. Σχηματική απεικόνιση της μεταβολής των διαστάσεων r, ℓ της κυλινδρικής περιοχής του κεραμικού υλικού που διεγείρει τους αισθητήρες επί του επιπέδου xz, σε σχέση με την κατευθυντικότητα $\hat{\gamma}$ της μαγνήτισης \vec{M} και με τη θέση των αισθητήρων στην επιφάνεια του θραύσματος όταν (a) $D \ge d$ (β) D = d και (γ) $D \le d$, σε τρία θραύσματα με διαφορετική μαγνήτιση \vec{M} και ίδιο πάχος L. Σε κάθε περίπτωση, η ακτίνα r = a.συνγ ελαττώνεται από μια μέγιστη τιμή r = a, όταν $\gamma = 0^{\circ}$ όσο μεγαλύτερη είναι η απόκλιση $\hat{\gamma}$ μεταξύ της μαγνήτισης \vec{M} από την κάθετο στην επιφάνεια του θραύσματος.

Η προσέγγιση του ισοδύναμου πηνίου για την ερμηνεία των πειραματικών αποτελεσμάτων προϋποθέτει τη διέγερση του κάθετου και του παράλληλου αισθητήρα από την ίδια ακτίνα α υλικού γύρω από κάθε θέση λήψης (σχήμα 31), χωρίς κάτι τέτοιο να επιβεβαιώνεται (πίνακες 7, B18, B20) από τις πειραματικές μετρήσεις στα δοκίμια της βάσης των αγγείων 5,4 και 6.

Σύμφωνα με τις προηγούμενες σχέσεις (26α,β), οι γωνίες $φ_B = εφ^{-1}(B_y''/B_x'')$ και $φ = εφ^{-1}(M_y/M_x)$ του μετρούμενου μαγνητικού πεδίου \vec{B} και της μαγνήτισης \vec{M} στη βάση των κυλινδρικών δοκιμίων εμφανίζουν τις ίδιες τιμές, γιατί υπολογίζονται στο θεωρούμενο σύστημα αναφοράς από τις ενδείξεις (B_y'', B_x'') των παράλληλων y,x-αισθητήρων, που έχουν τον ίδιο προσανατολισμό ως προς την επιφάνεια των δοκιμίων.

Όμως οι γωνίες $\gamma_B = \epsilon \varphi^{-1} (B_{xy}^{"/} B_z^{-})$ και $\gamma = \epsilon \varphi^{-1} (M_{xy} / M_z)$ του μετρούμενου μαγνητικού πεδίου \vec{B} και της μαγνήτισης \vec{M} δεν είναι ίσες, γιατί υπολογίζονται από τις ενδείξεις του παράλληλου $(B_{xy}^{"/})$ και του κάθετου (B_z^{-}) αισθητήρα που εμφανίζουν διαφορετικές ακτίνες ευαισθησίας $(\alpha^{"}, \alpha^{-})$, λόγω του διαφορετικού προσανατολισμού τους ως προς την επιφάνεια της βάσης των δοκιμίων.

Oi evdeiξεις $\mathbf{B}_{xy}^{\perp}, \mathbf{B}_{z}^{\perp}$ (πίνακες7β, B18β, B20β) και οι διορθωμένες τιμές $\mathbf{B}_{xy}^{\perp} = \lambda \mathbf{B}_{xy}^{\perp}, \mathbf{B}_{z}^{\perp} = \lambda \mathbf{B}_{z}^{\wedge}$ (πίνακες7γ, B18γ, B20γ) του κάθετου αισθητήρα εμφανίζουν μικρότερη συνολική μεταβολή και αυξάνονται με αργότερο ρυθμό σε σχέση με τις μετρήσεις ($\mathbf{B}_{xy}^{\prime\prime}, \mathbf{B}_{z}^{\prime\prime}$) του παράλληλου αισθητήρα, γιατί η ακτίνα ευαισθησίας του κάθετου αισθητήρα (α^{\perp}) είναι μικρότερη από αυτήν ($\alpha^{\prime\prime}$) του παράλληλου αισθητήρα.

Σχήμα 32. Σχηματική απεικόνιση των ακτίνων ($r^{j}=\alpha^{j}$.συνγ, j= ∟,//)) των κυλινδρικών περιοχών διέγερσης του κάθετου και του παράλληλου αισθητήρα. (α) Επειδή α^{//}>α[⊥] η γωνία ^{*}γ_B = εφ⁻¹ B^{//}_{xy} ^{*}B_z[⊥] του μαγνητικού πεδίου ^{*}B, όπως υπολογίζεται από τις κανονικοποιημένες τιμές ^{*}B_z[⊥] = λ B_z[⊥] των ενδείξεων B_z[⊥] του κάθετου z-αισθητήρα, είναι μικρότερη από τη γωνία γ = εφ⁻¹ M_{xy}/M_z της μαγνήτισης Μ. (β) Η διαφορά των γωνιών ^{*}γ_B, γ μεγαλώνει, όσο αυξάνεται η απόσταση D_n της θέσης των αισθητήρων από τα άκρα του δοκιμίου.

Σύμφωνα με τις προηγούμενες σχέσεις (26α,β), οι γωνίες ^{*}γ_B, ^{*}γ_s≈90-^{*}γ_B του μετρούμενου μαγνητικού πεδίου ^{*}B_B, ^{*}B_s στη βάση και στις πλευρές των δοκιμίων, είναι μικρότερες (σχήμα 32α) από τις αντίστοιχες γωνίες $\gamma = εφ^{-1} M_{xy}/M_z$ και 90°- $\gamma = εφ^{-1} M_z/M_{xy}$ της μαγνήτισης του κεραμικού υλικού και η διαφορά τους αυξάνεται (σχήμα 32β) με την απόσταση D_n της θέσης μέτρησης από τα άκρα των δοκιμίων:

$$B\dot{\alpha}\sigma\eta (B): \epsilon\phi^{*}\gamma_{B} = \frac{B_{x\psi}^{//}}{\lambda B_{z}^{\perp}} < \epsilon\phi\gamma. \sqrt{\frac{1 + (\frac{\alpha_{z}^{\perp}.\eta\mu2\gamma}{2D_{n}})^{2}}{1 + (\frac{\alpha_{x\psi}^{//}.\eta\mu2\gamma}{2D_{n}})^{2}}}, \Pi\lambda\epsilon\nu\rho\dot{\alpha} (s): \epsilon\phi^{*}\gamma_{s} = \frac{B_{z}^{//}}{\lambda B_{x\psi}^{\perp}} < \epsilon\phi(90^{\circ}-\gamma). \sqrt{\frac{1 + [\frac{\alpha_{x\psi}^{\perp}.\eta\mu2(90^{\circ}-\gamma)}{2D_{n}}]^{2}}{1 + [\frac{\alpha_{z}^{//}.\eta\mu2(90^{\circ}-\gamma)}{2D_{n}}]^{2}}} (27)$$

Λόγω των διαφορετικών ακτίνων ευαισθησίας του κάθετου (a^{\perp}) και του παράλληλου (a'') αισθητήρα, οι εξισώσεις επαρκούς (26α) και ανεπαρκούς μήκους (26β) για τον υπολογισμό των συνιστωσών της μαγνήτισης, τροποποιούνται σύμφωνα με τις σχέσεις:

-Otan
$$D \ge d=L.eqn: M_i = \frac{2^* B_i}{\mu_o} \cdot \sqrt{1 + (\frac{\alpha_i \cdot \sigma \upsilon v^2 \gamma}{L})^2}$$
 (28a)
-Otan $D \le d: M_i = \frac{2^* B_i}{\mu_o} \cdot \sqrt{1 + (\frac{\alpha_i \cdot \eta \mu^2 2 \gamma}{2D})^2}$ (28b) ópou $i=x,y,z$ kai $\alpha_x^{\prime\prime} = \alpha_y^{\prime\prime} > \alpha_z^{\perp}$

Για τον υπολογισμό των συνιστωσών της μαγνήτισης σύμφωνα με τις προηγούμενες σχέσεις (28α,β), είναι απαραίτητη η μέτρηση του πάχους L και της απόστασης D_n, ο προσδιορισμός της απόκλισης γ της μαγνήτισης M από τον z-άξονα, των ακτίνων ευαισθησίας α^{\perp} , $\alpha^{\prime\prime}$ και του συντελεστή διόρθωσης λ των ενδείξεων του κάθετου αισθητήρα.

Η γωνία γ της μαγνήτισης Μ σύμφωνα με την παραπάνω θεώρηση και τα πειραματικά αποτελέσματα, (πίνακες 7β, B18β, B20β) μπορεί να προσδιοριστεί από τη γωνία γ^{\perp} = εφ⁻¹ B_{xy}^{\perp}/B_z^{\perp} που υπολογίζεται από τις ενδείξεις μόνο του κάθετου αισθητήρα, οι οποίες προσεγγίζουν ταχύτερα μια οριακή τιμή στις μεγαλύτερες αποστάσεις D_{n→10} των θέσεων μέτρησης από τα άκρα των δοκιμίων. Αυτό συμβαίνει γιατί το μήκος l = D/ημγ είναι πολύ μεγαλύτερο από την ακτίνα r = α.συνγ του ισοδύναμου σωληνοειδούς και σύμφωνα με τη σχέση

ανεπαρκούς μήκους (26β) επειδή $\lim_{n\to 10} \frac{a.\eta \mu \gamma. \sigma \upsilon \gamma \gamma}{D_n} \approx 0$ και ισχύει: $B_{xy}^{\perp} \approx \frac{\mu_o.M_{xy}}{2}$ και $B_z^{\perp} \approx \frac{\mu_o.M_z}{2}$

Επομένως, στις θέσεις που βρίσκονται στη μέγιστη απόσταση ($D_{n=10}$) από τα άκρα των δοκιμίων, οι συνιστώσες και η γωνία γ της μαγνήτισης προσεγγίζονται από τις σχέσεις:

$$M_{x\psi} \approx \frac{2B_{xy_{(n=10)}}^{\perp}}{\mu_{o}}, \ M_{z} \approx \frac{2B_{z_{(n=10)}}^{\perp}}{\mu_{o}} \quad \text{kal} \quad \gamma^{\perp} = \epsilon \varphi^{-1} \frac{B_{x\psi_{(n=10)}}^{\perp}}{B_{z_{(n=10)}}^{\perp}} \approx \gamma = \epsilon \varphi^{-1} \frac{M_{xy}}{M_{z}}$$

Oi tiμές tης γωνίας γ που υπολογίζονται από την παραπάνω σχέση (πίνακες 7δ, B18δ, B20δ) σε καθένα από τα δοκίμια των αγγείων 4,5&6, χρησιμοποιούνται για τον έλεγχο της παραπάνω θεώρησης με τον υπολογισμό των συνιστωσών της μαγνήτισης M_z , M_{xy} , του παράγοντα διόρθωσης λ των ενδείξεων του κάθετου αισθητήρα και των ακτίνων ευαισθησίας a^{\perp} , a'' του κάθετου και του παράλληλου αισθητήρα με τη μέθοδο των ελαχίστων τετραγώνων. Στη μέθοδο χρησιμοποιείται η σχέση ανεπαρκούς μήκους (28β) που εφαρμόζεται ξεχωριστά για τις ενδείξεις του κάθετου αισθητήρα $(B_{x\psi}^{\perp}, B_z^{\perp})$ και για τις ενδείξεις $(B_{x\psi}'', B_z'')$ του παράλληλου αισθητήρα.

Ενδεικτικά αποτελέσματα της μεθόδου των ελαχίστων τετραγώνων από μετρήσεις στο δοκίμιο από τη βάση του αγγείου 5 παρατίθενται στον πίνακα 8. Τα αντίστοιχα αποτελέσματα από τις μετρήσεις των δοκιμίων από τις βάσεις των αγγείων 4 και 6 παρατίθενται στους πίνακες B19 και B21 του παραρτήματος B.

• Η μέθοδος των ελαχίστων τετραγώνων εφαρμόζεται για τις ενδείξεις του κάθετου αισθητήρα

$$(\mathbf{B}_{x\psi}^{\perp}, \mathbf{B}_{z}^{\perp}) \quad \alpha \pi \acute{o} \tau \eta \nu \text{ exisons the initial of the second second$$

Από την προηγούμενη εξίσωση υπολογίζονται σε κάθε δοκίμιο οι συνιστώσες M_i^{\perp} (i = z, xy), οι ακτίνες ευαισθησίας α_i^{\perp} και τα σφάλματα¹⁴ δM_i^{\perp} , $\delta \alpha_i^{\perp}$ από τις σχέσεις:

$$\delta M_{i} = \frac{1}{2} \cdot w_{i}^{\frac{3}{2}} \cdot \delta w_{i} \quad \text{for } i = z, xy \qquad (30)$$

Ta σφάλματα δα_i (i=z,xy) των ακτίνων ευαισθησίας του κάθετου και του παράλληλου αισθητήρα, υπολογίζονται σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση: δα_i = $\sqrt{\left(\frac{\partial \alpha_i}{\partial \alpha_i}\right)^2 \cdot (\delta b_i)^2 + \left(\frac{\partial \alpha_i}{\partial \alpha_i}\right)^2 \cdot (\delta w_i)^2 + \left(\frac{\partial \alpha_i}{\partial \alpha_i}\right)^2 \cdot (\delta \dot{\gamma})^2}$ όπου:

$$\frac{\partial a_{i}}{\partial b_{i}} = b_{i}^{\frac{1}{2}} \cdot w_{i}^{\frac{1}{2}} \cdot \eta \mu^{-1} 2\gamma \cdot \delta b_{i}, \quad \frac{\partial a_{i}}{\partial w_{i}} = -b_{i}^{\frac{1}{2}} \cdot w_{i}^{\frac{3}{2}} \cdot \eta \mu^{-1} 2\gamma \cdot \delta w_{i}, \quad \frac{\partial a_{i}}{\partial w_{i}} = -b_{i}^{\frac{1}{2}} \cdot \eta \mu^{-1} 2\gamma \cdot \delta w_{i}, \quad \frac{\partial a_{i}}{\partial \gamma} = -4 \cdot b_{i}^{\frac{1}{2}} \cdot w_{i}^{\frac{1}{2}} \cdot \eta \mu^{-2} 2\gamma \cdot \sigma \nu 2\gamma \cdot \delta \gamma, \quad (31)$$

¹⁴ Τα σφάλματα δ M_i των συνιστωσών τις μαγνήτισης από τις ενδείξεις του κάθετου $(B_{xy}^{\perp}, B_z^{\perp})$ και του παράλληλου $(B_{xy}^{\prime\prime}, B_z^{\prime\prime})$ αισθητήρα που προσδιορίζονται με τη μέθοδο των ελαχίστων τετραγώνων (29), (34), υπολογίζονται από τις σχέσεις:

$$M_{i}^{\perp} = (w_{i}^{\perp})^{\frac{1}{2}}, \ a_{i}^{\perp} = 2.(b_{i}^{\perp})^{\frac{1}{2}}.(w_{i}^{\perp})^{\frac{1}{2}}.\eta\mu^{-1}2\gamma, \ \gamma\iota\alpha \ i=z,xy$$
(32)

Aπό τα πειραματικά αποτελέσματα διαπιστώνεται ότι τα υπολογιζόμενα μέτρα των συνιστωσών M_z^{L} , M_{xy}^{L} από τις τεταγμένες επί την αρχή w_z^{L} , w_{xy}^{L} (πίνακες 8, B19,B21) προσεγγίζουν τις οριακές τιμές M_z , M_{xy} της μαγνήτισης (πίνακες 7δ, B18δ,B20), στις θέσεις που απέχουν την μεγαλύτερη απόσταση από τα άκρα των δοκιμίων.

Σε κάθε δοκίμιο, οι ακτίνες ευαισθησίας a_z^{\perp} , a_{xy}^{\perp} του κάθετου αισθητήρα που υπολογίζονται από τις κλίσεις b_z^{\perp} , b_{xy}^{\perp} εμφανίζουν παραπλήσιες τιμές, κοντά στα όρια του υπολογιζόμενου σφάλματος.

Η ακτίνα ευαισθησίας a^{\perp} του κάθετου z-αισθητήρα και το σφάλμα δ a^{\perp} , υπολογίζεται (πίνακας 9) σε κάθε δοκίμιο της βάσης των αγγείων 4,5 και 6 από τις μέσες τιμές¹⁵ των a_z^{\perp} , a_{xy}^{\perp} και δ a_z^{\perp} , δ a_{xy}^{\perp} .

• Η μέθοδος των ελαχίστων τετραγώνων εφαρμόζεται για τις ενδείξεις του παράλληλου αισθητήρα

$$(\mathbf{B}_{z}^{''},\mathbf{B}_{xy}^{''}) \ \text{and thy existing only in the equation of the existing of the equation of$$

Με την εφαρμογή της μεθόδου των ελαχίστων τετραγώνων (πίνακες 8, B19,B21), υπολογίζονται σε κάθε δοκίμιο οι συνιστώσες $M_i^{\prime\prime}(i=z,xy)$ οι ακτίνες ευαισθησίας $\alpha_i^{\prime\prime}$ και τα σφάλματα $\delta M_i^{\prime\prime}$, $\delta \alpha_i^{\prime\prime}$ (30,31) από τη

σχέση:
$$M_i^{"} = (w_i^{"})^{-\frac{1}{2}}, a_i^{"} = 2.(b_i^{"})^{\frac{1}{2}}.(w_i^{"})^{-\frac{1}{2}}.ημ^{-1}2γ, για i=z,xy$$
 (35)

Ta prosdiorizómena métra twn sunistwswn M_z'' , M_{xy}'' apó tic tetagménec epí thn arch w_z'' , w_{xy}'' eínai pollaplásia twn antístoicwn timwn M_z^{\perp} , M_{xy}^{\perp} pou upologizontai apó tic endeizeic twn kábetwn

αισθητήρων, κατά τον ίδιο¹⁶ παράγοντα $\lambda = \lambda_z \approx \lambda_{xy}$, όπου: $\lambda_z = \frac{M_z^{\prime\prime}}{M_z^{\perp}}$, $\lambda_{xy} = \frac{M_{xy}^{\prime\prime}}{M_{xy}^{\perp}}$ (36α)

Ο συντελεστής διόρθωσης λ των ενδείξεων του κάθετου αισθητήρα και το σφάλμα δλ, υπολογίζονται¹⁷ (πίνακας 9) από τη μέση τιμή των λ_z , λ_{xy} για τα δοκίμια από τη βάση κάθε αγγείου.

Oi aktíveς euaisθησίας a_z'' , a_{xy}'' pou upologiζovtal apó tiς klísels b_z'' , b_{xy}'' , empaniζoun se káθe δοκίμιο παραπλήσιες timéς στα όρια του πειραματικού σφάλματος. Η ακτίνα euaisθησίας a'', από tiς enδείξεις του παράλληλου aisθητήρα και το σφάλμα δa'', υπολογίζονται σε κάθε δοκίμιο, με τον ίδιο τρόπο (33) από tiς μέσες timéς των a_z'' , a_{xy}'' και $\delta a_z''$, $\delta a_{xy}''$.

Οι συνιστώσες της μαγνήτισης M_z , M_{xy} και τα σφάλματα¹⁸ δM_z , δM_{xy} (πίνακας 9), υπολογίζονται σε κάθε δοκίμιο από τις σχέσεις: $M_z = \lambda . M_z^{\perp}$, $M_{xy} = \lambda . M_{xy}^{\perp}$ (38α)

Aπό τις M_z , M_{xy} υπολογίζεται σε κάθε δοκίμιο, το μέτρο της συνισταμένης $M = \sqrt{(M_z)^2 + (M_{xy})^2}$ και το σφάλμα δM από τη σχέση (11).

Οι τυπικές αποκλίσεις δb_i , δw_i στις παραπάνω σχέσεις, υπολογίζονται στη μέθοδο των ελαχίστων τετραγώνων.

¹⁵ Η ακτίνα ευαισθησίας α[⊥] και το σφάλμα δα[⊥] του κάθετου z-αισθητήρα υπολογίζεται για κάθε δοκίμιο, από τις μέσες τιμές:

$$\alpha^{\perp} = \frac{\alpha_z^{\perp} + \alpha_{xy}^{\perp}}{2}, \quad \delta \alpha^{\perp} = \frac{\delta \alpha_z^{\perp} + \delta \alpha_{xy}^{\perp}}{2}$$
(33)

¹⁶ Τα σφάλματα δλ_i για i=z,xy υπολογίζονται σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση:

$$\delta\lambda_{i} = \sqrt{\left[(M_{i}^{\perp})^{-1} . M_{i}^{\#} . \delta M_{i}^{\#} \right]^{2} + \left[M_{i}^{\#} . (M_{i}^{\perp})^{-2} . \delta M_{i}^{\wedge} \right]^{2}}$$
(36β)

Τα σφάλματα $\delta M_i^{"}$, δM_i^{-} υπολογίζονται από τη σχέση (30). ¹⁷ Ο συντελεστής κανονικοποίησης των ενδείξεων του κάθετου αισθητήρα με τις ενδείξεις των παράλληλων αισθητήρων, $\lambda_z^{+} \lambda_{xy} = \sum_{k=1}^{3} \delta \lambda_z^{+} \delta \lambda_x$ (27)

υπολογίζεται για κάθε δοκίμιο, από τις μέσες τιμές:
$$\lambda = \frac{z - x\psi}{2}$$
, $\delta \lambda = \frac{z - xy}{2}$ (37)

¹⁸ Το σφάλμα των συνιστωσών M_i =λ. $M_i^{\perp}(i = z,xy)$ υπολογίζεται σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση:

$$\delta \mathbf{M}_{i} = \sqrt{\left(\frac{\partial \mathbf{M}_{i}}{\partial \lambda}\right)^{2} \cdot \left(\delta \lambda\right)^{2} + \left(\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{M}_{i}^{\perp}}\right)^{2} \cdot \left(\delta \mathbf{M}_{i}^{\perp}\right)^{2}} = \sqrt{\left(\lambda \cdot \delta \mathbf{M}_{i}^{\perp}\right)^{2} + \left(\delta \lambda \cdot \mathbf{M}_{i}^{\perp}\right)^{2}}$$
(38β)

							αγγείο 5						
Пí	νακας 8		Μετ		Β από τους κάθ		ALLES .	1580					
n	-	D	14161	իլիշեց երց			2	1560 -					
п	B ⁺ _z	D _n	X n	Ψ_n	$(\mathbf{x}_{n} - \overline{\mathbf{x}})^{-}$	$\Psi_n(X_n - X)$	$(\psi_n - \overline{\psi})^-$	1540 -			/	×	
1	15,9	14,0	5102,0	1561,6	5533173,0	3673268,0	5113,8	1520					
2	16,1	15,4	4216,6	1523,0	2151477,6	2233965,2	1086,0	1520					
3	16,2	16,8	3543,1	1504,3	629345,3	1193367,5	201,9	1500 -					
4	16,2	18,2	3019,0	1504,3	72462,2	404935,1	201,9	1480 -			- 0 028x + 14	12 1	
2	16,3	19,6	2603,1	1485,9	2151/,/	-217962,7	17,6	1460 -		7	R ² - 0.965	13,1	
0	16,5	21,0	1002.0	1485,9	232514,3	-/10488,/	17,6	1440 -		1	n - 0,505		
/ 8	10,4	22,4	1992'0	1407,0	5/2/23,0	-1110824,2	495,4		20	000	4000	6000	
0	16,4	23,8	1765,4	1467,8	968962,7	-1444859,3	495,4				7000		
9	16,5	25,2	1574,7	1450,1	1380782,7	-1703940,9	1599,5	「 <u> </u>	b _z ∟	δbz∟	w₂∟	δwz∟	
10	16,5	26,6	1413,3	1450,1	1786134,3	-1937978,3	1599,5		0,028	0,002	1413,1	5,6	
	±0,2nT	±0,2mm	x	$\overline{\Psi}$	$\nabla (\mathbf{x} \cdot \overline{\mathbf{x}})^2$	$\Sigma_{\rm MI}$ (x $-\overline{\rm X}$)	$\Sigma(u - \overline{u})^2$	ΣR^2	$M^{\perp}(A/m)$	$s \mathbf{M}^{\perp}$	a^{\perp} (m)	$\delta \alpha^{\perp}$	
					$\Delta(x_n - x_j)$	$\Delta \psi_n (x_n - x_j)$	$\Delta(\psi_n - \psi)$				~ _Z (- /		
			2749,8	1490,1	13349095,3	373481,7	10828,5	379,2	0,0266	0,0001	0,0106	0,0004	
A	γγείο 5		Μετ	ρήσεις της	Β _{xψ} από τους κά€	θετους αισθητήρες		465 —	•				
n	\mathbf{R}^{\perp}	D	x	W	$(\mathbf{x} - \overline{\mathbf{x}})^2$	$w(x-\overline{x})$	$(\overline{y}_{1}, -\overline{y}_{1})^{2}$	460 +					
	Β _{χψ}	ν _n	Λ _n	Ψn	(A _n -A)	$\Psi_n (\Lambda_n - \Lambda)$	$(\Psi_n - \Psi)$	455 +					
1	29,2	14,0	5102,0	463,0	5533173,0	1089133,6	404,1	450 +			<u> </u>		
2	29,5	15,4	4216,6	453,6	2151477,6	665402,0	115,2						
3	29,7	16,8	3543,1	447,6	629345,3	355051,5	21,6	445					
4	29,8	18,2	3019,0	444,6	72462,2	119669,3	2,7	440	y = 0,0079x + 421,29			1.29	
5	29,9	19,6	2603,1	441,6	21517,7	-64776,1	1,8	435 +			R ² = 0.9877		
6	30,0	21,0	2267,6	438,6	232514,3	-211515,4	18,2	430 +	••				
/	30,0	22,4	1993,0	438,6	572725,6	-331963,6	18,2	0	200	0	4000	6000	
8	30,1	23,8	1765,4	435,7	968962,7	-428923,9	51,4						
9									b^{\perp}	δb^{\perp}	w^{\perp}	δw^{\perp}	
10	30,2	25,2	1574,7	432,9	1380782,7	-508637,7	101,1		<i>xψ</i>			υ., χψ	
10	30,2	26,6	1413,3	432,9	1786134,3	-578499,4	101,1		0,0079	0,0003	421,3	0,9	
	$\pm 0,2n^{-1}$	±0,2mm	X	Ψ	$\Sigma(x_n - \overline{x})^2$	$\Sigma \psi_n (X_n - \overline{X})$	$\Sigma(\psi_n - \overline{\psi})^2$	ΣR_i^2	M^{\perp}_{m} (A/m)	δM^{\perp}_{mu}	α_{m}^{\perp} (m)	$\delta \alpha_{xyy}^{\perp}$	
			2740.8	1120	12240005 2	104040.2	025 2	10.2	xψ × /	λΨ 0.0001	xψ × 7	Δ.0002	
			2/43,0	442,5	100420000,0	104940,5	2,200	10,5	0,0487 0,0001 0,0103 0,00		0,000∠		
						•							
A	γγείο 5		Μετρή	ίσεις της Ε	c από τους παράλ	ληλους αισθητήρες		410 —					
A' n	γγείο 5 Β ^{//}	D	Μετρή Χ	ίσεις της Ε Ψ _n	B_z από τους παράλ $(x_n - \overline{x})^2$	ιληλους αισθητήρες ψ (xx)	$(\Psi_n - \overline{\Psi})^2$	410 400				~	
A' n	γγείο 5	D _n	Μετρή Χ _n	ίσεις της Ε Ψ _n	\mathbf{x}_{n} από τους παράλ $(\mathbf{x}_{n} - \overline{\mathbf{x}})^{2}$	ληλους αισθητήρες	$(\psi_n - \overline{\psi})^2$	410 400 390			<u> </u>	~	
A ⁴ n 1	γγείο 5	D _n 14,0	Μετρή Χ _n 5102,0	ίσεις της Ε Ψ _n 400,4	\mathbf{S}_{z} από τους παράλ $(x_n - \overline{x})^2$ 5533173,0 2151477.6	ληλους αισθητήρες ψ _n (x _n -x̄) 941862,6	$(\psi_n - \overline{\psi})^2$ 6666,12	410 400 390 280				~	
A ⁴ n 1 2 3	γγείο 5	D _n 14,0 15,4	Μετρί Χ _n 5102,0 4216,6	ήσεις της Η Ψ _n 400,4 392,9 285 5	\mathbf{S}_{z} από τους παρά \hat{u} ($\mathbf{x}_{n} \cdot \overline{\mathbf{x}}$) ² 5533173,0 2151477,6 529245 3	ληλους αισθητήρες ψ _n (x _n -x̄) 941862,6 576248,3 205847.0	$(\psi_n - \overline{\psi})^2$ 666,12 333,66 119,57	410 - 400 - 390 - 380 -				~	
A n 1 2 3 4	γγείο 5 Β ^{//} 31,4 31,7 32,0 32.4	D _n 14,0 15,4 16,8 18,2	Μετρή Χ _n 5102,0 4216,6 3543,1 3019.0	τοεις της Η Ψ _n 400,4 392,9 385,5 376 1	 32 από τους παράζ (x_n -x̄)² 5533173,0 2151477,6 629345,3 72462 2 	 ληλους αισθητήρες ψ_n (x_n - x̄) 941862,6 576248,3 305847,0 101233,8 	$(\psi_n - \overline{\psi})^2$ 666,12 333,66 119,57 2 17	410 400 390 380 370		* **	v = 0.0118x +	↓ 342.08	
A ⁴ n 1 2 3 4 5	γγείο 5 Β ^{//} ₂ 31,4 31,7 32,0 32,4 32 5	D _n 14,0 15,4 16,8 18,2 19,6	Μετρή X _n 5102,0 4216,6 3543,1 3019,0 2603 1	ίσεις της Γ Ψ _n 400,4 392,9 385,5 376,1 373,8	 32 από τους παράζ (x_n -x̄)² 5533173,0 2151477,6 629345,3 72462,2 21517 7 	 ληλους αισθητήρες ψ_n (x_n - x̄) 941862,6 576248,3 305847,0 101233,8 -54826 5 	$\frac{(\psi_{n} - \overline{\psi})^{2}}{666,12}$ 333,66 119,57 2,17 0,70	410 400 390 380 370 360		<u>.</u>	y = 0,0118x +	+ 342,08	
A n 1 2 3 4 5 6	γγείο 5 Β ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6	D _n 14,0 15,4 16,8 18,2 19,6 21.0	Μετρή X _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6	γσεις της Γ Ψ _n 400,4 392,9 385,5 376,1 373,8 371,5	 32 από τους παρά/ (x_n-x̄)² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 	 ληλους αισθητήρες ψ_n (x_n - x̄) 941862,6 576248,3 305847,0 101233,8 -54826,5 -179122,2 	$\frac{(\psi_{n} - \overline{\psi})^{2}}{666,12}$ 333,66 119,57 2,17 0,70 9,77	410 400 390 380 370 360 350			γ = 0,0118x + R ² = 0,	↓ 342,08 9808	
A n 1 2 3 4 5 6 7	γγείο 5 B [#] _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4	Μετρή X _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0	ψn 400,4 392,9 385,5 376,1 373,8 371,5 367,0	 32 από τους παρά) (x_n-x̄)² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 	 ληλους αισθητήρες ψ_n (x_n - x̄) 941862,6 576248,3 305847,0 101233,8 -54826,5 -179122,2 -277706 1 	$\frac{(\psi_{n} - \overline{\psi})^{2}}{666,12}$ 333,66 119,57 2,17 0,70 9,77 58.40	410 400 390 380 370 360 350		* ***	γ = 0,0118x + R ² = 0,		
A n 1 2 3 4 5 6 7 8	γγείο 5 Β ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8	Μετρή X _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1755 4	ψn 400,4 392,9 385,5 376,1 373,8 371,5 367,0 264,7	 32 από τους παρά/ (x_n-x̄)² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 069962,7 	 	$\frac{(\psi_{n} - \overline{\psi})^{2}}{666,12}$ 333,66 119,57 2,17 0,70 9,77 58,40 07.41	410 400 390 380 370 360 350 0	200	200	y = 0 , 0118x + R ² = 0 , 4000	★ ★	
A n 1 2 3 4 5 6 7 8 8	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8	Μετρή X _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4	ψn 400,4 392,9 385,5 376,1 373,8 371,5 367,0 364,7	 32 από τους παρά/ (x_n-x̄)² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 		$\begin{array}{c} \left(\psi_{n} - \overline{\psi}\right)^{2} \\ \hline 666, 12 \\ \hline 333, 66 \\ \hline 119, 57 \\ \hline 2, 17 \\ \hline 0, 70 \\ \hline 9, 77 \\ \hline 58, 40 \\ \hline 97, 41 \\ \end{array}$	410 400 390 380 370 360 350 0	200	00	y = 0 , 0118x + R ² = 0 , 4000	★ 342,08 9808 6000	
A ⁴ n 1 2 3 4 5 6 7 8 8 9	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2	Μετρή X _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7	ψn 400,4 392,9 385,5 376,1 373,8 371,5 364,7 358,2	 32 από τους παρά/ (x_n-x̄)² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 	 	$\begin{array}{c} \left(\psi_{n} - \overline{\psi}\right)^{2} \\ \hline 666, 12 \\ \hline 333, 66 \\ \hline 119, 57 \\ \hline 2, 17 \\ \hline 0, 70 \\ \hline 9, 77 \\ \hline 58, 40 \\ \hline 97, 41 \\ \hline 269, 99 \end{array}$	410 400 390 380 370 360 350 0	200 b ^{//} ₇	$\delta b_z^{\prime\prime}$	$y = 0,0118x + R^2 = 0,$ 4000 $w_{\tau}^{\prime \prime}$	◆ ★ 342,08 9808 6000 8000 8000	
A ⁴ n 1 2 3 4 5 6 7 8 9 10	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6	Μετρή X _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3	ψn 400,4 392,9 385,5 376,1 373,8 371,5 367,0 364,7 358,2 356,0	 32 από τους παρά/ (x_n-x̄)² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 	 	$\begin{array}{c} \left(\psi_{n} - \overline{\psi}\right)^{2} \\ \hline 666,12 \\ \hline 333,66 \\ \hline 119,57 \\ \hline 2,17 \\ \hline 0,70 \\ \hline 9,77 \\ \hline 58,40 \\ \hline 97,41 \\ \hline \\ 269,99 \\ \hline 345,19 \\ \end{array}$	410 400 390 380 370 360 350 0	$b_z^{\prime\prime}$	$\delta b_z^{\prime\prime}$	$y = 0,0118x + R^2 = 0,$ 4000 $w_z^{//}$ 342.1	• 342,08 9808 $\delta w_z^{\prime\prime}$ 1.7	
A ⁴ 1 2 3 4 5 6 7 8 9 10	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0.2mm	Μετρή X _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 x	ψn 400,4 392,9 385,5 376,1 373,8 371,5 367,0 364,7 358,2 356,0 Ψ	3 ₂ από τους παράζ (x _n -x̄) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3	 ληλους αισθητήρες ψ_n (x_n - x̄) 941862,6 576248,3 305847,0 101233,8 -54826,5 -179122,2 -277706,1 -359022,3 -420868,3 -475804,3 	$(\psi_{n} - \overline{\psi})^{2}$ 6666,12 333,66 119,57 2,17 0,70 9,77 58,40 97,41 269,99 345,19	410 400 390 380 370 360 350 0 50 20 20 20 20 20 20 20 20 20 2	200 <i>b</i> ^{//} _z 0,012	$\frac{\delta b_z^{\prime\prime}}{0,001}$	$y = 0,0118x + R^2 = 0,$ 4000 $w_z^{//}$ 342,1	★ 342,08 9808 6000 8000 <	
A ⁴ n 1 2 3 4 5 6 7 8 9 10	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm	Μετρή X _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 X	$\begin{array}{c} \psi_n \\ \psi_n \\ 400,4 \\ 392,9 \\ 385,5 \\ 376,1 \\ 373,8 \\ 371,5 \\ 367,0 \\ 364,7 \\ 358,2 \\ 356,0 \\ \overline{\psi} \end{array}$	\mathbf{B}_{z} από τους παράζ (\mathbf{x}_{n} - $\mathbf{\bar{x}}$) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(\mathbf{x}_{n} - $\mathbf{\bar{x}}$) ²	$\begin{split} & \lambda \eta \lambda o \upsilon \varsigma \ \alpha i \sigma \theta \eta \tau \dot{\eta} \rho c \varsigma \\ & \psi_n \left(x_n - \overline{x} \right) \\ & 941862,6 \\ & 576248,3 \\ & 305847,0 \\ & 101233,8 \\ & -54826,5 \\ & -179122,2 \\ & -277706,1 \\ & -359022,3 \\ & \\ & -420868,3 \\ & -475804,3 \\ & \Sigma \psi_n \left(x_n - \overline{x} \right) \end{split}$	$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline 666,12\\ \hline 333,66\\ \hline 119,57\\ \hline 2,17\\ \hline 0,70\\ \hline 9,77\\ \hline 58,40\\ \hline 97,41\\ \hline 269,99\\ \hline 345,19\\ \hline \Sigma(\psi_{n}-\overline{\psi})^{2} \end{array}$	$ \begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \end{array} $	200 <i>b</i> ^{//} _z 0,012 <i>M</i> ^{//} _z (A/m)	$\frac{\delta b_z^{\prime\prime}}{0,001}$	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m)	• 342,08 9808 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$	
A* n 1 2 3 4 5 6 7 8 9 10	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm	Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 X 2749,8	ψn 400,4 392,9 385,5 376,1 373,8 371,5 367,0 364,7 358,2 356,0 Ψ 374,6	\mathbf{S}_{z} από τους παράζ (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(x _n - \overline{x}) ² 13349095,3		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 666,12\\ \hline\\ 333,66\\ \hline\\ 119,57\\ \hline\\ 2,17\\ \hline\\ 0,70\\ \hline\\ 9,77\\ \hline\\ 58,40\\ \hline\\ 97,41\\ \hline\\ 269,99\\ \hline\\ 345,19\\ \hline\\ \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline\\ 1903,0\\ \end{array}$	$ \begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_{i}^{2} \\ 36,6 \\ \end{array} $	200 <i>b</i> ^{//} _z 0,012 <i>M</i> ^{//} _z (A/m) 0,0541	$\frac{\delta b_{z}^{\prime \prime }}{0,001}$	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140	• 342,08 9808 $\delta w_z^{\prime\prime}$ 1,7 $\delta \alpha_z^{\prime\prime}$ 0,0004	
A 1 1 2 3 4 5 6 7 7 8 9 10 10	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm	Μετρή X _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 X 2749,8 Μετρή	ψn 400,4 392,9 385,5 376,1 373,8 371,5 367,0 364,7 358,2 356,0 Ψ 374,6	\mathbf{S}_{z} από τους παράζ (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(x _n - \overline{x}) ² 13349095,3	 ληλους αισθητήρες ψ_n (x_n - x̄) 941862,6 576248,3 305847,0 101233,8 -54826,5 -179122,2 -277706,1 -359022,3 -420868,3 -475804,3 Σψ_n (x_n - x̄) 157842,0 λ hous gugθητήσες 	$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline 666,12\\ \hline 333,66\\ \hline 119,57\\ \hline 2,17\\ \hline 0,70\\ \hline 9,77\\ \hline 58,40\\ \hline 97,41\\ \hline 269,99\\ \hline 345,19\\ \hline \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline 1903,0\\ \hline \end{array}$	$ \begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_i^2 \\ 36,6 \\ 125 \\ \end{array} $	200 $b_z^{\prime\prime}$ 0,012 $M_z^{\prime\prime}$ (A/m) 0,0541	$\frac{\delta b_{z}^{\prime \prime }}{0,001}$	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140	• 342,08 9808 $\delta w_z^{\prime\prime}$ 1,7 $\delta \alpha_z^{\prime\prime}$ 0,0004	
A* n 1 2 3 4 5 6 7 7 8 9 10	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm	Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 x 2749,8 Μετρή	ψn 400,4 392,9 385,5 376,1 373,8 371,5 367,0 364,7 358,2 356,0 Ψ 374,6 σεις της B	\mathbf{S}_{z} από τους παρά i (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ (x _n - \overline{x}) ² 13349095,3 <u>x</u> από τους παρά		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline 666,12\\ \hline 333,66\\ \hline 119,57\\ \hline 2,17\\ \hline 0,70\\ \hline 9,77\\ \hline 58,40\\ \hline 97,41\\ \hline 269,99\\ \hline 345,19\\ \hline \Sigma (\psi_{n}-\overline{\psi})^{2}\\ \hline 1903,0\\ \hline \end{array}$	$ \begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_i^2 \\ 36,6 \\ 125 \\ \end{array} $	200 <i>b</i> ^{//} _z 0,012 <i>M</i> ^{//} _z (A/m) 0,0541	$\frac{\delta b_{z}^{\prime \prime }}{0,001}$	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140	• 342,08 9808 6000 $\delta w_z^{\prime\prime}$ 1,7 $\delta \alpha_z^{\prime\prime}$ 0,0004	
Ar n 1 2 3 4 5 6 7 7 8 9 10 10 Ar n	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 B ^{//} _{xw}	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm	Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 x 2749,8 Μετρή X n	ψn 400,4 392,9 385,5 376,1 373,8 371,5 367,0 364,7 358,2 356,0 Ψ 374,6 σεις της B Ψn			$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ \hline 666,12 \\ \hline 333,66 \\ \hline 119,57 \\ \hline 2,17 \\ \hline 0,70 \\ 9,77 \\ \hline 58,40 \\ 97,41 \\ \hline 269,99 \\ \hline 345,19 \\ \hline \Sigma (\psi_{n}-\overline{\psi})^{2} \\ \hline 1903,0 \\ \hline \end{array}$	$ \begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_i^2 \\ 36,6 \\ 125 \\ 120 \\ \end{array} $	200 <i>b</i> ^{//} _z 0,012 <i>M</i> ^{//} _z (A/m) 0,0541	$\frac{\delta b_{z}^{\prime \prime }}{0,001}$	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140	• 342,08 9808 6000 $\delta w_z^{\prime\prime}$ 1,7 $\delta \alpha_z^{\prime\prime}$ 0,0004	
Ar n 1 2 3 4 5 6 7 7 8 9 10 10 Ar n 1 1 1 1 1 1 1 1 1 1 1 1 1	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 B ^{//} _{xw} 56,9	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm D _n 14,0	Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 x 2749,8 Μετρήη X n 5102,0	ψn 400,4 392,9 385,5 376,1 373,8 371,5 367,0 364,7 358,2 356,0 Ψ 374,6 σεις της B Ψn 121,9	B_z από τους παρά i (x _n - \bar{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(x _n - \bar{x}) ² 13349095,3 xw από τους παρά (x _n - \bar{x}) ² 5533173,0		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 666,12\\ \hline\\ 333,66\\ \hline\\ 119,57\\ \hline\\ 2,17\\ \hline\\ 0,70\\ \hline\\ 9,77\\ \hline\\ 58,40\\ \hline\\ 97,41\\ \hline\\ 269,99\\ \hline\\ 345,19\\ \hline\\ \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline\\ 1903,0\\ \hline\\ \\ \\ \\ \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 89,1 \end{array}$	$ \begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_i^2 \\ 36,6 \\ 125 \\ 120 \\ \end{array} $	$\frac{b_z^{\prime\prime}}{0,012}$ 0,012 $M_z^{\prime\prime}$ (A/m) 0,0541	$\frac{\delta b_{z}^{\prime \prime }}{0,001}$	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140	• 342,08 9808 6000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0004	
Ar n 1 2 3 4 5 6 7 7 8 9 10 10 1 2 2	γγείο 5 B ["] _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 B ["] _{xw} 56,9 58,1	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm D _n 14,0 15,4	Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 x 2749,8 Μετρήη X n 5102,0 4216,6	ψn 400,4 392,9 385,5 376,1 373,8 371,5 367,0 364,7 358,2 356,0 Ψ 374,6 σεις της B Ψn 121,9 117,0	\mathbf{S}_{z} από τους παρά? (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(x _n - \overline{x}) ² 13349095,3 <u>xw</u> από τους παρά (x _n - \overline{x}) ² 5533173,0 2151477,6		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 666,12\\ \hline\\ 333,66\\ \hline\\ 119,57\\ \hline\\ 2,17\\ \hline\\ 0,70\\ \hline\\ 9,77\\ \hline\\ 58,40\\ \hline\\ 97,41\\ \hline\\ 269,99\\ \hline\\ 345,19\\ \hline\\ \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline\\ 1903,0\\ \hline\\ \\ \\ \\ \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 89,1\\ \hline\\ 19,8\\ \end{array}$	$ \begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_i^2 \\ 36,6 \\ 125 \\ 120 \\ 115 \\ \end{array} $	200 <i>b</i> ^{//} _z 0,012 <i>M</i> ^{//} _z (A/m) 0,0541	$\delta b_{z}^{//}$ 00 $\delta b_{z}^{//}$ 0,001 $\delta M_{z}^{//}$ 0,0001	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140	• 342,08 9808 6000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0004	
Ar n 1 2 3 4 5 6 7 7 8 9 10 10 1 2 3 3	γγείο 5 B ["] _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 B ["] _{xw} 56,9 58,1 58,6	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm D _n 14,0 15,4 16,8	Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 x 2749,8 Μετρή X n 5102,0 4216,6 3543,1		\mathbf{S}_{z} από τους παρά? (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(x _n - \overline{x}) ² 13349095,3 x _W από τους παρά (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 666,12\\ \hline\\ 333,66\\ \hline\\ 119,57\\ \hline\\ 2,17\\ \hline\\ 0,70\\ \hline\\ 9,77\\ \hline\\ 58,40\\ \hline\\ 97,41\\ \hline\\ 269,99\\ \hline\\ 345,19\\ \hline\\ \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline\\ 1903,0\\ \hline\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_i^2 \\ 36,6 \\ 125 \\ 120 \\ 115 \\ \end{array} $	200 <i>b</i> ^{//} _z 0,012 <i>M</i> ^{//} _z (A/m) 0,0541	$\delta b_{z}^{//}$ 000 $\delta M_{z}^{//}$ 0,0001 $\delta M_{z}^{//}$	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140 y = 0.0037x	• 342,08 9808 6000 $\delta w_z^{\prime\prime}$ 1,7 $\delta \alpha_z^{\prime\prime}$ 0,0004 • 102.46	
A n 1 2 3 4 5 6 7 7 8 9 10 10 1 2 3 4 4 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1	γγείο 5 B ["] _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 B ["] _{xw} 56,9 58,1 58,6 59,1	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm D _n 14,0 15,4 16,8 18,2	Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 x 2749,8 Μετρή X n 5102,0 4216,6 3543,1 3019,0		\mathbf{S}_{z} από τους παρά? (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(x _n - \overline{x}) ² 13349095,3 x _W από τους παρά (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 666,12\\ \hline\\ 333,66\\ \hline\\ 119,57\\ \hline\\ 2,17\\ \hline\\ 0,70\\ \hline\\ 9,77\\ \hline\\ 58,40\\ \hline\\ 97,41\\ \hline\\ 269,99\\ \hline\\ 345,19\\ \hline\\ \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline\\ 1903,0\\ \hline\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_{i}^{2} \\ 36,6 \\ 125 \\ 120 \\ 115 \\ 110 \\ \end{array}$	200 <i>b</i> ^{//} _z 0,012 <i>M</i> ^{//} _z (A/m) 0,0541	$\delta b_{z}^{//}$ 000 $\delta M_{z}^{//}$ 0,0001 $\delta M_{z}^{//}$	y = 0,0118x + $R^2 = 0$, 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140 y = 0,0037x	• 342,08 9808 6000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0004 • + 102,46	
A n 1 2 3 4 5 6 7 7 8 9 10 10 1 2 3 4 5 5 5 6 7 7 8 9 9 10 10 10 10 10 10 10 10 10 10	γγείο 5 B ["] _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 B ["] _{xw} 56,9 58,1 58,6 59,1 59,2	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm D _n 14,0 15,4 16,8 18,2 19,6	Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 x 2749,8 Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1		\mathbf{S}_{z} από τους παρά? (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(x _n - \overline{x}) ² 13349095,3 x _W από τους παρά (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 666,12\\ \hline\\ 333,66\\ \hline\\ 119,57\\ \hline\\ 2,17\\ \hline\\ 0,70\\ \hline\\ 9,77\\ \hline\\ 58,40\\ \hline\\ 97,41\\ \hline\\ 269,99\\ \hline\\ 345,19\\ \hline\\ \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline\\ 1903,0\\ \hline\\ 5\\ \hline\\ \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 89,1\\ \hline\\ 19,8\\ \hline\\ 6,1\\ \hline\\ 0,3\\ \hline\\ 0,0\\ \hline\end{array}$	$\begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_{i}^{2} \\ 36,6 \\ 125 \\ 120 \\ 115 \\ 110 \\ 110 \\ \end{array}$	200 <i>b</i> ^{//} _z 0,012 <i>M</i> ^{//} _z (A/m) 0,0541	$\delta b_{z}^{//}$ 0,001 $\delta M_{z}^{//}$ 0,0001	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140 y = 0,0037x $R^2 = 0,$	• 342,08 9808 6000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0004 • 102,46 9862	
A n 1 2 3 4 5 6 7 7 8 9 10 10 1 2 3 4 5 6 7 8 9 10 10 12 5 6 6 7 7 8 9 9 10 10 10 10 10 10 10 10 10 10	γγείο 5 B ["] _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 B ["] _{xw} 56,9 58,1 58,6 59,1 59,2 59,7	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm D _n 14,0 15,4 16,8 18,2 19,6 21,0 21,0 22,4 23,8 25,2 26,6 21,0 21,0 21,0 21,0 22,4 23,8 25,2 26,6 21,0 21,0 21,0 21,0 22,4 23,8 25,2 26,6 21,0	Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 x 2749,8 Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6		\mathbf{S}_{z} από τους παράζ (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(x _n - \overline{x}) ² 13349095,3 <u>xw</u> από τους παρά (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ \hline 666,12 \\ \hline 333,66 \\ \hline 119,57 \\ \hline 2,17 \\ \hline 0,70 \\ \hline 9,77 \\ \hline 58,40 \\ \hline 97,41 \\ \hline 269,99 \\ \hline 345,19 \\ \hline \Sigma (\psi_{n}-\overline{\psi})^{2} \\ \hline 1903,0 \\ \hline 5 \\ \hline \left(\psi_{n}-\overline{\psi}\right)^{2} \\ \hline 89,1 \\ \hline 19,8 \\ \hline 6,1 \\ \hline 0,3 \\ \hline 0,0 \\ \hline 3,0 \\ \hline \end{array}$	$\begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_i^2 \\ 36,6 \\ 125 \\ 120 \\ 115 \\ 110 \\ 105 \\ \end{array}$	200 <i>b</i> ^{//} _z 0,012 <i>M</i> ^{//} _z (A/m) 0,0541	$\delta b_z^{//}$ 0,001 $\delta M_z^{//}$ 0,0001	y = 0,0118x + $R^2 = 0$, 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140 y = 0,0037x $R^2 = 0$,	• 342,08 9808 6000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0004 • + 102,46 9862	
A n 1 2 3 4 5 6 7 7 8 9 10 10 10 1 2 3 4 5 6 7 7 8 9 10 10 12 10 10 10 10 10 10 10 10 10 10	γγείο 5 B ["] _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 B ["] _{xw} 56,9 58,1 58,6 59,1 59,2 59,7 59,9	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4	Μετρή Χ _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 X 2749,8 Μετρήτ Χ _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0	$\begin{array}{c} & \psi_n \\ \hline \psi_n \\ 400,4 \\ 392,9 \\ 385,5 \\ 376,1 \\ 373,8 \\ 371,5 \\ 367,0 \\ 364,7 \\ \hline 358,2 \\ 356,0 \\ \hline \overline{\psi} \\ 374,6 \\ \hline \sigma \epsilon \iota \xi \tau \eta \xi \mathbf{B} \\ \hline \psi_n \\ 121,9 \\ 117,0 \\ 115,0 \\ 1113,0 \\ 112,6 \\ 110,8 \\ 110,0 \\ \end{array}$	\mathbf{S}_{z} από τους παρά i (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ (x _n - \overline{x}) ² 13349095,3 x _W από τους παρά (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 666,12\\ \hline\\ 333,66\\ \hline\\ 119,57\\ \hline\\ 2,17\\ \hline\\ 0,70\\ \hline\\ 9,77\\ \hline\\ 58,40\\ \hline\\ 97,41\\ \hline\\ 269,99\\ \hline\\ 345,19\\ \hline\\ \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline\\ 1903,0\\ \hline\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_{i}^{2} \\ 36,6 \\ 125 \\ 120 \\ 115 \\ 110 \\ 105 \\ 0 \\ \end{array}$	200 $b_z^{\prime\prime}$ 0,012 $M_z^{\prime\prime}$ (A/m) 0,0541	$\delta b_z^{//}$ 0,001 $\delta M_z^{//}$ 0,0001 0,0001	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140 y = 0,0037x $R^2 = 0,$ 4000	• 342,08 9808 6000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0004 • + 102,46 9862 6000	
A n 1 2 3 4 5 6 7 7 8 9 10 10 1 2 3 4 5 6 7 8 9 10 10 12 5 6 7 8 9 9 10 10 10 10 10 10 10 10 10 10	γγείο 5 B ["] _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 B ["] _{xw} 56,9 58,1 58,6 59,1 59,2 59,7 59,9 60,2	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8	Μετρή Χ _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 X 2749,8 Μετρήτ Χ _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4	$\begin{array}{c} & \psi_n \\ \hline \psi_n \\ 400,4 \\ 392,9 \\ 385,5 \\ 376,1 \\ 373,8 \\ 371,5 \\ 367,0 \\ 364,7 \\ \hline 358,2 \\ 356,0 \\ \hline \overline{\psi} \\ 374,6 \\ \hline \sigma \epsilon \iota \varsigma \ \tau \eta \varsigma \ \mathbf{B} \\ \hline \psi_n \\ 121,9 \\ 117,0 \\ 115,0 \\ 1113,0 \\ 112,6 \\ 110,8 \\ 110,0 \\ 108,9 \\ \end{array}$	\mathbf{S}_{z} από τους παρά j (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ (x _n - \overline{x}) ² 13349095,3 x _W από τους παρά (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 666,12\\ \hline\\ 333,66\\ \hline\\ 119,57\\ \hline\\ 2,17\\ \hline\\ 0,70\\ \hline\\ 9,77\\ \hline\\ 58,40\\ \hline\\ 97,41\\ \hline\\ 269,99\\ \hline\\ 345,19\\ \hline\\ \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline\\ 1903,0\\ \hline\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_i^2 \\ 36,6 \\ 125 \\ 120 \\ 115 \\ 110 \\ 105 \\ 0 \\ \end{array}$	200 $b_z^{\prime\prime}$ 0,012 $M_z^{\prime\prime}$ (A/m) 0,0541 200	$\delta b_{z}^{//}$ 0,001 $\delta M_{z}^{//}$ 0,0001 0,0001	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140 y = 0,0037x $R^2 = 0,$ 4000	• 342,08 9808 6000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0004 • + 102,46 9862 6000	
A n 1 2 3 4 5 6 7 7 8 9 10 10 1 2 3 4 5 6 7 8 9 10 10 12 5 6 7 8 9 9 10 10 10 10 10 10 10 10 10 10	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γγείο 5 B ^{//} _{xw} 56,9 58,1 58,6 59,1 59,2 59,7 59,9 60,2	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 21,0 22,4 23,8 23,8 25,2 23,8 25,2 24,6 23,8 23,8 23,8 24,6 24,6 23,8 23,8 23,8 24,6 23,8 24,6 23,8 23,8 23,8 23,8 23,8 23,8 24,6 23,8 23,8 24,6 23,8 24,6 23,8 23,8 23,8 23,8 23,8 23,8 24,6 23,8 23,8 23,8 23,8 24,6 23,8 23,8 23,8 23,8 23,8 23,8 23,8 23,8 23,8 24,6 23,8 24,9 24,9 23,8 24,8 24,8 24,8 24,8 24,8 24,8 24,8 24,8 24,8 24,8 24,8 24,8 24,8 24,8 24,8	Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 x 2749,8 Μετρή x n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4		\mathbf{S}_{z} από τους παράζ (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(x _n - \overline{x}) ² 13349095,3 xw από τους παρά (x _n - \overline{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7	$\begin{split} & \psi_n (x_n - \overline{x}) \\ & 941862,6 \\ & 576248,3 \\ & 305847,0 \\ & 101233,8 \\ & -54826,5 \\ & -179122,2 \\ & -277706,1 \\ & -359022,3 \\ & -420868,3 \\ & -475804,3 \\ & \Sigma\psi_n (x_n - \overline{x}) \\ & 157842,0 \\ & \lambda\lambda\eta\lambda ou \zeta a i \sigma \theta\eta \tau \eta \rho a \\ & \psi_n (x_n - \overline{x}) \\ & 286828,5 \\ & 171544,1 \\ & 91203,0 \\ & 30425,7 \\ & -16524,0 \\ & -53411,6 \\ & -83268,2 \\ & -107231,0 \\ & \\ & \\ \end{split}$	$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline\\ 666,12\\ \hline\\ 333,66\\ \hline\\ 119,57\\ \hline\\ 2,17\\ \hline\\ 0,70\\ \hline\\ 9,77\\ \hline\\ 58,40\\ \hline\\ 97,41\\ \hline\\ 269,99\\ \hline\\ 345,19\\ \hline\\ \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline\\ 1903,0\\ \hline\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \\ \Sigma R_i^2 \\ 36,6 \\ 125 \\ 120 \\ 115 \\ 110 \\ 105 \\ 0 \\ \end{array}$	200 <i>b</i> ^{//} _z 0,012 <i>M</i> ^{//} _z (A/m) 0,0541 200 <i>b</i> ^{//}	$\frac{\delta b_z^{\prime\prime}}{0,001}$ $\frac{\delta M_z^{\prime\prime}}{0,0001}$ $\frac{\delta M_z^{\prime\prime}}{0,0001}$	y = 0,0118x + $R^2 = 0,$ 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140 y = 0,0037x $R^2 = 0,$ 4000	• 342,08 9808 6000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0004 • 102,46 9862 6000 \$1,7''	
A n 1 2 3 4 5 6 7 7 8 9 10 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 7 8 9 9 10 10 10 10 10 10 10 10 10 10	γγείο 5 B ^{//} _z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 S8,6 59,1 58,6 59,1 59,2 59,7 59,9 60,2 60,4	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 21,0 22,4 23,8 25,2	Μετρή Χ _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 X 2749,8 Μετρή Χ _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7		B_z από τους παρά j (x _n - \bar{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(x _n - \bar{x}) ² 13349095,3 xw από τους παρά (x _n - \bar{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 232514,3 572725,6 968962,7 232514,3 572725,6 968962,7	$\begin{split} & \psi_n (x_n - \overline{x}) \\ & 941862,6 \\ & 576248,3 \\ & 305847,0 \\ & 101233,8 \\ & -54826,5 \\ & -179122,2 \\ & -277706,1 \\ & -359022,3 \\ & -420868,3 \\ & -475804,3 \\ & \Sigma\psi_n (x_n - \overline{x}) \\ & 157842,0 \\ & \lambda\lambda\eta\lambda ou \zeta ai \sigma \theta\eta \tau \eta \rho a \\ & \psi_n (x_n - \overline{x}) \\ & 286828,5 \\ & 171544,1 \\ & 91203,0 \\ & 30425,7 \\ & -16524,0 \\ & -53411,6 \\ & -83268,2 \\ & -107231,0 \\ & \\ & -127159,4 \\ \end{split}$	$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline 666,12\\ \hline 333,66\\ \hline 119,57\\ \hline 2,17\\ \hline 0,70\\ \hline 9,77\\ \hline 58,40\\ \hline 97,41\\ \hline 269,99\\ \hline 345,19\\ \hline \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline 1903,0\\ \hline 5\\ \hline \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline 89,1\\ \hline 19,8\\ \hline 6,1\\ \hline 0,3\\ \hline 0,0\\ \hline 3,0\\ \hline 6,1\\ \hline 12,7\\ \hline 18,3\\ \end{array}$	$\begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \end{array}$ $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	200 $b_z^{\prime\prime}$ 0,012 $M_z^{\prime\prime}$ (A/m) 0,0541 200 $b_{x\psi}^{\prime\prime}$	$\frac{\delta b_z^{\prime\prime}}{0,001}$	y = 0,0118x + R ² = 0, 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140 y = 0,0037x R ² = 0, 4000 $w_{xyy}^{//}$	• 342,08 9808 6000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0004 • + 102,46 9862 6000 $\delta w_{x\psi}^{//}$	
Ar n 1 2 3 4 5 6 7 8 9 10 Ar 1 2 3 4 5 6 7 8 9 10	γγείο 5 B ^{"//} 2 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 B ^{"//} χψ 56,9 58,1 58,6 59,1 59,2 59,7 59,9 60,2 60,4 60,6	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 26,6 21,0 22,4 23,8 25,2 26,6 26,6 25,2 26,6 25,2 26,6 25,2 26,6 26,6 26,6 25,2 26,6 26,6 25,2 26,6 25,2 26,6 25,2 26,6 25,2 26,6 26,	Μετρή Χ _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 X 2749,8 Μετρή Χ _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 1765,4 1574,7 1413,3 1765,4 1574,7 1413,3 1765,4 1774,7 1413,3 1774,7 1413,3 1774,7 1413,3 1774,7 1413,3 1774,7 1413,3 1774,7 1413,3 1774,7 1413,3 1774,7 1413,3 1774,7 1413,3 1774,7				$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline 666,12\\ \hline 333,66\\ \hline 119,57\\ \hline 2,17\\ \hline 0,70\\ \hline 9,77\\ \hline 58,40\\ \hline 97,41\\ \hline 269,99\\ \hline 345,19\\ \hline \Sigma(\psi_{n}-\overline{\psi})^{2}\\ \hline 1903,0\\ \hline 5\\ \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline 89,1\\ \hline 19,8\\ \hline 6,1\\ \hline 0,3\\ \hline 0,0\\ \hline 3,0\\ \hline 6,1\\ \hline 12,7\\ \hline 18,3\\ \hline 25,0\\ \end{array}$	$\begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \end{array}$	200 $b_z^{\prime\prime}$ 0,012 $M_z^{\prime\prime}$ (A/m) 0,0541 200 $b_{x\psi}^{\prime\prime}$ 200 $b_{x\psi}^{\prime\prime}$ 0,0037	$\frac{\delta b_{z}^{//}}{0,001}$ $\frac{\delta M_{z}^{//}}{0,0001}$ $\frac{\delta b_{x\psi}^{//}}{0,0002}$	y = 0,0118x + R ² = 0, 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140 y = 0,0037x R ² = 0, 4000 $w_{xy}^{//}$ 102,5	• 342,08 9808 9808 6000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0004 • + 102,46 9862 6000 $\delta w_{z\psi}^{//}$ 0,5	
Ar n 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10	γγείο 5 B ^{"//} z 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT yείο 5 58,6 59,1 58,6 59,1 59,2 59,7 59,9 60,2 60,4 60,6 ±0,2nT	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm 22,4 23,8 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm 22,4 23,8 25,2 26,6 21,0 22,4 23,8 25,2 26,6 20,0 22,4 23,8 25,2 26,6 20,2mm	Μετρή Χ _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 X 2749,8 Μετρή Χ _n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 X 5102,0 4216,6 3543,1 3019,0 2603,1 2749,8 Μετρή Χ _n 5102,0 4216,6 3543,1 3019,0 2603,1 2749,8 3019,0 2603,1 2749,8 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 2603,1 3019,0 301765,4 3019,0 301765,4 3019,0 301765,4 3019,0 301765,4 3019,0 301765,4 3019,0 301765,4 3019,0 301765,4 3019,0 301765,4 3019,0 301765,4 3019,0 301765,4 3019,0 301765,4 3019,0 301765,4 3019,0 301765,4 3019,0 3019,0 301765,4 3019,0 3019,0 301765,4 3019,0 3019,0 301765,4 3019,0 3019,0 301765,4 3019,0 3019,0 301765,4 3019,0 3019,0 3019,0 301765,4 3019,0 3019,0 301765,4 3019,0 3019,0 301765,4 3019,0 30		B _z από τους παρά i (x _n - \bar{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3 Σ(x _n - \bar{x}) ² 13349095,3 x _W από τους παρά (x _n - \bar{x}) ² 5533173,0 2151477,6 629345,3 72462,2 21517,7 232514,3 572725,6 968962,7 1380782,7 1786134,3		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ \hline 666,12 \\ \hline 333,66 \\ \hline 119,57 \\ \hline 2,17 \\ \hline 0,70 \\ \hline 9,77 \\ \hline 58,40 \\ \hline 97,41 \\ \hline 269,99 \\ \hline 345,19 \\ \hline \Sigma(\psi_{n}-\overline{\psi})^{2} \\ \hline 1903,0 \\ \hline 5 \\ \hline \left(\psi_{n}-\overline{\psi}\right)^{2} \\ \hline 89,1 \\ \hline 19,8 \\ \hline 6,1 \\ \hline 0,3 \\ \hline 0,0 \\ \hline 3,0 \\ \hline 6,1 \\ \hline 12,7 \\ \hline 18,3 \\ \hline 25,0 \\ \hline \nabla(-\overline{\psi})^{2} \\ \hline \end{array}$	$ \begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \end{array} $	$b_z^{\prime\prime}$ 0,012 $M_z^{\prime\prime}$ (A/m) 0,0541 200 $b_{x\psi}^{\prime\prime}$ 0,0037 $\Sigma_z^{\prime\prime}$	$\frac{\delta b_{z}^{//}}{0,001}$ $\frac{\delta M_{z}^{//}}{0,0001}$ $\frac{\delta b_{xy}^{//}}{0,0002}$	y = 0,0118x + R ² = 0, 4000 $w_z^{//}$ 342,1 $\alpha_z^{//}$ (m) 0,0140 y = 0,0037x R ² = 0, 4000 $w_{xy}^{//}$ 102,5 //	• 342,08 9808 9808 6000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0004 • + 102,46 9862 6000 $\delta w_{x\psi}^{//}$ 0,5 $2 \sqrt{2}$	
A n 1 2 3 4 5 6 7 7 8 9 10 1 2 3 4 5 6 7 7 8 9 10 1 2 3 4 5 5 6 7 7 8 9 9 10 10 10 10 10 10 10 10 10 10	γγείο 5 B ^{"//} 2 31,4 31,7 32,0 32,4 32,5 32,6 32,8 32,9 33,2 33,3 ±0,2nT γείο 5 58,6 59,1 58,6 59,1 59,2 59,7 59,9 60,2 60,4 60,6 ±0,2nT	D _n 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm 14,0 15,4 16,8 18,2 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm 22,4 23,8 19,6 21,0 22,4 23,8 25,2 26,6 ±0,2mm 22,4 23,8 25,2 26,6 21,0 22,4 23,8 25,2 26,6 20,0 21,0 22,4 23,8 25,2 26,6 20,2mm	Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 X 2749,8 Μετρή X n 5102,0 4216,6 3543,1 3019,0 2603,1 2267,6 1993,0 1765,4 1574,7 1413,3 X 1574,7 1413,3 X	$\begin{array}{c} \psi_n \\ \psi_n \\ 400,4 \\ 392,9 \\ 385,5 \\ 376,1 \\ 373,8 \\ 371,5 \\ 367,0 \\ 364,7 \\ \hline \\ 358,2 \\ 356,0 \\ \hline \\ \hline \\ \hline \\ \hline \\ 358,2 \\ 356,0 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 374,6 \\ \hline \\ \hline \\ \hline \\ \\ 374,6 \\ \hline \\ \hline \\ \\ \hline \\ \\ 121,9 \\ 117,0 \\ 112,9 \\ 117,0 \\ 115,0 \\ 1112,6 \\ 110,8 \\ 110,0 \\ 108,9 \\ \hline \\ 108,2 \\ 107,5 \\ \hline \\ $		$\begin{split} & \psi_n \left(x_n \cdot \overline{x} \right) \\ & 941862,6 \\ & 576248,3 \\ & 305847,0 \\ & 101233,8 \\ & -54826,5 \\ & -179122,2 \\ & -277706,1 \\ & -359022,3 \\ & -420868,3 \\ & -475804,3 \\ & \Sigma\psi_n \left(x_n \cdot \overline{x} \right) \\ & 157842,0 \\ & \lambda\lambda\eta\lambda ou \zeta \alpha i \sigma \theta\eta \tau \eta \rho \epsilon \alpha \\ & \psi_n \left(x_n \cdot \overline{x} \right) \\ & 286828,5 \\ & 171544,1 \\ & 91203,0 \\ & 30425,7 \\ & -16524,0 \\ & -53411,6 \\ & -83268,2 \\ & -107231,0 \\ & -127159,4 \\ & -143671,8 \\ & \Sigma\psi_n \left(x_n \cdot \overline{x} \right) \\ \end{split}$	$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ \hline 666,12 \\ \hline 333,66 \\ \hline 119,57 \\ \hline 2,17 \\ \hline 0,70 \\ 9,77 \\ \hline 58,40 \\ 97,41 \\ \hline 269,99 \\ \hline 345,19 \\ \hline \Sigma(\psi_{n}-\overline{\psi})^{2} \\ \hline 1903,0 \\ \hline \\ \left(\psi_{n}-\overline{\psi}\right)^{2} \\ \hline 89,1 \\ \hline 19,8 \\ \hline 6,1 \\ \hline 0,3 \\ \hline 0,0 \\ \hline 3,0 \\ \hline 6,1 \\ \hline 12,7 \\ \hline 18,3 \\ \hline 25,0 \\ \hline \Sigma(\psi_{n}-\overline{\psi})^{2} \\ \end{array}$	$\begin{array}{c} 410 \\ 400 \\ 390 \\ 380 \\ 370 \\ 360 \\ 350 \\ 0 \\ \end{array}$	200 $b_z^{\prime\prime}$ 0,012 $M_z^{\prime\prime}$ (A/m) 0,0541 200 $b_{x\psi}^{\prime\prime}$ 0,0037 $M_{x\psi}^{\prime\prime}$ (A/m)	$\frac{\delta b_{z}^{''}}{0,0001}$ $\frac{\delta b_{z}^{''}}{0,0001}$ $\frac{\delta b_{xy}^{''}}{0,0002}$ $\delta M_{xy}^{''}$	y = 0,0118x + R ² = 0, 4000 $w_{z}^{//}$ 342,1 $\alpha_{z}^{//}$ (m) 0,0140 y = 0,0037x R ² = 0, 4000 $w_{xy}^{//}$ 102,5 $\alpha_{xy}^{//}$ (m)	• 342,08 9808 9808 6000 $\delta w_z^{/\prime}$ 1,7 $\delta \alpha_z^{\prime\prime}$ 0,0004 • 102,46 9862 6000 $\delta w_{x\psi}^{\prime\prime}$ 0,5 $\delta \alpha_{x\psi}^{\prime\prime}$	

Πίνακας 8. Υπολογισμός της μαγνήτισης και των ακτίνων ευαισθησίας με τη μέθοδο των ελαχίστων τετραγώνων.

Η παραπάνω θεώρηση επιβεβαιώνεται από τη γραμμικότητα των σχέσεων (πίνακες 8, B19, B21) από τις οποίες υπολογίζονται με αξιοσημείωτη ακρίβεια οι σταθερές ευαισθησίας α^t, α^{ll}, οι συνιστώσες της μαγνήτισης M_i ,(i=xψ,z) και ο συντελεστής κανονικοποίησης λ των αισθητήρων.

Σχήμα 33. Απεικόνιση των αγγείων 4,5 και 6.

Τα συγκεντρωτικά πειραματικά αποτελέσματα από τις μετρήσεις του μαγνητικού πεδίου σε κυλινδρικά δοκίμια της βάσης των αγγείων 4,5 και 6 (σχήμα 33) παρατίθενται στον πίνακα 9.

Αγγείο 4	mA/m	Mz	M _{xy}	М	γ°	α_z^{\perp}	0,66±0,02		
M _z ″	55,8±0,1	55,9	62,9	84,1	48,5	$\alpha_{x\psi}^{L}$	0,68±0,04	$\boldsymbol{\alpha}^{\boldsymbol{\mu}}$ (cm)	0,67±0,03
M_z^{\perp}	28,41±0,03	±0,2	±0,2	±0,2	±0,3	$\alpha_z^{\prime\prime}$	1,13±0,03		
M _{xy} "	63,0±0,1					$\alpha_{x\psi}^{\prime\prime}$	1,17±0,01	$\alpha''(cm)$	1,15±0,02
$M_{x\psi}{}^{\scriptscriptstyle L}$	32,0±0,1					λ		1,97±0,01	
Αγγείο 5	mA/m	Mz	M _{xy}	М	γ°	α_z^{\perp}	1,06±0,04		1,04±0,03
$M_z^{\prime\prime}$	54,1±0,1	54,0	98,9	112,7	61,3	$\alpha_{x\psi}^{L}$	1,03±0,02	$\boldsymbol{\alpha}^{\boldsymbol{\mu}}$ (cm)	
M_z^{\perp}	26,6±0,01	±0,2	±0,3	±0,3	±0,3	$\alpha_z^{\prime\prime}$	1,40±0,04		1,41±0,03
$M_{x\psi}^{\prime\prime}$	98,8±0,2					$\alpha_{x\psi}^{\prime\prime}$	1,42±0,04	α ^{//} (cm)	
$M_{x\psi}{}^{\scriptscriptstyle L}$	48,7±0,1					λ		2,03±0,01	
Αγγείο 6	mA/m	Mz	M _{xy}	М	γ°	α_z^{\perp}	0,75±0,03		
$\mathbf{M_{z}}^{\prime\prime}$	42,5±0,2	42,5	39,8	58,3	43,3	$\alpha_{x\psi}^{L}$	0,67±0,04	$\boldsymbol{\alpha}^{\boldsymbol{\mu}}$ (cm)	0,71±0,03
$\mathbf{M}_{\mathbf{z}}^{\perp}$	22,41±0,05	±0,2	±0,2	±0,2	±0,3	$\alpha_z^{\prime\prime}$	1,13±0,03		
M _{xy} "	39,8±0,1					$\alpha_{x\psi}^{\prime\prime}$	1,00±0,01	$\alpha''(cm)$	1,07±0,02
$M_{x\psi}^{L}$	21,0±0,1					λ		1,90±0,01	

Πίνακας 9. Υπολογισμός των συνιστωσών $M_{x\psi}$, M_z , του μέτρου M της παραμένουσας θερμομαγνήτισης, της σταθεράς κανονικοποίησης λ και των ακτίνων ευαισθησίας α^L , α^H , με τη μέθοδο των ελαχίστων τετραγώνων, από μετρήσεις του μαγνητικού πεδίου σε δοκίμια από τη βάση των αγγείων 4,5 και 6.

Από τα πειραματικά αποτελέσματα διαπιστώνεται ότι ο συντελεστής κανονικοποίησης των μετρήσεων του κάθετου αισθητήρα με τις μετρήσεις των παράλληλων αισθητήρων, εμφανίζει παραπλήσια τιμή $\lambda \approx 2$, με σφάλμα $\delta\lambda < 3\%$.

Η ακτίνα ευαισθησίας $\alpha^{\prime\prime}$ του παράλληλου x-αισθητήρα υπολογίζεται σε κάθε δοκίμιο μεγαλύτερη από την ακτίνα ευαισθησίας α^{\perp} του κάθετου z-αισθητήρα, ενώ οι τιμές τους αυξάνονται με την αύξηση του μέτρου της μαγνήτισης M.

2.4 Υπολογισμός της μαγνήτισης σε ακανόνιστα θραύσματα της βάσης των αγγείων 1,2 & 3

Με τον ίδιο τρόπο υπολογίζονται οι συνιστώσες $M_z, M_{x\psi}$, η γωνία γ της μαγνήτισης M και οι ακτίνες ευαισθησίας των αισθητήρων α', α^{//} σε θραύσματα από τις βάσεις των αγγείων 1,2 και 3 (σχήμα 34) χωρίς να απαιτείται κοπή δοκιμίων.

Σχήμα 34. Απεικόνιση των αγγείων 1,2 και 3.

Η τρισορθογώνια διάταξη των αισθητήρων/μαγνητών παραμένει στην ίδια θέση ως προς το γήινο μαγνητικό πεδίο, με τον x-αισθητήρα προσανατολισμένο κάθετα ($B_{\psi}=0$, $B_{x}=B_{x\psi}>0$) στην οριζόντια και στην κάθετη συνιστώσα του γεωμαγνητικού πεδίου.

Σχήμα 35. Σχηματική απεικόνιση της μεθοδολογίας μέτρησης των συνιστωσών M_i (i=xy,z) της μαγνήτισης και των ακτίνων ευαισθησίας του κάθετου a_z^{-1} και του παράλληλου $a_{x\psi}^{-//}$ αισθητήρα, σε θραύσματα ακανόνιστου σχήματος της βάσης των αγγείων.

Με στροφή του δίσκου στήριξης των θραυσμάτων στη γωνιομετρική διάταξη, η B_{xv} προσανατολίζεται

στην κατεύθυνση του x-αισθητήρα που λαμβάνει θετική τιμή όταν η ένδειξη του y-αισθητήρα μηδενίζεται.

Η μεταβολή των ενδείξεων της τρισορθογώνιας διάταξης των αισθητήρων στο μεγαλύτερο μέρος της διαδρομής κατά τη μετακίνηση κάθε θραύσματος επί της διεύθυνσης του x-αισθητήρα οφείλεται σε τοπικές διαφορές του πάχους L, που δε μπορεί να μετρηθεί με ακρίβεια στις θέσεις που λαμβάνονται οι μετρήσεις (B_z, B_{xy}) του μαγνητικού πεδίου του οστράκου.

Για τον λόγο αυτόν, όπως και στην περίπτωση των δοκιμίων (παρ.2.4), οι μετρήσεις λαμβάνονται με μεγαλύτερη ακρίβεια και πιο ελεγχόμενο τρόπο, από τη θέση μέτρησης που αρχίζει η συστηματική μείωση των ενδείξεων του μαγνητικού πεδίου (σχήμα 35), προς το άκρο του θραύσματος που βρίσκεται στην κατεύθυνση του θετικού x-ημιάξονα.

Σε όλα τα θραύσματα από τις βάσεις των αγγείων (**σχήμα 32**), η αρχική θέση μέτρησης εντοπίζεται περίπου σε απόσταση d = L.εφγ ≈ 2-4cm cm [B.20] από τα άκρα των οστράκων, επειδή $40^{\circ} < \gamma < 60^{\circ}$ και L ≈ 2cm.

Ενδεικτικές μετρήσεις σε θραύσματα από τη βάση του αγγείου 2, παρατίθενται στον πίνακα 10 και στο διάγραμμα 5.

Ο υπολογισμός των συνιστωσών M_i (i=xy,z) της μαγνήτισης και των ακτίνων ευαισθησίας $a_z^{\, \iota}$, $a_{xy}^{\, \prime\prime\prime}$ των αισθητήρων από τις μετρήσεις B_i (i=xy,z) του πεδίου γίνεται με την εφαρμογή της μεθόδου των ελαχίστων τετραγώνων από τη σχέση:

$$\left(\frac{\mu_{o}}{2B_{i}}\right)^{2} = \frac{a_{i}^{2}.\eta\mu^{2}2\gamma}{4.M_{i}^{2}}.\frac{1}{D_{n}^{2}} + \frac{1}{M_{i}^{2}} \Leftrightarrow \psi_{i} = b_{i}.x + w_{i}, (i = z, xy) \quad (39)$$

Στην παραπάνω εξίσωση (i =z) οι ενδείξεις του κάθετου z-αισθητήρα πολλαπλασιάζονται με τον συντελεστή $\lambda = 2,0$ κανονικοποίησης των μετρήσεων με τις μετρήσεις του παράλληλου x-αισθητήρα στην επιφάνεια των οστράκων.

Πίνακας 11. Ενδεικτικές μετρήσεις των συνιστωσών B_{xy} , B_z του μαγνητικού πεδίου σε αποστάσεις $D_n < d=L.$ εφγ από το άκρο του, κατά μήκος της $Bx\psi$ σε θραύσματα της βάσης του αγγείου 2.

 Δ ιάγραμμα 5. Οι ενδείξεις B_{xy} , B_z των αισθητήρων μειώνονται όσο ελαττώνεται η απόσταση D_n .

Τα πειραματικά αποτελέσματα από μετρήσεις σε ακανόνιστα θραύσματα της βάσης του αγγείου 2 παρατίθενται στον πίνακα 11. Οι αντίστοιχες μετρήσεις στα θραύσματα των αγγείων 1 και 3 παρατίθενται στους πίνακες B22 και B23 του παραρτήματος B.

Οι συνιστώσες της μαγνήτισης M_i και τα σφάλματα δ M_i (30) υπολογίζονται από τις τεταγμένες επί την αρχή

 w_i από τη σχέση: $M_i = w_i^{\frac{1}{2}}$ (i=z,xy) (40)

Από τις συνιστώσες M_z , M_{xy} , υπολογίζονται το μέτρο $M = \sqrt{M_z^2 + M_{xy}^2}$, η γωνία $\gamma = \epsilon \varphi^{-1} \frac{M_{xy}}{M_z}$ της μαγνήτισης

και τα σφάλματα δ
M (11) και δ $\hat{\gamma}$ (13).

Apó την τιμή της γωνίας γ υπολογίζονται οι ακτίνες ευαισθησίας του κάθετου ($\alpha_z \equiv \alpha^{\perp}$) και του παράλληλου ($\alpha_{xy} \equiv \alpha''$) αισθητήρα και τα σφάλματα¹⁹ δα^{\perp}, δα^{''} από τη σχέση: $\alpha_i = 2.b^{\frac{1}{2}}.w^{-\frac{1}{2}}.\eta\mu^{-1}2\gamma$ (41α)

$$\delta \alpha_{i} = \sqrt{\left(\frac{\partial \alpha_{i}}{\partial b_{i}}\right)^{2} \cdot \left(\delta b_{i}\right)^{2} + \left(\frac{\partial \alpha_{i}}{\partial w_{i}}\right)^{2} \cdot \left(\delta w_{i}\right)^{2} + \left(\frac{\partial \alpha_{i}}{\partial \hat{\gamma}}\right)^{2} \cdot \left(\delta \hat{\gamma}\right)^{2}}, \quad \dot{\delta \pi o \upsilon}:$$

$$\frac{\partial \alpha_{i}}{\partial b_{i}} = b_{i}^{-\frac{1}{2}} \cdot w_{i}^{-\frac{1}{2}} \cdot \eta \mu^{-1} 2\gamma, \quad \frac{\partial \alpha_{i}}{\partial w_{i}} = -b_{i}^{\frac{1}{2}} \cdot w_{i}^{-\frac{3}{2}} \cdot \eta \mu^{-1} 2\gamma, \quad \frac{\partial \alpha_{i}}{\partial \hat{\gamma}} = -4 \cdot b_{i}^{\frac{1}{2}} \cdot w_{i}^{-\frac{1}{2}} \cdot \eta \mu^{-2} 2\gamma \cdot \sigma \upsilon \gamma 2\gamma \quad (41\beta)$$

Οι τυπικές αποκλίσεις δb, δw, στις παραπάνω σχέσεις, υπολογίζονται στη μέθοδο των ελαχίστων τετραγώνων.

¹⁹ Τα σφάλματα δα_i των ακτίνων ευαισθησίας του κάθετου (i=z) και του παράλληλου αισθητήρα (i=xy), υπολογίζονται σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση:

						10 2 SHS TOY AFFEIOY 2		*				$ \begin{array}{c} \alpha \\ \beta \\ \gamma \\ -\delta \end{array} $
	Πινακας ΙΙ ΜΕΤΡΗΣΕΙΣ ΣΕ ΟΣΤΡΑΚΟ ΤΗΣ ΒΑΣΗΣ ΤΟΥ ΑΙΤΕΙΟΥ 2											
12		Μετρησει	ς με την τρι	σορθογω	νια διαταξη των ο	ασθητηρων στη δια	οθυνση της Β _{χψ}					
2	1,0±0,5		Με	τρήσεις τr	ις Β _z από τον κάθ	ετο z- αισθητήρα		98				
	$\lambda . B_{z}$	D_n	X_n	Ψ_n	$(x_n - \overline{x})^2$	$\psi_n(x_n - \overline{x})$	$(\psi_n - \overline{\psi})^2$	97				•
n 1	~ ~	26.0	1/70 2	90.6	" 650161 7	72077 2	10.12	95				
2	65.6	20,0	1475,5	90,0	470069 3	-62897.4	4 30	94 —			Y	
3	65.2	24.0	1736.1	92.9	301955.6	-51031.2	0.89	93 —			y = 0,0028x	+ 87,486
4	65,2	23,0	1890,4	92,9	156228,0	-36706,6	0,89	92 —		<u> </u>		
5	65,0	22,0	2066,1	93,4	48180,4	-20510,1	0,14	91			R ² = 0),9366
6	64,8	21,0	2267,6	94,0	325,5	-1696,3	0,04	90 🗕	1	· ·	1	
7	64,6	20,0	2500,0	94,6	45960,5	20280,9	0,62	0	1000	2000	3000	4000
8	64,4	19,0	2770,1	95,2	234708,4	46116,1	1,90					
9									b	δh	w	δw
	64,0	18,0	3086,4	96,4	641286,6	77183,8	6,61		°z	00 _z	" z	<i>c r z</i>
10	64,0	17,0	3460,2	96,4	1379665,4	113210,5	6,61		0,00277	0,00025	87,5	0,6
	±0,2nT	±0,2mm	\overline{x}	$\overline{\psi}$	$\Sigma(x_n-\overline{x})^2$	$\Sigma \psi_n(x_n - \overline{x})$	$\Sigma(\psi_n - \overline{\psi})^2$	ΣR_i^2	M_{z} (A/m)	δM_z	α_z^{\perp} (m)	$\delta \alpha_z^{\perp}$
			2285,6	93,8	3928541,5	10872,2	32,1	2,04	0,1069	0,0004	0,0115	0,0005

A	γγείο 2		Μετρι	ήσεις της	Β_{κψ} από τον παρά	άλληλο x-αισθητήρα	α	74 —				
n	$B_{x\psi}$	D_n	X_n	Ψ_n	$(x_n - \overline{x})^2$	$\psi_n(x_n-\overline{x})$	$(\psi_n - \overline{\psi})^2$	72				
1	78,0	26	1479,3	64,9	650161,7	-52321,6	3,81	/0				
2	78,6	25	1600,0	63,9	470069,3	-43812,3	8,64	68 —				
3	78,4	4 24 1736		64,2	301955,6	-35293,9	6,83	66				
4	77,9	23	1890,4	65,1	156228,0	-25713,7	3,19	00			y = 0,0038x + 5	58,051
5	77,4	22	2066,1	65,9	48180,4	-14464,8	0,89	64			R ² - 0.96	87
6	77,0	21	2267,6	66,6	325,5	-1201,4	0,07	62 -			K = 0,50	
7	76,4	20	2500,0	67,6	45960,5	14499,9	0,63	0	1000	2000	2000	4000
8	75,8	19	2770,1	68,7	234708,4	33287,8	3,49	0	1000	2000	3000	4000
9	75.2	18	3086.4	69.8	641286.6	55904.9	8.81		$b_{x\psi}$	δb_{xy}	W _{xW}	δw_{xy}
10	74,2	17	3460,2	, 71,7	1379665,4	84224,6	23,65		0,00385	0,00025	58,1	0,58
	±0,2nT	±0,2mm	\overline{x}	$\overline{\psi}$	$\Sigma(x_n-\overline{x})^2$	$\Sigma \psi_n(x_n - \overline{x})$	$\Sigma(\psi_n - \overline{\psi})^2$	ΣR_i^2	$M_{_{x\!\psi}}$ (A/m)	$\delta M_{x\psi}$	$lpha_{x\!\psi}^{\prime\prime}$ (m)	$\delta lpha_{_{X\!\psi}}^{^{\prime\prime}}$
			2285,6	66,8	3928541,5	15109,7	60,02	1,91	0,1312	0,0007	0,0166	0,0005

Πίνακας 11. Υπολογισμός της μαγνήτισης και της ακτίνας ευαισθησίας των αισθητήρων με τη μέθοδο των ελαχίστων τετραγώνων, από μετρήσεις του μαγνητικού πεδίου σε όστρακο της βάσης του αγγείου 2.

Η παραπάνω θεώρηση επιβεβαιώνεται από τη γραμμικότητα των σχέσεων (πίνακες 11, B22, B23) από τις οποίες υπολογίζονται με αξιοσημείωτη ακρίβεια (πίνακας 12)οι σταθερές ευαισθησίας α^{ι} , $\alpha^{\prime\prime}$ και οι συνιστώσες της μαγνήτισης M_{xy} και M_z .

Αγγεία	$\mathbf{M}_{\mathbf{z}}^{L}(\mathbf{m}\mathbf{A}/\mathbf{m})$	${M_{x\psi}}^{\prime\prime}$ (mA/m)	M(mA/m)	γ°	$\boldsymbol{\alpha}^{\boldsymbol{\mu}}(\mathbf{cm})$	$\alpha''(cm)$	λ
1	75,0±0,2	106,0±0,2	131,3±0,2	53,8±0,1	$0,82\pm0,04$	1,42±0,02	
2	106,9±0,4	131,2±0,7	169,3±0,6	50,8±0,2	1,15±0,05	1,66±0,05	2,0±0,1
3	112,7±0,4	119,3±0,5	164,1±0,4	46,6±0,2	$1,07\pm0,05$	1,61±0,03	

Πίνακας 12. Συγκεντρωτικά αποτελέσματα του υπολογισμού της μαγνήτισης και των σταθερών ευαισθησίας α^ι, α^{ll} με τη μέθοδο των ελαχίστων τετραγώνων σε ακανόνιστα θραύσματα της βάσης των αγγείων 1,2 και 3.

Η παραπάνω θεώρηση επιβεβαιώνεται από τη γραμμικότητα των σχέσεων (πίνακες 11, B22, B23) από τις οποίες υπολογίζονται με αξιοσημείωτη ακρίβεια (πίνακας 12)οι σταθερές ευαισθησίας α^t, α^{ll} και οι συνιστώσες της μαγνήτισης M_{xy} και M_z .

2.5 Σύνοψη των πειραματικών αποτελεσμάτων του υπολογισμού της παραμένουσας μαγνήτισης σε δοκίμια και θραύσματα της βάσης των αγγείων 1-6

Από τα πειραματικά αποτελέσματα των μετρήσεων σε δοκίμια και θραύσματα από τη βάση των 6 αγγείων, (σχήμα 36) διαπιστώνεται ότι:

Οι αισθητήρες διεγείρονται από το αξονικό πεδίο Β
 στο άκρο μιας κυλινδρικής περιοχής κεραμικού υλικού
 (σχήμα 37) στη διεύθυνση της παραμένουσας μαγνήτισης Μ.

• Η ροή του πεδίου στο πηνίο διέγερσης του κάθετου $(\mathbf{B}_i^{\, \iota})$ αισθητήρα είναι μικρότερη από αυτήν του παράλληλου $(\mathbf{B}_i^{\, \prime\prime} \approx \lambda . \mathbf{B}_i^{\, \iota})$ αισθητήρα για τη μέτρηση της ίδιας συνιστώσας \mathbf{B}_i του πεδίου. Ο παράγοντας κανονικοποίησης $\lambda \approx 2$ εμφανίζει παραπλήσια τιμή σε όστρακα της βάσης διαφορετικών αγγείων και δεν εξαρτάται από τη μαγνήτιση M του κεραμικού υλικού (σχήμα 38), αλλά μόνο από τον διαφορετικό προσανατολισμό των πηνίων διέγερσης των αισθητήρων παραλλήλως και καθέτως στην επιφάνεια των θραυσμάτων.

Η διάμετρος δ = 2αⁱ.συνγ (i=l,//) των περιοχών διέγερσης εξαρτάται από την κατευθυντικότητα (γ) της μαγνήτισης. Η ακτίνα ευαισθησίας του κάθετου αισθητήρα (α^l) είναι μικρότερη του παράλληλου (α^{ll}) αισθητήρα στην επιφάνεια των οστράκων. Οι ακτίνες ευαισθησίας α^l, α^{ll} αυξάνονται με την αύξηση του μέτρου της μαγνήτισης (διάγραμμα 6) και διαφέρουν (πίνακας 12) σε όστρακα της βάσης διαφορετικών αγγείων.

 Το μήκος *l* κυλινδρικής της περιοχής διέγερσης εξαρτάται από τη γωνία γ της μαγνήτισης M και το πάχος L των θραυσμάτων ή από τη θέση των αισθητήρων στην επιφάνεια των οστράκων: - Av D≥d=L.εφγ (σχήμα 37α), το ύψος l=L/συνγ εξαρτάται από το πάχος L του οστράκου και οι συνιστώσες M_i (i=x,ψ,z) προσεγγίζονται από τις σχέσεις επαρκούς μήκους (28α): M_i= $\frac{2B_i}{\mu_o} \cdot \sqrt{1+(\frac{\alpha_i \cdot \sigma υ v^2 \gamma}{L})^2}$

- An D≤ d (σχήμα 37β), το ύψος ℓ =D/ημθ εξαρτάται από την απόσταση D της θέσης μέτρησης από το άκρο του οστράκου (B_y>0) στη διεύθυνση της μαγνήτισης M. Οι συνιστώσες M_i (i=x,ψ,z) προσεγγίζονται από

Σχήμα 37. Απεικόνιση των διαστάσεων της κυλινδρικής περιοχής διέγερσης του κάθετου και του παράλληλου αισθητήρα σε όστρακο της βάσης (σχήμα α,β), αναλόγως της θέσης λήψης των μετρήσεων κατά μήκος της B_{xy} , που προσανατολίζεται στην κατεύθυνση του x-αισθητήρα. Η μαγνήτιση M και το μαγνητικό πεδίο B αποκλίνουν κατά την ίδια γωνία φ από τον οριζόντιο x-άξονα (σχήμα γ), ενώ οι γωνίες γ_B,γ> γ_B μεταξύ του πεδίου B και της μαγνήτισης M αποκλίνουν όσο μειώνεται η απόσταση D της θέσης λήψης των μετρήσεων από το άκρο του θραύσματος.

Σχήμα 38. Η ροή του μετρούμενου αξονικού πεδίου Β από την κυλινδρική περιοχή διέγερσης είναι διπλάσια στον παράλληλο αισθητήρα, για τη μέτρηση της ίδιας συνιστώσας του πεδίου.

Διάγραμμα 6. Μεταβολή των ακτίνων ευαισθησίας του κάθετου α^L και του παράλληλου αισθητήρα, συναρτήσει του υπολογιζόμενου μέτρου της μαγνήτισης M στα όστρακα των βάσεων από τα αγγεία 1-6. Παρότι ο αριθμός των σημείων στο γράφημα είναι ανεπαρκής, η μεταβολή τους φαίνεται γραμμική με παραπλήσια κλίση. • Επειδή $a_{x\psi}^{//2} > a_z^{\perp}$, η υπολογιζόμενη απόκλιση γ_B του πεδίου από την κατακόρυφο (σχήμα 37γ) στη θέση λήψης των μετρήσεων είναι μικρότερη της γωνίας γ της μαγνήτισης M.

Επειδή $a''_x = a''_y$, η οριζόντιες συνιστώσες B_{xy} , M_{xy} του μετρούμενου πεδίου B και της μαγνήτισης M αποκλίνουν κατά την ίδια γωνία φ από την οριζόντια κατεύθυνση του x-αισθητήρα. Για τον λόγο αυτόν τα συνανήκοντα όστρακα της βάσης ή τα γειτονικά όστρακα του σώματος των αγγείων προσανατολίζονται κατά τον τρόπο που συναρμόζουν (παρ. 1.3), όταν οι B_{xy} τοποθετηθούν σε παράλληλες κατευθύνσεις.

Αγγεία	M(mA/m)	γ°	$\alpha^{L}(\mathbf{cm})$	$\alpha''(\mathbf{cm})$	λ
6	58,3±0,2	43,3±0,3	0,71±0,03	1,07±0,02	1,90±0,01
4	84,1±0,2	48,5±0,3	0,67±0,03	1,15±0,02	1,97±0,01
5	112,7±0,3	61,3±0,3	1,04±0,03	1,41±0,03	2,03±0,01
1	131,3±0,2	53,8±0,1	0,82±0,04	1,42±0,02	2,0±0,1
3	164,1±0,4	46,6±0,2	1,07±0,05	1,61±0,03	2,0±0,1
2	169,3±0,6	50,8±0,2	1,15±0,05	1,66±0,05	2,0±0,1

Πίνακας 12. Υπολογισμός του μέτρου M της κατευθυντικότητας (γ) της μαγνήτισης και των σταθερών κανονικοποίησης λ , α^{\prime} , $\alpha^{\prime\prime}$ των ενδείξεων των αισθητήρων, σε ακανόνιστα θραύσματα της βάσης των αγγείων 1,2 &3 και σε δοκίμια της βάσης των αγγείων 4,5 &6.

Με τη θεώρηση του τρόπου, της περιοχής διέγερσης των αισθητήρων και των σταθερών κανονικοποίησης των ενδείξεών τους (λ, α^{\prime} , $\alpha^{\prime\prime}$) από μετρήσεις του μαγνητικού πεδίου σε θραύσματα της βάσης των αγγείων, υπολογίζεται η μαγνήτιση σε συνανήκοντα όστρακα του σώματος των αγγείων 1-6.

2.6 Υπολογισμός της μαγνήτισης σε όστρακα του σώματος των αγγείων 1-6

Οι μετρήσεις λαμβάνονται από την τρισορθογώνια διάταξη αισθητήρων/μαγνητών στη ίδια θέση, με τον x-αισθητήρα προσανατολισμένο κάθετα στην οριζόντια και την κατακόρυφη συνιστώσα του γεωμαγνητικού πεδίου. Οι μετρήσεις λαμβάνονται στα ίδια σημεία τομής σημειωμένων εγκάρσιων αυλακώσεων και διαμηκών τομών (σχήμα 12α) του σώματος των 6 αγγείων που λήφθηκαν όλες οι προηγούμενες μετρήσεις. Οι θέσεις μέτρησης λαμβάνονται στις ακμές πλέγματος από κάθετες γραμμές στα ίχνη των αυλακώσεων από την μορφοποίηση των 6 αγγείων σε τροχό αγγειοπλαστικής. Για την εκμετάλλευση της περιστροφικής συμμετρίας των αγγείων (σχήμα 39) οι μετρήσεις λαμβάνονται ως προς δεξιόστροφο σύστημα αναφοράς, με τον x-άξονα στη διεύθυνση των αυλακώσεων, τον y-άξονα κάθετο στην επιφάνεια με φορά προς το εσωτερικό των οστράκων και τον z-άξονα με φορά προς τη βάση των αγγείων. Οι αυλακώσεις M_i (i=x,y,z) υπολογίζονται από τις μετρήσεις B_i του πεδίου, στη θέση στροφής όπου οι αυλακώσεις προσανατολίζονται στην κατεύθυνση των x-αισθητήρα.

Σχήμα 39. Μεθοδολογία υπολογισμού των συνιστωσών της μαγνήτισης M από τις μετρούμενες συνιστώσες του μαγνητικού πεδίου B στο θεωρούμενο σύστημα αναφοράς.

Οι συνιστώσες του μετρούμενου πεδίου Β και της μαγνήτισης Μ στο θεωρούμενο σύστημα αναφοράς (σχήμα 39α) υπολογίζονται από τις σχέσεις:

 $B_x = B. \eta \mu \theta_B. \sigma \nu \nu \phi, B_{\nu} = B. \eta \mu \theta_B. \eta \mu \phi, B_z = B. \sigma \nu \nu \theta_B, M_x = M. \eta \mu \theta. \sigma \nu \nu \phi, M_{\nu} = M. \eta \mu \theta. \eta \mu \phi, M_z = M. \sigma \nu \nu \theta$ (42)

Επειδή οι συνιστώσες B_x, B_z του μαγνητικού πεδίου μετριούνται από τους παράλληλους αισθητήρες επί της επιφάνειας των οστράκων (παρ. 2.5) που έχουν την ίδια ακτίνα ευαισθησίας (α^{//}), η \vec{B}_{xz} και η \vec{M}_{xz} αποκλίνουν κατά την ίδια γωνία φ από τον προσανατολισμένο x-άξονα στη διεύθυνση των αυλακώσεων.

Επειδή η λB_y υπολογίζεται²⁰ από τις ενδείξεις του κάθετου y-αισθητήρα στην επιφάνεια των οστράκων που έχει διαφορετική ακτίνα ευαισθησίας (α^L) από τους x,z αισθητήρες, οι υπολογιζόμενες γωνίες²¹ θ_B του πεδίου²² B και θ της μαγνήτισης M εμφανίζουν διαφορετικές τιμές.

Ο υπολογισμός των συνιστωσών της μαγνήτισης με τις σχέσεις επαρκούς (28α) ή ανεπαρκούς (28β) μήκους από τις ενδείξεις των αισθητήρων, προϋποθέτει τον προσδιορισμό της γωνίας θ της μαγνήτισης \vec{M} με τον y-άξονα και τη σύγκριση του μήκους d = L. [εφθ] σε σχέση με την απόσταση D της κάθε θέσης μέτρησης από το άκρο του οστράκου στη διεύθυνση της \vec{B}_{yy} .

Για τον προσδιορισμό της απόκλισης θ της μαγνήτισης από την κατακόρυφο (σχήμα 39β), λαμβάνονται μετρήσεις των B_{xz} , B_{ψ} με στροφή των οστράκων κατά τη γωνία φ, για τον προσανατολισμό της B_{xz} στην x-κατεύθυνση, στη θέση όπου $B_{\psi}=0$ και $B_{xz}>0$. Η απόσταση D μεταξύ της θέσης μέτρησης και του άκρου του οστράκου στην κοινή διεύθυνση των M_{xz} , B_{xz} (σχήμα 39γ) μετριέται στον αρνητικό ή στον θετικό x-ημιάξονα, όταν $B_{\psi}>0$ ή $B_{\psi}<0$, που μπορεί να είναι (σχήμα 39δ) μπορεί να είναι επαρκής (D>d= L.[εφθ]) ή ανεπαρκής (D<d), για το μετρούμενο πάχος L των οστράκων στη θέση λήψης των μετρήσεων.

Σε κάθε περίπτωση, οι γωνίες $\theta = \theta_D$ ή $\theta = \theta_L$ της μαγνήτισης προσεγγίζονται²³ από την επίλυση (μέθοδος Newton-Raphson²⁴) των τριβάθμιων εξισώσεων:

$$\delta B_{y} = \sqrt{\left(\frac{\partial B_{y}}{\partial \beta_{y}}\right)^{2} \cdot \left(\Delta \beta_{y}\right)^{2} + \left(\frac{\partial B_{y}}{\partial \lambda}\right) \cdot \left(\delta \lambda\right)^{2}} = \sqrt{\lambda^{2} \cdot \left(\Delta \beta_{y}\right)^{2} + \left(\beta_{y}\right)^{2} \cdot \left(\delta \lambda\right)^{2}}, \quad \dot{o}\pi ov: \ \Delta \beta_{y} = \ln T$$
(43)

Oi metryáseig two sudistwsóu tou magnyitikoú pedíou B_x , B_z kai β_y , lambánostai me spálma $\Delta B_x = \Delta B_z = \beta_y = 1$ nT, lógw tou anáglupou the epigáneig two ostrákov. O sudtelestág kanonikovikopoú tres epigáneig two ostrákov. O sudtelestág kanonikovikopoú la kai ta spálmata dl upologiζontai apó tie metryáseig tou magnyitikoú pedíou (pínakag 12) sta dokímia two aggeíw 4,5kai 6. Fia ta aggeía 1,2 kai 3, considentia h timú $\lambda = 2,0$ me spálma d $\lambda = 0,1$.

²¹ Το σφάλμα $\delta\theta_B$ της γωνίας $\theta_B = \epsilon \phi \, 1(B_{xz}/B_y)$ υπολογίζεται σε κάθε θέση μέτρησης σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων

$$\alpha\pi\delta \tau\eta \,\sigma\chi\delta\sigma\eta: \quad \delta\hat{\theta}_{B} = \sqrt{\left(\frac{\partial\theta_{B}}{\partial B_{xz}}\right)^{2} \cdot \left(\Delta B_{xz}\right)^{2} + \left(\frac{\partial\theta_{B}}{\partial B_{y}}\right)^{2} \cdot \left(\delta B_{y}\right)^{2}} = \sqrt{\left[1 + \left(\frac{B_{xz}}{B_{y}}\right)^{2}\right]^{2} \cdot \left[B_{y}^{-2} \cdot \left(\Delta B_{xz}\right)^{2} + B_{y}^{-4} \cdot B_{xz}^{-2} \cdot \left(\delta B_{y}\right)^{2}\right]} \quad (44)$$

Sthn parapána scéth ΔB_{xz} =1nT, end to spálma δB_y upologizetai apó th scéth (43).

²² Το σφάλμα δB του πεδίου $B = \sqrt{B_{xz}^2 + B_y^2}$ υπολογίζεται σε κάθε θέση μέτρησης σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από

$$\tau\eta \, \sigma\chi\acute{\epsilon}\sigma\eta: \quad \delta B = \sqrt{\left(\frac{\partial B}{\partial B_{xx}}\right)^2 \cdot \left(\Delta B_{xy}\right)^2 + \left(\frac{\partial B}{\partial B_y}\right)^2 \cdot \left(\delta B_y\right)^2} = \sqrt{\left(B_{xx}^2 + B_y^2\right) \cdot \left(B_{xx}^2 \cdot \Delta B_{xx}^2 + B_y^2 \cdot \delta B_y^2\right)}$$
(45)

Στην παραπάνω σχέση $\Delta B_{xz} = 1 nT$, ενώ το σφάλμα δB_y υπολογίζεται από τη σχέση (43).

²³ Οι τιμές της γωνίας θ_L , θ_D υπολογίζονται από τις ρίζες $x_L = \sigma_U v^2 \theta_L$, $x_D = \sigma_U v^2 \theta_D$ των τριβάθμιων εξισώσεων (43):

$$f_{i}(x_{i})=A_{i}.x_{i}^{3}+B_{i}.x_{i}^{2}+\Gamma_{i}.x_{i}^{2}+\Delta_{i}=0, \quad \text{gia } i=\text{L}, \text{D} \quad (46) \qquad \text{dpoint}$$

για
$$i = L$$
: $A_L = g^2 \cdot a_{x,z}^2 + a_y^2$, $B_L = -a_y^2$, $\Gamma_L = L^2 \cdot (g^2 + 1)$ και $\Delta_L = -L^2$,

για i = D: $A_D = g^2 . \alpha_{x,z}^2 + \alpha_y^2$, $B_D = -(g^2 . \alpha_{x,z}^2 + 2\alpha_y^2)$, $\Gamma_D = -(g^2 . D^2 + D^2 - \alpha_y^2)$ και $\Delta_D = D^2$

Oi rízes $x_L = x_{n+1}^L$ kai $x_D = x_{n+1}^D$ proseggiíontai me th méqodo Newton- Raphson, apó tis sunarthseis $f_L(x_L)$ kai $f_D(x_D)$ kai tis paragágous tous $f_L^i(X_L)$ kai $f_D^i(X_D)$ metá apó n = 5 epanalhymeis me práth proseggist thu timú $x_0^i = 0.5$, apó thu anadromiké

σχέση:
$$x_{n+1}^{i} = x_{n}^{i} - \frac{f_{i}(x_{n}^{i})}{f_{i}(x_{n}^{i})} = x_{n}^{i} - \frac{A_{i} \cdot x_{L}^{3} + B_{i} \cdot x_{i}^{2} + \Gamma_{i} \cdot x_{i} + \Delta_{i}}{3A_{i} \cdot x_{i}^{2} + 2B_{i} \cdot x_{i} + \Gamma_{i}}$$
, για $i = L, D$ (47)

Οι γωνίες θ_L^o και θ_D^o υπολογίζονται από τις τιμές των x_L και x_D από τη σχέση: $\theta_i = \sigma \upsilon v^{-1} \sqrt{x_i}$, για i = L, D.

²⁴ Available online: https://www.math.ubc.ca/~anstee/math104/104newtonmethod.pdf (accessed on 29-7-2019).

²⁰ Το σφάλμα δB_y των διορθωμένων τιμών B_ψ = λ .β_ψ από τις ενδείξεις β_y του κάθετου ψ-αισθητήρα υπολογίζεται σε κάθε θέση μέτρησης, σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση:

$$D > d: \frac{B_{xz}}{B_{\psi}} = \varepsilon \phi \theta_{L} \cdot \sqrt{\frac{1 + (\frac{\alpha_{\psi} \cdot \sigma \upsilon v^{2} \theta_{L}}{L})^{2}}{1 + (\frac{\alpha_{x,z} \cdot \sigma \upsilon v^{2} \theta_{L}}{L})^{2}}} \qquad D < d: \frac{B_{xz}}{B_{\psi}} = \varepsilon \phi \theta_{D} \cdot \sqrt{\frac{1 + (\frac{\alpha_{\psi} \cdot \eta \mu 2 \theta_{D}}{2D})^{2}}{1 + (\frac{\alpha_{x,z} \cdot \eta \mu 2 \theta_{D}}{2D})^{2}}} \qquad (48)$$

Οι σταθερές $\alpha_{xz}^{"'}, \alpha_{y}^{"}$, λ , υπολογίζονται από τις μετρήσεις του πεδίου (πίνακας 12) σε συνανήκοντα όστρακα της βάσης των αγγείων.

 $-Av \theta_L > \theta_D, \text{ tóte } D > d = L.|eq\theta_L| \text{ kai } \theta = \theta_L \text{ . Fia ton upologismó two sunstwown the magnitude of } M_v,$ M_{xz} χρησιμοποιούνται οι σχέσεις επαρκούς μήκους (28α).

-An $\theta_L < \theta_D$, tóte D < d = L. $|eq\theta_D|$ kai $\theta = \theta_D$. Gia ton upologismó two sunistwsýn the magnitudes 2^{26} M_y , M_{xz} χρησιμοποιούνται οι σχέσεις ανεπαρκούς μήκους (28β).

Σε κάθε περίπτωση ($\theta = \theta_L$ ή $\theta = \theta_D$) υπολογίζεται η συνισταμένη της μαγνήτισης $M = \sqrt{M_{xz}^2 + M_y^2}$ και το σφάλμα²⁷ δΜ. Από τις τιμές των M_y, M_{xz} που υπολογίζονται σε κάθε περίπτωση, προσδιορίζεται το σφάλμ α^{28} δ $\hat{\theta}$ και υπολογίζεται το μέγιστο επαρκές μήκος d = L.εφθ του κυλινδρικού χώρου που διεγείρει τους

²⁵ Για τις σχέσεις επαρκούς μήκους, τα σφάλματα δM_i των συνιστωσών της μαγνήτισης $M_i = \frac{2.B_i}{\mu_o} \cdot \sqrt{1 + (\frac{\alpha_i \cdot \sigma \upsilon v^2 \theta}{L})^2} = \frac{2.B_i}{\mu_o} \cdot G_i^{\frac{1}{2}},$ για

$$\delta \mathbf{M}_{i} = \sqrt{\left(\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{B}_{i}}\right)^{2} \left(\Delta \mathbf{B}_{i}\right)^{2} + \left(\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{L}}\right)^{2} \left(\Delta \mathbf{L}\right)^{2} + \left(\frac{\partial \mathbf{M}_{i}}{\partial \alpha_{i}}\right)^{2} \left(\delta \alpha_{i}\right)^{2}, \quad \delta \pi \text{ov}:}$$

$$\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{B}_{i}} = \frac{2\mathbf{G}_{i}^{\frac{1}{2}}}{\mu_{a}}, \quad \frac{\partial \mathbf{M}_{i}}{\partial \mathbf{L}} = \frac{2\mathbf{B}_{i}}{\mu_{a}} \mathbf{G}_{i}^{\frac{1}{2}} \cdot \alpha_{i}^{2} \cdot \sigma \text{uv}^{4} \theta \cdot \mathbf{L}^{3} \quad \kappa \alpha i \quad \frac{\partial \mathbf{M}_{i}}{\partial a_{i}} = \frac{2\mathbf{B}_{i}}{\mu_{a}} \mathbf{G}_{i}^{\frac{1}{2}} \cdot \alpha_{i} \cdot \sigma \text{uv}^{4} \theta \cdot \mathbf{L}^{2} \quad (49\alpha)$$

²⁶ Για τις σχέσεις επαρκούς μήκους, τα σφάλματα δM_i των συνιστωσών της μαγνήτισης $M_i = \frac{2.B_i}{\mu_o} \cdot \sqrt{1 + (\frac{\alpha_i \cdot \eta \mu 2\theta}{2D})^2} = \frac{2.B_i}{\mu_o} \cdot Q_i^{\frac{1}{2}}$ για i

$$\delta \mathbf{M}_{i} = \sqrt{\left(\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{B}_{i}}\right)^{2} \left(\Delta \mathbf{B}_{i}\right)^{2} + \left(\frac{\partial \mathbf{M}_{i}}{\partial D}\right)^{2} \left(\Delta \mathbf{L}\right)^{2} + \left(\frac{\partial \mathbf{M}_{i}}{\partial a_{i}}\right)^{2} \left(\delta \alpha_{i}\right)^{2}, \text{ of nou:}}$$

$$\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{B}_{i}} = \frac{2\mathbf{Q}_{i}^{\frac{1}{2}}}{\mu_{o}}, \quad \frac{\partial \mathbf{M}_{i}}{\partial \mathbf{D}} = \frac{\mathbf{B}_{i}}{2\mu_{o}} \mathbf{Q}_{i}^{\frac{1}{2}} \cdot \alpha_{i}^{2} \cdot \eta\mu^{2} 2\theta \cdot \mathbf{D}^{3} \quad \kappa\alpha i \quad \frac{\partial \mathbf{M}_{i}}{\partial a_{i}} = \frac{\mathbf{B}_{i}}{2\mu_{o}} \mathbf{Q}_{i}^{\frac{1}{2}} \cdot \alpha_{i} \cdot \eta\mu^{2} 2\theta \cdot \mathbf{D}^{3} \quad (49\beta)$$

Στις παραπάνω σχέσεις $\Delta B_{xz} = 1$ nT, $\Delta L = 1$ mm, $\Delta D = 3$ mm, ενώ το σφάλμα δB_v υπολογίζεται από τη σχέση (43). Οι τιμές $a_x=a_z=a''$, $a_v = a^{\perp}$ και τα σφάλματα δa'', δ a^{\perp} υπολογίζονται (πίνακας 12) από τις μετρήσεις του μαγνητικού πεδίου σε συνανήκοντα όστρακα της βάσης των αγγείων.

²⁷ Το σφάλμα δΜ της μαγνήτισης υπολογίζεται σε κάθε θέση μέτρησης σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση:

$$\delta M = \sqrt{\left(\frac{\partial M}{\partial M_{xz}}\right)^2 \cdot \left(\delta M_{xz}\right)^2 + \left(\frac{\partial M}{\partial M_y}\right)^2 \cdot \left(\delta M_y\right)^2} = \sqrt{\left(M_{xz}^2 + M_y^2\right) \cdot \left(M_{xz}^2 \cdot \delta M_{xz}^2 + M_y^2 \cdot \delta M_y^2\right)}$$
(50)

Tα σφάλματα δM_i (i=xz,y), για $\theta = \theta_L$ ή $\theta = \theta_D$ υπολογίζονται από τις αντίστοιχες σχέσεις (49α,β).

 28 Το σφάλμα δθ της γωνίας θ =εφ⁻¹ (M_{xz}/M_v), υπολογίζεται σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση:

$$\delta\theta = \sqrt{\left(\frac{\partial\theta}{\partial M_{xz}}\right)^2 \left(\delta M_{xz}\right)^2 + \left(\frac{\partial\theta}{\partial M_y}\right)^2 \left(\delta M_y\right)^2}, \quad \delta\pi\text{ou:}$$
$$\frac{\partial\theta}{\partial M_{xz}} = \left[1 + \left(\frac{M_{xz}}{M_y}\right)^2\right]^{-1} \cdot \left(M_y\right)^{-1} \quad \kappa\alpha\text{i} \quad \frac{\partial\theta}{\partial M_y} = \left[1 + \left(\frac{M_{xz}}{M_y}\right)^2\right]^{-1} \cdot \left(M_y\right)^{-2} \cdot M_{xz} \quad (51)$$

Ta σφάλματα δM_i (i=xz,y), για $\theta = \theta_L$ ή $\theta = \theta_D$ υπολογίζονται από τις αντίστοιχες σχέσεις (49α,β).

αισθητήρες και το σφάλμα²⁹ δd για τη σύγκρισή τους με τη μετρούμενη απόσταση D από τη θέση μέτρησης έως το άκρο του οστράκου, στη διεύθυνση της \vec{B}_{xz} .

Με στροφή των θραυσμάτων στη θέση όπου οι αυλακώσεις προσανατολίζονται στη διεύθυνση του xαισθητήρα λαμβάνονται μετρήσεις των συνιστωσών B_i (i=x,y,z) του πεδίου και υπολογίζεται η συνισταμένη του πεδίου $B = \sqrt{B_x^2 + B_z^2 + B_y^2}$, οι γωνίες $\theta_B = συν^- 1 (By/B)$, $\varphi_B = ε \varphi^- 1 (Bz/B_x)$ και τα σφάλματα³⁰ δ θ_B και δ φ_B^{-31} .

Από τις μετρήσεις των συνιστωσών B_i (i=x,y,z) του μαγνητικού πεδίου και την τιμή της γωνίας $\theta = \theta_L$ ή $θ = θ_D$ υπολογίζονται σε κάθε περίπτωση, οι συνιστώσες M_i (i=x,y,z) της μαγνήτισης και τα σφάλματα δM_i , από τις αντίστοιχες σχέσεις (28α,β) επαρκούς³² (D>d) ή ανεπαρκούς³³ (D<d) μήκους.

$$\delta d = \sqrt{\left(\frac{\partial d}{\partial L}\right)^2 \cdot \left(\Delta L\right)^2 + \left(\frac{\partial d}{\partial \theta}\right)^2 \cdot \left(\delta \theta\right)^2} = \sqrt{\epsilon \varphi^2 \theta \cdot \left(\Delta L\right)^2 + L^2 \cdot \sigma \upsilon v^4 \theta \cdot \left(\delta \theta\right)^2}$$
(52)

Στην παραπάνω σχέση $\Delta L = 1$ mm, ενώ το σφάλμα δθ υπολογίζεται από τη σχέση (51).

³⁰ Το σφάλμα δθ_B της γωνίας, $\theta_{\rm B} = \sigma v v^{-1} B_{\rm V} / B_{\rm C}$ υπολογίζεται σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση:

$$\delta\theta_{\rm B} = \sqrt{\left(\frac{\partial\theta_{\rm B}}{\partial\beta_{\rm y}}\right)^2 \left(\Delta\beta_{\rm y}\right)^2 + \left(\frac{\partial\theta_{\rm B}}{\partial B}\right)^2 \left(\delta B\right)^2} = \sqrt{\left[1 + \left(\frac{B_{\rm y}}{B}\right)^2\right]^{-1} \left[B^{-2} \left(\Delta B_{\rm y}\right)^2 + B_{\rm y}^2 B^{-4} \left(\delta B\right)^2\right]}$$
(53)

Το σφάλμα της διορθωμένης τιμής της Β, συνιστώσας, υπολογίζεται από τη σχέση (43).

³¹ Το σφάλμα δφ_B της γωνίας $φ_B = εφ - 1(B_z/B_x)$, υπολογίζεται σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση:

$$\delta \varphi_{\rm B} = \sqrt{\left(\frac{\partial \varphi_{\rm B}}{\partial B_z}\right)^2 \left(\Delta B_z\right)^2 + \left(\frac{\partial \varphi_{\rm B}}{\partial B_x}\right)^2 \left(\Delta B_x\right)^2} = \sqrt{\left[1 + \left(\frac{B_z}{B_x}\right)^2\right]^2} \left[\left(B_x^2 \left(\Delta B_z\right)^2 + B_z^2 \cdot B_x^4 \cdot \left(\Delta B_x\right)^2\right)\right]$$
(54)

Στην παραπάνω σχέση $\Delta B_x = \Delta B_z = 1 n T.$

 $^{32} \Sigma \text{thy periations} \ M_i = \frac{2.B_i}{\mu_o} \cdot \sqrt{1 + (\frac{\alpha_i \cdot \text{sungle}\theta}{L})^2} = \frac{2.B_i}{\mu_o} \cdot G_i^{\frac{1}{2}} \cdot \frac{1}{\mu_o} \cdot \frac{1}{2} \cdot \frac{1}{\mu_o} \cdot \frac{1}{2} \cdot \frac{$

i=x,y,z υπολογίζονται από τις σχέσεις επαρκούς μήκους σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων:

$$\delta \mathbf{M}_{i} = \sqrt{\left(\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{B}_{i}}\right)^{2} \left(\Delta \mathbf{B}_{i}\right)^{2} + \left(\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{L}}\right)^{2} \left(\Delta \mathbf{L}\right)^{2} + \left(\frac{\partial \mathbf{M}_{i}}{\partial \alpha_{i}}\right)^{2} \left(\delta \alpha_{i}\right)^{2}, \text{ of now:}}$$

$$\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{B}_{i}} = \frac{2\mathbf{G}_{i}^{\frac{1}{2}}}{\mu_{o}}, \quad \frac{\partial \mathbf{M}_{i}}{\partial \mathbf{L}} = -\frac{2\mathbf{B}_{i}}{\mu_{o}} \mathbf{G}_{i}^{\frac{1}{2}} \cdot \alpha_{i}^{2} \cdot \sigma \upsilon^{4} \theta \cdot \mathbf{L}^{3} \quad \kappa \alpha \iota \quad \frac{\partial \mathbf{M}_{i}}{\partial \alpha_{i}} = \frac{2\mathbf{B}_{i}}{\mu_{o}} \mathbf{G}_{i}^{\frac{1}{2}} \cdot \alpha_{i} \cdot \sigma \upsilon^{4} \theta \cdot \mathbf{L}^{2} \quad (55\alpha)$$

³³ Στην περίπτωση όπου D<d και θ = θ_D τα σφάλματα δM_i των συνιστωσών της μαγνήτισης $M_i = \frac{2.B_i}{\mu_o} \cdot \sqrt{1 + (\frac{\alpha_i \cdot \eta \mu 2\theta}{2D})^2} = \frac{2.B_i}{\mu_o}$ i=x,y,z υπολογίζονται από τις σχέσεις ανεπαρκούς μήκους σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων:

$$\delta \mathbf{M}_{i} = \sqrt{\left(\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{B}_{i}}\right)^{2} \left(\Delta \mathbf{B}_{i}\right)^{2} + \left(\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{D}}\right)^{2} \left(\Delta \mathbf{L}\right)^{2} + \left(\frac{\partial \mathbf{M}_{i}}{\partial \alpha_{i}}\right)^{2} \left(\delta \alpha_{i}\right)^{2}}, \quad \delta \pi o \upsilon:$$

$$\frac{\partial \mathbf{M}_{i}}{\partial \mathbf{B}_{i}} = \frac{2\mathbf{Q}_{i}^{\frac{1}{2}}}{\mu_{o}}, \quad \frac{\partial \mathbf{M}_{i}}{\partial \mathbf{D}} = -\frac{\mathbf{B}_{i}}{2\mu_{o}} \mathbf{Q}_{i}^{\frac{1}{2}} \cdot \alpha_{i}^{2} \cdot \eta \mu^{2} 2 \theta \cdot \mathbf{D}^{3} \quad \kappa \alpha \iota \quad \frac{\partial \mathbf{M}_{i}}{\partial \alpha_{i}} = \frac{\mathbf{B}_{i}}{2\mu_{o}} \mathbf{Q}_{i}^{\frac{1}{2}} \cdot \alpha_{i} \cdot \eta \mu^{2} 2 \theta \cdot \mathbf{D}^{2} \quad (55\beta)$$

Στις παραπάνω σχέσεις $\Delta B_x = \Delta B_z = 1$ nT, $\Delta L = 1$ mm, $\Delta D = 3$ mm, ενώ το σφάλμα δB_y υπολογίζεται από τη σχέση (43).). Οι τιμές $a_x = a_x = a''$, $a_y = a^{-1}$ και τα σφάλματα δa'', δ a^{-1} υπολογίζονται (πίνακας 12) από τις μετρήσεις του μαγνητικού πεδίου σε συνανήκοντα όστρακα της βάσης των αγγείων.

²⁹ Το σφάλμα δd του μέγιστου επαρκούς μήκους d = L.|εφθ| που καταλαμβάνει ο κυλινδρικός χώρος που διεγείρει τους αισθητήρες στη διεύθυνση της \vec{B}_{xz} υπολογίζεται σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων από τη σχέση:

Apó tic timés two sunstwow M_i (i=x,y,z) the magnitude upper upper upper upper difference of M_i (i=x,y,z) the magnitude upper upper upper upper upper difference of M_i (i=x,y,z) the magnitude upper uppe

Ενδεικτικά πειραματικά αποτελέσματα, παρατίθενται στον πίνακα 13α,β,γ,δ από μετρήσεις οστράκων από το σώμα του αγγείου 6. Τα πειραματικά αποτελέσματα από τις μετρήσεις στα όστρακα του σώματος των αγγείων 1-5 παρατίθενται στους πίνακες 24-28 του παραρτήματος B.

Η θερμοπαραμένουσα μαγνήτιση του κεραμικού υλικού προσανατολίζεται στην κατεύθυνση του μαγνητικού πεδίου της γης κατά τη διάρκεια της ψύξης του αγγείου στον κλίβανο όπτησης.

Οι παραπλήσιες τιμές του μαγνητικού πεδίου των συνανηκόντων οστράκων είναι αποτέλεσμα της ομοιόμορφης μαγνήτισης του κεραμικού υλικού κάθε αγγείου, που συνίσταται από την ίδια πρώτη ύλη και ψήθηκε στις ίδιες συνθήκες.

Η διαπίστωση της μαγνητικής ανισοτροπίας του κεραμικού υλικού, στο βαθμό που τα γειτονικά όστρακα προσανατολίζονται κατά τον τρόπο που συναρμόζουν από το μαγνητικό τους πεδίο, οδηγεί στη διερεύνηση της παραμένουσας θερμομαγνήτισης, όπως διαμορφώθηκε κατά τη διάρκεια της όπτησης στην κατεύθυνση του μαγνητικού πεδίου της γης, από την περιστροφική συμμετρία του σώματος των αγγείων.

$$\delta M = \sqrt{(M_y^2 + M_x^2 + M_z^2)^{-1} \cdot \left[M_y^2 \cdot (\delta M_y)^2 + M_x^2 \cdot (\delta M_x)^2 + M_z^2 \cdot (\delta M_z)^2\right]}$$
(56)

Ta σφάλματα δM_y , δM_x , δM_z υπολογίζονται από τις σχέσεις (55α,β) στις αντίστοιχες περιπτώσεις επαρκούς ($\theta = \theta_L$) ή ανεπαρκούς ($\theta = \theta_D$) μήκους.

 35 Το σφάλμα δθ της γωνίας θ = συν⁻¹(My/M), υπολογίζεται σε κάθε θέση μέτρησης σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων:

$$\delta\theta = \sqrt{\left(\frac{\partial\theta}{\partial M_{y}}\right)^{2} \left(\delta M_{y}\right)^{2} + \left(\frac{\partial\theta}{\partial M}\right)^{2} \left(\delta M\right)^{2}} = \sqrt{\left[1 + \left(\frac{M_{y}}{M}\right)^{2}\right]^{-1} \left[M^{-2} \left(\delta M_{y}\right)^{2} + M_{y}^{2} M^{-4} \left(\delta M\right)^{2}\right]}$$
(57)

Ta σφάλματα δM_y και δM υπολογίζονται από τις σχέσεις (55α,β) και (57) στις αντίστοιχες περιπτώσεις επαρκούς ($\theta = \theta_L$) ή ανεπαρκούς ($\theta = \theta_D$) μήκους.

 36 To syálma dy the generation of the matrix of the

$$\delta \hat{\varphi} = \sqrt{\left(\frac{\partial \varphi}{\partial M_z}\right)^2 \cdot \left(\delta M_z\right)^2 + \left(\frac{\partial \varphi}{\partial M_x}\right)^2 \cdot \left(\delta M_x\right)^2}, \quad \acute{o}\pi o \upsilon:$$
$$\frac{\partial \varphi}{\partial M_z} = \left[1 + \left(\frac{M_z}{M_x}\right)^2\right]^{-1} \cdot \left(M_x\right)^{-1}, \quad \frac{\partial \varphi}{\partial M_x} = \left[1 + \left(\frac{M_z}{M_x}\right)^2\right]^{-1} \cdot \left(M_x\right)^{-2} \cdot M_z \quad (58)$$

Ta σφάλματα δM_x και δM_z δM_z υπολογίζονται από τις σχέσεις (55α,β) στις αντίστοιχες περιπτώσεις επαρκούς ($\theta = \theta_L$) ή ανεπαρκούς ($\theta = \theta_D$) μήκους.

³⁴ Το σφάλμα δΜ της μαγνήτισης υπολογίζεται από τη θεωρία μετάδοσης σφαλμάτων:

	Vertical +D Bz= L Bearth	Ψ B Φ B B x=Bxz>0 X Potter's wheel grooves	
Z H			
4 3	Αγ	γείο 6	

β	Αγγείο 6 (βάση)	λ	α [∟] (cm)	α ^{//} (cm)
γ	u 17	1,90	0,71	1,07
δ		±0,01	±0,03	±0,02

Μετά την κανονικοποίηση των μετρήσεων, το μέτρο B εμφανίζει παραπλήσιες τιμές, ενώ η γωνία θ_B μεταβάλλεται κατά συστηματικό τρόπο.

10cm

Πίνακας 13α. Ενδεικτικές μετρήσεις των συνιστωσών B_i (i=ψ, xz) του πεδίου B με τον x-αισθητήρα στην κοινή κατεύθυνση των Bxz, Mxz, μετά την κανονικοποίηση των ενδείξεων του κάθετου y-αισθητήρα σε όστρακα από το σώμα του αγγείου 6.

	Αγγείο 6	Α	В	Г	Δ	Е	Z	Н	Θ	Ι	K
	D (±0,3) cm	4,2			3,4	6,2	2,2	6,2			10,6
	L (±0,1) cm	0,9			0,8	0,7	0,7	0,7			0,9
	B _{xz} (±1) nT	32			6	6	29	38			37
1	λ.B _ψ (nT)	8±2			32±2	26±2	14±2	6±2			-6±2
	B (nT)	33±1			33±2	27±2	32±1	38±1			37±1
	θ _B °	76±3			11±2	13±2	64±3	81±3			-81±3
	D (±0,3) cm	2,4	14,8	10,7	1,2	6,3	4,8	3,2	2,1	3,4	2,5
	L (±0,1) cm	1,6	1,6	1,7	1,9	1,5	1,6	1,8	1,8	1,9	1,9
	B _{xz} (±1) n⊤	39	35	24	20	17	37	34	35	35	27
2	λ.B _ψ (nT)	4±2	12±2	26±2	30±2	28±2	4±2	-6±2	-14±2	-14±2	-24±2
	B (nT)	39±1	37±1	35±2	36±2	33±2	37±1	35±1	38±1	38±1	36±1
	θ _B °	84±3	71±3	43±2	34±2	31±2	84±3	-80±3	-68±3	-68±3	-48±2
	D (±0,3) cm	17,2	2,0	1,6	2,9	1,9	2,6	6,2	4,9	10,0	7,5
	L (±0,1) cm	1,5	1,7	1,7	1,5	1,4	1,5	1,7	1,9	1,8	1,8
	B _{xz} (±1) nT	35	37	37	34	31	34	32	25	18	18
3	λ.B _ψ (nT)	-10±2	2±2	8±2	14±2	14±2	-62	-16±2	-24±2	-30±2	-32±2
	B (nT)	36±1	37±1	38±1	37±1	34±1	35±1	36±1	35±2	35±2	37±2
	θ _B °	-74±4	87±3	78±3	68±3	66±3	-80±3	-63±3	-46±3	-31±2	-29±2
	D (±0,3) cm	7,5	5,5	5,9	8,7	6,8	1,8	5,1	2,5	6,4	5,1
	L (±0,1) cm	1,4	1,3	1,4	1,5	1,3	1,2	1,4	1,5	1,5	1,6
	B _{xz} (±1) n⊤	31	33	39	37	38	32	26	24	7	5
4	λ.B _ψ (nT)	-16±2	-10±2	42	6±2	4±2	-14±2	-22±2	-28±2	-36±2	-34±2
	B (nT)	35±1	34±1	39±1	37±1	38±1	35±1	34±1	37±2	37±2	34±2
	θ _B ^o	-63±3	-73±3	84±3	81±3	84±3	-66±3	-50±3	-41±2	-11±2	-8±2
	D (±0,3) cm	1,9	2,3	9,7	4,1	3,6	2,0	4,5		3,8	
	L (±0,1) cm	1,0	1,2	1,1	1,2	1,2	1,1	1,0		1,1	
-	B _{xz} (±1) n⊤	25	34	33	34	34	27	23		4	
5	λ.B _ψ (nT)	-20±2	-14±2	-12±2	-4±2	-6±2	-22±2	-24±2		-32±2	
	B (nT)	32±1	37±1	35±1	34±1	35±1	35±1	33±2		32±2	
	θ _B ^o	-51±3	-68±3	-70±3	-83±3	-80±3	-51±3	-44±3		-7±2	

Ενδεικτικές μετρήσεις του πεδίου Β με τον x-αισθητήρα στην κοινή κατεύθυνση των Bxz, Mxz σε όστρακα του σώματος από το αγγείο 6

Vertical		M
Bearth	Z Potter's	wheel grooves

Αγγείο 6 Τα όστρακα του σώματος και της βάσης εμφανίζουν παραπλήσιο μέτρο Μ. Η γωνία θ μεταβάλλεται κατά συστηματικό τρόπο.

Αγγείο 6	M	M [⊥] M ^{//} M					
(βάση)	(
	42,5	39 <i>,</i> 8	58,3	43,3			
	±0,2	±0,2	±0,2	±0,3			

Πίνακας 13β. Υπολογισμός της γωνίας θ και συνιστωσών M_i (i=xz,ψ), από μετρήσεις του πεδίου B_i με τον xαισθητήρα στην κοινή κατεύθυνση των B_{xz} , M_{xz} σε όστρακα του σώματος από το αγγείο 6. Στις χρωματισμένες περιοχές χρησιμοποιούνται οι σχέσεις (28β) ανεπαρκούς μήκους (D<d=L.εφθ).

	Αγγείο 6	Α	В	Г	Δ	E	Z	н	Θ	I	К
	D (±0,3) cm	4,2			3,4	6,2	2,2	6,2			10,6
	d (cm)	3,6±1			0,2±0,0	0,2±0,0	1,5±0,2	4,4±1,4			5,6±1,8
	θ°	76±3			14±2	17±3	65±3	81±3			-81±3
1	Mxz(mA/m)	51±2			15±3	16±3	48±2	61±2			59±2
	Μψ Α/m)	13±3			64±4	54±4	23±3	10±3			-10±3
	M(mA/m)	53±2			66±4	56±4	53±2	61±2			60±2
	D (±0,3) cm	2,4	14,8	10,7	1,2	6,3	4,8	3,2	2,1	3,4	2,5
	d (cm)	15,6±7	4,7±0,8	1,6±0,1	1,3±0,1	1,0±0,1	14,8±7,1	10,2±3,3	4,5±0,6	4,8±0,7	2,2±0,2
_	θ°	84±3	71±3	44±2	35±2	33±2	84±3	-80±3	-68±3	-68±3	-49±2
2	Mxz(mA/m)	62±2	56±2	40±2	35±2	30±2	59±2	54±2	57±2	56±2	44±2
	Μψ Α/m)	6±3	19±3	42±3	49±3	47±3	6±3	-10±3	-22±3	-22±3	-39±3
	M(mA/m)	62±2	59±2	58±3	60±3	56±3	59±2	55±2	61±2	60±2	59±2
	D (±0,3) cm	17,2	2,0	1,6	2,9	1,9	2,6	6,2	4,9	10,0	7,5
	d (cm)	5,3±1	32±30	7,9±1,9	3,7±0,5	3,1±0,5	8,5±2,7	3,4±0,4	2,0±0,2	1,1±0,1	1,1±0,1
_	θ°	-74±3	87±3	78±3	68±3	66±3	-80±3	-64±3	-47±3	-32±2	-31±2
3	Mxz(mA/m)	56±2	59±2	59±2	55±2	50±2	54±2	51±2	41±2	31±2	31±2
	Μψ Α/m)	-16±3	3±3	13±3	22±3	22±3	-10±3	-26±3	-39±3	-49±3	-53±3
	M(mA/m)	58±2	59±2	61±2	59±2	55±2	55±2	57±2	56±2	58±3	61±3
	D (±0,3) cm	7,5	5,5	5,9	8,7	6,8	1,8	5,1	2,5	6,4	5,1
	d (cm)	2,7±0,4	4,3±0,8	13,7±6,5	9,3±3,0	12,4±5,9	2,8±0,4	1,7±0,2	1,3±0,1	0,3±0,1	0,3±0,1
	θ°	-63±3	-73±3	84±3	81±3	84±3	-67±3	-51±3	-42±2	-12±2	-9±2
+	Mxz(mA/m)	50±2	53±2	62±2	59±2	60±2	52±2	43±2	41±2	13±2	9±2
	Μψ Α/m)	-26±3	-16±3	6±3	10±3	6±3	-22±3	-36±3	-46±3	-62±3	-58±3
	M (mA/m)	56±2	55±2	62±2	60±2	61±2	57±2	56±2	62±3	63±3	59±3
	D (±0,3) cm	1,9	2,3	9,7	4,1	3,6	2,0	4,5		3,8	
	d (cm)	1,3±0,2	2,9±0,4	3,0±0,5	10,2±4,9	6,8±2,2	1,4±0,1	1,0±0,5		0,2±0,0	
-	θ°	-53±3	-68±3	-70±3	-83±3	-80±3	-52±3	-46±3		-9±2	
5	Mxz(mA/m)	43±2	55±2	53±2	54±2	54±2	46±2	41±2		9±2	
	Μψ Α/m)	-33±3	-22±3	-19±3	-6±3	-10±3	-36±3	-40±3		-59±4	
	M(mA/m)	54±2	59±2	56±2	55±2	55±2	58±2	57±3		59±4	

Υπολογισμός της μαγνήτισης Μ από μετρήσεις του πεδίου Β, με τον x-αισθητήρα στην κοινή κατεύθυνση των Bxz, Mxz (αγγείο 6)

Vertical Bearth Z Potter's wheel grooves

Αγγείο 6

Το μέτρο του πεδίου Β δεν διατηρεί σταθερή τιμή, ενώ οι γωνίες θ_B, φ_B μεταβάλλονται κατά συστηματικό τρόπο.

Πίνακας 13γ. Ενδεικτικές μετρήσεις των 3 αισθητήρων B_i (i=x, ψ ,z) με τον x-άξονα στη διεύθυνση των αυλακώσεων, σε όστρακα του σώματος από το αγγείο 6.

	Αγγείο 6	Α	В	Г	Δ	E	Z	н	Θ	I	К
	$\mathbf{B}_{\mathbf{\psi}}$ (±1nT)	5			17	13	8	3			-4
	B _x (±1nT)	-21			-3	3	23	23			1
	B _z (±1nT)	22			7	6	21	28			34
2	B(±1nT)	31			18	14	32	36			34
	θ _B ^o	80±2			24±10	28±11	75±2	85±2			-83±2
	φ _B °	134±2			113±8	63±9	42±2	51±2			88±2
	$\mathbf{B}_{\mathbf{\psi}}$ (±1nT)	1	7	14	17	15	2	-2	-7	-7	-13
	B _x (±1nT)	-26	-22	-17	-5	5	25	24	15	6	-1
2	B _z (±1nT)	29	21	23	20	23	27	32	29	28	31
2	B(±1nT)	39	31	32	27	28	37	40	33	30	33
	θ _B °	88±1	76±2	64±2	51±3	58±3	87±2	-87±1	-77±2	-76±2	-68±2
	φ _B °	132±1	136±2	126±2	104±3	78±2	47±2	53±1	63±2	78±2	92±2
	$\mathbf{B}_{\mathbf{\psi}}$ (±1nT)	-5	2	4	8	7	-4	-7	-12	-17	-17
	B _x (±1nT)	-27	-20	-13	-3	2	26	25	15	5	-5
•	B _z (±1nT)	27	25	26	33	34	27	25	18	20	17
3	B(±1nT)	39	32	29	34	35	38	36	26	27	24
	θ _B °	-82±2	86±2	82±2	76±2	78±2	-84±2	-78±2	-64±3	-51±3	-46±4
1 2 3 4	φ _B °	135±2	129±2	117±2	95±2	87±2	46±2	45±2	50±2	76±3	106±3
	$\mathbf{B}_{\mathbf{\psi}}$ (±1nT)	-7	-5	2	4	1	-7	-12	-14	-19	-18
	B _x (±1nT)	-25	-26	-11	-1	5	23	21	19	1	-2
	B _z (±1nT)	24	28	31	38	38	22	14	14	3	5
4	B(±1nT)	35	39	33	38	38	33	28	27	19	19
	θ _B °	-78±2	-82±2	86±2	84±2	88±1	-77±2	-65±2	-60±3	-9±25	-17±15
	φ _B °	136±2	133±1	110±2	92±2	83±1	44±2	34±2	36±2	72±18	112±11
	Β_ψ (±1n T)	-12	-7	-5	-2	-3	-11	-13		-16	
	B _x (±1nT)	-22	-19	-11	-8	7	23	18		3	
_	B _z (±1nT)	14	20	28	39	33	16	10		-1	
5	B(±1nT)	29	29	31	40	34	30	24		16	
	θ _B ^o	-66±2	-75±2	-80±2	-87±1	-85±2	-69±2	-58±3		-11±25	
	φ _B °	148±2	134±2	111±2	102±1	78±2	35±2	29±3		342±18	

Ενδείξεις των αισθητήρων με τον χ-αισθητήρα στην διεύθυνση των αυλακώσεων (αγγείο 6)

Mψ Vertical хX () Potter's wheel grooves

Αγγείο 6

Τα όστρακα του σώματος και της βάσης εμφανίζουν παραπλήσιο μέτρο Μ. Η διαλογή των συνανηκόντων ανασκαφικών οστράκων μπορεί να γίνει με κριτήριο την παραπλήσια τιμή του μέτρου της μαγνήτισής τους.

Οι γωνίες φ, θ μεταβάλλονται κατά συστηματικό τρόπο.

Αγγείο 6	M└	м″	М	γ°	
(βάση)	42,5	39,8	58,3	43,3	
(mA/m)	±0,2	±0,2	±0,2	±0,3	

Πίνακας 13δ. Υπολογισμός της μαγνήτισης από μετρήσεις των συνιστωσών του πεδίου, με τον χ-αισθητήρα στη διεύθυνση των αυλακώσεων, σε όστρακα του σώματος από το αγγείο 6.

		Αγγείο 6	А	В	Г	Δ	E	Z	Н	Θ	I	К
		$\mathbf{M}_{\mathbf{\psi}}$ (mA/m)	16±3			64±4	50±4	26±3	10±3			-13±3
		M_x (mA/m)	-34±2			-8±3	8±3	38±2	37±2			2±2
	1	M z (mA/m)	35±2			18±3	16±3	35±2	45±2			54±2
		M (mA/m)	51± 2			67± 4	53± 4	58± 2	58± 2			56± 2
		θ°	72± 4			17± 17	20± 18	63± 4	81± 3			-77± 3
		φ°	134± 2			113± 8	63± 9	42± 2	51± 2			88± 2
Ī		$\mathbf{M}_{\mathbf{\psi}}$ (mA/m)	3±4	22±3	42±3	53±4	47±3	6±4	-6±4	-22±4	-22±4	-39±3
		M_x (mA/m)	-41±2	-35±2	-28±2	-9±2	9±2	40±2	38±2	24±2	10±2	-2±2
		M _z (mA/m)	46±2	34±2	39±2	35±2	41±2	43±2	51±2	47±2	45±2	51±2
	2	M (mA/m)	62	53± 2	64± 2	63± 4	63± 3	59± 2	64± 2	57± 2	51± 2	64± 2
		θ°	87± 4	65± 4	49± 4	34± 8	42± 5	84± 4	-84± 4	-67± 5	-64± 6	-53± 4
		φ°	132± 1	136± 2	126± 2	104± 3	78± 2	47± 2	53± 1	63± 2	78± 2	92± 2
		$\mathbf{M}_{\mathbf{\psi}}$ (mA/m)	-16±3	6±4	13±4	26±4	22±4	-13±4	-22±3	-35±3	-53±3	-53±3
	3	M _x (mA/m)	-43±2	-32±2	-21±2	-5±2	3±2	41±2	40±2	25±2	9±2	-9±2
		M z (mA/m)	43±2	40±2	42±2	53±2	55±2	43±2	40±2	30±2	35±2	30±2
		M (mA/m)	63± 2	51± 2	48± 2	59± 2	60± 2	61± 2	61± 2	52± 2	63± 3	61± 3
		θ°	- 75± 3	83± 5	75± 5	64± 5	68± 4	- 78± 4	-68± 3	-47± 5	- 34± 6	-30 ±7
		φ°	135± 2	129± 2	117± 2	95± 2	87± 2	46± 2	45± 2	50± 2	76± 3	106± 3
		$\mathbf{M}_{\mathbf{\psi}}$ (mA/m)	-22±3	-16±3	6±4	13±4	3±4	-22±4	-36±3	-43±3	-62±3	-58±3
		M_x (mA/m)	-40±2	-41±2	-18±2	-2±2	8±2	37±2	35±2	33±3	2±2	-4±2
	4	M z (mA/m)	39±2	45±2	49±2	60±2	60±2	36±2	23±2	24±2	6±2	9±2
	4	M (mA/m)	60± 2	63± 2	53± 2	62± 2	61± 2	56± 2	55± 2	59± 3	62± 3	59± 3
		θ°	-68± 3	-75± 3	83± 5	78± 4	87± 4	-67± 5	-50± 5	-44± 5	-6± 44	-10± 26
		φ°	136± 2	133± 2	110± 2	92± 2	83± 1	44± 2	34± 2	36± 2	72± 18	112± 11
		$\mathbf{M}_{\mathbf{\psi}}$ (mA/m)	-36±3	-22±4	-16±3	-6±4	-10±4	-33±3	-40±3		-55±4	
		M _x (mA/m)	-38±2	-31±2	-18±2	-13±2	11±2	39±2	32±2		7±2	
	E	M _z (mA/m)	24±2	32±2	45±2	62±2	53±2	27±2	18±2		-2±2	
	5	M (mA/m)	57± 2	50± 2	51± 2	64± 2	55± 2	58± 2	54± 3		55± 4	
		θ°	-51±4	27±6	- 72 ±4	-84±4	-80±5	-56±4	-43±6		-7±42	
		φ°	148± 2	134± 2	111± 2	102± 1	78± 2	35± 2	29± 3		342± `18	

Υπολογισμός της μαγνήτισης Μ με τον χ-αισθητήρα στην διεύθυνση των αυλακώσεων (αγγείο 6)

3. Εντοπισμός της θέσης των οστράκων στο σώμα του αγγείου από την κατευθυντικότητα της παραμένουσα μαγνήτισης

Αν γ_{γης} η έγκλιση και ζ η απόκλιση του τοπικού μαγνητικού πεδίου της γης (B_{γης}) κατά τη διάρκεια της όπτησης (σχήμα 40), τότε οι συνιστώσες του ως προς το δεζιόστροφο αζονικό σύστημα αναφοράς XΨΖ του αγγείου, όπου ο Ζ-άζονας συμμετρίας εκ περιστροφής του αγγείου αποκλίνει από την κατακόρυφο κατά τη γωνία α απόκλισης του δαπέδου τοποθέτησης του αγγείου στον κλίβανο και κατευθύνεται προς τη βάση του, υπολογίζεται από τις σχέσεις:

$$B_X^{\gamma\eta\varsigma} = B^{\gamma\eta\varsigma}. \ \eta\mu\gamma. \ \sigma\nu\nu\xi, \quad B_{\psi}^{\gamma\eta\varsigma} = B^{\gamma\eta\varsigma}. \ \eta\mu\gamma. \ \eta\mu\xi, \quad B_Z^{\gamma\eta\varsigma} = B^{\gamma\eta\varsigma}. \ \sigma\nu\nu\gamma, \qquad \gamma = (90^o - \gamma^{\gamma\eta\varsigma}) \pm \alpha$$
(59)

Η απόκλιση ζ του γεωμαγνητικού πεδίου δεν μπορεί να υπολογιστεί χωρίς τη γνώση του προσανατολισμού του αγγείου στον κλίβανο.

Η έγκλιση γ_{γης} του γεωμαγνητικού πεδίου δε μπορεί να υπολογιστεί χωρίς τη γνώση της απόκλισης α του κλιβάνου από το οριζόντιο επίπεδο. Κατά την ίδια γωνία α αποκλίνουν από το οριζόντιο επίπεδο, οι κυκλικές αυλακώσεις στο σώμα που είναι παράλληλες στη βάση, λόγω της περιστροφικής συμμετρίας του αγγείου. Σε οποιοδήποτε αγγείο με περιστροφική συμμετρία, για κάθε θεωρούμενο αζονικό σύστημα αναφοράς όπου ο Ζ-άζονας συμπίπτει με τον άζονα συμμετρίας εκ περιστροφής, οι Χ,Ψ άζονες ορίζονται επί του επιπέδου της ίδιας εγκάρσιας αυλάκωσης στο σώμα του αγγείου.

Σχήμα 40. Απεικόνιση του γεωμαγνητικού πεδίου Β_{γης} κατά τη διάρκεια της όπτησης αγγείου με περιστροφική συμμετρία, ως προς το δεξιόστροφο αξονικό σύστημα αναφοράς XΨZ, όπου ο Z-άξονας συμπίπτει με τον άξονα συμμετρίας εκ περιστροφής και κατευθύνεται προς τη βάση του αγγείου.

Η γωνία γ απόκλισης του γεωμαγνητικού πεδίου από τον άζονα συμμετρίας του αγγείου είναι ίση με τη γωνία απόκλισης της μαγνήτισης Μ που υπολογίζεται από τις μετρήσεις του μαγνητικού πεδίου των οστράκων της βάσης (πίνακας 12), εφόσον η μαγνήτιση του κεραμικού υλικού αποκτά την κατευθυντικότητα του γεωμαγνητικού πεδίου κατά τη διάρκεια της όπτησης.

3.1 Διαμόρφωση της παραμένουσας μαγνήτισης σε αγγεία με κυλινδρική συμμετρία

Οι μετρήσεις του πεδίου Β, λαμβάνονται σε δεξιόστροφα συστήματα αναφοράς (xψz)^{*},όπου ο x^{*}-άξονας έχει τη διεύθυνση των εγκάρσιων αυλακώσεων, ο ψ^{*}άξονας διέρχεται από τον άξονα συμμετρίας εκ περιστροφής και ο z^{*}-άξονας είναι εφαπτόμενος στα πλευρικά τοιχώματα, κατευθυνόμενος προς τη βάση του αγγείου.

Στην ειδική περίπτωση των αγγείων με κυλινδρική συμμετρία, επειδή ο z^{*}-άξονας στο σύστημα λήψης των μετρήσεων του πεδίου B είναι παράλληλος στον άξονα συμμετρίας Z, (σχήμα 41α) η θέση της κάθε διαμήκους αξονικής τομής ορίζεται από τη γωνία στροφής u του δεξιόστροφου αξονικού συστήματος αναφοράς XΨZ του κυλινδρικού αγγείου (σχήμα 41β), περί του Z-άξονα συμμετρίας εκ περιστροφής.

Σχήμα 41. Απεικόνιση της μαγνήτισης M του κεραμικού υλικού στην κατεύθυνση του γεωμαγνητικού πεδίου Β_{γης} κατά την διάρκεια της όπτησης αγγείου με κυλινδρική συμμετρία, σε δεξιόστροφα συστήματα αναφοράς (xψz)^{*} (a) κατά μήκος διαμηκών και (β) εγκάρσιων τομών του σώματος του αγγείου.

Εφόσον η μαγνήτιση M αποκτά την κατευθυντικότητα του $B_{\gamma\eta\varsigma}$ στον κλίβανο όπτησης, για κάθε γωνία περιστροφής u του αξονικού συστήματος αναφοράς XΨZ, οι συνιστώσες της μαγνήτισης M στην περιφέρεια κάθε εγκάρσιας αυλάκωσης προσδιορίζονται από τον μετασχηματισμό στροφής των περιφερειακών συστημάτων αναφοράς (xψz)^{*} κατά τη γωνία ω = ξ-u περί των z^{*}-αξόνων:

 $M_{x}^{*} = M.\eta\mu\gamma.\sigma\upsilon\nu\omega = M_{x\psi}^{*}.\sigma\upsilon\nu\omega, \quad M_{\psi}^{*} = M.\eta\mu\gamma.\eta\mu\omega = M_{x\psi}^{*}.\eta\mu\omega, \quad M_{z}^{*} = M.\sigma\upsilon\nu\gamma \quad (60)$ ópou: $\omega = \xi$ -u, $\gamma = (90^{\circ} - \gamma^{\gamma\eta\varsigma}) \pm \alpha$

Παρότι οι γωνίες u, ξ δεν προσδιορίζονται χωρίς τη γνώση του προσανατολισμού του αγγείου στον κλίβανο όπτησης, η γωνία $ω = \xi$ -u υπολογίζεται από τον υπολογισμό της μαγνήτισης των οστράκων του σώματος του αγγείου.

3.2 Διαμόρφωση της παραμένουσας μαγνήτισης σε αγγεία με τυχούσα περιστροφική συμμετρία

Στη γενικότερη περίπτωση αγγείων με τυχούσα περιστροφική συμμετρία (σχήμα 42), τα πλευρικά τοιχώματα αποκλίνουν κατά διαφορετικές γωνίες κ από τη διεύθυνση του άξονα συμμετρίας σε κάθε διαμήκη τομή (α,β,γ,δ) του αγγείου και κατά την ίδια γωνία κ σε κάθε εγκάρσια (1,2,3) αυλάκωση.

Σχήμα 42. Απεικόνιση των συστημάτων αναφοράς (xψz) όπου λαμβάνονται οι μετρήσεις του μαγνητικού πεδίου, σε εγκάρσιες και διαμήκεις τομές του σώματος αγγείου με τυχούσα περιστροφική συμμετρία.

Οι γωνίες φ_x της μαγνήτισης Μ με τους προσανατολισμένους x-άξονες στη διεύθυνση των αυλακώσεων διατηρούν σταθερή τιμή σε κάθε διαμήκη τομή (1,2,3) και μεταβάλλονται σε κάθε εγκάρσια τομή (α,β,γ,δ) του αγγείου.

Οι γωνίες κ μεταξύ των κάθετων z-αξόνων στις αυλακώσεις και της διεύθυνσης του άξονα συμμετρίας εκ περιστροφής, διατηρούν σταθερή τιμή σε κάθε εγκάρσια αυλάκωση και μεταβάλλονται σε κάθε διαμήκη τομή του αγγείου. Οι κάθετοι ψ-άξονες στην επιφάνεια των οστράκων διέρχονται από τον άξονα συμμετρίας εκ περιστροφής του αγγείου.

Σχήμα 43α. Απεικόνιση των συνιστωσών της μαγνήτισης στο σύστημα αναφοράς των οστράκων του σώματος του αγγείου όπου λαμβάνονται οι μετρήσεις του μαγνητικού πεδίου και υπολογίζονται από τις σχέσεις:

 $M_x=M$. ημθ.συνφ, $M_{\psi}=M$.ημθ. ημφ, $M_z=M$.συνθ.

Σχήμα 43β. Οι συνιστώσες της μαγνήτισης στα συστήματα αναφοράς (xψz) που λαμβάνονται οι μετρήσεις του μαγνητικού πεδίου σε όστρακα αγγείων με τυχούσα περιστροφική συμμετρία, προέρχονται από μετασχηματισμό στροφής των συστημάτων αναφοράς (xψz)^{*} του κυλινδρικού αγγείου, κατά την γωνία κλίσης κ περί των x^{*}-αξόνων.

Οι συνιστώσες M_i (i=x,ψ,z) στα συστήματα (xψz) λήψης των μετρήσεων του πεδίου B_i (σχήμα 43α) προέρχονται από μετασχηματισμό στροφής (σχήμα 43β) των συστημάτων αναφοράς (xψz)^{*} του κυλινδρικού αγγείου κατά τη γωνία κλίσης κ περί των x^{*}-αξόνων:

$$\begin{split} M_{x} &= M_{x}^{*} = M. \ \eta\mu\gamma \ . \ \sigma\upsilon\nu\omega = M. \ \eta\mu\theta \ . \ \sigma\upsilon\nu\varphi = M \ . \ \sigma\upsilon\nu\varphi_{x} \\ M_{\psi} &= M_{\psi}^{*}. \ \sigma\upsilon\nu\kappa - M_{z}^{*}. \ \eta\mu\kappa = M. \ \eta\mu\gamma \ . \ \eta\mu\omega \ . \ \sigma\upsilon\nu\kappa - M. \ \sigma\upsilon\nu\gamma \ . \ \eta\mu\kappa = M. \ \sigma\upsilon\nu\theta \\ M_{z} &= M_{\psi}^{*}. \ \eta\mu\kappa + M_{z}^{*}. \ \sigma\upsilon\nu\kappa = M \ . \ \eta\mu\gamma \ . \ \eta\mu\omega \ . \ \eta\mu\kappa + M. \ \sigma\upsilon\nu\gamma \ . \ \sigma\upsilon\nu\kappa = M. \ \eta\mu\theta \ . \ \sigma\upsilon\nu\varphi , \\ \delta\sigma\upsilon\omega \ \omega &= \xi - u \ \ \kappa\alpha\iota \ \ \gamma = (90^{o} - \gamma^{\eta\varsigma}) \pm \alpha \end{split}$$
(61)

3.3 Εύρεση των συνανηκόντων οστράκων και της θέσης τους στα σώματα των αγγείων από τη θερμοπαραμένουσα μαγνήτισή τους

Σύμφωνα με την πρώτη από τις προηγούμενες σχέσεις, στις θέσεις μέτρησης κάθε διαμήκους τομής του σώματος (σχήμα 41β) που ορίζεται από τη γωνία στροφής $ω = \xi$ -υ στο αξονικό σύστημα αναφοράς XΨZ του αγγείου, τα συνημίτονα κατεύθυνσης συνφ_x = ημθ. συνφ της μαγνήτισης \vec{M} με τους παράλληλους x-άξονες των συστημάτων αναφοράς xΨz εμφανίζουν την ίδια τιμή (σχήμα 42), ανεξαρτήτως των διαφορετικών κλίσεων $\hat{\kappa}$ των τοιχωμάτων με τη διεύθυνση του άξονα συμμετρίας εκ περιστροφής του αγγείου.

Η τιμή της M_x συνιστώσας, μεταβάλλεται μόνο σε θέσεις μέτρησης κατά μήκος κάθε εγκάρσιας αυλάκωσης, λόγω της στροφής του x-άξονα κατά τη γωνία ω που προσδιορίζει τις θέσεις των οστράκων στην περιφέρεια του σώματος γύρω από τον άξονα συμμετρίας εκ περιστροφής του αγγείου.

Η κλίση κ̂ έχει σταθερή τιμή στις θέσεις μέτρησης σε κάθε εγκάρσια αυλάκωση λόγω της περιστροφικής συμμετρίας του αγγείου και μεταβάλλεται στις θέσεις μέτρησης κάθε διαμήκους τομής του σώματος, προσδιορίζοντας την κατ' ύψος θέση των οστράκων στο σώμα του αγγείου.

Εφόσον η γωνία γ =(90°- γ^{γης})±α (60) είναι γνωστή από τις μετρήσεις του μαγνητικού πεδίου των θραυσμάτων της βάσης των αγγείων (πίνακας 12), όπως και οι γωνίες θ, φ της μαγνήτισης \vec{M} με τους άξονες των αισθητήρων (πίνακας 13δ) που υπολογίζονται σε κάθε θέση από τις μετρήσεις του πεδίου (πίνακες 13γ, B24β-B28β), η γωνία³⁷ ω που καθορίζει την εγκάρσια θέση κάθε οστράκου στο σώμα του αγγείου, μπορεί να προσδιοριστεί από την επίλυση της πρώτης εξίσωσης του παραπάνω (61) συστήματος:

$$ω=συv^{-1}\frac{ημθ.συνφ}{ημγ}$$
 (62α), όπου $φ=εφ^{-1}\frac{M_z}{M_x}=εφ^{-1}\frac{B_z}{B_x}$

Η κλίση³⁸ κ που καθορίζει την κατ' ύψος θέση των οστράκων σε κάθε διαμήκη τομή του αγγείου, υπολογίζεται για κάθε τιμή της γωνίας ω από τις εξισώσεις του παραπάνω (61) συστήματος:

$$\kappa = ε φ^{-1} \frac{M_z.ημγ.ημω-M_ψ.συνγ}{M_ψ.ημγ.ημω+M_z.συνγ}$$
(63α)

$$\delta\hat{\omega} = \sqrt{\left(\frac{\partial\omega}{\partial\theta}\right)^{2} \cdot \left(\delta\theta\right)^{2} + \left(\frac{\partial\omega}{\partial\phi}\right)^{2} \cdot \left(\delta\phi\right)^{2} + \left(\frac{\partial\omega}{\partial\gamma}\right)^{2} \cdot \left(\delta\gamma\right)^{2}}, \qquad \delta\pi\omega: \qquad \frac{\partial\omega}{\partial\theta} = \left[1 - \left(\frac{\eta\mu\theta.\sigma\nu\nu\phi}{\eta\mu\gamma}\right)^{2}\right]^{-\frac{1}{2}} \cdot \eta\mu^{-1}\gamma.\sigma\nu\theta.\sigma\nu\nu\phi$$
$$\frac{\partial\omega}{\partial\phi} = \left[1 - \left(\frac{\eta\mu\theta.\sigma\nu\nu\phi}{\eta\mu\gamma}\right)^{2}\right]^{-\frac{1}{2}} \cdot \eta\mu^{-1}\gamma.\eta\mu\theta.\eta\mu\phi \qquad \qquad \frac{\partial\omega}{\partial\gamma} = \left[1 - \left(\frac{\eta\mu\theta.\sigma\nu\nu\phi}{\eta\mu\gamma}\right)^{2}\right]^{-\frac{1}{2}} \cdot \eta\mu^{-2}\gamma.\sigma\nu\gamma.\eta\mu\theta.\sigma\nu\phi \qquad (62\beta)$$

Η γωνία γ και το σφάλμα δγ υπολογίζεται από μετρήσεις του μαγνητικού πεδίου (πίνακας 12) σε θραύσματα της βάσης των αγγείων. Τα σφάλματα δθ και δφ υπολογίζονται από τις σχέσεις (57) και (58).

 38 Το σφάλμα δκ της κλίσης κ = εφ⁻¹G υπολογίζεται σε κάθε θέση μέτρησης σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων:

$$\delta \hat{\kappa} = \sqrt{\left(\frac{\partial \kappa}{\partial M_z}\right)^2 \cdot \left(\delta M_z\right)^2 + \left(\frac{\partial \kappa}{\partial M_y}\right)^2 \cdot \left(\delta M_y\right)^2 + \left(\frac{\partial \kappa}{\partial \gamma}\right)^2 \cdot \left(\delta \gamma\right)^2 + \left(\frac{\partial \kappa}{\partial \omega}\right)^2 \cdot \left(\delta \omega\right)^2}, \quad \delta \pi \omega :$$

$$\frac{\partial \kappa}{\partial M_z} = \left(1 + G^2\right)^{-1} \frac{M_y (\eta \mu^2 \gamma \cdot \eta \mu^2 \omega + \sigma \upsilon \gamma^2 \gamma)}{(M_y \eta \mu \gamma \cdot \eta \mu \omega + M_z \sigma \upsilon \gamma \gamma)^2}, \quad \frac{\partial \kappa}{\partial M_y} = \left(1 + G^2\right)^{-1} \frac{M_z (\eta \mu^2 \gamma \cdot \eta \mu^2 \omega + \sigma \upsilon \gamma^2 \gamma)}{(M_y \eta \mu \gamma \cdot \eta \mu \omega + M_z \sigma \upsilon \gamma \gamma)^2}, \quad \frac{\partial \kappa}{\partial M_y} = \left(1 + G^2\right)^{-1} \frac{M_z (\eta \mu^2 \gamma \cdot \eta \mu^2 \omega + \sigma \upsilon \gamma^2 \gamma)}{(M_y \eta \mu \gamma \cdot \eta \mu \omega + M_z \sigma \upsilon \gamma \gamma)^2}, \quad (63\beta)$$

Τα σφάλματα δM_y και δM_z υπολογίζονται από τις σχέσεις (55α,β) στις αντίστοιχες περιπτώσεις επαρκούς ($\theta = \theta_L$) ή ανεπαρκούς ($\theta = \theta_D$) μήκους. Η γωνία γ και το σφάλμα δγ υπολογίζεται από μετρήσεις του μαγνητικού πεδίου (πίνακας 12) σε θραύσματα της βάσης των αγγείων. Το σφάλμα δω υπολογίζεται από τη σχέση (62β).

³⁷ Το σφάλμα δω της γωνίας υπολογίζεται σε κάθε θέση μέτρησης σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων:

Ο έλεγχος της παραπάνω θεώρησης γίνεται με τον αντίστροφο μετασχηματισμό στροφής των υπολογιζόμενων συνιστωσών της μαγνήτισης M_i (i=x,y,z) κατά τη γωνία -κ περί του x-άξονα (σχήμα 44α), από το σύστημα αναφοράς (xψz) που λαμβάνονται οι μετρήσεις του μαγνητικού πεδίου, στο σύστημα (xψz)^{*}αναφοράς (σχήμα 44β)του κυλινδρικού αγγείου:

 $M_x^* = M_x = M. \ \eta \mu \gamma. \text{suns}, \quad M_\psi^* = M_\psi. \text{suns} + M_z. \\ \eta \mu \kappa = M. \\ \eta \mu \gamma. \\ \eta \mu \omega, \quad M_z^* = M_z. \\ \text{suns} - M_\psi. \\ \eta \mu \kappa = M. \\ \text{suns} \gamma \quad (64\alpha)$

Σχήμα 44. (α) Απεικόνιση του αντίστροφου μετασχηματισμού κατά τη γωνία -κ περί των x-αξόνων από τα συστήματα αναφοράς (xψz) που λαμβάνονται οι μετρήσεις του μαγνητικού πεδίου, στα συστήματα αναφοράς (xψz)^{*}αναφοράς (σχήμα 41) του κυλινδρικού αγγείου. (β) Απεικόνιση των συστημάτων αναφοράς (xψz)^{*}του κυλινδρικού αγγείου, σε αγγείο με τυχούσα περιστροφική συμμετρία.

Σύμφωνα με τις προηγούμενες σχέσεις υπολογισμού³⁹ των M_x^*, M_{ψ}^* , M_z^* , κατά τον αντίστροφο μετασχηματισμό (σχήμα 44β) οι συνιστώσες M_x^*, M_{ψ}^* που εξαρτώνται από τη γωνία ω πρέπει να εμφανίζουν παραπλήσια τιμή σε κάθε διαμήκη τομή του σώματος, ενώ η M_z^* που εξαρτάται μόνο από τη γωνία γ, πρέπει να εμφανίζει παραπλήσια τιμή σε κάθε θέση μέτρησης.

Ενδεικτικά αποτελέσματα του αντίστροφου μετασχηματισμού, παρατίθενται για τα όστρακα του σώματος του αγγείου 6, στον πίνακα 14.

Οι υπολογιζόμενες τιμές της κλίσης κ και της γωνίας ω απεικονίζονται (σχήματα 45-50) στις θέσεις μέτρησης του σώματος των 6 αγγείων, όπου υπολογίζεται (πίνακες 15-20) το μέτρο της θερμοπαραμένουσας μαγνήτισης Μ.

 $\delta M_{y}^{*} = \sqrt{\sigma \upsilon v^{2} \kappa . (\delta M_{y})^{2} + \eta \mu^{2} \kappa . (\delta M_{z})^{2} + (M_{z} . \sigma \upsilon v \kappa - M_{y} . \eta \mu \kappa)^{2} . (\delta \kappa)^{2}}$ (64β)

To saálma $\delta M_z^{\;*}\;$ upologiζεται se káde qésh métrhsh
ς, súmqwua me th qewría metádosh
ς saalmátwu:

 $\delta M_{z}^{*} = \sqrt{\sigma \upsilon v^{2} \kappa. (\delta M_{z})^{2} + \eta \mu^{2} \kappa. (\delta M_{y})^{2} + (M_{z}. \eta \mu \kappa + M_{y}. \sigma \upsilon \nu \kappa)^{2}. (\delta \kappa)^{2}} \quad (64\gamma)$

Στις παραπάνω σχέσεις, τα σφάλματα δM_{ψ} , δM_z υπολογίζονται από τις σχέσεις (55α,β) στις αντίστοιχες περιπτώσεις επαρκούς ($\theta = \theta_L$) ή ανεπαρκούς ($\theta = \theta_D$) μήκους. Το σφάλμα δκ υπολογίζεται από τη σχέση (63β).

 $^{^{39}}$ Το σφάλμα δ M_{ψ}^{*} υπολογίζεται σε κάθε θέση μέτρησης, σύμφωνα με τη θεωρία μετάδοσης σφαλμάτων:

γ°

Oi sunistáses $M_{x}\overset{*}{,}M_{\psi}\overset{*}{}$ kai η ganía w empaniíoun παραπλήσιες τιμές σε κάθε διαμήκη τομή του σώματος.

Η M_z^{*} εμφανίζει παραπλήσιες τιμές σε κάθε θέση μέτρησης του σώματος και με αυτήν που υπολογίζεται στα θραύσματα της βάσης του αγγείου.

Η κλίση κ εμφανίζει παραπλήσιες τιμές σε κάθε εγκάρσια αυλάκωση του αγγείου.

Πίνακας 14. Ενδεικτικές τιμές των μετασχηματισμένων συνιστωσών Mi* (i=x\u03ctz) της μαγνήτισης στα συστήματα αναφοράς (xψz)* του κυλινδρικού αγγείου, σε όστρακα του σώματος από το αγγείο 6.

	Αγγείο 6	Α	В	Г	Δ	E	Z	Н	Θ	I	К
	$M_{\psi}^{*}(mA/m)$	-10±6			45±4	35±5	11±7	-16±5			-38±3
	M _x *(mA/m)	-34±2			-8±3	8±3	38±2	37±2			2±2
	M _z *(mA/m)	37± 3			49± 4	39± 4	42± 3	43± 3			40± 3
1	ω°	197± 8			100± 10	77± 12	16± 9	336± 5			272± 2
	ĸ°	- 40± 8			-31± 3	-29± 4	-22 ±9	-33± 5			-30± 3
	M _ψ *(mA/m)	-10±8	10±6	33±4	43±5	42±4	-7±9	-22±6	-31±6	-34±5	-44±4
	M _x *(mA/m)	-41±2	-35±2	-28±2	-9±2	9±2	40±2	38±2	24±2	10±2	-2±2
	M _z *(mA/m)	45±2	39± 2	46± 2	46± 3	46± 3	43± 2	47± 3	42± 3	37± 3	46± 2
2	ω°	194± 7	163± 8	131± 4	101± 3	78± 3	350± 10	331± 3	308± 3	286± 3	268± 2
	ĸ	-16± 8	-19± 8	-12± 3	-14± 3	-6± 2	-18± 11	-18± 5	-11± 5	-16± 5	-6± 2
	M _ψ *(mA/m)	3±18	15±6	26±5	40±5	41±5	-6±11	-12±6	-26±4	-43±4	-41±3
	M _x *(mA/m)	-43±2	-32±2	-21±2	-5±2	3±2	41±2	40±2	25±2	9±2	-9±2
	M _z *(mA/m)	46± 2	37± 3	35± 3	43± 3	43± 3	45± 2	44± 2	38± 2	46± 2	44± 2
3	ω°	176± 2	155± 5	129± 3	97± 2	85± 2	352± 12	344± 7	313± 5	281± 3	258± 4
	ĸ	24± 23	13± 7	19± 5	17± 4	21± 4	9± 13	14± 7	16± 4	14± 2	18± 2
	M _ψ *(mA/m)	9±7	12±6	32±5	42±5	41±5	-10±9	-14±7	-24±5	-43±3	-40±3
	M _x *(mA/m)	-40±2	-41±2	-18±2	-2±2	8±2	37±2	35±2	33±2	2±2	-4±2
	M _z *(mA/m)	44± 3	46± 3	38± 4	45± 4	44± 4	41± 3	40± 3	43± 3	45± 3	43± 3
4	ω°	168± 9	164± 6	119± 3	92± 2	79± 2	345± 11	338± 10	324± 8	273± 20	265±1 4
	ĸ	42± 9	34± 6	32± 5	31± 4	40± 4	19± 11	37± 9	32± 5	41± 2	38± 2
	$M_{\psi}^{*}(mA/m)$	-11±9	15±6	30±3	42±4	36±4	6±13	-19±6		-37±5	
	M _x *(mA/m)	-38±2	-31±2	-18±2	-13±2	11±2	39±2	32±2		7±2	
_	M _z *(mA/m)	42± 3	36± 4	37± 3	46± 4	40± 5	42± 3	40± 4		40± 5	
5	ω	197± 13	154± 8	120± 3	107± 2	73± 3	9± 20	330± 11		280± 58	
	ĸ°	41± 11	57± 8	59± 4	48± 4	52± 5	59± 18	41± 8]	49± 6]

Αγγείο	Μ(Σώμα) mA/m									
1	А	В	Г	Δ	E	Z	Н	Θ	I	
1	120±4	138±6	130±7	135±7	129±7	133±5	141±5	128±3		
2	135± 3	126± 5	136± 6	132± 6	133± 5	132± 5	132± 3	127± 3		
3	138± 3	139± 5	139± 5	138± 6	127± 5	137± 4	128± 3	124± 2		
4	130± 3	125± 4	130± 4	131± 5	135± 5	121± 4	130± 3	131± 3	123±3	
5	119± 3	137± 3	140± 5	132± 5	138± 4	128± 3	129± 3	138± 3	131±2	
6	125± 3	128± 3	131± 4	131± 4	129± 4	123± 3				
7	138± 3	132± 3	121± 4	121± 4	124± 4	130± 3				
8	133± 3	141± 3	123± 3	132± 4	135± 3	134± 3				
9		125± 3	131± 3	131± 4	133± 3	133± 4				
	M(B	άση)								

Σχήμα 45α. Η γωνία κ εμφανίζει παραπλήσιες τιμές σε κάθε εγκάρσια τομή. Οι υπολογιζόμενες τιμές της κλίσης κ από τις ενδείξεις των αισθητήρων είναι παραπλήσιες στις μετρούμενες.

Πίνακας 15. Η μαγνήτιση Μ εμφανίζει παραπλήσιες τιμές στα όστρακα του σώματος και της βάσης του αγγείου 1. Στις χρωματισμένες περιοχές ο υπολογισμός γίνεται από τις σχέσεις (28β) ανεπαρκούς μήκους.

Σχήμα 45β. Η γωνία ω εμφανίζει παραπλήσιες τιμές σε κάθε διαμήκη τομή. Από τον προσανατολισμό (ω) της μετασχηματισμένης οριζόντιας συνισταμένης $M_{x\psi}^*$ στα θραύσματα του σώματος και της οριζόντιας συνισταμένης $M_{x\psi}$ στην ίδια κατεύθυνση στα θραύσματα της βάσης, προσδιορίζεται η θέση συναρμογής τους.

ΑΓΓΕΙΟ 2

Πίνακας 16. Η μαγνήτιση Μ εμφανίζει παραπλήσιες τιμές στα όστρακα του σώματος και της βάσης του αγγείου 2. Στις χρωματισμένες περιοχές ο υπολογισμός γίνεται από τις σχέσεις ανεπαρκούς μήκους

VASE 2

Σχήμα 46α. Η γωνία κ εμφανίζει παραπλήσιες τιμές σε κάθε εγκάρσια τομή. Οι υπολογιζόμενες τιμές της κλίσης κ από τις ενδείξεις των αισθητήρων είναι παραπλήσιες με τις μετρούμενες

Μ(Βάση)	Μ(σώμα)	Α	В	Г	Δ	E	Z	н	Θ	I	К
164,1±0,4 (mA/m)	1	167± 8	178± 8		163± 4	159± 3	165± 4	175± 3	173± 3		194± 6
	2	166± 5	154± 4		153± 3			177± 3		169± 3	169± 5
	3	160± 3		158± 3	161± 4	171± 6	176± 6	160± 4	164± 3	157± 3	173± 3
	4	168± 3	161± 3	162± 3	162± 5	161± 5	181± 7	162± 5	166± 5	167± 4	155± 3
	5	156± 4	175± 3	159± 2	154± 4	172± 6	160± 7	164± 5	155± 2	173± 3	167± 3

Σχήμα 47α. Η γωνία κ εμφανίζει παραπλήσιες τιμές σε κάθε εγκάρσια τομή. Οι υπολογιζόμενες τιμές της κλίσης κ από τις ενδείξεις των αισθητήρων είναι παραπλήσιες στις μετρούμενες.

Πίνακας 17. Η μαγνήτιση Μ εμφανίζει παραπλήσιες τιμές στα όστρακα του σώματος και της βάσης του **αγγείου 3**. Στις χρωματισμένες περιοχές ο υπολογισμός γίνεται από τις σχέσεις ανεπαρκούς μήκους.

ΑΓΓΕΙΟ 3

Σχήμα 47β. Η γωνία ω εμφανίζει παραπλήσιες τιμές σε κάθε διαμήκη τομή. Από τον προσανατολισμό (ω) της μετασχηματισμένης οριζόντιας συνισταμένης $M_{x\psi}^{*}$ στα θραύσματα του σώματος και της οριζόντιας συνισταμένης $M_{x\psi}$ στην ίδια κατεύθυνση στα θραύσματα της βάσης, προσδιορίζεται η θέση συναρμογής τους.

ΑΓΓΕΙΟ 4

Μ (Βάση)	Μ(Σώμα)	Α	В	Г	Δ	E	Z	Н	Θ	Ι
84,1±0,2	1			81± 3	78± 3		93± 3		89± 2	
(1174/111)	2		97± 3	86± 3	85± 3	92± 3	72± 3	76± 3	76± 3	77± 2
	3	82± 3	78± 3	78± 4	77± 3	84± 3	85± 3	88± 3	89± 3	76± 2
	4			87± 4	76± 4	90± 4	80± 4	78± 4	78± 3	82± 3
	5			84± 4	85± 4	82± 4	77± 4	85± 4	85± 3	89± 3

Σχήμα 48α. Η γωνία κ εμφανίζει παραπλήσιες τιμές σε κάθε εγκάρσια τομή. Οι υπολογιζόμενες τιμές της κλίσης κ από τις ενδείξεις των αισθητήρων είναι παραπλήσιες στις μετρούμενες.

Πίνακας 18. Η μαγνήτιση Μ εμφανίζει παραπλήσιες τιμές στα όστρακα του σώματος και της βάσης του αγγείου 4. Στις χρωματισμένες περιοχές ο υπολογισμός γίνεται από τις σχέσεις ανεπαρκούς μήκους.

ΑΓΓΕΙΟ 4

Σχήμα 48β. Η γωνία ω εμφανίζει παραπλήσιες τιμές σε κάθε διαμήκη τομή. Από τον προσανατολισμό (ω) της μετασχηματισμένης οριζόντιας συνισταμένης $M_{x\psi}^{*}$ στα θραύσματα του σώματος και της οριζόντιας συνισταμένης $M_{x\psi}$ στην ίδια κατεύθυνση στα θραύσματα της βάσης, προσδιορίζεται η θέση συναρμογής τους.

		Μ(Σώμα)										
	А	В	Г	Δ	E	Z	н	Θ				
1	110± 3	114± 5	110± 3	115± 4	111± 3	111± 3	113± 3	116± 3				
2	114± 3	114± 3	111± 3	113± 3	112± 3	110± 3	112± 3	110± 3				
3	108± 3	111± 3	112± 3	112± 3	113± 3	112± 3	111± 2					
4	113± 4	112± 3	111± 3	113± 3	111± 3	115± 3	118± 3					
5		116± 4	116± 3	113± 3	114± 3	110± 3	113± 3					
6			114±4	116±3	110±3	115±3	111±3					
7			113±4	117±4	114±3	108±4	111±5					
8			119±4	113±3	112±3	113±4	117±4					
9			111±3	114±3	113±3	116±3	116±4					
10			119±3	116±3	115±3							
	М											
	(Βάση	112,7±0,5 (IIIA/III)										

Σχήμα 49α. Η γωνία κ εμφανίζει παραπλήσιες τιμές σε κάθε εγκάρσια τομή. Οι υπολογιζόμενες τιμές της κλίσης κ από τις ενδείξεις των αισθητήρων είναι παραπλήσιες στις μετρούμενες.

Πίνακας 19. Η μαγνήτιση Μ εμφανίζει παραπλήσιες τιμές στα όστρακα του σώματος και της βάσης του αγγείου 5. Στις χρωματισμένες περιοχές ο υπολογισμός γίνεται από τις σχέσεις ανεπαρκούς μήκους.

ΑΓΓΕΙΟ 5

ΑΓΓΕΙΟ 5

Σχήμα 49β. Η γωνία ω εμφανίζει παραπλήσιες τιμές σε κάθε διαμήκη τομή. Από τον προσανατολισμό (ω) της μετασχηματισμένης οριζόντιας συνισταμένης $M_{x\psi}^*$ στα θραύσματα του σώματος και της οριζόντιας συνισταμένης $M_{x\psi}$ στην ίδια κατεύθυνση στα θραύσματα της βάσης, προσδιορίζεται η θέση συναρμογής τους.

ΑΓΓΕΙΟ 6

Μ(Βάση)	Μ(Σώμα)	Α	В	Г	Δ	E	Z	Н	Θ	I	К
58,3±0,2	1	51±2			67±4	53±4	58±3	58±2			56±3
(mA/m)	2	62±2	53±2	64±3	63±4	63±3	59±2	64±3	57±4	51±4	64±3
	3	63±2	51±3	48±4	59±4	60±4	61±2	61±2	52±3	63±3	61±3
	4	60±3	63±2	53±4	62±4	61±4	56±3	55±3	59±3	62±3	59±3
	5	57±3	50±4	51±3	64±4	55±4	58±3	54±4		55±5	

Σχήμα 50α. Η γωνία κ εμφανίζει παραπλήσιες τιμές σε κάθε εγκάρσια τομή. Οι υπολογιζόμενες τιμές της κλίσης κ από τις ενδείξεις των αισθητήρων είναι παραπλήσιες στις μετρούμενες.

Πίνακας 20. Η μαγνήτιση Μ εμφανίζει παραπλήσιες τιμές στα όστρακα του σώματος και της βάσης του αγγείου 6. Στις χρωματισμένες περιοχές ο υπολογισμός γίνεται από τις σχέσεις ανεπαρκούς μήκους.

ΑΓΓΕΙΟ	6	
	v	

Σχήμα 50β. Η γωνία ω εμφανίζει παραπλήσιες τιμές σε κάθε διαμήκη τομή. Από τον προσανατολισμό (ω) της μετασχηματισμένης οριζόντιας συνισταμένης $M_{x\psi}^*$ στα θραύσματα του σώματος και της οριζόντιας συνισταμένης $M_{x\psi}$ στην ίδια κατεύθυνση στα θραύσματα της βάσης, προσδιορίζεται η θέση συναρμογής τους.

3.4 Συμπεράσματα και προτάσεις μελλοντικής έρευνας

Από τα πειραματικά αποτελέσματα διαπιστώνεται ότι παρά το μικρό εύρος του μέτρου Μ της μαγνήτισης στα 6 αγγεία, η διαλογή των ανασκαφικών οστράκων, μπορεί να γίνει με κριτήριο τις παραπλήσιες τιμές της μαγνήτισή τους. Παρότι η μαγνήτιση Μ των οστράκων του σώματος των αγγείων εμφανίζει μικρό εύρος τιμών (58-169 mA/m), τα συνανήκοντα όστρακα μπορούν να διακριθούν από τις τιμές της μαγνήτισής τους, που στις περισσότερες θέσεις μέτρησης είναι παραπλήσιες αυτών που υπολογίζονται στη βάση των αγγείων (πίνακας B12) στα όρια ή κοντά στα όρια του υπολογιζόμενου σφάλματος.

Η θέση των συνανηκόντων οστράκων στα σώματα των αγγείων καθορίζεται με ικανοποιητική ακρίβεια με τον υπολογισμό των γωνιών ω, κ.

Η κλίση κ που εμφανίζει παραπλήσιες τιμές σε κάθε εγκάρσια τομή και καθορίζει την καθ' ύψος θέση των οστράκων, συγκρίνεται με τη μετρούμενη κλίση των τοιχωμάτων ως προς τον άξονα συμμετρίας κάθε αγγείου. Οι υπολογιζόμενες τιμές της κλίσης κ από τις ενδείξεις των αισθητήρων είναι παραπλήσιες με τις μετρούμενες.

Η γωνία ω εμφανίζει παραπλήσια τιμή σε κάθε διαμήκη τομή και μεταβάλλεται στις εγκάρσιες θέσεις μέτρησης, καθορίζοντας την περιφερειακή θέση των οστράκων στο σώμα κάθε αγγείου. Από τον προσανατολισμό (ω) της μετασχηματισμένης οριζόντιας συνισταμένης $M_{x\psi}^{*}$ στα θραύσματα του σώματος και της οριζόντιας συνισταμένης $M_{x\psi}$ στην ίδια κατεύθυνση στα θραύσματα της βάσης, προσδιορίζεται η θέση συναρμογής τους.

Η ακρίβεια των αποτελεσμάτων μπορεί να βελτιωθεί με τη λήψη περισσοτέρων από μία μετρήσεις σε κάθε όστρακο του σώματος των αγγείων.

Το μέτρο της θερμοπαραμένουσας μαγνήτισης όπως προσεγγίζεται από την εφαρμοζόμενη μεθοδολογία μπορεί να αποτελέσει κριτήριο διαλογής των συνανηκόντων ανασκαφικών οστράκων, ενώ η κατευθυντικότητά της όπως διαμορφώνεται από την περιστροφική συμμετρία των αγγείων, μπορεί να καθορίσει τη θέση κάθε οστράκου στο σώμα του αγγείου. Η μεθοδολογία μπορεί να εφαρμοστεί για τη διαλογή της πλειονότητας των ανασκαφικών οστράκων από αγγεία που κατασκευάστηκαν στον τροχό, με ίχνη αυλακώσεων και περιστροφική συμμετρία, υπό τις παραπάνω προϋποθέσεις:

- Η εύρεση συνανηκόντων θραυσμάτων της βάσης των αγγείων είναι απαραίτητη για τον υπολογισμό της γωνίας γ απόκλισης της μαγνήτισης από τον άξονα συμμετρίας των αγγείων και των παραμέτρων α', α^{ll}, λ από μετρήσεις του μαγνητικού τους πεδίου. Αυτό δεν αποτελεί πρόβλημα, γιατί η εφαρμογή της μεθόδου δεν απαιτεί κάποια αλλαγή της διαδικασίας που συνηθίζεται για τη συστηματική διαλογή των κεραμικών ευρημάτων, κατά την οποία αρχικά συγκεντρώνονται τα χαρακτηριστικά θραύσματα της μορφής των αγγείων (βάσεις, χείλη, στόμια, λαβές) και στη συνέχεια αναζητούνται με εμπειρικό τρόπο τα συνανήκοντα θραύσματα.

- Στο σύστημα αναφοράς των οστράκων όπου λαμβάνονται οι μετρήσεις, ο x-άξονας είναι προσανατολισμένος στη διεύθυνση των αυλακώσεων του αγγείου, ενώ ο ο ψ- άξονας είναι κάθετος στην επιφάνεια και κατευθύνεται προς το εσωτερικό των οστράκων. Για τη λήψη των μετρήσεων σε όλα τα όστρακα ως προς το ίδιο σύστημα αναφοράς, ο z- άξονας πρέπει να προσανατολίζεται προς τη βάση (ή το στόμιο) του αγγείου. Ο προσανατολισμός του κάθε οστράκου προς τη βάση ή το στόμιο του αγγείου μπορεί να γίνει εύκολα, με κριτήρια το σχήμα του και την καμπυλότητα των αυλακώσεων στην επιφάνειά του.

- Το σφάλμα στον υπολογισμό των γωνιών ω, κ αυξάνεται, όσο μικρότερη είναι η επαφή των αισθητήρων με την επιφάνεια των οστράκων. Ο προσδιορισμός της θέσης οστράκων με έντονη καμπυλότητα δυσχεραίνεται, τουλάχιστον με τους αισθητήρες fluxgate μήκους ~3cm που χρησιμοποιήθηκαν στην παρούσα έρευνα. Η μεθοδολογία μπορεί να εφαρμοστεί σε θραύσματα μικρότερων αγγείων με μεγαλύτερη καμπυλότητα, με τη χρήση αισθητήρων fluxgate μικρότερου μήκους. Σε κάθε περίπτωση, τα θραύσματα μικρότερων αγγείων είναι ευκολότερο να ταξινομηθούν με εμπειρικό τρόπο, λόγω της χαρακτηριστικής καμπυλότητάς τους.

Για συμπληρωματική διερεύνηση, προτείνονται οι ακόλουθες προτάσεις μελλοντικής έρευνας:

1. Δοκιμαστική εφαρμογή της μεθόδου σε όστρακα από αρχαιολογικές ανασκαφές.

2. Κατασκευή κεραμικών δοκιμίων από διαφορετικές πρώτες ύλες και με διαφορετική κοκκομετρία, ψημένα στον ίδιο κλίβανο κεραμικής υπό διαφορετικές κλίσεις στο δάπεδο του κλιβάνου.

- Κατασκευή κεραμικών δοκιμίων από την ίδια πρώτη ύλη, ψημένα με την ίδια κλίση στον ίδιο κλίβανο, αλλά υπό διαφορετικές οξειδωτικές συνθήκες και σε διαφορετικές θερμοκρασίες.

-Ανάλυση της σύστασης των δοκιμίων και της περιεκτικότητάς τους σε μαγνητικά οξείδια.

Τα παραπάνω είναι απαραίτητα για την εξάρτηση της παραμένουσας μαγνήτισης από τη σύσταση του πηλού, από τις συνθήκες θερμοκρασίας/αερισμού στον κλίβανο όπτησης, από την κατευθυντικότητα του γεωμαγνητικού πεδίου και τον βαθμό μαγνητικής ανισοτροπίας του κεραμικού υλικού. Για την παραπάνω έρευνα, απαιτείται παραδοσιακός ξυλόφουρνος κεραμικής. Σε κεραμικά δοκίμια από διαφορετικούς πηλούς του εμπορίου που ψήθηκαν σε ηλεκτρικό φούρνο, το μετρούμενο μαγνητικόν πεδίο ήταν μικρότερο από 10nT και χωρίς σαφή κατευθυντικότητα, ως αποτέλεσμα των μαγνητικών πεδίων από τα ηλεκτρικά ρεύματα του κλιβάνου.

3. Διερεύνηση της εξάρτησης των ακτίνων ευαισθησίας του κάθετου (α^ι) και του παράλληλου (α^{//}) αισθητήρα από το μέτρο της μαγνήτισης του κεραμικού υλικού.

-Διερεύνηση του τρόπου, του βαθμού διέγερσης των αισθητήρων και της εξάρτησης του παράγοντα διόρθωσης λ των ενδείξεων του κάθετου και των ακτίνων ευαισθησίας α^ι, α^{//} του κάθετου και του παράλληλου αισθητήρα, από μετρήσεις των ίδιων δοκιμίων σε διαφορετικές αποστάσεις από την επιφάνειά τους.

Προϋπόθεση για τα παραπάνω αποτελούν μετρήσεις του μαγνητικού πεδίου σε κεραμικά υλικά με μεγαλύτερη θερμοπαραμένουσα μαγνήτιση, έτσι ώστε το μαγνητικό τους πεδίο να εξασθενεί σε μεγαλύτερες αποστάσεις από την επιφάνειά τους.

-Διερεύνηση της εξάρτησης της σταθεράς κανονικοποίησης λ των ενδείξεων του κάθετου και του παράλληλου αισθητήρα και συσχέτισή της με τις διαστάσεις και τα τεχνικά χαρακτηριστικά των αισθητήρων, από μετρήσεις των ίδιων δοκιμίων από αισθητήρες fluxgate διαφορετικού τύπου.

4. Διερεύνηση της δυνατότητας κατασκευής εύχρηστου μαγνητόμετρου fluxgate τριών αισθητήρων για τοπικές επιφανειακές μετρήσεις ασθενών πεδίων (1-1000nT) σε κεραμικά υλικά με μαγνήτιση 1-1000 mA/m για αρχαιολογική χρήση.

5. Διερεύνηση της επαγόμενης μαγνήτισης του κεραμικού υλικού σε εναλλασσόμενο μαγνητικό πεδίο ως πρόσθετο κριτήριο για τη διαλογή των συνανηκόντων ανασκαφικών οστράκων.

Πειράματα διεξήχθησαν με τη διαδοχική τοποθέτηση κεραμικών κυλινδρικών δοκιμίων από συνανήκοντα όστρακα αγγείων σε συγκεκριμένες θέσεις εντός σωληνοειδούς (L~3mH) σε κύκλωμα RLC σε πεδίο (~50 μT,) και υπολογίστηκε η επαγόμενη μαγνήτιση από την αύξηση της αυτεπαγωγής του πηνίου στη συχνότητα [34] (pp.21-34) συντονισμού (τεχνική *Null Detection*) του κυκλώματος. Κατά τη διαδοχική πρόσθεση συνανηκόντων πλακιδίων σε διαφορετικές συχνότητες συντονισμού (f=40-95KHz), διαπιστώθηκαν παραπλήσιες αυξήσεις της επαγόμενης μαγνήτισής τους, που αποτελούν κριτήριο διάκρισης δοκιμίων από διαφορετικά αγγεία.

-Διερεύνηση της δυνατότητας κατασκευής εύχρηστου οργάνου για τοπικές επιφανειακές μετρήσεις της επαγόμενης μαγνήτισης του κεραμικού υλικού από εναλλασσόμενο μαγνητικό πεδίο για αρχαιολογική χρήση με σκοπό τη διαλογή των συνανηκόντων ανασκαφικών οστράκων.

6. Διερεύνηση εφαρμογής της μεθόδου σε πετρώματα με παραμένουσα μαγνήτιση [26], για τον εντοπισμό αλλαγών της μορφολογίας του εδάφους σε τοπικό επίπεδο, με τη σύγκριση της κατευθυντικότητας του μαγνητικού πεδίου του μητρικού πετρώματος και των αποσπασμένων τμημάτων του.

Αναφορές

- 1. Archaeomagnetic Applications for the Rescue of Cultural Heritage-AARCH, 2002–2006. Available online: http://dourbes.meteo.be/aarch.net/onlytxt/no.frame.html (accessed on 22 June 2019).
- Burnham, R.J.P.; Tarling, D.H. Magnetization of Shards as an Assistance to the Reconstruction of Pottery Vessels. Stud. Conserv. 1975, 20, 152–157.
- Castañeda, A.G.; Brown, B.; Rusinkiewicz, S.; Funkhouser, T.; Weyrich T. Global consistency in the automatic assembly of fragmented artefacts. In Proceedings of the 12th International Symposium on Virtual Reality Archaeology and Cultural Heritage VAST, Prato, Italy, 18–21 October 2011; pp. 73–80.
- 4. Karasik, A.; Smilansky, U. Computerized morphological classification of ceramics. J. Archaeol. Sci. 2011, 38, 2644–2657.
- Cooper, D.B.; Willis, A.; Andrews, S.; Baker, J.; Cao, Y.; Han, D.; Kang, K.; Leymarie, F.F.; Orriols, X.; et al. Assembling virtual pots from 3D measurements of their fragments. In Proceedings of the Conference on Virtual Reality Archeology and Cultural Heritage, Athens, Greece, 28–30 November 2001; pp. 241–254.
- Willis, A.; Orriols, X.; Cooper, D. B. Accurately estimating sherd 3D surface geometry with application to pot reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, Madison, WI, USA, 16–22 June 2003; p. 5.
- Willis, A.R.; Cooper, D.B. Bayesian assembly of 3d axially symmetric shapes from fragments. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 27 June–2 July 2004.
- Maiza, C.; Gaildrat, V. Automatic Classification of Archaeological Potsherds. Available online: https://pdfs.semanticscholar.org/3c95/82c3e562b44e7d61dc0fd3487ea3dc977ff3.pdf?_ga=2.206671379.1607405463.156440 4747-123545983.1564404747 (accessed on 29 August 2019).
- Belenguer, C.S.; Vidal, E.V. Archaeological Fragment Characterization and 3D Reconstruction based on Projective GPU Depth Maps. In Proceedings of the IEEE 18th International Conference on VSMM, Milan, Italy, 2–5 September 2012; pp. 275–282.
- Cohen, F.; Zhang, Z.; Jeppson, P. Virtual reconstruction of archaeological vessels using convex hulls of surface markings. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), San Francisco, CA, USA, 13–18 June 2010; pp. 55–61.
- Melero, F.J.; Torres, J.C.; León, A. On the interactive 3D reconstruction of iberian vessels. In Proceedings of the 4th International conference on Virtual Reality Archaeology and Intelligent Cultural Heritage, Brighton, UK, 5-7/11/2003; pp. 71–78.
- 12. Oxholm, G.; Nishino, K. A flexible approach to reassembling thin artifacts of unknown geometry. J. Cult. Herit. 2013, 14, 51–61.
- Papaioannou, G.; Karabassi, E.A.; Theoharis, T. Automatic Reconstruction of Archaeological Finds-A Graphics Approach. In Proceedings of the 4th International Conference Computer Graphics and Artificial Intelligence, Limoges, France, 3-4/5 2000; pp. 117–125.
- Papaioannou, G.; Karabassi, E.A.; Theoharis, T. Reconstruction of three-dimensional objects through matching of their parts. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 114–124.
- 15. Üçoluk, G.; Toroslu, I.H. Automatic reconstruction of broken 3-D surfaces objects. Comput. Graph. 1999, 23, 573–582.
- Mara, H.; Kampel, M.; Sablatnig, R. Preprocessing of 3D-Data for Classification of Archaeological Fragments in an Automated System. In Proceeding of the 26th Workshop of the Austrian Association for Pattern Recognition, Vision with Non-Traditional Sensors, (ÖAGM/AAPR), Graz, Austria, 10–11 September 2002.
- Mara, H.; Sablatnig, R. Orientation of Fragments of Rotationally Symmetrical 3D-Shapes for Archaeological Documentation. In Proceedings of the IEEE Third International Symposium on 3D Data Processing, Chapel Hill, NC, USA, 14–16 June 2006; pp. 1064–1071.
- 18. Leitao, H.C.; Stolfi, J. Measuring the information content of fracture lines. Int. J. Comput. Vis. 2005, 65, 163–174.
- Hlaváčková-Schindler, K.; Kampel, M.; Sablatnig, R. Fitting of a closed planar curve representing a profile of an archaeological fragment. In Proceedings of the Conference on Virtual reality, archeology and cultural heritage, Glyfada, Greece, 28–30 November 2001; pp. 263–269.
- Kashihara, K. Three-dimensional Reconstruction of Artifacts Based on a Hybrid. Genetic Algorithm. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Seoul, Korea, 14–17 October 2012; 900–905.
- Son, K., Almeida, E.B.; Cooper, D.B. Axially Symmetric 3D Pots Configuration System Using Axis of Symmetry and Break Curve. In Proceedings of the IEEE 26th Conference on Computer Vision and Pattern Recognition, Portland OR, USA, 23-28/6/2013; pp. 257–264.

- Kampel, M.; Sablatnig, R. Profile-based Pottery Reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, Madison WI, USA, 16–22 June 2003.
- Kampel, M.; Sablatnig, R. On 3D mosaicing of rotationally symmetric ceramic fragments. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 26–26 August 2004.
- 24. Kampel, M., Sablatnig, R. An Automated Pottery Archival and Reconstruction System. J. Vis. Comput. Animat. 2003, 14, 111–120.
- Kampel, M., Sablatnig, R.; Mara, H. Robust 3d Reconstruction of Archaeological Pottery Based on Concentric Circular Rills. In Proceedings of 6th International Workshop on Image Analysis for Multimedia Interactive Services, Monterux, Switzerland, 2005; pp. 14–20.
- Zhou, M.; Geng, G.; Wu, Z.; Shui, W. A Virtual Restoration System for Broken Pottery. In Proceedings of the CAA Conference 37th Computer applications and quantitative methods in archaeology, Williamsburg, Virginia, USA, 22-26/3/ 2009; pp. 391–396.
- Smith, P.; Bespalov, D.; Shokoufandeh, A.; Jeppson, P. Classification of archaeological ceramic fragments using texture and color descriptors. In Proceedings of the IEEE, Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), San Francisco, California, USA, 22-26/3/2010; pp. 49–54.
- Huang, Q.X.; Flory, S.; Gelfand, N.; Hofer, M.; Pottmann, H. Reassembling fractured objects by geometric matching. ACM Transact. Graph. 2006, 25, 569–578.
- Halíř, R. An Automatic Estimation of the Axis of Rotation of Fragments of Archaeological Pottery: A Multi-Step Model-Based Approach. In Proceeding of 17th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media, 1999; pp. 1–7.
- Sablatnig, R.; Menard, C. 3D Reconstruction of archaeological pottery using profile primitives. In Proceeding of the International Workshop on Synthetic-Natural Hybrid Coding and Three-Dimensional Imaging, Rhodes, Greece, 5–9 September 1997; pp. 93–96.
- Andrews, S.; Laidlaw, D.H. Toward a Framework for Assembling Broken Pottery Vessels. In Proceeding of the 18th International Conference on Artificial Intelligence, Alberta, Canada 27-30/7/ 2002; pp. 945–946.
- Cao, Y.; Mumford, D. Geometric structure estimation of axially symmetric pots from small fragments. In Proceedings of the International Conference on Signal Processing, Pattern Recognition and Applications, Creta, Greece, 25–28 June 2002; pp. 92–97.
- 33. Lu, Y.; Gardner, H.; Jin, H.; Liu, N.; Hawkins, R.; Farrington, I. Interactive Reconstruction of Archaeological Fragments in a Collaborative Environment. In Proceedings of the IEEE 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, Glenelg, Australia, 3–5 December 2007; pp. 23–29.
- 34. Collinson, D.W. (Ed.); Methods in Rock Magnetism and Palaeomagnetism: Techniques and Instrumentation, London. Chapman and Hall: New York, NY, USA, 1983; pp. 208–223.
- Subir, K.B. Experimental Methods in Rock Magnetism and Paleomagmetism. In Advances in Geophysics. Barry Saltzman Ed.); Academic Press: New York, NY, USA, 1981; 23, pp. 36–41.
- Molyneux, L. A complete result magnetometer for measuring the remanent magnetization of rocks. Geophys. J. Int. 1971, 24, 429–433.
- 37. Available online: http://bartington.jp/Literaturepdf/Datasheets/Mag-03%20DS0013.pdf (accessed on 22 April 2019).
- Armen, G.B. Phase Sensitive Detection: The lock-in Amplifier. Department of Physics and Astronomy, University of Tennesse Knoxville, Knoxville TN, USA; Available online: http://server1.phys.utk.edu/labs/modphys/Lock-In%20Amplifier%20Experiment.pdf (accessed on 22 April 2019).
- Available online: http://www.phys.utk.edu/labs/modphys/Lock-In%20Amplifier%20Experiment.pdf (accessed on 22 April 2019).
- 40. Available online: https://www.thinksrs.com/downloads/pdfs/manuals/SR830m.pdf (accessed on 22 April 2019).
- 41. Purcell, E. Electricity Magnetism, 2nd ed.; University publications of the National Technical University of Athens, Athens, Greece, 2004.
- 42. Curie, P. Propriétés magnétiques des corps à diverses temperatures; Gauthier-Villars et fils: Paris, France, 1895. Available online: https://archive.org/details/propritsmagntiq00curigoog/page/n7 (accessed on 22-4-2019).
- 43. J.P. Spivasatava, Elements of Solid State Physics, PHI Learning Pvt. Ltd, 2014, Chapter 13, page 438.
- 44. Chrisman J. Richard, Fundamentals of solid State Physics, J. Wiley, New York, 1988
- 45. Available online: http://earthref.org/MAGIC/books/Tauxe/Essentials/(accessed on 22 April 2019).
- 46. Available online: http://www.irm.umn.edu/hg2m/hg2m_b/hg2m_b.html (accessed on 22 April 2019).

- Available online: http://www-users.york.ac.uk/~rfle500/posts/2015/05/reconciling-quantum-and-classical-magnetism/ (accessed on 22 April 2019).
- 48. Francis Bitter, Experiments of the Nature of Ferromagnetism, Physical Review, vol.41, page 507, 15 August 1932.
- 49. Heinrich Barkhausen, The Barkhausen effect, Physical Review, vol.24, page 439, 1 October 1924.
- 50. John Kerr and Michael Faraday, Theory of the Faraday and Kerr Effects in Ferromagnetics, Physical Review, vol.97, page 334, 15 January 1955.
- 51. Available online: https://commons.wikimedia.org/wiki/File:Bethe-Slater_curve_by_Zureks.svg (accessed on 22 April 2019).
- 52. Available online: https://www.cond-mat.de/events/correl13/manuscripts/lichtenstein.pdf (accessed on 22 April 2019).
- Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96, 99–102 (1954).
- Available online: http://flash.lakeheadu.ca/~gborrada/uploads/docs/2004-GB-MJ-AMSrev-A.pdf (accessed on 22 April 2019).
- 55. Γ. Κιοσέογλου, Εισαγωγή στα μαγνητικά υλικά, Τμήμα Επιστήμης και Τεχνολογίας Υλικών του Πανεπιστημίου Κρήτης.
- 56. Fletcher, E. J., and W. O'Reilly, Contribution of Fe^{2+} ions to the magnetocrystalline anisotropy constant K of Fe_{3x} Ti_x O₄, (0 < x < 0.1), Proc. Phys.Soc. London Solid State Phys., 7, 171-178.
- 57. Syono και Ishikawa (1963), Magnetocrystalline anisotropy and magnetostiction of Fe₂TiO₄(1-x)Fe₃O₄ (x>0,5), J.Phys.Soc.Japan, 19,1752.
- 58. Joule, J.P. (1847), , The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.
- Bruce M. Moskowitz, High-temperature magnetostriction of magnetite and titanomagnetites, Papers on Geomagnetism and Paleomagnetism Marine Geology and Geophysics, volume 98, Issue B1, 10/1/93, pages 359-371.
- 60. Kittel, Charles, Introduction to Solid State Physics, 1986, John Wiley and Sons.
- 61. Available online: http://setiabudidaya-magnetism.blogspot.gr/ (accessed on 22 April 2019).
- 62. D.H.Tarling, Palaeomagnetism. Principles and Applications in Geology, Geophysics and Archaeology, 1983, Chapman and Hall, London-New York.
- 63. Sporer,H., On viscous remainment magnetization of synthetic multidom+ aintitanomagnetite, 1984, Geophysic Res. Let., 11, No3, 209-212.
- 64. Khramov A.N., L.E., Paleomagnetism. Principles, Methods and Geological Applications of paleomagnetology, 1967, pp251, Nedra.
- 65. Jacobs, J.A., Geomagnetism, 1987, vol.3, Academic Press
- 66. McClelland, E. and V. P. Shcherbakov, Metastability of domain state in multi-domain magnetite: Consequences for remanence acquisition, 1995, J.Geophys., Res.100, NoB3, 3841-3857.
- 67. Johnson, H.P., R. T. Merril, Low-Temperature Oxidation of a Single-Domain Magnetite, 1974, Geophys. Res., 79, 5533-5534.
- Nishitani T., M. Kono, Effect of Low-Temperature Oxidation on the Remanence Properties of Titanomagnetites, 1989, J. Geomag. Geoelectr., 41, 19-38.
- 69. Dunlop, D. J., The rock magnetism of fine particles, 1981, Phys. Earth Plan. Inter., 26, 1-26
- 70. D.H. Tarling, Paleomagnetism 1st ed; Springer: Heidelberg, Germany, 1983; pp. 15–107.
- 71. Chikazumi, S., Physics of Ferromagnetism, 2nd ed.; Oxford science publications, UK: 2009; pp. 118-245.
- 72. L. Tauxe, Paleomagnetic Principles and Practice, Springer Science & Business Media, 2006
- 73. Ronald T. Merrill, M. W. McElhinny, Phillip L. McFadden, The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle, Academic Press, 1998
- 74. Available online: https://www.mindat.org/min-48762.html (accessed on 22 April 2019).
- 75. Available online: http://www.geo.auth.gr/106/8_silicates/phyllo/serpentine.htm (accessed on 22 April 2019).
- Curie, P. «Propriétés magnétiques des corps à diverses temperatures»; Gauthier-Villars et fils: Paris, France, 1895. Available online: https://archive.org/details/propritsmagntiq00curigoog/page/n7 (accessed on 22-4-2019).
- 77. Morrish, A.H., The Physical Principles of Magnetism, 3rd ed.; Institute of Electrical and Electronics Engineers, IEEE Press: New York, NY, USA, 2001; pp. 46–75.
- Eighmy, J.L.; Sternberg, R.S. (Eds), Archaeomagnetic Dating, 3nd ed.; Arizona Press University : Tucson, AZ, USA, 1990; pp. 5–236.
- 79. Lanos, P.; Chauvin, A.; Kovacheva, M., Archaeomagnetism, methodology and applications: Implementation and practice of the archaeomagnetic method in France and Bulgaria, Eur. J. Archaeol. 1999, 2,365–392.
- Ouahabi, M.; Daudi, L.; Hatert, F.; Fagel, N. Modified Mineral., Phases During Clay Ceramic Firing, Clays Clay Mineral. 2015, 63, 404–413.
- Gliozzo, E.; Baldassarre, G.; Turchiano, M.; Memmi, I. T., From the kilns to the fair: Producing building materials at Faragola and Canusium (northern Apulia, Italy), Archaeol. Anthropol. Sci. 2016, 8, 705–729.

- Gliozzo, E.; Iacoviello, F.; Foresi, L. M., Geosources for ceramic production: The clays from the Neogene–Quaternary Albegna Basin (southern Tuscany), Appl. Clay Sci. 2014, 91, 105–116.
- Cullity, B.D.; Graham, C.D., Introduction to Magnetic Materials», 2nd ed.; Institute of Electrical and Electronics Engineers, John Willey & sons Puplication: Hoboken, New Jersey, USA, 2008; pp. 87–111.
- Hunt, C.P., Moskowitz, B.M.; Banerjee, S.K., Magnetic Properties of Rocks and Minerals, In Book Rock Physics & Phase Relations A Handbook of Physical Constants; Ahrens, T.J., Ed.; Washington, DC, USA, 1995; pp. 190–191.
- 85. J. Dearing, Environmental Magnetic Susceptibility, 2nd ed., Chi Publishing, Kenilworth, UK, 1994; pp. 40–41. Available online: https://gmw.com/magnetic_properties/pdf/Om0409%20J_Dearing_Handbook_iss7.pdf (accessed on 22 April 2019).
- 86. J.Dearing, Environmental Magnetic Susceptibility: Using the Bartington MS2 System, Chi Pub., 1994
- 87. Cornell, R.M.; Schwertmann, U., The Iron Oxides, 2nd ed.; WILEY-VCH, Verlag, GmbH & Co: Weinheim, Germany, 2003.
- 88. Bohor, B.F., High-Temperature Phase Development in Illitic Clays, Clays Clay Mineral. 1963, 12, 233-246.
- Galan, E.; Vivaldi, J. M.; Aguayo, F. L., Mineralogy and Genesis of the Wealdian Sediments in the Southern Cordillera Iberica (Spain), Clays Clay Mineral. 1975, 23, 323–330.
- Freestone, I.; Middleton, A., Mineralogical applications of the analytical SEM in archaeology, Mineral. Mag. 1987, 51, 21– 31.
- 91. Dondi, M.; Guarini, G.; Raimondo, M., Trends in the formation of crystalline and amorphous phases during the firing of claybricks, Tile Brick Int. 1999, 15, 176–183.
- Duminuco, P.; Messiga, B.; Riccardi, M.P., Firing process of natural clays. Some microtextures and related phase compositions, Thermochim. Acta 1998, 321, 185–190.
- Cultrone, G.; Rodriguez-Navarro, C.; Sebastian, E.; Cazalla, O.; De la Torre, M.J., Carbonate and silicate phase reactions during ceramic firing, Eur. J. Mineral. 2001 13, 621–634.
- González-García; F; Romero-Acosta, V.; García-Ramos, G.; GonzálezRodríguez, M., Firing transformations of mixtures of clays containing illite, kaolinite and calcium carbonate used by Ornamental Tile Industries, Appl. Clay Sci. 1990, 5, 361– 375.
- Maggetti, M., Phase Analysis and its Significance for Technology and Origin, In Archaeological Ceramics; Olin, J.S., Franklin, A., Smithsonian, D., Eds.; Smithsonian Institution Press: Gaithersburg, MA, USA, 1982; pp. 121–133.
- Bauluz, B.; Mayayo, M.J.; Yuster, A.; Fernandez-Nieto, C.; Gonzalez Lopez., TEM study of mineral transformations in fired carbonated clays: Relevance to brickmaking, Clay Mineral. 2004, 39, 333–344.
- Zhu, Z.; Jiang, T.; Li, G.; Guo, Y.; Yang, Y., Thermodynamics of reactions among Al₂O₃, CaO,SiO₂ and Fe₂O₃ during roasting processes, Available online: https://www.intechopen.com/books/thermodynamics-interaction-studies-solids-liquids-and-gases/thermodynamics-of-reactions-among-al2o3-cao-sio2-and-fe2o3-during-roasting-processes (accessed on 29 August 2019).
- 98. Christine Rathosi, Archaeological Ceramics of the NW Peloponnese: Petrographic, Mineralogical, Geochemical and Archaeometric Approach, Department of Geology, University of Patras: Patra, Greece, 2005. Available online: www.geology.upatras.gr/images/pdf/pro/petrografia/Rathossi_CV.pdf (accessed on 23 April 2019).
- 99. Maniatis, Y.; Simopoulos, A.; Kostikas, «A. Effect of reducing atmosphere on minerals and iron oxides developed in fired clays: The role of Ca» J. Am. Ceram. Soc. 1983, 66, 773–781.
- 100. Stępkowska, E.T.; Jefferis, S.A., Influence of microstructure on firing colour of clays, Appl. Clay Sci. 1992, 6, 319–342.
- 101. Molera, J.; Pradell, T.; Vendrell-Saz, M., The colours of Ca-rich ceramic pastes: Origin and characterization, Appl. Clay Sci. 1998, 13, 187–202.
- 102. W.O'Reilly (1984), Rock and mineral magnetism, Blackie & Son,132-171.
- 103. Shortland, A.J.; Freestone, I.C.; Rehren, T. (Eds.), The Emergence of Ceramic Technology and its Evolution aw Revealed with the use of Scientific Techniques, Advances in the study of Ancient Archaeology; Oxbow Books: Oxford, UK, 2009. Available online:

https://www.researchgate.net/publication/228776265_The_Emergence_of_Ceramic_Technology_and_its_Evolution_as_Rev ealed_with_the_use_of_Scientific_Techniques . (accessed on 29-7-2019).

104. Atkinson, D.; King, J. A., Fine particle magnetic mineralogy of archaeological ceramics, J. Phys. Conf. Ser. 2005, 17, 145– 149.

ПАРАРТНМА А

ΜΑΓΝΗΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΥΛΙΚΩΝ

Εισαγωγή

Κάθε υλικό υπό την επίδραση εξωτερικού πεδίου $\vec{B}_{out} = \mu_0 \cdot \vec{H} \left[\frac{T.m}{A} \cdot \frac{A}{m} = T \right]$, αποκτά μαγνήτιση $\vec{M} \left[\frac{A}{m} \right]$ και εμφανίζει μεταβολή $\vec{B}_{in} = \mu_0 \cdot \vec{M}$ στο εσωτερικό του πεδίο, σε σχέση με το εφαρμοζόμενο πεδίο^{*} \vec{H} .

Η μαγνήτιση όγκου $\vec{M}_{v} = \frac{\vec{m}}{V} [A.m^{2}/m^{3} = A/m = J/T.m^{3}]$ αποτελεί την επαγόμενη διπολική ροπή \vec{m} ανά κυβικό μέτρο. Το γινόμενο $\vec{B}_{out} = \mu_{o}\vec{H}$, αντιστοιχεί στο μαγνητικό πεδίο \vec{H} , χωρίς την παρουσία (M=0) του υλικού.

Η ολική ρευστότητα του μαγνητικού πεδίου εντός μιας εγκάρσιας τομής της μονάδας του υλικού, ως συνολικό αποτέλεσμα του εξωτερικού πεδίου $\vec{B}_{out} = \mu_o \vec{H}$ και του πεδίου $\vec{B}_{in} = \mu_o \vec{M}$ της μαγνήτισης του υλικού, υπολογίζεται από το διανυσματικό άθροισμα: $\vec{B} = \vec{B}_{out} + \vec{B}_{in} = \mu_o (\vec{H} + \vec{M})$ (A1)

Σχήμα Α1 Απεικόνιση της μεταβολής των δυναμικών γραμμών του πεδίου, εκτός $(\vec{B}_{out} = \mu_o.\vec{H})$ και εντός $\vec{B} = \vec{B}_{out} + \vec{B}_{in} = \mu_o(\vec{H} + \vec{M})$ των διαμαγνητικών, παραμαγνητικών και σιδηρομαγνητικών υλικών, που οφείλεται στο πεδίο της μαγνήτισης $\vec{B}_{in} = \mu_o.\vec{M}$ του υλικού.

Οι ουσίες διακρίνονται αναλόγως της μαγνητικής συμπεριφοράς τους (σχήμα A1) σε διαμαγνητικές, παραμαγνητικές και σιδηρομαγνητικές.

Σε καταστάσεις μη μαγνητικού κορεσμού, η σχέση του μαγνητικού πεδίου εντός (\vec{B}_{in}) και εκτός (\vec{B}_{out}) των διαμαγνητικών και των παραμαγνητικών υλικών είναι γραμμική, σύμφωνα με τη σχέση:

$$\vec{B}_{in} = \chi \cdot \vec{B}_{out} \ \eta \ \vec{M} = \chi \cdot \vec{H}$$
 (A2)

Με την αντικατάσταση της τελευταίας σχέσης στην (A2) προκύπτει:

$$\vec{\mathbf{B}} = (1+\chi)\vec{\mathbf{B}}_{out} \quad \acute{\boldsymbol{\eta}} \quad \vec{\mathbf{B}} = \mu_o(\chi+1).\vec{\mathbf{H}}$$
(A3)

1

^{*} Αρκετοί συγγραφείς, κυρίως για ιστορικούς λόγους, συμβολίζουν με Η [A/m] το κύριο μαγνητικό πεδίο, ενώ το Β [T] αναφέρεται ως μαγνητική επαγωγή. Για πρακτικούς λόγους, ο συμβολισμός Η έχει επικρατήσει για τα παραγόμενα πεδία από συνήθη «ελεύθερα» ρεύματα αγωγιμότητας, ενώ ο συμβολισμός Β για τα μαγνητικά πεδία που οφείλονται στο άθροισμα «ελεύθερων» και «δέσμιων» ρευμάτων παραγόμενα από ενδογενείς μαγνητικές ατομικές ή μοριακές ροπές, που ισοδυναμούν με μικροσκοπικούς βρόχους ρεύματος. Επειδή είναι ασύνηθες να ονομάζεται το γήινο μαγνητικό πεδίο Β, ως γήινη μαγνητική επαγωγή Β, στη συνέχεια του κειμένου και όπου δεν υπάρχει σχετική επισήμανση, ο συμβολισμός Β θα χρησιμοποιηθεί για το κύριο μαγνητικό πεδίο εντός της ύλης, ενώ το Η για το συμβολισμό του μαγνητικού πεδίου στο κενό.

• Sta diamagnytiká uliká (scíma A1a), ópou $-10^4 < \chi < 0$, to sunolikó eswterikó magnytikó pedío $\vec{B} \approx \mu_0 \vec{H}$ (H>>M), eínai lígo mikrótero apó to exwterikó magnytikó pedío \vec{B}_{out} . Oi dunamikéc gramméc tou pedíou \vec{B} empanízoun mikrá araíwst entrés two diamagnytikón ulikón, me apotélesma thu asbení apómotous apó to exwterikó pedío.

• Sta paramagnytiká uliká (scáma A1b), ópou $10^{-6} < \chi < 10^{-2}$, to sunolikó eswterikó magnytikó pedío $\vec{B} \approx \mu_0 \vec{H}$ (H>>M), eínai lígo megalútero apó to exwterikó pedío \vec{B}_{out} . Oi dunamikéc grammés tou pedíou \vec{B} empanízoun mikrá púknwst entro two paramagnytikón ulikón, me apotélesma thu asbení élém touc apó to exwterikó pedío.

• Στα σιδηρομαγνητικά υλικά (σχήμα A1γ,δ), όπου $\chi > 10^2$, το συνολικό εσωτερικό μαγνητικό πεδίο $\vec{B} >> \mu_0 \vec{H}$ είναι αρκετά μεγαλύτερο από το εξωτερικό πεδίο \vec{B}_{out} . Οι δυναμικές γραμμές του πεδίου \vec{B} εμφανίζουν ισχυρή πύκνωση εντός των σιδηρομαγνητικών υλικών, με αποτέλεσμα την ισχυρή έλξη τους από το εξωτερικό πεδίο.

-Η σχέση μεταξύ της μαγνήτισης \overline{M} και του εφαρμοζόμενου μαγνητικού πεδίου \overline{H} στα διαμαγνητικά και τα παραμαγνητικά υλικά, εκφράζεται από τον αδιάστατο λόγο $\chi_v \equiv \chi = \frac{M}{H}$, που χαρακτηρίζεται μαγνητική επιδεκτικότητα όγκου και αποτελεί τη συνολική μαγνητική ροπή ανά μονάδα όγκου:

$$M \equiv M_v = \chi.H \qquad [A.m^2/m^3] \qquad (A4)$$

-Το πηλίκο $\chi_m = \frac{\chi}{\rho} [\frac{m^3}{Kg}]$ (A5α) αποτελεί τη μαγνητική επιδεκτικότητα μάζας, σε μονάδες αντίστροφης πυκνότητας $\rho [\frac{Kg}{m^3}]$. Με τη χρήση της σχέσης (A2), ορίζεται η μαγνήτιση \vec{M}_m ανά μονάδα μάζας, που αποτελεί τη συνολική επαγόμενη διπολική ροπή $\vec{m}[A.m^2]$ ανά κιλό υλικού:

$$\chi_{\rm m} = \frac{M_{\rm m}}{\rm H} \Leftrightarrow M_{\rm m} = \chi_{\rm m}.{\rm H} \quad \left[\frac{{\rm m}^3}{{\rm kg}}.\frac{{\rm A}}{{\rm m}} = \frac{{\rm A}.{\rm m}^2}{{\rm kg}}\right] \tag{A5\beta}$$

To γινόμενο $\chi_{mol} = g_{mol} \cdot \chi_m \left[\frac{\text{kg}}{\text{mol}} \cdot \frac{\text{m}^3}{\text{Kg}} = \frac{\text{m}^3}{\text{mol}}\right]$ (Α6α) αποτελεί τη μοριακή μαγνητική επιδεκτικότητα, που ορίζεται μέσω της γραμμομοριακής μάζας $g_{mol} \left[\frac{\text{Kg}}{\text{mol}}\right]$. Με τη χρήση της σχέσης (Α2) ορίζεται η μαγνήτιση \vec{M}_{mol} ανά mol υλικού, που αποτελεί τη συνολική επαγόμενη διπολική ροπή \vec{m} [A.m²] ανά mol υλικού:

$$\chi_{\rm mol} = \frac{M_{\rm mol}}{H} \Leftrightarrow M_{\rm mol} = \chi_{\rm mol}.H \qquad [\frac{m^3}{\rm mol}.\frac{A}{m} = \frac{A.m^2}{\rm mol}] \qquad (A6\beta)$$

An $V_{mol}[m^3/mol]$ o grammomoriands dynos, oi magnitude epidentikés epidentikátictic χ_m kai χ_{mol} sundéontai me th scésh: $\chi_{mol} = g_{mol} \cdot \chi_m = g_{mol} \cdot \frac{\chi}{\rho} = V_{mol} \cdot \chi$ (A7a)

Oi μαγνητίσεις M,M_m και M_{mol} συνδέονται με τη σχέση: $M_{mol} = g_{mol} M_m = g_{mol} M_m = V_{mol} M$ (A7β)

Το γινόμενο $\mu=\mu_{o}.(\chi+1)$ (A8α) στη σχέση $B=\mu_{o}.(\chi+1).H=\mu.H$ (A3), σε μονάδες [^{T.m}/_A], αποτελεί τη μαγνητική διαπερατότητα του υλικού. Το αδιάστατο πηλίκο $\mu_{r}=\frac{\mu}{\mu_{o}}=\chi+1$ (A8β) χαρακτηρίζεται σχετική μαγνητική διαπερατότητα του υλικού και η σχέση (A3) γράφεται: $B=\mu_{r}\mu_{o}.H$

Η μαγνητική επιδεκτικότητα των σιδηρομαγνητικών υλικών δεν είναι βαθμωτή ποσότητα. Η μαγνήτιση \vec{M} μπορεί να έχει διαφορετική κατεύθυνση από εκείνη του εφαρμοζόμενου πεδίου \vec{H} (σχήμα A1δ) και η μαγνητική επιδεκτικότητα ορίζεται από τον τανυστή $\chi_{ij} = \frac{M_i}{H_j}$ (A.9), που περιγράφει τη συμπεριφορά της i-

sunistivs as the magnitudes \vec{M} , upd the epideash the j -sunistivs as toupedian \vec{H} .

Πειραματικά χρησιμοποιείται η σχέση $\chi_f = \frac{dM}{dH}$ (A10) για κάθε κατεύθυνση μέτρησης, όπου η μετρούμενη μαγνητική επιδεκτικότητα χ_f δεν είναι σταθερή, αλλά εξαρτάται τόσο από την τιμή της έντασης Η όσο και από τη μηχανική, θερμική και μαγνητική προϊστορία του υλικού. Σε ισχυρά μαγνητικά υλικά, για τα οποία ισχύει M>>H, η σχέση (A1) προσεγγίζεται: $B \approx \mu_o M$

Η διαφορετική μαγνήτιση M των υλικών εντός του εφαρμοζόμενου μαγνητικού πεδίου H, μπορεί να ερμηνευτεί ως μοναδικό αποτέλεσμα της αλληλεπίδρασης του μαγνητικού πεδίου μικροσκοπικών ρευματοφόρων βρόχων κατανεμημένων σε όλο το υλικό, με το εξωτερικό μαγνητικό πεδίο. Η αλληλεπίδραση των ηλεκτρικών ρευμάτων εντός των ατόμων με μαγνητικά πεδία, διερευνάται χωρίς προχωρημένες έννοιες κβαντομηχανικής, βάσει της αρχικής κβαντικής θεωρίας του Bohr. Κατά το πλανητικό μοντέλο του Bohr (σχήμα A2a), οι επιτρεπόμενες τροχιές ακτίνας r των ηλεκτρονίων μάζας m_e, με ταχύτητα υ_r, είναι εκείνες για τις οποίες το μέτρο της τροχιακής στροφορμής L_r=m_e.υ_r.r=n.ħ, (n ∈ N^{*}) (A11) των ηλεκτρονίων είναι ακέραιο πολλαπλάσιο της ποσότητας ħ= h/2π, όπου h = 6,6260755(40).10⁻³⁴J.s.

Σχήμα A2. (α) Άτομο του υδρογόνου στη θεμελιώδη στάθμη (n=1), σύμφωνα με το πλανητικό μοντέλο της αρχικής κβαντικής θεωρίας του Bohr. Η μέση χρονική τιμή της συνεχώς μεταβαλλόμενης ηλεκτρικής διπολικής ροπής \vec{p} =-e.r. \vec{e}_r πρέπει να είναι μηδενική, εφόσον δεν παρατηρείται παραγωγή ηλεκτρομαγνητικής ακτινοβολίας.

(β) Σύμφωνα με τη σύγχρονη κβαντομηχανική θεώρηση, για διεργασίες που απαιτούν μεγαλύτερους χρόνους αλληλεπίδρασης από την περίοδο T ≈ 10⁻¹⁷s περιστροφής του ηλεκτρονίου, κατά την οποία υπάρχει η δυνατότητα εντοπισμού του σε κάποια απόσταση από τον πυρήνα, το ηλεκτρικό φορτίο συμπεριφέρεται ως μια στατική κατανομή αρνητικού φορτίου, με εκθετικά μειούμενη πυκνότητα, όπου το 99% του φορτίου συγκεντρώνεται σε μια σφαίρα ακτίνας 2,2.10⁻¹⁰ m, γύρω από τον πυρήνα.

Η κίνηση του πυρήνα είναι τόσο αργή, λόγω της μεγαλύτερης μάζας του συγκριτικά με την ταχύτητα των ηλεκτρονίων, ώστε να μπορούν να παραβλεφθούν¹ τα μαγνητικά του φαινόμενα. Επιπλέον, παρότι η κατεύθυνση της ακτινικής ηλεκτρικής διπολικής ροπής p=-e.r.e, [C.m] ηλεκτρονίου-πρωτονίου μεταβάλλεται συνεχώς, η μέση χρονική τιμή της πρέπει να είναι μηδενική, εφόσον δεν παρατηρείται παραγωγή ηλεκτρομαγνητικής ακτινοβολίας. Η απουσία μιας τέτοιας ακτινοβολίας στο πιο απλό άτομο του υδρογόνου αποτέλεσε ανεξήγητο παράδοξο της παλαιάς κβαντικής φυσικής.

Στη σύγχρονη κβαντομηχανική θεώρηση, η μέση κατανομή του ηλεκτρονιακού φορτίου ως προς το χρόνο, έχει τη μορφή ενός σφαιρικού νέφους (σχήμα Α2β), που δεν περιστρέφεται, ούτε ταλαντώνεται και περιβάλλει τον πυρήνα με ομαλά ελαττούμενη πυκνότητα προς κάθε κατεύθυνση. Για διεργασίες που απαιτούν μεγαλύτερους χρόνους αλληλεπίδρασης από την περίοδο περιστροφής $T = \frac{\upsilon_e}{2\pi . \alpha_o} \approx 10^{-17} s$, όπου υπάρχει η δυνατότητα εντοπισμού του ηλεκτρονίου σε κάποια απόσταση γύρω από τον πυρήνα, το ηλεκτρονιακό φορτίο συμπεριφέρεται ως μια σφαιρική κατανομή αρνητικού φορτίου ακτίνας 2,2. \mathring{A} (=10⁻¹⁰m), με εκθετικά μειούμενη πυκνότητα. Σύμφωνα με το παραπάνω μοντέλο για πιο πολύπλοκα άτομα, το μέγεθος του κεντρικού πυρήνα είναι πολύ μικρότερο του ηλεκτρονιακού νέφους, ώστε η συμπεριφορά του ως κεντρικό σημειακό φορτίο να έχει αμελητέα αλληλεπίδραση στην ηλεκτρονιακή δομή των ατόμων. Κατ' επέκταση, η ηλεκτρονιακή δομή των μορίων, πρέπει να απεικονιστεί ως ένα μοναδικό νέφος αρνητικού φορτίου με ομαλά μεταβαλλόμενη πυκνότητα γύρω από τα σημειακά φορτία των πυρήνων. Παρότι το σχήμα και η μεταβολή της πυκνότητας φορτίου διαφέρουν σε διαφορετικά μόρια, στις παρυφές του ηλεκτρονιακού νέφους, η πυκνότητα πρέπει να μειώνεται πάντα εκθετικά, έτσι ώστε να έχει νόημα η διάκριση του σχήματος και η δυνατότητα κατανομής του μοριακού φορτίου. Η κβαντομηχανική κατατάσσει τα άτομα σε στάσιμες, ανεξάρτητες από το χρόνο καταστάσεις που αντιστοιχούν στις χαμηλότερες θεμελιώδεις ενεργειακές στάθμες των ατόμων και σε διεγερμένες, χρονοεξαρτημένες καταστάσεις, στις οποίες τα άτομα ακτινοβολούν ηλεκτρομαγνητική ενέργεια, λόγω της ύπαρξης δονούμενων ηλεκτρικών φορτίων.

O Pierre Curie (1895) έκανε τις πρώτες συστηματικές μαγνητικές μετρήσεις [42], όπου διαπίστωσε ότι η μαγνητική επιδεκτικότητα μάζας χ_m των διαμαγνητικών υλικών είναι ανεξάρτητη της θερμοκρασίας, ενώ μεταβάλλεται αντιστρόφως ανάλογα προς τη θερμοκρασία στις παραμαγνητικές ουσίες, σύμφωνα με τη C χ_n

$$_{n} = \frac{C}{T}$$
 όπου C η σταθερά του Curie (A12)

Ο λόγος των μαζών πρωτονίου $m_p = 1,6726231(10).10^{-27}$ kg και ηλεκτρονίου $m_e = 9,1093897(54).10^{-31}$ kg , είναι $\frac{m_{p}}{m_{e}}$ =1836,152701(37)»2000. Η ταχύτητα υ_e του ηλεκτρονίου, για την ακτίνα του Bohr r=a_o=5,29177249(24).10⁻¹¹ m, στη m θ

$$v_{e} = \frac{h}{2\pi . m_{e} . a_{o}} = 1,3745670(66).10^{7} \text{ m/s} \approx 10^{7} \text{ m/s}.$$

Όσον αφορά τις μαγνητικές ροπές, η ηλεκτρονιακή μαγνητόνη (του Bohr) $\mu_e \equiv \mu_B = \frac{e.h}{4\pi.m_e} = 9,2740155(18).10^{-24} \frac{J_T}{T}$ είναι

επίσης $\frac{\mu_{\rm B}}{\mu_{\rm N}} = \frac{m_{\rm P}}{m_{\rm N}} \approx 2000$ φορές μεγαλύτερη από την πυρηνική μαγνητόνη $\mu_{\rm N} = \frac{e.h}{4\pi.m_{\rm P}} = 5,0507864(82).10^{-27} \frac{J/T}{T}$, όπου

e=1,60217733(49).10⁻¹⁹C.

Οι τιμές των μονάδων ελήφθησαν από το «The 1986 Adjustment of the Fundamental Physical Constants».

Αργότερα (1905), ο Langevin [43] βασιζόμενος στις πειραματικές διαπιστώσεις του Curie, ανέπτυξε τη θεωρία του διαμαγνητισμού και του παραμαγνητισμού. Το κλασικό μοντέλο Langevin του παραμαγνητισμού, αποτέλεσε τη βάση για την εξέλιξη και την εξήγηση του σιδηρομαγνητισμού, σύμφωνα με την κβαντική θεώρηση.

Α1. Διαμαγνητισμός

Ο διαμαγνητισμός ως μαγνητικό φαινόμενο κάθε ατόμου ή μορίου, αποδεικνύεται πως αποτελεί εγγενές χαρακτηριστικό των θεμελιωδών χρονοανεξάρτητων καταστάσεων της ατομικής δομής. Η πλειονότητα των οργανικών ενώσεων και πρακτικά όλες οι ανόργανες ενώσεις είναι διαμαγνητικές. Διαμαγνητικές χαρακτηρίζονται οι ουσίες που απωθούνται ασθενώς εντός μεταβαλλόμενου μαγνητικού πεδίου. Η αντίθετη μαγνητική συμπεριφορά παρατηρείται σε περιπτώσεις όπου ο διαμαγνητισμός επισκιάζεται από ισχυρότερες παραμαγνητικές ή σιδηρομαγνητικές αλληλεπιδράσεις, που οδηγούν σε έλξη.

Η μέση ταχύτητα των περιφερόμενων ηλεκτρονίων (σχήμα A3a), σε τροχιές μέσης ακτίνας r, υπό την επίδραση της κεντρομόλου δύναμης Coulomb $F_o = \frac{m_e \cdot v_o^2}{r} = F_c = \frac{e^2}{4\pi\epsilon_o \cdot r^2}$, με περίοδο $T_o = \frac{2\pi r}{v_o}$, υπολογίζεται από τη σχέση:

 $v_{o} = \sqrt{\frac{e^{2}}{4\pi\varepsilon_{o}.m_{e}.r}}$ (A13)

Οι τροχιές των ηλεκτρονίων ισοδυναμούν με δακτυλίους ρεύματος, με ένταση: $I_o = \frac{e}{T} = \frac{v_o \cdot e}{2\pi r}$ (A14)

Οι μαγνητικές διπολικές ροπές αντιθέτου φοράς προς τις τροχιακές στροφορμές L_o=m_e.v_o.r (A11) των ηλεκτρονίων,

upologizontai apó th scésh: $m_o = \pi r^2 I_o = \frac{e v_o r}{2}$ (A15)

Η μέση τροχιακή στροφορμή συνδέεται με την αντιπαράλληλη μέση μαγνητική διπολική ροπή σύμφωνα με τη σχέση:

$$m_o = \frac{e}{2m_e} L_o \qquad (A.16)$$

Το πηλίκο $\frac{m}{L} = \frac{e}{2m_e} = \gamma$, αποτελεί βασικό γνώρισμα του ατομικού μαγνητισμού και χαρακτηρίζεται γυρομαγνητικός λόγος του ηλεκτρονίου.

Σχήμα A3. Ο διαμαγνητισμός αποτελεί εγγενές παράγωγο της τροχιακής μαγνητικής διπολικής ροπής των ηλεκτρονίων (α) και οφείλεται στην επαγόμενη μεταβολή της μαγνητικής ροπής (β,γ), σε κατεύθυνση αντίθετη προς τη μεταβολή του εφαρμοζόμενου πεδίου. Όπως η τροχιακή στροφορμή, έτσι και η μαγνητική διπολική ροπή, αποτελεί σταθερά της κίνησης σε μέτρο και κατεύθυνση, όχι μόνο για κυκλικές ή ελλειπτικές τροχιές, αλλά και για τροχιές τύπου ροζέτας, που δεν ακολουθούν το νόμο του αντίστροφου τετραγώνου.

To δεξιόστροφα περιφερόμενο ηλεκτρόνιο (**σχήμα A3a**), σε τροχιά ακτίνας r, με ταχύτητα \vec{v}_{o} =- v_{o} . \hat{e}_{o} , ισοδυναμεί με δακτύλιο δεξιόστροφου ρεύματος, έντασης $I_{o} = \frac{v_{o} \cdot e}{2\pi r}$ (A14), με μαγνητική διπολική ροπή $\vec{m}_{o} = \pi r^{2} \cdot I_{o} \cdot \hat{z} = \frac{e \cdot v_{o} \cdot r}{2} \cdot \hat{z}$. Όταν δεν υπάρχει μαγνητικό πεδίο, το ρόλο της κεντρομόλου δύναμης $\vec{F}_{o} = -\frac{m_{e} \cdot v_{o}^{2}}{r} \cdot \hat{e}_{r} = -m_{e} \cdot \omega_{o}^{2} \cdot r \cdot \hat{e}_{r}$ έχει η έλξη Coulomb $\vec{F}_{c} = -\frac{e^{2}}{4\pi\epsilon_{o} \cdot r^{2}} \cdot \hat{e}_{r}$ και η κυκλική συχνότητα ω_{o} υπολογίζεται από τη σχέση: $m_{e} \cdot \omega_{o}^{2} \cdot r = \frac{e^{2}}{4\pi\epsilon_{o} \cdot r^{2}} \Leftrightarrow \omega_{o} = \sqrt{\frac{e^{2}}{4\pi\epsilon_{o} \cdot r^{3}}}$ (A17)

Η εφαρμογή χρονομεταβαλλόμενου μαγνητικού πεδίου $\frac{dB}{dt}$ >0, καθέτως προς το επίπεδο περιφοράς του ηλεκτρονίου (σχήμα A3β), έχει ως αποτέλεσμα τη δημιουργία αριστερόστροφου ηλεκτρικού πεδίου $\vec{E}=E.\hat{e}_{\phi}$, που υπολογίζεται από τη σχέση: $\prod_{C=2\pi r} \vec{E}.d\vec{I}=-\frac{d}{dt}\int_{S=\pi r^2} \vec{B}.d\vec{s} \Leftrightarrow \vec{E}=\frac{r}{2}.\frac{dB}{dt}.\hat{e}_{\phi}$ (A18)

Η αναπτυσσόμενη δύναμη $\vec{F}_{\rm E}$ =-e. \vec{E} =-e. \vec{E}_{ϕ} του ηλεκτρικού πεδίου \vec{E} , προκαλεί την αύξηση της ταχύτητας του ηλεκτρονίου κατά Δυ, που υπολογίζεται από τον 2° νόμο του Νεύτωνα, σύμφωνα με την προηγούμενη σχέση: $F_{\rm E}$ =m_e. $\frac{d\upsilon}{dt}$ =e. \vec{E} = $\frac{e.r}{2}$. $\frac{dB}{dt}$ \Leftrightarrow dv= $\frac{e.r}{2m_e}$.dB (A19)

Η απαλοιφή του χρόνου στην τελευταία σχέση αποτελεί την έκφραση της ανεξαρτησίας της τελικής ταχύτητας του ηλεκτρονίου από το χρονικό ρυθμό μεταβολής $\frac{dB}{dt}$ του εφαρμοζόμενου πεδίου. Η αύξηση του μαγνητικού πεδίου κατά ΔB=B-B_o, σε οποιονδήποτε χρόνο Δt, έχει ως αποτέλεσμα τη αύξηση της ταχύτητας του ηλεκτρονίου κατά Δυ, που προσδιορίζεται από την τελευταία σχέση:

$$\int_{B_o}^{+\Delta B} dB = \frac{2m_e}{e.r} \cdot \int_{v_o}^{v_o + \Delta v} dv \Leftrightarrow \Delta B = \frac{2m_e \cdot \Delta v}{e.r} \Leftrightarrow \Delta v = \frac{\Delta B.e.r}{2m_e}$$
(A20)

Η σταθερότητα της ακτίνας περιστροφής r, στον υπολογισμό του παραπάνω ορισμένου ολοκληρώματος ή η παραμονή του ηλεκτρονίου στην ίδια ενεργειακή στάθμη υπό την επίδραση οποιουδήποτε μεταβαλλόμενου μαγνητικού πεδίου, προϋποθέτει πρόσθετη κεντρομόλο δύναμη στην έλξη Coulomb του πυρήνα. Το μέτρο της κεντρομόλου δύναμης $\vec{F}=\vec{F}_{c}+\Delta\vec{F}$ μετά την αύξηση της ταχύτητας $\upsilon_{o}+\Delta\upsilon=\upsilon=\omega.r$ και της γωνιακής συχνότητας $\omega_{o}+\Delta\omega=\omega$ του ηλεκτρονίου, από τη μεταβολή ΔΒ του μαγνητικού πεδίου, υπολογίζεται: $F=\frac{m_{e}.(\upsilon_{o}+\Delta\upsilon)^{2}}{r}=\frac{m_{e}.\upsilon_{o}^{2}}{r}+\frac{m_{e}.(\Delta\upsilon)^{2}}{r}+\frac{2m_{e}.\upsilon_{o}.\Delta\upsilon}{r}$ (A21)

An $\Delta B \approx 0$, étsi wste $\Delta \upsilon << \upsilon_o$, tóte $(\Delta \upsilon)^2 \approx 0$. Me proséggish prwthz tázewe we pros $\frac{\Delta \upsilon}{\upsilon_o}$, h prohyoúmenh szésh grápetai: $F=F_c + \frac{2m_e \cdot \upsilon_o \cdot \Delta \upsilon}{r} = F_c + \Delta F$ (A22)

Η απαιτούμενη αύξηση ΔF στην κεντρομόλο δύναμη \vec{F}_{c} =-F.ê_r, ώστε να διατηρηθεί η ακτίνα περιστροφής r σταθερή, οφείλεται στο ίδιο το μαγνητικό πεδίο \vec{B} , που ασκεί μαγνητική ακτινική δύναμη:

$$\mathbf{F}_{\mathrm{B}} = -\mathbf{e}.(\vec{\upsilon}_{\mathrm{o}} + \Delta \vec{\upsilon}) \times \mathbf{B} = -\mathbf{e}.(\upsilon_{\mathrm{o}} + \Delta \upsilon).\mathbf{B}.(-\hat{\mathbf{e}}_{\varphi}) \times (-\hat{z}) = -\mathbf{e}.(\upsilon_{\mathrm{o}} + \Delta \upsilon).\mathbf{B}.\hat{\mathbf{e}}_{\mathrm{r}}$$
(A23)

6

Με αντικατάσταση της (A20) στην προηγούμενη σχέση, η δύναμη $F_{\!\scriptscriptstyle B}$ υπολογίζεται:

$$F_{\rm B} = e.(\upsilon_{\rm o} + \Delta\upsilon). \frac{2m_{\rm e}.\Delta\upsilon}{e.r} = \frac{2m_{\rm e}.\upsilon_{\rm o}.\Delta\upsilon}{r} + \frac{2m_{\rm e}.(\Delta\upsilon)^2}{r} \stackrel{(\Delta\upsilon)^2 \to 0}{\approx} \frac{2m_{\rm e}.\upsilon_{\rm o}.\Delta\upsilon}{r} = \Delta F \qquad (A24)$$

Η έλξη Coulomb στο ρόλο της κεντρομόλου δύναμης, δε συνέβαλε στην απόδειξη της διατήρησης της ακτίνας περιστροφής κατά τη μεταβολή του μαγνητικού πεδίου. Επομένως το συμπέρασμα μπορεί να γενικευτεί για κάθε είδος κεντρομόλου δύναμης, όπως για την ασκούμενη ενεργό δύναμη σε ηλεκτρόνια βαρύτερων ατόμων, που έχει διαφορετική εξάρτηση από την ακτίνα περιστροφής.

Στην τελική κατάσταση, η κεντρομόλος δύναμη $F = \frac{m_e \cdot v^2}{r_o} = m_e \cdot \omega^2 \cdot r_o$ αποτελεί το άθροισμα της έλξης

Coulomb tou purphua $F_c = \frac{e^2}{4\pi\epsilon_o r^2} = m_e .\omega_o^2 .r_o$ kai the dúvamme $F_B = e.u.B = e.u.B = e.u.r_o.B$ tou magnetikoù pediou \vec{B} ,

σύμφωνα με τη σχέση:

$$m_{e}.\omega^{2}.r_{o}=m_{e}.\omega_{o}^{2}.r_{o}+e.\omega.r_{o}.B \Leftrightarrow \omega^{2}-\frac{e.B}{m_{e}}.\omega-\omega_{o}^{2}=0$$
 (A25)

Η αποδεκτή λύση της παραπάνω δευτεροβάθμιας εξίσωσης ως προς ω είναι:

$$\omega = \frac{eB}{2m_e} + \sqrt{(\frac{eB}{2m_e})^2 + \omega_0^2}$$
 (A26)

Όταν το μαγνητικό πεδίο είναι αρκετά μικρό, ώστε η αλλαγή στη συχνότητα να είναι επίσης μικρή και η

τελευταία σχέση γράφεται:
$$\omega \approx \omega_{o}^{(\frac{eB}{2m_{e}})^{2} \rightarrow 0} = \omega_{o} + \frac{eB}{2m_{e}}$$
 (A27)

Η συχνότητα μεταβάλλεται κατά την ποσότητα Δω που χαρακτηρίζεται ως συχνότητα του Larmor:

$$\Delta \omega = \omega_{\rm L} = \frac{eB}{2m_{\rm e}}$$
 (A28)

Με αντικατάσταση της προηγούμενης σχέσης στην (A14) υπολογίζεται η αντίστοιχη μεταβολή του ρεύματος: $\Delta I = \frac{\Delta v.e}{2\pi.r} = \frac{\Delta \omega.r.e}{2\pi.r} = \frac{e}{2\pi} \Delta \omega = \frac{e^2.r^2}{4m_e} B$ (A29)

Η μεταβολή της μαγνητικής διπολικής ροπής Δm που προκαλείται από τη δημιουργία αριστερόστροφου επαγωγικού ρεύματος στο δακτύλιο, υπολογίζεται από την προηγούμενη σχέση:

$$\Delta \vec{m} = \Delta I.\pi.r^2.\hat{z} = \frac{e^2.r^2}{4m_e}.B.\hat{z}$$
 (A30)

Αν το ηλεκτρόνιο περιστρέφονταν δεξιόστροφα (σχήμα $A3\gamma$), τότε η μεταβολή του ίδιου μαγνητικού πεδίου θα προκαλούσε τη μείωση της ταχύτητάς του και η αρχική διπολική ροπή του $\vec{m}_o = -m_o \cdot \hat{z}$, θα μειώνονταν κατά την ίδια ποσότητα.

Επομένως σε κάθε περίπτωση η επαγόμενη μεταβολή της μαγνητικής διπολικής ροπής είναι αντίθετη προς τη μεταβολή του μαγνητικού πεδίου και προκαλεί την άπωση των διαμαγνητικών υλικών από το εφαρμοζόμενο πεδίο.

Σε πολυηλεκτρονιακά άτομα, με ατομικό αριθμό Ζ, η κίνηση των ηλεκτρονίων γύρω από τον zάξονα, ισοδυναμεί με ρεύμα (A14): $I=-\frac{Z.e}{T}=-\frac{Z.e}{2\pi}.\omega_o$ (A31) Οι μικρές μεταβολές του μαγνητικού πεδίου ΔB=B ≈ μ_{o} .Η προκαλούν την αλλαγή της συχνότητας Δω= $\frac{e.B}{2m_{e}}$ (A28) και τη δημιουργία πρόσθετου ρεύματος ΔΙ που υπολογίζεται με αντικατάσταση της (A28)

στη σχέση (A31):
$$\Delta I = -\frac{Z.e}{2\pi} \cdot \Delta \omega = -\frac{Z.e^2}{4\pi \cdot m_e} \cdot B$$
 (A32)

Η μαγνητική διπολική ροπή κάθε ηλεκτρονίου σε απόσταση ξ από τον πυρήνα, υπολογίζεται από προηγούμενη σχέση: $m_e = \Delta I.\pi \xi^2 = -\frac{Z.e^2.\xi^2}{4.m_e}.B$ (A33)

An η κατανομή του φορτίου είναι σφαιρικά συμμετρική, τότε $\langle x^2 \rangle = \langle \psi^2 \rangle = \langle z^2 \rangle = \frac{1}{3} \cdot \langle \xi^2 \rangle$, όπου $\langle \xi^2 \rangle$ η μέση τετραγωνική απόσταση των ηλεκτρονίων από τον πυρήνα. Για τις τροχιές των ηλεκτρονίων που είναι κάθετες στο εξωτερικό μαγνητικό πεδίο, ισχύει: $\langle \xi^2 \rangle = \langle x^2 \rangle + \langle \psi^2 \rangle = \frac{2}{3} \cdot \langle r^2 \rangle$ (A34)

Η μέση μαγνητική διπολική ροπή κάθε ατόμου

 $<\!m_{\rm a}\!>$, υπολογίζεται με αντικατάσταση της προηγού
μενης

σχέσης στην (A33):
$$=-\frac{Z.e^{2}.}{6.m_{e}}.B$$
 (A35)

Η συνολική μέση <M> μαγνήτιση $n_a(m^{-3})$ αριθμού ατόμων, υπολογίζεται από τη σχέση:

$$< M >= n_a . < m_a >$$
 (A36)

Η μαγνητική επιδεκτικότητα όγκου² του υλικού υπολογίζεται με αντικατάσταση των παραπάνω σχέσεων (A35,A36) στη σχέση (A4):

$$\chi = \frac{\langle M \rangle}{H} = \frac{\mu_{o} \cdot \langle M \rangle}{B} = \frac{\mu_{o} \cdot n_{\alpha}}{B} \cdot \langle m_{\alpha} \rangle = -\frac{\mu_{o} \cdot n_{\alpha} \cdot Z \cdot e^{2} \cdot \langle r^{2} \rangle}{6 \cdot m_{o}}$$
(A37)

Παρότι η μαγνητική διπολική ροπή του υψηλού αριθμού των ηλεκτρονίων θα μπορούσε να προσδώσει στην ύλη ισχυρές μαγνητικές ιδιότητες, στην πραγματικότητα δε συμβαίνει αυτό, γιατί δεν υπάρχει κάποιο φυσικό αίτιο που να υποχρεώνει όλες τις τροχιακές διπολικές ροπές των ηλεκτρονίων να προσανατολίζονται στην ίδια κατεύθυνση, ούτε και να περιφέρονται κατά την ίδια φορά. Παρότι το μαγνητικό πεδίο αποτελεί εγγενές παράγωγο της τροχιακής κίνησης των ηλεκτρονίων, η ύπαρξή του δε γίνεται αισθητή στην ύλη, λόγω της αλληλεξουδετέρωσης, που οφείλεται στον τυχαίο προσανατολισμό των αξόνων περιφοράς ή στις διαφορετικές φορές περιστροφής των ηλεκτρονίων γύρω από κάθε άξονα.

Η χαρακτηριστική τιμή χ=-10⁻⁶ της μαγνητικής διαπερατότητας για τα διαμαγνητικά υλικά, προκύπτει από την τελευταία σχέση, για $n_a \approx 10^{28}$ άτομα/μ³, Z=1, <r²> $\approx 10^{-20}$ m και $m_e \approx 9.10^{-31}$ kg.

 $^{^2}$ Οι τιμές της διαμαγνητικής επιδεκτικότητας διαφόρων υλικών είναι αναρτημένες στις ιστοσελίδες http://en.wikipedia.org/wiki/Diamagnetism και http://en.wikipedia.org/wiki/Magnetic_susceptibility.

Α2. Παραμαγνητισμός

Παραμαγνητικές χαρακτηρίζονται οι ουσίες που έλκονται προς την περιοχή του ισχυρότερου μαγνητικού πεδίου. Παραμαγνητικά υλικά είναι όλα τα άτομα, ιόντα ή μόρια με περιττό αριθμό ηλεκτρονίων, που εμφανίζουν μη μηδενική συνολική ιδιοστροφορμή. Η ένταση των παραμαγνητικών φαινόμενων ενδέχεται να είναι ασθενής στα επίπεδα του κοινού διαμαγνητισμού σε κάποια υλικά και πολύ ισχυρότερη σε κάποια άλλα. Σε όλα τα υλικά η ένταση των παραμαγνητικών φαινόμενων αυζάνεται με την ελάττωση της θερμοκρασίας και οδηγεί σε σχετικά έντονα φαινόμενα σε θερμοκρασίες κοντά στο απόλυτο μηδέν.

Α2.1 Κλασική προσέγγιση του παραμαγνητισμού

Σύμφωνα με το κλασικό μοντέλο του Langevin, τα παραμαγνητικά υλικά θεωρούνται ως μαγνητικά ρευστά, αποτελούμενα από μη αλληλεπιδρώντα άτομα, ιόντα ή μόρια, που εμφανίζουν μη μηδενική μαγνητική ροπή σε κατάσταση θερμοδυναμικής ισορροπίας. Απουσίας μαγνητικού πεδίου οι μαγνητικές ροπές διατηρούν τυχαίες διευθύνσεις, με αποτέλεσμα η συνισταμένη ροπή να είναι μηδενική.

Υπό την επίδραση του πεδίου οι μαγνητικές ροπές των ατόμων, τείνουν να ευθυγραμμιστούν στη διεύθυνση του πεδίου, σε ανταγωνισμό με τον αποπροσανατολισμό της χαοτικής θερμικής κίνησης που εξαρτάται από τη θερμοκρασία του υλικού. Όλες οι γωνίες μεταξύ των μαγνητικών ροπών των μονήρων ηλεκτρονίων και του εξωτερικού πεδίου είναι εφικτές, σύμφωνα με το κλασικό πρότυπο του Langevin. Για τη μαθηματική επεξεργασία του προβλήματος, ο Langevin είναι ο πρώτος που χρησιμοποίησε για την ενεργειακή περιγραφή των δίπολων, την στατιστική κατανομή του Boltzmann.

Σε κάθε άτομο ενός παραμαγνητικού υλικού με μαγνητική ροπής \vec{m}_a , υπό γωνία $\hat{\theta}$ με τη διεύθυνση του εξωτερικού μαγνητικού πεδίου $\vec{B} \approx \mu_o . \vec{H}$, δέχεται ένα ζεύγος δυνάμεων $\vec{N} = \mu_o . \vec{m}_a \times \vec{H}$, με μέτρο:

 $N = \mu_0 . m_a . H. \eta \mu \theta$ (A38)

Η τυχαία κατανομή των δίπολων (σχήμα A4), επιβάλλει την παραδοχή σφαιρικής συμμετρίας.

Σχήμα A4. Απεικόνιση του τρόπου υπολογισμού της μέσης μαγνητικής ροπής μη αλληλεπιδρώντων ηλεκτρονίων παραμαγνητικού υλικού, σύμφωνα με τη θεωρία Langevin-Boltzmann.

Η δυναμική ενέργεια κάθε ατόμου, υπολογίζεται από τη σχέση:

$$\int_{E_m=0}^{E_m} E.dE = -\int_{\theta=\frac{\pi}{2}}^{\theta} \mu_0.m_a.H.\eta\mu\theta.d\theta \Leftrightarrow E_m = -\mu_0.m_a.H.\sigma\nu\nu\theta$$
(A39)

Αν n_o ο συνολικός αριθμός των ατόμων, τότε στο διάστημα μεταξύ των γωνιών θ και θ+dθ που ορίζει τη στερεά γωνία dΩ, υπάρχουν $n(\theta)$.dθ μαγνητικές ροπές, που υπολογίζονται σύμφωνα με την κατανομή

Boltzmann από τη σχέση: $n(\theta).d\theta = n_o.e^{\frac{E}{k_B T}}.d\Omega$, όπου $n_o = \int_{\theta=0}^{\theta=\pi} n(\theta).d\theta$ (A40)

Epeidón $d\Omega = \frac{ds}{r^2} = 2\pi.\eta\mu\theta.d\theta$, η προηγούμενη σχέση γράφεται: $n(\theta).d\theta = n_0.e^{-\frac{E}{k_BT}}.2\pi.\eta\mu\theta.d\theta$ (A41) To άθροισμα των συνιστωσών των ροπών που είναι παράλληλες στο \vec{B} , αποτελεί τη στοιχειώδη ροπή $dm_a = (m_a.\sigma uv\theta).n(\theta)d\theta^{(A40)} = m_a.\sigma uv\theta.n_0.e^{-\frac{E}{k_BT}}.2\pi.\eta\mu\theta.d\theta$, ενώ η συνολική ροπή $m_{o\lambda}$ για το χώρο dΩ ορίζεται από τη σχέση: $m_{o\lambda} = \int_{\theta=0}^{\theta=\pi} m_a.\sigma uv\theta.n_o.e^{-\frac{E}{k_BT}}.2\pi.\eta\mu\theta.d\theta$ (A42)

Η μέση ροπή $<m_a>$ κάθε ατόμου, υπολογίζεται μέσω των σχέσεων (A40,A42), για $E=E_m=-m_a.\mu_o.H.$ συνθ (A39), από το πηλίκο:

$$<\!\!m_a\!\!>=\!\!\frac{m_{o\lambda}}{n_o}\!=\!\!\frac{\int\limits_{\theta=0}^{\theta=\pi}\!\!m_a.\sigma\upsilon\nu\theta.n_o.e^{\frac{E_{\mu}}{k_BT}}.2\pi.\eta\mu\theta.d\theta}{\int\limits_{\theta=0}^{\theta=\pi}\!n(\theta).d\theta}\!=\!\!m_a.\!\int\limits_{\theta=0}^{\theta=\pi}\!\!\frac{e^{\frac{\mu_o.m_a.H.\sigma\upsilon\nu\theta}{k_BT}}}{\int\limits_{\theta=0}^{\theta=\pi}\!e^{\frac{\mu_o.m_a.H.\sigma\upsilon\nu\theta}{k_BT}}.\eta\mu\theta.d\theta} =\!\!m_a.\!\int\limits_{\theta=0}^{\theta=\pi}\!\frac{e^{\frac{\mu_o.m_a.H.\sigma\upsilon\nu\theta}{k_BT}}}{\int\limits_{\theta=0}^{\theta=\pi}\!e^{\frac{\mu_o.m_a.H.\sigma\upsilon\nu\theta}{k_BT}}.\eta\mu\theta.d\theta}$$

Η τελευταία σχέση περιγράφει σύμφωνα με τη θεωρία του Langevin τη μαγνητική συμπεριφορά των ηλεκτρονιακών ροπών, συναρτήσει του πεδίου Β και της απόλυτης θερμοκρασίας Τ:

$$L(\alpha_{\pi}) = m_{\alpha} \cdot (\coth \alpha_{\pi} - \frac{1}{\alpha_{\pi}}) \quad (A43\alpha), \qquad \acute{o}\pi \circ \upsilon \quad \alpha_{\pi} = \frac{\mu_{o} \cdot m_{a} \cdot H}{k_{B} \cdot T} \quad (A43\beta)$$

Αν το υλικό έχει όγκο V και περιέχει $n = \frac{n_0}{\sqrt{V}} (m^{-3})$ άτομα, η μαγνήτιση υπολογίζεται από τη σχέση:

$$M=n.=n.m_a.(\coth\frac{\mu_o.m_a.H}{k_B.T}-\frac{k_B.T}{\mu_o.m_a.H})=M_{max}.(\coth\frac{\mu_o.m_a.H}{k_B.T}-\frac{k_B.T}{\mu_o.m_a.H})$$
(A44)

Διάγραμμα A1. (α) Γραφική παράσταση του λόγου $M_{M_{max}}$ της παραμαγνήτισης, σύμφωνα με τη συνάρτηση L(α_{π}) του Langevin. (β) Γραφική παράσταση του λόγου $M_{M_{max}}$ συναρτήσει της θερμοκρασίας T.

Σύμφωνα με την τελευταία σχέση, που παριστάνεται γραφικά στο διάγραμμα A1 ισχύει:

- Στο όριο υψηλής θερμοκρασίας, όταν T>> $\frac{\mu_o.m_a.H}{k_B}$, τότε η L(α_π) μέσω της σειράς Taylor για

 $\alpha_{\pi} \to 0$ προσεγγίζεται από τη σχέση: $L(\alpha_{\pi}) \approx \frac{1}{3} \alpha_{\pi}$, όπου $\alpha_{\pi} = \frac{\mu_{0} \cdot m_{a} \cdot H}{k_{B} \cdot T}$ (A45)

Με αντικατάσταση της προηγούμενης σχέσης στην (A44), η μαγνήτιση υπολογίζεται:

$$M \approx M_{\text{max}} \cdot \frac{1}{3} \cdot \alpha_{\pi} = n.m_{\alpha} \cdot \frac{1}{3} \cdot \alpha_{\pi} = n. \frac{\mu_{0} \cdot m_{\alpha}^{2} \cdot H}{3k_{B} \cdot T}$$
 (A46)

Επομένως η εξάρτηση της μαγνήτισης M με την παράμετρο α_{π} είναι γραμμική, όταν η θερμική ενέργεια k_B.T είναι πολύ μεγαλύτερη από τη μαγνητική μ_o.m_a.H, με κλίση ~ $\frac{1}{3}$. Η μαγνητική επιδεκτικότητα όγκου (A4) από την παραπάνω σχέση (A46) υπολογίζεται: $\chi = \frac{M}{H} = \frac{n.\mu_o.m_{\alpha}^2}{3k_n} \cdot \frac{1}{T}$ (A47)

Η μαγνητική επιδεκτικότητα μάζας υπολογίζεται από τη σχέση (A5α): $\chi_m = \frac{\chi}{\rho} = \frac{n.\mu_o.m_a^2}{3k_B.\rho} \cdot \frac{1}{T}$ (A48)

Ο συντελεστής του $\frac{1}{T}$ της τελευταίας σχέσης, αποτελεί έκφραση της σταθεράς στη σχέση (A12) του Curie.

- Otan $\,\mathrm{H}\,{\rightarrow}\,0\,,$ tóte $\,\mathrm{M}\,{\rightarrow}\,0\,.$ Επομένως δεν υπάρχει αυτογενής μαγνητική πόλωση.

- Στο όριο υψηλού πεδίου, όταν H>> $\frac{k_{\rm B}.T}{\mu_{\rm o}.m_a}$, τότε L(α_π) ≈1 και M=M_{max}=n.m_α. Η μαγνήτιση M λαμβάνει ποσοστό 90% της μέγιστης μαγνήτισης M_{max}, όταν η ποσότητα μ_o.m_α.Η είναι 10-20 φορές μεγαλύτερη του k_B.T.

Α2.2 Κβαντική προσέγγιση του παραμαγνητισμού

Ενώ κατά το κλασικό μοντέλο Langevin, όλες οι γωνίες μεταξύ των μαγνητικών ροπών των μονήρων ηλεκτρονίων και του μαγνητικού πεδίου είναι εφικτές, κατά την κβαντική θεώρηση μόνο συγκεκριμένες γωνίες είναι επιτρεπτές.

Η μαγνητική ροπή ενός ηλεκτρονίου, είναι αποτέλεσμα της ιδιοστροφορμής \vec{s} και της τροχιακής στροφορμής \vec{l} .

Σχήμα A5. (a) Σχηματική απεικόνιση των 5 δυνατών προσανατολισμών l_z της τροχιακής στροφορμής $l=\sqrt{6}.\hbar$ του ηλεκτρονίου, για l=2 και $m_1^z=0,\pm 1,\pm 2$. (β) Απεικόνιση των 2 δυνατών προσανατολισμών s_z της ιδιοστροφορμής (spin) $s = \sqrt{3/2}$. \hbar του ηλεκτρονίου για $s = \frac{1}{2}$ και $m_s^z = \pm \frac{1}{2}$.

➤ Η τιμή s της ιδιοστροφορμής š καθορίζεται από τον κβαντικό αριθμό s του spin, που έχει μια μόνο τιμή για το ηλεκτρόνιο (s=¹/₂), σύμφωνα με τη σχέση s=√s(s+1).ħ=√3/₂.ħ. Οι επιτρεπτοί προσανατολισμοί του spin ως προς κάθε z-άξονα αναφοράς (σχήμα A5β), καθορίζονται από το μαγνητικό κβαντικό αριθμό m^z_s=±¹/₂ και λαμβάνουν τιμές: s_z=ħ.m^z_s.ĉ=±¹/₂.ħ.ĉ.

Η μαγνητική ροπή \vec{m}_s , καθορίζεται από το αντιπαράλληλο spin του ηλεκτρονίου, μέσω της σχέσης $\vec{m}_s = -\frac{e}{m_e} \cdot \vec{s}$ και έχει μέτρο $m_s = \frac{e}{m_e} \cdot \frac{\sqrt{3}}{2} \cdot \hbar = \sqrt{3} \cdot \frac{e \cdot \hbar}{2m_e} = \sqrt{3} \cdot \mu_B$. Η αναλλοίωτη ποσότητα $\mu_B = \frac{e \cdot \hbar}{2m_e}$ αποτελεί τη μαγνητόνη του Bohr με τιμή $\mu_B = 0.93 \cdot 10^{-23} \text{ A.m}^2$.

To διάνυσμα \vec{m}_s έχει 2 πιθανές προβολές $\vec{m}_{sz} = -\frac{e}{m_e} \cdot s_z \cdot \hat{z} = -\frac{e}{m_e} \cdot (\pm \frac{1}{2} \cdot \hbar) \cdot \hat{z} = \pm \mu_B \cdot \hat{z}$ πάνω στον z-άξονα. Ο λόγος

της μαγνητικής ροπής του spin ως προς το spin, είναι $g_s = \frac{m_s}{s} = \frac{e'm_e \cdot s}{s} = 2.(\frac{e}{2m_e}) = 2$, αν ως μονάδα μέτρησης ληφθεί το μέγεθος $\frac{e'}{2m_e}$.

Επομένως, η προβολή της μαγνητικής ροπής του spin του ηλεκτρονίου κατά τον z-άξονα, εκφράζεται ως συνάρτηση του g_s , μέσω της σχέσης: $\vec{m}_{sz} = g_s .m_s^z .\mu_B .\hat{z}$, όπου $m_s^z = \pm \frac{1}{2}$ (A49)

Η τιμή **l** της τροχιακής στροφορμής \vec{l} του ηλεκτρονίου είναι κβαντισμένη και η τιμή της καθορίζεται από τον αριθμό l, σύμφωνα με τη σχέση $l=\sqrt{l(l+1)}.\hbar$, όπου το l λαμβάνει 0,1,..n-1 ακέραιες τιμές, σε σχέση με τον κύριο κβαντικό αριθμό n που καθορίζει την ενέργεια του ηλεκτρονίου.

Οι επιτρεπτοί 2l+1 προσανατολισμοί της τροχιακής στροφορμής ως προς κάθε άξονα (z) αναφοράς (σχήμα A5a), εξαρτώνται από το μαγνητικό κβαντικό αριθμό $m_1^z = 0, \pm 1, \pm 2, ..\pm l$, σύμφωνα με τη σχέση $l_z = m_1^z . \hbar. \hat{z}$.

Η μαγνητική ροπή \vec{m}_1 , καθορίζεται από την αντιπαράλληλη τροχιακή στροφορμή \vec{l} του ηλεκτρονίου, μέσω της σχέσης $\vec{m}_1 = -\frac{e}{2m_e} \cdot \vec{l}$, με μέτρο $m_1 = \frac{e}{2m_e} \cdot \sqrt{l(l+1)} \cdot \hbar$. Το διάνυσμα \vec{m}_1 έχει 2l+1 πιθανές προβολές

στροφορμής, ως προς την τροχιακή στροφορμή, είναι $g_1 = \frac{m_1}{l} = \frac{e^2}{m_e} = 1$, αν ως μονάδα μέτρησης ληφθεί το μέγεθος $\frac{e}{2m_e}$. Επομένως, η προβολή της μαγνητικής ροπής της τροχιακής στροφορμής του ηλεκτρονίου κατά τον z-άξονα, εκφράζεται ως συνάρτηση του g_1 , μέσω της σχέσης:

$$\vec{m}_{lz} = g_1.m_l^z.\mu_B.\hat{z}$$
, ópou $m_l^z = 0,\pm 1,..\pm l$ (A50)

Σε κάθε άτομο με ατομικό αριθμό Z, η συνολική τροχιακή στροφορμή $\vec{L} = \sum_{z} \vec{l}$ και η συνολική

ιδιοστροφορμή $\vec{\mathbf{S}} = \sum_{Z} \vec{\mathbf{s}}$, αποτελούν το αντίστοιχο διανυσματικό άθροισμα των τροχιακών στροφορμών των Z ηλεκτρονίων του ατόμου. Σύμφωνα με την αρχή του Pauli, στη βασική κατάσταση ελάχιστης ενέργειας, το άθροισμα της συνολικής τροχιακής στροφορμής και της ιδιοστροφορμής των ηλεκτρονίων είναι μέγιστο.

Η συνολική μαγνητική ροπή \vec{m}_L της τροχιακής κίνησης των ηλεκτρονίων, συνδέεται με την αντιπαράλληλη συνολική στροφορμή $L = \sqrt{L(L+1)}.\hbar$, που λαμβάνει 2L+1τιμές $0,\pm 1,..\pm L$, μέσω της σχέσης:

$$\mathbf{m}_{\mathbf{L}} = \frac{\mathbf{e}}{2\mathbf{m}_{\mathbf{e}}} \cdot \mathbf{L} = \frac{\mu_{\mathrm{B}}}{\hbar} \cdot \sqrt{\mathbf{L}(\mathbf{L}+1)} \cdot \hbar = \mu_{\mathrm{B}} \cdot \sqrt{\mathbf{L}(\mathbf{L}+1)}$$
(A51)

To πηλίκο $g_{L} = \frac{m_{L}}{L} = \frac{e}{2m_{e}}$ σε μονάδες $e/2m_{e}$ ισούται με 1.

Η συνολική μαγνητική ροπή \vec{m}_s του spin, συνδέεται με την αντιπαράλληλη συνολική ιδιοστροφορμή $S=\sqrt{S(S+1)}.\hbar$, που λαμβάνει 2S+1 τιμές 0,±1,..±S, μέσω της σχέσης:

$$m_{s} = \frac{e}{m_{e}} \cdot S = \frac{2\mu_{B}}{\hbar} \cdot \sqrt{S(S+1)} \cdot \hbar = 2\mu_{B} \cdot \sqrt{S(S+1)}$$
 (A52)

To πηλίκο $g_s = \frac{m_s}{s} = \frac{e}{m_e}$ σε μονάδες $e/2m_e$ ισούται με 2.

To μέτρο $\mathbf{J}=\sqrt{J(J+1)}.\hbar$ της συνολικής στροφορμής $\mathbf{J}=\mathbf{L}+\mathbf{S}$ λαμβάνει 2J+1 δυνατές τιμές $m_{J}=0,\pm1,..\pm J$, καθώς εξαρτάται από τον κβαντικό αριθμό J, που σύμφωνα με τους κανόνες του Hund για κάθε άτομο στη βασική κατάσταση ελάχιστης ενέργειας, ισούται με L-S ή L+S, για κάθε υποστιβάδα

s,p,d,f , αναλόγως αν είναι λιγότερο ή περισσότερο από ημιπλήρης σε ηλεκτρόνια. Η τιμή του J κυμαίνεται

στο διάστημα $J \in [\frac{1}{2}, \infty)$ και μπορεί να είναι ακέραιος ή ημιακέραιος αριθμός.

Oi 2J+1 δυνατές προβολές της μαγνητικής ροπής, μέτρου $m_J=m_J.\hbar$ του spin σε σχέση με οποιονδήποτε άξονα (σχήμα A6), δεν είναι ευθυγραμμισμένες με τις αντίστοιχες συνισταμένες μαγνητικές ροπές του ατόμου, εφόσον $g_L \neq g_s$ και υπολογίζονται από τις σχέσεις (A51) και (A52):

$$\vec{m}_{LS} = \vec{m}_{L} + \vec{m}_{S} = -\frac{e}{2m_{e}} \cdot \vec{L} - \frac{e}{m_{e}} \cdot \vec{S} = -\frac{\mu_{B}}{\hbar} \cdot (\vec{L} + 2\vec{S})$$
 (A53)

Σχήμα A6. Απεικόνιση των διανυσμάτων της τροχιακής στροφορμής \vec{L} , της ιδιοστροφορμής \vec{S} , της ολικής στροφορμής $\vec{J}=\vec{L}+\vec{S}=-\frac{\mu_{\rm B}}{\hbar}$. $(\vec{L}+2\vec{S})$ και των μαγνητικών διπολικών ροπών $\vec{m}_{\rm J}$ και $\vec{m}_{\rm LS}$ του ηλεκτρονίου, εντός του μαγνητικού πεδίου \vec{B} .

Για κάθε τιμή $m_1=0,\pm1,..\pm J$, σύμφωνα με το νόμο των

Στην αλληλεπίδραση του ατόμου με μαγνητικά πεδία (σχήμα A7), συμβάλλουν οι 2J+1 προβολές του ανύσματος \vec{m}_{LS} στην κατεύθυνση του \vec{J} : $m_J = m_S$.συνφ+ m_L .συνθ (A54)

υποκογιζεται. $\begin{aligned} \mathbf{m}_{\rm eff} &= \mathbf{m}_{\mathbf{J}} - g.\mu_{\rm B}.\sqrt{\mathbf{J}(\mathbf{J}+1)} & (\text{ASou}) \end{aligned} \\ \mathbf{H} \quad \pi \alpha \rho \dot{\alpha} \mu \text{etrocg} \quad g \quad \sigma \tau \eta \nu \quad \pi \alpha \rho \alpha \pi \dot{\alpha} \nu \omega \quad \sigma \chi \dot{\epsilon} \sigma \eta, \quad \chi \alpha \rho \alpha \kappa \tau \eta \rho \dot{\zeta} \epsilon \tau \alpha \iota \quad \omega \varsigma \\ \pi \alpha \rho \dot{\alpha} \gamma o \nu \tau \alpha \varsigma \quad Lande: \quad g = 1 + \frac{\mathbf{J}(\mathbf{J}+1) + \mathbf{S}(\mathbf{S}+1) - \mathbf{L}(\mathbf{L}+1)}{2\mathbf{J}(\mathbf{J}+1)} \quad (\text{AS6}\beta) \end{aligned}$

 Σ_{χ} ήμα A7. Υπολογισμός της συνιστώσας $m_{J} = m_{eff}$ της συνολικής μαγνητικής ροπής $\vec{m}_{LS} = \vec{m}_{L} + \vec{m}_{S}$ που οφείλεται στην τροχιακή στροφορμή \vec{L} και στο spin \vec{S} του ατόμου, στην κατεύθυνση του διανύσματος $\vec{J} = \vec{L} + \vec{S}$.

Schur A8. Upologismós the sunistivas m_J^B the energy i magnitude raging \vec{m}_{eff} sthu kateúvung tou magnitikoú pedíou \vec{B} . Epeid
h $m_{eff} > m_J^B$ oi magnitikés ropés two atómun apoklínoun katá th gwnía w apó thu kateúvung tou pedíou \vec{B} .

Oi 2J+1 προβολές m_J^B (σχήμα A8) της μαγνητικής ροπής \vec{m}_J για $m_J=0,\pm 1,..\pm J$, υπό γωνία συν $\hat{\omega}=\frac{J_z}{J}=\frac{m_J}{\sqrt{J(J+1)}}$ στην κατεύθυνση του επιδρώντος πεδίου \vec{B} , υπολογίζονται από τη σχέση (A56α):

$$m_{\mathbf{J}}^{\scriptscriptstyle B} = m_{\mathbf{J}}.\operatorname{sun}\hat{\omega} = g.\mu_{\scriptscriptstyle B}.\sqrt{J(J+1)}.\frac{m_{\mathbf{J}}}{\sqrt{J(J+1)}} \Leftrightarrow m_{\mathbf{J}}^{\scriptscriptstyle B} = g.m_{\mathbf{J}}.\mu_{\scriptscriptstyle B}, \text{ from } m_{\scriptscriptstyle J} = 0, \pm 1, .., \pm J \qquad (A57)$$

Οι δυναμικές ενέργειες των μαγνητικών ροπών, υπολογίζονται από τη σχέση:

$$E_{m_1} = g.m_J.\mu_B.B = g.m_J.\mu_B.\mu_o.H$$
 (A.58)

Η μέγιστη τιμή της μαγνητικής ροπής και της μαγνητικ

ής ενέργειας υπολογίζονται για $m_J = J$ από τις σχέσεις: $m_{max} = g.J.\mu_B$ (A59) και $E_{max} = g.J.\mu_B.B = g.J.\mu_B.\mu_o.H$ (A60)

H μέση τιμή $\langle m_J^B \rangle$ των μαγνητικών ροπών $m_J^B = g.m_J.\mu_B$ (A57) κάθε ατόμου, για $m_j = 0,\pm 1,\pm 2,..\pm j$, με αντίστοιχες ενέργειες $E_{m_J} = g.m_J.\mu_B.\mu_o.H$ (A58) στην κατεύθυνση του πεδίου \vec{H} , υπολογίζεται με τη

στατιστική κατανομή Boltzmann από τη σχέση:

$$<\!m_{J}^{B}>=\frac{\sum_{m_{J}=-J}^{m_{J}=-J}\!m_{J}^{B}.e^{\frac{E_{m_{J}}}{k_{B}.T}}}{\sum_{m_{J}=-J}^{m_{J}=-J}e^{\frac{E_{m_{J}}}{k_{B}.T}}}$$
 (A61)

Σχήμα A9. Σύμφωνα με τους κανόνες του Hund, οι κβαντικοί αριθμοί S,L και J για το ιόν Fe⁺³του σιδήρου με 5 ασύζευκτα ηλεκτρόνια στο 3d τροχιακό, είναι:

$$S = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{5}{2},$$

$$L = 2 + 1 + 0 - 1 - 2 = 0,$$

$$J = S + L = \frac{5}{2} + 0 = \frac{5}{2}$$

Επομένως η βασική κατάσταση του ιόντος, είναι η ${}^{2S+1}D_{j}={}^{6}D_{5/2}$. Στο σχήμα απεικονίζονται οι 5 δυνατοί προσανατολισμοί της ενεργού μαγνητικής ροπής $m_{J}=m_{eff}$, για $m_{J}=0,\pm 1$, στην κατεύθυνση του μαγνητικού πεδίου \vec{B} , όταν η ολική στροφορμή είναι $J = \sqrt{6}.\hbar$, για J=2 και των αντίστοιχων μαγνητικών ενεργειών $E_{m_{J}}=g.m_{J}.\mu_{B}.B$.

Η μέση μαγνήτιση $M = n. < m_J^B > \gamma$ ια $n(m^{-3})$ άτομα ανά μονάδα όγκου, υπολογίζεται από την προηγούμενη σχέση:

$$M = n \frac{\sum_{m_{J}=J}^{m_{J}=J} m_{J}^{B} \cdot e^{\frac{E_{m_{J}}}{k_{B} \cdot T}}}}{\sum_{m_{J}=J}^{m_{J}=J} e^{\frac{E_{m_{J}}}{k_{B} \cdot T}}} = n \frac{\sum_{m_{J}=-J}^{m_{J}=J} g \cdot m_{J} \cdot \mu_{B} \cdot e^{\frac{m_{J} \cdot \mu_{B} \cdot g \cdot \mu_{0} \cdot H}{k_{B} \cdot T}}}{\sum_{m_{J}=-J}^{m_{J}=J} e^{\frac{m_{J} \cdot \mu_{B} \cdot g \cdot \mu_{0} \cdot H}{k_{B} \cdot T}}} = ng\mu_{B} \frac{d}{db} \ln \sum_{m_{J}=-J}^{m_{J}=J} e^{\frac{m_{J} \cdot b_{\pi}}{J}}$$

$$(A62)$$

Ο όρος $\sum_{m_J=-J}^{m_J=-J} e^{\frac{m_J-\upsilon_{\pi}}{J}}$ αποτελεί άθροισμα γεωμετρικής προόδου που υπολογίζεται από τη σχέση

 $\alpha+\alpha.r+\alpha.r^2+..+\alpha.r^{\nu-1}=\frac{\alpha(1-r^{\nu})}{1-r}$ για $\alpha=e^{-b_{\pi}}$, πολλαπλασιαστικό όρο τον $r=e^{b_{\pi/J}}$, για $\nu=2J+1$ όρους. Η προηγούμενη σχέση (A62) γράφεται:

$$M = ng\mu_{B} \cdot \frac{d}{db_{\pi}} ln[\frac{e^{-b_{\pi}} \cdot (1 - e^{(2J+1) \cdot \frac{b_{\pi}}{J}})}{(1 - e^{\frac{b_{\pi}}{J}})}] = ng\mu_{B} \cdot \frac{d}{db_{\pi}} ln[\frac{\sinh(\frac{2J+1}{2} \cdot \frac{b_{\pi}}{J})}{\sinh(\frac{b_{\pi}}{2J})}] = ng\mu_{B} J[\frac{2J+1}{2J} \coth(\frac{2J+1}{2J}b_{\pi}) - \frac{1}{2J} \coth(\frac{1}{2J}b_{\pi})] = ng\mu_{B} J.B_{J}(b_{\pi})$$
(A63)

Επειδή $m_{max} = g\mu_B J$ (A59) και $M_{max} = n.m_{max}$, η παραπάνω σχέση γράφεται:

$$\begin{split} M = & M_{max} \cdot B_{J}(b_{\pi}) \Leftrightarrow \frac{M}{M_{max}} = B_{J}(b_{\pi}) = \left[\frac{2J+1}{2J} \coth(\frac{2J+1}{2J}b_{\pi}) - \frac{1}{2J} \coth(\frac{1}{2J}b_{\pi})\right], \qquad (A64\alpha) \\ & \delta\pi ov \qquad b_{\pi} = \frac{\mu_{B} \cdot g \cdot J \cdot \mu_{o} \cdot H}{k_{B} \cdot T} \quad (A64\beta) \quad \text{kan} \quad M_{max} = ng\mu_{B}J \quad (A64\gamma) \end{split}$$

Η συνάρτηση $B_J(b_{\pi})$ αποτελεί τη συνάρτηση *Brillouin*, υπολογισμού της μαγνήτισης κατά την κβαντική θεώρηση. Όσο αυξάνεται η τιμή J και το πλήθος των προβολών $m_J=0,\pm1,..\pm J$ της ολικής στροφορμής στην κατεύθυνση του \vec{H} (διάγραμμα A2), τόσο η συνάρτηση Brillouin $B_J(b_{\pi})$ της κβαντικής θεώρησης, τείνει στη συνάρτηση $L(\alpha_{\pi}=\frac{b_{\pi}}{g.J})$ (A43α) του κλασικού μοντέλου Langevin.

Διάγραμμα Α2. Η κβαντική θεώρηση της συνάρτησης $B_J(b_{\pi})$ συμπίπτει με τη συνάρτηση $L(\alpha_{\pi} = \frac{b_{\pi}}{g.J})$ του κλασικού μοντέλου, όταν $J \rightarrow \infty$. Από το σχήμα³ [44] διαπιστώνεται ότι ο κορεσμός κατά την κβαντική θεώρηση Brillouin επέρχεται νωρίτερα από ότι προβλέπει η συνάρτηση Langevin.

Για την τιμή της μαγνήτισης από την προηγούμενη σχέση (Α64α), διακρίνονται οι περιπτώσεις:

- Όταν $H \rightarrow 0$, τότε $M \rightarrow 0$. Επομένως δεν υπάρχει αυτογενής μαγνητική πόλωση.

- Sto ório uyhloú pedíou, ótan $H >> \frac{k_{\rm b} \cdot T}{\mu_{\rm b} \cdot g \cdot J \cdot \mu_{\rm o}}$, tóte $b_{\rm m} \to \infty$, $B_{\rm s}(b_{\rm m}) \approx 1$ kai η magnitudes in the magnitude of the magnitudes of the magnitude of the magnitudes of the magnitude of the magnitudes of the magnitude of the magni

M=M_max}=n.g. \mu_{\rm B}. J proseggizei th magnútish kórou.

-Sto ório uyhlýc bermokrasíac, ótan T>> $\frac{g.J.\mu_B.\mu_o.H}{k_B}$, tóte $b_{\pi} \rightarrow 0$. Epeidó yia $x \rightarrow 0$ η f(x)=cothx density of the second sec

προσεγγίζεται μέσω του αναπτύγματος Taylor από τη σχέση $\operatorname{cothx} \approx \frac{1}{x} + \frac{x}{3}$, η $B_J(b_{\pi})$ υπολογίζεται:

$$B_{J}(b_{\pi}) \approx \frac{2J+1}{2J} \cdot (\frac{2J}{2J+1} \cdot \frac{1}{b_{\pi}} + \frac{1}{3} \cdot \frac{2J+1}{2J} \cdot b_{\pi}) - \frac{1}{2J} \cdot (\frac{2J}{b_{\pi}} + \frac{1}{3} \cdot \frac{1}{2J} \cdot b_{\pi}) = \frac{J+1}{3J} \cdot b_{\pi}$$
(A65a)

Η μαγνήτιση M=M_{max}.B_J(b_{π}) (A64α), σύμφωνα με την προηγούμενη σχέση, προσεγγίζεται:

$$M = (n.g.\mu_{B}.J).\frac{J+1}{3J}.\frac{\mu_{B}.g.J.\mu_{o}.H}{k_{B}.T} = \frac{n.g^{2}.J.(J+1).\mu_{B}^{2}.\mu_{o}.H}{3k_{B}.T}$$
(A65β)

Με την προσθήκη της ενεργού μαγνητικής ροπής $m_{eff} \equiv m_J = g.\mu_B.\sqrt{J(J+1)}$ (A56a), η τελευταία σχέση

gravetai: $M = \frac{n.m_{eff}^2.\mu_o.H}{3k_B.T}$ (A65g)

Η μαγνητική επιδεκτικότητα χ ανά μονάδα όγκου από την προηγούμενη σχέση υπολογίζεται (A4):

$$\chi = \frac{M}{H} = \frac{n.m_{\rm eff}^2.\mu_o}{3k_B.T} \quad (A66)$$

Η μαγνητική επιδεκτικότητα ανά μονάδα μάζας χ_m , υπολογίζεται (A5α): $\chi_m = \frac{\chi}{\rho} = \frac{n.m_{eff}^2 \cdot \mu_o}{3\rho k_B} \cdot \frac{1}{T}$ (A67)

Ο συντελεστής του 1/Τ στην παραπάνω σχέση αποτελεί έκφραση της σταθεράς του Curie, που προκύπτει από τη σχέση (A48) της κλασικής προσέγγισης, με την αντικατάσταση του m_{α} από την ενεργό μαγνητική ροπή $m_{\rm eff}$.

Τα παραμαγνητικά υλικά αποτελούνται από άτομα ή ιόντα με ασυμπλήρωτη την εξωτερική στιβάδα, έτσι ώστε εμφανίζουν μόνιμη διπολική ροπή των spin, όπως τα στοιχεία των σπανίων γαιών, με ατομικούς αριθμούς Z = 57 - 71 και Z = 91-102, καθώς και τα στοιχεία μεταπτώσεως, με Z = 21-29, Z = 39 - 47 και

³ Επανασχεδίαση από το βιβλίο του Chrisman J. Richard «Fundamentals of solid State Physics», J. Wiley, New York, 1988.

Z = 71-79, που έχουν τις στιβάδες 4f ή 5f (σπάνιες γαίες) ή τις 3d, 4d ή 5d (στοιχεία μεταπτώσεως) ασυμπλήρωτες.

Η σύγκριση των θεωρητικών και των πειραματικών τιμών της μαγνήτισης, γίνεται από τον πειραματικό προσδιορισμό της σταθεράς $C = \frac{n.m_{eff}^2.\mu_o}{3\rho k_B}$ (A67), όπου υπολογίζεται η ενεργός μαγνητική ροπή:

$$m_{\rm eff}^{\pi} = \sqrt{\frac{3C.\rho.k_{\rm B}}{n.\mu_{\rm o}}} \qquad (A68)$$

Η πειραματική τιμή συγκρίνεται με τη θεωρητική (A56a) τιμή $m_{\rm eff} \equiv m_{\rm J} = g.\mu_{\rm B}.\sqrt{J(J+1)}$.

Όπως διαπιστώνεται στον πίνακα A1, οι θεωρητικές τιμές της ενεργού μαγνητικής ροπής στις σπάνιες γαίες, συμφωνούν αρκετά με τα πειραματικά δεδομένα. Όμως στα μέταλλα μετάβασης, η θεωρητική προσεγγίζει την πειραματική τιμή⁴ μόνο αν θεωρηθεί μηδενική (L=0, J=S, g=2) η μαγνητική ροπή λόγω της τροχιακής στροφορμής των ιόντων.

Ο μηδενισμός ή η «παγωμένη» τροχιακή ροπή, οφείλεται στην επιμήκυνση των τροχιών υπό την επίδραση του ηλεκτρικού κρυσταλλικού πεδίου κάθε ατόμου ή ιόντος. Λόγω της ισχυρής σύζευξης των τροχιών με το κρυσταλλικό πλέγμα, η επίδραση εξωτερικού μαγνητικού πεδίου είναι μικρή στην τροχιακή κίνηση, ενώ αντίθετα επηρεάζει μόνο τις μαγνητικές ροπές λόγω spin, που στρέφονται στην διεύθυνση του πεδίου.

			Θεωρ	ητικές τι	μές		Θεωρητικές τιμές «παγωμένης» τροχιακής στροφορμής (L=0, J=S, g=2)	Πειραματικές τιμές
Ιόν	Αριθμός ηλεκτρονίων	L	S	J	þ	$m_{\!e\!f\!f}$ ($\mu_{\scriptscriptstyle B}$)	$m_{e\!f\!f}$ ($\mu_{\scriptscriptstyle B}$)	$m^{\pi}_{e\!f\!f}$ ($\mu_{\scriptscriptstyle B}$)
Ce ⁺³	1	3	1/2	5/2	6/7	2,53		2,39
Pr ⁺³	2	5	1	4	4/5	3,58		3,60
Nd ⁺³	3	6	3/2	9/2	8/11	3,62		3,62
Pm ⁺³	4	6	2	4	3/5	2,68		-
Sm ⁺³	5	5	5/2	5/2	2/7	0,85		1,54
Eu ⁺³	6	3	3	0	1	0		3,61
Gd ⁺³	7	0	7/2	7/2	2	7,94		8,20
Tb ⁺³	8	3	3	6	43/22	12,7		9,60
Dy ⁺³	9	5	5/2	15/2	4/3	10,6		10,5
Ho ⁺³	10	6	2	8	5/4	10,6		10,5
Er ⁺³	11	6	3/2	15/2	113/96	9,40		9,50
Tm ⁺³	12	5	1	6	8/7	7,41		7,20
Ym ⁺³	13	3	1/2	7/2	25/21	4,72		4,40
\mathbf{V}^{+2}	3	3	3/2	3/2	2/5	0,77	3,87	3,80
Cr ⁺²	4	2	2	0	1	0	4,90	4,90
Mn ⁺²	5	0	5/2	5/2	2	5,92	5,92	5,90
Fe ⁺²	6	2	2	4	3/2	6,71	4,90	5,40
Co ⁺²	7	3	3/2	9/2	4/3	6,63	3,87	4,80
Ni ⁺²	8	3	1	4	5/4	5,59	2,83	3,20
Cu ⁺²	9	2	1/2	5/2	6/5	3,55	1,73	1,90

Πίνακας Α1. Συγκριτικός πίνακας των θεωρητικών m_{eff} και των πειραματικών m_{eff}^{π} τιμών της ενεργού μαγνητικής ροπής, σε μαγνητόνες $\mu_{\rm B}$ του Bohr.

⁴ Οι πειραματικές τιμές λήφθηκαν από «American Institute of Physics Handbook», Mc-Graw-Hill, 1963, Database: Worldcat.

19

Πολλές παραμαγνητικές ουσίες δεν ακολουθούν ούτε την κλασική ούτε την κβαντική συμπεριφορά όπως περιγράφεται από τα παραπάνω μοντέλα, τα οποία θεωρούν ότι η μαγνητική συμπεριφορά εξαρτάται αποκλειστικά από το εξωτερικό πεδίο και τη θερμική κίνηση των ηλεκτρονίων και δε λαμβάνουν υπόψη τις υπάρχουσες αλληλεπιδράσεις μεταξύ των ατόμων. Παρότι κανένα μοντέλο δεν προβλέπει ενδογενή μαγνητική πόλωση σε μηδενικό εξωτερικό πεδίο, η θεωρία του Langevin έθεσε τις βάσεις για την εξήγηση της μαγνητικής συμπεριφοράς των σιδηρομαγνητικών υλικών.

Α3. Σιδηρομαγνητισμός

Η συμπεριφορά των σιδηρομαγνητικών υλικών, προϋποθέτει ισχυρές ενεργειακές αλληλεπιδράσεις μεταξύ των γειτονικών μαγνητικών ροπών των μονήρων ηλεκτρονίων στους κρυστάλλους, που προκαλούν την εμφάνιση παραμένουσας ή αυθόρμητης μαγνήτισης, χωρίς την εφαρμογή εξωτερικού πεδίου.

Ο Weiss (1907) επέκτεινε την κλασική θεωρία του Langevin για τον παραμαγνητισμό, στον σιδηρομαγνητισμό, υποθέτοντας ότι απουσίας εξωτερικού μαγνητικού πεδίου, οι γειτονικές μαγνητικές ροπές των spin αλληλεπιδρούν αυθόρμητα με τον ίδιο τρόπο μεταξύ τους και προσανατολίζονται κατά περιοχές, όταν η συνολική ενέργεια των ατόμων γίνεται μικρότερη. Στη θερμοκρασία του απόλυτου μηδενός (0K) όλες οι μαγνητικές ροπές είναι προσανατολισμένες και η μαγνήτιση $M_{T=0K} \equiv M_0$ του υλικού αποκτά τη μέγιστη τιμή. Σε μεγαλύτερες θερμοκρασίας, η θερμική κίνηση συμβάλλει στον αποπροσανατολισμό τους και πάνω από μια συγκεκριμένη θερμοκρασία προκαλεί την τυχαία ανακατανομή τους, με αποτέλεσμα το μηδενισμό της αυθόρμητης μακροσκοπικής μαγνήτισης.

Με την επίδραση εξωτερικού μαγνητικού πεδίου, οι μαγνητικές περιοχές τείνουν να προσανατολιστούν στην κατεύθυνσή του, με αποτέλεσμα την εμφάνιση μακροσκοπικής μαγνήτισης. Σύμφωνα με αυτήν την παραδοχή, οι διευθύνσεις των μαγνητικών ροπών κατανέμονται ομοιογενώς, έτσι ώστε οι τοπικές τιμές της μαγνήτισης σε όλο τον όγκο του υλικού, να ισούνται με την τιμή της μακροσκοπικής μαγνήτισης. Ο Weiss αποδίδει τις αλληλεπιδράσεις μεταξύ των μαγνητικών ροπών σε ένα μέσο «μοριακό» πεδίο \vec{H}_w , ανάλογο της μακροσκοπικής μαγνήτισης \vec{M} , που δρα σε όλες τις θερμοκρασίες, σύμφωνα με τη σχέση:

$$\vec{\mathrm{H}}_{\mathrm{w}} = \lambda . \vec{\mathrm{M}} , \lambda \in \mathrm{R}$$
 (A69)

Με αυτή την παραδοχή, ένα υλικό μπορεί να μαγνητιστεί αυτογενώς από το «μοριακό» πεδίο, χωρίς την επίδραση εξωτερικού πεδίου.

Αν η θερμοκρασία Curie T_c είναι η θερμοκρασία που ο αποπροσανατολισμός της θερμικής κίνησης υπερισχύει της αυτογενούς μαγνήτισης, τότε για υλικά με διπολική ροπή $\mu_{\rm B}$ =0,93.10⁻²³ $\frac{J}{T}$ και T_c=1000K, η ένταση του «μοριακού» πεδίου προσεγγίζεται από τη σχέση:

$$\mu_{\rm B}.H_{\rm W} = k_{\rm B}.T_{\rm c} \Leftrightarrow H_{\rm W} = \frac{k_{\rm B}.T_{\rm c}}{\mu_{\rm B}} = \frac{1,4.10^{-23}.10^3}{0,93.10^{-23}} = 2.10^3 \,\text{A/m}$$

Το μοριακό πεδίο $B_w = \mu_o.H_w = 4\pi.10^{-7}.2.10^3 = 2mT$ είναι ιδιαίτερα ισχυρό, περίπου 1000 φορές μεγαλύτερο από το μαγνητικό πεδίο της γης.

To sunolikó maynytikó pedío \vec{B} entóς tou ulikoú, me thn equipmoná exaterikoú pedíou \vec{H} , nrágetai (A1):

$$\vec{B} = \mu_{o} \cdot (\vec{H} + \vec{H}_{W}) = \mu_{o} \cdot (\vec{H} + \lambda \cdot \vec{M})$$
(A70)

Η θεωρητική τεκμηρίωση της μαγνητικής συμπεριφοράς των υλικών με την εισαγωγή του μοριακού πεδίου του Weiss, περιγράφεται σύμφωνα με το κλασσικό μοντέλο του Langevin και της κβαντικής προσέγγισης του Brillouin.

Α3.1 Κλασική προσέγγιση του σιδηρομαγνητισμού

Με την εισαγωγή του μέσου μοριακού πεδίου του Weiss (A69), η μαγνήτιση σύμφωνα με το κλασικό μοντέλο, υπολογίζεται με την αλλαγή της παραμέτρου $\alpha_{\pi} = \frac{\mu_{o} \cdot m_{\alpha} \cdot H}{k_{B} \cdot T}$ (A43β) από την α_{σ} στη συνάρτηση του Langevin (A43α):

$$\alpha_{\sigma} = \frac{\mu_{o} \cdot m_{\alpha} \cdot (H + \lambda \cdot M)}{k_{B} \cdot T} = \frac{\mu_{o} \cdot M_{0} \cdot (H + \lambda \cdot M)}{n \cdot k_{B} \cdot T}$$
(A71)

Στην παραπάνω σχέση, η μέγιστη μαγνήτιση (κορεσμού) $M_{max} = M_0 = n.m_a$ λαμβάνεται στο απόλυτο μηδέν (0K). Η μαγνήτιση του υλικού, σύμφωνα με τη σχέση (A44) υπολογίζεται:

$$k(\alpha_{\sigma}) = M = M_0 L(\alpha_{\sigma})$$
 (A72)

Η μαγνήτιση Μ από την τελευταία σχέση υπολογίζεται:

$$\varepsilon(\alpha_{\sigma}) = M = \frac{n.k_{B}.T}{\mu_{o}.M_{0}.\lambda}.\alpha_{\sigma} - \frac{H}{\lambda} \quad (A73\alpha) \quad \dot{\eta} \quad \frac{M}{M_{0}} = \frac{n.k_{B}.T}{\mu_{o}.M_{0}^{2}.\lambda}.\alpha_{\sigma} - \frac{H}{\lambda.M_{0}} \quad (A73\beta)$$

Οι επιτρεπτές τιμές της μαγνήτισης υπολογίζονται γραφικά (διάγραμμα A3) από τα κοινά σημεία της καμπύλης $k(\alpha_{\sigma})$ και της ευθείας $\epsilon(\alpha_{\sigma})$. Σε κάθε θέση της ευθείας $\epsilon(\alpha_{\sigma})$, η κλίση της είναι ανάλογη της θερμοκρασίας T, που καθορίζει τα σημεία τομής της με την καμπύλη $k(\alpha_{\sigma})$.

Διάγραμμα Α3. Μεταβολή της μαγνήτισης Μ ως συνάρτηση της παραμέτρου α.

Από τη γραφική παράσταση διαπιστώνεται:

Απουσίας εξωτερικού πεδίου Η=0, στις θέσεις 1,2 και 3 της ευθείας ε(α_σ), σύμφωνα με τις σχέσεις (Α73β) και (Α71), ισχύει:

$$\frac{\mathbf{M}}{\mathbf{M}_{0}} \stackrel{\text{H=0}}{=} \frac{\mathbf{n}.\mathbf{k}_{\text{B}}.\mathbf{T}}{\boldsymbol{\mu}_{0}.\mathbf{M}_{0}^{2}.\boldsymbol{\lambda}}.\boldsymbol{\alpha}_{\sigma} \quad (A74\alpha), \quad \text{ótav} \quad \boldsymbol{\alpha}_{\sigma} \stackrel{\text{H=0}}{=} \frac{\boldsymbol{\mu}_{0}.\mathbf{M}_{0}.\boldsymbol{\lambda}.\mathbf{M}}{\mathbf{n}.\mathbf{k}_{\text{B}}.\mathbf{T}} \quad (A74\beta)$$

• Όταν οι κλίσεις της ευθείας και της καμπύλης $k(\alpha_{\sigma})$ συμπίπτουν στην αρχή των αξόνων (θέση 1), η κλίση της ευθείας ε(α_{σ}) είναι ίση με την κλίση $\frac{1}{3}$ της προσέγγισης Langevin $L(\alpha_{\sigma}) \approx \frac{1}{3} \alpha_{\sigma}$ (A45) στο όριο υψηλής θερμοκρασίας και η θερμοκρασία Curie T_{c} υπολογίζεται από τη σχέση:

$$\frac{\mathbf{n}.\mathbf{k}_{\mathrm{B}}.\mathbf{T}_{\mathrm{c}}}{\boldsymbol{\mu}_{\mathrm{o}}.\mathbf{M}_{0}^{2}.\boldsymbol{\lambda}} = \frac{1}{3} \Leftrightarrow \mathbf{T}_{\mathrm{c}} = \frac{\boldsymbol{\mu}_{\mathrm{o}}.\mathbf{M}_{0}^{2}.\boldsymbol{\lambda}}{3.\mathrm{n}.\mathrm{k}_{\mathrm{B}}} = \frac{\mathbf{n}.\boldsymbol{\mu}_{\mathrm{o}}.\mathbf{m}_{\alpha}^{2}.\boldsymbol{\lambda}}{3.\mathrm{k}_{\mathrm{B}}}$$
(A75)

Mε την αντικατάσταση της παραμέτρου $\lambda = \frac{3.n.k_B.T_c}{\mu_o.M_0^2}$ από την προηγούμενη σχέση στην (A74α), ο λόγος $M_{M_0}^{\prime}$ συναρτήσει του πηλίκου $T_{T_c}^{\prime}$, υπολογίζεται: $\frac{M}{M_0} = \frac{1}{3} \cdot \frac{T}{T_c} \cdot \alpha_{\sigma}$ (A76)

• Όταν T>T_c η ευθεία ε(α_{σ}) στρέφεται προς τον ημιάζονα Οψ (θέση 2) και υπάρχει μόνο ένα κοινό σημείο με την καμπύλη k(α_{σ}) στη θέση α_{σ} =0, όταν H=0. Επομένως σε υψηλότερες θερμοκρασίες της T_c, το μέσο «μοριακό» πεδίο H_w= λ .M (A69) είναι αμελητέο σε σχέση με το εφαρμοζόμενο πεδίο H με αποτέλεσμα να μην εμφανίζεται αυτογενής μαγνητική πόλωση και να υπερισχύει (διάγραμμα A4) η παραμαγνητική συμπεριφορά.

• Όταν T<T_c η ευθεία ε(α_{σ}) στρέφεται προς τον ημιάξονα Ox (θέση 3) και εκτός από τη θέση $\alpha_{\sigma}=0$, H=0, υπάρχει ένα δεύτερο κοινό σημείο για $\alpha_{\sigma} \neq 0$ με την καμπύλη k(α_{σ}), που υποδηλώνει την ύπαρξη αυτογενούς μαγνητικής πόλωσης χωρίς την ύπαρξη εξωτερικού μαγνητικού πεδίου. Όταν T<<T_c, το σημείο τομής των ε(α_{σ}) και k(α_{σ}) μετακινείται δεξιότερα, υποδηλώνοντας μαγνητική πόλωση M=M₀=n.m_α (A75) σε κατάσταση κορεσμού, σε θερμοκρασίες κοντά στο απόλυτο μηδέν.

Διάγραμμα Α4. Γραφική παράσταση⁵ [45] της μαγνήτισης M'_{M_0} συναρτήσει της θερμοκρασίας T'_{T_c} . Όταν T<T_c, επικρατεί το «μοριακό» πεδίο και το υλικό εμφανίζει σιδηρομαγνητική συμπεριφορά, ενώ όταν T>T_c επικρατεί η θερμική ενέργεια και το υλικό εμφανίζει παραμαγνητική συμπεριφορά.

⁵ Η γραφική παράσταση προέρχεται από το διαδικτυακό βιβλίο: *«Essentials of Paleomagnetism: Third Web Edition»* στην ιστοσελίδα: http://earthref.org/MAGIC/books/Tauxe/Essentials/ (chapter 3, figure 3.7)

 $\label{eq:linear} \begin{aligned} \Delta \iota \acute{\alpha} \gamma \rho a \mu \mu a \quad A5. \quad A \pi \epsilon \mathrm{ik} \acute{o} \mathrm{vis} \eta^6 \quad [46,47] \quad \mbox{ths} \varsigma \\ \mu \epsilon \mathrm{ta} \beta \mathrm{o} \lambda \acute{h} \varsigma \quad \mbox{ton} \quad M / M_0 \quad \omega \varsigma \quad \mbox{superstandargence} \quad \delta \acute{o} \mathrm{sun} \ \delta \acute{o} \mathrm{sun} \$

Η μεταβολή του λόγου M'_{M_0} συναρτήσει του λόγου T'_{T_c} , σύμφωνα με την κλασική θεώρηση, σχεδιάζεται στο διάγραμμα A.5 βάση της σχέσης (A85), όπου συγκρίνεται με την καμπύλη της κβαντικής προσέγγισης για τα στοιχεία Ni και Co. Η κλασική θεώρηση J $\rightarrow \infty$ δεν προσεγγίζει τα πειραματικά αποτελέσματα, όσο οι κβαντικές καμπύλες για J=1, $\frac{3}{2}$.

Με την εφαρμογή εξωτερικού πεδίου $H \neq 0$, (διάγραμμα A3, θέση 4), διακρίνονται οι περιπτώσεις:

• Γ ia T>T_c, iscúti η prostygist uyηλής θερμοκρασίας (A45) $L(\alpha_{\sigma}) \approx \frac{1}{3} \alpha_{\sigma}^{(A71)} \frac{\mu_{o}.m_{\alpha}.(H+\lambda.M)}{3k_{B}.T}$

και η μαγνήτιση υπολογίζεται με την αντικατάσταση της παραμέτρου $\lambda = \frac{3k_B \cdot T}{n.m_o.m_a^2.T_c}$ από τη σχέση (A75)

στη σχέση (Α72):

$$\mathbf{M} \approx \mathbf{n.m}_{\alpha} \cdot \mathbf{L}(\alpha_{\sigma}) = \frac{\mathbf{n.\mu_{o}} \cdot \mathbf{m}_{\alpha}^{2} \cdot (\mathbf{H} + \lambda \cdot \mathbf{M})}{3\mathbf{k}_{B} \cdot \mathbf{T}} \Leftrightarrow \mathbf{M} \approx \frac{\mathbf{n.\mu_{o}} \cdot \mathbf{m}_{\alpha}^{2} \cdot \mathbf{H}}{3\mathbf{k}_{B} \cdot (\mathbf{T} - \mathbf{T_{c}})}$$
(A77)

Η μαγνητική επιδεκτικότητα χ ανά μονάδα όγκου υπολογίζεται από τη σχέση (A4):

$$\chi = \frac{M}{H} = \frac{n \cdot \mu_{o} \cdot m_{\alpha}^{2}}{3k_{B} \cdot (T - T_{c})}$$
(A78)

Η μαγνητική επιδεκτικότητα ανά μονάδα μάζας, υπολογίζεται από τη σχέση (Α5α):

$$\chi_{\rm m} = \frac{\chi}{\rho} = \frac{n.\mu_{\rm o}.m_a^2}{3k_{\rm B}.\rho} \cdot \frac{1}{({\rm T}-{\rm T_c})}$$
 (A79)

Ο συντελεστής του $\frac{1}{T-T_c}$ αποτελεί έκφραση της σταθεράς του Curie και η προηγούμενη σχέση γράφεται:

$$\chi_{\rm m} = \frac{C}{T - T_{\rm c}}, \quad$$
όπου $C = \frac{n.\mu_{\rm o}.m_a^2}{3k_{\rm B}.\rho}$ (A80)

http://www.irm.umn.edu/hg2m/hg2m_b/hg2m_b.html και

⁶ Οι πειραματικές μετρήσεις για το Νί και το Co λήφθηκαν από τις ιστοσελίδες:

http://www-users.york.ac.uk/~rfle500/posts/2015/05/reconciling-quantum-and-classical-magnetism/
• Όταν $H \neq 0$ και $T < T_c$, το εφαρμοζόμενο εξωτερικό πεδίο H είναι αμελητέο σε σχέση με το «μοριακό» πεδίο H_w . Με την προσέγγιση $H+\lambda$. $M \approx \lambda$.M (A70), η σχέση (A72) γράφεται:

$$\frac{M}{M_0} = \operatorname{coth}(\frac{\mu_0.M_0.\lambda.M}{n.k_B.T}) - \frac{n.k_B.T}{\mu_0.M_0.\lambda.M}$$

Με την αντικατάσταση της παραμέτρου $\lambda = \frac{3.n.k_B.T_c}{\mu_o.M_0^2}$ από τη σχέση (A75) στην προηγούμενη σχέση, ο λόγος

$$M_{M_0}$$
 υπολογίζεται: $\frac{M}{M_0} = \operatorname{coth}(\frac{3T_c}{T}, \frac{M}{M_0}) - \frac{T}{3T_c}, \frac{M_0}{M}$ (A81)

Α3.2 Κβαντική προσέγγιση του σιδηρομαγνητισμού

Η κβαντική προσέγγιση διαφοροποιείται από το κλασικό μοντέλο, με την θεώρηση της κβάντωσης της ενέργειας κάθε μαγνητικού δίπολου. Η μαγνήτιση με την εισαγωγή του μοριακού πεδίου του Weiss, υπολογίζεται με την αλλαγή της παραμέτρου $b_{\pi} = \frac{\mu_{\rm B}.g.J.\mu_{\rm o}.H}{k_{\rm B}.T}$ (A64β) από την b_{σ} :

$$b_{\sigma} = \frac{\mu_{\rm B}.g.J.\mu_{\rm o}.(H+H_{\rm W})}{k_{\rm B}.T} = \frac{M_{\rm o}.\mu_{\rm o}.(H+\lambda.M)}{n.k_{\rm B}.T} \qquad (A82)$$

Με την αντικατάσταση της προηγούμενης σχέσης και της τιμής (κορεσμού) της μαγνήτισης (A63) στο απόλυτο μηδέν M_0 =n.g. μ_B .J στη συνάρτηση του Brillouin (A64α), η μαγνήτιση υπολογίζεται από τη σχέση:

$$k(b_{\sigma})=M=M_0.B_J(b_{\sigma})$$
 (A83)

Η μαγνήτιση Μ από την προηγούμενη σχέση, υπολογίζεται:

$$\epsilon(\mathbf{b}_{\sigma}) = \mathbf{M}(\mathbf{b}_{\sigma}) = \frac{\mathbf{n} \cdot \mathbf{k}_{\mathrm{B}} \cdot \mathbf{T}}{\lambda \cdot \boldsymbol{\mu}_{o} \cdot \mathbf{M}_{0}} \cdot \mathbf{b}_{\sigma} - \frac{\mathbf{H}}{\lambda} \quad (\mathbf{A84\alpha}) \quad \dot{\mathbf{\eta}} \quad \frac{\mathbf{M}}{\mathbf{M}_{0}} = \frac{\mathbf{n} \cdot \mathbf{k}_{\mathrm{B}} \cdot \mathbf{T}}{\lambda \cdot \boldsymbol{\mu}_{o} \cdot \mathbf{M}_{0}^{2}} \cdot \mathbf{b}_{\sigma} - \frac{\mathbf{H}}{\lambda \cdot \mathbf{M}_{0}} \quad (\mathbf{A84\beta})$$

Οι επιτρεπτές τιμές της μαγνήτισης υπολογίζονται γραφικά (διάγραμμα A6) από τα κοινά σημεία της καμπύλης k(b_σ) και της ευθείας ε(b_σ).

Διάγραμμα Α6. Μεταβολή της μαγνήτισης Μ ως συνάρτηση της παραμέτρου b_σ.

Οι γραφικές παραστάσεις των $k(b_{\sigma})$ και $\epsilon(b_{\sigma})$ είναι παρόμοιες με αυτές της κλασικής προσέγγισης (διάγραμμα A3) ως προς το πλήθος των κοινών σημείων με τη μεταβολή της θερμοκρασίας T ή της κλίσης της ευθείας $\epsilon(b_{\sigma})$ και ισχύουν τα ίδια συμπεράσματα:

Απουσίας μαγνητικού πεδίου H=0, σύμφωνα με τις σχέσεις (A84β),(A82) ισχύει:

$$\frac{M}{M_0} \stackrel{\text{H=0}}{=} \frac{n.k_B.T}{\lambda.\mu_o.M_0^2} b_\sigma \quad (A85\alpha), \quad \acute{o}\tau\alpha\nu \qquad b_\sigma \stackrel{\text{H=0}}{=} \frac{M_{max}.\mu_o.\lambda.M}{n.k_B.T} \quad (A85\beta)$$

• Όταν οι κλίσεις της ευθείας και της καμπύλης $k(b_{\sigma})$ συμπίπτουν στην αρχή των αξόνων (θέση1), η κλίση της ευθείας ε(b_{\sigma}) είναι ίση με την κλίση $\frac{J+1}{3J}$ της προσέγγισης Brillouin $B_{J}(b_{\sigma}) \approx \frac{J+1}{3J}$.b_{\sigma}(A65a) στο όριο υψηλής θερμοκρασίας και η θερμοκρασία Curie T_c υπολογίζεται από τη σχέση:

$$\frac{\mathbf{n}\cdot\mathbf{k}_{\mathrm{B}}\cdot\mathbf{T}_{\mathrm{c}}}{\lambda\cdot\mu_{\mathrm{o}}\cdot\mathbf{M}_{0}^{2}} = \frac{\mathbf{J}+1}{\mathbf{3}\mathbf{J}} \Leftrightarrow \mathbf{T}_{\mathrm{c}} = \frac{\mathbf{J}+1}{\mathbf{3}\mathbf{J}} \cdot \frac{\lambda\cdot\mu_{\mathrm{o}}\cdot\mathbf{M}_{0}^{2}}{\mathbf{n}\cdot\mathbf{k}_{\mathrm{B}}} \stackrel{(A64\gamma)}{=} \frac{\mathbf{J}+1}{\mathbf{3}\mathbf{J}} \cdot \frac{\lambda\cdot\mu_{\mathrm{o}}\cdot\mathbf{n}\cdot\mathbf{g}^{2}\mathbf{J}\cdot\boldsymbol{\mu}_{\mathrm{B}}^{2}}{\mathbf{3}\mathbf{k}_{\mathrm{B}}} \stackrel{(A61)}{=} \frac{\mathbf{n}\cdot\mu_{\mathrm{o}}\cdot\mathbf{m}_{\mathrm{eff}}^{2}\cdot\lambda}{\mathbf{3}\mathbf{k}_{\mathrm{B}}} \quad (A86\alpha)$$

Με την αντικατάσταση της σταθεράς $\lambda = \frac{3.J.T_c.n.k_B}{(J+1).\mu_o.M_0^2}$ (A86β) από την προηγούμενη σχέση στην (A85α), ο

λόγος M/M_0 συναρτήσει της θερμοκρασίας T υπολογίζεται: $\frac{M}{M_0} = \frac{J+1}{3J} \cdot \frac{T}{T_c} \cdot b_\sigma$ (A87)

• Όταν T>T_c (θέση 2) υπάρχει μόνο ένα κοινό σημείο με την καμπύλη $k(b_{\sigma})$ στη θέση $b_{\sigma}=0$, όταν H=0. Επομένως σε υψηλότερες θερμοκρασίες της T_c, το μέσο «μοριακό» πεδίο H_w= λ .M (A69) είναι αμελητέο σε σχέση με το εφαρμοζόμενο πεδίο H με αποτέλεσμα να μην εμφανίζεται αυτογενής μαγνητική πόλωση και να υπερισχύει η παραμαγνητική συμπεριφορά.

• Όταν T<T_c (θέση 3) εκτός από τη θέση $b_a=0$, H=0, υπάρχει ένα δεύτερο κοινό σημείο για $b_a \neq 0$ με την καμπύλη $k(b_a)$, που υποδηλώνει την ύπαρξη αυτογενούς μαγνητικής πόλωσης, χωρίς την ύπαρξη εξωτερικού μαγνητικού πεδίου. Όταν T<<T_c, το σημείο τομής των ε(b_a) και $k(b_a)$ μετακινείται δεξιότερα, υποδηλώνοντας μαγνητική πόλωση M=M₀=n.μ_B.g.J (A83) σε κατάσταση κορεσμού, σε θερμοκρασίες κοντά στο απόλυτο μηδέν.

Η καμπύλη της μαγνήτισης Μ εμφανίζει ασυνέχεια στη θερμοκρασία T_c (διάγραμμα A7), που προβλέπεται και μπορεί να υπολογιστεί θεωρητικά, αλλά δε συμφωνεί ακριβώς με τα πειραματικά δεδομένα.

Για θερμοκρασίες μικρότερες αλλά παραπλήσιες της T_c , έτσι ώστε $\frac{T}{T_c} \approx 1$, η συνάρτηση cothx μέσω του αναπτύγματος Taylor προσεγγίζεται: cothx $\approx \frac{1}{x} + \frac{x}{3} - \frac{x^3}{45}$. Για $x=b_{\sigma}$, η συνάρτηση Brillouin $B_1(b_{\sigma})$ (A64α), προσεγγίζεται:

$$\frac{M}{M_{0}} = \frac{2J+1}{2J} \left[\frac{2J}{2J+1} \cdot \frac{1}{b_{\sigma}} + \frac{1}{3} \cdot \frac{2J+1}{2J} \cdot b_{\sigma} - \frac{1}{45} \left(\frac{2J+1}{2J}\right)^{3} \cdot b_{\sigma}^{3}\right] - \frac{1}{2J} \left[2J \cdot \frac{1}{b_{\sigma}} + \frac{1}{3} \cdot \frac{1}{2J} \cdot b_{\sigma} - \frac{1}{45} \left(\frac{b_{\sigma}}{2J}\right)^{3}\right] =$$

$$= \frac{J+1}{3J} \cdot b_{\sigma} - \frac{(J+1) \cdot (2J^{2} + 2J+1)}{90 \cdot J^{3}} \cdot b_{\sigma}^{3}$$
(A88)

Με αντικατάσταση της παραμέτρου $b_{\sigma} = \frac{3J}{J+1} \cdot \frac{T_c}{T} \cdot \frac{M}{M_0}$ από τη σχέση (A87) η τελευταία σχέση γράφεται:

$$\left(\frac{M}{M_{0}}\right)^{2} = \frac{10.(J+1)^{2}}{3.(2J^{2}+2J+1)} \cdot \left(\frac{T}{T_{c}}\right)^{2} \cdot \left(1-\frac{T}{T_{c}}\right)^{\frac{T}{T_{c}} \to 1} \approx \frac{10.(J+1)^{2}}{3.(2J^{2}+2J+1)} \cdot \left(1-\frac{T}{T_{c}}\right)$$
(A89)

Eπειδή $\frac{d(\frac{M}{M_0})}{dT} = -\left[\frac{10.(J+1)^2}{3.(2J^2+2J+1)}\right]^{\frac{1}{2}} \cdot \frac{1}{2T_c \cdot \sqrt{1-\frac{T}{T_c}}}, \eta$ αυτογενής μαγνήτιση *M* μειώνεται συνεχώς με την αύξηση

the bermokrasías T kai empanízei asunéceia sth bermokrasía $T_{\rm c}$.

Το μέγεθος της ασυνέχειας στην καμπύλη της μαγνήτισης (διάγραμμα A7), μπορεί να υπολογιστεί από τη μεταβολή της ειδικής θερμότητας C_{σ} , πλησίον της θερμοκρασίας T_{c} . Η αύξηση της εσωτερικής ενέργειας U_{σ} του σιδηρομαγνητικού υλικού από την ύπαρξη αυτογενούς μαγνήτισης, ως αποτέλεσμα του μέσου «μοριακού» πεδίου H_{w} =λ.M, υπολογίζεται από τη σχέση:

Διάγραμμα Α7. (a) Απεικόνιση της μορφής και του μέτρου στην ασυνέχεια της μεταβολής της ειδικής θερμότητας C_{σ} σιδηρομαγνητικού υλικού για $J = \frac{1}{2}$, όπως υπολογίζεται από τη σχέση (A98). (β) Απεικόνιση της ασυνέχειας στη μεταβολή της ειδικής θερμότητας, όπως καταγράφεται πειραματικά [46,47] για τον Fe(J=S=2) και το Ni (J=S=1). Οι θεωρητικές τιμές υπολογίζονται από την ίδια σχέση, $dC_{Fe} = \frac{30}{13}R=2,3R$ και $dC_{Ni}=2R$.

Η αύξηση της ειδικής θερμότητας $\,\mathrm{dC}_{\sigma},$ υπολογίζεται από τη σχέση:

$$dC_{\sigma} = \frac{dU_{\sigma}}{dT} = -\frac{1}{2} \cdot \lambda \cdot \frac{dM^2}{dT} = -\frac{1}{2} \cdot \lambda \cdot \frac{d(\frac{M^2}{M_0^2}) \cdot M_0^2}{d(\frac{T}{T_c}) \cdot T_c} = -\frac{1}{2} \cdot \lambda \cdot \frac{M_0^2}{T_c} \cdot \frac{d(\frac{M}{M_0})^2}{d(\frac{T}{T_c})}$$
(A91)

Η ποσότητα λ. $\frac{M_0^2}{T_c}$ από τη σχέση (A86β) υπολογίζεται: λ. $\frac{M_0^2}{T_c} = \frac{3J}{J+1} \cdot \frac{n.k_B}{\lambda.\mu_o}$ (A92) Με την αντικατάσταση της τελευταίας σχέσης στη σχέση (A91), η μεταβολή της ειδικής θερμότητας υπολογίζεται: $dC_{\sigma} = -\frac{1}{2} \cdot \frac{3J}{J+1} \cdot \frac{n.k_B}{\mu_o} \cdot \frac{d(\frac{M}{M_0})^2}{d(\frac{T}{T})}$ (A93) Με την αντικατάσταση του πηλίκου $(\frac{M}{M_0})^2$ από τη σχέση (A89), η προηγούμενη σχέση γράφεται:

$$dC_{\sigma} = \frac{5J.(J+1)}{2J^2 + 2J + 1} \cdot \frac{n.k_B}{\mu_o} = \frac{5J.(J+1)}{2J^2 + 2J + 1} \cdot R \quad (A94)$$

όπου R=8,314 $\frac{J}{mol.K}$ η παγκόσμια σταθερά των αερίων.

Οι διαφορές μεταξύ θεωρίας και πειραματικών αποτελεσμάτων στο μέτρο και τη μορφή της ασυνέχειας, υποδηλώνουν φαινόμενα που δεν προβλέπονται από τη θεωρία του μέσου «μοριακού» πεδίου.

Με την εφαρμογή εξωτερικού πεδίου Η ≠ 0, διακρίνονται οι παρακάτω περιπτώσεις:

• Για T>T_c (διάγραμμα 6, θέση 4), ισχύει η προσέγγιση υψηλής θερμοκρασίας (A65a) $B_{J}(b_{\sigma}) \approx \frac{J+1}{3J} \cdot b_{c} = \frac{J+1}{3J} \cdot \frac{M_{0} \cdot \mu_{o} \cdot (H+\lambda.M)}{n.k_{B} \cdot T}$ και η μαγνήτιση υπολογίζεται με αντικατάσταση της σταθεράς

 $\lambda = \frac{3n.k_{\rm B}.T_{\rm c}}{\mu_{\rm o}.M_{\rm 0}^2}$ από τη σχέση (A86) στη σχέση (A83):

$$\mathbf{M} = \mathbf{M}_{0} \cdot \frac{\mathbf{J} + 1}{3\mathbf{J}} \cdot \frac{\mathbf{M}_{0} \cdot \boldsymbol{\mu}_{0} \cdot (\mathbf{H} + \lambda \cdot \mathbf{M})}{\mathbf{n} \cdot \mathbf{k}_{B} \cdot \mathbf{T}} \Leftrightarrow \mathbf{M} = \frac{\mathbf{n} \cdot \mathbf{g}^{2} \cdot \boldsymbol{\mu}_{B}^{2} \cdot \mathbf{J} \cdot (\mathbf{J} + 1) \cdot \boldsymbol{\mu}_{0} \cdot \mathbf{H}}{3\mathbf{k}_{B} \cdot (\mathbf{T} - \mathbf{T}_{c})} = \frac{\mathbf{n} \cdot \mathbf{m}_{\text{eff}}^{2} \cdot \boldsymbol{\mu}_{0} \cdot \mathbf{H}}{3\mathbf{k}_{B} \cdot (\mathbf{T} - \mathbf{T}_{c})}$$
(A95)

Η μαγνητική επιδεκτικότητα χ ανά μονάδα όγκου, υπολογίζεται με την αντικατάσταση της προηγούμενης σχέσης στην (A4): $\chi = \frac{M}{H} = \frac{n.m_{eff}^2.\mu_o}{3k_{\rm B}.(T-T_c)}$ (A96)

Η μαγνητική επιδεκτικότητα $\chi_{\rm m}$ ανά
 μονάδα μάζας, υπολογίζεται από τη σχέση (A5a):

$$\chi_{\rm m} = \frac{\chi}{\rho} = \frac{{\rm n.m}_{\rm eff}^2 \cdot \mu_{\rm o}}{3 k_{\rm B} \cdot \rho} \cdot \frac{1}{{\rm T-T_c}} \qquad (A97)$$

Ο συντελεστής του $\frac{1}{T-T_c}$, αποτελεί έκφραση της σταθεράς του Curie και η προηγούμενη σχέση γράφεται:

$$\chi_{\rm m} = \frac{C}{T - T_{\rm c}} , \quad \acute{\rm o}\pi ov \ C = \frac{n.m_{\rm eff}^2 \cdot \mu_{\rm o}}{3k_{\rm B} \cdot \rho} \quad (A98)$$

• Όταν $H \neq 0$ και $T < T_c$, το εφαρμοζόμενο εξωτερικό πεδίο H είναι αμελητέο σε σχέση με το «μοριακό» πεδίο . Με την αντικατάσταση της παραμέτρου $b_{\sigma} = \frac{M_0 \cdot \mu_o \cdot \lambda \cdot M}{n \cdot k_B \cdot T}$ από τη σχέση (A82) και της σταθεράς $\lambda = \frac{3J}{J+1} \cdot \frac{n \cdot k_B \cdot T_c}{\mu_o \cdot M_0^2}$ από τη σχέση (A86) στη σχέση (A83), η μαγνήτιση υπολογίζεται:

$$\frac{M}{M_0} = \frac{2J+1}{2J} \cdot \operatorname{coth}(\frac{3}{2} \cdot \frac{2J+1}{J+1} \cdot \frac{M}{M_0} \cdot \frac{T_c}{T}) - \frac{1}{2J} \cdot \operatorname{coth}(\frac{3}{2} \cdot \frac{1}{J+1} \cdot \frac{M}{M_0} \cdot \frac{T_c}{T}) \quad (A99)$$

A3.3 Προέλευση του «μοριακού» πεδίου του Weiss

Παρότι το μέσο «μοριακό» πεδίο του Weiss που υπολογίζεται με την παραδοχή της ομοιογενούς κατανομής των μαγνητικών ροπών σε όλο τον όγκο του υλικού εξηγεί την εμφάνιση της ενδογενούς μαγνήτισης, δεν αιτιολογεί την προέλευσή του, ούτε την αυθόρμητη οργάνωση των μαγνητικών ροπών κατά περιοχές με επιλεκτικό προσανατολισμό της αυθόρμητης μαγνήτισης προς συγκεκριμένες «εύκολες» κατευθύνσεις.

Τα σιδηρομαγνητικά υλικά χωρίς την εφαρμογή εξωτερικού πεδίου (σχήμα A10), εμφανίζουν αυθόρμητα παράλληλες ή αντιπαράλληλες ηλεκτρονιακές ροπές κατά μήκος συγκεκριμένων κρυσταλλογραφικών διευθύνσεων, εντός οριοθετημένων περιοχών (περιοχές Weiss), που συνιστούν μαγνητικούς τομείς διαφόρων μεγεθών και σχημάτων με διαφορετικούς προσανατολισμούς, έτσι ώστε η συνολική μαγνήτιση να είναι μηδενική.

Οι περιοχές Weiss διαχωρίζονται από ευκίνητα μαγνητικά τοιχώματα (τοιχώματα Bloch), που περιέχουν ενδιάμεσα προσανατολισμένες ηλεκτρονιακές ροπές, σε σχέση με τις γειτονικές περιοχές.

Σχήμα A10. Καταγραφή των προϋπαργόντων μαγνητικών περιοχών (1931)από τον Francis Bitter⁷ [48], μέσω μίγματος λεπτής μαγνητικής σκόνης σε υγρό φορέα, που τοποθετήθηκε στην επιφάνεια αμαγνήτιστου σιδηρομαγνητικού υλικού. Η χαρτογράφηση επιτυγχάνεται με τη συσσώρευση των σωματιδίων στα σύνορα των μαγνητικών περιοχών, όπου η μεταβολή του εσωτερικού μαγνητικού πεδίου είναι μέγιστη. Άλλες μέθοδοι παρατήρησης των μαγνητικών περιοχών, χρησιμοποιούν μαγνητοοπτικές μεθόδους όπως η τεχνική Barkhausen [49], που βασίζεται στην παρατήρηση διακριτών αλλαγών στην μαγνητική επαγωγή εξαιτίας των επαναπροσανατολισμών των περιοχών με την αύξηση του μαγνητικού πεδίου και η μέθοδος Kerr και Faraday [50] που βασίζεται στη μέτρηση της περιστροφής της πόλωσης, κατά την ανάκλαση του φωτός στην επιφάνεια του μαγνητικού υλικού. Σήμερα χρησιμοποιείται η ηλεκτρονική μικροσκοπία διερχόμενης δέσμης (ΤΕΜ) συνήθως σε λεπτά υμένια, η τοπογραφία περίθλασης ακτινών Χ και περίθλασης νετρονίων, μέσω της καταγραφής των πλεγματικών μεταβολών κατά τη μαγνήτιση και η μικροσκοπία μαγνητικής δύναμης (MFM).

Παρά την πολυπλοκότητα της οργανωτικής δομής και των μηχανισμών αλληλεπίδρασης μεταξύ των μαγνητικών περιοχών, η τελική διαμόρφωση της μαγνήτισης των σιδηρομαγνητικών υλικών, καθορίζεται από την απαίτηση ελαχιστοποίησης της ενέργειάς τους. Για την αλλαγή της μαγνήτισης από μια «εύκολη» κατεύθυνση σε άλλη, απαιτείται ενέργεια. Αν το ενεργειακό φράγμα είναι αρκετά υψηλό, το υλικό μπορεί να παραμείνει μαγνητισμένο προς την ίδια κατεύθυνση για πολύ μεγάλο χρονικό διάστημα δισεκατομμυρίων χρόνων.

⁷ Francis Bitter, *«Experiments of the Nature of Ferromagnetism»*, Physical Review, vol.41, page 507, 15 August 1932. Οι εικόνες προέρχονται από το βιβλίο του David C.Jiles, «Introduction to Magnetism and Magnetic Materials», CRC Press (1998).

Η συνολική ενέργεια $\varepsilon_{o\lambda}(\frac{J}{m^3})$ ενός σιδηρομαγνητικού υλικού, υπολογίζεται από το άθροισμα:

 $\boldsymbol{\epsilon}_{o\boldsymbol{\lambda}} {=} \boldsymbol{\epsilon}_{H} {+} \boldsymbol{\epsilon}_{ex} {+} \boldsymbol{\epsilon}_{d} {+} \boldsymbol{\epsilon}_{\mu} {+} \boldsymbol{\epsilon}_{o} \quad \text{(A100), } \quad \text{ópou:}$

1) $\varepsilon_{\rm H}$: Η ενέργεια της μαγνήτισης του υλικού που οφείλεται στην αλληλεπίδρασή του με εξωτερικό μαγνητικό πεδίο H,

2) $\boldsymbol{\epsilon}_{ex}$: $\boldsymbol{\eta}$ enérgeia antallagúz,

3) $\boldsymbol{\epsilon}_{d}$: $\boldsymbol{\eta}$ enérgeia apomagnútistic,

4) $\varepsilon_{\mu} = \varepsilon_{s} + \varepsilon_{\kappa} + \varepsilon_{\sigma} + \varepsilon_{E}$, η ενέργεια μαγνητικής ανισοτροπίας, ως άθροισμα των ενεργειών: 4α) ανισοτροπίας σχήματος (ε_{s}), 4β) μαγνητοκρυσταλλικής ανισοτροπίας (ε_{κ}) 4γ) μαγνητοελαστικής ανισοτροπίας (ε_{σ}) και 4δ) επιφανειακής ανισοτροπίας(ε_{E}).

5) ε₀ : οποιαδήποτε άλλη ενέργεια που μπορεί να οφείλεται σε ατέλειες της κρυσταλλικής δομής.

2) Ενέργεια ανταλλαγής (ε_{ex}): Η προέλευση του «μοριακού πεδίου» του Weiss αποδόθηκε από τον Heisenberg (1928) στις κβαντομηχανικές δυνάμεις ανταλλαγής, που οφείλονται στα spin των ατόμων. Σύμφωνα με την κλασική φυσική, οι θέσεις δυο ατόμων καθορίζονται από την τάση ελαχιστοποίησης της ενέργειας των απωστικών και ελκτικών δυνάμεων μεταξύ των ηλεκτρονίων ή των πυρήνων και μεταξύ των ηλεκτρονίων και των πυρήνων των ατόμων. Σύμφωνα με την απαγορευτική αρχή του Pauli κατά την κβαντική θεώρηση, οι δυνάμεις ανταλλαγής μειώνουν επιπλέον την ενέργεια των ατόμων και συνεπώς τα άτομα μπορούν να υπάρξουν στον ίδιο χώρο σχηματίζοντας μόριο, μόνο αν έχουν παράλληλα ή αντιπαράλληλα spins.

Η αλληλεπίδραση των ατόμων με ν ηλεκτρόνια, με κβαντικό αριθμό spin $S=v.\frac{1}{2}$ και με την προϋπόθεση ότι η αλληλεπίδραση spin-τροχιάς είναι μικρή, περιγράφεται μαθηματικά από τη χαμιλτονιανή:

$$H_{ex} = -\sum_{i} \sum_{j} J_{ex} . \vec{S}_{i} . \vec{S}_{j}$$
 (A101)

Στο παραπάνω άθροισμα, \vec{S}_i και \vec{S}_j , είναι τα spin των ατόμων στις θέσεις i και j του κρυστάλλου και $J_{ex}(J)$ το ολοκλήρωμα ανταλλαγής, που περιγράφει το είδος και το ποσοστό της επικάλυψης των τροχιακών των ατόμων. Η αλληλεπίδραση εξωτερικού μαγνητικού πεδίου Η σε οποιαδήποτε z-κατάσταση, με άτομα συνολικής διπολικής ροπής m_a , υπολογίζεται από τις ιδιοτιμές του τελεστή Ĥ στην εξίσωση του Hamilton:

$$H = H_{\rm H} + H_{\rm W} = \frac{m_{\rm a} \cdot \mu_{\rm o} \cdot H}{S} \cdot \sum_{j=1}^{\rm N} S_j^{\rm z} - \sum_{j \cdot j'} \sum J_{\rm ex} \cdot \vec{S}_j \cdot \vec{S}_j \cdot (A102)$$

Επειδή η επίλυση του προβλήματος είναι εφικτή για μικρό εύρος θερμοκρασιών, αναζητούνται προσεγγιστικές λύσεις με την επιπλέον παραδοχή της ταχείας εξασθένησης των δυνάμεων ανταλλαγής, συναρτήσει της απόστασης. Στην απλούστερη περίπτωση αλληλεπιδράσεων μικρής εμβέλειας, μεταξύ ζευγαριών από spins \vec{S}_i, \vec{S}_j γειτονικών ατόμων i,jπου σχηματίζουν γωνία $\hat{\phi}_{ij}$, η ενέργεια ανταλλαγής υπολογίζεται από την εξίσωση: E_{ex} =-2. J_{ex} . $\sum \vec{S}_i.\vec{S}_j$ =-2. J_{ex} . $\sum S_i.S_j.$ συν ϕ_{ij} (A103)

Από την τελευταία εξίσωση, εξάγονται τα παρακάτω ποιοτικά συμπεράσματα:

- An $J_{ex}>0$, η enérgeia elacistopoieítai gia $\phi_{ij}=0^{\circ}$ η sun $0^{\circ}=1$, ótan ta spin eínai parállyla. Sunepán, aparaíthth proüpóbesh gia thn empánish sidhromagnhtismoù eínai $J_{ex}>0$.

- An $J_{\rm ex}<\!0$, η enérgieia elacistopoieítai gia $\phi_{ij}\!=\!\!180^\circ$ $\acute{\eta}$ sun180°=-1, ótan ta spin eínai antiparállyla. Sunepwic, aparaíthth proüpóbesh gia thn empánish tou antisidhromagnutismoú eínai $J_{\rm ex}<\!0$.

Ο προσανατολισμός των μαγνητικών ροπών, εξαρτάται από το πρόσημο της ενέργειας ανταλλαγής J_{ex} , ενώ ο τρόπος διάταξης από την κρυσταλλική δομή των σιδηρομαγνητικών υλικών.

Σχήμα A11. Απεικόνιση του προσανατολισμού των μαγνητικών ροπών των μονήρων ηλεκτρονίων, στα σιδηρομαγνητικά (A), τα αντισιδηρομαγνητικά (B) υλικά.

-Στα σιδηρομαγνητικά υλικά Fe, Co, Ni, Gd, Dy, EuO, EuS, κ.ά., οι ηλεκτρονιακές ροπές (σχήμα A11A) έχουν παράλληλη διάταξη.

-Στα αντισιδηρομαγνητικά υλικά (Cr, α-Mn, Ce, Nd, MnO, MnF₂, FeTiO₃, κ.ά., οι ηλεκτρονιακές ροπές είναι αντίθετες (σχήμα A11B), με αποτέλεσμα η συνολική μαγνήτιση να είναι μηδενική. Σε κάποια αντισιδηρομαγνητικά υλικά οι ηλεκτρονιακές ροπές αποκλίνουν κάποιες μοίρες (π.χ. αιματίτης) από την τέλεια ευθυγράμμιση (σχήμα A11/B2) ή δεν αλληλοαναιρούνται τελείως λόγω ατελειών (π.χ. λεπτόκοκκος αιματίτης) στην κρυσταλλική δομή (σχήμα A11/B3), με αποτέλεσμα να εμφανίζουν ασθενή παραμένουσα μαγνήτιση.

-Στα αντισιδηριμαγνητικά (σχήμα A11/B4) ή σιδηριμαγνητικά υλικά (φερρίτες), οι αντιπαράλληλες μαγνητικές ροπές εμφανίζουν άνισα μέτρα, με αποτέλεσμα να εμφανίζουν συνολική ροπή, ασθενέστερη από των σιδηρομαγνητικών υλικών. Χαρακτηριστικές αντισιδηριμαγνητικές ενώσεις είναι του τύπου Me⁺²Fe⁺³O₄, όπου Me: Mn, Co, Ni, Cu, Mg, Zn, Cd.

Οι ενεργειακές αλληλεπιδράσεις μειώνονται με την αύξηση της θερμοκρασίας και μηδενίζονται πάνω από μια χαρακτηριστική για κάθε σιδηρομαγνητικό υλικό θερμοκρασία Curie (T_c), όπου επικρατεί η παραμαγνητική συμπεριφορά. Η αντίστοιχη θερμοκρασία για τα αντισιδηριμαγνητικά υλικά, καλείται θερμοκρασία Neel (T_N).

Το πρόσημο του ολοκληρώματος ανταλλαγής J_{ex} , σε συνάρτηση με το πηλίκο r_a / r_{ad} της ακτίνας r_a μεταξύ των ατόμων, προς την ακτίνα r_{ad} του 3d τροχιακού, προβλέπεται από την καμπύλη (διάγραμμα A8) των *Bethe-Slater*.

Διάγραμμα Α8. Γραφική παράσταση της καμπύλης Bethe-Slater [51]. Όσο η απόσταση r_a μεταξύ ίδιων ατόμων ελαττώνεται χωρίς να μεταβάλλεται η ακτίνα των 3d τροχιακών τους, αυξάνεται η θετική αλληλεπίδραση ανταλλαγής J_{ex} , που ευνοεί την παράλληλη διάταξη των spin μέχρι κάποια απόσταση προσέγγισης, πέρα από την οποία ευνοείται η αντιπαράλληλη διάταξη των spin.

Το μέτρο της επικάλυψης του ολοκληρώματος ανταλλαγής J_{ex} , είναι ανάλογο της θερμοκρασίας T_c . Η ενέργεια ανταλλαγής E_{ex} μεταξύ ενός ατόμου σε έναν κρύσταλλο, με γ πλησιέστερους γείτονες με τα ίδια ομόρροπα spin $\vec{S}_i = \vec{S}_j = \vec{S}$, υπολογίζεται από την τελευταία εξίσωση (A103): $E_{ex} = -2.\gamma J_{ex} . S^2$ (A104) Η μέγιστη ενέργεια E_w του «μοριακού» πεδίου $H_w = \lambda . M_o$ των $n(m^{-3})$ προσανατολισμένων μαγνητικών

Η μεγιστη ενεργεία E_w του «μοριακου» πεοίου $H_w = \lambda.M_o$ των n(m) προσανατολισμένων μαγνητικών ροπών $m_o = g.J.\mu_B$ (A59), με συνολική μαγνήτιση $M_o = n.m_o$, υπολογίζεται από τη σχέση:

$$\mathbf{E}_{w} = -\mathbf{m}_{o} \cdot \boldsymbol{\mu}_{o} \cdot \mathbf{H}_{w} = -\frac{\mathbf{M}_{o}}{n} \cdot \boldsymbol{\lambda} \cdot \boldsymbol{\mu}_{o} \cdot \mathbf{M}_{o} = -\frac{\boldsymbol{\lambda} \cdot \boldsymbol{\mu}_{o} \cdot \mathbf{M}_{o}^{2}}{n} \qquad (A105)$$

Eπειδή $E_{ex} = E_w$, το ολοκλήρωμα ανταλλαγής J_{ex} υπολογίζεται από τις σχέσεις (A104),(A105), μέσω της εξίσωσης: -2.γ. J_{ex} .S²=- $\frac{\lambda . \mu_o . M_o^2}{n}$ ⇔ $J_{ex} = \frac{\lambda . \mu_o . M_o^2}{2.n. \gamma . S^2}$ (A106) 3.I.n. k_a .T

Με την αντικατάσταση της σταθεράς $\lambda = \frac{3.J.n.k_{\rm B}.T_{\rm c}}{(J+1).\mu_{\rm o}.M_{\rm o}^2}$ από τη σχέση (A86) στην προηγούμενη σχέση, η

ενέργεια ανταλλαγής υπολογίζεται: $J_{ex} = \frac{3.J.k_B.T_c}{2(J+1).\gamma.S^2}$ (A107)

Επειδή η συνολική στροφορμή $J=S+L\approx S$ οφείλεται κυρίως στο spin, η τελευταία σχέση γράφεται:

$$J_{ex} = \frac{3.S.k_{B}.T_{c}}{2(S+1).\gamma.S^{2}} = \frac{3.k_{B}.T_{c}}{2S(S+1).\gamma}$$
(A108)

Σύμφωνα με την τελευταία σχέση, το μέτρο της επικάλυψης των τροχιακών που εκφράζει το ολοκλήρωμα ανταλλαγής J_{ex} , είναι ανάλογο της θερμοκρασίας T_c , όπως φαίνεται στο διάγραμμα A8, όπου το Co (T_c =1388K) έχει την υψηλότερη θερμοκρασία Curie, ενώ το Ni (T_c =627K) τη χαμηλότερη.

Η ενέργεια ανταλλαγής δεν εξαρτάται από τις μαγνητοστατικές αλληλεπιδράσεις μεταξύ γειτονικών μαγνητικών ροπών, αλλά είναι ηλεκτροστατικής προέλευσης και απαιτείται η κβαντομηχανική για την περιγραφή της. Η σχέση (A103) αποτελεί το εντοπισμένο μοντέλο του Heisenberg για μη μεταλλικά ορυκτά, όπως ο μαγνητίτης ή ο αιματίτης. Για την περιγραφή του μαγνητισμού των μετάλλων, των κραμάτων και των ενώσεων, εφαρμόζονται συλλογικά μοντέλα ηλεκτρονίων με στατιστική Fermi. Η θεωρία *itinerant electron ferromagnetism* του Stoner⁸ [52], που αποτελεί προσέγγιση μέσου πεδίου, περιγράφει τις ιδιότητες των 3d ηλεκτρονίων σε μεταβατικά μέταλλα, ενώ ο μαγνητισμός των σπάνιων γαιών περιγράφεται με το μοντέλο (RKKY) της αλληλεπίδρασης s-d ηλεκτρονίων των Ruderman-Kittel-Kasuya-Yosida [53], όπου τα spin των ατόμων αλληλεπίδρούν έμμεσα μέσω της ταινίας των ηλεκτρονίων αγωγιμότητας.

3) Еνέργεια απομαγνήτισης (ε_d): Η στατική μαγνητοκρυσταλλική ενέργεια $\varepsilon_{ms}(J_{m^3})$ οφείλεται στην αλληλεπίδραση μακράς εμβέλειας τύπου δίπολου-δίπολου, που οφείλεται στη μαγνήτιση υπό την επίδραση του πεδίου απομαγνήτισης \vec{H}_d της ενδογενούς μαγνήτισης \vec{M} που δημιουργούν οι κατανεμημένοι μαγνητικοί πόλοι στον όγκο του υλικού και υπολογίζεται από τη σχέση: $\varepsilon_{ms} = \mu_o \int \vec{H}_d \cdot d\vec{M}$ (A109)

⁸ Alexander LichtensteinI. Institut fur Theoretische Physik Universitat Hamburg, 20355 Hamburg, Germany, «Magnetism: From Stoner to Hubbard».

Σχήμα A12. (α) Προσανατολισμός μαγνητικών δίπολων εντός κρυστάλλου ελλειψοειδούς συμμετρίας, αποτελούμενου από μια περιοχή Weiss. (β) Δημιουργία πανομοιότυπου εξωτερικού πεδίου από θεωρούμενα επιφανειακά μονόπολα, (γ) Πεδίο απομαγνήτισης \vec{H}_{d} ως αποτέλεσμα ύπαρξης επιφανειακών μονόπολων. (δ) Απεικόνιση του πεδίου απομαγνήτισης \vec{H}_{d} και της ενδογενούς μαγνήτισης \vec{M} που σχηματίζει γωνία $\hat{\alpha}$ με τον άξονα μαγνήτισης c.

Το εξωτερικό μικροσκοπικό πεδίο κάθε κρυστάλλου, είναι ανάλογο της ενδογενούς μαγνήτισης \vec{M} του υλικού και πανομοιότυπο με το πεδίο που θα μπορούσε να παραχθεί από ένα σύνολο ελεύθερων μονόπολων (σχήμα A12α,β) στην επιφάνειά του. Το εσωτερικό πεδίο απομαγνήτισης \vec{H}_{d} (σχήμα A12γ) που παράγουν τα επιφανειακά μονόπολα είναι ανάλογο της μαγνήτισης \vec{M} , και προσδιορίζεται από τη σχέση:

$$\dot{H}_d = N.\dot{M}$$
 (A110)

Ο αδιάστατος συντελεστής N στην τελευταία σχέση, που εκφράζει τον παράγοντα απομαγνήτισης, είναι ένας 3×3 τανυστής, που εξαρτάται από το σχήμα και τον προσανατολισμό της μαγνήτισης και το σχήμα του κρυστάλλου. Αν N_a , N_b , N_c οι συντελεστές απομαγνήτισης κατά τους άξονες συμμετρίας a,b,c, σε κάθε περίπτωση ισχύει: N_a + N_b + N_c =1 (A111)

Η μαγνητοκρυσταλλική ενέργεια $\epsilon_{ms}^{(i)}$ ($\frac{J}{m^3}$), υπολογίζεται για κάθε άξονα συμμετρίας i=a,b,c από τη σχέση:

$$\epsilon_{\rm ms}^{(i)} = \mu_{\rm o} . \int \vec{\rm H}_{\rm di} . d\vec{\rm M}_{\rm i} = \mu_{\rm o} . \int N_{\rm i} . \vec{\rm M}_{\rm i} . d\vec{\rm M}_{\rm i} = \frac{1}{2} \mu_{\rm o} . N_{\rm i} . M_{\rm i}^2 \qquad (A112)$$

Αν συνα, συνb και συνς τα συνημίτονα κατεύθυνσης του ανύσματος της ενδογενούς μαγνήτισης κατά τους άξονες a,b και c, η συνολική μαγνητοκρυσταλλική ενέργεια υπολογίζεται από τη σχέση:

$$\varepsilon_{\rm ms} = \frac{1}{2}\mu_{\rm o}.M^2.(N_{\rm a}.\sigma \upsilon v^2 \hat{\alpha} + N_{\rm b}.\sigma \upsilon v^2 \hat{b} + N_{\rm c}.\sigma \upsilon v^2 \hat{c})$$

Στην απλούστερη περίπτωση ενός κρυστάλλου με ελλειψοειδή συμμετρία που συνίσταται από μια περιοχή Weiss (σχήμα A12δ), με N_b ≈ 0 και σταθερές απομαγνήτισης N_c και N_a κατά τους αντίστοιχους άξονες c, a, υπό γωνία â μεταξύ της ενδογενούς μαγνήτισης \vec{M} και του άξονα c, η ενέργεια απομαγνήτισης ε_{ms} προσδιορίζεται από τη σχέση (A112):

$$\varepsilon_{\rm ms} = \frac{1}{2} .\mu_{\rm o} .N_{\rm c} .(M.\sigma\upsilon\nu\alpha)^2 + \frac{1}{2} .\mu_{\rm o} .N_{\rm a} .(M.\eta\mu\alpha)^2 = \frac{1}{2} .\mu_{\rm o} .M^2 .(N_{\rm c} .\sigma\upsilon\nu^2\alpha + N_{\rm a} .\eta\mu^2\alpha)$$
(A113)

Με την αντικατάσταση συν²α=1-ημ²α η τελευταία σχέση γράφεται:

$$\varepsilon_{\rm ms} = \frac{1}{2} \cdot \mu_{\rm o} \cdot N_{\rm c} \cdot M^2 + \frac{1}{2} \cdot \mu_{\rm o} \cdot (N_{\rm a} - N_{\rm c}) \cdot M^2 \cdot \eta \mu^2 \alpha = \varepsilon_{\rm d} + \varepsilon_{\rm s} (\hat{\alpha}) \quad (A114)$$

Ο πρώτος όρος $\varepsilon_d = \frac{1}{2} \cdot \mu_o \cdot N_e \cdot M^2$ (A115) του παραπάνω αθροίσματος, που εξαρτάται από το σχήμα του κρυστάλλου μέσω της τιμής του συντελεστή απομαγνήτισης N_e και είναι ανεξάρτητος του προσανατολισμού της μαγνήτισης \vec{M} , αποτελεί την ενέργεια απομαγνήτισης.

Ο δεύτερος όρος $\varepsilon_s(\hat{\alpha}) = \frac{1}{2} \cdot \mu_o \cdot (N_a - N_c) \cdot M^2 \cdot \eta \mu^2 \alpha$ (A116), που αποτελεί μέτρο της απόκλισης της συμμετρίας του κρυστάλλου από το σφαιρικό σχήμα (ΔΝ=0), μέσω της διαφοράς ΔΝ= $N_a - N_c$ και είναι συνάρτηση της γωνίας $\hat{\alpha}$ μεταξύ της μαγνήτισης \vec{M} και του άξονα c, αποτελεί την ενέργεια κρυσταλλικής ανισοτροπίας σχήματος.

Σχήμα A13. (α) Προσανατολισμός μαγνητικών δίπολων εντός κρυστάλλου σφαιρικής συμμετρίας, αποτελούμενου από μια περιοχή Weiss. (β) Πεδίο απομαγνήτισης \vec{H}_d ως αποτέλεσμα ύπαρξης θεωρούμενων επιφανειακών μονόπολων. (γ) Για τον υπολογισμό του πεδίου απομαγνήτισης \vec{H}_d στον ισημερινό, γίνεται η υπόθεση ότι η συνολική διπολική ροπή \vec{m} , οφείλεται σε συγκεντρωμένα μονόπολα στον βόρειο πόλο της σφαίρας. (δ) Απεικόνιση του πεδίου απομαγνήτισης \vec{H}_d και της ενδογενούς μαγνήτισης \vec{M} που σχηματίζει γωνία $\hat{\alpha}$ με έναν άξονα συμμετρίας της σφαίρας.

Στην ειδικότερη περίπτωση ενός κυβικού κρυστάλλου με σφαιρική συμμετρία (σχήμα A13), όπου $N=N_a=N_b=N_c$, ισχύει (A114): $ε_{ms}=ε_d=\frac{1}{2}.μ_o.N.M^2$ (A117) και $ε_s=0$

Αν η σφαίρα έχει ακτίνα r με ενδογενή μαγνήτιση Μ και οι φορείς της μαγνήτισης είναι περισσότερο συγκεντρωμένοι στο βόρειο παρά στον νότιο πόλο (σχήμα Α13γ), η διπολική ροπή m ολόκληρης της σφαίρας προσεγγίζεται από τη σχέση: m=M.V= $\frac{4}{3}$ πr³.M (A118)

To pedio H_d ston ishmerino the sqairag ($\theta = \frac{\pi}{2}$), proseggizetai apó th scésh:

$$H_{d} = -\frac{m}{4\pi r^{3}} \quad (A119)$$

Με αντικατάσταση της (A.118) στην προηγούμενη σχέση, το πεδίο απομαγνήτισης H_d συναρτήσει της μαγνήτισης M υπολογίζεται: $\vec{H}_d = -\frac{1}{3}\vec{M}$ (A120) Επομένως σύμφωνα με την τελευταία σχέση για κάθε ισοδύναμο άξονα σφαιρικής συμμετρίας a=b=c, ισχύει: $N_a = N_b = N_c = \frac{1}{3}$ (A121)

Η ενέργεια απομαγνήτισης υπολογίζεται (A117): $\varepsilon_{ms} = \varepsilon_{d} = \frac{1}{6} \cdot \mu_{o} \cdot M^{2}$ (A122)

Σε έναν κρύσταλλο ελλειψοειδούς συμμετρίας, με ενδογενή μαγνήτιση παράλληλη στο μεγάλο άξονα c ή στο μικρό άξονα a, το πεδίο απομαγνήτισης είναι αντιστρόφως ανάλογο του τετραγώνου της ακτίνας και οι αντίστοιχες τιμές του πεδίου απομαγνήτισης H_d θα είναι μικρότερες ($N_c < \frac{1}{3}$) ή μεγαλύτερες ($N_a > \frac{1}{3}$) από το πεδίο της σφαίρας.

4) Ενέργεια μαγνητικής ανισοτροπίας (ε_μ): Η μαγνητική ανισοτροπία προσδιορίζει την εξάρτηση της μαγνητικής ελεύθερης ενέργειας για κάθε κρύσταλλο σιδηρομαγνητικού υλικού από τη διεύθυνση της μαγνήτισης σε σχέση με κάποιον άξονα συμμετρίας (ανισοτροπία σχήματος-ε_s) ή κρυσταλλογραφικό άξονα (μαγνητοκρυσταλλική ανισοτροπία-ε_κ), ή άξονα άσκησης μηχανικής τάσης (μαγνητοελαστική ανισοτροπία) ή σε σχέση με κάποια επιφάνεια ή διεπιφάνεια (επιφανειακή ανισοτροπία) του υλικού. Σε κάθε περίπτωση, η ενέργεια ανισοτροπίας ελαχιστοποιείται σε συγκεκριμένες κατευθύνσεις «εύκολης» μαγνήτισης, ενώ ταυτόχρονα παρεμποδίζεται η ελεύθερη περιστροφή των μαγνητικών ατομικών ροπών προς «δύσκολες» ενεργειακά αναβαθμισμένες κατευθύνσεις.

4α) Η ανισοτροπία σχήματος $(ε_s)$ καθορίζεται από τη διαφορά των εξαρτώμενων συντελεστών απομαγνήτισης N_a, N_b, N_c κατά τους άξονες συμμετρίας a,b,c από το σχήμα και από τον προσανατολισμό της μαγνήτισης \vec{M} στο εσωτερικό του κρυστάλλου.

Σχήμα Α14. Άξονες συμμετρίας σε απλά γεωμετρικά σχήματα

Οι παράγοντες απομαγνήτισης N_a, N_b, N_c και οι μέγιστες ενέργειες ανισοτροπίας (A116) $\varepsilon_s = \frac{1}{2} \cdot \mu_o \cdot (N_a - N_c) \cdot M^2$ σε απλά γεωμετρικά σχήματα, για α=90°, υπολογίζονται:

-Σφαίρα (σχήμα A14α):
$$N_a = N_b = N_c = \frac{1}{3}$$
, ε_s=0 (A123)

-Λεπτός δίσκος (σχήμα A14β): $N_a = N_b = 0, N_c = 1, \epsilon_s = -\frac{\mu_o}{2}.M^2$ (A124)

-Μακρύς κύλινδρος (σχήμα A14γ): $N_a = N_b = \frac{1}{2}$, $N_c = 0$, $\varepsilon_s = \frac{\mu_o}{4}$. M² (A125)

-Elleiyoeidéc (**schua A14d**): Για σχεδόν σφαιρική συμμετρία, ο συντελεστής απομαγνήτισης N_a προσεγγίζεται από τη σχέση⁹ [54]: $N_a = \frac{1}{3} \cdot \left[1 - \frac{2}{5} \cdot \left(2 - \frac{b}{a} - \frac{c}{a}\right)\right]$ (A126)

⁹ Graham J. Borradaile and Mike Jackson, «Anisotropy of magnetic susceptibility (AMS): Magnetic petrofabrics of deformed rocks»,

Για σχεδόν κυβικούς κρυστάλλους μαγνητίτη, με μικρή απόκλιση από τη σφαιρική συμμετρία, όπου b=c, N_b=N_c=x και $c_a'=\frac{13}{10}$, ο N_a υπολογίζεται από την τελευταία σχέση: N_a= $\frac{31}{75}$ ≈0,4. Από τη σχέση (A111) οι N_b, N_c υπολογίζονται: N_a+N_b+N_c=0,4+2x=1 ⇔ x=N_b=N_c ≈ 0,3 Επειδή για τον μαγνητίτη M=480^{KA}/_m, η ε_s(α=90°) υπολογίζεται (A116):

$$\varepsilon_{\rm s} = \frac{1}{2}.4\pi.10^{-7}.(0,4-0,3).480^2.10^6 \, {\rm J/m^3} \approx 1.10^4 \, {\rm J/m^3}$$
 (A127)

Με την αντικατάσταση συν2α=1-2.ημ²α=2.συν²α-1 στη σχέση (A113), η μαγνητοκρυσταλλική ενέργεια ε_{ms} ενός κρυστάλλου με ελλειψοειδή συμμετρία (σχήμα A14δ) και ενδογενή μαγνήτιση \vec{M} , απουσίας εξωτερικού μαγνητικού πεδίου, υπολογίζεται:

$$\varepsilon_{\rm ms} = \frac{1}{4} \cdot \mu_{\rm o} \cdot (N_{\rm c} + N_{\rm a}) \cdot M^2 - \frac{1}{4} \cdot \mu_{\rm o} \cdot (N_{\rm a} - N_{\rm c}) \cdot M^2 \cdot \sigma \upsilon 2\alpha \quad (A.128)$$

Από την τελευταία σχέση συμπεραίνεται ότι η τιμή της μαγνητοκρυσταλλικής ενέργειας ε_{ms} καθορίζεται από τη διαφορά $\Delta N=N_a-N_c$ και γίνεται ελάχιστη ($\hat{\alpha}=0$) ή μέγιστη ($\hat{\alpha}=90^\circ$), όταν η μαγνήτιση \vec{M} έχει την αντίστοιχη διεύθυνση του «εύκολου» άξονα c ή του μικρού άξονα a.

Εντός μαγνητικού πεδίου \vec{H} (σχήμα A15), υπό γωνία $\hat{\phi}$ με τη διεύθυνση της ενδογενούς μαγνήτισης \vec{M} και υπό γωνία $\hat{\theta}=\hat{\phi}+\hat{\alpha}$ με τη διεύθυνση του c άξονα, η συνιστώσα $M_{\rm H}=M.$ συν $\hat{\phi}$ της ενδογενούς μαγνήτισης \vec{M} στη διεύθυνση του εξωτερικού πεδίου \vec{H} , προσδίδει στον κρύσταλλο πρόσθετη ενέργεια:

$$\varepsilon_{\rm H} = \mu_{\rm 0}.H.M.$$
sung (A129)

Σχήμα A15. Κρύσταλλος ελλειψοειδούς συμμετρίας με ενδογενή μαγνήτιση \vec{M} , εντός εξωτερικού πεδίου \vec{H} .

Η συνολική ενέργεια ε του σωματιδίου προσδιορίζεται από τις σχέσεις (A128, A129):

$$\epsilon = \epsilon_{\rm ms} + \epsilon_{\rm H} = \frac{1}{4} \cdot \mu_{\rm o} \cdot (N_{\rm c} + N_{\rm a}) \cdot M^2 - \frac{1}{4} \cdot \mu_{\rm o} \cdot (N_{\rm c} - N_{\rm a}) \cdot M^2 \cdot \sigma \upsilon v 2\alpha + \mu_{\rm o} \cdot H \cdot M \cdot \sigma \upsilon v \phi \quad (A130)$$

Η θέση του ανύσματος της ενδογενούς μαγνήτισης \overline{M} σε κατάσταση θερμοδυναμικής ισορροπίας καθορίζεται από την ελαχιστοποίηση της συνολικής ενέργειας ε, βάσει των σχέσεων:

$$\frac{\partial \varepsilon}{\partial \varphi} = \frac{1}{2} .\mu_{o} .(N_{c} - N_{a}) .M^{2} .\eta \mu 2 \hat{\alpha} - \mu_{o} .H.M.\eta \mu \hat{\varphi} = 0$$
(A131)
$$\frac{\partial^{2} \varepsilon}{\partial^{2} \varphi} = \mu_{o} .(N_{c} - N_{a}) .M^{2} .\sigma \nu 2 \hat{\alpha} - \mu_{o} .H.M.\sigma \nu \nu \hat{\varphi}$$
(A.132)

Η θέση του ανύσματος της ενδογενούς μαγνήτισης \tilde{M} εξαρτάται από το πρόσημο της δεύτερης παραγώγου $\frac{\partial^2 \epsilon}{\partial^2 \omega}$, ως προς τη γωνία $\hat{\varphi}$.

Au $\frac{\partial^2 \epsilon}{\partial^2 \varphi} > 0$ $\eta \frac{\partial^2 \epsilon}{\partial^2 \varphi} < 0$, η lústic the (A130) autistoicoún sto elácisto (eustabhe isorradhe) η sto

μέγιστο (ασταθής ισορροπία) της συνολικής ενέργειας ε.

Όταν $\frac{\partial \varepsilon}{\partial \varphi} = \frac{\partial^2 \varepsilon}{\partial^2 \varphi} = 0$ το διάνυσμα της ενδογενούς μαγνήτισης \vec{M} μεταβαίνει από θέση ευσταθούς

ισορροπίας σε κατάσταση ασταθούς ισορροπίας, στην περίπτωση που το εξωτερικό πεδίο Η λάβει μια κρίσιμη τιμή, που προσδιορίζεται από τη λύση του συστήματος των εξισώσεων (A131) και (A132):

$$\begin{cases} \frac{\partial \varepsilon}{\partial \varphi} = \frac{1}{2} \eta \mu 2 \alpha - \frac{H}{(N_a - N_c) \cdot M} \cdot \eta \mu \varphi = 0 \\ \frac{\partial^2 \varepsilon}{\partial^2 \varphi} = \sigma \upsilon \nu 2 \alpha + \frac{H}{(N_a - N_c) \cdot M} \cdot \sigma \upsilon \nu \varphi = 0 \end{cases} \overset{h=\frac{H}{(N_a - N_c) \cdot M}}{\Leftrightarrow} \begin{cases} \frac{1}{2} \cdot \eta \mu 2 \alpha = h \cdot \eta \mu \varphi \\ \sigma \upsilon \nu 2 \alpha = -h \cdot \sigma \upsilon \nu \varphi \end{cases}$$
(A.133)

Αν οι εξισώσεις του συστήματος υψωθούν στο τετράγωνο και προστεθούν κατά μέλη για την απαλοιφή της γωνίας φ̂, η νέα μεταβλητή h υπολογίζεται:

$$h = \frac{H}{(N_a - N_c).M} = \sqrt{1 - \frac{3}{4}.\eta\mu^2 2\alpha} \Leftrightarrow H = (N_a - N_c).M.\sqrt{1 - \frac{3}{4}.\eta\mu^2 2\alpha}$$
(A134)

Με τη διαίρεση των εξισώσεων του συστήματος κατά μέλη και την αντικατάσταση $h^2=1-\frac{3}{4}$.ημ²2α από την προηγούμενη σχέση, προκύπτει η εξίσωση: εφ³α=-εφθ (A135) Από τις σχέσεις (A134) και (A135) διαπιστώνεται ότι για θ=180, τότε α=0° ή α=180° και η ένταση του πεδίου H=H_K μαγνητίζει το υλικό σε κατάσταση κόρου: H_K=M.(N_a-N_c) (A136)

Πρακτικά αυτό σημαίνει, ότι αν η ένταση του εξωτερικού πεδίου λάβει την τιμή κόρου $H_{\rm K}$ κατά την κατεύθυνση -c, το διάνυσμα της ενδογενούς μαγνήτισης μεταβαίνει από την κατάσταση ευσταθούς ισορροπίας α=0°, στην κατάσταση ασταθούς ισορροπίας α=180°, διαγράφοντας τον ορθογώνιο βρόχο υστέρησης που φαίνεται στο διάγραμμα A9.

Διάγραμμα Α9. Ορθογώνιος βρόχος υστέρησης κρυστάλλου¹⁰ [55] με κυρίαρχη την ομοαξονική ανισοτροπία.

¹⁰ Το διάγραμμα λήφθηκε από το βιβλίο «Εισαγωγή στα μαγνητικά υλικά» του κ. Γ. Κιοσέογλου, για το Τμήμα Επιστήμης και Τεχνολογίας Υλικών του Πανεπιστημίου Κρήτης.

4β) Η μαγνητοκρυσταλλική ανισοτροπία (ε_κ), δεν είναι μαγνητοστατικής αλλά ηλεκτροστατικής προέλευσης όπως και η ενέργεια ανταλλαγής (ε_{ex}) και οφείλεται στη σύζευξη μεταξύ του ηλεκτρονιακού spin που καθορίζει την κατανομή των ηλεκτρονιακών φορτίων και της μαγνητικής ροπής των ατόμων. Η κατανομή των ηλεκτρονιακών φορτίων και της μαγνητικής ροπής των ατόμων (σχήμα A16), λόγω της σύζευξης τροχιάς-πλέγματος.

Ενώ η επίδραση εξωτερικού μαγνητικού πεδίου προκαλεί την αλλαγή της κατεύθυνσης των spins των ηλεκτρονίων και της τροχιάς τους, η ισχυρή σύζευξη της τροχιάς με το κρυσταλλικό πλέγμα αντιτίθεται στην τάση στροφής των spins στην κατεύθυνση του μαγνητικού πεδίου.

Σχήμα A16. Απεικόνιση διαμόρφωσης 3d τροχιακών ατόμου, ως ελεύθερο ιόν (α) και εντός κρυσταλλικού πεδίου (β).

Η μαγνητοκρυσταλλική ενέργεια ανισοτροπίας εκφράζεται φαινομενολογικά ως δυναμοσειρά, με μορφή που εξαρτάται από την κρυσταλλική δομή, επειδή πρέπει να είναι σύμφωνη με την κρυσταλλική συμμετρία.

Σχήμα A17. Απεικόνιση των γωνιών μεταξύ της μαγνήτισης \vec{M} και των κρυσταλλογραφικών αξόνων, σε διαφορετικούς κρυστάλλους, για τον υπολογισμό της ενέργειας μαγνητοκρυσταλλικής ανισοτροπίας.

- Για κυβικό πλέγμα (σχήμα Α17α), η ενέργεια ανισοτροπίας εκφράζεται ως συνάρτηση των συνημίτονων κατεύθυνσης α_i =συν φ_i της μαγνήτισης \vec{M} .με τους κρυσταλλογραφικούς άξονες 100, 010 και 001, σύμφωνα με τη σχέση: ϵ_{κ} =k₁.(α_2^2 + α_2^2 . α_3^2 + α_3^2 . α_1^2)+k₂. α_1^2 . α_2^2 . α_3^2 +... (A137) Οι σταθερές k₁,k₂ στην τελευταία σχέση, σε μονάδες $J_m^{/}_{m^3}$ είναι οι πειραματικά προσδιοριζόμενες σταθερές πρώτης και δεύτερης τάξης της μαγνητοκρυσταλλικής ανισοτροπίας.

- Για τετραγωνικά, εξαγωνικά και τριγωνικά πλέγματα η ενέργεια μαγνητοκρυσταλλικής ανισοτροπίας αποτελεί συνάρτηση των γωνιών $\hat{\theta}$, $\hat{\phi}$ μεταξύ της μαγνήτισης \vec{M} με τον κύριο άξονα και με την ακμή στο κάθετο επίπεδο προς τον κύριο άξονα, σύμφωνα με τις σχέσεις:

Τετραγωνικό πλέγμα (σχήμα A17γ): $\varepsilon_{\kappa} = k_1 \cdot \eta \mu^2 \theta + k_2 \cdot \eta \mu^4 \theta + k_2 \cdot \eta \mu^4 \theta \cdot \sigma \upsilon + d \theta + ...$ (A138) Εξαγωνικό πλέγμα (σχήμα A17δ): $\varepsilon_{\kappa} = k_1 \cdot \eta \mu^2 \theta + k_2 \cdot \eta \mu^4 \theta + k_3 \cdot \eta \mu^6 \theta \cdot \sigma \upsilon + d \theta + ...$ (A.139)

Για μονοαξονικούς κρυστάλλους (σχήμα Α17β) σε τετραγωνικά, εξαγωνικά και τριγωνικά πλέγματα η ενέργεια μαγνητοκρυσταλλικής ανισοτροπίας προσεγγίζεται από τη σχέση:

 $\epsilon_{\kappa} = k_1 \cdot \eta \mu^2 \theta + k_2 \cdot \eta \mu^4 \theta + \dots$ (A140)

Με επιπλέον προσέγγιση πρώτης τάξης ($k_2 \approx 0$), τότε $k_1 > 0$ ή $k_1 < 0$, αν η μαγνήτιση \vec{M} είναι παράλληλη ή κάθετη προς τον κύριο άξονα συμμετρίας.

-Σε τριαξονικούς κρυστάλλους σε ορθορομβικά, μονοκλινή ή τρικλινή πλέγματα, συνήθως υπάρχει ένας «εύκολος» άξονας μαγνήτισης και η μαγνητική συμπεριφορά είναι παρόμοια των μονοαξονικών κρυστάλλων.

Στην περίπτωση του κυβικού πλέγματος των κρυστάλλων μαγνητίτη, όταν η μαγνήτιση \overline{M} είναι παράλληλη σε κάποιον από τους κρυσταλλογραφικούς άξονες 001,110 ή 111, η ενέργεια κρυσταλλικής ανισοτροπίας προσδιορίζεται από τη σχέση (A137) στον πίνακα A.2.

Άξονες	α_1	α_2	a3	${\cal E}_{\kappa}$
001	0	0	1	0
110	$\sqrt{2/2}$	$\sqrt{2}/2$	0	$k_1 / 4$
111	$\sqrt{3}/3$	$\sqrt{3}/3$	$\sqrt{3}/3$	$\frac{k_1}{3} + \frac{k_2}{27}$

Πίνακας Α2. Προσδιορισμός της ενέργειας μαγνητοκρυσταλλικής ανισοτροπίας ε_κ για τον κυβικό κρύσταλλο του μαγνητίτη, όταν η μαγνήτιση \vec{M} είναι παράλληλη σε κάποιον από τους κρυσταλλογραφικούς άξονες 001,110 ή 111.

-Av $k_1>0$, ισχύει: $ε_{100} < ε_{110} < ε_{111}$. Ο «εύκολος» άξονας μαγνήτισης είναι ο 100 και ο «δύσκολος» ο άξονας 111.

-Av $k_1 < 0$, ισχύει: $ε_{100} > ε_{110} > ε_{111}$. Ο «εύκολος» άξονας μαγνήτισης είναι ο 111 και ο «δύσκολος» ο άξονας 100.

Για τον μαγνητίτη, όπου k_1 =-1,35.10⁴ J_m^3 , το ενεργειακό φράγμα Δε_κ για την αλλαγή της μαγνήτισης από την «εύκολη» κατεύθυνση 111 στην 110, σε θερμοκρασία δωματίου, για $k_2 \approx 0$, προσεγγίζεται:

$$\Delta \varepsilon_{\kappa} \approx \varepsilon_{\kappa}^{111} - \varepsilon_{\kappa}^{110} = \frac{k_1}{3} - \frac{k_1}{4} = \frac{k_1}{12} = -0,11.10^4 \text{ J/m}$$

Επειδή οι ηλεκτρονιακές αλληλεπιδράσεις εξαρτώνται από τις ατομικές αποστάσεις, οι σταθερές της μαγνητοκρυσταλλικής ανισοτροπίας αποτελούν συνάρτηση της θερμοκρασίας.

Η σταθερά k_1 στον μαγνητίτη (διάγραμμα A10) αλλάζει πρόσημο σε μια θερμοκρασία -153°C, που χαρακτηρίζεται ως ισοτροπικό σημείο, όπου δεν υπάρχει μεγάλη μαγνητοκρυσταλλική ανισοτροπία και οι μαγνητικές ροπές μπορούν να περιστραφούν σχεδόν ελεύθερα μέσα στον κρύσταλλο. Κάτω από το ισοτροπικό σημείο, όπου $k_1>0$, τα φράγματα μαγνητοκρυσταλλικής ενέργειας λειτουργούν κατά διαφορετικό τρόπο, εφόσον οι διαγώνιες διευθύνσεις αποτελούν τις υψηλότερες ενεργειακές καταστάσεις.

Διάγραμμα A10. Απεικόνιση της μεταβολής των πειραματικά προσδιοριζόμενων σταθερών k_1,k_2 του μαγνητίτη ως συνάρτηση της θερμοκρασίας. Οι διακεκομμένες γραμμές είναι στοιχεία [56] από Fletcher και O'Reilly (1974), ενώ οι υπόλοιπες [57] από Syono και Ishikawa (1963). Για τον μαγνητίτη σε θερμοκρασία δωματίου (300K) όπου k_1 =-1,35.10⁴ J_{m}^3 .

Όταν η κυρίαρχη μαγνητοκρυσταλλική ανισοτροπία ενός κρυστάλλου αποτελούμενου από μια περιοχή Weiss είναι μονοαξονική και η ενδογενής μαγνήτιση \vec{M} σχηματίζει γωνία \hat{a} με τον «εύκολο» άξονα c, η ενέργεια κρυσταλλικής ανισοτροπίας, με προσέγγιση πρώτης τάξης ($k_2 \approx 0$) υπολογίζεται από τη σχέση (A140): $\varepsilon_{\kappa} = k_1.\eta \mu^2 a$ (A141)

Σχήμα A18. Σιδηρομαγνητική περιοχή, με μονοαξονική μαγνητοκρυσταλλική ανισοτροπία, αποτελούμενη από μια περιοχή Weiss μαγνήτισης \vec{M} , εντός μαγνητικού πεδίου \vec{H} . Ένα παράδειγμα ορυκτού που κυριαρχεί η ομοαξονική ανισοτροπία είναι ο αιματίτης, επί του βασικού επιπέδου στον εξαγωνικό του κρύσταλλο.

Εντός εξωτερικού μαγνητικού πεδίου \hat{H} , υπό γωνία $\hat{\phi}$ με την κατεύθυνση της μαγνήτισης \hat{M} (σχήμα A18) ο κρύσταλλος αποκτά πρόσθετη ενέργεια λόγω της συνιστώσας $M_{\rm H}$ =M.συνφ της μαγνήτισης στην κατεύθυνση του πεδίου, που υπολογίζεται από τη σχέση: $\epsilon_{\rm H}$ =- $\mu_{\rm o}$.H.M.συνφ (A142) Η συνολική ενέργεια ε του σωματιδίου, υπολογίζεται από τις σχέσεις (A141,A142):

$$\varepsilon = \varepsilon_{\kappa} + \varepsilon_{H} = k_{1} \cdot \eta \mu^{2} \alpha - \mu_{o} \cdot H \cdot M \cdot \sigma \nu \phi$$
 (A143)

Η θέση του διανύσματος \tilde{M} σε κατάσταση θερμοδυναμικής ισορροπίας, ορίζεται από την ελαχιστοποίηση της συνολικής ενέργειας ε, μέσω των σχέσεων:

$$\frac{\partial \varepsilon}{\partial \varphi} = -k_1 \cdot \eta \mu 2\alpha + \mu_0 \cdot H \cdot M \cdot \eta \mu \varphi = 0 \quad (A144) \qquad \frac{\partial^2 \varepsilon}{\partial^2 \varphi} = 2k_1 \cdot \sigma \upsilon \nu 2\alpha + \mu_0 \cdot H \cdot M \cdot \sigma \upsilon \nu \varphi > 0 \quad (A145)$$

Στην ειδική περίπτωση που το εξωτερικό μαγνητικό πεδίο Η είναι κάθετο στον «εύκολο» άξονα c, η ενδογενής μαγνήτιση Μ προσδιορίζεται με την αντικατάσταση $\theta = \frac{\pi}{2}$ και $\varphi = \frac{\pi}{2}$ -α στη σχέση (A144):

$$M = \frac{2k_1.\eta\mu\alpha}{\mu_o.H} \qquad (A146)$$

Η συνιστώσα της μαγνήτισης $M_{\rm H}$ στην κατεύθυνση του πεδίου Η υπολογίζεται:

$$M_{\rm H}$$
=M.συν($\frac{\pi}{2}$ -α)=M.ημα (A147)

Aπό τις σχέσεις (A146),(A147) υπολογίζεται ανηγμένη μαγνήτιση: $m = \frac{M_{\rm H}}{M} = \frac{\mu_{\rm o}.M}{2k_{\rm I}}.H$ (A148)

Επειδή σύμφωνα με την τελευταία σχέση, η ανηγμένη μαγνήτιση m είναι γραμμική εξάρτηση του εξωτερικού πεδίου H, δεν εμφανίζεται υστέρηση. Ο μαγνητικός κόρος m= $\frac{M_{\rm H}}{M}$ =1 συμβαίνει σύμφωνα με

την τελευταία σχέση, σε πεδίο έντασης: $H=H_{K}=\frac{2k_{1}}{\mu_{o}.M}$ (A149)

Όπως στην περίπτωση της ανισοτροπίας σχήματος, όταν $\frac{\partial \varepsilon}{\partial \varphi} = \frac{\partial^2 \varepsilon}{\partial^2 \varphi} = 0$, το διάνυσμα της ενδογενούς μαγνήτισης \vec{M} μεταβαίνει από θέση ευσταθούς ισορροπίας σε κατάσταση ασταθούς ισορροπίας, στην περίπτωση που το εξωτερικό πεδίο Η λάβει μια κρίσιμη τιμή, που υπολογίζεται από τη λύση του συστήματος

των εξισώσεων (Α144) και (Α145):

$$\begin{cases} \frac{\partial \varepsilon}{\partial \varphi} = \eta \mu 2 \alpha - \frac{\mu_{o} \cdot H \cdot M}{k_{1}} \cdot \eta \mu \varphi = 0 \\ \frac{\partial^{2} \varepsilon}{\partial^{2} \varphi} = \sigma \nu 2 \alpha + \frac{\mu_{o} \cdot H \cdot M}{2k_{1}} \cdot \sigma \nu \nu \varphi = 0 \end{cases} \xrightarrow{h = \frac{\mu_{o} \cdot H \cdot M}{2k_{1}}} \begin{cases} \frac{1}{2} \cdot \eta \mu 2 \alpha = h \cdot \eta \mu \varphi \\ \Leftrightarrow \\ \sigma \nu 2 \alpha = -h \cdot \sigma \nu \nu \varphi \end{cases}$$
(A150)

Από τη λύση του συστήματος προκύπτει ότι:

$$h = \frac{\mu_{o} \cdot H \cdot M}{2k_{1}} = \sqrt{1 - \frac{3}{4} \cdot \eta \mu^{2} 2\hat{\alpha}} \iff H = \frac{2k_{1}}{\mu_{o} \cdot M} \cdot \sqrt{1 - \frac{3}{4} \cdot \eta \mu^{2} 2\alpha} \quad (A151) \qquad \epsilon \varphi^{3} \alpha = -\epsilon \varphi \theta \qquad (A152)$$

Aπό τις σχέσεις (A151),(A152) διαπιστώνεται ότι αν θ =180°, τότε α=0° ή α=180° και η ένταση του πεδίου H=H_k μαγνητίζει το υλικό σε κατάσταση κόρου: H=H_k= $\frac{2k_1}{\mu_0.M}$ (A153)

Όπως στην περίπτωση της ανισοτροπίας σχήματος, όταν η ένταση του εξωτερικού πεδίου λάβει την τιμή κόρου H_k κατά την κατεύθυνση -c, το διάνυσμα της ενδογενούς μαγνήτισης μεταβαίνει από την κατάσταση ευσταθούς ισορροπίας (α=0°), στην κατάσταση ασταθούς ισορροπίας (α=180°), διαγράφοντας τον ορθογώνιο βρόχο υστέρησης που φαίνεται στο διάγραμμα A9.

40

4γ) Μαγνητοελαστική ανισοτροπία (ε_σ): Η αύξηση της διάστασης 1 των σιδηρομαγνητικών υλικών στη διεύθυνση της παραμένουσας μαγνήτισης ή της επαγόμενης μαγνήτισης εντός εξωτερικού μαγνητικού πεδίου, ορίζεται ως η κλασματική μεταβολή του μεγέθους του υλικού, σύμφωνα με τη σχέση:

$$\lambda = \frac{\Delta l}{l}$$
 (A154 α)

Επειδή ο όγκος παραμένει σταθερός, η αύξηση της διάστασης 1 στη διεύθυνση της μαγνήτισης, προϋποθέτει την ισόποση μείωση των διαστάσεων στις δύο εγκάρσιες διευθύνσεις: $\lambda_{\perp} = -\frac{\lambda}{2} = -\frac{\Delta l}{2l}$ (A154β)

Για τον λόγο αυτόν, το φαινόμενο χαρακτηρίζεται ως μαγνητοσυστολή και ανακαλύφθηκε από τον *Joule* [58] το 1842.

Το μέγεθος της μαγνητοσυστολής αυξάνεται με την αύξηση της έντασης του πεδίου H, κατά την τυπική σιγμοειδή καμπύλη του διαγράμματος A11 και λαμβάνει τη μέγιστη τιμή $\lambda_{\rm K} \approx 10^{-6} \cdot 10^{-5}$ στην κατάσταση μαγνητικού κόρου.

Σχήμα Α19. Απεικόνιση της μαγνητοδιαστολής (α) και της μαγνητοσυστολής (β) κατά τη διεύθυνση της μαγνήτισης.

Η μαγνητοσυστολή είναι θετική (λ >0) για υλικά που διογκώνονται (σχήμα A19α) στη διεύθυνση της μαγνήτισης και αρνητική (λ <0) για υλικά που συρρικνώνονται (σχήμα A19β) σε αυτήν την κατεύθυνση.

Η μαγνητοσυστολή μεταβάλλει την ενέργεια ανταλλαγής ε_{ex} και προκαλεί αλλαγές στις θέσεις των ατόμων, μεταβάλλοντας τη μορφή των τροχιακών και τα σχήματα των κρυστάλλων. Η ενέργεια μαγνητοελαστικής ανισοτροπίας $\varepsilon_{\sigma}(\frac{J}{m^3})$ που προκαλείται από την άσκηση πίεσης $\sigma(\frac{N}{m^2} = \frac{J}{m^3})$ σε έναν κρύσταλλο, υπό γωνία $\hat{\theta}$ σε σχέση με τον κύριο κρυσταλλογραφικού άξονα c, προσεγγίζεται από τη σχέση:

$$\varepsilon_{\sigma} = \frac{3}{2} \cdot \lambda \cdot \sigma \cdot \eta \mu^2 \theta$$
 (A155)

Η αδιάστατη σταθερά λ στην τελευταία σχέση προσδιορίζεται πειραματικά. Από τις πειραματικές τιμές των σταθερών λ_{111} =78,2.10⁻⁶ και λ_{100} =-21,8.10⁻⁶, για άσκηση πίεσης παράλληλα στους κρυσταλλογραφικούς άξονες 111 και 100, για τον μαγνητίτη [59], η σταθερά λ προσεγγίζεται από τη σχέση:

$$\lambda = \frac{2}{5} . \lambda_{100} + \frac{3}{5} . \lambda_{111} \approx 38, 2.10^{-6}$$

4δ) Επιφανειακή ανισοτροπία (ε_E): Η μειωμένη συμμετρία στην επιφάνεια ενός σιδηρομαγνητικού υλικού προκαλεί την εμφάνιση ανισοτροπίας, λόγω της διαφοράς των γειτόνων κάθε ατόμου στην επιφάνεια του υλικού.

An $k_v(J_m^3)$ kai $k_A(J_m^2)$ oi peiramatiká prosdiorizómenec staberéc anisotropiíac ógkou V tou ulikoú, epiráneiac S, h enérgeia thc epiráneiakýc anisotropiíac $\varepsilon_E(J_m^3)$ upologiízetai apó th szésh:

$$\epsilon_{E} = k_{V} + k_{A} \cdot \frac{S}{V}$$
 (A156)

Α3.4 Μορφολογία και συμπεριφορά των σιδηρομαγνητικών περιοχών

Η συνθήκη ευσταθούς θερμοδυναμικής ισορροπίας για ένα σιδηρομαγνητικό υλικό, προϋποθέτει την ελαχιστοποίηση της συνολικής ενέργειας (A100): $\varepsilon_{o\lambda} = \varepsilon_{H} + \varepsilon_{ex} + \varepsilon_{d} + \varepsilon_{k} + \varepsilon_{o}$ Η επίλυση της παραπάνω συνθήκης οδηγεί σε μη γραμμικές διαφορικές εξισώσεις που παρουσιάζουν δυσκολίες μαθηματικής ανάλυσης και πρέπει να μετατραπούν σε γραμμικές για να επιλυθούν. Εναλλακτικά, μπορούν να παραβλεφθούν κάποιοι όροι του αθροίσματος σε σχέση με κάποιους άλλους που θεωρούνται πιο σημαντικοί, όπως η ενέργεια ανταλλαγής ε_{ex} .

Σύμφωνα με τη σχέση (A103) E_{ex}=-2.J_{ex}.∑.S_i.S_j.συνφ̂_{ij} του εντοπισμένου μοντέλου του Heisenberg για μη μεταλλικά ορυκτά, η ενέργεια ανταλλαγής E_{ex} ελαχιστοποιείται για J_{ex}>0 και φ_{ij}=0° (σιδηρομαγνητισμός) ή για J_{ex}<0 και φ_{ij}=180° (αντισιδηρομαγνητισμός). Όμως λόγω των υπολοίπων όρων της συνολικής ενέργειας (A100) τα spins δεν έχουν την ίδια διεύθυνση και η αλληλεπίδραση ανταλλαγής ελαχιστοποιεί τη γωνία φ̂_{ij}. Στην απλούστερη περίπτωση όπου |S_i|=|S_j|=S, ισχύει S_i.S_j=S².συνφ_{ij} και η ενέργεια ανταλλαγής των ζευγών από γειτονικά spin υπολογίζεται από τη σχέση:

$$E_{ex} = -2.J_{ex}.S^2.\sum \sigma v \phi_{ij}$$
 (A157)

Με την προσέγγιση Taylor συν φ_{ij} ≈ 1- $\frac{1}{2}$. φ_{ij}^2 για $\varphi_{ij} \rightarrow 0^\circ$, η προηγούμενη σχέση γράφεται: $E_{ex}=J_{ex}.S^2.\sum \varphi_{ij}^2+\sigma$, όπου σ = σταθερά (A158)

Σχήμα A20. Απεικόνιση σειράς ατόμων με spins ίδιου μέτρου S που αποκλίνουν από τα γειτονικά τους κατά γωνία Δφ και από την κατεύθυνση του ψ-άξονα κατά γωνία φ.

Σε σειρά ατόμων κατά μήκος του x άξονα (σχήμα A20) σε απόσταση ίση με την πλεγματική σταθερά α , η γωνία $\hat{\phi}$ μπορεί να θεωρηθεί ως συνεχής συνάρτηση $\hat{\phi}(x)$ του x, σύμφωνα με τη σχέση:

$$\delta \hat{\varphi} = \frac{d\hat{\varphi}}{dx} \cdot \alpha$$
 (A159)

Σε απλό κυβικό πλέγμα, όπου υπάρχουν $\frac{1}{\alpha^3}$ άτομα ανά μονάδα όγκου, η ενέργεια ανταλλαγής $\varepsilon_{ex}(\frac{J}{m^3})$ σύμφωνα με τις σχέσεις (A158) και (A159) γράφεται:

$$\varepsilon_{\text{ex}} = \frac{J_{\text{ex}} \cdot S^2 \cdot (\frac{d\hat{\varphi}}{dx} \cdot \alpha)^2}{\alpha^3} = \frac{J_{\text{ex}} \cdot S^2}{\alpha} \cdot (\frac{d\hat{\varphi}}{dx})^2 = \zeta \cdot (\frac{d\hat{\varphi}}{dx})^2 \qquad (A160)$$

Η ποσότητα $\zeta = \frac{J_{ex} \cdot S^2}{a}$ στην τελευταία σχέση, σε μονάδες J'_m , αποτελεί τη σταθερά ανταλλαγής. Αν $\vec{S}=S.(\alpha_x \cdot \hat{x}+\alpha_\psi \cdot \hat{\psi}+\alpha_z \cdot \hat{z})$, όπου $a_i = \sigma \upsilon v \phi_i$ τα συνημίτονα κατεύθυνσης στους άξονες $i=x, \psi, z$, η γενικότερη έκφραση για την ενέργεια ανταλλαγής γράφεται:

$$\varepsilon_{ex} = Z.[(\nabla a_x)^2 + (\nabla a_y)^2 + (\nabla a_z)^2], \text{ órov } Z = \frac{c.J_{ex}.S^2}{a}$$
 (A161)

Η παράμετρος c στη σταθερά ανταλλαγής Z, εξαρτάται από την κρυσταλλική δομή. Για απλό κυβικό πλέγμα c=1, για χωροκεντρωμένο (bcc) κυβικό πλέγμα c=2, για εδροκεντρωμένο (fcc) c=4, ενώ για εξαγωνική δομή πυκνής διατάξεως c= $2\sqrt{2}$.

Η σταθερά ανταλλαγής έχει τυπική τιμή $Z=10^{-11} J/m$, για τα βασικά στοιχεία Fe,Co και Ni.

Παρότι η ενέργεια ανταλλαγής είναι βασική για τον σιδηρομαγνητισμό, δεν εξηγεί το διαχωρισμό σε μαγνητικές περιοχές, εάν δεν συμπεριληφθούν οι υπόλοιπες μορφές ενέργειας.

Σχήμα A21. Απεικόνιση του διαχωρισμού υμενίου απείρου μήκους σιδηρομαγνητικού υλικού σε περιοχές Weiss για την ελαχιστοποίηση της ενέργειας απομαγνήτισης e_d. Η έκταση του πεδίου απομαγνήτισης H_d περιορίζεται λόγω της εγγύτητας των πόλων στο άνω και κάτω μέρος του υμενίου, σε κάθε σχηματιζόμενη περιοχή.

Η ενεργειακή απαίτηση σχηματισμού των περιοχών Weiss μπορεί να προβλεφθεί με απλή ποιοτική ανάλυση, στην περίπτωση ενός υμενίου απείρου μήκους (σχήμα A21), πλάτους t και πάχους L, κατά τη διεύθυνση της ομοιόμορφης ενδογενούς μαγνήτισης M.

Η ενέργεια απομαγνήτισης $e_d(\frac{J}{m^2})$ ανά μοναδιαίο εμβαδόν της επιφάνειας του υμενίου, αποτελούμενου από μια περιοχή Weiss (σχήμα A21a), υπολογίζεται από τη σχέση (A115):

$$e_{Yd}^{N=1} = \frac{1}{2} . \mu_o . M^2 . L$$
 (A162)

Η ενέργεια απομαγνήτισης e_d εντός του υμενίου με διαστάσεις d,L υπολογίζεται από τον *Kittel*. [60] κατά το διαχωρισμό του σε περιοχές Weiss, με την παραδοχή ότι ο συντελεστής απομαγνήτισης μειώνεται από $N = d'_L = 1$ σε $N = d'_L$, σύμφωνα με τη σχέση: $e_d^N = \beta . \mu_o . M^2 . d$, όπου $\beta = 0,136$ (A163) Κάθε ενδιάμεση περιοχή Weiss (σχήμα A22β) οριοθετείται από τη γειτονική της μέσω 2 τοιχωμάτων Bloch συνολικού εμβαδού 2.L.t και από τις 2 κάθετες επιφάνειες στη διεύθυνση της μαγνήτισης \vec{M} , συνολικού εμβαδού 2.t.d. Αν $e_{\tau}(J'_m{}^2)$ η μονάδα επιφανειακής ενέργειας στα τοιχώματα των περιοχών Weiss, η ενέργεια $e_{Bloch}(J'_m{}^2)$ των ενδιάμεσων τοιχωμάτων Bloch με επιφάνεια $e_{\tau}.2.L.t$, προς την επιφάνεια 2.t.d του υμενίου, υπολογίζεται από τη σχέση: $e_{Bloch} = \frac{e_{\tau}.2.L.t}{2.t.d} = \frac{e_{\tau}.L}{d}$ (A164) Οι ενέργειες e_{τ} των τοιχωμάτων των περιοχών Weiss, είναι της τάξης $10^{-3} J'_m{}^2$.

Η συνολική ενέργεια $e_{Y}(\frac{J}{m^{2}})$ ανά μοναδιαίο εμβαδόν της επιφάνειας του υμενίου, σύμφωνα με τις

σχέσεις (A163) και (A164) υπολογίζεται: $e_{\rm Y} = e_{\rm d} + e_{\rm Bloch} = \beta.\mu_{\rm o}.M^2.d + \frac{e_{\tau}.L}{d}$ (A165)

Το εύρος d των περιοχών Weiss καθορίζεται μέσω της τελευταίας σχέσης, από την ελαχιστοποίηση της ενέργειας e_y του υμενίου, βάσει της συνθήκης:

$$\frac{\partial e_{Y}}{\partial d} = -\frac{e_{\tau}.L}{d^{2}} + \beta.\mu_{o}.M^{2} = 0 \Leftrightarrow d = \sqrt{\frac{e_{\tau}.L}{\beta.\mu_{o}.M^{2}}} \quad (A166), \qquad \text{epósov} \quad \frac{\partial^{2}e_{Y}}{\partial^{2}d} = \frac{2.e_{\tau}.L}{d^{3}} > 0$$

Σύμφωνα με την τελευτία σχέση, για $L = \frac{\beta \mu_o . d^2 . M^2}{e_{\tau}}$, η ελάχιστη τιμή της ενέργειας $e_{Y(min)}$ υπολογίζεται από

τη σχέση (A165):
$$e_{Y(min)} = 2.\beta.\mu_o.M^2.d = 0,272.\mu_o.M^2.d$$
 (A167)

Για το κοβάλτιο, όπου $e_{\tau} = 7,6.10^{-3} \frac{J'_{m^2}}{m^2}$, M=1422.10³ A/m, για L=1cm, το πάχος d των περιοχών Weiss υπολογίζεται από τη σχέση (A166):

$$d = \sqrt{\frac{(7,6.10^{-3}).10^{-2}}{0,136.(4\pi.10^{-7}).(1422.10^{3})^{2}}} m = 1,5.10^{-5} m = 1,5.10^{-3} cm$$

To υπολογιζόμενο πάχος dτων τοιχωμάτων αντιστοιχεί σε $N = \frac{L}{d} = \frac{1}{1,5.10^{-3}} \approx 700$ περιοχές Weiss, για

κυβικό κρύσταλλο πλευράς L=1cm .

Η ενέργεια πριν και μετά το διαχωρισμό του κρυστάλλου σε περιοχές Weiss υπολογίζεται από τις

σχέσεις (A162) και (A167): $e_{Yd}^{N=1} = \frac{1}{2} . μ_o.M^2.L, \quad e_{Y(min)}^{N\approx700} = 0,272. μ_o.M^2.d$ To πηλίκο $\frac{e_{Yd}^{N=1}}{e_{Y}^{N\approx700}}$ υπολογίζεται: $\frac{e_d^{N=1}}{e_{Y}^{N\approx700}} = \frac{0,5. μ_o.M^2.L}{0,272. μ_o.M^2.d} = 1,8. \frac{L}{d} = 1,8.N \approx 1,8.700 = 1300$

Επομένως, η ενέργεια μειώνεται κατά το διαχωρισμό του κρυστάλλου σε περίπου 700 περιοχές Weiss, κατά περίπου 1300 φορές.

Ο προηγούμενος υπολογισμός της αύξησης του αριθμού και της ταυτόχρονης μείωσης του μεγέθους των περιοχών Weiss, από την ισορροπία μεταξύ της μειούμενης ενέργειας απομαγνήτισης ε_d και της αυξανόμενης επιφανειακής ενέργειας στα σχηματιζόμενα τοιχώματα Bloch μεταξύ των διαχωριζόμενων περιοχών, έγινε με την παραδοχή ότι το πάχος των τοιχωμάτων Bloch είναι αμελητέο.

Όμως παρότι σε ένα σιδηρομαγνητικό υλικό συνήθως υπάρχουν πολλές περιοχές Weiss με ομοιόμορφη μαγνήτιση στην κατεύθυνση κάποιου «εύκολου» άξονα για την ελαχιστοποίηση της ενέργειας ανισοτροπίας ε_κ, που αλλάζει απότομα κατεύθυνση αμφιπλεύρως των στενών συνόρων, συναντώνται παχύτερα τοιχώματα Bloch, όπου οι ατομικές μαγνητικές ροπές δεν είναι παράλληλες ούτε μεταξύ τους, ούτε με τη διεύθυνση της «εύκολης» μαγνήτισης, με αποτέλεσμα να αυξάνουν ταυτόχρονα οι όροι ε_{ex} και ε_κ της συνολικής ενέργειας ε_{ολ}. Ο ανταγωνισμός ελαχιστοποίησης των ενεργειών ε_{ex} και ε_κ, καθορίζει το πάχος δ των ενδιάμεσων τοιχωμάτων Bloch.

Τα spin των ατόμων στα τοιχώματα Bloch (σχήμα A22), δε διατηρούν τις ίδιες διευθύνσεις, αλλά αλλάζουν βαθμιαία προσανατολισμό, συνιστώντας ένα μεταβατικό στρώμα μεταξύ των γειτονικών περιοχών Weiss, που ελαχιστοποιεί την ενέργεια ανταλλαγής ε_{ex} του συστήματος.

Σχήμα Α22. Απεικόνιση της διάταξης των ατομικών spin του διαχωριστικού τοιχώματος Bloch, μεταξύ δύο κυβικών Weiss αυθόρμητα περιοχών με προσανατολισμένες μαγνητικές ροπές. Οι μαγνητικές ροπές του τοιχώματος Bloch αλλάζουν βαθμιαία προσανατολισμό, συνιστώντας ένα μεταβατικό στρώμα μεταξύ των γειτονικών περιοχών, που συνήθως εμφανίζουν γωνιακή μετατόπιση 180° ή 90°.

Η ενέργεια ανταλλαγής ενός ζεύγους γειτονικών ατόμων, υπολογίζεται από τη σχέση (A103): E_{ex} =-2. J_{ex} . S^2 .συνφ. Σύμφωνα με την προσέγγιση Taylor συνφ ≈ 1- $\frac{\phi^2}{2} + \frac{\phi^4}{24}$ και η παραπάνω σχέση γράφεται: E_{ex} =-2. J_{ex} . S^2 + J_{ex} . S^2 . ϕ^2 . Επομένως η εξάρτηση της ενέργειας ανταλλαγής E_{ex} από τη γωνία $\hat{\phi}$, περιγράφεται από τη σχέση: E_{ex} = J_{ex} . S^2 . ϕ^2 (A168) Αν τα τοιχώματα Bloch έχουν αμελητέο πάχος ($\delta \approx 0$) και τα ατομικά spin είναι αντίθετα (ϕ = π) η ενέργεια

ανταλλαγής των ατόμων στις γειτονικές περιοχές Weiss, υπολογίζεται: $E_{ex(Weiss)}^{\phi=\pi} = J_{ex} \cdot S^2 \cdot \pi^2$ (A169) Στην περίπτωση που το πάχος δ των διαχωριστικών τοιχωμάτων Bloch ορίζεται από σειρά N ατόμων,

με διαδοχικές μεταβολές των γωνιών μεταξύ των ατομικών ροπών κατά $\varphi = \frac{\pi}{N}$, η ενέργεια ανταλλαγής των ατόμων στις γειτονικές περιοχές Weiss υπολογίζεται (A168):

$$E_{ex(Weiss)}^{\phi=\pi/N} = N.[J_{ex}.S^{2}.(\frac{\pi}{N})^{2}] = J_{ex}.S^{2}.\frac{\pi^{2}}{N}$$
(A170)

Επομένως σύμφωνα με τις σχέσεις (A169),(A170) η ενέργεια ανταλλαγής $E_{ex(Weiss)}^{\phi=\pi'_N} < E_{ex(Weiss)}^{\phi=\pi}$ μεταξύ των ατόμων στις γειτονικές περιοχές Weiss, ελαττώνεται με την αύξηση του αριθμού N της σειράς των ατόμων ή με την αύξηση του πάχους των τοιχωμάτων Bloch.

Όταν τα ατομικά spin αποκλίνουν διαδοχικά κατά $\varphi = \frac{\pi}{N}$ εντός τοιχωμάτων Bloch πάχους δ=N.α που παρεμβάλλονται παραλλήλως προς μια έδρα κυβικών κρυστάλλων (σχήμα A22) με πλεγματική σταθερά α , διαχωρίζοντας περιοχές Weiss με αντίθετα ατομικά spin, τότε σε κάθε τοίχωμα Bloch αντιστοιχούν $\frac{1}{a^2}$ σειρές N ατόμων. Η ενέργεια ανταλλαγής $e_{ex}^{Bloch}(\int_{m^2})$ των ατόμων του τοιχώματος Bloch ανά μονάδα επιφάνειας, υπολογίζεται (A168): $e_{ex(Bloch)} = J_{ex} \cdot S^2 \cdot (\frac{\pi}{N})^2 \cdot \frac{N}{\alpha^2} = \frac{J_{ex} \cdot S^2 \cdot \pi^2}{N \cdot \alpha^2} = \frac{J_{ex} \cdot S^2 \cdot \pi^2}{\delta \cdot \alpha}$ (A171) Ενώ η ενέργεια ανταλλαγής σύμφωνα με την τελευταία σχέση μειώνεται με την αύξηση του πάχους των τοιχωμάτων Bloch, η ενέργεια κρυσταλλικής ανισοτροπίας ε_κ αυξάνεται, γιατί ταυτόχρονα αυξάνει ο αριθμός

Aν $k_1 > 0$ η σταθερά πρώτης τάξης της κρυσταλλικής ανισοτροπίας του υλικού και $e_{\kappa(Bloch)} = k_1.\delta$ (A172) η ενέργεια κρυσταλλικής ανισοτροπίας ανά μονάδα επιφάνειας του τοιχώματος (J_m^2) , τότε η συνολική ενέργεια $e_{Bloch}(J_m^2)$ του τοιχώματος Bloch, υπολογίζεται από των άθροισμα των σχέσεων (A171)

και (A172):
$$e_{Bloch}(\delta) = e_{ex(Bloch)} + e_{\kappa(Bloch)} = \frac{J_{ex} \cdot S^2 \cdot \pi^2}{\delta \cdot \alpha} + k_1 \cdot \delta$$
(A173)

των ατομικών μαγνητικών ροπών στις «δύσκολες» διευθύνσεις μαγνήτισης.

Το πάχος δ του τοιχώματος που καθορίζεται από τον ανταγωνισμό των ενεργειών $e_{ex(Bloch)}$ και $e_{\kappa(Bloch)}$, για την ελαχιστοποίηση της συνολικής ενέργειας $e_{Bloch}(\delta)$, υπολογίζεται από τη λύση της εξίσωσης:

$$\frac{\partial e_{\text{Bloch}}}{\partial \delta} = -\frac{J_{\text{ex}} \cdot S^2 \cdot \pi^2}{\delta^2 \cdot \alpha} + k_1 = 0 \Leftrightarrow \delta = \sqrt{\frac{J_{\text{ex}} \cdot S^2 \cdot \pi^2}{k_1 \cdot \alpha}} \quad (A174), \qquad \text{equation of } \frac{\partial^2 e_{\text{Bloch}}}{\partial^2 \delta} = \frac{2 \cdot J_{\text{ex}} \cdot S^2 \cdot \pi^2}{\delta^3 \cdot \alpha} > 0$$

Για παράδειγμα στον σίδηρο, με πλεγματική σταθερά α=2,86 Å, όπου k_1 =4,6.10⁴ $J_m^{/}$, T_c =1043K, J_{ex} =0,3. k_B . T_c και S= 1/2 το πάχος του τοιχώματος *Bloch* υπολογίζεται (A174):

$$\delta = \sqrt{\frac{0,3.(1,38.10^{-23}).1043.0,5^2.\pi^2}{(4,6.10^4).(2,86.10^{-10})}} = 290 \text{ Å}^{\circ}$$

Ο αριθμός N της σειράς των ατόμων στο πάχος δ=N.a του τοιχώματος Bloch, υπολογίζεται από τη σχέση :

$$N = \frac{\delta}{\alpha} = \frac{290 \overset{\circ}{A}}{2,86 \overset{\circ}{A}} = 100$$

Με την αντικατάσταση (A174) $J_{ex} = \frac{k_1 \cdot \alpha \cdot \delta^2}{\pi^2 \cdot S^2}$, η ενέργεια του τοιχώματος Bloch υπολογίζεται από τη σχέση

(A173): $e_{\text{Bloch}} = 2.k_1 \cdot \delta = 2.(4, 6.10^4) \cdot (290.10^{-10}) = 2, 7.10^{-3} (\frac{J}{m^2})$

Με την αντικατάσταση του ολοκληρώματος ανταλλαγής J_{ex} από τη σχέση (A108), το πάχος δ του τοιχώματος υπολογίζεται από τη σχέση (A174):

$$\delta = \sqrt{\frac{S^2 \cdot \pi^2}{k_1 \cdot \alpha} J_{ex}} = \sqrt{\frac{S^2 \cdot \pi^2}{k_1 \cdot \alpha} \cdot \frac{3 \cdot k_B \cdot T_c}{2(S+1)\gamma S}} = \sqrt{\frac{3S \cdot \pi^2 \cdot k_B}{2(S+1)\gamma \alpha}} \cdot \sqrt{\frac{T_c}{k_1}}$$
(A175)

Εφόσον σύμφωνα με την τελευταία σχέση δ~ $\sqrt{\frac{T_c}{k}}$, το πάχος των τοιχωμάτων Bloch είναι μεγαλύτερο σε σιδηρομαγνητικά υλικά, που εμφανίζουν μεγαλύτερη θερμοκρασία Curie T_c και μικρότερη σταθερά κρυσταλλικής ανισοτροπίας k_1 .

Σύμφωνα με τα παραπάνω, η ενέργεια ανταλλαγής $ε_{ex}$ είναι υπεύθυνη για τη διάταξη των ατομικών spin κάθε περιοχής σε παράλληλη ή αντιπαράλληλη διάταξη, με αποκλίσεις που οφείλονται στις υπόλοιπες μορφές ενέργειας. Ο διαχωρισμός του υλικού σε περιοχές Weiss, οφείλεται στη μαγνητοστατική ενέργεια $ε_{ms}$ του πεδίου απομαγνήτισης H_d ή και της ανισοτροπίας σχήματος $ε_s$. Ο προσανατολισμός της ομοιόμορφης μαγνήτισης κάθε περιοχής στην κατεύθυνση κάποιου εύκολου άξονα, οφείλεται στην ενέργεια ανισοτροπίας $ε_k$. Το πάχος των διαχωριστικών τοιχωμάτων Bloch καθορίζεται κυρίως από τον ανταγωνισμό της ενέργειας ανταλλαγής $ε_{ex}$ και της μαγνητοκρυσταλλικής ενέργειας $ε_{ms}$ για την ελαχιστοποίηση της συνολικής ενέργειας.

Σχήμα A23. Απεικόνιση πιθανών μορφών περιοχών Weiss

Στην περίπτωση των μονοαξονικών κρυστάλλων, η πιθανή μορφή των περιοχών Weiss απεικονίζεται στο σχήμα A23a. Μια πιθανή δομή, ιδιαίτερα για κυβικά πλέγματα (σχήμα A23β,γ) είναι ο σχηματισμός μικρότερων περιοχών κλειστής μαγνητικής ροής (closure domains), όπου δε σχηματίζονται πόλοι στην επιφάνεια ή στον όγκο του υλικού, με αποτέλεσμα η μαγνητοστατική ενέργεια ε_{ms} να είναι μηδενική. Στην πραγματικότητα ευνοείται ο σχηματισμός μικρότερων περιοχών Weiss, για δυο επιπλέον λόγους:

-Η μαγνήτιση κάθε περιοχής λόγω της μαγνητοσυστολής ε_{σ} μεταβάλλει το σχήμα της. Σε ορισμένα υλικά με θετική μαγνητοσυστολή (λ >0) οι περιοχές διογκώνονται στη διεύθυνση της μαγνήτισης (σχήμα A23δ) και σε άλλα συρρικνώνονται (λ <0) προς την ίδια διεύθυνση (σχήμα A23ε). Η ρήξη κατά μήκος των συνοριακών περιοχών που μεταβάλλουν το σχήμα τους, απαιτεί ποσότητα ενέργειας τόσο μεγαλύτερη, όσο μεγαλύτερο είναι το μέγεθος των περιοχών. Επειδή ο διαχωρισμός των περιοχών σε μικρότερες απαιτεί μικρότερα ποσά ενέργειας, ευνοείται ο κατακερματισμός των μεγαλύτερων περιοχών Weiss.

-Ο σχηματισμός μικρότερων περιοχών Weiss ευνοείται κυρίως στην επιφάνεια του υλικού, λόγω της δημιουργίας ευρύτερων περιοχών κλειστής μαγνητικής ροής. Επιπλέον, λόγω της ανισοτροπίας $\varepsilon_{\rm E}$ στην επιφάνεια, όπου το πεδίο απομαγνήτισης H_d είναι ισχυρότερο (σχήμα A23στ), σχηματίζονται ανάστροφες περιοχές ακίδας (reverse spike domains), που περιορίζουν τη μαγνητοστατική ενέργεια $\varepsilon_{\rm ms}$, χωρίς να αυξάνεται ταυτόχρονα η ενέργεια των διαχωριστικών τοιχωμάτων Bloch, λόγω της μικρότερης έκτασης των συνοριακών περιοχών.

Εάν ένα σιδηρομαγνητικό υλικό (διάγραμμα A12) μαγνητιστεί υπό την επίδραση μαγνητικού πεδίου Η μέχρι την κατάσταση κόρου (καμπύλη Oa) και στη συνέχεια μηδενιστεί (H=0), το συνολικό μαγνητικό πεδίο B του υλικού δε μηδενίζεται, αλλά διατηρεί μια θετική τιμή (σημείο b) που οφείλεται στην παραμένουσα μαγνήτιση M.

Διάγραμμα A12. Τυπικός βρόχος υστέρησης (α) σιδηρομαγνητικού υλικού, (β) «σκληρού» σιδηρομαγνητικού υλικού και (γ) «μαλακού» σιδηρομαγνητικού υλικού.

Το φαινόμενο χαρακτηρίζεται μαγνητική υστέρηση και η τιμή της παραμένουσας μαγνήτισης M εξαρτάται από το υλικό και την κατεργασία του. Με την αντιστροφή της φοράς του πεδίου (καμπύλη bc), η μαγνήτιση μηδενίζεται στο σημείο c. Η τιμή του εφαρμοζόμενου πεδίου H_c, για την οποία μηδενίζεται η μαγνήτιση, χαρακτηρίζεται ως συνεκτικό πεδίο ή συνεκτική δύναμη. Με την αύξηση του μαγνητικού πεδίου H κατά την ίδια φορά (καμπύλη cd), το σιδηρομαγνητικό υλικό επέρχεται ξανά σε κατάσταση κόρου, με τις μαγνητικές ροπές αντίστροφα προσανατολισμένες, στην κατεύθυνση του πεδίου \vec{H} . Με τη μείωση του πεδίου H (καμπύλη de) μέχρι το μηδενισμό του, το συνολικό μαγνητικό πεδίο B δε μηδενίζεται, αλλά διατηρεί μια αρνητική τιμή (σημείο e), οφειλόμενη στην παραμένουσα μαγνήτιση M, με αντίθετη κατεύθυνση σε σχέση με τη μαγνήτιση στο σημείο b. Το εμβαδόν που περικλείει η κλειστή καμπύλη abcdefa, που χαρακτηρίζεται βρόχος υστέρησης, σε μονάδες B.H(T. $\frac{J}{T.m^3} = \frac{J}{m^3}$), αποτελεί το μέτρο των απωλειών ενέργειας που συμβαίνουν σε έναν πλήρη κύκλο μαγνήτισης και απομαγνήτισης του σιδηρομαγνητικού υλικού.

Η τιμή του συνεκτικού πεδίου H_c διαχωρίζει τα σιδηρομαγνητικά υλικά σε «σκληρά» ή «μαλακά», αναλόγως των εφαρμογών τους. Όταν $H_c>100$ Oe (= $\frac{1}{4\pi}$. $\frac{KA}{m}$) το υλικό χαρακτηρίζεται σαν «σκληρό», ενώ για $H_c<5$ Oe χαρακτηρίζεται σαν «μαλακό».

-Τα «σκληρά» σιδηρομαγνητικά υλικά (διάγραμμα A12β), έχουν μεγάλη ένταση συνεκτικού πεδίου H_e , μικρή παραμένουσα μαγνήτιση και μικρή τιμή της μαγνητικής διαπερατότητας μ υπό την επίδραση εξωτερικού πεδίου. Τα υλικά αυτά είναι κατάλληλα για την κατασκευή σταθερών μαγνητών, ως πηγές μαγνητικής ροής που χρησιμοποιούνται σε ηλεκτροακουστικές συσκευές (μικρόφωνα, μεγάφωνα, κ.ά.), σε όργανα ηλεκτρικών μετρήσεων, κ.τ.λ. Στην κατηγορία των «σκληρών» σιδηρομαγνητικών υλικών, ανήκουν μορφές χάλυβα με διαφορετική περιεκτικότητα σε C, W, Cr και Co, καθώς και κράματα Al-Si-Fe, Al-Ni-Fe, Al-Ni-Co, μεταλλοκεραμικά υλικά και κράματα με βάση οξείδια μετάλλων και τα ευγενή μέταλλα.

-Τα «μαλακά» σιδηρομαγνητικά υλικά (διάγραμμα A12γ), παρουσιάζουν μικρή ένταση του συνεκτικού πεδίου H_e, μεγάλη τιμή της παραμένουσας μαγνήτισης και μεγάλη μαγνητική διαπερατότητα μ. Τα υλικά αυτά χρησιμοποιούνται για την κατασκευή πυρήνων σε μετασχηματιστές, πηνία, ηλεκτρομαγνήτες, κ.τ.λ. Στην κατηγορία των «μαλακών» σιδηρομαγνητικών υλικών, ανήκουν ο καθαρός σφυρήλατος σίδηρος, ο μαλακός χάλυβας κατασκευής φύλλων και ελασμάτων, διάφορα κράματα Fe-Si-Al που δεν επιδέχονται σφυρηλάτηση και θερμομαγνητικά κράματα που χρησιμοποιούνται για την κατασκευή πυρήνων υψηλών σχετικά συχνοτήτων.

Η τιμή του συνεκτικού πεδίου H_c εξαρτάται κυρίως το μέγεθος των μαγνητικών τομέων ή μαγνητικών κόκκων, που εμφανίζουν την ίδια μαγνητική συμπεριφορά. Με την αύξηση του μεγέθους των μαγνητικών τομέων (διάγραμμα A13), το συνεκτικό πεδίο αυξάνεται μέχρι ένα ορισμένο μέγεθος, πέρα από το οποίο το συνεκτικό πεδίο μειώνεται ξανά.

Διάγραμμα A13. Μεταβολή [12] του συνεκτικού πεδίου H_c, συναρτήσει του μεγέθους των μαγνητικών τομέων σιδήρου, μαγνητίτη, αιματίτη και τιτανομαγνητίτη, σε συγκεκριμένες θερμοκρασίες.

Το μέγεθος των μαγνητικών τομέων καθορίζεται από τον αριθμό των περιοχών Weiss από τις οποίες συνίστανται τα μαγνητικά υλικά και με βάση το κριτήριο αυτό, οι μαγνητικοί κόκκοι ταξινομούνται σε κλίμακες μεγεθών, σύμφωνα με το διάγραμμα A14.

Διάγραμμα Α14. Ταξινόμηση της διαμέτρου d των μαγνητικών τομέων, συναρτήσει του συνεκτικού τους πεδίου H_c. Ταξινόμηση [60] των μαγνητικών κόκκων του μαγνητίτη και του αιματίτη.

Οι κόκκοι μεγάλου μεγέθους, με διάμετρο d μεγαλύτερη από μια χαρακτηριστική διάμετρο d_o για κάθε σιδηρομαγνητικό υλικό, συνίστανται από πολλές περιοχές Weiss και χαρακτηρίζονται ως Multi Domain-MD. Οι MD κόκκοι μαγνητίζονται κατά τη διεύθυνση του εφαρμοζόμενου πεδίου με μετατόπιση των διαχωριστικών τους τοιχωμάτων και με περιστροφή των μαγνητικών ροπών στην κατεύθυνση του εξωτερικού μαγνητικού πεδίου. Η συνεκτική δύναμη H_c των MD κόκκων, μειώνεται με την αύξηση του μεγέθους τους,

σύμφωνα με τη σχέση: $H_c = \alpha + \frac{b}{d}$ (A176)

Οι σταθερές α $[\frac{A}{m}]$ και b[A] στην παραπάνω σχέση προσδιορίζονται πειραματικά για κάθε σιδηρομαγνητικό υλικό.

Οι κόκκοι μικρότερου μεγέθους με d<d_o που χαρακτηρίζονται ως Single Domain-SD, συνίστανται από μια περιοχή Weiss, με μαγνήτιση που μεταβάλλεται μόνο με περιστροφή των spin. Η συνεκτική δύναμη H_c των SD κόκκων, μειώνεται με τη μείωση του μεγέθους τους, λόγω θερμικών φαινομένων, σύμφωνα με τη

σχέση:
$$H_c = c - \frac{f}{d^{3/2}}$$
 (A177)

Οι σταθερές c[$\frac{A}{m}$] και f[A.m^{$\frac{1}{2}$}] στην παραπάνω σχέση προσδιορίζονται πειραματικά για κάθε σιδηρομαγνητικό υλικό.

Όταν η τιμή της διαμέτρου των κόκκων γίνει μικρότερη από μια χαρακτηριστική τιμή d_s για κάθε σιδηρομαγνητικό υλικό, η συνεκτική δύναμη Η_e μηδενίζεται εξαιτίας των έντονων θερμικών φαινομένων που μπορούν να απομαγνητίσουν κόκκους από την κατάσταση του μαγνητικού κόρου.

Οι ψευδόκοκκοι μονής περιοχής που χαρακτηρίζονται ως Pseudo single domains-PSD, έχουν διαστάσεις μεταξύ των κόκκων SD και MD. Κατά το στάδιο της μαγνήτισης συμπεριφέρονται ως κόκκοι SD, αλλά εμφανίζουν πιο σταθερή μαγνήτιση.

Av ε_i(
$$J_{m^3}$$
), όπου i=s,κ,σ η ενέργεια ανισοτροπίας (σχήματος, κρυσταλλικής ή μαγνητοελαστικής)
ενός SD κόκκου, όγκου V με μαγνήτιση \vec{M}_o που σχηματίζει γωνία $\hat{\theta}$ με την «εύκολη» κατεύθυνση
μαγνήτισης, απουσίας μαγνητικού πεδίου, η συνολική του ενέργεια σε κάθε περίπτωση προσεγγίζεται από τη
σχέση (A116,A141,A155): $E \approx \varepsilon_i .V. \eta \mu^2 \theta$ (A178)

Η υπέρβαση του ενεργειακού φράγματος στις θέσεις $\theta = \pm \frac{\pi}{2}$, όπου $E = E_{max} \approx \epsilon_i \cdot V$, από τις θέσεις ευσταθούς ισορροπίας (θ=0,π) όπου η ενέργεια ελαχιστοποιείται (E= E_{min}), απαιτεί μικρότερη αύξηση της θερμοκρασίας, όσο μικρότερος είναι ο όγκος V του SD κόκκου. Αν το μέγεθος των σωματιδίων (Super Paramagnetic-SP), είναι αρκετά μικρό (d<ds), η θερμική διέγερση μπορεί να υπερνικήσει τις δυνάμεις ανισοτροπίας και να αναγκάσει τη μαγνήτιση των κόκκων να στραφεί από τη διεύθυνση εύκολης μαγνήτισης σε μία άλλη, χωρίς την επίδραση εξωτερικού πεδίου. Με την εφαρμογή εξωτερικού μαγνητικού πεδίου, οι SP κόκκοι τείνουν να ευθυγραμμιστούν στην κατεύθυνσή του, ενώ με το μηδενισμό του επανέρχονται λόγω της θερμικής ενέργειας στην διεύθυνση «εύκολης» μαγνήτισης, επιδεικνύοντας παραμαγνητική συμπεριφορά, χωρίς να εμφανίζουν παραμένουσα μαγνήτιση. Η τιμή της μαγνητικής ροπής των ατόμων στους SP κόκκους είναι πολύ μεγαλύτερη από αυτές των ατόμων στα κλασσικά παραμαγνητικά υλικά και για τον λόγο αυτό ονομάζονται υπερ-παραμαγνητικοί κόκκοι.

Σε κάθε κλίμακα μεγέθους, με την πάροδο του χρόνου t η θερμική ενέργεια των μικρότερων κόκκων με αρχική μαγνήτιση M_a υπό την επίδραση της θερμοκρασίας, υπερβαίνει την ενέργεια ανισοτροπίας, με αποτέλεσμα τη συνολική σταδιακή αποδιοργάνωση των ευθυγραμμισμένων μαγνητικών ροπών και το

μηδενισμό της μαγνήτισης M(t), σύμφωνα με τη σχέση: $M(t)=M_{o}e^{\frac{t}{\tau}}$ (A179)

Η σταθερά τ στην τελευταία σχέση, αποτελεί τον χρόνο χαλάρωσης που απαιτείται για τη μείωση της μαγνήτισης στο $\frac{1}{e}$ της αρχικής της τιμής M_o . Η τιμή της συχνότητας $\frac{1}{τ}[s^{-1}]$ εξαρτάται από τον ανταγωνισμό μεταξύ της θερμικής ενέργειας k_B . Τ και της ενέργειας ανισοτροπίας $ε_i$. V, που αντιστοιχεί στο άθροισμα των ανά δευτερόλεπτο πιθανοτήτων να αντιστραφεί η κατεύθυνση των μαγνητικών ροπών.

Επομένως η συχνότητα $\frac{1}{\tau}$ είναι ανάλογη του συντελεστή Boltzman $e^{-\frac{\epsilon_i . V}{k_B . T}}$, αφού η ενέργεια $\epsilon_i . V$ αποτελεί

το αίτιο της ενεργειακής μεταβολής, σύμφωνα με τη σχέση: $\frac{1}{\tau} = f.e^{-\frac{\epsilon_i \cdot V}{k_B \cdot T}}$ (A180)

Οι τιμές του συντελεστή συχνότητας f είναι χαρακτηριστικές για κάθε σιδηρομαγνητικό υλικό και κυμαίνονται από $(10^9 - 10^{10})$ s⁻¹. Για f ≈ 10⁹s⁻¹ η τελευταία σχέση γράφεται: τ=10⁻⁹.e^{$\frac{ε_i \cdot V}{k_B \cdot T}$}

(A181)

Ο χρόνος χαλάρωσης τ είναι πολύ ευαίσθητος στον όγκο V και στις αλλαγές του σχήματος των κόκκων και η τιμή του μπορεί να κυμανθεί από κλάσματα του δευτερολέπτου (διάγραμμα A15), μέχρι δισεκατομμύρια χρόνια.

Διάγραμμα A15. Μεταβολή του χρόνου χαλάρωσης τ=10⁻⁹.e^{$\frac{\epsilon_s.V}{k_B.T}$} [45] λόγω της μεταβολής της ανισοτροπίας σχήματος του μαγνητίτη, από την αλλαγή του πλάτους α των κυβικών κόκκων, για $0 < \alpha \le \frac{13}{10}$.c και b = c = 23 nm, σε θερμοκρασία δωματίου Τ=300Κ. Η ε, υπολογίζεται για κάθε τιμή του πλάτους α από τις σχέσεις (A126) και (A127).

Σε κάθε θερμοκρασία T, ορίζεται ένας κρίσιμος όγκος κόκκων V_s , με διάμετρο d_s , όπου για d>d_s οι κόκκοι εμφανίζουν σταθερή μαγνήτιση, ενώ για d<d_s, οι κόκκοι εμφανίζουν το φαινόμενο του υπερμαγνητισμού. Η κρίσιμη τιμή d_s, ορίζεται από τον χρόνο χαλάρωσης τ=100s, που συνήθως απαιτείται για τη μέτρηση της παραμένουσας μαγνήτισης των σιδηρομαγνητικών υλικών. Για τ=100s υπολογίζεται από ε. V

τη σχέση (A181) ο λόγος:
$$\frac{\varepsilon_{\rm i} \cdot v_{\rm s}}{k_{\rm B} \cdot T} \approx 25$$
 (A182)

Σύμφωνα με την προηγούμενη σχέση, προσεγγίζεται ο κρίσιμος όγκος V_s για κόκκους με ενέργεια ανισοτροπίας ε_i , σε συγκεκριμένη θερμοκρασία T: $V_s = \frac{25 \cdot k_B \cdot T}{\varepsilon_i}$ (A183)

Από την ίδια σχέση (A182), προσεγγίζεται το ενεργειακό φράγμα E_i σε συγκεκριμένη θερμοκρασία T, για κόκκους συγκεκριμένου όγκου V με ενέργεια ανισοτροπίας ε_i , κάτω από το οποίο η μαγνήτιση είναι σταθερή: $E_s = \varepsilon_i V = 25 k_B T$ (A184)

Επιπλέον, για καθορισμένο όγκο V και για ενέργεια ανισοτροπίας ε_i των κόκκων, προσεγγίζεται η θερμοκρασία φραγμού T_s , κάτω από την οποία η μαγνήτιση είναι σταθερή, από τη σχέση:

$$T_{s} = \frac{\varepsilon_{i}.V}{25.k_{B}} \qquad (A185)$$

Α3.5 Κατηγορίες φυσικών μαγνητίσεων

Η αρχαιομαγνήτιση αποτελεί το άθροισμα της αρχικής ή κύριας παραμένουσας μαγνήτισης των σιδηρομαγνητικών προσμίξεων, σε υλικά που αποτύπωσαν την ένταση και τη διεύθυνση του γεωμαγνητικού πεδίου και δευτερευουσών ή παρασιτικών μαγνητίσεων που αποκτήθηκαν με το πέρασμα του χρόνου.

Η θερμοπαραμένουσα μαγνήτιση αποτελεί την πιο διαδεδομένη μαγνήτιση σε φυσικές συνθήκες, που αποκτάται κατά την ψύξη των υλικών στην κατεύθυνση του γήινου μαγνητικού πεδίου, από θερμοκρασία μεγαλύτερη της Τ μέχρι την ελάχιστα μικρότερη θερμοκρασία Τ φραγμού (A185). Όλα τα ηφαιστειακά πετρώματα αλλά και τεκμήρια της ανθρώπινης δραστηριότητας, όπως τα προϊόντα ψημένης αργίλου, απέκτησαν θερμοπαραμένουσα μαγνήτιση που διατηρείται αναλλοίωτη μέχρι σήμερα. Το διανυσματικό άθροισμα της κύριας και των δευτερευουσών μαγνητίσεων γαρακτηρίζεται φυσική παραμένουσα μαγνήτιση. Για τα αρχαιομαγνητικά υλικά, ισχύει η παραδοχή ότι η φυσική παραμένουσα μαγνήτιση ταυτίζεται με την παραμένουσα θερμομαγνήτιση που είναι πολύ σταθερή. Στις δευτερεύουσες μαγνητίσεις συμπεριλαμβάνονται:

-Η ιξώδης παραμένουσα μαγνήτιση, που αποκτάται υπό την επίδραση του γεωμαγνητικού πεδίου, μετά από την αρχική μαγνήτιση που αποτυπώνεται κατά την τελευταία ψύξη των υλικών, δυσχεραίνοντας τον προσδιορισμό του αρχικού διανύσματος [62] του αρχαίου γεωμαγνητικού πεδίου. Ο συντελεστής ιξώδους, εξαρτάται από το μέγεθος και τη σύσταση των μαγνητικών κόκκων. Σε θερμοκρασία δωματίου, μεγάλο ιξώδες εμφανίζουν οι SD κόκκοι με διαστάσεις παραπλήσιες στους SP κόκκους, ενώ μικρότερο ιξώδες εμφανίζουν οι MD κόκκοι, λόγω της κίνησης των τοιχωμάτων Bloch. Επιπλέον, η αύξηση της ποσότητας τιτανίου [63] σε πετρώματα με σιδηρομαγνητικές προσμίξεις, αυξάνει τον συντελεστή ιξώδους. Η ιξώδης παραμένουσα μαγνήτιση είναι ασθενής μαγνήτιση, που εύκολα μηδενίζεται σε εναλλασσόμενο πεδίο [64] διαδικασία κατά την οποία υπολογίζεται ο συντελεστής ιξώδους.

-Η χημική παραμένουσα μαγνήτιση, αποκτάται εντός του γεωμαγνητικού πεδίου, σε θερμοκρασίες T<T_c, λόγω χημικών [65] μεταβολών (π.χ. επανακρυστάλλωση) των μαγνητικών κόκκων, από την επίδραση διαλυμάτων ή βιολογικών διαδικασιών ή κατά τη μεταβολή της θερμοκρασίας ή λόγω πίεσης. Επειδή κατά τη διάρκεια των χημικών μεταβολών [66] οι MD κόκκοι κατακερματίζονται σε μικρότερους, η παραμένουσα μαγνήτιση διατηρείται μόνο αν οι αρχικοί φορείς της μαγνήτισης είναι κόκκοι SD. Αυτή η επισήμανση είναι πολύ σημαντική στον παλαιομαγνητισμό, γιατί στα πετρώματα που συνίστανται από MD κόκκους, η μετρούμενη μαγνήτιση δεν αντιστοιχεί πάντα στο γεωμαγνητικό πεδίο κατά την ψύξη του πετρώματος, αλλά στον μετέπειτα χρόνο επίδρασης της χημικής παραμένουσας μαγνήτισης. Για παράδειγμα, σε εργαστηριακές μετρήσεις με τεχνητές συνθήκες διαγένεσης [67,68], μέσω οξείδωσης σε χαμηλές θερμοκρασίες τεχνητών δειγμάτων από μαγνητίτη σε μαγγεμίτη ή αιματίτη, απέδειξαν ότι η χημική παραμένουσα μαγνήτιση δεν επηρεάζει τη διεύθυνση της αρχικής μαγνήτισης μόνο στην περίπτωση που ο μαγγεμίτης είναι το τελικό προϊόν της οξείδωσης.

-Η θραυσματοπαγής παραμένουσα μαγνήτιση είναι αποτέλεσμα της καταβύθισης στο νερό, μαγνητικών κόκκων με διαστάσεις [69] 30-100 μm, όταν η μαγνητική δύναμη από το γεωμαγνητικό πεδίο είναι μεγαλύτερη από τη βαρυτική και την υδροδυναμική δύναμη. Οι μεγαλύτεροι κόκκοι καταλήγουν στο βυθό με τη μεγαλύτερή τους διάσταση λόγω της βαρυτικής δύναμης ή με τη φορά του μεγαλύτερου άξονα στη διεύθυνση των υδατικών ρευμάτων λόγω της υδροδυναμικής δύναμης. Για μικρότερους κόκκους η κίνηση είναι χαοτική και στηρίζεται στην κίνηση Braoun.

Α3.6 Μαγνητικές ιδιότητες του σερπεντινίτη και του ψημένου πηλού

Από τον 19° αιώνα, είχε ήδη παρατηρηθεί [70,71] ότι τα πετρώματα φέρουν αναλλοίωτη την πληροφορία της διεύθυνσης του γεωμαγνητικού πεδίου κατά τον χρόνο σχηματισμού τους. Η μέθοδος του παλαιομαγνητισμού [72], χρησιμοποιείται για την εξέταση των μεταβολών του γήινου μαγνητικού πεδίου, μέσω χρονολογημένων πετρωμάτων που διατηρούν θερμοπαραμένουσα μαγνήτιση. Η διεύθυνση της παραμένουσας μαγνήτισης ενός πετρώματος εξετάζεται για τον υπολογισμό της θέσης του μαγνητικού πόλου της γης κατά το χρόνο σχηματισμού του πετρώματος. Η μελέτη των πετρωμάτων διαφόρων ηλικιών μιας ηπείρου, παρέχει διαφορετικές διευθύνσεις κίνησης του μαγνητικού πόλου και η συσχέτιση των μέσων θέσεων των πόλων παριστάνεται από μια γραμμή που χαρακτηρίζεται ως φαινόμενη τροχιά περιφοράς των πόλων. Επειδή κάθε ήπειρος εμφανίζει διαφορετική φαινόμενη τροχιά, οι γραμμές απεικονίζουν τις σχετικές κινήσεις των μπείρων ως προς τον μαγνητικό πόλο [73].

Επειδή η παραμένουσα μαγνήτιση στον σερπεντινίτη, διατηρεί την κατεύθυνση του γήινου μαγνητικού πεδίου κατά το χρόνο σχηματισμού του πετρώματος, τα θραύσματα του πετρώματος προσανατολίζονται λόγω της παραπλήσιας κατευθυντικότητας του μαγνητικού τους πεδίου, κατά τον τρόπο που συναρμόζουν.

Ο σερπεντινίτης [74] είναι μεταμορφωμένο πέτρωμα και αποτελείται κυρίως από σερπεντίνη [75] και πιθανώς από μικρότερες ποσότητες τάλκη, αμφίβολου και χλωρίτη. Πρόκειται για δευτερογενές ορυκτό ως προϊόν εξαλλοίωσης μαγνησιούχων πυριτικών ορυκτών, όπως οι πυρόξενοι με γενικό τύπο $R_2Si_2O_6$ (R: Mg, Fe, Ca, Mn, Al, Na, Li) και ο ολιβίνης R_2SiO_4 (R: Mg, Fe) που βρίσκονται σε πυριγενή και μεταμορφωμένα πετρώματα. Μόνο μικρές ποσότητες ιόντων Fe από τα πρόδρομα ορυκτά του σερπεντίνη, αντικαθιστούν τα ιόντα Mg και ενσωματώνονται στην κρυσταλλική δομή του.

Οι μεγαλύτερες ποσότητες σχηματίζουν εγκλείσματα σιδηρομαγνητικών οξειδίων του Fe, κυρίως μαγνητίτη αλλά και αιματίτη, στα οποία ο σερπεντινίτης οφείλει το σκουρότερο χρώμα του και τις μαγνητικές του ιδιότητες. Η μόνιμη μαγνήτιση του σερπεντινίτη, οφείλεται στις ιδιότητες του μαγνητίτη και του αιματίτη να αποκτούν μαγνήτιση και να τη διατηρούν κατά την ψύξη τους στην κατεύθυνση του γήινου μαγνητικού πεδίου, εφόσον θερμανθούν σε θερμοκρασίες υψηλότερες [76,77] των αντίστοιχων θερμοκρασιών Curie.

Οι μαγνητικές ιδιότητες των κεραμικών και γενικά των ψημένων αργίλων που έχουν υποστεί εκούσια ή ακούσια θερμική επεξεργασία και περιέχουν σιδηρομαγνητικά υλικά, εξετάζονται με τη μέθοδο του αρχαιομαγνητισμού [78-79] που βασίζεται στις αρχές του παλαιομαγνητισμού και εφαρμόζεται σε προϊόντα της ανθρώπινης δραστηριότητας. Τα υλικά που εξετάζονται με τη μέθοδο του αρχαιομαγνητισμού διακρίνονται σε 2 βασικές κατηγορίες:

 Τα αντικείμενα που έχουν μετακινηθεί μετά το στάδιο της όπτησης, όπως τα αγγεία, για τα οποία μπορούν να εξαχθούν μόνο τεχνολογικές πληροφορίες (π.χ. θερμοκρασίες όπτησης).

 Τα αντικείμενα που βρίσκονται στην ίδια θέση από τον χρόνο της τελευταίας θέρμανσής τους, όπως εστίες, κλίβανοι (σχήμα A24) και καμένα δομικά στοιχεία, για τα οποία μπορούν να εξαχθούν τεχνολογικές πληροφορίες και να χρονολογηθούν με τη χρήση αρχαιομαγνητικών χαρτών αναφοράς του γήινου μαγνητικού πεδίου.

Σχήμα A24. Σχηματική απεικόνιση αρχαίου κλιβάνου πρωτοαρχαϊκής περιόδου (Διασκευή σχεδίου του F. Tomasello).

Η σύνταξη αρχαιομαγνητικών καμπυλών αναφοράς των μεταβολών της αρχαιοέντασης και των αρχαιοδιευθύνσεων του μαγνητικού πεδίου της γης σε τοπικό επίπεδο, απαιτεί τη χρονολόγηση δειγμάτων από συγκεκριμένες γεωγραφικές περιοχές με τη χρήση άλλων μεθόδων. Επειδή στην Ελλάδα η συλλογή στοιχείων από χρονολογημένα και τοπικά καθορισμένα δείγματα επιχειρείται μόνο τα τελευταία 20 χρόνια, χρησιμοποιούνται κυρίως ανηγμένες καμπύλες αναφοράς από γειτονικές χώρες.

Ο πηλός δεν έχει ορισμένη ορυκτολογική σύσταση, γιατί ο σχηματισμός του οφείλεται στην εξαλλοίωση κατακερματισμένων πυριγενών, ιζηματογενών και μεταμορφωσιγενών πετρωμάτων. Τυπικά συστατικά της πρώτης ύλης σύμφωνα με το «κλασικό» τριγωνικό διάγραμμα [80-82] Levin (διάγραμμα A16), αποτελούν διάφορες αργιλοπυριτικές ενώσεις του SiO₂ (45-70%), του Al₂O₃ (10-30%) και του CaO (<20%) με μικρότερες προσμίζεις οξειδίων του σιδήρου (<6%) και του μαγνησίου (2-3%). Η τελική ορυκτολογική σύσταση των κεραμικών και οι μαγνητικές τους ιδιότητες, διαμορφώνονται κατά την όπτηση (σε τυπικές θερμοκρασίες 600°-1100° C) και εξαρτάται από τη σύσταση του πηλού και από τις συνθήκες θέρμανσης (ρυθμός θέρμανσης/ψύξης) και αερισμού (οξειδωτική-αναγωγική ατμόσφαιρα) στον κλίβανο.

Οι παράγοντες αυτοί, επιδρούν στη δημιουργία ασβεστοαλουμινοπυριτικών ορυκτών (βολλαστονίτης, κλινοπυρόξενος, γκελενίτης, πλαγιόκλαστο) και στη διατήρηση υπολειμματικών φάσεων, όπως του χαλαζία και του αλκαλικού αστρίου.

Διάγραμμα A16. Ορυκτολογική σύσταση των αρχαίων κεραμικών, στο τριγωνικό διάγραμμα Al₂O₃-CaO-SiO₂ (Levin-1964).

Τα περιεχόμενα αργιλοπυριτικά ορυκτά στη σύσταση του οπτού πηλού (πίνακας A3) είναι παραμαγνητικά ή διαμαγνητικά [83] με τυπική [84,85] μαγνητική επιδεκτικότητα 1000 φορές μικρότερη των

αντισιδηρομαγνητικών ([83], pp. 151–173) και 10000 φορές μικρότερη των αντισιδηριμαγνητικών οξειδίων ([83], pp. 175–195) του σιδήρου. Οι μαγνητικές επιδεκτικότητες $\chi_m [m^3/kg]$ των επιλεγμένων μετάλλων και ορυκτών του πίνακα, σε μονάδες αντίστροφης πυκνότητας (1/ρ), μετριούνται με το φορητό όργανο MS2 System μέτρησης της μαγνητικής επιδεκτικότητας της Bartington, στις συχνότητες $k_{\rm if}$ =0,46KHz και $k_{\rm hf}$ =4,6KHz. Η μαγνητική επιδεκτικότητα έχει μικρότερη τιμή στην υψηλότερη συχνότητα ($k_{\rm hf}$), λόγω του αποπροσανατολισμού των μαγνητικών περιοχών από τη θερμότητα που παράγει η ταχύτερη κίνηση των μικρότερων μαγνητικών κόκκων.

	Ι		Μαγνητική επιδεκτικότητα			
_			MAZAS $(10^{-6}.m^3 / Kg)$			
Орукто	ΧΗΜΙΚΟΣ ΤΥΠΟΣ	Fe (%)	$\chi_m = \frac{k_{lf} - k_{hf}}{\rho}.100$			
ΚΥΡΙΩΣ ΣΙΔΗΡΟΜΑΓΝΗΤΙΚΑ ΜΕΤΑΛΛΑ						
Σίδηρος	αFe	100	276000			
Κοβάλτιο	Со		204000			
Νικέλιο	Ni	[68850			
Αντισιαμριμαγνητικά γλικα						
Μαγνητίτης			513-1116			
0,012-0.069 μm	Fe_3O_4	72	596±77			
0,09-2000 μm 1-250 μm		12	440-710			
Μαγκεμίτης	γFe_2O_3	70	410,440			
Τιτανομαγνητίτης	$Fe_3O_4 - Fe_2TiO_4$		169-290			
Τιτανοαιματίτης	$Fe_2O_3 - FeTiO_3$		281-315			
Πυρροτίτης	Fe_7S_8		50,53			
Αντισιαήρομαγνητικά υλικά						
Αιματίτης	aFe ₂ O ₃	70	1.19-1.69			
Γκετίτης	aFeOOH	63	0.35, 0.38, 0.7 (<1.26)			
	Парамагnнтika yaika ($20^{\circ}C$)					
Ιλμενίτης	FeTiO ₃	70	1.7, 2			
Ολιβίνης	$4[(Mg, Fe)_2 SiO_4]$	<55	0.01-1.3			
Βιοτίτης	$K(Mg, Fe^{+2})_{3}[AlSi_{3}O_{10}(OH, F)_{2}]$	31	0.05-0.95			
Πυρόξενος	$(Mg, Fe)_2 Si_2 O_6$]	<12	0.04-0.94			
Αμφίβολος	$Ca_2(Mg, Fe)_5Si_8O_{22}(OH)_2$		0.16-0.69			
Σιδηροπυρίτης	FeS ₂	47	0.3			
Λεπιδοκροκίτης	γFeOOH	63	0.5-0.75, 0.69			
Βερμικουλίτης	Σύνθετο πυριτικό άλας	·	0.152			
TA A /	$(K, H^{+}).(Al, Mg, Fe)_{2}(Si, Al)_{4}O_{10}$		0.15			
Ιλλίτης	$[(OH)_2.H_2O]$					
Χαλκοπυρίτης	CuFeS ₂	30	0.03			
Δολομίτης	$CaMg(CO_3)_2$	1	0.011			
Διαμαγνητικά υλικά						
Ασβεστίτης	CaCO ₃		-0.0048			
Χαλαζίας	SiO ₂	†	-0.0058			
Καολινίτης	$Al_2SiO_2O_5(OH)_4$		-0.019			

Πίνακας Α3. Συγκριτικός πίνακας [86] τιμών μαγνητικής επιδεκτικότητας μάζας χ_m επιδεγμένων ορυκτών.

Από τη σύγκριση των μαγνητικών επιδεκτικοτήτων μάζας συμπεραίνεται πως η κατευθυντικότητα του μόνιμου μαγνητικού πεδίου των οστράκων οφείλεται κυρίως στην θερμοπαραμένουσα μαγνήτιση \vec{M} των σιδηρι(ο)μαγνητικών συστατικών του οπτού πηλού, που σχηματίζονται κατά τη διάρκεια της όπτησης και προσανατολίζονται κατά την ψύξη τους στην κατεύθυνση του γήινου μαγνητικού πεδίου.

Τα μαγνητικά οξείδια του σιδήρου (FeO, Fe₂O₃) σύμφωνα με το τριαδικό διάγραμμα φάσεων ([87], pp. 411), των οξειδίων Fe-Ti (**Διάγραμμα A17**), σχηματίζουν τρεις βασικές σειρές στερεών διαλυμάτων με το διοξείδιο του τιτανίου (TiO₂), τη σειρά τιτανομαγνητίτη-ολβοσπινέλιου (Fe₃O₄-Fe₂TiO₄) με δομή αντίστροφη του σπινελίου, τη σειρά τιτανοαιματίτη/μαγκεμίτη-ιλμενίτη [(α , γ)Fe₂O3-FeTiO₃] με ρομβοεδρική δομή και τη σειρά των υδροξειδίων του σιδήρου σιδηροψευδομπρουκίτη- ψευδομπρουκίτη (FeTiO₅-FeTiO₃) με ορθορομβική δομή.

Διάγραμμα A17. Τριαδικό διάγραμμα φάσεων των οξειδίων Fe-Ti (Butler 1992).

Από τα ορυκτά των τριών βασικών σειρών στερεών διαλυμάτων που σχηματίζουν τα μαγνητικά οξείδια του σιδήρου, κατά την ενδεχόμενη αντικατάσταση των ιόντων του σιδήρου (Fe) από τιτάνιο (Ti), τα σημαντικότερα για τη μαγνητική συμπεριφορά του οπτού πηλού είναι τα ορυκτά των ομάδων του τιτανομαγνητίτη και του τιτανοαιματίτη.

Από τα ορυκτά των τριών στερεών διαλυμάτων των οξειδίων του σιδήρου, κυρίαρχο ρόλο στη μαγνητική συμπεριφορά των κεραμικών έχουν τα ορυκτά των ομάδων του τιτανομαγνητίτη και του τιτανοαιματίτη, γιατί τα υπόλοιπα [88-97] αφυδατώνονται ή οξειδώνονται κατά την όπτηση των αγγείων σε ορυκτά μικρής μαγνητικής επιδεκτικότητας ή μετατρέπονται σε ορυκτά της σειράς του τιτανομαγνητίτη και του του τιτανοαιματίτη.

Τα ορυκτά της σειράς ψευδομπρουκίτη/σιδηροψευδομπρουκίτη αφυδατώνονται ή οξειδώνονται κατά την όπτηση, στα ορυκτά των υπολοίπων ομάδων. Τα συχνότερα περιεχόμενα ορυκτά των υδροξειδίων του σιδήρου της σειράς ψευδομπρουκίτη/σιδηροψευδομπρουκίτη, όπως ο λεπιδοκροκίτης (γFeOOH) ή ο γκετίτης (aFeOOH), έχουν αμελητέα επίδραση στις μαγνητικές ιδιότητες της ψημένης αργίλου, είτε λόγω της μικρής μαγνητικής επιδεκτικότητας, είτε λόγω της μετατροπής τους κατά την όπτηση [98] του πηλού, σε ορυκτά των υπολοίπων σειρών του τριαδικού συστήματος.

Ο αντισιδηρομαγνητικός γκετίτης ($\chi_m < 1,26.10^6 m^3/kg$) που αποτελεί το μοναδικό υδροξείδιο του σιδήρου με παραμένουσα μαγνήτιση, αφυδατώνεται κοντά στους 200° C και σε θερμοκρασίες 250-400° C μετατρέπεται σε αιματίτη, ενώ ο παραμαγνητικός λεπιδοκροκίτης [$\chi_m = (0,50-0,75).10^6 m^3/kg$] μετατρέπεται αρχικά σε μαγκεμίτη και στη συνέχεια σε αιματίτη.

Από τη σειρά τιτανο[αιματίτη(aFe_2O_3)-μαγκεμίτη(γFe_2O_3)], τα ορυκτά που περιέχονται στη ψημένη άργιλο ανήκουν στην αντισιδηριμαγνητική ομάδα του τιτανοαιματίτη, εφόσον ο αντισιδηριμαγνητικός μαγκεμίτης [χ_m =(410-440).10⁶m³/kg] μετατρέπεται σε θερμοκρασίες μεγαλύτερες των 250° C σε αιματίτη

$[\chi_{m} = (1, 19-1, 69) \cdot 10^{-6} \text{ m}^{3}/\text{kg}].$

Σύμφωνα με τα παραπάνω, οι μαγνητικές ιδιότητες του οπτού πηλού, εξαρτώνται κύρια από την περιεκτικότητά του σε δευτερογενή ορυκτά των σειρών του τιτανοαιματίτη και του τιτανομαγνητίτη που σχηματίζεται κατά την όπτηση. Οι μαγνητικές ιδιότητες του ψημένου πηλού καθορίζονται [87] (pp. 58, 409– 412) από την επίδραση της θερμοκρασίας ψύξης στις συνθέσεις ισορροπίας στερεών διαλυμάτων τιτανομαγνητίτη (Nagata 1961) και τιτανοαιματίτη (Robinson 2004), αναλόγως της περιεκτικότητάς τους σε τιτάνιο.

Διάγραμμα A18. Επίδραση της θερμοκρασίας ψύξης¹¹ [45] στις συνθέσεις ισορροπίας στερεών διαλυμάτων (**a**) τιτανομαγνητίτη (Nagata-1961) και (**β**) τιτανοαιματίτη (Robinson 2004), αναλόγως της περιεκτικότητάς τους σε τιτάνιο.

Πάνω από τις θερμοκρασίες των 600°C για τον τιτανομαγνητίτη (διάγραμμα A18a) και των 800°C για τον τιτανοαιματίτη (διάγραμμα A18β), όλες οι συνθέσεις της κρυσταλλικής δομής για τα αντίστοιχα στερεά διαλύματα, είναι θερμοδυναμικά σταθερές. Κατά την ελάττωση της θερμοκρασίας, οι συνθέσεις ισορροπίας σε κάθε διάγραμμα, καθορίζονται από τα σημεία τομής της κόκκινης γραμμής, με την οριζόντια ευθεία που διέρχεται από κάθε θερμοκρασία ψύξης. Για παράδειγμα κατά την ψύξη στους 400°C στερεών διαλυμάτων τιτανομαγνητίτη ή τιτανοαιματίτη με περιεκτικότητα 60% σε Ti, οι υποκαταστάσεις Ti στις δύο φάσεις ισορροπίας και στα δυο διαγράμματα, είναι περίπου 0,3 και 0,9.

¹¹ http://earthref.org/MAGIC/books/Tauxe/Essentials/WebBook3ch6.html#x8-530006

Ο αιματίτης-Fe₂O₃ (σχήμα A25α) σχηματίζει ρομβοεδρικό κρύσταλλο [87] (pp. 29–31, 61, 64, 81–
 87), με δομή κορουνδίου (σχήμα A25β). Τα μεταλλικά κατιόντα Fe⁺³ τοποθετούνται σε εξαγωνική διάταξη (σχήμα A25γ), επί ισαπεχόντων επιπέδων, καθέτως προς το C-άξονα.

Σχήμα A25. Σειρά τιτανοαιματίτη [αιματίτης(Fe₂O₃)/ιλμενίτης(FeTiO₃)]. (α) Μετάλλευμα¹² αιματίτη. (β) Διάταξη¹³ των ιόντων του ρομβοεδρικού κρυστάλλου αιματίτη, με δομή κορουνδίου,(γ) Εξαγωνική¹⁴ διάταξη των μεταλλικών κατιόντων στον αιματίτη και στον ιλμενίτη (Ishikawa 1985).

Κάθε κατιόν ${}_{26}Fe^{+3}$ [1s², 2s², 2p⁶, 3s², 3p⁶, 3d⁵] περιέχει [87] (pp. 111–117) 5 ασύζευκτα ηλεκτρόνια (e⁻) στο 3d τροχιακό. Λόγω της αντιστάθμισης φορτίου και των 2x5=10 μονήρων e⁻ με αντιπαράλληλα spin, κατά το σχήμα |Fe⁺³Fe⁺³|O₃⁻², ο αιματίτης θα έπρεπε θεωρητικά [87] (pp. 126–128) να εμφανίζει μηδενική μαγνήτιση. Η ασθενής αντισιδηρομαγνητική συμπεριφορά του, με μαγνητική επιδεκτικότητα χ_m =(1,19-1,69).10⁻⁶ m³/Kg [85] (p. 40), οφείλεται σε ατέλειες του πλέγματος και αυξάνεται με την εμπλοκή άλλων ατόμων στον κρύσταλλο, που διαταράσσουν περισσότερο την παράλληλη ευθυγράμμιση των αντίθετων ηλεκτρονιακών ροπών.

Η υποκατάσταση Fe^{+3} από Ti^{+4} (Nagata 1961, Stacey και Banergee 1974), αυξάνει¹⁵ [63] τη μαγνήτιση κορεσμού των ορυκτών $[Fe_{2-\psi}Ti_{\psi}O_3]$ της σειράς αιματίτη (ψ=0)-ιλμενίτη (ψ=1). Όταν η υποκατάσταση είναι μικρότερη από ψ≈0,5 (διάγραμμα A19α), τα κατιόντα Ti^{+4} κατανέμονται ισότιμα μεταξύ των στρώσεων των κατιόντων Fe^{+3} και ο κρύσταλλος δεν εμφανίζει μαγνήτιση. Για μεγαλύτερες συγκεντρώσεις (0,5<ψ<0,8) τιτανίου, τα κατιόντα $_{22}Ti^{+4}$ [1s², 2s², 2p⁶, 3s², 3p⁶] που δεν περιέχουν ασύζευκτα e⁻, κατανέμονται ατάκτως σε εναλλασσόμενες στρώσεις μεταξύ των κατιόντων Fe^{+3} (σχήμα A25γ), και ο κρύσταλλος για ψ≈0,8 αποκτά μέγιστες αντισιδηρομαγνητικές ιδιότητες.

 $^{^{12}}$ Η εικόνα λήφθηκε από την ιστοσελίδα: https://commons.wikimedia.org/wiki/File:Hematite.jpg licensed under the Free Documentation License (GFDL).

¹³ Η εικόνα λήφθηκε από την ιστοσελίδα: https://commons.wikimedia.org/wiki/File:Hematite_unit_cell.jpg licensed under the Creative Commons- Attribution-ShareAlike 3.0 Unported.

¹⁴ Η εικόνα λήφθηκε από την ιστοσελίδα: https://commons.wikimedia.org/wiki/File:Ilmenit-Struktur.png licensed under

the Creative Commons Attribution 4.0 International.

¹⁵ http://earthref.org/MAGIC/books/Tauxe/Essentials/WebBook3ch6.html#x8-530006.

Διάγραμμα A19. Μεταβολή (α) της μαγνήτισης κορεσμού $M_K(A/m)$ και (β) της θερμοκρασίας Neel [45] των ορυκτών του τιτανοαιματίτη [Fe_{2-y}Ti_yO₃], κατά την υποκατάσταση Fe⁺³ από Ti⁺⁴.

Για μεγαλύτερες περιεκτικότητες (ψ >0,8), τα κατιόντα τιτανίου κατανέμονται συμμετρικά μεταξύ των στρώσεων των κατιόντων Fe⁺³, με αποτέλεσμα ο ιλμενίτης να μην εμφανίζει αντισιδηρομαγνητικές ιδιότητες, αλλά παραμαγνητική συμπεριφορά. Η αντίστοιχη θερμοκρασία Neel, της θερμοκρασίας Curie για αντισιδηρομαγνητικά υλικά, μειώνεται απότομα (διάγραμμα A19β), από τους 685°C που αντιστοιχεί στον αιματίτη, με την αύξηση της υποκατάστασης Fe⁺³ από Ti⁺⁴.

Ο αιματίτης αποτελεί πρωτογενές συστατικό του πηλού ή σχηματίζεται στην ψημένη άργιλο [98], από την αφυδάτωση και την επανακρυστάλλωση των περιεχόμενων υδροξειδίων και οξυδροξειδίων του σιδήρου και από τη διάσπαση των υπαρχόντων σιδηρούχων (π.χ. ιλλίτης, χλωρίτης) ορυκτών. Η παραμένουσα θερμομαγνήτιση οφείλεται αποκλειστικά στον δευτερογενώς σχηματιζόμενο αιματίτη κατά την όπτηση των αγγείων, εφόσον οι μαγνητικοί κόκκοι του αιματίτη στην πρώτη ύλη δε διατηρούν συγκεκριμένη κατευθυντικότητα μετά από την ανάμιξη του πηλού.

Υψηλά ποσοστά αιματίτη (<6%) αναμένονται σε υψηλές θερμοκρασίες (T>950°C) και οξειδωτικές συνθήκες όπτησης, σε αργίλους με μικρή περιεκτικότητα σε CaO (<5%), ενώ σε μεγαλύτερη ποσότητα, η περιεκτικότητα του πηλού σε αιματίτη περιορίζεται [98] (pp. 124–126) γιατί ο Fe⁺³ συμμετέχει στον αλουμινούχο κλινοπυρόξενο στις οκταεδρικές θέσεις και στον γκελενίτη στις οκταεδρικές και τετραεδρικές θέσεις.

Το υψηλό ποσοστό του CaO οφείλεται στην εσκεμμένη ανάμειξη ασβεστούχων αργιλικών πηλών ή την προσθήκη ασβεστίτη σε πηλούς με μικρή περιεκτικότητα σε ασβέστιο, κυρίως λόγω της πυροσυσσωμάτωσης (sintering) του πηλού σε χαμηλότερες θερμοκρασίες [99] και της μικρότερης ανάγκης ελέγχου της θερμοκρασίας όπτησης κατά τον κλιβανισμό. Επιπλέον, η μικρή διαφοροποίηση του συντελεστή θερμικής διαστολής-συστολής που επιτυγχάνεται σε θερμοκρασίες 850°-1050° C με την προσθήκη ασβεστίου [100,101], μειώνει την πιθανότητα δημιουργίας μικρορωγματώσεων, όταν εφαρμόζονται αργιλικές επιστρώσεις και προσδίδει φωτεινά χρώματα στο χρώμα του πηλού [88] (pp. 130–136), δημιουργώντας την απαραίτητη αντίθεση με τον συνήθως σκουρόχρωμο γραπτό διάκοσμο.

• Ο μαγνητίτης (σχήμα A26α) κρυσταλλώνεται σε ολοεδρία κατά το κυβικό σύστημα [87] (pp. 32,61,64,87–92), με δομή αντίστροφου σπινελίου. Τα ανιόντα οξυγόνου (O⁻²) σχηματίζουν σε κάθε δομική μονάδα ενδοκεντρωμένο κυβικό πλέγμα (σχήμα A26β), εντός του οποίου τοποθετούνται τα κατιόντα Fe^{+2} και Fe^{+3} σε 4 τετραεδρικές θέσεις και 8 οκταεδρικές θέσεις. Για να διατηρηθεί η ισορροπία φορτίου με τα 4 ανιόντα O⁻², τα Fe^{+2} καταλαμβάνουν οκταεδρικές θέσεις, ενώ τα Fe^{+3} κατανέμονται ισομερώς μεταξύ των οκταεδρικών (B) και τετραεδρικών θέσεων(A), κατά το σχήμα: $Fe^{+3}Fe^{+2}|O_4^{-2}$

Σχήμα A26. Μαγνητίτης–Fe₃O₄. (α) Οκτάεδρο μαγνητίτη¹⁶.(β) Εσωτερική δομή κρυστάλλου¹⁷. Η διαγώνια [1,1,1] και η κάθετη κατεύθυνση [0,0,1] στην επιφάνεια του κύβου υποδεικνύονται με βέλη. Οι μεγάλες κόκκινες σφαίρες παριστάνουν ανιόντα οξυγόνου (O⁻²), οι κίτρινες σφαίρες τετραεδρικής συμμετρίας στις θέσεις Α αντιστοιχούν σε κατιόντα Fe⁺³, ενώ οι θέσεις Β καταλαμβάνονται από κατιόντα Fe⁺² και Fe⁺³ οκταεδρικής διαμόρφωσης. (γ) Κατευθύνσεις μαγνητικής ανισοτροπίας του κρυστάλλου. Η διαγώνιος [1,1,1] του κύβου, με τη μικρότερη ενέργεια, αποτελεί την «εύκολη» κατεύθυνση μαγνήτισης.

Τα κατιόντα $_{26}$ Fe⁺² [1s², 2s², 2p⁶, 3s², 3p⁶, 3d⁶] περιέχουν 4 ασύζευκτα e⁻, ενώ τα $_{26}$ Fe⁺³ [1s², 2s², 2p⁶, 3s², 3p⁶, 3d⁵] περιέχουν 5 ασύζευκτα e⁻ στα 3d τροχιακά. Από τα 5+4=9 e⁻ των Fe⁺³ και Fe⁺² στις οκταεδρικές θέσεις, τα 5e⁻ έχουν αντιπαράλληλα spin με τα 5e⁻ των Fe⁺³ στις τετραεδρικές θέσεις και οι ηλεκτρονιακές μαγνητικές ροπές τους αλληλοεξουδετερώνονται. Επομένως η αντισιδηριμαγνητική συμπεριφορά του μαγνητίτη [85] (pp. 128–130) αντιστοιχεί σε 9-5=4 e⁻ ή σε 4 μαγνητόνες του Bohr (μ_B=0,93.10⁻²³J/T) ανά μόριο (0^oK).

Η υποκατάσταση του Fe⁺³ από Ti⁺⁴ (διάγραμμα A20) στον μαγνητίτη Fe⁺³| Fe⁺³ Fe⁺²|O₄ (z=0), προκαλεί τη μετατροπή του Fe⁺³ σε Fe⁺² για τη διατήρηση της ισορροπίας φορτίου κατά το σχήμα: Fe⁺² Fe⁺²Ti⁺⁴|O₄ (z=1, ουλβοσπινέλιος). Επειδή τα κατιόντα Ti⁺⁴ δεν περιέχουν ασύζευκτα e⁻, τα 4 μονήρη e⁻ των Fe⁺² στις οκταεδρικές θέσεις έχουν αντιπαράλληλα spin με τα 4 μονήρη e⁻ των Fe⁺² στις τετραεδρικές θέσεις και ο ουλβοσπινέλιος δεν εμφανίζει μαγνητική συμπεριφορά. Η σταδιακή αύξηση της υποκατάστασης¹⁸ [45] του Fe⁺³ από Ti⁺⁴ προκαλεί τη μείωση (διάγραμμα A20a) της μαγνήτισης (W.O'Reilly 1984), της θερμοκρασίας Curie (διάγραμμα A20γ) και την αύξηση του μεγέθους (διάγραμμα A20β) των δομικών μονάδων. Η μαγνητική επιδεκτικότητα χ_m=(169-290).10⁻⁶ m³/Kg των συνήθων στερεών διαλυμάτων τιτανομαγνητίτη [84] (pp. 40) αντιστοιχεί στο 15% των υψηλότερων τιμών χ_m=(440-1116).10⁻⁶ m³/Kg του μαγνητίτη.

¹⁶ Η εικόνα ελήφθη από την ιστοσελίδα https://commons.wikimedia.org/wiki/File:Magnetite-244496.jpg, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported).

¹⁷ Η εικόνα ελήφθη από την ιστοσελίδα https://commons.wikimedia.org/wiki/File:Magnetit1.jpg, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic license).

¹⁸ http://earthref.org/MAGIC/books/Tauxe/Essentials/WebBook3ch6.html#x8-530006.

Διάγραμμα A20. Επίδραση της υποκατάστασης (z) τιτανίου [102] (pp.132-171) στο πλέγμα τιτανομαγνητίτη $[Fe_{3-z}Ti_zO_4]$, από z=0 (μαγνητίτης: Fe₃O₄) έως z=1 (ουλβοσπινέλιος: Fe₂TiO₄). (α) Μεταβολή της μαγνήτισης (μ_B=0,93.10⁻²³J/T)) ανά δομική μονάδα. (β) Μεταβολή μεγέθους της δομικής μονάδας (nm). (γ) Μεταβολή της θερμοκρασίας(C^{o}) Curie.

Ο μαγνητίτης σχηματίζεται κατά την όπτηση, από τη μερική αναγωγή του αιματίτη σε συνθήκες ελλείψεως οξυγόνου και σε θερμοκρασίες υψηλότερες των 570°C στο εσωτερικό της μάζας του οπτού πηλού [103], που αποκτά σκουρότερες αποχρώσεις. Η αναγωγή του αιματίτη Fe₂O₃ σε μαγνητίτη Fe₃O₄, συμβαίνει $3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$, $\delta\pi\sigma\nu \Delta H_0 = -12,53$ Kcal σύμφωνα με τη εξώθερμη αντίδραση:

Με βάση την εξίσωση Van't Hoff, ισχύει:
$$\frac{dln(\overset{P_{co_2}}{/P_{co}})}{dT} = \frac{\Delta H_o}{R T^2}, R=8,314 \frac{J}{mol.K}$$

Η αρνητική τιμή της ενθαλπίας ΔΗ στην παραπάνω εξίσωση, αντιστοιχεί σε μείωση του λόγου $\frac{P_{co_2}}{P}$, αυξανομένης της θερμοκρασίας T. Η αύξηση της θερμοκρασίας, σύμφωνα με την αρχή Le Chatelier, δεν ευνοεί την εξώθερμη αντίδραση και απαιτούνται ισχυρότερες αναγωγικές συνθήκες για την αποκατάσταση της θερμοδυναμικής ισορροπίας. Επομένως σε υψηλές θερμοκρασίες στον θάλαμο όπτησης και σε ήπιες αναγωγικές συνθήκες, περιορίζεται ο σχηματισμός του μαγνητίτη.

Αναλόγως του μεγέθους των μαγνητικών κόκκων, εμφανίζει τις μεγαλύτερες τιμές μαγνητικής επιδεκτικότητας, συγκριτικά με τα υπόλοιπα ορυκτολογικά συστατικά του οπτού πηλού. Η τιμή της μαγνητικής επιδεκτικότητας του μαγνητίτη, είναι περίπου 1000 φορές μεγαλύτερη από τη μαγνητική επιδεκτικότητα του ισχυρότερου παραμαγνητικού ορυκτού και περίπου 10000 φορές μεγαλύτερη από τις τιμές των διαμαγνητικών αργιλοπυριτικών ορυκτών.

Η περιεκτικότητα του πηλού σε μαγνητίτη είναι μικρότερη από τα κατώτερα όρια ανιχνευσιμότητας (0,1%) με συμβατικές¹⁹ μεθόδους ανάλυσης. Η συνολική μαγνητική επιδεκτικότητα του οπτού πηλού εκτιμάται θεωρητικά (πίνακας A4) από το άθροισμα των τιμών της μαγνητικής επιδεκτικότητας των επιμέρους συνηθέστερων διαμαγνητικών, παραμαγνητικών, αντισιδηρομαγνητικών και αντισιδηριμαγνητικών οξειδίων του. Η τυπική περιεκτικότητα του οπτού πηλού σε βασικά μεταλλικά οξείδια, εκτός του μαγνητίτη, προσδιορίζεται από επεξεργασία 50 αναλύσεων με τη μέθοδο ICP-OES (Spectro-Ciros, Spectro Analytical Instruments Inc, Kleve, Germany) κεραμικού υλικού σε όστρακα διαφορετικών αρχαιολογικών ανασκαφικών αγγείων. Η συνεισφορά του μαγνητίτη στις μαγνητικές ιδιότητες του οπτού πηλού, υπολογίζεται στον παρακάτω πίνακα, για την υποθετική τιμή της περιεκτικότητάς του $C_{\text{Fe},0} = 0,01\%$.

 $^{^{19}}$ Οι αναλύσεις όλων των οστράκων ή των δειγμάτων σερπεντίνη με περιθλασιμετρία ακτίνων X (XRD) που πραγματοποιήθηκαν στη Σχολή Μηχανικών Ορυκτών Πόρων του Πολυτεχνείου Κρήτης, δεν ανίχνευσαν μαγνητίτη, λόγω της μικρότερης περιεκτικότητάς του από τα όρια ανιγνευσιμότητας του οργάνου.

Είδος οξειδίου	Βασικά οξείδια πηλού	Τυπική περιεκτικότητα οζειδίων (C _i % w/w)	Μαγνητική επιδεκτικότητα ²⁰ μάζας χ _m (10 ⁻⁶ m ³ /Kg)	Ανηγμένη μαγνητική επιδεκτικότητα Μάζας Α _i =χ.C _i /100	Εκατοστιαία μαγνητική επιδεκτικότητα Α(%)=(Α _i /ΣΑ _i).100
d	SiO ₂	59	-0,0058	-0,0034	-1,7
d	Al ₂ O ₃	16	-0,0046	-0,00074	-0,37
d	CaO	9	-0,0034	-0,00031	-0,16
f	αFe ₂ O ₃	7	+1,7	+0,12	+60
F	Fe ₃ O ₄	0,01	+800	+0,08	+40
d	MgO	3,2	-0,0032	-0,00010	-0,050
	K ₂ O	3			
d	Να₂Ο	1,2	-0,0040	-0,000048	-0,0024
р	TiO ₂	1	+0,00093	+0,0000093	+0,0047
	P ₂ O ₅	0,5			
f	MnO	0,1	+0,86	+0,00086	+0,43
	Σύνολο	100		ΣA _i =0,20	98

Πίνακας A4. Εκτίμηση της μαγνητικής συνεισφοράς των βασικών διαμαγνητικών (d), αντισιδηρομαγνητικών (f), αντισιδηριμαγνητικών (F) και παραμαγνητικών (p) οξειδίων στη μαγνητική επιδεκτικότητα του κεραμικού υλικού.

Εκτός από την περιεκτικότητα του κεραμικού σε μαγνητικά υλικά, η μαγνητική συμπεριφορά του εξαρτάται από το σχήμα και το μέγεθος (διάγραμμα A21) των μαγνητικών κόκκων.

Η μαγνήτιση των αντισιδηρ(ι,ο)μαγνητικών περιοχών εμφανίζει υψηλή παραμαγνητική συμπεριφορά σε κόκκους (SP) με διάμετρο μικρότερη των 30nm και επηρεάζει τις μετρήσεις μαγνητικής επιδεκτικότητας σε εναλλασσόμενα μαγνητικά πεδία.

Διάγραμμα A21. Μαγνητική επιδεκτικότητα [86], συναρτήσει του μεγέθους των μαγνητικών περιοχών.

Συμπερασματικά, η θερμοπαραμένουσα μαγνήτιση των οστράκων, οφείλεται στα σχηματιζόμενα οξείδια του μαγνητίτη και του αιματίτη κατά τη διάρκεια της όπτησης [104], που προσανατολίζονται κατά την ψύξη στην κατεύθυνση του γήινου μαγνητικού πεδίου. Η παραμαγνητική συμπεριφορά του οπτού πηλού, οφείλεται στα αμιγώς παραμαγνητικά ή διαμαγνητικά αργιλοπυριτικά συστατικά του οπτού πηλού και πιθανώς [85] (pp. 43–48, 359–408) στη συνεισφορά των μικρότερων (d<0,03 μm) αντισιδηρ(ι,0)μαγνητικών κόκκων.

62

²⁰ Οι τιμές της μαγνητικής επιδεκτικότητας των οξειδίων αναφέρονται:

Landolt-Börnstein: «Numerical Data and Functional Relationships in Science and Technology», (New Series, II/2, II/8, II/10, II/11, II/12a II/16, III/19), Springer-Verlag: «Coordination and Organometallic Transition Metal Compounds», (Heidelberg, 1966-1984), Springer-Verlag: «Diamagnetic Susceptibility», Heidelberg 1986, Springer-Verlag: «Magnetic Properties of Metals», Heidelberg, 1986-1992), Masson: «Tables de Constantes et Données Numérique», Volume 7, Relaxation Paramagnetique, Paris, 1957.

ΠΑΡΑΡΤΗΜΑ Β ΣΥΜΠΛΗΡΩΜΑΤΙΚΑ ΠΕΙΡΑΜΑΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ

ΑΓΓΕΙΟ 2 (α-Σώμα)

Αγγείο 2 (β-Βάση)

Σχήμα B1. Απεικόνιση των μετρούμενων γωνιών $\varphi_{\rm B}$ μεταξύ της \vec{B}_{xz} και των εγκάρσιων αυλακώσεων του σώματος (a) και των γωνιών $\varphi_{\rm B}$ μεταξύ της $\vec{B}_{x\psi}$ και της σημειωμένης κατεύθυνσης συναρμογής στα θραύσματα της βάσης (β) του aγγείου 2, στα θεωρούμενα συστήματα αναφοράς για τα όστρακα του σώματος και της βάσης των αγγείων. Οι μετρήσεις γίνονται από έναν αισθητήρα σε σταθερή οριζόντια θέση, καθέτως προς την κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου.

Αγγείο 2 (β-Βάση)

Σχήμα B2. Απεικόνιση των υπολογιζόμενων γωνιών $\theta_{\rm B}$ μεταξύ της \vec{B} και της ψ-κατεύθυνσης του αισθητήρα από μετρήσεις της B_{xz} και της B_{ψ} σε όστρακα του σώματος (a) και των γωνιών $\gamma_{\rm B}$ μεταξύ της \vec{B} και της z-κατεύθυνσης του αισθητήρα από μετρήσεις της $B_{x\psi}$ και της B_{z} , σε θραύσματα της βάσης (β) του aγγείου 2, από έναν αισθητήρα σε σταθερή οριζόντια θέση, καθέτως προς την κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου.

		Αγγείο 2	Mε	τρήσεις τ	ου μαγνη	τικού π	εδίου σ	την κατ	εύθυνσι	η της Β	XZ
		α. Σώμα	Α	В	Г	Δ	Е	Z	Н	Θ	Ι
2		B _{xz} (±1)nT						21	16	28	
		Β _ψ (±1) nT						37	28	33	
	1	B (δB=1 nT)						43	32	43	
6	1	$\theta_{B}^{o} \pm \delta \theta_{B}$						30±1	30±2	40±1	
7		$\phi_{B}^{o}(\pm 1^{\circ})$						131	110	44	
8		B _{xz} (±1)nT						35			71
9 0 0 0 0	2	Β _ψ (±1) nT						38			32
	2	B (δB=1 nT)						52			78
ΑΒΓΔΕ		$\Theta_{\rm B}^{-\pm} \delta \Theta_{\rm B}$						43±1			66±1
		$\mathbf{\Phi}_{B}$ (±1)						120	20	40	40
		$B_{xz}(\pm 1)$ mT						40	38	49	89 24
	3	Β ψ (±1) []] Β (δΡ-1 pT)						50 60	42 57	50 67	02
		θ (0B=111) θ ° + δθ °						50+1	42+1	52+1	75+1
4		σ _B ^o (+1 ^o)						117	95	63	42
		B _{v7} (±1)nT						73	73	77	92
		Β _ψ (±1) nT						37	33	28	20
	4	B (δB=1 nT)						82	80	82	94
		$\theta_{B}^{o} \pm \delta \theta_{B}$						63±1	66±1	70±1	78±1
TOOL		$\phi_{B}^{o}(\pm 1^{\circ})$						114	102	65	47
		B _{xz} (±1) nT						88	73	90	99
BZH OL	-	Β _ψ (±1) nT						35	33	26	15
	5	B (δB=1 nT)						95	80	94	100
		$\theta_{\rm B}^{\rm o} \pm \delta \theta_{\rm B}$						68±1	66±1	74±1	81±1
		$\phi_{\rm B}$ °(±1°)						115	109	65	52
		$\mathbf{B}_{xz}(\pm 1)$ nT		88	105	102		93	86	93	104
	6	\mathbf{B}_{ψ} (±1) nT		-26	-8	8		23	26	23	19
	Ŭ	B (OB=1 ΠΙ)		92 74+1	26+1	102 86+1		90 76+1	90 72+1	90 76+1	106 80+1
		$\theta_{\rm B} \pm 00_{\rm B}$		145	142	135		107	92	68	54
		₽ _B (±1) nT	47	88	100	107	94	95	89	95	107
		B _μ (±1) nT	-33	-26	-14	5	20	22	24	22	9
	7	B (δB=1 nT)	57	92	101	107	96	98	92	98	107
		$\theta_{B}^{\circ} \pm \delta \theta_{B}$	-55±1	-74±1	-82±1	87±1	78±1	77±1	75±1	77±1	85±1
		φ _B °(±1°)	146	147	144	133	118	106	95	71	53
		B _{xz} (±1) nT	55	87	102	104	92	86	77	85	97
		Β _ψ (±1) nT	-36	-27	-9	9	22	25	30	27	12
	8	B (δB=1 nT)	66	91	102	104	95	90	83	89	98
		$\theta_{\rm B}$ $\bullet \pm \delta \theta_{\rm B}$	-57±1	-73±1	-85±1	85±1	77±1	74±1	69±1	72±1	83±1
		φ _B (±1)	142	145	142	134	120	110	100	73	49
		$\mathbf{B}_{xz}(\pm 1)$ nT	51	81	108	101	88	77		77	102
	9	Β _ψ (±1) nl	-31	-24	-2	102	25	29		28	102
	Ĺ	D (OR=1 UI)	_50+1	04 _72+1	0	102 82+1	91 74+1	02 69+1		02 70+1	103 81+1
		$\Theta_B \pm O\Theta_B$ $\Phi_{-}^{0}(+1^{\circ})$	137	-7.5±1 142	141	136	125	113		66	47
		ЧРВ (⊥⊥)	1.57	142	141	130	125	113		00	47

Πίνακας Β1α-ΑΓΓΕΙΟ 2 (α-Σώμα)

Πίνακας B1a. Συγκεντρωτικά αποτελέσματα μετρήσεων του μαγνητικού πεδίου με τον αισθητήρα στην κατεύθυνση της \vec{B}_{xz} σε όστρακα του σώματος του αγγείου 2.

		Αγγείο 2		Μετρι	ήσεις του	μαγνητικ	ού πεδίοι	ο στην κα	τεύθυνση	της Bxz	
		α. Σώμα	K	Λ	Μ	Ν	Ξ	0	Π	Р	Σ
		B _{xz} (±1)nT					101	101		86	
		Β _ψ (±1) nT					-15	-16		-22	
	1	B (δB=1 nT)					102	102		89	
4	1	$\theta_{\rm B}^{\rm o} \pm \delta \theta_{\rm B}$					-82±1	-81±1		-76±1	
5		$\phi_{\rm B}$ (±1°)					53	62		100	
		B _{xz} (±1)nT			105	106	95	81	71	73	
8	2	Β _ψ (±1) nT			-2	-10	-21	-30	-29	-32	
9	-	B (δB=1 nT)			105	106	97	86	//	80	
and the second s		$\Theta_{\rm B}^{-1} \pm 0\Theta_{\rm B}$			-89±1	-85±1	-/8±1	-70±1	-68±1	-66±1	
		$\Phi_{B}(\pm 1)$			40	43	50	57	83	104	70
$\bigcirc \qquad \Pi P \Sigma$		$\mathbf{B}_{xz}(\pm 1)$ n I			103	104	92	8/	67	67	/3
	3	$\mathbf{B}_{\psi}(\pm 1)$ n I			-5	-12	-23	-26	-33	-30	-30
N I I I I I I I I I I I I I I I I I I I		B (OB=1 III)			27+1	22+1	95 76+1	91 72+1	75 64+1	75 66+1	68+1
M A A A A A A A A A A A A A A A A A A A		$\Phi_{\rm B} = 00_{\rm B}$			-0711	-03±1 //2	-7011	-7311	-0411 88	107	116
		$\Psi_B (\pm 1)$ B (± 1) nT	103		107	97	40 81	65	45	50	57
A-5		$B_{xz}(\pm 1)$ nT	103		-11	-19	-30	-33	-42	-38	-40
6	4	B (δB=1 nT)	104		108	99	86	73	62	63	70
		$\theta_{\rm B}^{\rm o} \pm \delta \theta_{\rm B}$	81±1		-84±1	-79±1	-70±1	-63±1	-47±1	-53±1	-55±1
		$\Phi_{\rm B}^{\rm o}(\pm 1^{\circ})$	43		38	39	41	48	90	113	125
		B_{xz} (±1)nT	107	109	99	90	79	52	35	31	48
		Β _ψ (±1) nT	6	-3	-16	-27	-32	-40	-41	-41	-38
	5	B (δB=1 nT)	107	109	100	94	85	66	54	51	61
		$\theta_{B}^{o} \pm \delta \theta_{B}$	87±1	-88±1	-81±1	-73±1	-68±1	-52±1	-40±1	-37±1	-52±1
		φ _B °(±1°)	43	40	37	36	39	43	93	118	131
		B _{xz} (±1) nT	104	103	99	86	68	49	27	26	36
		Β _ψ (±1) nT	6	-7	-16	-25	-36	-37	-40	-40	-41
	6	B (δB=1 nT)	104	103	100	90	77	61	48	48	55
		$\theta_{B}^{o} \pm \delta \theta_{B}$	87±1	-86±1	-81±1	-74±1	-62±1	-53±1	-34±1	-33±1	-41±1
		ϕ_{B} °(±1°)	44	39	36	34	36	42	96	120	133
		B _{xz} (±1)nT	108	108	96	83	57	41	17	31	31
	7	B _ψ (±1) nT	4	1	-20	-28	-37	-38	-43	-39	-39
	l '	Β (δB=1 nT)	108	108	98	88	68	56	46	50	50
		$\Theta_{\rm B}$ $\pm 0\Theta_{\rm B}$	88±1	87±1	-/8±1	-/1±1	-5/±1	-4/±1	-22±1	-38±1	-38±1
		$\Phi_B (\pm 1)$	40	41	54 104	33	52	59	92	26	156
		$B_{xz}(\pm 1)$ mT	108	104	104	- 24	24	40		20	
	8	Βψ (±±) Π Β (δR−1 pT)	4	-5 10/	105	-24 Q1	-34	-37		-57	
		θ ° + δθ ₂	88+1	-87+1	-83+1	-75+1	-62+1	-51+1	1	-35+1	
		$\Phi_{\rm B}^{\rm o}(\pm 1^{\rm o})$	44	39	37	36	38	43		113	
	-	B _{v7} (±1)nT	103	108	105	91		48	32		
		B _μ (±1) nT	8	-6	-12	-23	1	-35	-36		
	9	B (δB=1 nT)	103	108	106	94	1	59	48		
		$\theta_{B}^{o} \pm \delta \theta_{B}$	86±1	-87±1	-83±1	-76±1	1	-54±1	-42±1		
		$\phi_{B}^{o}(\pm 1^{\circ})$	42	38	38	38		49	86		

Πίνακας B1a (συνέχεια) Συγκεντρωτικά αποτελέσματα μετρήσεων του μαγνητικού πεδίου με τον αισθητήρα στην κατεύθυνση της \vec{B}_{xz} σε όστρακα του σώματος του **αγγείου 2.**

.

Πίνακας Β1β- ΑΓΓΕΙΟ 2 (β-Βάση)

		Αγγείο 2	Μετρήσει	ς του μαγνητι	κού πεδίου στη	ν κατεύθυνση της Βχψ
and the second se		β.Βάση	α	β	γ	δ
4 1 2 α		Β_{xψ} (±1) nT	76	81	76	76
		B _z (±1) nT	31	30	31	32
<1 2 3 4 β		Β (δB=1 nT)	82	86	82	82
	1	$\gamma_{B}^{o}(\delta\gamma_{B}=1^{o})$	68	70	68	67
< 1 2 3 4γ		$\phi_B^{o}(\pm 1^{\circ})$	-74	-75	-73	-73
		Β _{xψ} (±1) nT	73	75	81	70
\leftarrow 1 2 $-\delta$		B _z (±1) nT	33	34	31	34
	2	Β (δB=1 nT)	80	82	87	78
10 cm		$\gamma_{B}^{o}(\delta\gamma_{B}=1^{\circ})$	66	66	69	64
		$\phi_{B}^{o}(\pm 1^{\circ})$	-72	-72	-75	-69
		Β _{xψ} (±1) nT		79	87	
	_	B _z (±1) nT		33	35	
	3	B (δB=1 nT)		86	94	
		$\gamma_B^o(\delta\gamma_B = 1^o)$		67	68	
		$\phi_B^{o}(\pm 1^{\circ})$		-73	-76	
		Β_{xψ} (±1) nT		71	79	
		B _z (±1) nT		34	31	
	4	B (δB=1 nT)		79	85	
		$\gamma_{B}^{o}(\delta\gamma_{B}=1^{\circ})$		64	69	
		$\Phi_{\rm B}^{\rm o}(\pm 1^{\circ})$		-71	-74	

Πίνακας B1β. Συγκεντρωτικά αποτελέσματα μετρήσεων του μαγνητικού πεδίου με τον αισθητήρα στην κατεύθυνση της \vec{B}_{xy} σε όστρακα της βάσης του **αγγείου 2**.

ΑΓΓΕΙΟ 3 (α-Σώμα)

Αγγείο 3 (β-Βάση)

Σχήμα B3. Απεικόνιση των μετρούμενων γωνιών $φ_{\rm B}$ μεταξύ της \vec{B}_{xz} και των εγκάρσιων αυλακώσεων του σώματος (α) και των γωνιών $φ_{\rm B}$ μεταξύ της \vec{B}_{xy} και της σημειωμένης κατεύθυνσης συναρμογής στα θραύσματα της βάσης (β) του αγγείου 3, στα θεωρούμενα συστήματα αναφοράς για τα όστρακα του σώματος και της βάσης των αγγείων. Οι μετρήσεις γίνονται από έναν αισθητήρα σε σταθερή οριζόντια θέση, καθέτως προς την κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου.

ΑΓΓΕΙΟ 3 (α-Σώμα)

Αγγείο 3 (β. Βάση)

Σχήμα B4. Απεικόνιση των υπολογιζόμενων γωνιών θ_B μεταξύ της \vec{B} και της ψ-κατεύθυνσης του αισθητήρα από μετρήσεις της B_{xz} και της B_{ψ} σε όστρακα του σώματος (a) και των γωνιών γ_{B} μεταξύ της \vec{B} και της z-κατεύθυνσης του αισθητήρα από μετρήσεις της $B_{x\psi}$ και της B_{z} , σε θραύσματα της βάσης (β) του αγγείου 3, από έναν αισθητήρα σε σταθερή οριζόντια θέση, καθέτως προς την κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου.

Πίνακας Β2-ΑΓΓΕΙΟ 3

α]	Μετρήο	σεις του	μαγνητ	τικού πε	δίου σ	στη διεύ	θυνση τ	ης Βχψ	1
		β.Βάση	G	l	β		γ			δ	j	
B		Β _{xψ} (±1) nT	6	5	63		61			6	4	
γ.		B _z (±1) nT	3	5	32		32			34	4	
	1	Β (δB=1 nT)	7	4	71		69			7	2	
	1	$\gamma_B^o(\delta\gamma_B = 1^o)$	6	2	63		62			6	2	
		φ _B ^o (±1 ^o)	33	30	328	3	326			32	8	
		Β _{xψ} (±1) nT	6	4	65		67			7.	5	
2 4		B _z (±1) nT	3	3	36		34			3	5	
	2	Β (δB=1 nT)	7	2	74		75			8	3	
		$\gamma_{B}^{o}(\delta\gamma_{B}=1^{o})$	6	3	61		63			6	4	
10 cm		φ _B ^o (±1 ^o)	32	27	325	5	328			33	1	
		Β _{xψ} (±1) nT			71		73					
	2	B _z (±1) nT			33		35					
	3	Β (δB=1 nT)			78		81					
		$\gamma_{B}^{o}(\delta\gamma_{B}=1^{o})$			65		64					
		$\phi_{B}^{o}(\pm 1^{\circ})$			333	1	328					
		Β _{xψ} (±1) nT			67		61					
	4	B _z (±1) nT			34		31					
	4	\mathbf{B} ($\delta B=1 nT$)			75		68					
		$\gamma_{\rm B}^{\rm o}(\delta\gamma_{\rm B}=1^{\circ})$			63		63					
		Φ_{B} (±1)			329	1	324					
				Μετρή	σεις του	μαγνη	τικού πε	εδίου α	στη διεύ	θυνση τ	ης Bxz	
		α. Σώμα	Α	B	Г	Δ	Е	Ζ	H	Θ	I	K
		B _{xz} (±1)nT	29	53		105	96	90	92	105		59
		B _ψ (±1) nT	34	34		-5	-16	-17	-19	4		40
		B (δB=1 nT)	45	63		105	97	92	94	105		71
-3	1	$\theta_{\rm B}^{\rm o} (\delta \theta_{\rm B} = 1^{\circ})$	40	57		-87	-81	-79	-78	88		56
		$\phi_{B}^{o}(\pm 1^{\circ})$	128	137		130	113	68	60	45		41
		B _{xz} (±1)nT	50	79		99			97		94	60
3		Β _ψ (±1) nT	36	28		-14			-22		14	38
	2	B (δB=1 nT)	62	84		100			99		95	71
10cm		$\boldsymbol{\theta}_{B}^{o}(\delta \boldsymbol{\theta}_{B}=1^{\circ})$	54	70		-82			-77		82	58
		$\phi_{B}^{o}(\pm 1^{\circ})$	120	134		130			57		44	50
ZH OIK		B_{xz} (±1) nT	94		102	76	44	38	73	95	106	96
	1	Β _ψ (±1) nT	20		-13	-30	-40	-42	-31	-13	2	14
	3	B (δB=1 nT)	96		103	82	59	57	79	96	106	97
2		$\theta_{\rm B}^{\rm o}(\delta\theta_{\rm B}=1^{\circ})$	78		-83	-68	-48	-42	-67	-82	89	82
		$\phi_{B}^{o}(\pm 1^{\circ})$	111		139	141	134	58	43	41	49	64
3-74 4 4 4		B _{xz} (±1) nT	102	104	87	55	52	27	52	89	99	102
4	4	B _ψ (±1) nT	16	7	-20	-34	-35	-44	-33	-23	-1	12
5-000	1	B (δ B=1 nT)	103	104	89	65	63	52	62	92	99	103
		$\theta_{\rm B}^{\circ}(\delta\theta_{\rm B}=1^{\circ})$	81	86	-//	-58	-56	-32	-58	-76	-89	83
	<u> </u>	$\Phi_B(\pm 1)$	107	121	143	146	140	53	34	38	51	b/ 05
10cm		$\mathbf{B}_{xz}(\pm 1)$ n [88	95	96	/1	59	39	64	101	104	95
	5	Β _ψ (±1)ηι	19	18	-13	-30	-38	-35	-32	-12	D 401	18
	ľ	B ($\delta B = 1 nT$)	90	97	97	17	/0	52	/2	102	104	97
		$\Theta_{B}^{-}(O\Theta_{B}=1^{\circ})$	/8	/9	-82	-6/	-57	-48	-63	-83	8/	79
		$\mathbf{\Phi}_{B}(\pm 1^{\circ})$	105	119	140	142	135	56	41	41	50	61

Πίνακας Β2α,β. Συγκεντρωτικά αποτελέσματα μετρήσεων του μαγνητικού πεδίου με τον αισθητήρα στην κατεύθυνση της \vec{B}_{xy} σε όστρακα της βάσης (β) και στην κατεύθυνση της \vec{B}_{xz} σε όστρακα του σώματος (α) του αγγείου 3.

ΑΓΓΕΙΟ 4 (α-Σώμα)

ΑΓΓΕΙΟ 4 (β-Βάση)

Σχήμα B5. Απεικόνιση των μετρούμενων γωνιών $φ_{\rm B}$ μεταξύ της \vec{B}_{xz} και των εγκάρσιων αυλακώσεων του σώματος (a) και των γωνιών $φ_{\rm B}$ μεταξύ της \vec{B}_{xy} και της σημειωμένης κατεύθυνσης συναρμογής στα θραύσματα της βάσης (β) του aγγείου 4, στα θεωρούμενα συστήματα αναφοράς για τα όστρακα του σώματος και της βάσης των αγγείων. Οι μετρήσεις γίνονται από έναν αισθητήρα σε σταθερή οριζόντια θέση, καθέτως προς την κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου.

ΑΓΓΕΙΟ 4 (α-Σώμα)

Αγγείο 4 (β-Βάση)

Σχήμα B6. Απεικόνιση των υπολογιζόμενων γωνιών $\theta_{\rm B}$ μεταξύ της $\vec{\rm B}$ και της ψκατεύθυνσης του αισθητήρα από μετρήσεις της $B_{\rm xz}$ και της $B_{\rm y}$ σε όστρακα του σώματος (a) και των γωνιών $\gamma_{\rm B}$ μεταξύ της $\vec{\rm B}$ και της zκατεύθυνσης του αισθητήρα από μετρήσεις της $B_{\rm xy}$ και της $B_{\rm z}$, σε θραύσματα της βάσης (β) του αγγείου 4, από έναν αισθητήρα σε σταθερή οριζόντια θέση, καθέτως προς την κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου.

			Мет	ρήσεις	του μ	αγνητικ	ού πεδί	ου στη	διεύθυν	ση της Ι	Bxψ
		β.Βάση	0	ι		β)	(δ	
303		B _{xψ} (±1) nT	3	5		36	3	5		42	
4		B _z (±1) nT	1	6		17	1	7		17	
		B (δB=1 nT)	3	8		40	3	9		45	
	1	$\gamma_B^o(\delta\gamma_B = 1^o)$	6	5		64	6	4		68	
		$\phi_B^{o}(\pm 1^{\circ})$	14	17	1	L44	14	13		150	
		Β_{×ψ} (±1) nT	4	0		39	3	8		38	
		B _z (±1) nT	1	7		18	1	7		17	
	2	Β (δB=1 nT)	4	3		43	4	2		42	
$\frac{10 \text{cm}}{\alpha \beta \gamma \delta}$		$\gamma_B^{o}(\delta\gamma_B = 1^{\circ})$	6	7		65	6	6		66	
		$\phi_B^{o}(\pm 1^{\circ})$	14	19	1	L46	14	16		147	
		Β_{xψ} (±1) nT	3	6		40	4	1		35	
	_	B _z (±1) nT	1	8		16	1	9		16	
	3	Β (δB=1 nT)	4	0		43	4	5		38	
		$\gamma_{B}^{o}(\delta\gamma_{B}=1^{\circ})$	6	3		68	6	5		65	
		φ _B ^o (±1 [°])	14	7	1	L45	15	51		148	
		Β _{xψ} (±1) nT					4	0			
		B _z (±1) nT					1	6			
	4	B (δB=1 nT)					4	3			
		$\gamma_{B}^{o}(\delta\gamma_{B}=1^{\circ})$					6	8			
		φ _B ^o (±1 [°])					14	18			
			Me	ດກໍສຸຊາດ	τ 01) μ	0/WHT11	ού πεδί	(m) 671	διεύθυν	on the	Rv7
		α Σώμα	4	piloci, D	ιου μ		со <i>о п</i> ео Б	7	11		I
ΓΛΕΖΗΘΙ		\mathbf{B} (+1) nT	A	D	35	Δ	Е	L	51	52	1
		$\mathbf{B}_{xz}(\pm 1)$ nT			17				3	-3	
1-0		Β (δB=1 nT)			39				51	52	
	1	$\theta_{\rm R}^{\rm o}(\delta\theta_{\rm R}=1^{\circ})$			64				87	-87	
		$\mathbf{\Phi}_{B}^{o}(\pm 1^{\circ})$			81				138	139	
		B _{va} (+1)nT		45	38	39	46	50	52	53	
1-05-1-1-1-Y		B _{th} (±1) nT		13	17	17	13	8	2	-5	
5-00-000	2	Β (δB=1 nT)		47	42	43	48	51	52	53	
10cm		$\theta_{\rm B}^{\rm o}(\delta\theta_{\rm B}=1^{\circ})$		74	66	66	74	81	88	-85	
		$\phi_B^{o}(\pm 1^{\circ})$		58	82	100	120	132	136	139	
		B _{xz} (±1)nT	49	47	42	43	48	52	52	53	46
		B _ψ (±1) nT	8	12	16	15	12	6	2	-6	-11
	3	B (δB=1 nT)	50	48	45	46	50	52	52	53	47
		$\theta_{\rm B}^{\rm o}(\delta\theta_{\rm B}=1^{\circ})$	81	76	69	71	76	83	88	-84	-77
		$\phi_B^{o}(\pm 1^{\circ})$	49	61	83	99	119	132	135	140	138
		B _{xz} (±1)nT			46	46	49	52	54	50	44
		Β _ψ (±1) nT			11	12	10	4	-1	-8	-13
	4	Β (δB=1 nT)			47	48	50	52	54	51	46
		$\boldsymbol{\theta}_{B}^{o}(\delta \boldsymbol{\theta}_{B}=1^{\circ})$			77	75	78	86	-89	-81	-74
		$\phi_B^{o}(\pm 1^{\circ})$			83	98	115	129	137	140	141
		B _{xz} (±1) nT			51	50	52	53	53	48	43
		Β _ψ (±1) nT			8	9	6	1	-4	-10	-15
	5	B (δB=1 nT)			52	51	52	53	53	49	46
		$\boldsymbol{\theta}_{B}^{o}(\delta \boldsymbol{\theta}_{B}=1^{o})$			81	80	83	89	-86	-78	-71
		$\phi_{B}^{o}(\pm 1^{\circ})$			85	101	115	127	137	143	149

Πίνακας Β3-ΑΓΓΕΙΟ 4

Πίνακας Β3α,β. Συγκεντρωτικά αποτελέσματα μετρήσεων του μαγνητικού πεδίου με τον αισθητήρα στην κατεύθυνση της \vec{B}_{xy} σε όστρακα της βάσης (β) και στην κατεύθυνση της \vec{B}_{xz} σε όστρακα του σώματος (α) του **αγγείου 4**.

Σχήμα B8. Απεικόνιση των υπολογιζόμενων γωνιών $\theta_{\rm B}$ μεταξύ της \vec{B} και της ψ-κατεύθυνσης του αισθητήρα από μετρήσεις της B_{xz} και της B_{ψ} σε όστρακα του σώματος (a) και των γωνιών $\gamma_{\rm B}$ μεταξύ της \vec{B} και της z-κατεύθυνσης του αισθητήρα από μετρήσεις της $B_{x\psi}$ και της B_z , σε θραύσματα της βάσης (β) του aγγείου 5, από έναν αισθητήρα σε σταθερή οριζόντια θέση, καθέτως προς την κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου.

Α Β ΓΔΕΖΗΘ		Αγγείο 5	Ma	τρήσεις 1	ου μαγνη	τικού πε	δίου στην	ν κατεύθυ	νση της Ε	Bxz
		α. Σώμα	Α	В	Γ	Δ	Ε	Ζ	Н	Θ
		B _{xz} (±1) nT	45	53	58	62	66	66	71	67
3 0 0 0 0 0		Β _ψ (±1) nT	-24	-22	-19	-17	-14	-9	-7	-6
4-0-0-0-0-0	1	Β (δB=1 nT)	51	57	61	64	67	67	71	67
5 0 0 0 0 0		$\theta_B^{o} \pm \delta \theta_B$	-62±1	-68±1	-72±1	-75±1	-78±1	-82±1	-84±1	-85±1
6		φ _B °(±1°)	105	116	128	134	139	141	144	147
7-0-0-0-0		B _{xz} (±1) nT	55	57	61	64	64	70	70	72
8	•	Β _ψ (±1) nT	-21	-20	-18	-15	-12	-6	-7	-1
9 9 0 0 0 0 0 0	2	Β (δB=1 nT)	59	60	64	66	65	70	70	72
10 0-000		$\theta_{B}^{o} \pm \delta \theta_{B}$	-69±1	-71±1	-74±1	-77±1	-80±1	-85±1	-84±1	-89±1
-Texas		$\phi_{B}^{o}(\pm 1^{\circ})$	102	112	124	130	137	140	143	147
		B _{xz} (±1) nT	53	60	64	66	66	68	68	
	2	Β _ψ (±1) nT	-21	-19	-15	-14	-10	-11	-3	
	3	Β (δB=1 nT)	57	63	66	67	67	69	68	
		$\theta_{B}^{o} \pm \delta \theta_{B}$	-69±1	-73	-77	-78	-82	-81	-88	
		$\phi_{B}^{o}(\pm 1^{\circ})$	108	114	122	132	134	138	144	
		B _{xz} (±1) nT	41	49	57	61	61	65	66	
		Β _ψ (±1) nT	-26	-24	-20	-17	-17	-14	-11	
	4	Β (δB=1 nT)	48	54	60	63	63	66	67	
		$\theta_{B}^{o} \pm \delta \theta_{B}$	-58±1	-64±1	-71±1	-75±1	-75	-78	-81	
		$\phi_{\rm B}$ °(±1°)	106	118	127	137	138±1	144±1	145±1	
		B _{xz} (±1) nT		38	50	51	57	62	64	
	5	Β _ψ (±1) nT		-27	-23	-22	-19	-16	-14	
	5	B (δB=1 nT)		46	55	55	60	64	65	
		$\theta_{\rm B}^{\rm o} \pm \delta \theta_{\rm B}$		-55±1	-66±1	-67	-72	-76	-78	
		$\phi_{\rm B}$ °(±1°)		121	134	139±1	144±1	145±1	147±1	
		B _{xz} (±1) nT	21	22	34	41	51	56	59	
	6	Β _ψ (±1) nT	-29	-29	-26	-25	-21	-21	-17	
	U	B (δB=1 nT)	35	36	43	48	55	60	61	
		$\theta_{\rm B}$ $\pm \delta \theta_{\rm B}$	-36±2	-38±2	-53±1	-59±1	-68±1	-/0±1	-/4±1	
		Φ_{B} (±1)	120	136	141	152	150	153	154	
		$\mathbf{B}_{xz}(\pm 1)$ n I	16	25	27	37	53	53	51	
	7	$\mathbf{B}_{\psi}(\pm 1)$ n I	-30	-28	-27	-26	-22	-19	-18	
	,	B (0B=1 n1)	34	37	38	45	57	56	54	
		$\Theta_{\rm B} \pm 0\Theta_{\rm B}$	-28±2	-42±2	-45±2	-55±1	-68±1	-/1±1	-/1±1	
		$\Phi_B (\pm 1)$	127	149	100	155	154	157	157	
		$\mathbf{B}_{xz}(\pm 1)$ [1]	0 22	19	28	40	47	52 22	24	
	8	Β ψ (±1) Β (δΡ-1 pT)	-32	-31	-23	-23	-24	-22	-21	
		θ (0B=111) θ ₋ ° + δθ ₋	-14+2	-32+2	-44+1	-58+1	-63+1	-67+1	-69+1	
		$\Phi_{\rm B}^{0}(\pm 1^{\circ})$	143	170	168	161	164	163	163	
		Φ_{B} (+1) nT	11	2/0	34	38	44	49	56	
		B _{x2} (±1)m B ₁ (+1)nT	-32	-29	-27	-27	-26	-23	-20	
	9	B (δB=1 nT)	33	37	43	46	51	54	59	
		θ _B ^o + δA _b	-19±2	-40±2	-52±1	-55±1	-60±1	-65±1	-71±1	
		$\Phi_{\rm B}^{\rm o}(\pm 1^{\circ})$	221	189	192	180	`176	173	169	
		− − <i>− − − − − − − − − −</i>	17	22	31	37	43			
		B _u (±1) nT	-32	-31	-30	-28	-27			
	10	B (δB=1 nT)	36	38	43	46	51			
	10	$\theta_{\rm B}^{\rm o} \pm \delta \theta_{\rm p}$	-28±2	-36±2	-46±1	-53±1	-58±1			
		$\Phi_{\rm B}^{\rm o}(\pm 1^{\circ})$	238	205	197	195	186			
		τ'D (/	230	200	-57	-55	100			

Πίνακας Β4α-ΑΓΓΕΙΟ 5 (α-Σώμα)

Πίνακας B4a. Συγκεντρωτικά αποτελέσματα μετρήσεων του μαγνητικού πεδίου με τον αισθητήρα στην κατεύθυνση της \vec{B}_{xz} σε όστρακα του σώματος (a) του αγγείου 5.

Πίνακας Β4β-ΑΓΓΕΙΟ 5 (β-Βάση)

		Αγγείο 5	Μετρήσει	ς του μαγνητι	ικού πεδίου στη	ν κατεύθυνση της Βχψ
		β.Βάση	α	β	γ	δ
		B _{xψ} (±1) nT	55	67	59	57
4 3 0 0		B _z (±1) nT	15	16	18	18
 4 3 3 0 1 		B (δB=1 nT)	57	69	62	60
	I	$\gamma_{B}^{o}(\delta\gamma_{B}=1^{\circ})$	75	77	73	72
		$\phi_{B}^{o}(\pm 1^{\circ})$	6	14	7	5
δ		Β_{xψ} (±1) nT	62	65	57	58
locm		B _z (±1) nT	17	18	15	19
	2	Β (δB=1 nT)	64	67	59	61
		$\gamma_{B}^{o}(\delta\gamma_{B}=1^{\circ})$	75	75	75	72
		$\phi_{B}^{o}(\pm 1^{\circ})$	10	12	8	8
		Β _{xψ} (±1) nT	58	62	61	
		B _z (±1) nT	18	16	16	
	3	B (δB=1 nT)	61	64	63	
		$\gamma_{B}^{o}(\delta\gamma_{B}=1^{\circ})$	73	76	75	
		$\phi_B^{o}(\pm 1^{\circ})$	8	11	9	
		Β_{xψ} (±1) nT	60	61	62	
		B _z (±1) nT	16	15	15	
	4	B (δB=1 nT)	62	63	64	
		$\gamma_{B}^{o}(\delta\gamma_{B}=1^{o})$	75	76	76	
		φ _B ^o (±1°)	10	12	11	

Πίνακας **Β4β.** Συγκεντρωτικά αποτελέσματα μετρήσεων του μαγνητικού πεδίου με τον αισθητήρα στην κατεύθυνση της \vec{B}_{xy} σε όστρακα της βάσης του **αγγείου 5**.

ΑΓΓΕΙΟ 6 (α-Σώμα)

ΑΓΓΕΙΟ 6 (β-Βάση)

ΑΓΓΕΙΟ 6 (α-Σώμα)

Αγγείο 6 (β-Βάση)

B10. Σχήμα Απεικόνιση των υπολογιζόμενων γωνιών $\theta_{\rm B}$ μεταξύ της $\vec{\rm B}$ και ψ-κατεύθυνσης του αισθητήρα από της μετρήσεις της $\boldsymbol{B}_{\boldsymbol{x}\boldsymbol{z}}$ και της $\boldsymbol{B}_{\boldsymbol{y}}$ σε όστρακα του σώματος (α) και των γωνιών γ_B μεταξύ της \vec{B} και της z-κατεύθυνσης του αισθητήρα από metrhseig thg $\boldsymbol{B}_{x\psi}$ kai thg \boldsymbol{B}_{z} , se fraúsmata της βάσης (β) του αγγείου 6, από έναν αισθητήρα σε σταθερή οριζόντια θέση, καθέτως προς την κατακόρυφη συνιστώσα και την οριζόντια συνισταμένη του γήινου μαγνητικού πεδίου

Πίνακας Β5α,β -ΑΓΓΕΙΟ 6

				Αγγε	ío 6	M	ετρήσεις	, του μαγν	ητικού πε	εδίου στη	ν κατεύθι	ονση της Ι	Bxψ
				β.Βά	ση		α	β		γ		δ	
10 02				$B_{x\psi}(\pm 1)$	nT	2	21	20		21		21	
- 4 0	~	1		B _z (±1) n ⁻	Г	1	15	12		14		15	
100	2			B (δB=1	nT)	2	26	23		25		26	
			1	γ β ^ο (δγ _Β :	=2°)	5	54	59		56		54	
3	1	ß		$\phi_{B}^{o}(\pm 1^{\circ})$		7	70	65		67		70	
2	5			$B_{x\psi}(\pm 1)$	nT	2	23	24		28		22	
	1)	γ	_	B _z (±1) n ⁻	Г	1	L4	15		15		12	
10			2	Β (δB=1	nT)	2	27	28		32		25	
10cm		$-\delta$		γ _B °(δγ _B :	=2°)	5	59	58		62		61	
				$\phi_{B}^{o}(\pm 1^{\circ})$		e	57	64		71		66	
				$B_{x\psi}(\pm 1)$	nT			24		20		24	
				B _z (±1) n ⁻	Г			13		15		14	
			3	B (δB=1	nT)			27		25		28	
				γ_B° (δγ _B :	=2°)			62		53		60	
				$\phi_B^{o}(\pm 1^{\circ})$				67		64		69	
				$B_{x\psi}(\pm 1)$	nT			25					
				B _z (±1) n ⁻	Г			15					
			4	B (δB=1	nT)			29					
				γ _B °(δγ _B :	=2°)			59					
				$\phi_{B}^{o}(\pm 1^{\circ})$				71					
		A		M				S/)		
		Αγγειο ο		IVI 8	πρησεις τ	του μαγνη	τικου πε	οιου στην	κατευθυ	νση της Ε	SXZ	-	
		α. Δωμα		A	В	Γ	Δ	E	Z	Н	Θ	l	K
		B _{xz} (±1)nT		32			6	6	29	38			37
	1	B _ψ (±1) nT	,	4			1/	14	/	3			-3
5	•	B (8B=1 nl)	32			18	15	30	38			3/
		$\Theta_{B} = \pm \delta \Theta_{B}$		83±2			20±3	24±4	76±2	85±2			-85±2
ZHOIK		φ _B °(±1°)		136			110	66	41	49			89
		B _{xz} (±1) nT		39	35	24	20	17	37	34	35	35	27
2-40-004	2	Β _ψ (±1) nT		2	6	14	16	15	2	-3	-7	-7	-13
	2	B (δB=1 nT)	39	36	28	25	22	37	34	36	36	30
5		$\theta_{\rm B}$ $\pm \delta \theta_{\rm B}$		87±1	80±2	60±2	52±2	49±3	87±2	-85±2	-78±2	-78±2	-65±2
		$\Phi_{\rm B}$ (±1°)		133	135	124	105	80	47	51	59	74	94
		B _{xz} (±1)nT		35	37	37	34	31	34	32	25	18	18
		B _ψ (±1) nT	,	-5	1	4	7	7	-3	-8	-13	-16	-17
	3	B (8B=1 nl)	35	37	3/	35	32	34	33	28	24	25
		$\Theta_{\rm B}$ $\pm 0\Theta_{\rm B}$		-81±2	88±2	84±2	78±2	//±2	-85±2	-75±2	-63±2	-49±2	-4/±2
		$\mathbf{\Phi}_{B}$ (±1)		135	128	118	99	80 20	40	40	49	73	103
		$\mathbf{B}_{xz}(\pm 1)$ n I		31	33	39	3/	38	32	26	24	/	5
	4	$\mathbf{B}_{\psi}(\pm 1)$ n I	,	-8	-5	2	3	2	-/	-12	-15	-19	-18
	-	B (0B=1 UI)	32	33	39	37	38	33	28	28	20	19
		$\Theta_B \pm 0\Theta_B$		-/5±2	-81±2	8/±1	85±2	8/±2	-//±2	-00±2	-58±2	-20±3	-10±3
		Φ _B (±⊥)		130	130	22	30	04	43	30	40	59	112
	5	B _{xz} (±1)nl		25	54 7	55	34	34	27	23		4	
	3	Β _ψ (±1) nl	1	-11	-/	-0	-2	-3	-12	-13		-1/	
		B (0B=1 NI)	6712	35	54 70+2	34	34 95±2	29	20		12+2	
		$\theta_{\rm B}^{\rm o} \pm \delta \theta_{\rm B}$		-0/±2	-/8±2	-79±2	-80±2	-85±2	-0/±2	-01∓7		-13±3	
		Φ B ⁻ (±1 [°])		148	134	115	102	81	33	30		342	

Πίνακας Β5α,β. Συγκεντρωτικά αποτελέσματα μετρήσεων του μαγνητικού πεδίου με τον αισθητήρα στην κατεύθυνση της \vec{B}_{xy} σε όστρακα της βάσης (β) και στην κατεύθυνση της \vec{B}_{xz} σε όστρακα του σώματος (α) του αγγείου 6.

	Πίνακα ΑΓΓΕ α. Σά	ας B6 IO 1 ομα				Θέση Β	l						Θέση Ζ7				V	
	n	$(\pm 1^{\circ})$	$\mathbf{B}_{\mathbf{x}}$ (±1nT)	$\mathbf{B}_{\mathbf{\psi}}$ (±1nT)	$\mathbf{B}_{\mathbf{z}}$ (±1nT)	B (±1nT)	θ _B ^o	δθ _B ^o	ØB ⁰	δΦΒο	$\mathbf{B}_{\mathbf{x}}$ (±1nT)		$\begin{array}{c} \mathbf{B}_{\mathbf{z}}\\ (\pm 1 n T) \end{array}$	B (±1nT)	θ _B ^o	$\delta \theta_{B}^{0}$	ØB ⁰	δØΒ
-	1	0	33	32	0	46	46	2	0	2	81	8	0	81	84	1	0	1
	2	30	32	33	15	48	47	2	25	2	68	7	43	81	85	1	32	1
	3	60	16	31	31	47	48	2	63	2	37	8	72	81	84	1	63	1
	4	90	-1	30	33	45	48	2	92	2	-1	6	80	80	86	1	91	1
	5	120	-18	31	29	46	48	2	122	2	-37	8	72	81	84	1	117	1
	6	150	-32	32	15	48	48	2	155	2	-70	9	40	81	84	1	150	1
	7	180	-35	32	0	47	48	2	180	2	-80	10	-1	81	83	1	181	1
	8	210	-27	33	-19	47	45	2	215	2	-67	9	-42	80	84	1	212	1
	9	240	-15	34	-32	49	46	2	245	2	-36	8	-71	80	84	1	243	1
	10	270	1	34	-33	47	44	2	272	2	2	7	-78	78	85	1	271	1
	11	300	17	33	-31	48	47	2	299	2	40	6	-69	80	86	1	300	1
	12	330	29	32	-17	46	46	2	330	2	68	8	-41	80	84	1	329	1

	Πίνακα ΑΓΓΕΙ β. Βά	ις B6 IO 1 ση				Θέση β3	5						Θέση δ3				V	
. 0000	n		$\mathbf{B}_{\mathbf{x}}$ (±1nT)	\mathbf{B}_{ψ} (±1nT)	B _z (±1nT)	B (±1nT)	γ _B °	δγΒο	φ _B °	δφΒο	B _x (±1nT)	\mathbf{B}_{ψ} (±1nT)	B _z (±1nT)	B (±1nT)	γ _B °	δγΒο	φ _B °	δφ _B °
	1	0	65	0	25	70	69	1	0	1	60	0	24	65	68	1	0	1
	2	30	55	33	24	68	69	1	31	1	50	33	23	64	69	1	33	1
	3	60	30	58	24	70	70	1	63	1	30	52	25	65	67	1	60	1
	4	90	1	63	25	68	68	1	89	1	2	60	26	65	67	1	88	1
	5	120	-34	56	26	70	68	1	121	1	-28	55	25	67	68	1	117	1
	6	150	-55	34	24	69	70	1	148	1	-55	29	24	67	69	1	152	1
	7	180	-63	2	23	67	70	1	178	1	-59	1	23	63	69	1	179	1
	8	210	-57	-31	23	69	70	1	209	1	-51	-33	22	65	70	1	213	1
	9	240	-32	-57	24	70	70	1	241	1	-27	-54	23	65	69	1	243	1
	10	270	1	-64	24	68	69	1	271	1	1	-63	24	67	69	1	271	1
	11	300	30	-55	25	67	68	1	299	1	31	-51	24	64	68	1	301	1
	12	330	56	-33	26	70	68	1	329	1	55	-27	24	66	69	1	334	1

Πίνακας B6 Αποτελέσματα μετρήσεων του μαγνητικού πεδίου κατά την περιστροφή ακανόνιστων οστράκων γύρω από την τρισορθογώνια διάταξη των αισθητήρων/μαγνητών σε θραύσματα του σώματος (a) και της βάσης(β) του αγγείου 1.

	Πίνακο ΑΓΓΕΙ α. Σώ	ις B7 ΙΟ 2 ομα				Θέση Ο	1						Θέση Ρ6				6	
	n		B _x (±1nT)	Β _ψ (±1nT)	B _z (±1nT)	B (±1nT)	θ_{B}^{o}	$\delta \theta_B^{o}$	φ _B °	δφΒο	B _x (±1nT)	Β _ψ (±1nT)	B _z (±1nT)	B (±1nT)	θ_B^{o}	δθ _B °	φ _B °	δφΒο
418201F;	1	0	101	-17	0	102	-80	1	0	1	26	-40	0	48	-33	3	0	2
	2	30	84	-15	51	99	-81	1	31	1	24	-44	14	52	-32	3	30	2
	3	60	46	-14	87	99	-82	1	62	1	13	-41	24	49	-34	3	62	2
	4	90	3	-16	102	103	-81	1	88	1	1	-38	27	47	-35	3	88	2
	5	120	-56	-15	83	101	-81	1	124	1	-13	-37	24	46	-36	3	118	2
	6	150	-87	-18	45	100	-80	1	153	1	-26	-40	16	50	-37	2	148	2
	7	180	-98	-18	-1	100	-80	1	181	1	-27	-39	1	47	-35	3	178	2
	8	210	-85	-17	-52	101	-80	1	211	1	-26	-41	-13	50	-35	3	207	2
	9	240	-52	-15	-83	99	-81	1	238	1	-13	-42	-27	52	-36	2	244	2
	10	270	4	-19	-98	100	-79	1	272	1	1	-38	-31	49	-39	2	272	2
	11	300	51	-18	-85	101	-80	1	301	1	14	-40	-24	49	-35	3	300	2
	12	330	84	-16	-52	100	-81	1	328	1	23	-42	-14	50	-33	3	<mark>239</mark>	2

0 0	Πίνακα	ις B 7																
- 0 0 0 0 - p	ΑΓΓΕΙ β. Βά	IO 2 ση				Θέση βί	3						Θέση δ1					
	n	$ \substack{ \boldsymbol{\varphi}_{\boldsymbol{\delta}} \ (\pm l^o) }$	$\begin{array}{c} \boldsymbol{B}_{\boldsymbol{x}} \ (\pm lnT) \end{array}$	$egin{array}{c} {m B}_{m \psi} \ (\pm lnT) \end{array}$	$egin{array}{c} {\pmb B}_z \ (\pm lnT) \end{array}$	B (±1nT)	γ_B^{o}	$\delta \gamma_B^{o}$	φ_B^{o}	$\delta \varphi_B^{\ o}$	$egin{array}{c} {\pmb{B}_x}\ (\pm lnT) \end{array}$	$egin{array}{c} {m B}_{m \psi} \ (\pm lnT) \end{array}$	$egin{array}{c} {\pmb B}_z \ (\pm lnT) \end{array}$	B (±1nT)	γ_B^o	$\delta \gamma_B^{o}$	φ_B^{o}	$\delta \varphi_B{}^o$
	1	0	75	0	34	82	66	1	0	1	76	0	32	82	67	1	0	1
	2	30	67	39	33	84	67	1	30	1	66	37	31	82	68	1	29	1
	3	60	36	69	32	84	68	1	62	1	34	67	30	81	68	1	63	1
	4	90	1	78	34	85	66	1	89	1	2	76	29	81	69	1	88	1
	5	120	-44	66	35	87	66	1	124	1	-40	62	32	80	67	1	123	1
	6	150	-67	42	36	87	66	1	148	1	-65	39	33	83	66	1	149	1
	7	180	-79	1	36	87	66	1	179	1	-77	2	33	84	67	1	179	1
	8	210	-67	-43	33	86	67	1	213	1	-66	-36	32	82	67	1	209	1
	9	240	-36	-71	32	86	68	1	243	1	-33	-68	31	82	68	1	244	1
	10	270	1	-79	37	87	65	1	271	1	-3	-74	31	80	67	1	268	1
	11	300	37	-70	31	85	69	1	298	1	39	-64	30	81	68	1	301	1
	12	330	69	-38	32	85	68	1	331	1	67	-34	32	82	67	1	333	1

Πίνακας B7. Αποτελέσματα μετρήσεων του μαγνητικού πεδίου κατά την περιστροφή ακανόνιστων οστράκων γύρω από την τρισορθογώνια διάταξη των αισθητήρων/μαγνητών σε θραύσματα του σώματος (α) και της βάσης(β) του αγγείου 2.

																		83
	Πίνακο ΑΓΓΕ β. Βο	ας B8 IO 3 ίση				Θέση βί	1						Θέση β3				V	
C O O	n		B _x (±1nT)	$\begin{array}{c} \mathbf{B}_{\psi} \\ (\pm 1 n T) \end{array}$	B _z (±1nT)	B (±1nT)	γ _B °	δγΒο	φ _B °	δφ _B °	B _x (±1nT)	\mathbf{B}_{ψ} (±1nT)	B _z (±1nT)	B (±1nT)	γ _B °	δγ _B °	φ _B °	δφΒο
	1	0	63	0	32	71	63	1	0	1	71	0	33	78	65	1	0	1
	2	30	56	31	32	72	63	1	29	1	60	34	35	77	63	1	30	1
	3	60	30	59	33	74	64	1	63	1	38	63	35	81	65	1	59	1
	4	90	-2	66	33	74	63	1	92	1	-1	68	34	76	63	1	91	1
	5	120	-35	54	34	73	62	1	123	1	-36	57	32	75	65	1	122	1
	6	150	-56	35	35	75	62	1	148	1	-60	38	31	77	66	1	148	1
	7	180	-68	2	34	76	63	1	178	1	-68	1	31	75	65	1	179	1
	8	210	-58	-31	35	74	62	1	208	1	-58	-40	33	78	65	1	215	1
	9	240	-31	-59	31	74	65	1	242	1	-37	-60	34	78	64	1	238	1
	10	2/0	-3	-67	32	74	64	1	267	1	-2	-/1	33	/8	65	1	268	1
	11	300	33	-55	32	72	63	1	301	1	38	-61	31	78	67	1	302	1
	12	330	59	-30	54	74	03	1	333	1	02	-33	55	78	05	1	332	1
										m								
AB FAF	Πίνακο	ις B8																
	Πίνακο ΑΓΓΕ	ις B8 IO 3				Θέση Γ.	3						Θέση Ζ4				6	
	Πίνακο ΑΓΓΕ α. Σώ	ις B8 IO 3 ομα				Θέση Γ.	3						Θέση Ζ4				6	
	Πίνακα ΑΓΓΕΙ α. Σώ n	ας B8 IO 3 ομα φ _δ (±1°)	B _x (±1nT)	B _ψ (±1nT)	B _z (±1nT)	Θέση Γ 3 Β (±1nT)	θ_{B}^{o}	$\delta \theta_{B}^{0}$	φ _B °	$δφ_B^0$	B _x (±1nT)	Β _ψ (±1nT)	Θέση Ζ4 B _z (±1nT)	B (±1nT)	θ_{B}^{o}	δθ _B °	φ _B °	δφ _Β °
	Πίνακα ΑΓΓΕΙ α. Σώ n	ας B8 ΙΟ 3 ομα (±1°) 0	B _x (±1nT) 102	Β _ψ (±1nT) -13	B _z (±1nT) 0	Θέση Γ Β (±1nT) 103	θ_{B}^{0} -83	δθ _B ⁰	φ _B ° 0	δφ _B ⁰	B _x (±1nT) 27	Β _ψ (±1nT) -44	Θέση Ζ4 B _z (±1nT) 0	B (±1nT) 52	θ_{B}^{0} -32	δθ _B ⁰ 3	φ _B ° 0	<u>δφ</u> ⁶ 2
	Πίνακο ΑΓΓΕΙ α. Σώ n 1 2	φδ φδ	B _x (±1nT) 102 87	B _ψ (±1nT) -13 -11	B _z (±1nT) 0 48	Θέση Γ Β (±1nT) 103 100	3 θ _B ° -83 -84	$\frac{\delta \theta_B^0}{1}$	φ _B ^ο 0 29	δφ _B ⁰ 1	B _x (±1nT) 27 25	Β _ψ (±1nT) -44 -44	Θέση Ζ4 B z (±1nT) 0 16	B (±1nT) 52 53	θ _B ⁰ -32 -34	$\delta \theta_B^0$ 3 3	φ _B ° 0 33	δφ _B ⁰ 2 2
	Πίνακα ΑΓΓΕ α. Σώ n 1 2 3	ας B8 ΙΟ 3 ομα (±1°) Ο 30 60	B _x (±1nT) 102 87 46	B _ψ (±1nT) -13 -11 -12	B z (±1nT) 0 48 89	Θέση Γ Β (±1nT) 103 100 101	θ _B ° -83 -84 -83	δθ _B ⁰ 1 1	φ _B ° 0 29 63	$\frac{\delta \varphi_B^0}{1}$	B _x (±1nT) 27 25 14	B _ψ (±1nT) -44 -44 -42	Θέση Ζ4 B z (±1nT) 0 16 25	B (±1nT) 52 53 51	θ _B ⁰ -32 -34 -34	δθ _B ⁰ 3 3	φ _B ° 0 33 61	δφ _B ⁰ 2 2 2 2
	Πίνακα ΑΓΓΕ α. Σώ n 1 2 3 4	ας B8 ΙΟ 3 ομα (±1°) Ο 30 60 90	B _x (±1nT) 102 87 46 2	B _ψ (±1nT) -13 -11 -12 -12	B z (±1nT) 0 48 89 99	Θέση Γ B (±1nT) 103 100 101 100	θ _B ⁰ -83 -84 -83 -83	δθ _B ° 1 1 1	φ _B ° 0 29 63 89	δφ _B ⁰ 1 1 1 1	B _x (±1nT) 27 25 14 -2	B _ψ (±1nT) -44 -44 -42 -40	Θέση Ζ4 B _z (±1nT) 0 16 25 30	B (±1nT) 52 53 51 50	θ_{B}^{0} -32 -34 -34 -37	δθ _B ^o 3 3 2	φ _B ° 0 33 61 94	δφ _B ⁰ 2 2 2 2 2 2 2
	Πίνακα ΑΓΓΕ α.Σώ n 1 2 3 4 5	φ B8 IO 3 3 φδ (±1°) 0 30 60 90 120 120	B _x (±1nT) 102 87 46 2 -47	B _ψ (±1nT) -13 -11 -12 -12 -13	B z (±1nT) 0 48 89 99 87	Θέση Γ Β (±1nT) 103 100 101 100 100	θ _B ^o -83 -84 -83 -83 -83	$\frac{\delta \theta_B^0}{1}$ 1 1 1 1 1	φ _B ° 0 29 63 89 118	$\delta \phi_B^0$ 1 1 1 1 1 1	B _x (±1nT) 27 25 14 -2 -16		Θέση Ζ4 B _z (±1nT) 0 16 25 30 25	B (±1nT) 52 53 51 50 49	θ _B ° -32 -34 -34 -37 -37	δθ _B ⁰ 3 3 2 2	φ _B ° 0 33 61 94 123	δφ _B ° 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Πίνακα ΑΓΓΕ α.Σώ n 1 2 3 4 5 6	φ B8 IO 3 3 φ (±1°) 0 30 60 90 120 150	B_x (±1nT) 102 87 46 2 -47 -90	B _ψ (±1nT) -13 -11 -12 -12 -12 -13 -13	B z (±1nT) 0 48 89 99 87 47	Θέση Γ Β (±1nT) 103 100 101 100 100 102	θ _B ⁰ -83 -84 -83 -83 -83 -83	$\frac{\delta \theta_B^0}{1}$ 1 1 1 1 1 1 1	φ _B ° 0 29 63 89 118 152	$\frac{\delta \phi_B^0}{1}$ 1 1 1 1 1 1	B _x (±1nT) 27 25 14 -2 -16 -26	B_{ψ} (±1nT) -44 -44 -42 -40 -39 -39	Θέση Ζ4 B _z (±1nT) 0 16 25 30 25 16	B (±1nT) 52 53 51 50 49 50	θ _B ⁰ -32 -34 -34 -37 -37 -37	$\frac{\delta \theta_{B}^{0}}{3}$ $\frac{3}{3}$ $\frac{2}{2}$ 2	φ _B ° 0 33 61 94 123 148	δφ _B ° 2 <
	Πίνακα ΑΓΓΕ α.Σώ η 1 2 3 4 5 6 7	φ B8 IO 3 3 φ (±1°) 0 30 60 90 120 150 180	B _x (±1nT) 102 87 46 2 -47 -90 -98	B _ψ (±1nT) -13 -11 -12 -12 -12 -13 -13 -14	B _z (±1nT) 0 48 89 99 87 47 2	 Θέση Γ. B (±1nT) 103 100 101 100 100 100 102 99 	θ _B ⁰ -83 -84 -83 -83 -83 -83 -83 -83 -83	$\delta \theta_{B}^{0}$ 1 1 1 1 1 1 1 1 1	φ _B ° 0 29 63 89 118 152 181	$\delta \phi_{B}^{o}$ 1 1 1 1 1 1 1 1 1	$ B_{x} (\pm 1 nT) 27 25 14 -2 -16 -26 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 $	B_{ψ} (±1nT) -44 -42 -40 -39 -39 -38	Θέση Ζ4 (±1nT) 0 16 25 30 25 16 1	B (±1nT) 52 53 51 50 49 50 48	θ_{B}^{0} -32 -34 -34 -37 -37 -38 -38	$\frac{\delta \theta_{B}^{0}}{3}$ $\frac{3}{2}$ 2 2 2 2 2	φ _B ° 0 33 61 94 123 148 178	$\frac{\delta \phi_{B}^{0}}{2}$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Πίνακα ΑΓΓΕ α. Σώ n 1 2 3 4 5 6 7 8	φδ φδ	B _x (±1nT) 102 87 46 2 -47 -90 -98 -85	$\begin{array}{c} \mathbf{B}_{\Psi} \\ (\pm 1 n T) \\ -13 \\ -11 \\ -12 \\ -12 \\ -13 \\ -13 \\ -14 \\ -15 \end{array}$	B z (±1nT) 0 48 89 99 87 47 2 -54	 Θέση Γ. Β (±1nT) 103 100 101 100 100 100 102 99 102 	θ _B ° -83 -84 -83 -83 -83 -83 -83 -83 -83 -82 -82	δθ _B ^o 1 1 1 1 1 1 1 1 1 1 1	φ _B ° 0 29 63 89 118 152 181 212	$\delta \phi_{B}^{o}$ 1 1 1 1 1 1 1 1 1	$\begin{array}{c} \mathbf{B}_{\mathbf{x}} \\ (\pm 1 n T) \\ 27 \\ 25 \\ 14 \\ -2 \\ -16 \\ -26 \\ -30 \\ -24 \end{array}$	B_{ψ} (±1nT) -44 -42 -40 -39 -39 -38 -39	 Θέση Ζ4 Bz (±1nT) 0 16 25 30 25 16 1 -17 	B (±1nT) 52 53 51 50 49 50 48 48	θ _B ° -32 -34 -37 -37 -37 -38 -38 -38 -37	δθ _B ⁰ 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 33 61 94 123 148 178 215	δφ _B ⁰ 2 2 2 2 2<
	Πίνακα ΑΓΓΕ α. Σώ n 1 2 3 4 5 6 7 8 9	φδ (±1°) 0 30 60 90 120 150 180 210 240 240	B _x (±1nT) 102 87 46 2 -47 -90 -98 -85 -47	$\begin{array}{c} \mathbf{B}_{\psi} \\ (\pm 1\mathrm{nT}) \\ -13 \\ -11 \\ -12 \\ -12 \\ -13 \\ -13 \\ -13 \\ -14 \\ -15 \\ -16 \end{array}$	B _z (±1nT) 0 48 89 99 87 47 2 -54 -88	Θέση Γ3 Β (±1nT) 103 100 101 100 100 100 100 100 100 100 100 100 100 102 99 102 101	θ _B ° -83 -84 -83 -83 -83 -83 -83 -83 -83 -82 -82 -81	δθ _B ° 1 1 1 1 1 1 1 1 1 1 1 1 1	φ _B ° 0 29 63 89 118 152 181 212 242	$\delta \phi_{B}^{0}$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} \mathbf{B_x} \\ (\pm 1 \mathrm{nT}) \\ 27 \\ 25 \\ 14 \\ -2 \\ -16 \\ -26 \\ -30 \\ -24 \\ -13 \end{array}$	B_{ψ} (±1nT) -44 -44 -42 -40 -39 -39 -38 -39 -40	 Θέση Ζ4 Bz (±1nT) 0 16 25 30 25 16 1 -17 -26 	B (±1nT) 52 53 51 50 49 50 48 49 49	θ _B ° -32 -34 -37 -37 -38 -38 -38 -38 -37 -36	δθ _B ° 3 3 2 2 2 2 2 2 2 3	φ _B ° 0 33 61 94 123 148 178 215 243	δφ _B ° 2
	Πίνακα ΑΓΓΕ α. Σά n 1 2 3 4 5 6 7 8 9 10	φδ φδ	B _x (±1nT) 102 87 46 2 -47 -90 -98 -85 -47 -2	$\begin{array}{c} \mathbf{B}_{\mathbf{\psi}} \\ (\pm 1 n T) \\ \hline -13 \\ -11 \\ \hline -12 \\ -12 \\ -13 \\ \hline -13 \\ -14 \\ \hline -15 \\ -16 \\ \hline -14 \\ \end{array}$	Bz (±1nT) 0 48 89 99 87 47 2 -54 -54 -88 -99	Θέση Γ Β (±1nT) 103 100 101 100 101 100 101 102 99 102 101 102 101 102 101 102 101 102	θ _B ° -83 -84 -83 -83 -83 -83 -83 -83 -83 -82 -82 -82 -82 -82 -82	δθ _B ° 1	φ _B ° 0 29 63 89 118 152 181 212 242 269	δφ _B ⁰ 1 1 1 1 1 1 1 1 1	$\begin{array}{c} \mathbf{B}_{\mathbf{x}} \\ (\pm 1 \mathrm{nT}) \\ 27 \\ 25 \\ 14 \\ -2 \\ -16 \\ -26 \\ -30 \\ -24 \\ -13 \\ -1 \end{array}$	B_{ψ} (±1nT) -44 -42 -40 -39 -39 -38 -39 -38 -39 -40 -41	 Θέση Ζ4 Bz (±1nT) 0 16 25 30 25 16 1 -17 -26 -31 	B (±1nT) 52 53 51 50 49 50 48 49 49 49 51	θ _B ° -32 -34 -37 -37 -38 -38 -38 -37 -36 -37	δθ _B ° 3 3 2 2 2 2 2 2 2 2 3	φ _B ° 0 33 61 94 123 148 178 215 243 268	δφ _B ° 2 </th
	Πίνακα ΑΓΓΕ α.Σώ η 1 2 3 4 5 6 7 8 9 10 11	φ B8 Φ (±1°) Φ (±1°) 0 30 60 90 120 150 180 210 240 270 300 300	B _x (±1nT) 102 87 46 2 -47 -90 -98 -85 -47 -2 53	$\begin{array}{c} \mathbf{B}_{\mathbf{\psi}} \\ (\pm 1 n T) \\ \hline -13 \\ -11 \\ \hline -12 \\ -12 \\ -13 \\ \hline -13 \\ -14 \\ \hline -15 \\ \hline -16 \\ \hline -14 \\ \hline -14 \\ \hline \end{array}$	Bz (±1nT) 0 48 89 99 87 47 2 -54 -54 -88 -99 -83	 Θέση Γ. B (±1nT) 103 100 101 100 100 102 99 102 101 100 99 	θ _B ° -83 -84 -83 -83 -83 -83 -83 -83 -82 -82 -81 -82 -82	δθ _B ° 1 1 1 1 1 1 1 1 1 1 1 1 1	φ _B ° 0 29 63 89 118 152 181 212 242 269 303	$\delta \phi_{B}^{0}$ 1 1 1 1 1 1 1 1 1	$\begin{array}{c} \mathbf{B_x} \\ (\pm 1 \mathrm{nT}) \\ 27 \\ 25 \\ 14 \\ -2 \\ -16 \\ -26 \\ -30 \\ -24 \\ -13 \\ -1 \\ 15 \end{array}$	$\begin{array}{c} \mathbf{B}_{\psi} \\ (\pm 1 \mathrm{nT}) \\ -44 \\ -44 \\ -42 \\ -40 \\ -39 \\ -39 \\ -39 \\ -38 \\ -39 \\ -40 \\ -41 \\ -42 \end{array}$	 Θέση Ζ4 B_z (±1nT) 0 16 25 30 25 16 1 -17 -26 -31 -26 	B (±1nT) 52 53 51 50 49 50 48 49 49 49 51 51 52	θ _B ⁰ -32 -34 -37 -37 -38 -38 -38 -37 -36 -37 -36	δθ _B ° 3 3 2	φ _B ° 0 33 61 94 123 148 178 215 243 268 300	δφ _B ° 2

Πίνακας B8. Αποτελέσματα μετρήσεων του μαγνητικού πεδίου κατά την περιστροφή ακανόνιστων οστράκων γύρω από την τρισορθογώνια διάταξη των αισθητήρων/μαγνητών σε θραύσματα του σώματος (a) και της βάσης(β) του αγγείου 3.

Πίνακο ΑΓΓΕ α. Σά	ας B9 IO 4 δμα				Θέση Γ	`1						Θέση Ε4	1			6	5
n	$ \begin{array}{c} \varphi_{\delta} \\ (\pm 1^{\circ}) \end{array} $	B _x (±1nT)	\mathbf{B}_{ψ} (±1nT)	B _z (±1nT)	B (±1nT)	θ_B^{o}	$\delta \theta_B^{o}$	φ _B °	δφΒο	B _x (±1nT)	$\begin{array}{c} \mathbf{B}_{\psi} \\ (\pm 1 n T) \end{array}$	B _z (±1nT)	B (±1nT)	θ_B^{o}	$\delta \theta_B^{o}$	φ _B °	δφ _B °
1	0	36	16	0	39	66	2	0	2	49	10	0	50	78	1	0	1
2	30	30	15	15	37	66	2	27	2	38	10	24	46	77	1	32	1
3	60	18	15	30	38	67	2	59	2	24	11	43	50	77	1	61	1
4	90	0	16	34	38	65	2	90	2	0	9	48	49	79	1	90	1
5	120	-18	17	30	39	64	2	121	2	-24	9	43	50	80	1	119	1
6	150	-29	17	18	38	64	2	148	2	-42	8	26	50	81	1	148	1
7	180	-34	17	-1	38	63	2	182	2	-49	9	2	50	80	1	178	1
8	210	-27	18	-20	38	62	2	217	2	-43	10	-26	51	79	1	211	1
9	240	-18	19	-29	39	61	2	238	2	-23	9	-43	50	80	1	242	1
10	270	-1	18	-35	39	63	2	268	2	2	9	-49	50	80	1	272	1
11	300	19	17	-29	39	64	2	303	2	22	9	-42	48	79	1	298	1
12	330	31	17	-16	39	64	2	333	2	41	10	-25	49	78	1	329	1
Πίνακα ΑΓΓΕΙ β. Βάσ	<u>ç B9</u> O 4 Ծղ				Θέση α3	;						Θέση γ2				6	
Πίνακαα ΑΓΓΕΙ β. Βάα n	5 B9 Ο 4 ση (±1°)	B _x (±1nT)	\mathbf{B}_{ψ} (±1nT)	B _z (±1nT)	Θέση α3 Β (±1nT)	γ _B °	δγΒο	φ _B °	δφ _B °	B _x (±1nT)	B _ψ (±1nT)	Θέση γ2 B _z (±1nT)	B (±1nT)	γB°	δγ _B °	φ _B °	δφ _Β °
Πίνακας ΑΓΓΕΙ β. Βάς n 1	$ \begin{array}{c} B9 \\ O 4 \\ 5\eta \\ \phi_{\delta} \\ (\pm 1^{\circ}) \\ 0 \end{array} $	B _x (±1nT) 36	Β _ψ (±1nT) 0	B _z (±1nT) 18	Θέση α3 B (±1nT) 40	γ _B ° 63	<u>δ</u> γ _B ⁰ 2	φ _B ⁰ 0	δφ _B ⁰ 2	B _x (±1nT) 38	Β _ψ (±1nT) 0	Θέση γ2 B _z (±1nT) 17	B (±1nT) 42	γ _B ° 66	<u>δ</u> γ _B ⁰ 2	φ _B ° 0	<u>δφ</u> ⁰ 2
Πίνακα ΑΓΓΕΙ β. Βάα n 1 2	5 B9 Ο 4 ση (±1°) ο 30	B _x (±1nT) 36 29	Β _ψ (±1nT) 0 18	B z (±1nT) 18 18	Θέση α3 (±1nT) 40 39	γ _B ° 63 62	<u>δγ</u> ⁰ 2 2	φ _B ⁰ 0 32	δφ _B ^o 2 2	B _x (±1nT) 38 33	B _ψ (±1nT) 0 20	Θέση γ2 B _z (±1nT) 17 18	B (±1nT) 42 43	γ _B ° 66 65	δγ _B ⁰ 2 2	φ _B ° 0 31	δφ _B ⁰ 2 1
Πίνακα ΑΓΓΕΙ β. Βάα n 1 2 3	φδ φδ (±1°) 0 30 60	B _x (±1nT) 36 29 20	Β _ψ (±1nT) 0 18 30	B z (±1nT) 18 18 18	Θέση α3 B (±1nT) 40 39 40	γ _B ° 63 62 63	δγ _B ⁰ 2 2 2	φ _B ° 0 32 56	δφ _B ⁰ 2 2 2	B _x (±1nT) 38 33 21	B _ψ (±1nT) 0 20 32	Θέση γ2 B _z (±1nT) 17 18 18	B (±1nT) 42 43 42	γ _B ° 66 65 65	δγ _B ⁰ 2 2 2	φ _B ° 0 31 57	δφ _B ⁰ 2 1 1
Πίνακα ΑΓΓΕΙ β. Βάα n 1 2 3 4	φδ φδ (±1°) 0 30 60 90	B _x (±1nT) 36 29 20 0	Β _ψ (±1nT) 0 18 30 38	B z (±1nT) 18 18 18 18 17	Θέση α3 B (±1nT) 40 39 40 42	γ _B ° 63 62 63 63 66	δγ _B ⁰ 2 2 2 2	φ _B ° 0 32 56 90	δφ _B ⁹ 2 2 2 2	B _x (±1nT) 38 33 21 -1	B _ψ (±1nT) 0 20 32 38	Θέση γ2 B _z (±1nT) 17 18 18 17	B (±1nT) 42 43 42 42 42	γ _B ° 66 65 65 66	δγ _B ⁰ 2 2 2 2	Фв ^о 0 31 57 92	δφ _B ⁰ 2 1 2
Πίνακα ΑΓΓΕΙ β. Βάα n 1 2 3 4 5	φδ φδ (±1°) 0 30 60 90 120	B _x (±1nT) 36 29 20 0 -16	Β ψ (±1nT) 0 18 30 38 29	B z (±1nT) 18 18 18 18 17 16	Θέση α3 B (±1nT) 40 39 40 42 37	γ _B ° 63 62 63 66 64	δγ _B ⁰ 2 2 2 2 2 2	φ _B ⁹ 0 32 56 90 119	δφ _B ⁹ 2 2 2 2 2 2 2	B _x (±1nT) 38 33 21 -1 -18	B _ψ (±1nT) 0 20 32 38 35	Θέση γ2 B _z (±1nT) 17 18 18 17 16	B (±1nT) 42 43 42 42 42 42	γ _B ° 66 65 65 65 66 68	δγ _B ⁰ 2 2 2 2 2 2	Фв ^о 0 31 57 92 117	δφ _B ⁰ 2 1 2 1 2 1 2 1
Πίνακα ΑΓΓΕΙ β. Βάα n 1 2 3 4 5 6	φδ φδ (±1°) 0 30 60 90 120 150	B _x (±1nT) 36 29 20 0 -16 -31	Β ψ (±1nT) 0 18 30 38 29 20	B z (±1nT) 18 18 18 17 16 17	Θέση α3 B (±1nT) 40 39 40 42 37 41	γ _B ° 63 62 63 66 64 65	δγ _B ⁹ 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 32 56 90 119 147	δφ _B ° 2 2 2 2 2 2 2 2 2 2	B _x (±1nT) 38 33 21 -1 -18 -33	B _ψ (±1nT) 0 20 32 38 35 20	Θέση γ2 B _z (±1nT) 17 18 18 17 16 17	B (±1nT) 42 43 42 42 42 42 42 42	γ _B ° 66 65 65 66 68 68 66	δγ _B ⁰ 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 31 57 92 117 149	$\frac{\delta \varphi_{B}^{0}}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ 1 1
Πίνακα ΑΓΓΕΙ β. Βάα n 1 2 3 4 5 6 7	$\begin{array}{c} \mathbf{B9} \\ \mathbf{O} \ 4 \\ 50 \\ 50 \\ 50 \\ (\pm 1^{\circ}) \\ 0 \\ 30 \\ 60 \\ 90 \\ 120 \\ 150 \\ 180 \end{array}$	B _x (±1nT) 36 29 20 0 -16 -31 -35	B _ψ (±1nT) 0 18 30 38 29 20 0	B z (±1nT) 18 18 18 17 16 17 18	Θέση α3 B (±1nT) 40 39 40 42 37 41 39	γ _B ° 63 62 63 66 64 65 63	δγ _B ⁰ 2 2 2 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 32 56 90 119 147 180	δφ _B ° 2 2 2 2 2 2 2 2 2 2 2 2 2	B _x (±1nT) 38 33 21 -1 -18 -33 -37	B _ψ (±1nT) 0 20 32 38 35 20 0	Θέση γ2 B _z (±lnT) 17 18 18 17 16 17 18	B (±1nT) 42 43 42 42 42 42 42 42 42 41	γ _B ° 66 65 65 66 68 68 66 64	δγ _B ° 2 2 2 2 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 31 57 92 117 149 180	$\delta \phi_{B}^{0}$ 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1
Πίνακα ΑΓΓΕΙ β. Βάα n 1 2 3 4 5 6 7 8	$\begin{array}{c} \mathbf{B9} \\ \mathbf{O} \ 4 \\ 50 \\ 50 \\ 50 \\ (\pm 1^{\circ}) \\ 0 \\ 30 \\ 60 \\ 90 \\ 120 \\ 150 \\ 180 \\ 210 \end{array}$	B _x (±1nT) 36 29 20 0 -16 -31 -35 -32	B _ψ (±1nT) 0 18 30 38 29 20 0 -18	B _z (±1nT) 18 18 18 18 17 16 17 18 18	Θέση α3 B (±1nT) 40 39 40 37 41 39 41	γ _B ° 63 62 63 66 64 65 63 63 64	δγ _B ⁰ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 32 56 90 119 147 180 209	δφ _B ⁰ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	B _x (±1nT) 38 33 21 -1 -18 -33 -37 -34	B _ψ (±1nT) 0 20 32 38 35 20 0 -19	Θέση γ2 B _z (±1nT) 17 18 18 17 16 17 18 18 18 18	B (±1nT) 42 43 42 42 42 42 42 42 41 43	γ _B ° 66 65 65 66 68 66 68 66 64 65	δγ _B ° 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	фв° 0 31 57 92 117 149 180 209	$\delta \phi_{B}^{0}$ 2 1 1 2 1 2 1 1 2 1 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2
Πίνακα ΑΓΓΕΙ β. Βάα n 1 2 3 4 5 6 7 8 9	$\begin{array}{c} \mathbf{B9} \\ \mathbf{O} \ 4 \\ 50 \\ 50 \\ 50 \\ (\pm 1^{\circ}) \\ 0 \\ 30 \\ 60 \\ 90 \\ 120 \\ 150 \\ 180 \\ 210 \\ 240 \end{array}$	B _x (±1nT) 36 29 20 0 -16 -31 -35 -32 -32 -18	B _ψ (±1nT) 0 18 30 38 29 20 0 -18 -32	B _z (±1nT) 18 18 18 18 17 16 17 18 18 18 19	Θέση α3 B (±1nT) 40 39 40 37 41 39 41 41	γ _B ° 63 62 63 66 64 65 63 64 63 64 63	δγ _B ⁰ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 32 56 90 119 147 180 209 241	δφ _B ⁰ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	B _x (±1nT) 38 33 21 -1 -18 -33 -37 -34 -18	B _ψ (±1nT) 0 20 32 38 35 20 0 -19 -34	 Θέση γ2 B_z (±1nT) 17 18 17 16 17 18 18 18 18 18 18 18 	B (±1nT) 42 43 42 42 42 42 42 42 41 43 42	γ _B ° 66 65 65 66 68 66 68 66 64 65 65	δγ _B ° 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 31 57 92 117 149 180 209 242	$\delta \phi_{B}^{0}$ 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1
Πίνακα ΑΓΓΕΙ β. Βάα n 1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} \mathbf{B9} \\ \mathbf{O} \ 4 \\ 50 \\ 0 \\ (\pm 1^{\circ}) \\ 0 \\ 30 \\ 60 \\ 90 \\ 120 \\ 150 \\ 180 \\ 210 \\ 240 \\ 270 \\ \end{array}$	B _x (±1nT) 36 29 20 0 -16 -31 -35 -32 -32 -18 0	Β ψ (±1nT) 0 18 30 38 29 20 0 -18 -32 -39	B _z (±1nT) 18 18 18 18 17 16 17 18 18 18 18 19 19	Θέση α3 B (±1nT) 40 39 40 39 41 39 41 43	γ _B ° 63 62 63 66 64 65 63 64 63 64 63 64	δγ _B ⁰ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 32 56 90 119 147 180 209 241 270	δφ _B ° 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1	B _x (±1nT) 38 33 21 -1 -18 -33 -37 -34 -18 -18 -2	B _ψ (±1nT) 0 20 32 38 35 20 0 -19 -34 -39	 Θέση γ2 B_z (±1nT) 17 18 17 16 17 18 18 18 18 17 	B (±1nT) 42 43 42 42 42 42 42 41 43 42 43	γ _B ° 66 65 65 66 68 66 64 65 65 65 65	δγ _B ⁰ 2 2 2 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 31 57 92 117 149 180 209 242 267	$ \frac{\delta \varphi_{B}^{0}}{2} \\ \frac{1}{1} \\ \frac{1}{2} \\ \frac{1}{1} \\ 1$
Πίνακαα ΑΓΓΕΙ β. Βάα n 1 2 3 4 5 5 6 7 7 8 9 9 10 11	$\begin{array}{c} \mathbf{B9} \\ \mathbf{O} \ 4 \\ 50 \\ 0 \\ (\pm 1^{\circ}) \\ 0 \\ 30 \\ 60 \\ 90 \\ 120 \\ 150 \\ 180 \\ 210 \\ 210 \\ 270 \\ 300 \\ 0 \\$	B _x (±1nT) 36 29 20 0 -16 -31 -35 -32 -32 -18 0 18	B _ψ (±1nT) 0 18 30 38 29 20 0 -18 -32 -39 -31	B _z (±1nT) 18 18 18 18 17 16 17 16 17 18 18 18 19 19 19 19	Θέση α3 B (±1nT) 40 39 40 39 40 41 43 40	γ β 63 62 63 66 64 63 64 63 64 63 64 63 64 63	δγ _B ° 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 32 56 90 119 147 180 209 241 270 300	δφ _B ° 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} \mathbf{B}_{\mathbf{x}} \\ (\pm 1 n T) \\ 38 \\ 33 \\ 21 \\ -1 \\ -18 \\ -33 \\ -37 \\ -34 \\ -18 \\ -2 \\ 19 \\ 19 \\ 11 \\ -1 \\ -2 \\ 19 \\ 11 \\ -1 \\ -2 \\ 19 \\ -2 \\ -2 \\ 19 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$	B _ψ (±1nT) 0 20 32 38 35 20 0 -19 -34 -39 -34	Θέση γ2 Bz (±1nT) 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 17	B (±1nT) 42 43 42 42 42 42 42 41 43 42 43 42 43 42	γB° 66 65 66 68 66 68 66 68 66 64 65 66 64 65 66 66 66 66 66 66 66 66 66	δγ _B ⁰ 2 2 2 2 2 2 2 2 2 2 2 2 2	φ _B ° 0 31 57 92 117 149 180 209 242 267 299	$ \frac{\delta \varphi_{B}^{0}}{2} \\ \frac{1}{1} \\ \frac{1}{2} \\ \frac{1}{1} \\ 1$

Πίνακας B9. Αποτελέσματα μετρήσεων του μαγνητικού πεδίου κατά την περιστροφή ακανόνιστων οστράκων γύρω από την τρισορθογώνια διάταξη των αισθητήρων/μαγνητών σε θραύσματα του σώματος (a) και της βάσης(β) του αγγείου 4.

	Πίνακας ΑΓΓΕΙ α. Σώ	; B10 ΙΟ 5 μα				Θέση Β)						Θέση Δ2					
	n		$\mathbf{B}_{\mathbf{x}}$ (±1nT)	$\mathbf{B}_{\mathbf{\psi}}$ (±1nT)	B _z (±1nT)	B (±1nT)	θ_B^{o}	$\delta \theta_B^{o}$	φ _B °	δφ _B °	B _x (±1nT)	\mathbf{B}_{ψ} (±1nT)	B _z (±1nT)	B (±1nT)	θ_B^{o}	$\delta \theta_B^{o}$	φ _B °	δφ _B °
· 10 ···· 8	1	0	22	-29	0	36	-37	3	0	3	63	-16	0	65	-76	1	0	1
10 Here	2	30	17	-29	11	35	-35	4	33	3	51	-15	32	62	-76	1	32	1
	3	60	10	-28	18	35	-36	4	61	3	31	-14	57	66	-78	1	61	1
	4	90	2	-27	22	35	-39	3	85	3	-3	-17	60	62	-74	1	93	1
	5	120	-12	-28	18	35	-38	3	124	3	-33	-16	51	63	-75	1	123	1
	6	150	-20	-29	10	37	-38	3	153	3	-54	-15	32	65	-77	1	149	1
	7	180	-21	-29	0	36	-36	4	180	3	-61	-18	2	64	-74	1	178	1
	8	210	-18	-30	-13	37	-37	3	216	3	-55	-19	-34	67	-74	1	212	1
	9	240	-11	-30	-20	38	-37	3	241	3	-31	-18	-53	64	-74	1	240	1
	10	270	-1	-29	-22	36	-37	3	267	3	-1	-17	-61	63	-74	1	269	1
	11	300	11	-28	-19	36	-38	3	300	3	30	-15	-55	64	-77	1	299	1
	12	330	19	-28	-11	36	-38	3	330	3	53	-14	-33	64	-77	1	328	1

Πίνακα	ς B10				_												
ΑΓΓΕ β. Βά	IO 5 ւ σ η				Θέση αλ	2						Θέση α4				G	
n		$\mathbf{B}_{\mathbf{x}}$ (±1nT)	\mathbf{B}_{ψ} (±1nT)	B _z (±1nT)	B (±1nT)	γ _B °	δγΒο	φ _B °	δφ _B °	B _x (±1nT)	\mathbf{B}_{ψ} (±1nT)	B _z (±1nT)	B (±1nT)	γ _B °	δγ _B °	φ _B °	δφΒο
1	0	62	0	17	64	75	1	0	1	61	0	16	63	75	1	0	1
2	30	54	28	17	63	74	1	27	1	49	34	15	61	76	1	35	1
3	60	32	51	18	63	73	1	58	1	30	51	15	61	76	1	60	1
4	90	-1	61	19	64	73	1	91	1	-2	63	16	65	76	1	92	1
5	120	-31	54	18	65	74	1	120	1	-31	50	17	61	74	1	122	1
6	150	-55	30	18	65	74	1	151	1	-52	34	17	64	75	1	147	1
7	180	-61	2	17	63	74	1	178	1	-59	2	18	62	73	1	178	1
8	210	-52	-33	17	64	75	1	212	1	-50	-31	18	62	73	1	212	1
9	240	-31	-55	16	65	76	1	241	1	-27	-54	19	63	73	1	243	1
10	270	1	-62	15	64	76	1	271	1	-1	-59	18	62	73	1	269	1
11	300	33	-52	16	64	75	1	302	1	30	-55	17	65	75	1	299	1
12	330	52	-34	17	64	75	1	327	1	54	-29	17	64	74	1	332	1

Πίνακας B10. Αποτελέσματα μετρήσεων του μαγνητικού πεδίου κατά την περιστροφή ακανόνιστων οστράκων γύρω από την τρισορθογώνια διάταξη των αισθητήρων/μαγνητών σε θραύσματα του σώματος (α) και της βάσης(β) του αγγείου 5.

	Πίνακα ΑΓΓΕ α. Σώ	ς B11 ΙΟ 6 ομα				Θέση Η	2						Θέση Ι3					
3	n		B _x (±1nT)	$\mathbf{B}_{\mathbf{\psi}}$ (±1nT)	B _z (±1nT)	B (±1nT)	θ_B^{o}	$\delta \theta_B^{o}$	φ _B °	δφ _B °	B _x (±1nT)	$\mathbf{B}_{\mathbf{\psi}}$ (±1nT)	B _z (±1nT)	B (±1nT)	θ_B^{o}	$\delta \theta_B^{o}$	φ _B °	δφΒο
10cm	1	0	34	-3	0	34	-85	2	0	2	19	-16	0	25	-50	4	0	3
	2	30	31	-4	18	36	-84	2	30	2	17	-18	11	27	-48	3	33	3
	3	60	16	-2	32	36	-87	2	63	2	11	-18	18	28	-50	3	59	3
	4	90	1	-1	35	35	-88	2	88	2	-1	-17	22	28	-52	3	93	3
	5	120	-18	-4	29	34	-83	2	122	2	-10	-17	16	25	-48	4	122	3
	6	150	-33	-3	17	37	-85	2	153	2	-17	-16	11	26	-52	3	147	3
	7	180	-38	-2	2	38	-87	2	183	2	-20	-17	1	26	-50	3	177	3
	8	210	-29	-3	-20	35	-85	2	215	2	-18	-15	-8	25	-53	3	204	3
	9	240	-19	-3	-32	37	-85	2	239	2	-10	-15	-19	26	-55	3	242	3
	10	270	-1	-5	-36	36	-82	2	268	2	1	-14	-22	26	-58	3	273	3
	11	300	18	-4	-31	36	-84	2	300	2	10	-15	-17	25	-53	3	300	3
	12	330	31	-3	-20	37	-85	2	327	2	17	-15	-11	25	-53	3	327	3

	Πίνακας ΑΓΓΕΙ β. Βά	<u>ç B11</u> IO 6 տղ				Θέση αί	2						Θέση β3				V	
ΘΘΟΥβ	-	ϕ_{δ}	$\mathbf{B}_{\mathbf{x}}$	\mathbf{B}_{ψ}	$\mathbf{B}_{\mathbf{z}}$	\mathbf{B}	⁰	Sec. 0	(a ⁰	Sa ⁰	$\mathbf{B}_{\mathbf{x}}$	\mathbf{B}_{ψ}	$\mathbf{B}_{\mathbf{z}}$	\mathbf{B}	⁰	Sec. 0	(a ⁰	S (0 ⁰
10cm	11	(±1)	(±1111)	(±1111)	(±1111)	(±1111)	YB 50	σγΒ	ΨΒ	οψΒ	(±1111)	(±1111)	(±1111)	(±1111)	YB	σγΒ	ΨΒ	οψΒ
0	1	0	23	0	14	27	59	3	0	2	24	0	14	28	60	3	0	2
	2	30	18	9	14	25	55	3	27	3	21	12	13	27	62	3	30	2
	3	60	11	21	13	27	61	3	62	2	13	21	12	27	64	3	58	2
	4	90	-1	23	12	26	62	3	92	2	-1	24	13	27	62	3	92	2
	5	120	-12	17	14	25	56	3	125	3	-11	19	14	26	57	3	120	3
	6	150	-21	11	15	28	58	3	152	2	-21	11	15	28	58	3	152	2
	7	180	-23	1	15	27	57	3	178	2	-24	1	15	28	58	3	178	2
	8	210	-22	-12	14	29	61	3	209	2	-19	-14	14	27	59	3	216	2
	9	240	-10	-18	13	24	58	3	241	3	-12	-21	13	27	62	3	240	2
	10	270	1	-23	15	27	57	3	272	2	1	-24	15	28	58	3	272	2
	11	300	13	-18	14	26	58	3	306	3	10	-21	14	27	59	3	295	2
	10 270 11 300 12 330		21	-12	14	28	60	3	330	2	21	-11	14	28	59	3	332	2

Πίνακας B11. Αποτελέσματα μετρήσεων του μαγνητικού πεδίου κατά την περιστροφή ακανόνιστων οστράκων γύρω από την τρισορθογώνια διάταξη των αισθητήρων/μαγνητών σε θραύσματα του σώματος (α) και της βάσης(β) του αγγείου 6.

]	Βάση α	αγγείου 4														
3		20														
	00															
Iden	α	βγδ						Πίν	νακας Β	12α					- PNA	
	Δo	κίμιο		Μετρήσ	εις σε θέ	σεις στρα	οφής φ _δ (±	±0,5°) κυλι	νδρικών δι	οκιμίων με	τη διάταξη	ι αισθητήρ	ων/μαγνητ	ών		
L±1	mm	ι	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	ī	δī
		B _x (±0,2) nT	37,8	32,5	18,3	-0,3	-19,3	-32,6	-38,3	-33,0	-18,6	-0,3	18,7	33,1		
		B _ψ (±0,2) nT B ±(0,2) nT	0,0	19,4	33,4	37,7	32,3	19,4	-0,5	-18,7	-33,4	-38,3	-33,3	-18,2	17.6	0.1
2	2mm	B _z ±(0,2)m B _z δB=0.2 nT	41.7	41.8	42.0	41.6	41.4	41.8	42.1	41.9	42.2	42.2	42.1	41.8	41.9	0,1
		$\gamma_{\rm B}, \delta\gamma_{\rm B} = 0.3^{\circ}$	64,9	64,9	65,2	65,1	65,3	65,1	65,6	64,7	65,0	65,2	65,3	64,8	65,1	0,2
		φ _B , δφ _B =0,3°	0,5	30,8	61,3	90,5	120,9	149,2	180,7	209,5	240,9	269,6	299,3	331,2		
	Στήλη n	πλακιδίων	Διάμετ	τρος δοκι	μίου/πλα	ικιδίων =	40,0(±0,5	5)mm								
L _n ±(),2 mm	ι	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	ī	δī
m	4	B _x (±0,2) nT	20,2	16,6	9,5	-0,2	-9,4	-18,0	-20,6	-17,8	-10,4	0,3	10,6	17,0	──	
1	3.0	B_{ψ} (±0,2) nT	0,0	9,4	16,7	18,9	16,8	9,5	-0,1	-10,3	-17,8	-19,1	-16,7	-10,2	12 5	05
1	3,0	$\mathbf{B}_{z} \pm (0,2)$ m B $\delta B = 0.2 \text{ pT}$	12,4	22.4	13,5	22.4	23.0	24.1	24.5	23.8	23.8	23.1	22.3	12,1	23.4	0,5
Ť		β , 0B=0,2 Π1 γ _B , δγ _B =0.7°	58.5	58.3	23,3 54.9	57.6	57.0	57.6	57.3	59.7	60.0	56.0	58.1	58.6	57.8	0,5
		φ _B , δφ _B =0,6°	0,0	29,5	60,4	90,6	119,2	152,2	180,3	210,1	239,7	270,9	302,4	329,0	- /-	
		B _x (±0,2) nT	30,2	25,5	14,6	-0,3	-14,8	-25,2	-30,5	-26,1	-15,0	0,2	15,0	25,4		
		Β _ψ (±0,2) nT	0,0	15,7	26,4	29,7	26,7	15,6	-0,3	-15,7	-25,8	-30,5	-25,2	-15,1		
2	6,0	B _z ±(0,2)nT	15,8	16,0	16,3	16,6	15,7	15,5	16,0	16,4	15,8	15,9	16,3	16,4	16,1	0,3
		B , δB=0,2 nT	34,1	34,0	34,3	34,0	34,3	33,4	34,4	34,6	33,8	34,4	33,6	33,8	34,1	0,3
		$\phi_{B}, \delta\phi_{B} = 0.4^{\circ}$	02,4	31.6	61.1	90.6	119.0	148.2	180.6	211.0	239.8	270.4	300.8	329.3	01,9	0,3
		B _x (±0.2) nT	34.5	29.5	16.6	-0.1	-17.2	-29.2	-34.6	-29.2	-16.3	0.2	17.3	29.9		<u> </u>
		B _ψ (±0,2) nT	0,0	17,0	29,4	34,0	29,7	17,8	-0,3	-17,7	-30,4	-34,1	-29,8	-17,1		
3	9,0	B _z ±(0,2)nT	17,1	17,3	17,0	16,6	16,9	17,0	16,8	17,2	17,0	16,8	16,9	17,1	17,0	0,1
		B , δB=0,2 nT	38,5	38,2	37,8	37,8	38,3	38,2	38,5	38,2	38,5	38,0	38,4	38,5	38,2	0,2
		$\gamma_{\rm B}, \delta\gamma_{\rm B} = 0.4^{\circ}$	63,6	63,1	63,3	64,0	63,8	63,6 148.6	64,1 180 5	63,3 211.2	63,8 241.8	63,8 270.2	63,9 200 1	63,6	63,6	0,2
_		$φ_B, 0φ_B=0,4$ B (+0.2) nT	36.5	31.8	17.7	-0.2	-18.2	-31.0	-36.2	-31.5	-18 3	270,5	18.4	31 5		
		B _{ill} (±0,2) nT	0.0	18.2	31.6	36.1	31.7	18.5	-0.2	-18.4	-31.1	-36.0	-31.4	-18.3		
4	12,0	B _z ±(0,2)nT	17,2	17,3	17,5	17,4	17,5	17,1	16,9	17,2	17,0	17,4	17,0	17,2	17,2	0,2
		B , δB=0,2 nT	40,3	40,5	40,2	40,1	40,5	39,9	40,0	40,3	39,9	40,0	40,2	40,3	40,2	0,2
		γ _B , δγ _B =0,3 [°]	64,8	64,7	64,2	64,3	64,4	64,7	65,0	64,8	64,8	64,2	65,0	64,7	64,6	0,2
		$\Phi_{\rm B}, \delta \Phi_{\rm B}=0,3^{\circ}$	0,0	29,8	60,7	90,3	119,9	149,2	180,3	210,3	239,5	2/1,0	300,4	329,8		
		B _x (±0,2) m B ₄ (±0,2) m	37,3	32,3	32.3	-0,2	-19,0	-32,5	-37,0	-32,8	-19,1	-37.2	-32.0	-18.4		-
5	15,0	B _ψ (±0,2)πT B ₇ ±(0,2)nT	17,5	17,5	17,3	17,4	17,6	17,7	17,7	17,8	17,5	17,5	17,4	17,5	17,5	0,1
		B , δB=0,2 nT	41,2	41,4	41,2	41,0	41,5	41,3	41,6	41,7	41,2	41,1	41,0	41,2	41,3	0,2
		γ _B , δγ _B =0,3 [°]	64,9	65,0	65,2	64,9	64,9	64,6	64,8	64,7	64,8	64,8	64,9	64,8	64,9	0,2
		φ _B , δφ _B =0,3°	0,0	30,6	59,8	90,3	120,4	150,6	180,2	209,6	239,2	270,5	300,4	330,4		
		B_{x} (±0,2) nT	38,0	32,6	18,5	-0,3	-19,3	-32,7	-38,1	-32,6	-18,4	0,2	19,2	33,3		
6	18.0	$\mathbf{B}_{\psi}(\pm 0,2)$ m $\mathbf{B}_{\psi}(0,2)$ m $\mathbf{B}_{\psi}(0,2)$ m	0,0	19,0	33,0	38,2	32,6	19,1	-0,2	-19,3	-33,0	-37,8	-32,5	-18,4	17.6	01
_	- , -	B , δB=0,2 nT	41,8	41,6	41,7	42,1	41,7	41,7	41,9	41,8	41,7	41,7	41,7	41,9	41,8	0,1
		γ _B , δγ _B =0,3°	65,3	65,2	65,1	65,3	65,2	65,2	65,5	65,1	64,9	65,0	64,9	65,2	65,1	0,1
		φ _B , δφ _B =0,3°	0,0	30,2	60,7	90,4	120,6	149,7	180,3	210,6	240,9	270,3	300,6	331,1		
		B _x (±0,2) nT	38,0	33,2	19,1	-0,2	-19,2	-32,8	-38,1	-32,7	-19,0	0,4	19,4	33,2		
7	21.0	\mathbf{B}_{ψ} (±0,2) nT	0,0	18,7	32,7	38,2	32,7	19,0	-0,1	-19,2	-32,6	-37,9	-32,8	-18,8	17.0	0.4
<i>'</i>	21,0	$\mathbf{B}_{z} \pm (0,2)$ n I $\mathbf{B}_{z} \delta \mathbf{R} = 0.2 \text{ pT}$	17,6	17,5	17,5	17,6	17,7	17,6	17,8	17,6	17,5	17,5	17,6	17,6	17,6	0,1
1		$v_{\rm B}, \delta v_{\rm B} = 0.3^{\circ}$	65.1	65.3	65.2	65.3	65.0	65,1	65,0	65.1	65,1	65,2	65,2	65,2	65.2	0.1
1		φ _B , δφ _B =0,3°	0,0	29,4	59,7	90,3	120,4	149,9	180,2	210,4	239,8	270,6	300,6	330,5		
	Ī	B _x (±0,2) nT	38,0	32,7	18,7	-0,4	-18,7	-33,3	-38,2	-32,7	-19,4	-0,3	18,5	12,7		
_		Β _ψ (±0,2) nT	0,0	19,0	33,1	37,9	32,8	18,5	-0,1	-19,3	-32,5	-38,1	-33,0	-19,2		1
8	24,0	B _z ±(0,2)nT	17,6	17,5	17,6	17,6	17,4	17,6	17,6	17,7	17,6	17,6	17,5	17,6	17,6	0,1
1		Β , δB=0,2 nT	41,9	41,7	41,9	41,8	41,6	42,0	42,1	41,9	41,7	42,0	41,7	41,8	41,8	0,1
1		φ _B , δφ _B =0,3°	0.0	30.2	60.5	90.6	119.7	150.9	180.1	210.5	239.2	269.5	299.3	329.6	05,2	0,1
1	I	TD/ 04D 0/0	-,~		30,5	, -	,,	,						,0	<u> </u>	1

Πίνακας B12α. Μετρήσεις σε θέσεις στροφής των δοκιμίων του αγγείου 4, με τη διάταξη αισθητήρων/μαγνητών. Το μαγνητικό πεδίο Β αποκτά σταθερή τιμή, όταν το πάχος της στήλης γίνεται μεγαλύτερο από αυτό στην σκιασμένη περιοχή του πίνακα.

	Βάση α	αγγείου 4														
6		e 0														
		βγδ							n	120						
									ακας Β	12 <u>β</u>			<u> </u>			
—	Δ0	κίμιο	°	M	ετρήσεις	σε θέσε	εις στροφή	<u>ης φ_δ (±0,5</u> 4 το⁰) κυλινδρι	κών δοκιμί	ίων εντός τ	ου σωληνα	οειδούς	2200	<u> </u>	c-
L±	1 mm		U 29.1	30	19.2	90	120	150	180	210	19.2	270	300	330	<u>ι</u>	οι
		B _x (±0,2) m B ₄ (±0,2) nT	0.2	19.2	33.2	-0,2	32.5	-52,0	-36,2	-33,1	-10,5	-0,4	-33.0	-18 7		
		$B_{z} \pm (0,2) nT$	17,6	17,8	17,5	17,6	17,4	17,6	17,5	17,4	17,7	17,5	17,6	17,7	17,6	0,1
2	2mm	B , δB=0,2 nT	42,0	41,8	41,7	42,1	41,7	42,0	42,0	41,9	41,9	41,9	41,6	41,9	41,9	0,1
		$\gamma_{\rm B}, \delta \gamma_{\rm B} = 0.3^{\circ}$	65,2	64,8	65,2	65,3	65,3	65,2	65,4	65,4	65,0	65,3	65,0	65,0	65,2	0,1
	- ()	φ _B , δφ _B =0,3°	0,3	30,5	61,3	90,3	120,8	149,4	180,3	209,6	241,2	269,4	299,0	330,5		
	Στηλη η	πλακιδιων	Διαμετ	τρος δοκι	μιου/πλο	ικιδιων =	40,0(±0,5)mm	1000	210 ⁰	240°	270°	200°	2200	.	-12
Ln±	J,2 mm	l R (+0.2) pT	U 10.7	30	10.4	90	120	17.9	20.8	17.0	240	2/0	300	330 19.1	<u>⊢`</u>	οι
		B _x (±0,2) nT	0.0	93	16.7	19.3	16.8	93	-0.2	-10.2	-16.8	-19.7	-17 5	-10.4	1	
1	3,0	$B_{z} \pm (0,2) nT$	12,1	12,3	13,5	13,4	12,3	12,4	12,2	13,1	13,3	12,7	12,0	11,8	12,6	0,5
		B , δB=0,2 nT	23,1	23,6	23,9	23,5	22,8	23,6	24,1	23,8	23,6	23,4	23,6	24,0	23,6	0,2
		γ _B , δγ _B =0,7°	58,4	58,6	55,5	55,2	57,4	58,3	59,6	56,5	55,7	57,2	59,5	60,5	57,7	0,2
	ļ	φ _B , δφ _B =0,6 [°]	0,0	27,5	58,1	90,3	119,2	152,4	180,6	211,0	239,5	270,9	300,7	389,9	┣───	
		B _x (±0,2) nT P (±0,2) nT	30,2	25,5	14,6	-0,3	-14,8	-25,2	-30,5	-26,1	-15,0	0,2	15,0	25,4	<u> </u>	
2	6,0	B_{ψ} (±0,2) III B_{τ} +(0.2)nT	15.6	16,3	16.0	16.3	15.9	16.4	-0,2	16.0	-20,4	-50,1	-20,0	-15,7	16.1	0.2
	-,-	B , δB=0,2 nT	34,0	34,1	34,1	33,9	34,4	33,6	34,5	34,2	34,2	34,3	34,1	33,8	34,1	0,2
		γ _B , δγ _B =0,4 [°]	62,7	61,4	62,1	61,2	62,5	60,8	62,0	62,1	62,5	61,4	61,8	62,1	61,9	0,2
		φ _B , δφ _B =0,4 [°]	0,0	31,6	61,1	90,6	119,0	149,1	180,4	210,4	240,4	270,4	300,0	328,3		
		B _x (±0,2) nT	34,2	30,0	16,9	-0,2	-16,6	-29,7	-34,0	-29,5	-16,8	0,1	17,7	29,5	<u> </u>	
з	9.0	\mathbf{B}_{ψ} (±0,2) n1	0,0	17,5	29,6	34,6	29,6	17,5	-0,2	-17,4	-30,2	-33,9	-29,4	-17,6	17.0	0.2
5	5,0	B _z ±(0,2)π B . δB=0.2 nT	38.1	38.7	38.3	38.4	37.9	38.6	38.0	38.3	38.5	37.7	38.2	38.5	38.3	0,2
		$\gamma_{\rm B}, \delta \gamma_{\rm B} = 0,4^{\circ}$	63,8	63,9	63,0	64,4	63,7	63,2	63,4	63,5	63,8	63,9	64,1	63,3	63,7	0,2
		φ _B , δφ _B =0,3 [°]	0,0	30,3	60,3	90,3	119,3	149,5	180,3	210,5	240,9	270,2	301,0	329,2		
		B _x (±0,2) nT	36,3	31,4	18,0	-0,1	-17,8	-31,0	-36,6	-31,0	-18,2	0,3	18,4	31,2	<u> </u>	
4	12.0	\mathbf{B}_{ψ} (±0,2) nT	0,0	18,0	31,9	36,7	31,6	18,7	-0,4	-18,5	-31,0	-36,6	-31,1	-18,5	17.2	0.2
4	12,0	$B_z \pm (0,2)$ Π B δB=0.2 nT	17,3 40.2	40.0	40.5	40.4	40.3	40.1	40.6	39.9	39.9	40.4	39.9	40.2	40.2	0,2
		$v_{\rm B}, \delta v_{\rm B} = 0.3^{\circ}$	64,5	64,8	64,8	65,1	64,1	64,5	64,3	64,8	64,4	65,0	64,8	64,4	64,6	0,2
		φ _B , δφ _B =0,3 [°]	0,0	29,8	60,6	90,2	119,4	148,9	180,6	210,8	239,6	270,5	300,6	329,3		
		B _x (±0,2) nT	37,2	32,0	19,1	-0,1	-19,3	-32,3	-37,7	-32,4	-19,0	0,2	19,2	32,3		
	15.0	B _ψ (±0,2) nT	0,0	18,7	32,1	37,3	32,5	18,3	-0,2	-18,2	-32,3	-37,3	-32,4	-18,7		
5	15,0	B _z ±(0,2)nT B δR=0.2 pT	17,5	17,4	17,3	17,6	17,6	17,4	17,3	17,6	17,7	17,6	17,5	17,4	17,5	0,1
		ν _B , δν _B =0.3°	64.8	64.9	65.1	64.7	65.0	64.9	65.4	64.7	64.7	64.7	65.1	65.0	64.9	0,2
		φ _B , δφ _B =0,3 [°]	0,0	30,3	59,2	90,2	120,7	150,5	180,3	209,3	239,5	270,3	300,7	329,9		
		B _x (±0,2) nT	38,1	32,9	18,7	-0,1	-19,5	-32,6	-38,0	-32,8	-18,6	0,1	19,4	33,0		
c	10.0	B _ψ (±0,2) nT	0,0	19,3	33,0	38,0	32,8	19,0	-0,2	-19,5	-33,3	-38,0	-32,8	-18,7		
6	18,0	B _z ±(0,2)nT	17,5	17,6	17,6	17,5	17,5	17,7	17,6	17,6	17,6	17,4	17,5	17,7	17,6	0,1
		B , $OB=0,2 \Pi$	41,9	42,0	41,8	41,8	42,0	41,7 64 9	41,9	42,0	42,0	41,8	41,9	41,9	41,9	0,1
		φ _B , δφ _B =0,3 ^o	0,0	30,4	60,5	90,2	120,7	149,8	180,3	210,7	240,8	270,2	300,6	330,5	00,2	0,1
		B _x (±0,2) nT	38,1	33,0	19,0	-0,1	-19,5	-32,7	-38,0	-32,5	-19,3	0,2	19,2	33,0		
		Β _ψ (±0,2) nT	0,0	18,8	32,9	38,0	32,6	19,2	-0,2	-19,4	-32,9	-37,8	-32,7	-18,5		
7	21,0	B _z ±(0,2)nT	17,5	17,6	17,3	17,4	17,6	17,8	17,7	17,5	17,6	17,5	17,7	17,6	17,6	0,1
		B , δB=0,2 nT	41,9	41,9	41,7	41,8	41,9	41,9	41,9	41,7	42,0	41,7	41,8	41,7	41,8	0,1
		φ _B , δφ _R =0.3 [°]	0,0	29.7	60.0	90.2	120.9	149.6	180.3	210.8	239.6	270.3	300.4	330.7	03,2	0,1
		B _x (±0,2) nT	38,0	32,7	18,8	-0,2	-18,8	-33,0	-38,0	-32,9	-19,2	-0,1	18,6	32,8	<u> </u>	
		B _ψ (±0,2) nT	0,0	19,3	33,0	38,2	33,0	18,5	-0,2	-19,1	-32,7	-38,0	-33,2	-19,0		
8	24,0	B _z ±(0,2)nT	17,5	17,6	17,6	17,4	17,3	17,4	17,6	17,8	17,7	17,6	17,7	17,6	17,6	0,1
		B , δB=0,2 nT	41,8	41,9	41,9	42,0	41,7	41,6	41,9	42,0	41,8	41,9	42,0	41,8	41,9	0,1
		γ _B , υγ _B =0,3 φ _b , δφ _a =0.3 ^o	05,3	30 5	60 3	05,5 90 2	05,5 119 7	5,3 150 7	180 2	04,9 210 1	05,U 229.6	269.8	200 2	329.0	05,2	0,1
L	1	το, σφβ -0,3	2,0	20,5	30,5	20,5	,/	,/	-30,5		,0	_00,0	,	5_5,5		ليسبب

Πίνακας Β12β. Μετρήσεις σε θέσεις στροφής των δοκιμίων του αγγείου 4 εντός του πηνίου. Το μαγνητικό πεδίο Β αποκτά σταθερή τιμή, όταν το πάχος της στήλης γίνεται μεγαλύτερο από αυτό στην σκιασμένη περιοχή του πίνακα.

-	ουση τ	έγγειου 5														
*																
1	4	3-1														
-	43														1	2
	0															
4		10em 0														
	S.	-						Πίν	ακας Β	13a						
	Δo	οκίμιο		Μετρήσε	εις σε θέα	σεις στρο	οφής φ _δ (±	:0,5°) κυλιν	/δρικών δο	οκιμίων με	τη διάταξη	αισθητήρα	ων/μαγνητ	ών		
L±1	mm	ι	0 °	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	ī	δī
		B _x (±0,2) nT	59,7	51,8	28,4	-0,5	-31,0	-51,2	-60,3	-52,0	-28,3	-1,20	28,2	52,1		
		\mathbf{B}_{ψ} (±0,2) nT	0,0	29,4	51,8	59,7	51,3	30,4	0,8	-28,7	-52,4	-59,3	-52,3	-28,2	16.6	0.2
2	2mm	B _z ±(0,2)f1 B δB=0.2 pT	62.0	16,5 61.8	16,9 61.4	16,5	16,3 62 1	16,4 61.8	16,7 62.6	16,9 61.8	16,1 61 7	16,4 61 5	16,6 61.7	16,8 61.6	16,6 61.8	0,2
		$v_{\rm B}, \delta v_{\rm B} = 0.2^{\circ}$	74,4	74,5	74,0	74,6	74,8	74,6	74,5	74,1	74,9	74,5	74,4	74,2	74,5	0,2
		φ _B , δφ _B =0,2 [°]	0,0	29,6	61,3	90,5	121,1	149,3	179,2	208,9	241,6	268,8	298,3	331,6		- /
	Στήλη n	πλακιδίων	Διάμ	ιετρος δο	κιμίου/π	λακιδίων	v = 40,0(±0),5)mm								
L _n ±(),2 mm	ι	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	ī	δī
m		B _x (±0,2) nT	42,6	38,9	19,5	0,4	-21,4	-36,8	-44,0	-38,2	-20,4	-0,70	20,3	35,3		
	2.0	B _ψ (±0,2) nT	0,0	20,4	35,8	42,4	37,1	22,1	-0,7	-20,7	-38,4	-42,5	-35,6	-23,2		
1	3,0	B _z ±(0,2)nT	14,7	14,6	14,1	14,0	14,2	14,5	14,6	14,7	14,6	14,3	14,6	14,8	14,5	0,2
1		B , OB=0,2 Π1	45,1	46,3	43,1	44,7	45,1	45,3	46,4	45,9	45,9	44,8 71.4	43,5	44,8	45,1 71 3	0,7
		$φ_{\rm B}, \delta φ_{\rm B}=0,3^{\circ}$	0,0	27,7	61,4	89,5	120,0	149,0	180,9	208,5	242,0	269,1	299,7	326,7	/1,5	0,7
		B _x (±0,2) nT	54,8	47,2	28,1	0,9	-26,1	-47,9	-54,4	-47,5	-26,3	0,50	28,5	48,0		
		B _ψ (±0,2) nT	0,0	28,5	47,2	54,3	48,9	28,0	-0,6	-26,2	-47,6	-56,2	-48,3	-28,3		
2	6,0	B _z ±(0,2)nT	15,7	15,9	16,3	16,1	16,0	16,3	16,6	16,2	15,8	15,6	15,9	16,3	16,1	0,2
		B , δB=0,2 nT	57,0	57,4	57,3	56,6	57,7	57,8	56,9	56,6	56,6	58,3	58,3	58,1	57,4	0,5
		$\gamma_{\rm B}, \delta\gamma_{\rm B} = 0,2^{\circ}$	74,0	73,9	73,5	73,5	/3,9	/3,6	/3,0	73,4	/3,8	74,5	74,2	/3,/	/3,/	0,5
		Φ _B , 0Φ _B =0,2 B _u (+0.2) nT	58.3	51.0	28.4	-0.5	-28.8	-50.0	-59.3	-49.6	-29.6	0.50	300,5	50.7	ł	
		B _ψ (±0,2) nT	0,0	29,4	51,5	58,4	51,0	30,2	-0,4	-30,4	-51,0	-58,2	-50,7	-30,5		
3	9,0	B _z ±(0,2)nT	16,0	16,4	16,4	16,2	16,1	16,3	16,4	16,6	16,5	16,8	16,5	16,4	16,4	0,2
		B , δB=0,2 nT	60,5	61,1	61,1	60,6	60,7	60,6	61,5	60,5	61,2	60,6	61,5	61,4	60,9	0,4
		$\gamma_{\rm B}, \delta \gamma_{\rm B} = 0.2^{\circ}$	74,7	74,4	74,4	74,5	74,6	74,4	74,5	74,1	74,4	73,9	74,4	74,5	74,4	0,4
		$\phi_{\rm B}, \phi_{\rm B}=0,2^{\circ}$	0,0	30,0	61,1	90,5	119,5	148,9	180,4	211,5	239,9	270,5	301,1	329,0	<u> </u>	
		$\mathbf{B}_{x}(\pm 0,2)$ nT $\mathbf{B}_{+}(\pm 0,2)$ nT	59,4	29.5	29,5	-0,4	-29,4	-51,0	-59,3	-51,6	-31,3	-59.3	-51 3	-30.2		
4	12,0	B _z ±(0,2)nT	16,5	16,3	16,4	16,3	16,5	16,5	16,7	16,6	16,5	16,4	16,2	16,2	16,4	0,1
		B , δB=0,2 nT	61,6	61,7	62,4	61,5	62,4	61,8	61,6	62,1	62,5	61,5	61,8	62,1	61,9	0,3
		γ _B , δγ _B =0,2°	74,5	74,7	74,8	74,6	74,7	74,5	74,3	74,5	74,7	74,5	74,8	74,9	74,6	0,3
		φ _B , δφ _B =0,2 ^o	0,0	29,7	60,7	-89,6	119,2	149,0	180,5	210,5	238,7	90,4	300,7	329,8	<u> </u>	
		B _x (±0,2) nT	60,0	51,8	29,3	-0,2	-30,8	-50,7	-59,3	-52,0	-30,4	0,40	28,4	51,6	 	
5	15.0	B _ψ (±0,2) Π B _z +(0,2)nT	16.5	29,8	52,0 16 3	59,5 16.2	16.4	16.6	-0,4	-29,6	-51,4	-59,7	-52,0	-29,3	16.4	0.2
-	,	B , δB=0,2 nT	62,2	61,9	61,9	61,7	61,8	61,9	61,6	62,1	61,9	61,8	61,6	61,6	61,8	0,2
		γ _B , δγ _B =0,2°	74,6	74,7	74,7	74,8	74,6	74,4	74,3	74,6	74,8	74,9	74,3	74,6	74,6	0,2
		φ _B , δφ _B =0,2°	0,0	29,9	60,6	90,2	121,1	148,3	180,4	209,6	239,4	270,4	298,6	330,4		
		B _x (±0,2) nT	59,6	51,2	30,1	0,3	-30,8	-51,1	-59,3	-51,6	-30,8	0,60	30,1	51,4		
6	18.0	\mathbf{B}_{ψ} (±0,2) nT	0,0	30,5	51,8	59,3	51,1	30,8	0,6	-30,3	-51,1	-59,2	-51,0	-31,7	16 E	0.1
Ū	10,0	B _z ±(0,2)IT B δB=0.2 nT	61.8	61.8	62 1	61.6	61.9	62.0	61 5	62.0	61.9	61.4	61.5	62 7	61.8	0,1
		$y_{\rm B}$, $\delta y_{\rm B} = 0,2^{\circ}$	74,7	74,8	74,7	74,5	74,6	74,4	74,5	74,7	74,5	74,6	74,3	74,5	74,6	0,3
		φ _B , δφ _B =0,2 [°]	0,0	30,8	59,8	89,7	121,1	148,9	179,4	210,4	238,9	270,6	300,5	328,3		
		B _x (±0,2) nT	59,8	52,1	28,7	-0,7	-28,5	-51,1	-61,2	-51,0	-29,7	1,00	31,5	52,5		
_		B _ψ (±0,2) nT	0,0	29,0	52,5	59,3	52,2	30,2	-1,0	-30,3	-50,4	-59,3	-51,7	-29,0		
/	21,0	B _z ±(0,2)nT	16,6	16,4	16,7	16,4	16,5	16,6	16,5	16,7	16,7	16,5	16,5	16,4	16,5	0,1
1		Β , OB=U,2 NI Ν _D δν _C =0.2°	02,1 74 5	01,8 74.6	02,1 74.4	01,5 74 5	01,7 74 5	01,6 74.4	03,4 74 9	01,0 74 3	00,8 74 1	01,0 74 5	02,7 74 8	02,2 74 7	01,9 74 5	0,5
1		$φ_{\rm B}, \delta φ_{\rm B} = 0.2^{\circ}$	0.0	29,1	61.3	90.7	118.6	149.4	180.9	210.7	239.5	91.0	301.4	331.1	, , , , , , , , , , , , , , , , , , ,	0,0
<u> </u>	1	B _x (±0,2) nT	59,9	51,1	29,8	-0,8	-29,3	-52,4	-60,3	-51,0	-30,0	-0,20	29,0	51,0		<u> </u>
1		Β _ψ (±0,2) nT	0,0	30,5	51,4	59,5	52,4	29,3	-0,3	-30,6	-51,6	-60,2	-52,5	-30,7		
8	24,0	B _z ±(0,2)nT	16,3	16,6	16,8	16,4	16,6	16,5	16,3	16,1	16,5	16,8	16,7	16,5	16,5	0,2
1		B , δB=0,2 nT	62,1	61,8	61,7	61,7	62,3	62,3	62,5	61,6	61,9	62,5	62,3	61,8	62,0	0,3
1		$\gamma_{\rm B}$, $\delta\gamma_{\rm B} = 0.2^{\circ}$	/4,8	74,4 20.9	74,2	/4,6 00 °	/4,5	/4,6	/4,9	/4,9	74,5 220 0	/4,4 260 0	74,4	74,5	/4,6	0,3
L	1	Ψ _B , υΨ _B =0,2	0,0	30,8	52,5	<i>3</i> 0,8	119,2	٥,0٦٢	100,3	211,0	237,ō	209,0	230,9	323,0	L	1

Πίνακας B13α Μετρήσεις σε θέσεις στροφής των δοκιμίων του αγγείου 5, με τη διάταξη αισθητήρων/μαγνητών. Το μαγνητικό πεδίο Β αποκτά σταθερή τιμή, όταν το πάχος της στήλης γίνεται μεγαλύτερο από αυτό στην σκιασμένη περιοχή του πίνακα.

T	0	3-2-1														
*	00														-	5
A		10em														
		(120)						Πίν	акас В1	36						
	Δo	κίμιο	1	M:	ετρήσεις	σε θέσε	ις στροφή	ής φ _δ (±0,5°) κυλινδρι	κών δοκιμί	ων εντός τα	ου σωληνο	ειδούς			
L±1	mm	ι ι	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	ī	δī
		B _x (±0,2) nT	61,2	51,6	30,4	-0,3	-28,4	-51,2	-59,7	-51,0	-28,0	-1,30	28,0	50,4		<u> </u>
		Β _ψ (±0,2) nT	0,0	28,4	51,4	59,7	52,5	30,8	1,2	-31,0	-52,8	-59,7	-52,8	-32,0		
, ,	·	B _z ±(0,2)nT	16,5	16,4	16,7	16,5	16,5	16,3	16,8	16,6	16,0	16,6	16,7	16,6	16,5	0,2
~	2000	B, δB=U,2 ΠΙ	63,4 7/ 9	61,1 74 4	62,U 74 4	61,9 74.6	61,9 74 5	61,9 74 7	62,0 7/ 3	61,9 74 5	61,9 75.0	62,U	62,1 74 A	62,U	62,0 74.6	0,2
	ļ	$\phi_{B}, \delta\phi_{B}=0,2^{\circ}$	0,0	28,8	59,4	90,3	118,4	149,0	178,8	211,3	242,1	268,8	297,9	327,6	/+,0	0,2
	Στήλη n	πλακιδίων	Διάμ	ιετρος δο	κιμίου/π	λακιδίων	v = 40,0(±(0,5)mm	,	_ ,	<u> </u>	,	,	- ,		
L _n ±(),2 mm	ι	0 °	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	ī	δī
m		B _x (±0,2) nT	43,1	36,9	20,8	0,6	-23,4	-38,6	-44,5	-36,2	-19,6	-1,20	20,8	37,5		[
		Β _ψ (±0,2) nT	0,0	22,3	39,5	43,4	36,4	21,6	-0,5	-22,7	-38,0	-44,5	-37,6	-21,2		
	3,0	B _z ±(0,2)nT	14,4	14,3	14,0	14,4	14,9	15,0	14,3	14,2	14,4	14,0	14,5	14,6	14,4	0,2
1		B , δB=0,2 nT	45,4	45,4	46,8	45,7	45,8	46,7	46,7	45,0	45,1	46,7	45,4	45,5	45,9	0,6
		γ _B , δγ _B =0,3	/1,5	/1,/	/2,b	/1,6 	/1,0	/1,3	12,2	/1,b 212.1	/1,4	72,5	71,4	/1,3	/1,/	0,6
	┨────┥	φ _B , σφ _B -σ, σ B (+0.2) nT	55.7	47,9	29.3	-0.9	-25.5	-48,4	-55.0	-46.5	-25.3	0.70	233,5	48.7	┨────┤	<u> </u>
		B _{il} (±0,2) nT	0,0	27,5	47,0	55,3	48,2	27,3	-0,3	-29,2	-48,6	-55,2	-47,3	-29,3	┨───┤	
2	6,0	B _z ±(0,2)nT	16,3	15,6	16,5	15,6	16,0	16,7	16,4	15,7	15,9	15,5	15,9	15,8	16,0	0,3
		B , δB=0,2 nT	58,0	57,4	57,8	57,5	56,8	58,0	57,4	57,1	57,1	57,3	57,4	59,0	57,6	0,4
		γ _B , δγ _B °	73,7	74,2	73,4	74,2	73,6	73,3	73,4	74,0	73,8	74,3	73,9	74,5	73,9	0,4
	\vdash	$\phi_{\rm B}, \delta\phi_{\rm B}=0,2^{\circ}$	0,0	29,9	58,1	-89,1	117,9	150,6	180,3	212,1	242,5	270,7	301,0	329,0	\vdash	
		B _x (±0,2) n1 P (±0,2) nT	58,7	51,3	27,6	-0,3	-29,5	-50,6	-58,7	-49,8	-30,8	1,20	27,6	52,7	┣───┘	<u> </u>
3	9,0	Β _ψ (±0,2) ···· Β ₋ +(0,2)nT	15.8	16.0	16.2	16.0	16.3	16.3	16.4	16.2	-50,0	-56,7	-52,7	16.2	16.3	0.2
	-,	B , δB=0,2 nT	60,8	60,8	60,9	60,8	60,7	60,9	61,0	60,9	61,1	61,1	61,7	61,6	61,0	0,2
		γ _B , δγ _B =0,2°	74,9	74,7	74,6	74,8	74,4	74,5	74,4	74,6	74,1	73,9	74,6	74,8	74,5	0,2
		φ _B , δφ _B =0,2°	0,0	29,1	62,0	90,3	120,3	149,6	181,0	211,9	238,4	271,2	297,6	332,4		
		B _x (±0,2) nT	59,8	50,7	31,5	-0,8	-29,0	-50,2	-59,7	-52,6	-30,3	0,20	31,5	51,0		
Λ	12.0	\mathbf{B}_{ψ} (±0,2) nT	0,0	31,5	50,5	59,0	52,0	30,0	-1,4	-28,4	-51,5	-59,7	-50,3	-30,8	16.4	0.2
4	12,0	B _z ±(0,2) R δR=0.2 nT	62.1	61.8	10,4 61,7	10,0 61,3	10,0 61.9	60.7	61.8	61.9	62.0	61.8	61.5	61.8	10,4 61.7	0,2
		ν _B , δν _B =0,2°	74,4	74,8	74,6	74,3	74,2	74,6	75,0	74,8	74,4	75,0	74,6	74,5	74,6	0,3
		φ _B , δφ _B =0,2°	0,0	31,9	58,0	-89,2	119,1	149,1	181,3	208,4	239,5	90,2	302,1	328,9		
		B _x (±0,2) nT	59,7	51,2	27,3	1,3	-29,8	-50,9	-59,9	-52,6	-30,1	0,70	28,0	52,0		
		Β _ψ (±0,2) nT	0,0	30,8	53,0	59,7	52,6	31,3	-0,7	-28,6	-51,6	-59,7	-52,8	-29,0		<u> </u>
5	15,0	B _z ±(0,2)nT	16,1	16,0	16,5	16,4	16,4	16,3	16,5	16,8	17,0	16,6	16,9	16,4	16,5	0,2
		B , δB=0,2 n1	61,8 74 Q	61,9 75.0	61,9	61,9	62,6	61,9	62,1	62,2	62,1	62,0	62,1	61,8	62,0 74.6	0,2
		$\phi_{\rm B}, \delta \phi_{\rm B} = 0.2^{\circ}$	0.0	31.0	62,7	88.8	119,5	148,4	180,7	208.5	239,7	270,7	297.9	330,9	/4,0	0,5
	┢───┥	B _v (±0,2) nT	59,7	51,7	31,3	-0,7	-29,8	-52,3	-59,6	-51,0	-30,5	0,40	29,3	50,7	┟───┤	<u> </u>
		B _ψ (±0,2) nT	0,0	30,0	50,9	59,6	51,7	29,5	0,4	-31,3	-51,3	-59,7	-52,5	-31,7		<u> </u>
6	18,0	B _z ±(0,2)nT	16,1	16,0	16,2	16,7	16,5	16,8	16,3	16,0	16,1	16,6	16,5	16,7	16,4	0,3
		B , δB=0,2 nT	61,8	61,9	61,9	61,9	61,9	62,4	61,8	61,9	61,8	62,0	62,3	62,1	62,0	0,1
		$\gamma_B, \delta\gamma_B = 0.2^\circ$	74,9	75,0	74,8	74,3	74,5	74,4	74,7	75,0	74,9	74,5	74,7	74,4	74,7	0,1
	┣───┘	Φ _B , υψ _B =υ,∠ P (+0.2) nT	50.7	30,1 51.2	50,4 202	-89,5 0 Q	220,0	150,0	1/9,0 E0.8	211,5 51.7	239,5	1 00	299,2	520,U	┣───┘	
		B _x (±0,2) m B (±0.2) m	0.0	30,9	<u>∠o,∠</u> 52,7	-0,9 59,7	52.5	31.7	-59,6	-29,7	-50,7	-59.7	-50,7	-30,5	┨───┤	<u> </u>
7	21,0	B _z ±(0,2)nT	16,5	16,2	16,0	16,1	16,4	16,5	16,2	16,2	16,1	16,3	16,4	16,4	16,3	0,1
		B , δB=0,2 nT	61,9	62,0	61,9	61,8	61,7	62,0	62,0	61,8	62,0	61,9	62,0	61,9	61,9	0,1
		γ _B , δγ _B =0,2°	74,6	74,8	75,0	74,9	74,6	74,6	74,8	74,8	74,9	74,7	74,7	74,6	74,8	0,1
	<u> </u> '	φ _B , δφ _B =0,2 [°]	0,0	31,1	61,8	90,9	118,1	148,0	181,0	209,9	239,2	271,0	302,0	329,3	ļ!	
		B _x (±0,2) nT	59,7	51,7	29,0	-0,5	-27,3	-52,8	-59,7	-51,0	-31,3	-0,70	28,4	51,2		
8	24.0	B _ψ (±0,2) Π B _z +(0,2)nT	0,0	29,9	52,3 16.5	59,7 16.1	53,2 163	28,3	-0,6	-31,0	-50,6	-59,2	-52,8	-31,7	16.5	03
-	, -	B , δB=0,2 nT	61,8	61,9	62,0	61,8	62,0	62,2	61,8	62,2	61,8	61,6	62,3	62,4	62,0	0,2
		γ _B , δγ _B =0,2°	74,9	74,6	74,6	74,9	74,8	74,4	75,0	74,7	74,3	74,0	74,3	74,9	74,6	0,2
		$φ_{\rm B}$, $δφ_{\rm B}=0,2^{\circ}$	0,0	30,0	61,0	90,5	117,2	151,8	180,6	211,8	238,3	269,3	298,3	328,2		

Βάση αγγείου 5

Πίνακας B13β. Μετρήσεις σε θέσεις στροφής των δοκιμίων του αγγείου 5 εντός του πηνίου. Το μαγνητικό πεδίο Β αποκτά σταθερή τιμή, όταν το πάχος της στήλης γίνεται μεγαλύτερο από αυτό στην σκιασμένη περιοχή του πίνακα.

	Βάση	αγγείου 6														
	X															
	10	(2)														
	3	α														
1	3	υ													ft.	
	2	0 /													1 -	X
	10cm	δ						Πίν	arac B1	4a					At 1	
		οκίιμο		Μετοήσ	εις σε θέι		տո՛ ւ տ շ (+	-0.5°) κυλιν	ακάς Βι δοικών δο	KIIII(OV UE :	τη διάταξη	αισθητήοι	ων/μαννητ	ών		
L±	:1 mm	ι	0 °	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	ī	δī
		B _x (±0,2) nT	24,1	20,6	12,6	0,4	-11,4	-20,5	-24,3	-21,1	-13,2	-0,80	12,4	20,8		
		B _ψ (±0,2) nT	0,0	12,3	20,3	24,0	21,7	12,2	0,8	-11,2	-20,5	-23,7	-21,0	-11,7		
	18mm	B _z ±(0,2)nT B δR=0.2 pT	13,7	13,5	14,4	14,6	14,3	13,6	13,5	13,5	13,5	14,1	14,5	14,3	14,0	0,4
		ν _B , δγ _B =0,5°	60,4	60,6	58,9	58,7	28,4 59,7	60,3	61,0	60,5	61,0	59,3	59,3	59,1	59,9	0,2
		φ _B , δφ _B =0,5°	0,0	30,8	58,2	89,0	117,7	149,2	178,1	208,0	237,2	268,1	300,6	330,6		-
	Στήλη ι	η πλακιδίων	Διάμ	ιετρος δο	οκιμίου/π	ιλακιδίων	v = 40,0(±0),5)mm		1	T			1		
L	±0,2mm	L	0 °	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	ī	δī
m		B _x (±0,2) nT	10,8	9,3	6,2	0,2	-5,4	-10,4	-12,2	-9,4	-5,4	-0,30	4,7	9,9	┨────	
	3,0	ο ψ (±0,2) NI B , ±(0,2)nT	0,0	0,4 8.7	9,7 9.2	12,3 9,4	9,4 9.5	5,5 9,3	-0,6	-5,3 10.3	-9,3 9,3	-11,9	-10,5	-5,9 8,3	9.1	0.5
1		B , δB=0,2 nT	13,7	14,3	14,7	15,5	14,4	15,0	15,8	14,9	14,2	14,7	14,3	14,2	14,7	0,5
1		$ γ_B, δγ_B ≈ 1o $	51,8	52,4	51,4	52,6	48,8	51,7	50,4	46,3	49,1	54,2	53,5	54,2	51,4	0,5
_		$φ_{\rm B}$, $δφ_{\rm B} ≈ 1^{\rm o}$	0,0	34,5	57,4	89,1	119,9	152,1	182,8	209,4	239,9	268,6	294,1	329,2	<u> </u>	
		B _x (±0,2) nT	18,6	15,3	8,6	0,4	-9,2	-15,0	-18,4	-15,3	-8,4	0,50	9,0	15,6		
2	6,0	B _ψ (±0,2) Π B _z ±(0.2) nT	12.5	9,4 12.2	13,3	18,4	13,5	12.3	-0,2	-8,7	12.8	12.0	12.5	-9,0	12.3	0.3
		B , δB=0,2 nT	22,4	21,7	21,3	21,9	21,5	21,4	22,2	21,7	21,9	22,0	21,7	22,2	21,8	0,3
		γ _B , δγ _B =0,7°	56,1	55,8	55,6	57,3	56,1	55,0	56,0	54,2	54,2	56,9	54,8	54,4	55,5	0,3
_		$φ_{\rm B}, \delta φ_{\rm B}=0,6^{\circ}$	0,0	31,6	60,7	88,8	121,0	148,8	180,6	209,6	241,7	271,6	300,5	330,0	<u> </u>	
		B _x (±0,2) h1 B _y (±0.2) hT	21,4	18,1	10,5	-0,4	-10,0	-18,4 11 1	-20,7	-18,1	-10,3	-0,60	-18.3	-10.5		
3	9,0	B _z ±(0,2)nT	13,4	13,0	13,4	12,5	12,6	12,9	12,4	12,8	13,6	13,5	13,3	13,0	13,0	0,3
		B , δB=0,2 nT	25,2	24,8	24,8	24,9	24,4	25,1	24,1	24,6	25,2	25,4	25,1	24,9	24,9	0,3
		$\gamma_{\rm B}, \delta\gamma_{\rm B} = 0.6^{\circ}$	57,9	58,3	57,4	59,8	58,9	59,0	59,1	58,6	57,3	57,9	58,0	58,5	58,4	0,3
		φ _B , θφ _B =0,5 B _a (+0,2) nT	22.3	19.3	11.0	-0.3	-11.4	-19.5	-22.3	-19.9	-11.3	-0.40	11.3	19.2		
		B _ψ (±0,2) nT	0,0	11,5	19,5	22,6	19,4	11,4	-0,3	-11,4	-19,2	-22,2	-19,8	-11,7		
4	12,0	B _z ±(0,2)nT	13,5	13,2	13,0	12,8	13,4	13,5	13,4	13,7	13,8	13,7	13,5	13,2	13,4	0,2
		B , δB=0,2 nT	26,1	26,1	25,9	26,0	26,2	26,3	26,0	26,7	26,2	26,1	26,5	26,1	26,2	0,2
		φ _B , δφ _B =0,5°	0.0	30.8	59,9 60.6	90.8	120.4	149.7	180.8	209.8	239.5	269.0	299,4	328.6	59,2	0,2
		B _x (±0,2) nT	23,4	20,0	12,0	0,2	-11,8	-20,4	-23,2	-20,5	-12,1	-0,30	11,2	20,2		
		B _ψ (±0,2) nT	0,0	11,7	20,1	23,1	19,8	12,0	-0,3	-11,3	-20,3	-23,6	-20,3	-11,2		
5	15,0	B _z ±(0,2)nT	14,0	13,7	13,8	13,7	13,8	13,6	13,3	13,2	13,5	13,4	13,9	13,7	13,6	0,2
		B , 0B=0,2 Π1 V _B , δV _B =0.6 [°]	27,3 59.1	26,9 59.4	27,2 59.5	26,9 59.3	26,9	60.1	60.2	26,9 60.6	60.3	60.4	27,0 59.1	26,9 59.3	27,0 59.7	0,2
		φ _B , δφ _B =0,5°	0,0	30,3	59,2	89,5	120,8	149,5	180,7	208,9	239,2	269,3	298,9	331,0		- /
		B _x (±0,2) nT	23,8	20,8	12,7	0,2	-12,3	-21,4	-23,6	-20,1	-12,7	-0,60	11,8	20,5		
6	18.0	B _ψ (±0,2) nT	0,0	11,4	20,3	23,8	20,1	11,3	-0,3	-12,6	-20,7	-23,8	-21,1	-12,4	12.0	0.1
0	10,0	$B_z \pm (0,2)$ nT B. δB=0.2 nT	27.6	27.4	13,9 27.7	27.6	27.3	14,3 28.1	27.4	27.4	27.9	27.4	13,8 27.8	27.7	27.6	0,1
		γ _B , δγ _B =0,5°	59,7	60,0	59,9	59,7	59,6	59,4	59,3	59,8	60,6	60,4	60,3	59,7	59,9	0,2
		φ _B , δφ _B =0,5°	0,0	28,7	58,0	89,5	121,5	152,2	180,7	212,1	238,5	268,6	299,2	328,8		
		B _x (±0,2) nT	24,3	21,1	11,7	-0,4	-12,4	-21,3	-24,0	-20,3	-12,3	0,60	11,4	21,4	<u> </u>	
7	21.0	B _ψ (±0,2) nT B +(0,2)nT	0,0	12,3	21,4	23,8	20,2	11,4 13.4	0,4	-12,2 13.8	-21,0 13.9	-24,4 13.6	-21,1	-11,7 14.2	13.9	0.2
[_,-	B , δB=0,2 nT	28,2	28,2	28,2	27,6	27,3	27,6	27,8	27,4	28,0	27,9	27,8	28,2	27,9	0,3
		γ _B , δγ _B =0,5°	59,5	60,2	59,8	59,5	60,2	61,0	59,7	59,8	60,3	60,9	59,7	59,8	60,0	0,3
\vdash		$φ_{\rm B}, \delta φ_{\rm B}=0,5^{\circ}$	0,0	30,2	61,3	91,0	121,5	151,8	179,0	211,0	239,6	271,4	298,4	331,3	<u> </u>	
		B _x (±0,2) nT B _x (±0,2) nT	24,2	20,9	12,0	0,3	-12,0	-21,2	-24,3	-21,4	-12,4	-0,20	12,4	20,8		
8	24,0	$B_{\psi}(\pm 0,2)$ m $B_{z} \pm (0,2)$ nT	14,0	13,9	13,8	14,2	14,4	14,0	14,2	13,8	13,6	13,7	13,9	14,1	14,0	0,2
		B , δB=0,2 nT	28,0	28,0	27,8	28,2	28,0	28,0	28,1	27,9	27,8	27,7	27,8	28,0	27,9	0,1
		γ _B , δγ _B =0,5°	60,0	60,2	60,3	59,8	59,1	60,0	59,7	60,4	60,7	60,4	60,1	59,8	60,0	0,1
		Φ _B , δΦ _B =0,5°	0,0	30,5	60,3	89,3	120,0	151,1	180,5	208,0	239,2	269,5	300,9	329,2		

Πίνακας B14α. Μετρήσεις σε θέσεις στροφής των δοκιμίων του αγγείου 6, με τη διάταξη αισθητήρων/μαγνητών. Το μαγνητικό πεδίο B αποκτά σταθερή τιμή, όταν το πάχος της στήλης γίνεται μεγαλύτερο από αυτό στην σκιασμένη περιοχή του πίνακα.

Βάση αγγείου 6																
															1	
	10cm															
	Toem							Πίν	ακας Β	14β						H ca
<u> </u>	Δ	ιοκίμιο	0 0	Μετρήσεις σε θέσεις στροφής $φ_{\delta}$ (±0,5°) κυλινδρικών δοκιμίων εντός του σωληνοειδούς								<u> </u>				
	:1 mm		0-	30-	60°	90°	120-	150°	180	210	240*	2/0	300°	330	ι 	δι
		B _x (±0,2) nT B ₊ (±0,2) nT	24,0	21,3	20.5	-0,6	-12,7	-20,6	-24,0	-20,6	-11,2	-0,60	-21.0	-12 3		
		B , ±(0,2)nT	13,9	13,6	14,1	14,0	14,0	13,9	13,8	13,3	13,4	14,0	14,1	14,4	13,9	0,2
	18mm	B , δB=0,2 nT	27,7	27,8	28,0	27,5	28,0	28,0	27,7	27,6	27,7	28,4	28,3	27,8	27,9	0,2
		γ _B , δγ _B =0,5°	59,9	60,7	59,8	59,4	60,0	60,2	60,1	61,2	61,1	60,5	60,1	58,8	60,1	0,2
	- ()	φ _B , δφ _B =0,5°	0,0	28,4	57,8	91,5	121,7	148,1	179,0	211,5	242,5	268,6	301,2	328,9		
L.	Στήλη ι	n πλακιδίων	Διάμ	ιετρος δα	οκιμίου/τ	ιλακιδίων	$v = 40,0(\pm 0)$),5)mm	400%	24.0%	2409	2700	2000	2200	T -	6-
Ln	±0,2mm		0 ⁻	30 ⁻	60°	90-	120	150°	180	210	240	270	300-	330	<u>ر</u>	δι
m		$B_x (\pm 0, 2) \text{ mT}$	11,6	10,8	5,7	0,4	-5,0	-9,8	-11,6	-10,1	-5,0	-0,50	-99	9,7		
	3,0	$B_{\psi}(\pm 0,2)$ nT $B_{\tau} \pm (0,2)$ nT	9.2	8.9	9.0	9.2	8.7	9.6	9.7	10.0	9.6	9.3	9.0	δούς300°330°12,720,4-21,0-12,314,114,428,327,860,158,8301,2328,95,39,7-9,9-5,49,08,914,414,25,39,7-9,9-5,49,08,914,414,251,351,3298,2330,98,516,1-16,0-8,512,212,121,821,956,056,4298,0332,211,218,7-17,8-10,213,013,124,725,056,056,4298,0332,211,218,713,313,020,7329,013,313,026,026,259,360,229,7329,011,020,713,313,627,227,159,560,113,813,514,420,827,227,560,360,4301,9328,211,420,821,412,513,513,621,4-12,513,513,627,227,560,360,4301,9328,211,420,822,727,560,360,431,513,62	9.3	0.3
1		B , δB=0,2 nT	14,8	14,6	14,6	14,6	14,3	14,8	15,1	15,3	14,8	14,9	14,4	14,2	14,7	0,3
		γB, δγB ≈ 1o	51,6	52,4	52,0	50,9	52,6	49,6	50,1	49,1	49,6	51,3	51,3	51,3	51,0	0,3
		φ _B , δφ _B ≈ 1 [°]	0,0	20,8	60,3	88,0	119,5	150,3	181,5	209,0	240,3	267,5	298,2	330,9		
		B _x (±0,2) nT	18,0	15,4	8,4	-0,4	-9,5	-15,5	-18,0	-15,1	-9,6	0,60	8,5	16,1	i i i i i i i i i i i i i i i i i i j i j i j i j i j i j i j i j i j <td< th=""><th></th></td<>	
2	6.0	$\mathbf{B}_{\psi}(\pm 0,2)$ n I $\mathbf{B}_{\psi}(\pm 0,2)$ n T	0,0	9,1	15,9	18,0	15,5	9,6	-0,4	-9,7	-15,1	-18,0	-16,0	-8,5	12.1	0.2
-	0,0	B . δB=0.2 nT	21.8	21.6	21.5	21.4	21.7	21.9	21.9	21.8	21.7	21.6	21.8	21.9	21.7	0,2
		$\gamma_{\rm B}, \delta \gamma_{\rm B} = 0,7^{\circ}$	55,7	55,9	57,0	57,2	56,8	56,2	55,2	55,4	55,7	56,3	56,0	56,4	56,2	0,1
		φ _B , δφ _B =0,6 [°]	0,0	30,6	62,2	91,3	121,5	148,2	181,3	212,7	237,6	271,9	298,0	332,2		
		B _x (±0,2) nT	21,1	18,4	10,1	-0,6	-11,2	-18,6	-21,1	-18,7	-11,2	-0,30	11,2	18,7		
2		\mathbf{B}_{ψ} (±0,2) nT	0,0	10,3	18,5	21,1	17,9	10,1	-0,5	-9,8	-17,9	-21,1	-17,8	-10,2	12.0	0.2
3	9,0	$\mathbf{B}_{z} \pm (0,2)$ n1 $\mathbf{B}_{z} \delta \mathbf{B} = 0.2 \text{ pT}$	13,1 24.8	13,0	12,9	24.6	24.7	13,0 24.8	24.6	24.9	13,4	24.9	13,0	13,1	24.8	0,2
		ν _B . δν _B = 0.6°	58.2	58.3	58.5	59.0	58.8	58.4	59.2	58.0	57.6	58.0	58.3	58.4	58.4	0,1
		φ _B , δφ _B =0,5 [°]	0,0	29,2	61,4	91,6	122,0	151,5	181,4	207,7	238,0	269,2	302,2	331,4		
		B _x (±0,2) nT	22,6	19,0	10,7	-0,4	-10,6	-20,5	-22,6	-19,8	-10,8	-0,20	10,4	19,5	12,1 0,2 21,7 0,1 56,2 0,1 13,0 0,2 24,8 0,1 58,4 0,1 13,4 0,2 26,3 0,2 59,3 0,2	
	12.0	B _ψ (±0,2) nT	0,0	12,2	19,8	22,4	20,2	10,7	0,5	-10,8	-19,8	-22,5	-19,8	-11,7		
4	12,0	B _z ±(0,2)n1 B δB-0.2 nT	13,7	13,4	13,1	12,9	13,2	13,7	13,6	13,8	13,9	13,5	13,3	13,0	13,4	0,3
		$v_{\rm B}$, $\delta v_{\rm B} = 0.6^{\circ}$	58.8	59.3	59.8	60.1	59.9	59.4	59.0	58.5	58.4	59.0	59.3	60.2	59.3	0,2
		φ _B , δφ _B =0,5°	0,0	32,7	61,6	91,0	117,7	152,4	178,7	208,6	241,4	269,5	297,7	329,0		
Iber No Πίνακας B14 Δοκίμο Μετρήσεις στθόμς Φε (10.57) καλυδρασ με (10.2) nT 20.6 120° 180° L±1 mm L O 30° 60° 30° 120° 130° 130° B ₁ (20.2) nT 20,0 11,5 20,5 23,7 20,6 12,8 0,4 B ₁ (20.2) nT 13,9 13,6 14,1 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14,1 179,0 L±0.2mm L O O 60° 60° 90° 120' 160° 180° B (t0.2) nT 1,6 10,0 11,3 9,9 5,6 -0,3 8 B (t0.2) nT 1,6 10,0 11,3 9,9 5,26 -0,3 8 B (t0.2) nT 1,6 10,0 11,3 13,0 12,0 13,0 13,0 13,0	-20,3	-11,5	-0,60	11,0	20,7											
_		Β _ψ (±0,2) nT	0,0	11,3	19,7	23,5	19,9	11,5	-0,1	-11,5	-20,1	-23,1	-20,7	-11,0	i i i i	
5	15,0	B _z ±(0,2)nT	13,6	13,9	14,0	13,6	14,0	13,9	13,5	13,0	13,7	13,3	13,8	13,5	13,7	0,2
		B , $OB=0,2 \Pi$ V _D , δ V _D =0.6°	27,0 59.7	20,8 58.8	58.9	59.9	59.1	27,4 59.5	60.0	60.9	20,9 59.4	60.1	59.5	60.1	59.7	0,2
	18mm Στήλη ±0,2mm 3,0 6,0 9,0 12,0 15,0 18,0 21,0 24,0	φ _B , δφ _B =0,5°	0,0	29,5	58,0	88,8	121,7	150,8	180,2	209,5	240,2	268,5	298,0	332,0	00,1	0,2
		B _x (±0,2) nT	23,9	21,2	11,4	-0,4	-11,6	-20,4	-23,9	-20,7	-12,2	-0,70	12,5	20,3		
		Β _ψ (±0,2) nT	0,0	11,4	21,0	23,9	20,9	12,4	-0,2	-12,1	-20,5	-23,9	-20,1	-12,6		
6	18,0	B _z ±(0,2)nT	13,6	13,9	14,2	14,2	14,0	14,2	13,7	13,7	13,6	13,3	13,5	13,6	13,8	0,3
		B , OB=0,2 n1	27,5	27,8	27,8	27,8	59.6	27,8	27,5 60.2	27,6	27,5	27,4 60.9	27,2 60.3	27,5 60.4	27,6	0,2
		$φ_{B}$, $\delta φ_{B}=0.5^{\circ}$	0.0	28.3	61.5	-89.0	119.0	148.7	180.5	210.3	239.2	268.3	301.9	328.2	00,0	0,2
		B _x (±0,2) nT	24,2	20,7	12,6	0,2	-12,9	-20,8	-24,2	-20,6	-12,7	-0,40	11,4	20,8		
		Β _ψ (±0,2) nT	0,0	12,1	20,7	24,1	20,5	12,3	0,3	-12,8	-20,7	-24,1	-21,4	-12,5		
7	21,0	B _z ±(0,2)nT	14,0	13,8	14,0	13,8	13,5	13,7	14,2	13,6	14,0	13,6	13,8	14,0	13,8	0,2
		B , δB=0,2 nT	28,0	27,7	28,0	27,8	27,7	27,8	28,1	27,8	28,0	27,7	27,9	28,0	27,9	0,1
		$\boldsymbol{\gamma}_{B}, \boldsymbol{\upsilon}\boldsymbol{\gamma}_{B} = \boldsymbol{\upsilon}, \boldsymbol{\upsilon}$ φ _B , $\boldsymbol{\delta}$ φ _C = 0, 5 [°]	0.0	30.3	58.7	269 5	122.2	149.4	59,0 179 3	211.9	238 5	269.0	298 N	329.0	00,2	0,1
		B _x (±0.2) nT	24.2	21.0	11.6	-0.4	-11.7	-21.3	-24.2	-21.1	-11.9	0.50	12.5	20.6		
		B _ψ (±0,2) nT	0,0	12,2	21,4	24,0	21,4	11,5	0,3	-11,7	-21,1	-24,2	-20,8	-12,7		
8	24,0	B _z ±(0,2)nT	13,7	14,2	14,0	14,0	13,8	13,7	13,0	13,7	14,0	13,7	14,0	13,7	13,8	0,2
		B , δB=0,2 nT	27,8	28,1	28,1	27,8	28,0	27,8	27,5	27,7	28,0	27,8	28,0	27,8	27,9	0,1
		$\gamma_{\rm B}, \delta\gamma_{\rm B} = 0.5^{\circ}$	60,5	59,7	60,1	59,7	60,5	60,5	61,8	60,4	60,0	60,5	60,0	60,5	60,3	0,1
		φ _B , υψ _B =0,5	0,0	30,2	01,5	-89,0	118,/	151,6	179,3	209,0	240,6	91,2	301,0	328,3		

Πίνακας B14β Μετρήσεις σε θέσεις στροφής των δοκιμίων του αγγείου 6 εντός του πηνίου. Το μαγνητικό πεδίο Β αποκτά σταθερή τιμή, όταν το πάχος της στήλης γίνεται μεγαλύτερο από αυτό στην σκιασμένη περιοχή του πίνακα.

Βάση αγγείου 4		Μετρήα	σεις κυλινδρικά	νδρικών δοκιμίων στην κατεύθυνση της Βχψ							
n	L (±0,2)mm	D _n (±0,2)mm	Β_{xψ}(± 0,2)nT	B _z (±0,2)nT	B (±0,2)nT	γ _B ^o	δγΒο	d=1/2.L.εφγ _B (mm)	∆d (mm)		
1		25,0	38,4	17,6	42,2	65,4	0,3				
2		24,0	38,3	17,7	42,2	65,2	0,3				
3		23,0	38,3	17,6	42,2	65,3	0,3				
4	20,0	22,0	38,2	17,7	42,1	65,1	0,3	21,6	0,3		
5		21,0	38,1	17,6	42,0	65,2	0,3				
6		20,0	37,9	17,7	41,8	65,0	0,3				
7		19,0	37,8	17,5	41,7	65,2	0,3				
8		18,0	37,6	17,5	41,5	65,0	0,3				
9		17,0	37,4	17,4	41,2	65,1	0,3				
10		16,0	37,1	17,4	41,0	64,9	0,3				
11		15,0	36,8	17,3	40,7	64,8	0,3				
12		14,0	36,5	17,4	40,4	64,5	0,3				
13		13,0	36,0	17,2	39,9	64,5	0,3				
14		12,0	35,5	17,0	39,4	64,4	0,4				

`Πίνακας B15. Μετρήσεις στη διεύθυνση της $\vec{B}_{x\psi}$ των δοκιμίων του αγγείου 4, με τη διάταξη αισθητήρων/μαγνητών. Το μαγνητικό πεδίο B αρχίζει να μειώνεται, όταν η απόσταση D_n μεταξύ της θέσης μέτρησης και του άκρου του δοκιμίου γίνεται μικρότερη από αυτήν στην σκιασμένη περιοχή του πίνακα.

Г

Báran e		Μετούά	σεις κυλινδοικά						
n	L (±0,2)mm	D _n (±0,2)mm	Β_{xψ}(± 0,2)nT	B _z (±0,2)nT	B (±0,2)nT	γ _B ^o	δγ _B ^o	d=1/2.L.εφγ _B (mm)	∆d (mm)
1		25,0	60,2	16,8	62,5	74,4	0,2		
2		24,0	60,3	16,6	62,5	74,6	0,2		
3		23,0	60,2	16,7	62,5	74,5	0,2		
4	12,0	22,0	60,1	16,6	62,4	74,6	0,2	21,7	0,3
5		21,0	59,9	16,5	62,1	74,6	0,2		
6		20,0	59,7	16,5	61,9	74,6	0,2		
7		19,0	59,4	16,5	61,6	74,5	0,2		
8		18,0	59,1	16,4	61,3	74,5	0,2		
9		17,0	58,9	16,4	61,1	74,4	0,2		
10		16,0	58,4	16,4	60,7	74,3	0,2		
11		15,0	58,0	16,3	60,2	74,3	0,2		
12		14,0	57,7	16,3	60,0	74,2	0,2		
13		13,0	56,8	16,1	59,0	74,2	0,2		
14		12,0	56,0	15,9	58,2	74,1	0,2		

`Πίνακας B16. Μετρήσεις στη διεύθυνση της $\vec{B}_{x\psi}$ των δοκιμίων του αγγείου 5, με τη διάταξη αισθητήρων/μαγνητών. Το

μαγνητικό πεδίο B αρχίζει να μειώνεται, όταν η απόσταση D_n μεταξύ της θέσης μέτρησης και του άκρου του δοκιμίου γίνεται μικρότερη από αυτήν στην σκιασμένη περιοχή του πίνακα.

				ΑΓΓΕΙΟ 6	7				
Βάση α	αγγείου 6	Μετρήα	σεις κυλινδρικά	- 10 cm					
n	L (±0,2)mm	D _n (±0,2)mm	Β_{xψ}(±0,2) nT	B _z (±0,2)nT	B (±0,2)nT	γ_B^o	$\delta \gamma_B{}^o$	d=1/2.L.εφγ _B (mm)	∆d (mm)
1		24,0	24,2	13,3	27,6	61,2	0,5		
2		23,0	24,2	13,2	27,6	61,4	0,5		
3		22,0	24,1	13,1	27,5	61,5	0,5		
4		21,0	24,2	13,2	27,6	61,4	0,5		
5	21.0	20,0	24,2	13,2	27,6	61,4	0,5	19,3	0,3
6	,-	19,0	24,1	13,1	27,4	61,5	0,5		
7		18,0	24,0	13,1	27,3	61,4	0,5		
8		17,0	23,9	13,1	27,3	61,3	0,5		
9		16,0	23,8	13,1	27,2	61,2	0,5		
10		15,0	23,6	13,0	26,9	61,2	0,5		
11		14,0	23,3	13,0	26,7	60,8	0,5		
12		13,0	23,0	12,9	26,4	60,7	0,6		
13		12,0	22,8	12,8	26,1	60,7	0,6		
14		11,0	22,4	12,8	25,8	60,3	0,6		

Πίνακας B17. Μετρήσεις στη διεύθυνση της $\vec{B}_{x\psi}$ των δοκιμίων του **αγγείου 6**, με τη διάταξη αισθητήρων/μαγνητών. Το μαγνητικό πεδίο B αρχίζει να μειώνεται, όταν η απόσταση D_n μεταξύ της θέσης μέτρησης και του άκρου του δοκιμίου γίνεται μικρότερη από αυτήν στην σκιασμένη περιοχή του πίνακα.
П	NAKAΣ B18		00													ſ	Na	
- 110	wakay a	6	906							АГ	ΓΕΙΟ	4						7-4
L=	=40,5±0,2	10cm		βγδ	Μετ	ρήσεις	; από το	ν κάθετο	και το	ον παρά	ίλληλο	ο αισθητήρα	στην ίδια	θέση μέτ	թղσղգ	5		KI
	(mm)			Βάστ	(B)							Πλευρές(s)					Y.Y	and the second
n	$\begin{array}{c} D_n (mm) \\ \pm 0,2 \end{array}$	B _{xψ} ±(/(nT)),2	$\begin{array}{c} \boldsymbol{B_{z}}^{\scriptscriptstyle L}(nT) \\ \pm 0,2 \end{array}$	$\begin{array}{c} \boldsymbol{B_B}(nT) \\ \pm 0,2 \end{array}$	γ _B ±0,2	2° B	$\pm 0,2$	B₂″ ±((nT)),2	$\mathbf{B}_{\mathbf{s}}(\mathbf{n})$	$\begin{array}{c} T \\ 2 \end{array} \qquad \gamma_s^{\circ}$	δγs°	$\lambda_{x\psi}$	Ý ±	λ _{xψ} > :0,02	λ_z	<λ _z > ±0,02
1	13,0	36	5,2	17,3	40,1	64,	5	19,5	32	2,0	37,	5 58,6	0,2	1,86			1,85	
2	14,6	36	5,8	17,4	40,7	64,	7	19,6	32	2,9	38,3	3 59,2	0,2	1,88		_	1,89	
3	16,2	37	7,1	17,5	41,0	64,	7	19,6	33	3,2	38,	6 59,4	0,2	1,89		-	1,90	
4	17,8	37	7,6	17,6	41,5	64,	•	19,7	33	3,5	38,9	9 59,5	0,1	1,91		-	1,90	
5	19,4	37	7,9	17,6	41,8	65,	1	19,8	33	3,7	39,	1 59,6	0,1	1,91	1	1 91	1,91	1 91
0	21,0	36	3,1 2.2	17,6	42,0	65,	2	19,8	33	3,9	39,:	3 59,7	0,1	1,92	-	-,,,,,-	1,93	1,51
0	22,0	30	5,5 D 4	17,7	42,2	65, 65	2	19,8	34	+,U 1 1	39,3	5 59,8	0,1	1,93		-	1,92	
0	24,2	20	5,4 2 7	17,7	42,3	65,	> 1	19,9	34	+,⊥ 1 2	20/	5 59,7	0,1	1,93		F	1,93	
10	25,8	38	s, 7 3.8	17,7	42.6	65.	5	20,0	34	+,2 1.3	39.	7 59.8	0,1	1,94		F	1,94	
			.,-	,.	/*	,				.,-	,		-/-	-/			-/-	
-			(b) (s)		Μετρ	ήσεις μ	ιε την ί	δια τοπο	θέτησι	η του α	ισθητι	ήρα στη βάσι	η (Β) και σ	στις πλευ	ρές (s))		
Πί	ίνακας β	()	b)	(s)								(s)	(b)					
n	$\begin{array}{c} \mathbf{D_n} \ (mm) \\ \pm 0,2 \end{array}$	$\mathbf{B}_{\mathbf{x}\psi}^{\prime\prime}_{\pm(\mathbf{x}\psi)}$	(nT) 0,2	$\mathbf{B}_{\mathbf{z}}^{\prime\prime}(\mathbf{n}\mathbf{T})$ $\pm 0,2$	B ^{//} (nT) ±0,2	γ″	δγ	″ <γ ±0	/">),1°	d ^{//} (r ±0	nm)),3	$\mathbf{B}_{\mathbf{x}\mathbf{\psi}}^{\mathbf{L}}(\mathbf{n}\mathbf{T})$ $\pm 0,2$	$\mathbf{B}_{\mathbf{z}}^{L}(\mathbf{n}T) \pm 0,2$	B [⊥] (±(nT)),2	γ^{L} $\pm 0,3^{\circ}$	<γ [⊥] > ±0,1°	$\mathbf{d}^{L}(mm) \pm 0,3$
1	13.0	36	5.2	32.0	48.3	48.5	0.2		,		/	19.5	17.3	26	5.1	48.4		,
2	14,6	36	5,8	32,9	49,4	48,2	0,2	1				19,6	17,4	26	, 5,2	48,4		
3	16.2	37	, 7.1	33.2	49.8	48.2	0.2					19.6	17.5	26	5.3	48.2		
4	17,8	37	, 7,6	33,5	50,4	48,3	0,2	!				19,7	17,6	26	, 5,4	48,2		
5	19,4	37	7,9	33,7	50,7	48,4	0,2	!	•	45	6	19,8	17,6	26	5,5	48,4		
6	21,0	38	3,1	33,9	51,0	48,3	0,1	48	3,4°	45	,0	19,8	17,6	26	5,5	48,4	48,4°	45,5
7	22,6	38	3,3	34,0	51,2	48,4	0,1					19,8	17,7	26	5,6	48,2		
8	24,2	38	3,4	34,1	51,4	48,4	0,1					19,9	17,7	26	5,6	48,3		
9	25,8	38	3,7	34,2	51,6	48,5	0,1					20,0	17,7	26	5,7	48,5		
10	27,4	38	3,8	34,3	51,8	48,5	0,1					20,0	17,7	26	5,7	48,5		
		_				_			Διορ	οθωμέν	ες μετ	ρήσεις						
Πίν	ακας γ	- /	/	*	Bć	ίση(B)	*	1				*	- //	Πλε 	υρές(s	s) *		1
n	$D_n (mm)$ +0.2	$\mathbf{B}_{\mathbf{x}\mathbf{\psi}''}$	(nT)	$\mathbf{B}_{\mathbf{z}}(\mathbf{nT})$	$\mathbf{B}_{\mathbf{B}}(\mathbf{n}\mathbf{T})$		$\gamma_{\mathbf{B}}$	$\ell_{\rm E}$; (δℓ	3	$\mathbf{B}_{\mathbf{x}\mathbf{\psi}}(\mathbf{n}\mathbf{T})$	$\mathbf{B}_{\mathbf{z}}''(\mathbf{nT})$	$\mathbf{B}_{s}(n)$	T)	γ_{s}	ls	δls
	±0,2	±ί),2	±0,5	±0,4	1	:0,5°	(mr	n)	(mn	1)	±0,6) ±0,2	±0,5		±0,5°	(mm)	(mm)
1	13,0	36	ō,2	33,0	49,0		47,6	17,	,6	0,3	3	37,3	32,0	49,1		40,6	20,0	0,4
2	14,6	36	5,8	33,2	49,6		47,9	19,	,7	0,3	3	37,5	32,9	49,9		41,3	22,1	0,4
3	16,2	37	',1	33,4	49,9		48,0	21,	,8	0,3	}	37,5	33,2	50,1		41,5	24,4	0,4
4	17,8	37	′,6	33,6	50,4		18,2	23,	9	0,3	-	37,7	33,5	50,4		41,7	26,8	0,4
5	19,4	37	7,9 N 1	33,6	50,7		18,4	25,	9	0,3	-	37,8	33,7	50,7		41,7	29,2	0,4
0 7	21,0	38),⊥ > >	33,0 22.0	50,8		+ő,0 10 c	28,	1	0,5	<u>}</u>	3/,ð 27.9	33,9	50,8		41,9	31,5	0,4
8	22,0	36 20	9,5 2 ∕I	33,8	51,1		+0,0	30,	2	0,3	, ,	37,8 38.0	54,U 3/1 1	50,9		41,9	36.2	0,4
0	24,2 25 8	36 20	9,4 8 7	33,8 32.8	51,2		+0,0 18 9	32,	3	0,4		30,0	34,1 34 2	51,1		41,9	30,3	0,4
10	23,8	30	,,, 3.8	33.8	51.5		18.9	34,	3	0,4	<u> </u>	38,2	34 3	51.5		41.9	41 0	0,5
	<i>⊏,</i> ,⊤	50	.,0	33,0	51,5		,.	50,		0,4		30)£	5 6,5	51,7		,J	11,0	5,5
		n	D	(mm)	B $(+0.2)$	nT)	R	(+0.2nT)	I		M (m	nA/m)		M	m A /m)		γ^0
Пív	ακας δ	10	D _n	(1111)	υχψ (±0,2)		Dz	(-0,2111)			20.2	<u>102</u>	_	χψ(1		1		
1100	and y U	10	27	,4±0,2	20,0			1/,/			28,2	.±U,3		31,8	s±∪,3		48	5,5±0,3

Πίνακας B18. Ενδεικτικές μετρήσεις της ίδιας συνιστώσας (B_{xy}, B_z) του πεδίου από τον κάθετο (L) και τον παράλληλο (//) αισθητήρα σε ισαπέχουσες θέσεις κατά D_n από τα άκρα, στη βάση (B) και στην πλευρά (s) του κυλινδρικού δοκιμίου από τη βάση του αγγείου 4.

							αγγείο 4					
Πίν	ακαςΒ19		Me	τρήσεις της Ι	B _z από τους κάθ	ετους αισθητήρες		1330 T				
n	$\mathbf{B}_{\mathbf{z}}^{\perp}$	D _n	X n	Ψ _n	$(\mathbf{x}_{n} - \overline{\mathbf{x}})^{2}$	$\psi_n(\mathbf{X}_n - \overline{\mathbf{X}})$	$(\psi_n - \overline{\psi})^2$	1320 - 1310 -				*
1	17,3	13,0	5917,2	1319,1	9103654,3	3979929,8	1719,2	1300 -			<u> </u>	
2	17,4	14,6	4691,3	1304,0	3209035,8	2335869,2	694,1	1290 -				
3	17,5	16,2	3810,4	1289,1	828939,7	1173667,6	131,9	1280			y = 0,0134x + 1	238,7
4	17,6	17,8	3156,2	1274,5	65655,7	326565,7	9,7	12/0			R ² = 0,96	88
5	17,6	19,4	2657,0	1274,5	59001,9	-309576,0	9,7	1250 +		I	1 1	
0	17,6	21,0	2267,6	12/4,5	399878,9	-805932,5	9,7	0	1000 200	0 3000 4	000 5000	6000 7000
8	17,7	22,0	1957,9	1200,1	007409,9 1/21817/	-110/120,0	305.6	-				
9	17.7	25.8	1502.3	1260.1	19533/1 5	-1761174 1	305.6		h └	δh ∟	w	δw ∟
10	17,7	23,8	1332.0	1260,1	2458466.9	-1975811.0	305.6		0 0134	0.000g	^w z 1238 7	2 8
10	±0,2nT	±0,2mm	<u>x</u>	$\overline{\Psi}$	$\Sigma(x - \overline{x})^2$	$\Sigma \psi (x - \overline{x})$	$\Sigma(w - \overline{w})^2$	ΣR^{2}	$M^{\perp}(A/m)$	δM [⊥]	α^{\perp} (m)	δa^{\perp}
			2899,9	1277,6	20387282,0	273846,5	3796,9	118,5	0,02841	0,00003	0,00664	0,00002
A	γγείο 4		Μετ	οήσεις της Β	από τους κάθ	θετους αισθητήρες	i	1050 _T				
n	D⊥	D	v		$\sqrt{-2}^2$		$(\rightarrow)^2$	1040 -				
	Β _{xψ}	D _n	X _n	Ψ _n	$(X_n - X)$	$\Psi_n(X_n - X)$	(ψ _n -ψ)	1030				
1	19,5	13,0	5917,2	1038,2	9103654,3	3132552,7	781,9	1030				
2	19,6	14,6	4691,3	1027,7	3209035,8	1840919,8	302,6	1020				
5	19,6	16,2	3810,4	1027,7	828939,7	935640,6	302,6	1010 +	•		v - 0.011	v ± 079 20
4	19,7	1/,8 10 /	3156,2	1017,2	59001 0	200653,4	48,8 10.6	1000 -		y = 0,011x + 978 R ² = 0,901		
6	19,0	21.0	2037,0	1007,0	300878.0	-636786.2	10,6	990 -		R ² = 0,90		0,5017
7	19.8	22,6	1957.9	1007,0	887489.9	-948661.0	10,6	980 -	· · ·	1		
8	19,9	24,2	1707,5	996,9	1421817,4	-1188708,9	178,4	0	1000 200	0 3000 4	000 5000	6000 7000
9	20,0	25,8	1502,3	987,0	1953341,5	-1379395,6	542,9		$b_{_{x\!\psi}}^{^{\perp}}$	$\delta b_{_{x\!\psi}}^{^{\perp}}$	$w_{x\psi}^{\perp}$	$\delta w_{x\psi}^{\perp}$
10	20,0	27,4	1332,0	987,0	2458466,9	-1547504,5	542,9		0,0110	0,0013	978,4	4,1
	±0,2nT	±0,2mm	x	$\overline{\Psi}$	$\Sigma(x_n - \overline{x})^2$	$\Sigma \psi_n (\mathbf{x}_n - \overline{\mathbf{x}})$	$\Sigma(\psi_n - \overline{\psi})^2$	ΣR_i^2	M^{\perp}_{xyy} (A/m)	δM_{xw}^{\perp}	α^{\perp}_{xw} (m)	$\delta \alpha_{xw}^{\perp}$
			2899,9	1010,3	20387282,0	224107,2	2732,0	268,5	0,0320	0,0001	0,0068	0,0004
A	γγείο 4		Мото	árcic me B	amá mone magái	1 1 0 1		200	•		1	1
			IVISIO		uno root nubun	ιληλους αισθητηρες		390 T			•	
n	D ^{//}	D	v	$ OEGT \subseteq \mathbf{D}_{\mathbf{Z}}$	$(x - \overline{x})^2$	ληλους αισθητηρες	$(m, \vec{m})^2$	380			•	
n	B ^{//} _z	D _n	X _n	ψ_n	$\frac{(x_n - \overline{x})^2}{(x_n - \overline{x})^2}$		$(\psi_n - \overline{\psi})^2$	380 -			•	
n 1 2	B [∥] _z 32,0	D _n 13,0	X _n 5917,2	ψ _n 385,5	$(x_n - \overline{x})^2$ 9103654,3	$μ_n(x_n - \overline{x})$ 1163235,5	$(\psi_n - \overline{\psi})^2$ 1224,0	380 - 370 -			•	
n 1 2 3	B ^{//} z 32,0 32,9 33 2	D _n 13,0 14,6 16.2	X _n 5917,2 4691,3 3810.4	ψ _n 385,5 364,7 358 2	$ \begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 8289397 \end{array} $	ληλους αισθητηρες ψ _n (x _n -x̄) 1163235,5 653364,0 326095 7	$\frac{(\psi_{n} - \overline{\psi})^{2}}{1224,0}$ 201,1 58.1	380 - 380 - 370 - 360 -				
n 1 2 3 4	B ["] _z 32,0 32,9 33,2 33.5	D _n 13,0 14,6 16,2 17.8	X _n 5917,2 4691,3 3810,4 3156,2	ψn 385,5 364,7 358,2 351,8	$\frac{(x_n - \overline{x})^2}{9103654,3}$ 9103654,3 3209035,8 828939,7 65655,7		$ \begin{array}{c} (\psi_{n} - \overline{\psi})^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1.5 \\ \end{array} $	380 370 360 350				
n 1 2 3 4 5	B [#] z 32,0 32,9 33,2 33,5 33,7	D _n 13,0 14,6 16,2 17,8 19,4	x _n 5917,2 4691,3 3810,4 3156,2 2657,0	ψ _n 385,5 364,7 358,2 351,8 347,6	(x _n -x) ² 9103654,3 3209035,8 828939,7 65655,7 59001,9		$\begin{array}{c} (\psi_{n} - \overline{\psi})^{2} \\ \hline 1224,0 \\ 201,1 \\ \hline 58,1 \\ \hline 1,5 \\ \hline 8,6 \end{array}$	380 370 360 350		y=	0,0101x + 321,14	 4
n 1 2 3 4 5 6	B [∥] z 32,0 32,9 33,2 33,5 33,7 33,9	D _n 13,0 14,6 16,2 17,8 19,4 21,0	X n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6	ψ _n 385,5 364,7 358,2 351,8 347,6 343,5	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \end{array}$		$\begin{array}{c} (\psi_n - \overline{\psi})^2 \\ \hline 1224,0 \\ 201,1 \\ 58,1 \\ \hline 1,5 \\ 8,6 \\ 49,3 \\ \end{array}$	380 370 360 350 340		y =	0,0101x + 321,14 R ² = 0 9796	 1
n 1 2 3 4 5 6 7	B ^{//} z 32,0 32,9 33,2 33,5 33,7 33,9 34,0	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9	ψ _n 385,5 364,7 358,2 351,8 347,6 343,5 341,5	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \end{array}$	$\begin{array}{c} \psi_n(x_n - \overline{x}) \\ \hline \\ 1163235,5 \\ 653364,0 \\ 326095,7 \\ 90137,7 \\ -84437,0 \\ -217232,4 \\ -321724,1 \\ \end{array}$	$\begin{array}{c c} (\psi_n & -\overline{\psi})^2 \\ \hline 1224,0 \\ \hline 201,1 \\ \hline 58,1 \\ \hline 1,5 \\ \hline 8,6 \\ \hline 49,3 \\ \hline 81,7 \\ \end{array}$	380 370 360 350 340 330		y =	0,0101x + 321,14 R ² = 0,9796	4
n 1 2 3 4 5 6 7 8	B ^{//} 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2	X n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5	ψ _n 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \end{array}$	$\begin{array}{c} \psi_n(x_n-\overline{x})\\ \hline \\ 1163235,5\\ 653364,0\\ 326095,7\\ 90137,7\\ -84437,0\\ -217232,4\\ -321724,1\\ -404830,2\\ \end{array}$	$\begin{array}{c} \left(\psi_{n} \ \overline{-\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \end{array}$	380 - 370 - 360 - 350 - 340 - 330 -	2000	y =	0,0101x + 321,14 R ² = 0,9796 6000	4 8000
n 1 2 3 4 5 6 7 8 8	B ^{//} z 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3	ψn 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5	$\begin{array}{c} (x_n - \overline{x})^2 \\ \hline 9103654,3 \\ 3209035,8 \\ 828939,7 \\ \hline 65655,7 \\ \hline 59001,9 \\ \hline 399878,9 \\ 887489,9 \\ \hline 1421817,4 \\ \hline 1953341,5 \\ \hline \end{array}$	$\begin{array}{c} \psi_n(x_n-\overline{x})\\ \hline \\ 1163235,5\\ \hline \\ 653364,0\\ \hline \\ 326095,7\\ \hline \\ 90137,7\\ \hline \\ -84437,0\\ \hline \\ -217232,4\\ \hline \\ -321724,1\\ \hline \\ -404830,2\\ \hline \\ -471733,4\\ \hline \end{array}$	$\begin{array}{c} \left(\psi_n \cdot \overline{\psi}\right)^2 \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ \end{array}$	380 - 370 - 360 - 350 - 340 - 330 - 0	2000 b ^{///} z	y = 4000 $\delta b_z^{\prime\prime}$	$w_{z}^{''}$	4 8000 δw ^{//} _z
n 1 2 3 4 5 6 7 8 8 9 10	B ["] _z 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4	X Nitp 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0	ψn 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6	$\begin{array}{c} (x_n - \overline{x})^2 \\ \hline 9103654,3 \\ 3209035,8 \\ 828939,7 \\ \hline 65655,7 \\ \hline 59001,9 \\ \hline 399878,9 \\ 887489,9 \\ \hline 1421817,4 \\ \hline 1953341,5 \\ \hline 2458466,9 \\ \end{array}$	$\begin{array}{c} \psi_n(x_n - \overline{x}) \\ \hline \\ 1163235,5 \\ 653364,0 \\ 326095,7 \\ 90137,7 \\ -84437,0 \\ -217232,4 \\ -321724,1 \\ -404830,2 \\ \hline \\ -471733,4 \\ \hline \\ -526142,9 \end{array}$	$\begin{array}{c c} & \left(\psi_n & -\overline{\psi}\right)^2 \\ \hline 1224,0 \\ 201,1 \\ 58,1 \\ \hline 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ \hline 169,5 \\ \hline 224,5 \end{array}$	330 - 380 - 370 - 360 - 350 - 340 - 330 - 0	2000 b ^{//}	y = 4000 $\delta b_z^{//}$ 0,0005	$w_{z}^{\prime\prime}$	8000 δw ^{//} _z 1,7
n 1 2 3 4 5 6 7 8 9 10	B [∥] _z 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm	X Nittp 5917,2 4691,3 3810,4 3156,2 2657,0 2657,6 1957,9 1707,5 1502,3 1332,0 x X	ψn 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6 ψ	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466,9 \\ \Sigma(x_n - \overline{x})^2 \end{array}$	$\begin{array}{c} \psi_n(x_n-\overline{x}) \\ \hline \\ \psi_n(x_n-\overline{x}) \\ \hline \\ 1163235,5 \\ \hline \\ 653364,0 \\ \hline \\ 326095,7 \\ 90137,7 \\ \hline \\ -84437,0 \\ \hline \\ -217232,4 \\ \hline \\ -321724,1 \\ \hline \\ -404830,2 \\ \hline \\ -471733,4 \\ \hline \\ \hline \\ -526142,9 \\ \hline \\ \Sigma\psi_n(x_n-\overline{x}) \end{array}$	$\begin{array}{c} \left(\psi_{n} \ -\overline{\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ \hline 224,5 \\ \Sigma(\psi_{n} \ -\overline{\psi})^{2} \end{array}$	330 380 370 360 350 340 330 0 ΣR_{i}^{2}	2000 <i>b</i> ^{//} _z 0,0101 <i>M</i> ^{//} _z (A/m)	$y = \frac{4000}{\delta b_z^{\prime\prime}}$	$w_{z}^{''}$ $w_{z}^{''}$ $\alpha_{z}^{'''}$ (m)	$\frac{\delta w_z^{\prime\prime}}{\delta \alpha_z^{\prime\prime}}$
n 1 2 3 4 5 6 7 8 9 9	B [∥] _z 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 x 2899,9	$\begin{array}{c} \psi_n \\ \hline \psi_n \\ \hline 385,5 \\ \hline 364,7 \\ \hline 358,2 \\ \hline 351,8 \\ \hline 347,6 \\ \hline 343,5 \\ \hline 344,5 \\ \hline 339,5 \\ \hline 337,5 \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline $	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466,9 \\ \Sigma(x_n - \overline{x})^2 \\ 20387282,0 \end{array}$	$\begin{array}{c} \psi_n(x_n-\overline{x}) \\ \hline \\ \psi_n(x_n-\overline{x}) \\ \hline \\ 1163235,5 \\ \hline \\ 653364,0 \\ \hline \\ 326095,7 \\ 90137,7 \\ \hline \\ -84437,0 \\ \hline \\ -217232,4 \\ \hline \\ -321724,1 \\ \hline \\ -404830,2 \\ \hline \\ -471733,4 \\ \hline \\ -526142,9 \\ \hline \\ \Sigma\psi_n(x_n-\overline{x}) \\ \hline \\ 206732,9 \end{array}$	$\begin{array}{c c} & (\psi_n & -\overline{\psi})^2 \\ \hline 1224,0 \\ 201,1 \\ 58,1 \\ \hline 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ \hline 169,5 \\ \hline 224,5 \\ \Sigma (\psi_n & -\overline{\psi})^2 \\ 2140,1 \\ \end{array}$	$ \frac{330}{380} - \frac{3}{370} - \frac{3}{360} - \frac{3}{350} - \frac{3}{330} - \frac{3}{0} - \frac{3}{330} - \frac{3}{0} - \frac{3}{50} - \frac{5}{50} - \frac{5}{50} - \frac{5}{50} - \frac{5}{50} - \frac{5}{50} - \frac{5}{50} - $	2000 <i>b</i> ^{//} _z 0,0101 <i>M</i> ^{//} _z (A/m) 0,0558	y = 4000 $\delta b_z^{//}$ 0,0005 $\delta M_z^{//}$ 0,0001	$w_{z}^{\prime\prime}$ 321,1 $\alpha_{z}^{\prime\prime}$ (m) 0,0113	$\frac{\delta w_{z}^{''}}{1,7}$ 8000 $\delta w_{z}^{''}$ 0,0003
n 1 2 3 4 5 6 7 7 8 9 9 10	B [#] _z 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 X 2899,9 Матрри	ψn 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6 ψ 350,5 σεις της B _{xy}	($x_n - \overline{x}$) ² 9103654,3 3209035,8 828939,7 65655,7 59001,9 399878,9 887489,9 1421817,4 1953341,5 2458466,9 $\Sigma(x_n - \overline{x})^2$ 20387282,0 από τους παρά		$\begin{array}{c} \left(\psi_{n} - \overline{\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma (\psi_{n} - \overline{\psi})^{2} \\ 2140,1 \\ \end{array}$	330 380 370 360 350 340 330 0 ΣR_{i}^{2} 43,7 305 $-$	2000 $b_z^{\prime\prime}$ 0,0101 $M_z^{\prime\prime}$ (A/m) 0,0558	$y =$ 4000 $\delta b_z^{//}$ 0,0005 $\delta M_z^{//}$ 0,0001	$w_{z}^{\prime\prime}$ 0,0101x + 321,14 R ² = 0,9796 6000 $w_{z}^{\prime\prime}$ 321,1 $\alpha_{z}^{\prime\prime}$ (m) 0,0113 ϕ	$\delta w_{z}^{//}$ 8000 $\delta w_{z}^{//}$ 1,7 $\delta \alpha_{z}^{//}$ 0,0003
n 1 2 3 4 5 6 7 8 9 10 A n	B [#] _z 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT γγείο 4 B [#]	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm	X Nittp 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 X 2899,9 Μετρή X	ψn 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6 ψ 350,5 σεις της B _{xu}	(x _n - \overline{x}) ² 9103654,3 3209035,8 828939,7 65655,7 59001,9 399878,9 1421817,4 1953341,5 2458466,9 $\Sigma(x_n - \overline{x})^2$ 20387282,0 από τους παρά		$\begin{array}{c} \left(\psi_{n} \cdot \overline{\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma(\psi_{n} \cdot \overline{\psi})^{2} \\ 2140,1 \\ \end{array}$	$ \frac{330}{380} - \frac{3}{30} - \frac{3}{30} - \frac{3}{30} - \frac{3}{30} - \frac{3}{10} - \frac{3}{10} - \frac{3}{10} - \frac{1}{10} - \frac{1}{$	2000 $b_z^{\prime\prime}$ 0,0101 $M_z^{\prime\prime}$ (A/m) 0,0558	$y =$ 4000 $\delta b_z^{//}$ 0,0005 $\delta M_z^{//}$ 0,0001	$0,0101x + 321,14$ $R^{2} = 0,9796$ 6000 $w_{z}^{\prime\prime}$ $321,1$ $\alpha_{z}^{\prime\prime}$ (m) $0,0113$	$\delta w_{z}^{\prime\prime}$ 8000 $\delta w_{z}^{\prime\prime}$ 1,7 $\delta \alpha_{z}^{\prime\prime}$ 0,0003
n 1 2 3 4 5 6 7 8 9 10 A n	B ^{//} _z 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT \$\frac{1}{2}\$ \$\frac{1}{2}\$\$ \$\frac{1}{2}\$\$\$ \$\frac{1}{2}\$	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 x 2899,9 Mετρή X _n	$\begin{array}{c} \psi_n \\ 385,5 \\ 364,7 \\ 358,2 \\ 351,8 \\ 347,6 \\ 343,5 \\ 343,5 \\ 341,5 \\ 339,5 \\ 337,5 \\ 335,6 \\ \overline{\psi} \\ 350,5 \\ \overline{\sigma}\epsilon\iota\varsigma \tau\eta\varsigma \ \mathbf{B}_{xy} \\ \psi_n \\ 201,6 \\ \overline{\phi} \\ \end{array}$	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466,9 \\ \Sigma(x_n - \overline{x})^2 \\ 20387282,0 \\ , a \pi \delta \ \tau \cos \pi a \rho \dot{a} \\ (x_n - \overline{x})^2 \\ 20387282,0 \\ \end{array}$	$\begin{aligned} & \psi_n (x_n - \overline{x}) \\ & 1163235,5 \\ & 653364,0 \\ & 326095,7 \\ & 90137,7 \\ & -84437,0 \\ & -217232,4 \\ & -321724,1 \\ & -404830,2 \\ & -471733,4 \\ & -526142,9 \\ & \Sigma\psi_n (x_n - \overline{x}) \\ & 206732,9 \\ & \lambda\lambda\eta\lambda ous \alpha is θη tήρεa \\ & \psi_n (x_n - \overline{x}) \\ & 00071,0 \\ & $	$\begin{array}{c} \left(\psi_{n} \cdot \overline{\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma(\psi_{n} \cdot \overline{\psi})^{2} \\ 2140,1 \\ \end{array}$	$ \begin{array}{r} 330 \\ 380 \\ 370 \\ 360 \\ 350 \\ 340 \\ 330 \\ 330 \\ \hline 28R_{i}^{2} \\ 43,7 \\ 305 \\ 300 \\ 295 \\ \end{array} $	2000 $b_z^{\prime\prime}$ 0,0101 $M_z^{\prime\prime}$ (A/m) 0,0558	$y =$ 4000 $\delta b_z^{//}$ 0,0005 $\delta M_z^{//}$ 0,0001	$w_{z}^{\prime\prime}$ 0,0101x + 321,14 R ² = 0,9796 6000 $w_{z}^{\prime\prime}$ 321,1 $\alpha_{z}^{\prime\prime}$ (m) 0,0113	$\delta w_{z}^{\prime\prime}$ 8000 $\delta w_{z}^{\prime\prime}$ 1,7 $\delta \alpha_{z}^{\prime\prime}$ 0,0003
n 1 2 3 4 5 6 7 8 9 10 A n 1 2	B ^{"//} 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT γγείο 4 B ^{"//} _{xψ} 36,2 26,9	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm D _n 13,0 14,6	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 x 2899,9 Mετρή x _n 5917,2	$\begin{array}{c} \psi_n \\ 385,5 \\ 364,7 \\ 358,2 \\ 351,8 \\ 347,6 \\ 343,5 \\ 341,5 \\ 339,5 \\ 339,5 \\ 337,5 \\ 335,6 \\ \hline \psi \\ 350,5 \\ \hline \sigma \epsilon \iota_{\zeta} \tau \eta_{\zeta} \mathbf{B}_{\mathbf{X}\mathbf{Y}} \\ \psi_n \\ 301,3 \\ 201,5 \\ \end{array}$	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466,9 \\ \Sigma(x_n - \overline{x})^2 \\ 20387282,0 \\ a \pi \delta \ \tauov_{\zeta} \pi a \rho \dot{a} \\ (x_n - \overline{x})^2 \\ 9103654,3 \\ 220025 \ \rho \end{array}$	$\begin{aligned} & \psi_n (x_n - \overline{x}) \\ & 1163235,5 \\ & 653364,0 \\ & 326095,7 \\ & 90137,7 \\ & -84437,0 \\ & -217232,4 \\ & -321724,1 \\ & -404830,2 \\ & -471733,4 \\ & -526142,9 \\ & \Sigma\psi_n (x_n - \overline{x}) \\ & 206732,9 \\ & \lambda\lambda\eta\lambda ou\varsigma \alpha i \sigma \theta\eta\tau \eta\rho a \\ & \psi_n (x_n - \overline{x}) \\ & 908971,9 \\ & 522217,5 \end{aligned}$	$\begin{array}{c} \left(\psi_{n} - \overline{\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma(\psi_{n} - \overline{\psi})^{2} \\ 2140,1 \\ 0 \\ 5 \\ (\psi_{n} - \overline{\psi})^{2} \\ 596,7 \\ 215 \\ 6 \end{array}$	$ \begin{array}{r} 330 \\ 380 \\ 370 \\ 360 \\ 350 \\ 340 \\ 330 \\ 330 \\ 7 \\ 300 \\ 295 \\ 290 \\ 295 \\ 300 \\ 30$	2000 <i>b</i> ^{//} _z 0,0101 <i>M</i> ^{//} _z (A/m) 0,0558	$y =$ 4000 $\delta b_z^{\prime\prime}$ 0,0005 $\delta M_z^{\prime\prime}$ 0,0001	$w_{z}^{\prime\prime}$ 0,0101x + 321,14 R ² = 0,9796 6000 $w_{z}^{\prime\prime}$ 321,1 $\alpha_{z}^{\prime\prime}$ (m) 0,0113	8000 δw ^{//} z 1,7 δα ^{//} z 0,0003
n 1 2 3 4 5 6 7 8 9 10 10 A n 1 2 3	B ^{"//} 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT γγείο 4 B ^{"//} _{xψ} 36,2 36,8 37,1	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm D _n 13,0 14,6 15,2	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 x 2899,9 Metpí X _n 5917,2 4691,3 3810,4	ψn 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6 ψ 350,5 σευς της B _{xy} ψn 301,3 291,5 286.8	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466,9 \\ \Sigma(x_n - \overline{x})^2 \\ 20387282,0 \\ a \pi \delta \ to v \ \pi a \rho \dot{a} \\ (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ \end{array}$		$\begin{array}{c} \left(\psi_{n} - \overline{\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma(\psi_{n} - \overline{\psi})^{2} \\ 2140,1 \\ 5 \\ (\psi_{n} - \overline{\psi})^{2} \\ 596,7 \\ 215,6 \\ 99,7 \\ \end{array}$	$ \begin{array}{r} 330 \\ 380 \\ 370 \\ 360 \\ 350 \\ 350 \\ 350 \\ 330 \\ 330 \\ 0 \end{array} $	2000 <i>b</i> ^{//} _z 0,0101 <i>M</i> ^{//} _z (A/m) 0,0558	$y =$ 4000 $\delta b_z^{\prime\prime}$ 0,0005 $\delta M_z^{\prime\prime}$ 0,0001	$w_{z}^{\prime\prime}$ 0,0101x + 321,14 R ² = 0,9796 6000 $w_{z}^{\prime\prime}$ 321,1 $\alpha_{z}^{\prime\prime}$ (m) 0,0113	$\delta w_{z}^{\prime\prime}$ 8000 $\delta w_{z}^{\prime\prime}$ 1,7 $\delta \alpha_{z}^{\prime\prime}$ 0,0003
n 1 2 3 4 5 6 7 8 9 10 10 A n 1 2 3 4	B ^{"//} z 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT γγείο 4 B ^{"//} xψ 36,2 36,8 37,1 37,6	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm D _n 13,0 14,6 16,2 17,8	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 x̄ 2899,9 Mετρή X _n 5917,2 4691,3 3810,4 3156,2	ψ Bz ψ 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6 ψ 350,5 σεις της B _{xy} ψ 301,3 291,5 286,8 279,2 2	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466,9 \\ \Sigma(x_n - \overline{x})^2 \\ 20387282,0 \\ a\pi \delta \ \tauov \zeta \ \pi ap \dot{a} \\ (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \end{array}$	$ψ_n (x_n - \overline{x})$ 1163235,5 653364,0 326095,7 90137,7 -84437,0 -217232,4 -321724,1 -404830,2 -471733,4 -526142,9 Σψ _n (x _n - \overline{x}) 206732,9 λληλους αισθητήρεα ψ _n (x _n - \overline{x}) 908971,9 522217,5 261140,0 71551 7	$\begin{array}{c} \left(\psi_{n} - \overline{\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma \left(\psi_{n} - \overline{\psi}\right)^{2} \\ 2140,1 \\ \\ 596,7 \\ 215,6 \\ 99,7 \\ 5.8 \\ \end{array}$	$ \begin{array}{r} 330 \\ 370 \\ 360 \\ 350 \\ 340 \\ 330 \\ 330 \\ 0 \end{array} $ $ \begin{array}{r} \Sigma R_i^2 \\ 43,7 \\ 305 \\ 300 \\ 295 \\ 290 \\ 285 \\ 280 \\ 275 \\ \end{array} $	2000 <i>b</i> ^{//} _z 0,0101 <i>M</i> ^{//} _z (A/m) 0,0558	$y =$ 4000 $\delta b_z^{//}$ 0,0005 $\delta M_z^{//}$ 0,0001	$w_{z}^{\prime\prime}$ 0,0101x + 321,14 R ² = 0,9796 6000 $w_{z}^{\prime\prime}$ 321,1 $\alpha_{z}^{\prime\prime}$ (m) 0,0113	$\delta w_z^{//}$ 8000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0003
n 1 2 3 4 5 6 7 8 9 10 10 A n 1 2 3 4 5 A A A A A A A A	B ^{"//} 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT \$\frac{1}{yγείο 4}\$ B ^{"//} _{xψ} 36,2 36,8 37,1 37,6 37,9	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm D _n 13,0 14,6 16,2 17,8 19,4	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 x 2899,9 Mετρή X _n 5917,2 4691,3 3810,4 3156,2 2657,0	ψ Bz ψ 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6 ψ 350,5 σεις της B _{xu} ψ 301,3 291,5 286,8 279,2 274.8	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466,9 \\ \Sigma(x_n - \overline{x})^2 \\ 20387282,0 \\ a\pi \delta \ \tau ov \varsigma \ \pi a \rho \dot{a} \\ (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001.9 \end{array}$	$ψ_n (x_n - \overline{x})$ 1163235,5 653364,0 326095,7 90137,7 -84437,0 -217232,4 -321724,1 -404830,2 -471733,4 -526142,9 Σψ _n (x _n - \overline{x}) 206732,9 λληλους αισθητήρεα ψ _n (x _n - \overline{x}) 908971,9 522217,5 261140,0 71551,7 -66759.7	$\begin{array}{c} \left(\psi_{n} - \overline{\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma(\psi_{n} - \overline{\psi})^{2} \\ 2140,1 \\ 5 \\ (\psi_{n} - \overline{\psi})^{2} \\ 596,7 \\ 215,6 \\ 99,7 \\ 5,8 \\ 4,0 \\ \end{array}$	$ \begin{array}{r} 330 \\ 370 \\ 360 \\ 350 \\ 350 \\ 350 \\ 330 \\ 330 \\ 0 \end{array} $ $ \begin{array}{r} \Sigma R_i^2 \\ 43,7 \\ 305 \\ 300 \\ 295 \\ 290 \\ 285 \\ 280 \\ 275 \\ 270 \\ \end{array} $	2000 <i>b</i> ^{//} _z 0,0101 <i>M</i> ^{//} _z (A/m) 0,0558	y = 4000 $\delta b_z^{//}$ 0,0005 $\delta M_z^{//}$ 0,0001 y =	$w_{z}^{\prime\prime}$ 0,0101x + 321,14 R ² = 0,9796 6000 $w_{z}^{\prime\prime}$ 321,1 $\alpha_{z}^{\prime\prime}$ (m) 0,0113 0,0113 0,0085x + 252,266	$\delta w_z^{//}$ 8000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0003 0,000 0,
n 1 2 3 4 5 6 7 8 9 10 10 1 2 3 4 5 6 7 8 9 10 10 12 10 10 12 10 10 10 10 10 10 10 10 10 10	B ^{"//} 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT γγείο 4 B ^{"//} _{xψ} 36,2 36,8 37,1 37,6 37,9 38,1	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm D _n 13,0 14,6 16,2 17,8 19,4 21,0	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 x 2899,9 Mετρή x _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6	ψ Bz ψ 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6 ψ 350,5 σεις της B _{xu} ψ 301,3 291,5 286,8 279,2 274,8 272,0 272,0	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466,9 \\ \Sigma(x_n - \overline{x})^2 \\ 20387282,0 \\ (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ \end{array}$	$ψ_n (x_n - \overline{x})$ 1163235,5 653364,0 326095,7 90137,7 -84437,0 -217232,4 -321724,1 -404830,2 -471733,4 -526142,9 Σψ _n (x _n - \overline{x}) 206732,9 λληλους αισθητήρεα ψ _n (x _n - \overline{x}) 908971,9 522217,5 261140,0 71551,7 -66759,7 -171978,5	$\begin{array}{c} \left(\psi_{n} - \overline{\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma \left(\psi_{n} - \overline{\psi}\right)^{2} \\ 2140,1 \\ 5 \\ (\psi_{n} - \overline{\psi})^{2} \\ 596,7 \\ 215,6 \\ 99,7 \\ 5,8 \\ 4,0 \\ 23,7 \\ \end{array}$	380 380 370 360 350 340 330 340 330 301 302 201 202 203 203 204 205 200 205 270 265	2000 <i>b</i> ^{//} _z 0,0101 <i>M</i> ^{//} _z (A/m) 0,0558	y = 4000 $\delta b_z^{//}$ 0,0005 $\delta M_z^{//}$ 0,0001 y = 0	$0,0101x + 321,14$ $R^{2} = 0,9796$ 6000 $w_{z}^{\prime\prime}$ $321,1$ $\alpha_{z}^{\prime\prime}$ (m) $0,0113$ $0,0113$ $0,0085x + 252,26$ $R^{2} = 0,992$	$\delta w_z^{//}$ 8000 $\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0003
n 1 2 3 4 5 6 7 8 9 10 10 1 2 3 4 5 6 7 8 9 10 10 1 2 3 4 5 6 7 8 8 9 10 10 10 10 10 10 10 10 10 10	B ^{"//} 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT γγείο 4 B ^{"//} x _w 36,2 36,8 37,1 37,6 37,9 38,1 38,3	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 10,2mm	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 x 2899,9 Mετρή x _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9	ψ Bz ψ 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6 ψ 350,5 σεις της B _{xu} ψ 301,3 291,5 286,8 279,2 274,8 272,0 269,1	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466,9 \\ \Sigma(x_n - \overline{x})^2 \\ 20387282,0 \\ (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ \end{array}$		$\begin{array}{c} \left(\psi_{n} - \overline{\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma \left(\psi_{n} - \overline{\psi}\right)^{2} \\ 2140,1 \\ 5 \\ (\psi_{n} - \overline{\psi})^{2} \\ 596,7 \\ 215,6 \\ 99,7 \\ 5,8 \\ 4,0 \\ 23,7 \\ 59,4 \\ \end{array}$	330 380 370 360 350 340 330 330 205 295 290 285 285 280 275 270 265 260	2000 <i>b</i> ^{//} _z 0,0101 <i>M</i> ^{//} _z (A/m) 0,0558	y = 4000 $\delta b_z^{//}$ 0,0005 $\delta M_z^{//}$ 0,0001	$0,0101x + 321,14$ $R^{2} = 0,9796$ 6000 $w_{z}^{//}$ $321,1$ $\alpha_{z}^{//}$ (m) $0,0113$ $0,0085x + 252,26$ $R^{2} = 0,992$	$\delta w_z^{//}$ 1,7 $\delta \alpha_z^{//}$ 0,0003 5 5
n 1 2 3 4 5 6 7 8 9 10 10 1 2 3 4 5 6 7 8 8 9 10 10 1 2 3 4 5 6 7 8 8 9 10 10 10 10 10 10 10 10 10 10	B [#] _z 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT 36,2 36,8 37,1 37,6 37,9 38,1 38,3 38,4	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2	X NEEp 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 X 2899,9 M& tpf \$917,2 4691,3 3810,4 3156,2 2657,0 2267,6 197,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5	ψ Bz ψ 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6 ψ 350,5 5 σεις της B _{xy} ψ 301,3 291,5 286,8 279,2 274,8 272,0 269,1 267,7	$\begin{array}{c} (x_n - \overline{x})^2 \\ \hline 9103654,3 \\ \hline 3209035,8 \\ \hline 828939,7 \\ \hline 65655,7 \\ \hline 59001,9 \\ \hline 399878,9 \\ \hline 887489,9 \\ \hline 1421817,4 \\ \hline 1953341,5 \\ \hline 2458466,9 \\ \hline \Sigma(x_n - \overline{x})^2 \\ \hline 20387282,0 \\ \hline , ardo tove \pi a p da \\ \hline (x_n - \overline{x})^2 \\ \hline 9103654,3 \\ \hline 3209035,8 \\ \hline 828939,7 \\ \hline 65655,7 \\ \hline 59001,9 \\ \hline 399878,9 \\ \hline 887489,9 \\ \hline 1421817,4 \\ \hline \end{array}$	$\begin{split} & \psi_n (x_n - \overline{x}) \\ & 1163235,5 \\ & 653364,0 \\ & 326095,7 \\ & 90137,7 \\ & -84437,0 \\ & -217232,4 \\ & -321724,1 \\ & -404830,2 \\ & -471733,4 \\ & -526142,9 \\ & \Sigma \psi_n (x_n - \overline{x}) \\ & 206732,9 \\ & \Sigma \psi_n (x_n - \overline{x}) \\ & 206732,9 \\ & \lambda \eta \lambda ou \varsigma \alpha i \sigma \theta \eta \tau \eta \rho \epsilon \alpha \\ & \psi_n (x_n - \overline{x}) \\ & 908971,9 \\ & 522217,5 \\ & 261140,0 \\ & 71551,7 \\ & -66759,7 \\ & -171978,5 \\ & -253538,5 \\ & -319241,4 \\ \end{split}$	$\begin{array}{c c} (\psi_n & -\overline{\psi})^2 \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma(\psi_n & -\overline{\psi})^2 \\ 2140,1 \\ \hline \\ 596,7 \\ 215,6 \\ 99,7 \\ 5,8 \\ 4,0 \\ 23,7 \\ 59,4 \\ 82,9 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000 <i>b</i> ^{//} _z 0,0101 <i>M</i> ^{//} _z (A/m) 0,0558	$y =$ 4000 $\delta b_z^{//}$ 0,0005 $\delta M_z^{//}$ 0,0001 $y =$ $y =$ 4000	ϕ 0,0101x + 321,14 $R^{2} = 0,9796$ 6000 $w_{z}^{\prime\prime}$ 321,1 $\alpha_{z}^{\prime\prime}$ (m) 0,0113 0,0113 0,0085x + 252,26 $R^{2} = 0,992$ 6000	3 8000 δw ^{1//} z 1,7 δα ^{1//} z 0,0003
n 1 2 3 4 5 6 7 8 9 10 10 10 10 12 3 4 5 6 7 8 9 9 10 10 10 10 10 10 10 10 10 10	B ["] _z 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT 36,2 36,8 37,1 37,6 37,7,9 38,1 38,3 38,4 38,7	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 x̄ 2899,9 Mɛτpń X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3	ψ Bz ψ 385,5 364,7 358,2 351,8 347,6 343,5 341,5 337,5 337,5 335,6 ψ 350,5 σεις της B _{xy} ψ 301,3 291,5 286,8 279,2 274,8 272,0 269,1 263,6	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466,9 \\ \Sigma(x_n - \overline{x})^2 \\ 20387282,0 \\ a \pi \delta \ \tauo v \varsigma \ \pi a \rho \dot{a} \\ (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ \end{array}$		$\begin{array}{c c} \left(\psi_{n} & -\overline{\psi}\right)^{2} \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma \left(\psi_{n} & -\overline{\psi}\right)^{2} \\ 2140,1 \\ 5 \\ (\psi_{n} & -\overline{\psi})^{2} \\ 596,7 \\ 215,6 \\ 99,7 \\ 5,8 \\ 4,0 \\ 23,7 \\ 59,4 \\ 82,9 \\ 175,3 \\ \end{array}$	380 380 370 360 350 340 330 340 330 300 200 285 280 275 270 265 260 0	2000 $b_z^{\prime\prime}$ 0,0101 $M_z^{\prime\prime}$ (A/m) 0,0558 2000 $b_{xyy}^{\prime\prime}$	$y =$ 4000 $\delta b_z^{//}$ 0,0005 $\delta M_z^{//}$ 0,0001 $y =$ 4000 $\delta b_{xyy}^{//}$	$0,0101x + 321,14$ $R^{2} = 0,9796$ 6000 $W_{z}^{//}$ $321,1$ $\alpha_{z}^{//} (m)$ $0,0113$ $0,0085x + 252,266$ $R^{2} = 0,992$ 6000 $W_{xy}^{//}$	8000 δw ^{1//} _z 1,7 δα ^{1//} _z 0,0003
n 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10	B ["] ₂ 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT 36,2 36,8 37,1 37,6 37,7,9 38,1 38,3 38,4 38,7 38,8	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 21,0 22,6 24,2 25,8 19,4 21,0 22,6 24,2 25,8 27,4 21,0 22,6 24,2 25,8 27,4 21,0 22,6 24,2 25,8 27,4 27,4 25,8 27,4 27,4 27,8 27,4 27,4 27,6 24,2 25,8 27,4 27,4 27,4 27,6 24,2 25,8 27,4 27,4 27,6 24,2 25,8 27,4 27,4 27,6 24,2 25,8 27,4 27,4 27,6 24,2 25,8 27,4 27,4 27,6 24,2 25,8 27,4 27,4 27,4 27,8 27,4 27,4 27,8 27,4 27,8 27,4 27,8 27,4 27,8 27,4 27,8 27,4 27,8 27,4 27,8 27,8 27,4 27,8 27,4 27,8	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 x̄ 2899,9 Mɛτρή X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1707,5 1502,3 1332,0	ψ Bz ψ 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6 ψ 350,5 σεις της B _{xy} ψ 301,3 291,5 286,8 279,2 274,8 272,0 269,1 263,6 262,2	$\begin{array}{c} (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466,9 \\ \Sigma(x_n - \overline{x})^2 \\ 20387282,0 \\ a\pi \delta \ \tauov \ \pi a \rho \dot{a} \\ (x_n - \overline{x})^2 \\ 9103654,3 \\ 3209035,8 \\ 828939,7 \\ 65655,7 \\ 59001,9 \\ 399878,9 \\ 887489,9 \\ 1421817,4 \\ 1953341,5 \\ 2458466.9 \\ \end{array}$	χ _n (x _n - \overline{x}) 1163235,5 653364,0 326095,7 90137,7 -84437,0 -217232,4 -321724,1 -404830,2 -471733,4 -526142,9 Σψ _n (x _n - \overline{x}) 206732,9 λληλους αισθητήρεα ψ _n (x _n - \overline{x}) 908971,9 522217,5 261140,0 71551,7 -66759,7 -171978,5 -25338,5 -319241,4 -368406,2 -411176.7	$\begin{array}{c c} (\psi_n & -\overline{\psi})^2 \\ 1224,0 \\ 201,1 \\ 58,1 \\ 1,5 \\ 8,6 \\ 49,3 \\ 81,7 \\ 121,8 \\ 169,5 \\ 224,5 \\ \Sigma(\psi_n & -\overline{\psi})^2 \\ 2140,1 \\ \hline \\ 596,7 \\ 215,6 \\ 99,7 \\ 5,8 \\ 4,0 \\ 23,7 \\ 59,4 \\ 82,9 \\ 175,3 \\ 213,0 \\ \end{array}$	330 380 370 360 350 340 330 340 330 300 200 285 280 275 270 265 260 0	2000 $b_z^{\prime\prime}$ 0,0101 $M_z^{\prime\prime}$ (A/m) 0,0558 2000 $b_{xy}^{\prime\prime}$ 2000	$y = \frac{1}{4000}$ $\frac{\delta b_z^{\prime\prime}}{0,0005}$ $\frac{\delta M_z^{\prime\prime}}{0,0001}$ $y = \frac{1}{4000}$ $\frac{\delta b_{xyy}^{\prime\prime}}{0,00027}$	$w_{z}^{\prime\prime}$ 0,0101x + 321,14 R ² = 0,9796 6000 $w_{z}^{\prime\prime}$ 321,1 $\alpha_{z}^{\prime\prime}$ (m) 0,0113 0,0113 0,0085x + 252,26 R ² = 0,992 6000 $w_{x\psi}^{\prime\prime}$ 252.3	$\delta w_{z}^{\prime\prime}$ 8000 $\delta w_{z}^{\prime\prime}$ 1,7 $\delta \alpha_{z}^{\prime\prime}$ 0,0003 8000 $\delta w_{x\psi}^{\prime\prime}$ 0,9
n 1 2 3 4 5 6 7 8 9 10 10 1 2 3 4 5 6 7 8 9 10 10 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10	B ["] _z 32,0 32,9 33,2 33,5 33,7 33,9 34,0 34,1 34,2 34,3 ±0,2nT 36,2 36,8 37,1 37,6 37,9 38,1 38,3 38,7 38,8 ±0,2nT	D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm D _n 13,0 14,6 16,2 17,8 19,4 21,0 22,6 24,2 25,8 27,4 ±0,2mm	X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 X _n 5917,2 4691,3 3810,4 3156,2 2657,0 2267,6 197,2 4691,3 3810,4 3156,2 2657,0 2267,6 1957,9 1707,5 1502,3 1332,0 X 1332,0 X	ψ Bz ψ 385,5 364,7 358,2 351,8 347,6 343,5 341,5 339,5 337,5 335,6 Ψ 301,3 291,5 286,8 279,2 274,8 272,0 269,1 267,7 263,6 Ψ	$\begin{array}{c} (x_n - \overline{x})^2 \\ \hline 9103654,3 \\ \hline 3209035,8 \\ \hline 828939,7 \\ \hline 65655,7 \\ \hline 59001,9 \\ \hline 399878,9 \\ \hline 887489,9 \\ \hline 1421817,4 \\ \hline 1953341,5 \\ \hline 2458466,9 \\ \hline \Sigma(x_n - \overline{x})^2 \\ \hline 20387282,0 \\ \hline artó rous \pi apá \\ \hline (x_n - \overline{x})^2 \\ \hline 9103654,3 \\ \hline 3209035,8 \\ \hline 828939,7 \\ \hline 65655,7 \\ \hline 59001,9 \\ \hline 399878,9 \\ \hline 887489,9 \\ \hline 1421817,4 \\ \hline 1953341,5 \\ \hline 2458466,9 \\ \hline \Sigma(x_n - \overline{x})^2 \\ \hline \end{array}$	$\begin{array}{c} \psi_n(x_n-\overline{x}) \\\\ \hline \\ 1163235,5 \\\\ 653364,0 \\\\ 326095,7 \\\\ 90137,7 \\\\ -84437,0 \\\\ -217232,4 \\\\ -321724,1 \\\\ -404830,2 \\\\ -471733,4 \\\\ \hline \\ -526142,9 \\\\ \hline \\ \Sigma\psi_n(x_n-\overline{x}) \\\\ \hline \\ 206732,9 \\\\ \hline \\ \lambda\eta\lambda ou_{\zeta} \alpha i \sigma \theta \eta \tau \eta \rho a \\\\ \psi_n(x_n-\overline{x}) \\\\ 908971,9 \\\\ 522217,5 \\\\ 261140,0 \\\\ 71551,7 \\\\ -66759,7 \\\\ -171978,5 \\\\ -253538,5 \\\\ -319241,4 \\\\ -368406,2 \\\\ -411176,7 \\\\ \overline{\Sigma}\psi_n(x_n-\overline{x}) \\\\ \end{array}$	$\begin{array}{c c} & \left(\psi_n \ - \overline{\psi}\right)^2 \\ \hline 1224,0 \\ \hline 201,1 \\ \hline 58,1 \\ \hline 1,5 \\ \hline 8,6 \\ \hline 49,3 \\ \hline 81,7 \\ \hline 121,8 \\ \hline 169,5 \\ \hline 224,5 \\ \hline 2140,1 \\ \hline 596,7 \\ \hline 215,6 \\ \hline 99,7 \\ \hline 5,8 \\ \hline 4,0 \\ \hline 23,7 \\ \hline 59,4 \\ \hline 82,9 \\ \hline 175,3 \\ \hline 213,0 \\ \hline 2(\psi_n \ - \overline{\psi})^2 \\ \end{array}$	$\begin{array}{c} 330 \\ 380 \\ 370 \\ 360 \\ 350 \\ 340 \\ 330 \\ 0 \\ 330 \\ 0 \\ \end{array}$	2000 b_z'' 0,0101 $M_z''(A/m)$ 0,0558 2000 $b_{xy'}'$ 0,00847 $M_{xy'}''(A/m)$	y = 4000 $\delta b_z^{//}$ 0,0005 $\delta M_z^{//}$ 0,0001 y = 4000 $\delta b_{x\psi}^{//}$ 0,00027 $\delta M_{y\psi}^{//}$	$w_{z}^{''}$ $0,0101x + 321,14$ $R^{2} = 0,9796$ 6000 $w_{z}^{''}$ $321,1$ $\alpha_{z}^{''} (m)$ $0,0113$ $0,0113$ $0,0113$ $0,0085x + 252,26$ $R^{2} = 0,992$ 6000 $w_{x\psi}^{''}$ $252,3$ $\alpha_{y\psi}^{''} (m)$	$ \frac{\delta w_{z}^{//}}{\delta \alpha_{z}^{//}} $ 8000 $ \frac{\delta w_{z}^{//}}{\delta \alpha_{z}^{//}} $ 0,0003 $ \frac{\delta w_{x\psi}^{//}}{\delta \alpha_{x\psi}^{//}} $ 9,99 $ \delta \alpha_{y\psi}^{//} $

Πίνακας B19. Υπολογισμός της μαγνήτισης και των ακτίνων ευαισθησίας με τη μέθοδο των ελαχίστων τετραγώνων.

Пív L=	Πίνακας B20 μ L=41,2±0,2 (mm) Βά D _n (mm) Β _ν μ ^{//} (nT)				Μετ	ρήσεις	από το	ν κάθετο	και τι	ΑΓΙ ον παρό	ΓΕΙΟ ιλληλι	6 0 ai s	θητήρα (στην ίδια (θέση μέτ	ւթղ օ ղ	15		li ce
	(11111)			Bácn	(B)		1					П	ennéc(s)						
	D (mm)	D //(m)	L)		\mathbf{D} (nT)		D	^L (nT)	D //	(mT)	D (m	T)	verhed(s)	. 0	2		-1 >	2	\sim
n	±0,2	D _{xψ} (II) ±0,2	1)	$\mathbf{b}_{\mathbf{z}}(\mathbf{n}_{\mathbf{z}})$ $\pm 0,2$	$\pm 0,2$	γB $\pm 0,2^{\circ}$	D	$\pm 0,2$	Dz ±((11)),2	$\pm 0,$,2	±	(s 0,2	ν _{xψ}	=	±0,02	νz	±0,03
1	11,0	22,9		13,3	26,5	59,9		12,7	23	3,9	27,	,1	6	2,0	1,80			1,80	
2	13,0	23,4		13,6	27,1	59,8		12,8	24	1,2	27,	,4	6	2,1	1,83			1,78	
3	15,0	23,6		13,7	27,3	59,9		12,9	25	5,1	28,	,2	6	2,8	1,83			1,83	
4	17,0	24,0		13,7	27,6	60,3		12,9	25	5,4	28,	,5	6	3,1	1,86		1.05	1,85	1.05
5	19,0	24,1		13,8	27,8	60,2		13,0	25	5,6	28,	,7	6	3,1	1,85		1,85	1,86	1,85
6	21,0	24,3		13,8	27,9	60,4		13,0	25	5,8	28,	,9	6	3,3	1,87			1,87	
7	23,0	24,5		13,9	28,2	60,4		13,1	25	5,9	29,	,0	6	3,2	1,87	-		1,86	
8	25,0	24,6		13,9	28,3	60,5		13,1	26	5,0	29,	,1	6	3,3	1,88	-		1,87	
9	27,0	24,7		14,0	28,4	60,5	_	13,2	26	o,2	29,	3	6	3,3	1,87			1,87	
10	29,0	24,8		14,0	28,5	60,6		13,2	26	0,3	29,	,4	6	3,3	1,88			1,88	
					Μετρι	ήσεις μι	: την ί	δια τοποί	Ͽέτησι	η του α	ւσθητ	ήρα	στη βάσι	η (B) και σ	τις πλευ	ρές (s	s)		
Πί	ίνακας β	(b)		(s)			-						(s)	(b)					
	$\mathbf{D}_{\mathbf{n}}$ (mm)	$\mathbf{B}_{\mathbf{x}\mathbf{\psi}}^{\prime\prime}(\mathbf{n})$	T)	$\mathbf{B}_{\mathbf{z}}^{\prime\prime}(\mathbf{nT})$	B "(nT)	γ″	<	<γ″>		d ″(mm))	B _x	_{κψ} ^L (nT)	$\mathbf{B}_{\mathbf{z}}^{L}(nT)$	\mathbf{B}^{L}	(nT)	γ^{L}	<γ [⊥] >	$\mathbf{d}^{L}(\mathbf{mm})$
n	±0,2	±0,2		±0,2	±0,2	±0,2	=	±0,2°		±0,3		:	±0,2	±0,2	±(0,2	$\pm 0,3^{\circ}$	$\pm 0,1^{\circ}$	±0,2
1	11,0	22,9		23,9	33,1	43,8							12,7	13,3	18	3,4	43,7		
2	13,0	23,4		24,2	33,7	44,0							12,8	13,6	18	8,7	43,3		
3	15,0	23,6		25,1	34,5	43,2							12,9	13,7	18	8,8	43,3		
4	17,0	24,0		25,4	34,9	43,4							12,9	13,7	18	8,8	43,3		
5	19,0	24,1		25,6	35,2	43,3							13,0	13,8	19	9,0	43,3		
6	21,0	24,3		25,8	35,4	43,3							13,0	13,8	19	Э,О	43,3		
7	23,0	24,5		25,9	35,7	43,4							13,1	13,9	19	9,1	43,3		
8	25,0	24,6		26,0	35,8	43,4							13,1	13,9	19	9,1	43,3	43,3°	38,9
9	27,0	24,7		26,2	36,0	43,3	4	43,4°		39,0			13,2	14,0	19	9,2	43,3		
10	29,0	24,8		26,3	36,1	43,3							13,2	14,0	19	9,2	43,3		
									Διορ	οθωμέν	ες μετ	τρήσε	εις						
Πίν	ακας γ				Bó	ίση(B)									Πλε	υρές(s)		
n	$\begin{array}{c} D_n \ (mm) \\ \pm 0,2 \end{array}$	$\mathbf{B}_{\mathbf{x}\mathbf{\psi}}^{\prime\prime\prime}(\mathbf{n})$ $\pm 0,2$	Γ)	${}^{*}\mathbf{B}_{\mathbf{z}}^{L}(nT)$ ±0,6	$\begin{array}{c} \boldsymbol{B_B}(nT) \\ \pm 0,3 \end{array}$	±(′в),8°	ℓ _B (mn	n)	δ ℓ _B (mm	i)	*B _{xv}	ψ ^L (nT) =0,9	${{{B_{z}}''(nT)}\atop{\pm 0,2}}$	$\mathbf{B}_{\mathbf{s}}(\mathbf{r})$	nT) ,8	$\substack{\gamma_s\\\pm0,2^\circ}$	ℓ _s (mm)	δ <i>ℓ</i> _s (mm)
1	11,0	22,9		24,6	33,6	4	3,0	16,	1	0,4		2	3,5	23,9	33,	.6	45,4	15,4	0,3
2	13,0	23,4		25,1	34,3	4	3,0	19,	1	0,4		2	3,7	24,2	33,	.9	45,6	18,2	0,3
3	15,0	23,6		25,3	34,6	4	3,0	22,	0	0,4		2	3,9	25,1	34,	7	46,4	20,7	0,3
4	17,0	24,0		25,3	34,9	4	3,5	24,	7	0,5		2	3,9	25,4	34,	9	46,7	23,4	0,3
5	19,0	24,1		25,5	35,1	4	3,4	27,	7	0,5		2	4,1	25,6	35,	2	46,7	26,1	0,3
6	21,0	24,3		25,5	35,2	4	3,6	30,	4	0,5		2	4,1	25,8	35,	3	46,9	28,7	0,3
7	23,0	24,5		25,7	35,5	4	3,7	33,	3	0,6		2	4,3	25,9	35,	5	46,8	31,5	0,3
8	25,0	24,6		25,7	35,6	4	3,8	36,	1	0,6		2	4,3	26,0	35,	.6	46,9	34,2	0,3
9	27,0	24,7		25,9	35,8	4	3,7	39,	1	0,6		2	4,5	26,2	35,	9	46,9	36,9	0,3
10	29,0	24,8		25,9	35,8	4	3,8	41,	9	0,7		2	4,5	26,3	35,	.9	47,1	39,6	0,3
Πίν	ακας δ	(mm)	$\mathbf{B}_{\mathbf{x}\boldsymbol{\psi}}^{\mathrm{L}}(\pm 0,2\mathbf{n})$	nT)	$\mathbf{B}_{\mathbf{z}}^{\perp}$	(±0,2nT)	T		$\overline{\mathbf{M}_{\mathbf{z}}}(\mathbf{n})$	nA/m	1)		M _{xv} (mA/n	n)		γ°		
		10	29,	0±0,2	13,2	Ī		14,0			42,6	6±0,2			40,1	1±0,2		43	3,3±0,3

Πίνακας B20. Ενδεικτικές μετρήσεις της ίδιας συνιστώσας (B_{xy}, B_z) του πεδίου από τον κάθετο (L) και τον παράλληλο (//) αισθητήρα σε ισαπέχουσες θέσεις κατά D_n από τα άκρα, στη βάση (B) και στην πλευρά (s) του κυλινδρικού δοκιμίου από τη βάση του αγγείου 6.

							ΑΓΓΕΙΟ 6					
Πίν	акаςВ21		Met	της	Β _π από τους κάθ	ετους αισθητήρες		2250 -				
n	$\mathbf{B}_{\mathbf{z}}^{\perp}$	D	X	ψ,	$(X_n - \overline{X})^2$	$\psi_n(X_n - \overline{X})$	$(\Psi_n - \overline{\Psi})^2$	2200 -			>	
1	13,3	11,0	8264,5	2231,8		11040640,8	22023,85	2150				
2	13,6	13,0	5917,2	2134,4	6758182,3	5548771,9	2603,89	2150 -				
3	13,7	15,0	4444,4	2103,4	1269982,7	2370377,5	399,30	2100 -				
4	13,7	17,0	3460,2	2103,4	20362,8	300149,3	399,30	2050 -		y =	0,0279x + 19	90,9
5	13,8	19,0	2770,1	2073,0	299675,5	-1134820,5	107,97	2050			R ² = 0,955	3
0	13,8	21,0	2267,6	20/3,0	1102364,8	-21/652/,9	107,97	2000 -		1	1 1	
8	12.0	25,0	1600.0	2043,3	2030737,0	2510082,5	1608,50	(2000	4000 60	000 8000	10000
0	13,9	25,0	1000,0	2043,3	2949838,3	-3509370,7	1608,90		ь L	sh ⊢	L	S., L
10	14,0	27,0	13/1,/	2014,2	3786010,1	-3919174,0	4788,19		0.028	0.002	w _z	0w _z
10	14,0	25,0		Ψ	$\frac{\Sigma(x - \overline{x})^2}{\Sigma(x - \overline{x})^2}$	$\Sigma \Psi_{\mu} (\mathbf{X}_{\mu} - \overline{\mathbf{X}})$	$\Sigma(\psi - \overline{\psi})^2$	ΣR_{\cdot}^{2}	0,028 M [⊥] (A/m)	δM^{\perp}	α_{-}^{\perp} (m)	δα [⊥]
	±0,2nT	±0,2mm	3317,5	2083,4	47225816,7	1316831,91	38436,5	1718,3	0,02241	z 0,00005	0,0075	0,0003
A	γγείο 6		Μετ	ρήσεις της	Β _{ννα} από τους κά	θετους αισθητήρες	1	2500 -				
n	$\mathbf{B}_{\mathbf{x}\mathbf{w}}^{\perp}$	D	X	ψ,	$(x_n - \overline{x})^2$	$\psi_n(\mathbf{X}_n - \overline{\mathbf{X}})$	$(\psi_n - \overline{\psi})^2$	2450 -				<u> </u>
1	12.7	11.0	8264.5	2447.7	24472348.7	12108493.7	11454.69					•
2	12,8	13,0	5917,2	2409,6	6758182,3	6264043,3	4751,51	2400 -		• • /		
3	12,9	15,0	4444,4	2372,4	1269982,7	2673494,1	1006,05	2350 -	× − 0 0252x + 2257 2			
4	12,9	17,0	3460,2	2372,4	20362,8	338531,5	1006,05	2330	γ = 0,0252x + 2257,2			
5	13,0	19,0	2770,1	2336,0	299675,5	-1278788,3	21,52	2300 -	y = 0,0252X + 2257,2 R ² = 0,9134			
6	13,0	21,0	2267,6	2336,0	1102364,8	-2452650,7	21,52	2250	R ² = 0,9134			
/	13,1	23,0	1890,4	2300,5	2036757,6	-3283120,5	1613,40	2250	0 2000 4000 6000 8000 10			
0	13,1	25,0	1600,0	2300,5	2949838,3	-3951083,9	1613,40		0 2000 4000 6000 8000 10			00 10000
9	12.2	27.0	1271 7	2265.7	2786010 1	4408620.0	F608 63		b_{xxx}^{\perp}	δb_{xxx}^{\perp}	w_{xw}^{\perp}	δw_{xyy}^{\perp}
10	13,2	27,0	13/1,/	2265,7	3786010,1	-4408620,9	5608,63				2057 C	10.0
10	13,2	23,0	1109,1 	<u>2203,7</u>	4550255,8	-4822551,4	5008,03	S D ²	0,025	0,003	⊥	10,9
	±0,2nT	±0,2mm	л 2217 г	Ψ 2240.6	$\sum (x_n - x)$	$2\psi_{n}(X_{n}-X)$	$\Sigma(\psi_n - \psi)$	ΣR _i	$M_{x\psi} (A/m)$	δM _{xψ}	$\alpha_{x\psi}(m)$	$\delta \alpha_{x\psi}$
			5517,5	2540,0	4/225010,/	110//00,9	52705,4	2052,1	0.0210	0.0001	0.0007	0.0004
	moio 6			, г	, í í í í í			800		-,	-,	- /
A'	γγείο 6	ĥ	Μετρι	ίσεις της Ε	β_z από τους παρά λ	ληλους αισθητήρες	2	800				
A' n	γγείο 6 Β ^{//} _z	D _n	Μετρί X _n	ήσεις της Ε Ψ _n	\mathbf{x}_{n} από τους παράλ $(\mathbf{x}_{n} \cdot \overline{\mathbf{x}})^{2}$	ληλους αισθητήρες $\psi_n(x_n - \overline{x})$	$(\psi_n - \overline{\psi})^2$	800 600				
A' n 1	γγείο 6 Β ^{//} 23,9	D _n 11,0	Μετρι Χ _n 8264,5	ίσεις της Ε Ψ _n 691,1	z_z από τους παράλ $(x_n - \overline{x})^2$ 24472348,7	ληλους αισθητήρες ψ _n (x _n - x̄) 3419020,9	$(\psi_n - \overline{\psi})^2$ 6299,6	800 - 600 -				
A ⁴ n 1 2	γγείο 6	D _n 11,0 13,0	Μετρι Χ _n 8264,5 5917,2	ήσεις της Ε Ψ _n 691,1 674,1	β _z από τους παράλ (x _n -x) ² 24472348,7 6758182,3	ληλους αισθητήρες ψ _n (x _n - x̄) 3419020,9 1752443,2 20172,2	$(\psi_n - \overline{\psi})^2$ 6299,6 3886,4 221.0	800 - 600 - 400 -	(#*** * 1	*		
A n 1 2 3 4	γγείο 6 Β ^{//} _z 23,9 24,2 25,1 25,4	D _n 11,0 13,0 15,0	Μετρι x _n 8264,5 5917,2 4444,4 3460.2	ήσεις της Ε Ψ _n 691,1 674,1 626,6 611 9	 από τους παράλ (x_n-x)² 24472348,7 6758182,3 1269982,7 20362.8 	ληλους αισθητήρες ψ _n (x _n - x) 3419020,9 1752443,2 706173,2 87319 5	$(\Psi_{n} - \overline{\Psi})^{2}$ 6299,6 3886,4 221,0 0.0	800 - 600 - 400 -		y = 0,0	177x + 553,00	
A* n 1 2 3 4 5	γγείο 6 Β [#] _z 23,9 24,2 25,1 25,4 25,6	D _n 11,0 13,0 15,0 17,0 19,0	Μετρι X _n 8264,5 5917,2 4444,4 3460,2 2770.1	τοεις της Ε Ψ _n 691,1 674,1 626,6 611,9 602.4	 από τους παράλ (x_n -x)² 24472348,7 6758182,3 1269982,7 20362,8 299675.5 	 ληλους αισθητήρες ψ_n (x_n - x̄) 3419020,9 1752443,2 706173,2 87319,5 -329765,6 	$\frac{(\psi_{n} - \overline{\psi})^{2}}{6299,6}$ 3886,4 221,0 0,0 87.9	800 - 600 - 400 - 200 -		y = 0,0 R	177x + 553,06 2 = 0,9742	5
A1 n 1 2 3 4 5 6	γγείο 6 Β [″] _z 23,9 24,2 25,1 25,4 25,6 25,8	D _n 11,0 13,0 15,0 17,0 19,0 21,0	Μετρι X _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6	ίσεις της Ε Ψ _n 691,1 674,1 626,6 611,9 602,4 593,1	 από τους παράλ (x_n -x̄)² 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 	ληλους αισθητήρες ψ _n (x _n -x̄) 3419020,9 1752443,2 706173,2 87319,5 -329765,6 -622705,9	$(\psi_n - \overline{\psi})^2$ 6299,6 3886,4 221,0 0,0 87,9 348,8	800 - 600 - 400 - 200 - 0 -		y = 0,0 R	1177x + 553,06 ² = 0,9742	5
A n 1 2 3 4 5 6 7	γγείο 6 Β ^{//} _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0	Μετρι X _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4	ίσεις της Ε Ψ _n 691,1 674,1 626,6 611,9 602,4 593,1 588,5	z από τους παράλ (x _n -x̄) ² 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6	 ληλους αισθητήρες ψ_n (x_n - x̄) 3419020,9 1752443,2 706173,2 87319,5 -329765,6 -622705,9 -839904,4 	$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ \hline 6299,6\\ \hline 3886,4\\ \hline 221,0\\ 0,0\\ \hline 87,9\\ \hline 348,8\\ \hline 540,5\\ \end{array}$	800 - 600 - 400 - 200 - 0 -	2000	y = 0,0 R 4000 600	1177x + 553,06 ² = 0,9742	5
A ⁴ 1 2 3 4 5 6 7 8	β/2 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0	Μετρι X _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0	γσεις της Ε Ψ _n 691,1 674,1 626,6 611,9 602,4 593,1 588,5 584,0	z από τους παράλ (x _n -x̄) ² 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3	 ληλους αισθητήρες ψ_n (x_n - x̄) 3419020,9 1752443,2 706173,2 87319,5 -329765,6 -622705,9 -839904,4 -1003025,9 	$\frac{(\psi_n - \overline{\psi})^2}{6299,6}$ 3886,4 221,0 0,0 87,9 348,8 540,5 771,0	800 - 600 - 400 - 200 - 0 - 0	2000	y = 0,0 R 4000 600	177x + 553,06 ² = 0,9742 00 8000	5
A n 1 2 3 4 5 6 7 8 9	γγείο 6 Β ^{//} _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0	Μετρι X _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7	ýσεις της Ε Ψ _n 691,1 674,1 626,6 611,9 602,4 593,1 588,5 584,0 575,1	 από τους παράλ (x_n -x̄)² 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 	 ληλους αισθητήρες ψ_n (x_n -x̄) 3419020,9 1752443,2 706173,2 87319,5 -329765,6 -622705,9 -839904,4 -1003025,9 -1119046.3 	$\begin{array}{r} \left(\psi_{n} - \overline{\psi}\right)^{2} \\ 6299,6 \\ 3886,4 \\ 221,0 \\ 0,0 \\ 87,9 \\ 348,8 \\ 540,5 \\ 771,0 \\ 1343.1 \end{array}$	800 - 600 - 400 - 200 - 0 - 0	2000 - b ^{//} _z	$y = 0,0$ R $4000 600$ $\delta b_z^{\prime\prime}$	1177x + 553,000 $2^{2} = 0,9742$ 00 8000 $w_{z}^{\prime\prime}$	5 10000 δw ^{///} _z
A n 1 2 3 4 5 6 7 8 9 10	β//2 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3	D _n 11,0 13,0 15,0 17,0 21,0 23,0 25,0 27,0 29,0	Μετρι X _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1	ψn 691,1 674,1 626,6 611,9 602,4 593,1 588,5 584,0 575,1 570,8	z από τους παράλ (x _n -x̄) ² 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8	 ληλους αισθητήρες ψ_n (x_n - x̄) 3419020,9 1752443,2 706173,2 87319,5 -329765,6 -622705,9 -839904,4 -1003025,9 -1119046,3 -1214818,6 	$\frac{(\psi_n - \overline{\psi})^2}{6299,6}$ 3886,4 221,0 0,0 87,9 348,8 540,5 771,0 1343,1 1682,1	800 - 600 - 400 - 200 - 0 + 0	2000 ·	y = 0,0 R 4000 600 $\delta b_z^{1/2}$ 0,001	$\frac{177x + 553,06}{2^2 = 0,9742}$ 00 8000 $\frac{w_z^{1/2}}{553,1}$	5 10000 δw ^{//} _z 4,0
A* n 1 2 3 4 5 6 7 8 9 10	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,5 25,8 25,9 26,0 26,2 26,3 ±0,2nT	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 25,0 27,0 29,0 ±0,2mm	Μετρι X _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 x	ψ n 691,1 674,1 626,6 611,9 602,4 593,1 588,5 584,0 575,1 570,8 Ψ	$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 Σ $(x_n - \overline{x})^2$		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ 6299,6\\ 3886,4\\ 221,0\\ 0,0\\ 87,9\\ 348,8\\ 540,5\\ 771,0\\ 1343,1\\ 1682,1\\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2}\end{array}$		2000 <i>b</i> ^{//} _z 0,018 <i>M</i> ^{//} _z (A/m)	y = 0,0 R 4000 600 $\delta b_{z}^{''}$ 0,001 $\delta M_{z}^{''}$	$w_z^{//}$ $w_z^{//}$ $\omega_z^{//}$ (m)	$\frac{\delta w_z^{\prime\prime}}{\delta \alpha_z^{\prime\prime\prime}}$
A4 n 1 2 3 4 5 6 7 8 9 10	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3 ±0,2nT	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm	Μετρι X n 8264,5 5917,2 444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 x 3317,5	ψ ψ 1 691,1 674,1 626,6 611,9 602,4 593,1 588,5 584,0 575,1 570,8 ψ 611,8			$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ 6299,6\\ 3886,4\\ 221,0\\ 0,0\\ 87,9\\ 348,8\\ 540,5\\ 771,0\\ 1343,1\\ 1682,1\\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2}\\ 15180,3\end{array}$	$ \begin{array}{c} 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ 0 \\ \\ \SigmaR_{i}^{2} \\ 392,3 \end{array} $	2000 <i>b</i> ^{//} _z 0,018 <i>M</i> ^{//} _z (A/m) 0,0425	y = 0,0 R 4000 600 $\delta b_z^{\prime\prime}$ 0,001 $\delta M_z^{\prime\prime}$ 0,0002	$w_{z}^{//}$ 553,1 $\alpha_{z}^{//}$ (m) 0,0113	$\frac{\delta w_{z}^{''}}{\delta \alpha_{z}^{''}}$
A n 1 2 3 4 5 6 7 7 8 8 9 10 10	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3 ±0,2nT	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm	Μετρη X _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 x 3317,5 Μετρή	ψn 691,1 674,1 626,6 611,9 602,4 593,1 588,5 584,0 575,1 570,8 Ψ 611,8 σεις της B	$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 Σ $(x_n - \overline{x})^2$ 47225816,7 x_w από τους παρά		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ 6299,6\\ 3886,4\\ 221,0\\ 0,0\\ 87,9\\ 348,8\\ 540,5\\ 771,0\\ 1343,1\\ 1682,1\\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2}\\ 15180,3\\ \end{array}$		2000 $b_z^{\prime\prime}$ 0,018 $M_z^{\prime\prime}$ (A/m) 0,0425	y = 0,0 R 4000 600 $\delta b_z^{''}$ 0,001 $\delta M_z^{''}$ 0,0002	$\frac{177x + 553,06}{2} = 0,9742$ 00 8000 $\frac{w_z''}{w_z'}$ 553,1 $\alpha_z''(m)$ 0,0113	5 10000 $\delta w_z^{\prime\prime}$ 4,0 $\delta \alpha_z^{\prime\prime}$ 0,0003
A* n 1 2 3 4 5 6 7 8 9 10 A* n n	γγείο 6 B ^{//} z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3 ±0,2nT	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n	Μετρι X _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 \overline{x} 3317,5 Μετρή X _n	ψ φ 691,1 674,1 626,6 611,9 602,4 593,1 588,5 584,0 575,1 570,8 ψ 611,8 σεις της B ψ	$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 Σ $(x_n - \overline{x})^2$ 47225816,7 xw από τους παρά $(x_n - \overline{x})^2$		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ 6299,6\\ 3886,4\\ 221,0\\ 0,0\\ 87,9\\ 348,8\\ 540,5\\ 771,0\\ 1343,1\\ 1682,1\\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2}\\ 15180,3\\ \end{array}$	$ \begin{array}{c} 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ \hline \\ \Sigma R_{i}^{2} \\ 392,3 \\ 800 \\ 750 \\ \end{array} $	2000 $b_z^{\prime\prime}$ 0,018 $M_z^{\prime\prime}$ (A/m) 0,0425	y = 0,0 R 4000 600 $\delta b_z^{\prime\prime}$ 0,001 $\delta M_z^{\prime\prime}$ 0,0002	$\frac{177x + 553,06}{2} = 0,9742$ $\frac{1}{2} = 0,9742$	5 10000 $\delta w_z^{\prime\prime}$ 4,0 $\delta \alpha_z^{\prime\prime}$ 0,0003
A n 1 2 3 4 5 5 6 7 7 8 9 9 10 10 1	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,2 26,3 ±0,2nT γγείο 6 B ^{//} _{xw} 22,9	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n 11,0	Μετρι X _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 \overline{x} 3317,5 Μετρή X _n 8264,5				$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ 6299,6\\ 3886,4\\ 221,0\\ 0,0\\ 87,9\\ 348,8\\ 540,5\\ 771,0\\ 1343,1\\ 1682,1\\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2}\\ 15180,3\\ \end{array}$		2000 <i>b</i> ^{//} _z 0,018 <i>M</i> ^{//} _z (A/m) 0,0425	y = 0,0 R 4000 600 $\delta b_z^{\prime\prime}$ 0,001 $\delta M_z^{\prime\prime}$ 0,0002	$\frac{177x + 553,06}{2} = 0,9742$ $\frac{1}{2} = 0,9742$	5 10000 $\delta w_z^{\prime\prime}$ 4,0 $\delta \alpha_z^{\prime\prime}$ 0,0003
A n 1 2 3 4 5 6 7 7 8 9 9 10 10 10 1 2	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,5 25,9 26,2 26,3 ±0,2nT γγείο 6 B ^{//} _{xψ} 22,9 23,4	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n 11,0 13,0	Μετρι X _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 x 3317,5 Mετρή X _n 8264,5 5917,2	ψn 691,1 674,1 626,6 611,9 602,4 593,1 588,5 584,0 575,1 570,8 ψ 611,8 σεις της B ψn 752,8 721,0	$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$ 47225816,7 xw από τους παρά (x_n - \overline{x})^2 24472348,7 6758182,3		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ 6299,6 \\ 3886,4 \\ 221,0 \\ 0,0 \\ 87,9 \\ 348,8 \\ 540,5 \\ 771,0 \\ 1343,1 \\ 1682,1 \\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2} \\ 15180,3 \\ \end{array}$	$ \begin{array}{c} 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ 0 \\ 0 \\ \overline{} \\ 200 \\ 0 \\ \overline{} $	2000 $b_z^{\prime\prime}$ 0,018 $M_z^{\prime\prime}$ (A/m) 0,0425	y = 0,0 R 4000 600 $\delta b_z^{''}$ 0,001 $\delta M_z^{''}$ 0,0002	$\frac{177x + 553,06}{2} = 0,9742$ 00 8000 $\frac{w_z''}{2}$ 553,1 $\alpha_z''(m)$ 0,0113	5 10000 $\delta w_z^{\prime\prime}$ 4,0 $\delta \alpha_z^{\prime\prime}$ 0,0003
A n 1 2 3 4 5 5 6 7 7 8 9 10 10 10 1 2 3 3	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3 ±0,2nT γγείο 6 B ^{//} _{xw} 22,9 23,4 23,6	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n 11,0 13,0 15,0	Μετρη Χ _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 \overline{x} 3317,5 Μετρή Χ _n 8264,5 5917,2 4444,4	ψn 691,1 674,1 626,6 611,9 602,4 593,1 588,5 584,0 575,1 570,8 ψ 611,8 σεις της B ψn 752,8 721,0 708,8	$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 Σ($x_n - \overline{x}$) ² 47225816,7 $(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 2062 - 5		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2}\\ 6299,6\\ 3886,4\\ 221,0\\ 0,0\\ 87,9\\ 348,8\\ 540,5\\ 771,0\\ 1343,1\\ 1682,1\\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2}\\ 15180,3\\ \end{array}$	$ \begin{array}{c} 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ 0 \\ \overline{} \\ 0 \\ \overline{} \\ $	2000 <i>b</i> ^{//} _z 0,018 <i>M</i> ^{//} _z (A/m) 0,0425	y = 0,0 R 4000 600 $\delta b_z^{''}$ 0,001 $\delta M_z^{''}$ 0,0002 y = 0	$w_{z}^{//}$ $w_{z}^{//}$ $w_{z}^{//}$ $w_{z}^{//}$ $w_{z}^{//}$ $w_{z}^{//}$ $0,0113$	5 10000 $\delta w_z^{\prime\prime}$ 4,0 $\delta \alpha_z^{\prime\prime}$ 0,0003 ,79
A n 1 2 3 4 5 6 7 8 8 9 10 10 10 1 2 3 4 5	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3 ±0,2nT γγείο 6 B ^{//} _{xw} 22,9 23,4 23,6 24,0 24,1	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n 11,0 13,0 15,0 17,0 19,0	Μετρη X _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 X 3317,5 Μετρή X _n 8264,5 5917,2 4444,4 3460,2 2770,1		$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$ 47225816,7 xw από τους παρά (x_n - \overline{x})^2 24472348,7 6758182,3 1269982,7 20362,8 2096,75		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ 6299,6 \\ 3886,4 \\ 221,0 \\ 0,0 \\ 87,9 \\ 348,8 \\ 540,5 \\ 771,0 \\ 1343,1 \\ 1682,1 \\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2} \\ 15180,3 \\ \end{array}$	$ \begin{array}{c} 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ \overline{} \\ 0 \\ \overline{} $	2000 <i>b</i> ^{//} _z 0,018 <i>M</i> ^{//} _z (A/m) 0,0425	y = 0,0 R 4000 600 $\delta b_z^{\prime\prime}$ 0,001 $\delta M_z^{\prime\prime}$ 0,0002 y = 0	$w_{z}^{//}$ $w_{z}^{/}$ w	5 10000 $\delta w_z^{\prime\prime}$ 4,0 $\delta \alpha_z^{\prime\prime}$ 0,0003 ,79
A n 1 2 3 4 5 6 7 7 8 9 9 10 10 10 10 12 3 4 4 5 6	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3 ±0,2nT γγείο 6 B ^{//} _{xw} 22,9 23,4 23,6 24,0 24,1 24,3	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n 11,0 13,0 15,0 17,0 19,0 21.0	Μετρη Χ _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 \overline{x} 3317,5 Μετρή Χ _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6		$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$ 47225816,7 xw από τους παρά ($x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ 6299,6 \\ 3886,4 \\ 221,0 \\ 0,0 \\ 87,9 \\ 348,8 \\ 540,5 \\ 771,0 \\ 1343,1 \\ 1682,1 \\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2} \\ 15180,3 \\ 0 \\ \left(\psi_{n}-\overline{\psi}\right)^{2} \\ 5081,2 \\ 1556,7 \\ 744,5 \\ 14,9 \\ 3,3 \\ 168.0 \\ \end{array}$	$ \begin{array}{c} 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ \hline \hline \hline \hline 0 \\ \hline \hline \hline \hline \hline 0 \\ \hline \hline$	2000 b_z'' 0,018 M_z'' (A/m) 0,0425	y = 0,0 R 4000 600 $\delta b_z^{1/}$ 0,001 $\delta M_z^{1/}$ 0,0002 y = 0	$w_{z}^{//}$	5 10000 $\delta w_z^{\prime\prime}$ 4,0 $\delta \alpha_z^{\prime\prime}$ 0,0003 ,79
A n 1 2 3 4 5 6 7 8 9 10 10 10 12 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3 ±0,2nT γγείο 6 B ^{//} _{xw} 22,9 23,4 23,6 24,1 24,3 24,5	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 20,	Μετρη Χ _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 \overline{x} 3317,5 Μετρή Χ _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4	ψ ψ 691,1 674,1 626,6 611,9 602,4 593,1 588,5 584,0 575,1 570,8 ψ 611,8 σεις της B ψ 611,8 σεις της B 10,000 752,8 721,0 708,8 685,4 679,7 668,6 657,7 7	$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$ 47225816,7 xw από τους παρά $(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 20362,8 299675,5 1102364,8 20367,5		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ 6299,6 \\ 3886,4 \\ 221,0 \\ 0,0 \\ 87,9 \\ 348,8 \\ 540,5 \\ 771,0 \\ 1343,1 \\ 1682,1 \\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2} \\ 15180,3 \\ 5 \\ \left(\psi_{n}-\overline{\psi}\right)^{2} \\ 5081,2 \\ 1556,7 \\ 744,5 \\ 14,9 \\ 3,3 \\ 168,0 \\ 568,1 \\ \end{array}$	$ \begin{array}{c} 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ 0 \\ \hline \\ \Sigma R_{i}^{2} \\ 392,3 \\ 800 \\ 750 \\ 700 \\ 650 \\ 600 \\ 0 \\ 0 \end{array} $	2000 <i>b</i> ^{//} _z 0,018 <i>M</i> ^{//} _z (A/m) 0,0425	y = 0,0 R 4000 600 $\delta b_z^{\prime\prime}$ 0,001 $\delta M_z^{\prime\prime}$ 0,0002 y = 0 4000 600	$w_{z}^{//}$ $w_{z}^{/}$ w_{z}	5 10000 $\delta w_z^{\prime\prime}$ 4,0 $\delta \alpha_z^{\prime\prime}$ 0,0003 ,79 10000
A n 1 2 3 4 5 6 7 7 8 9 9 10 10 10 10 10 2 3 4 4 5 6 7 7 8	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3 ±0,2nT 23,4 23,4 23,4 23,6 24,0 24,1 24,3 24,5 24,6	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n 11,0 13,0 15,0 17,0 19,0 23,0 25,	Μετρη Χ _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 X 3317,5 Μετρή Χ _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0		$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$ 47225816,7 x_w από τους παρά $(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ 6299,6 \\ 3886,4 \\ 221,0 \\ 0,0 \\ 87,9 \\ 348,8 \\ 540,5 \\ 771,0 \\ 1343,1 \\ 1682,1 \\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2} \\ 15180,3 \\ \end{array}$	$ \begin{array}{c} 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ 0 \\ \hline \\ \Sigma R_{i}^{2} \\ 392,3 \\ 800 \\ 750 \\ 700 \\ 650 \\ 600 \\ 0 \\ \end{array} $	2000 <i>b</i> ^{//} _z 0,018 <i>M</i> ^{//} _z (A/m) 0,0425 2000	y = 0,0 R 4000 600 $\delta b_z^{\prime\prime}$ 0,001 $\delta M_z^{\prime\prime}$ 0,0002 y = 0 4000 600 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	$\frac{177x + 553,06}{2} = 0,9742$ $\frac{177x + 553,06}{2} = 0,9742$ $\frac{1}{2} = 0,9782$ $\frac{1}{2} = 0,9782$ $\frac{1}{2} = 0,9782$	5 10000 $\delta w_z^{\prime\prime}$ 4,0 $\delta \alpha_z^{\prime\prime}$ 0,0003 ,79 10000
A n 1 2 3 4 5 6 7 7 8 9 9 10 10 1 2 3 4 5 5 6 7 7 8 9 9	γγείο 6 B ^{//} z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3 ±0,2nT 23,4 23,6 24,2 25,4 25,5 26,0 26,2 26,3 ±0,2nT 22,9 23,4 23,6 24,0 24,1 24,3 24,5 24,6	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n 11,0 13,0 15,0 17,0 19,0 23,0 25,0 27,0 29,0 20,	Μετρι X n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 x 3317,5 Μετρή X n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0		$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$ 47225816,7 xw από τους παρά ($x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 29472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ 6299,6 \\ 3886,4 \\ 221,0 \\ 0,0 \\ 87,9 \\ 348,8 \\ 540,5 \\ 771,0 \\ 1343,1 \\ 1682,1 \\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2} \\ 15180,3 \\ \end{array}$	$ \begin{array}{c} 800 \\ 600 \\ - \\ 400 \\ - \\ 200 \\ - \\ - \\ 0 \\ - \\ - \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	2000 <i>b</i> ^{//} _z 0,018 <i>M</i> ^{//} _z (A/m) 0,0425 2000 <i>b</i> ^{//}	y = 0,0 R 4000 600 $\delta b_z^{''}$ 0,001 $\delta M_z^{''}$ 0,0002 y = 0 4000 60 $s b_z^{''}$	$\frac{177x + 553,06}{2} = 0,9742$ $\frac{177x + 553,06}{2} = 0,9742$ $\frac{1}{2} = 0,9782$ $\frac{1}{2} = 0,9782$ $\frac{1}{2} = 0,9782$	5 10000 $\delta w_z^{//}$ 4,0 $\delta \alpha_z^{//}$ 0,0003 ,79 10000 $\delta w_z^{//}$
A n 1 2 3 4 5 6 7 7 8 9 9 10 10 10 12 3 4 5 6 7 7 8 9 9	γγείο 6 B ["] _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3 ±0,2nT γγείο 6 B ["] _{xw} 22,9 23,4 23,6 24,0 24,1 24,3 24,5 24,6 24,7	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n 11,0 13,0 15,0 17,0 19,0 23,0 25,0 27,0 23,0 25,0 27,0 23,0 25,0 27,0 23,0 25,0 27,0 23,0 25,0 27,0 27,0 23,0 27,	Μετρι X 8264,5 5917,2 444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 x 3317,5 Μετρή X 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7		$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1		$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ 6299,6 \\ 3886,4 \\ 221,0 \\ 0,0 \\ 87,9 \\ 348,8 \\ 540,5 \\ 771,0 \\ 1343,1 \\ 1682,1 \\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2} \\ 15180,3 \\ \end{array}$	$ \begin{array}{c} 800 \\ 600 \\ - \\ 400 \\ 200 \\ 0 \\ - \\ - \\ 0 \\ - \\ - \\ 0 \\ - \\ - \\ 0 \\ - \\ - \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	2000 $b_z^{\prime\prime}$ 0,018 $M_z^{\prime\prime}$ (A/m) 0,0425 2000 $b_{x\psi}^{\prime\prime}$	y = 0,0 R 4000 600 $\delta b_z^{\prime\prime}$ 0,001 $\delta M_z^{\prime\prime}$ 0,0002 y = 0 4000 60 $\delta b_{xyy}^{\prime\prime}$	$w_{z}^{//}$ $w_{xw}^{//}$	5 10000 $\delta w_z^{//}$ 4,0 $\delta \alpha_z^{//}$ 0,0003 ,79 10000 $\delta w_{xy}^{//}$
A n 1 2 3 4 5 6 7 8 9 10 A 1 2 3 4 5 6 7 8 9 10	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,5 25,9 26,0 26,2 26,3 ±0,2nT 7γείο 6 B ^{//} xw 22,9 23,4 24,5 24,6 24,7 24,8 40,2 - T	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 20,0 21,0 20,	Μετρη Χ _n 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 \overline{x} 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1		$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8	$\begin{split} & \psi_n (x_n - \overline{x}) \\ & 3419020,9 \\ & 1752443,2 \\ & 706173,2 \\ & 87319,5 \\ & -329765,6 \\ & -622705,9 \\ & -839904,4 \\ & -1003025,9 \\ & -1119046,3 \\ & -1214818,6 \\ & \Sigma\psi_n (x_n - \overline{x}) \\ & 835690,0 \\ & \lambda\lambda\eta\lambda ou_{\zeta} \alpha i \sigma \theta\eta\tau \eta \rho \epsilon \\ & \psi_n (x_n - \overline{x}) \\ & 3724145,1 \\ & 1874316,7 \\ & 798793,7 \\ & 97803,9 \\ & -372092,8 \\ & -701956,0 \\ & -938636,1 \\ & -1120440,1 \\ & -1259089,8 \\ & -1366216,6 \\ \end{split}$	$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ 6299,6 \\ 3886,4 \\ 221,0 \\ 0,0 \\ 87,9 \\ 348,8 \\ 540,5 \\ 771,0 \\ 1343,1 \\ 1682,1 \\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2} \\ 15180,3 \\ \end{array}$	$ \begin{array}{c} 800 \\ 600 \\ - \\ 400 \\ - \\ 200 \\ - \\ - \\ 0 \\ - $	2000 $b_z^{\prime\prime}$ 0,018 $M_z^{\prime\prime}$ (A/m) 0,0425 2000 $b_{x\psi}^{\prime\prime}$ 0,0156	y = 0,0 R 4000 600 $\delta b_z^{''}$ 0,001 $\delta M_z^{''}$ 0,0002 y = 0 4000 60 $\delta b_{x\psi}^{''}$ 0,0008	$w_{z}^{//}$	$ \frac{\delta w_{z}^{''}}{\delta \alpha_{z}^{''}} $ 10000 $ \frac{\delta w_{z}^{''}}{\delta \alpha_{z}^{''}} $ 0,0003 $ \frac{\delta w_{xy}^{''}}{\delta w_{xy}^{''}} $ 3,3
A n 1 2 3 4 5 6 7 8 9 10 10 1 2 3 4 5 6 7 8 9 10 10 12 3 4 5 6 7 8 9 9 10 10 10 10 10 10 10 10 10 10	γγείο 6 B ^{//} _z 23,9 24,2 25,1 25,4 25,6 25,8 25,9 26,0 26,2 26,3 ±0,2nT 23,4 23,6 24,1 24,3 24,0 24,1 24,5 24,6 24,7 24,8 ±0,2nT	D _n 11,0 13,0 15,0 17,0 19,0 21,0 23,0 25,0 27,0 29,0 ±0,2mm D _n 11,0 13,0 15,0 17,0 19,0 23,0 25,0 27,0 29,0 ±0,2mm 23,0 25,0 27,0 29,0 ±0,2mm	Μετρη X 8264,5 5917,2 444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 x 3317,5 Μετρή X 8264,5 5917,2 4444,4 3460,2 2770,1 2267,6 1890,4 1600,0 1371,7 1189,1 x		$(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$ 47225816,7 x_w από τους παρά $(x_n - \overline{x})^2$ 24472348,7 6758182,3 1269982,7 20362,8 299675,5 1102364,8 2036757,6 294973,8 3786010,1 4530293,8 203675,5 1102364,8 2036757,6 2949838,3 3786010,1 4530293,8 $\Sigma(x_n - \overline{x})^2$	$\begin{split} & \psi_n (x_n - \overline{x}) \\ & 3419020,9 \\ & 1752443,2 \\ & 706173,2 \\ & 87319,5 \\ & -329765,6 \\ & -622705,9 \\ & -839904,4 \\ & -1003025,9 \\ & & -1119046,3 \\ & & -1214818,6 \\ & & & & & & \\ & & & & & & \\ & & & & $	$\begin{array}{c} \left(\psi_{n}-\overline{\psi}\right)^{2} \\ 6299,6 \\ 3886,4 \\ 221,0 \\ 0,0 \\ 87,9 \\ 348,8 \\ 540,5 \\ 771,0 \\ 1343,1 \\ 1682,1 \\ \Sigma\left(\psi_{n}-\overline{\psi}\right)^{2} \\ 15180,3 \\ \end{array}$	$ \begin{array}{c} 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} \Sigma R_i^2 \\ 392,3 \\ 800 \\ 750 \\ 750 \\ 650 \\ 600 \\ 0 \end{array} $ $ \begin{array}{c} \Sigma R_i^2 \\ SR_i^2 \\ Trome \\ SR_i^2 \end{array} $	2000 b_z'' 0,018 M_z'' (A/m) 0,0425 2000 $b_{x\psi}''$ 0,0156 $M_{x\psi}''$ (A/m)	y = 0,0 R 4000 600 $\delta b_z^{\prime\prime}$ 0,001 $\delta M_z^{\prime\prime}$ 0,0002 y = 0 4000 60 $\delta b_{x\psi}^{\prime\prime}$ 0,0008 $\delta M_{x\psi}^{\prime\prime}$	$w_{z}^{//}$ $w_{x\psi}^{//}$	$ \frac{\delta w_{z}^{\prime\prime}}{\delta \alpha_{z}^{\prime\prime}} $ 10000 $ \frac{\delta w_{z}^{\prime\prime}}{\delta \alpha_{z}^{\prime\prime}} $ 0,0003 $ \frac{\delta w_{x\psi}^{\prime\prime}}{\delta \alpha_{x\psi}^{\prime\prime}} $ 3,3 $ \frac{\delta \alpha_{x\psi}^{\prime\prime}}{\delta \alpha_{x\psi}^{\prime\prime}} $

Πίνακας B21. Υπολογισμός της μαγνήτισης και των ακτίνων ευαισθησίας με τη μέθοδο των ελαχίστων τετραγώνων.

9									4 3 2 5 4 B		α 0 β 0 γ 0 δ)
						EIO 1	-	4		X	10 cm	
Πίν	ακας Β22		ME	ΤΡΗΣΕΙΣ ΣΕ	Ε ΟΣΤΡΑΚΟ ΤΗΣ Β	ΑΣΗΣ ΤΟΥ ΑΓΓΕΙΟΥ :	1	4	1	Ψ	19 ¹	
L±.	∆L(mm)	Μετρήσε	ις με την τ	ρισορθογά	ώνια διάταξη των	αισθητήρων στη δι	εύθυνση της Β _{xψ}		2 ***			
2	1,2±0,5		Μ	Ιετρήσεις τ	της Β_z από τον κά	θετο z- αισθητήρα		180				
n	λB_z	D_n	X_n	Ψ_n	$(x_n - \overline{x})^2$	$\psi_n(x_n-\overline{x})$	$(\psi_n - \overline{\psi})^2$	178 -			•/•	
1	48,2	23	1890,4	169,9	1585056,5	-213938,0	20,1	1/6				
2	48,0	22	2066,1	171,3	1173395,3	-185609,2	9,4	174 —				
3	47,8	21	2267,6	172,8	777528,4	-152356,9	2,7	172		*		
4	47,8	20	2500,0	172,8	421654,7	-112197,3	2,7			y = 0,	0025x + 166,4	42
5	47,6	19	2770,1	174,2	143842,9	-66083,1	0,0	170 +	•		R ² = 0,9371	
6	47,6	18	3086,4	174,2	3960,1	-10964,8	0,0	168 +	1			
7	47,4	17	3460,2	175,7	96632,8	54621,7	1,7	0	200	0	4000	6000
8	47,2	16	3906,3	177,2	572898,5	134126,5	7,8					
9									h	δh	w	δw
	47,2	15	4444,4	177,2	1677271,1	229497,2	7,8		ζ	00 _z	"z	<i>c</i> ,, _z
10	47,0	14	5102,0	178,7	3813003,7	348977,7	18,5		0,0025	0,0002	166,4	0,8
	±0,2nT	±0,2mm	\overline{x}	$\overline{\psi}$	$\Sigma(x_n-\overline{x})^2$	$\Sigma \psi_n(x_n - \overline{x})$	$\Sigma(\psi_n - \overline{\psi})^2$	ΣR_i^2	M_{z} (A/m)	δM_z	$lpha_z^\perp$ (m)	$\delta \alpha_z^{\perp}$
			3149,3	174,4	10265244,0	26073,8	70,7	4,4	0,0775	0,0002	0,0082	0,0004

Г

A	γγείο 1		Μετ	ρήσεις της	Β_{xψ} από τον παρ	άλληλο x-αισθητήρ	α	112				
n	$B_{x\psi}$	D_n	X _n	Ψ_n	$(x_n - \overline{x})^2$	$\psi_n(x_n-\overline{x})$	$(\psi_n - \overline{\psi})^2$	110 108				
1	63,8	23	1890,4	97,0	1585056,5	-122107,1	25,2	106	-			
2	63,6	22	2066,1	97,6	1173395,3	-105722,6	19,4	104				
3	63,4	21	2267,6	98,2	777528,4	-86604,3	14,3	102	-		v = 0.0041x +	89.072
4	63,0	20	2500,0	99,5	421654,7	-64588,8	6,4	100			$R^2 = 0.9$	954
5	62,7	19	2770,1	100,4	143842,9	-38086,3	2,5	98			K = 0,5	
6	62,4	18	3086,4	101,4	3960,1	-6380,4	0,4	96				
7	61,7	17	3460,2	103,7	96632,8	32236,8	2,9		0 1000 2	000 3000	4000 500	00 6000
8	61,3	16	3906,3	105,1	572898,5	79520,2	9,3					
9	60,8	15	4444,4	106,8	1677271,1	138310,2	23,0		$b_{x\psi}$	$\delta b_{x\psi}$	w _{xψ}	$\delta w_{x\psi}$
10	59 <i>,</i> 8	14	5102,0	110,4	3813003,7	215571,3	70,5		0,0041	0,0001	89,1	0,3
	±0,2nT	±0,2mm	\overline{x}	$\overline{\psi}$	$\Sigma(x_n-\overline{x})^2$	$\Sigma \psi_n(x_n - \overline{x})$	$\Sigma(\psi_n-\overline{\psi})^2$	ΣR_i^2	$M_{_{X\!\!\!/\!\!\!V}}$ (A/m)	δM_{xy}	$lpha_{_{X\!Y\!\prime}}^{^{\prime\prime}}$ (m)	$\delta \alpha_{x\psi}^{\prime\prime}$
			3149,3	102,0	10265244,0	42149,2	173,9	0,8	0,1060	0,0002	0,0142	0,0002

Πίνακας B22 Υπολογισμός της μαγνήτισης και της ακτίνας ευαισθησίας των αισθητήρων με τη μέθοδο των ελαχίστων τετραγώνων, από μετρήσεις του μαγνητικού πεδίου σε όστρακο της βάσης του αγγείου 1.

Α	γγείο 3		Μετρή	ίσεις της	Β_{κψ} από τον παρά	άλληλο x-αισθητήρα	X	92 —				
n	$B_{x\psi}$	D_n	X_n	ψ_n	$(x_n - \overline{x})^2$	$\psi_n(x_n-\overline{x})$	$(\psi_n - \overline{\psi})^2$	90 88				•
1	71,3	24	1736,1	77,7	1159165,2	-83609,1	29,68	86 -				
2	70,9	23	1890,4	78,5	850816,8	-72441,1	20,88	84 -			/	
3	70,1	22	2066,1	80,3	557472,4	-59984,0	7,65	82 -				
4	69,9	21	2267,6	80,8	297224,2	-44050,2	5,32	80 -		y=0	J,0046x + 70,2	99
5	69,4	20	2500,0	82,0	97816,6	-25635,8	1,29	78 +			K - 0,9809	
6	69,0	19	2770,1	82,9	1821,0	-3538,5	0,03	76 +	I	1 1	I	
7	68,3	18	3086,4	84,6	74891,6	23159,8	2,32	0	1000	2000 300	0 4000	5000
8	67,7	17	3460,2	86,1	419193,0	55768,6	9,18					
9									b _{xw}	$\delta b_{_{X\!\psi}}$	W _{xψ}	δw
10	67,3	16	3906,3	87,2	1195728,1	95311,6	16,46		0.00455	0.00010	70.2	0.5
10	65,9	15	4444,4	90,9	2662405,7	148329,0	60,84		0,00455	0,00019	70,3	0,5 5
	±0,2nT	±0,2mm	\overline{x}	$\overline{\psi}$	$\Sigma(x_n-\overline{x})^2$	$\Sigma \psi_n(x_n - \overline{x})$	$\Sigma(\psi_n - \overline{\psi})^2$	ΣR_i^2	$M_{_{x\!\psi}}$ (A/m)	δM _{xψ}	$lpha_{x\!\psi}^{\prime\prime}$ (m)	δα΄
			2812,8	77,7	7316534,7	33310,3	153,7	2,02	0,1193	0,0005	0,0161	0,0 00 3

Πίνακας B23. Υπολογισμός της μαγνήτισης και της ακτίνας ευαισθησίας των αισθητήρων με τη μέθοδο των ελαχίστων τετραγώνων, από μετρήσεις του μαγνητικού πεδίου σε όστρακο της βάσης του αγγείου 3.

Πίνακας Β24α. Ενδείξεις των αισθητήρων
Bi $(i = xy,z)$ kai metrhoeig two apostásewo D,
L , με τον x αισθητήρα προσανατολισμένο στην
κοινή κατεύθυνση των $\mathbf{B}_{xy},\mathbf{M}_{xy}$ σε όστρακα του
σώματος του αγγείου 1.

	Αγγείο 1						_			
							$\alpha_{y}^{L}(cm)$	$\alpha_{\mathbf{x},\mathbf{z}}^{\ \ \prime\prime}(\mathrm{cm})$		λ
							0,82±0,04	1,42±0,02	2,0)±0,1
		Α	В	Γ	Δ	Ε	Z	Н	Θ	Ι
	D (±0.3) cm	5.2	9.5	15.3	29.5	23.8	17.1	11.3	3.7	
	L (±0.1) cm	1,0	1.1	1.1	1.2	1.1	1.1	1.0	1.1	
1	B_{xz} (±1) nT	50	33	18	2	15	40	55	80	
	B _γ (±1) nT	23	33	33	36	31	30	25	7	
	B (±1) nT	55	47	38	36	34	50	60	80	
	θ _B °	65±1	45±1	29±2	3±2	26±2	53±1	66±1	85±1	
	D (±0.3) cm	5.3	10.7	16.7	18.9	24.3	18.3	13.1	3.5	
	L (±0.1) cm	1.1	1.1	1.2	1.2	1.3	1.3	1.2	1.2	
2	B_{xz} (±1) nT	67	33	20	9	25	38	64	83	
	B _y (±1) nT	22	31	35	35	33	31	23	5	
	B (±1) nT	71	45	40	36	41	49	68	83	
	θ _B °	72±1	47±1	30±1	14±2	37±1	51±1	70±1	87±1	
	D (±0.3) cm	6.6	3.0	3.8	22.8	29.5	19.9	15.4	2.9	
	L (±0.1) cm	1.2	1.2	1.3	1.2	1.3	1.4	1.3	1.3	
3	B_{xz} (±1) nT	71	37	22	16	31	48	73	81	
	B_y (±1) nT	20	32	35	34	31	28	18	2	
	B (±1) nT	74	49	41	38	44	56	75	81	
	θ _B °	74±1	49±1	32±1	25±2	45±1	60±1	76±1	89±1	
	D (±0.3) cm	7.2	4.4	8.8	6.7	5.9	22.7	15.9	3.3	10.3
	L (±0.1) cm	1.2	1.3	1.4	1.3	1.4	1.4	1.4	1.4	1.4
4	B _{xz} (±1) nT	75	55	37	32	33	54	70	83	82
	B_y (±1) nT	17	25	31	31	33	26	19	-5	-9
	B (±1) nT	77	60	48	45	47	60	73	83	81
	θ _B °	77±1	66±1	50±1	46±1	45±1	64±1	75±1	- 87 ±1	-83±1
	D (±0.3) cm	2.8	7.9	2.5	12.8	11.4	24.0	11.7	6.1	7.9
	L (±0.1) cm	1.3	1.3	1.3	1.3	1.5	1.4	1.4	1.5	1.5
5	B _{xz} (±1) nT	78	63	44	37	44	66	75	81	79
	Β _γ (±1) nT	15	24	32	32	32	22	15	-6	-9
	B (±1) nT	79	67	54	49	54	70	76	81	80
	θ _B ^o	79±1	69±1	54±1	49±1	54±1	72±1	79±1	-86±1	-84±1

Πίνακας 24α (συνέχεια). Ενδείξεις των αισθητήρων Bi (i = xy,z) και μετρήσεις των αποστάσεων D, L , με τον x αισθητήρα προσανατολισμένο στην κοινή κατεύθυνση των B_{xy} , M_{xy} σε όστρακα του σώματος του αγγείου 1.

	Αγγείο 1										
(Ĵ										_
		Α	В	Г	Δ	Ε	Z	Н	Θ	Ι	
	D (±0.3) cm	6.9	3.2	12,7	6.7	8.2	8.0				
	L (±0.1) cm	1.6	1.5	1,4	1.5	1.6	1.7				
6	B _{xz} (±1) nT	76	70	63	58	68	79				
	Β _γ (±1) nT	12	17	27	27	21	13				
	B (±1) nT	77	72	69	64	71	80				
	θ _B ^o	81±1	76±1	67±1	65±1	73±1	81±1				
	D (±0.3) cm	7.1	4.9	5.4	11.8	3.3	3.6				
	L (±0.1) cm	1.7	1.7	1.8	1.7	1.8	1.7				
7	B_{xz} (±1) nT	85	78	73	66	71	81				
	Β _γ (±1) nT	2	12	19	22	20	8				
	B (±1) nT	85	79	75	70	74	81				
	θ _B °	89±1	81±1	75±1	72±1	74±1	84±1				
	D (±0.3) cm	7.4	4.5	10.9	8.8	9.6	5.5				
	L (±0.1) cm	1.8	1.8	1.9	1.9	1.9	2.0				
8	B_{xz} (±1) nT	86	76	76	69	73	80				
	B _γ (±1) nT	1	13	17	18	19	8				
	B (±1) nT	86	77	78	71	75	80				
	θ _B °	89±1	80±1	77±1	75±1	75±1	84±1				
	D (±0.3) cm		10.2	16.9	15.2	13.8	11.2				
	L (±0.1) cm		1.9	2.0	2.1	2.0	2.0				
9	B _{xz} (±1) nT		79	79	76	78	82				
	Β _γ (±1) nT		5	14	16	14	4				
	B (±1) nT		79	80	78	79	82				
	A ⁰		86+1	80+1	78+1	80+1	87+1				

Table 24β. Ενδείξεις των αισθητήρων B_i (i=x,y,z), με τον x αισθητήρα προσανατολισμένο στη διεύθυνση των αυλακώσεων σε όστρακα του σώματος του **αγγείου 1**.

	KH/									
		Α	В	Г	Δ	Е	Z	Н	Θ	Ι
	B _v (±1nT)	23	32	32	35	31	29	25	7	
	B _x (±1nT)	47	33	18	-3	-19	-41	-57	-60	
1	B _z (±1nT)	16	7	3	-1	5	8	23	51	
1	B(±1nT)	55	46	37	35	37	51	66	79	
	θ _B °	65± 1	47 ±1	30± 2	5 ±2	32± 2	55± 1	68± 1	85± 1	
	φ _B °	19± 1	12± 2	9± 3	198± 18	165± 3	169± 1	158± 1	140± 1	
	B _y (±1nT)	22	30	34	34	34	30	23	5	
	B _x (±1nT)	60	29	18	-3	-22	-39	-57	-62	
2	B _z (±1nT)	31	9	11	9	11	14	29	49	
4	B (±1nT)	71	43	40	35	42	51	68	72	
	θ _B °	72± 1	45 ±1	32± 1	16± 2	36± 1	54± 1	70± 1	86± 1	
	φ _B °	27 ±1	17± 2	31± 3	108± 6	153± 2	160± 1	153± 1	142± 1	
	B_y (±1nT)	20	32	36	35	32	28	17	3	
	B _x (±1nT)	62	31	13	-3	-20	-47	-60	-62	
2	B _z (±1nT)	40	25	17	17	21	29	38	47	
5	B (±1nT)	76	51	42	39	43	62	73	78	
	θ _B °	75± 1	51± 1	31 ±1	26± 1	42± 1	63± 1	77± 1	88± 1	
	φ _B °	33± 1	39± 1	53± 3	100± 3	134 ±2	148± 1	148± 1	143± 1	
	B_y (±1nT)	17	24	32	32	33	25	19	-6	-9
	B _x (±1nT)	59	41	19	-2	-21	-40	-58	-63	-56
4	B _z (±1nT)	42	37	30	33	29	31	40	51	50
7	B (±1nT)	74	60	48	46	49	56	73	81	76
	θ _B ^o	77± 1	67± 1	48± 1	46± 1	47 ±1	64± 1	75± 1	- 86± 1	- 83± 1
	φ _B °	35± 1	42± 1	58± 2	93± 2	126± 2	142± 1	145± 1	141± 1	139± 1
	B _y (±1nT)	15	23	32	32	32	22	15	-6	-10
	B _x (±1nT)	54	48	21	-7	-21	-48	-58	-68	-61
5	B _z (±1nT)	41	47	40	35	41	42	47	52	51
3	B (±1nT)	69	71	55	48	56	67	76	86	80
	θ _B °	78± 1	71± 1	55± 1	48± 1	55± 1	71± 1	79± 1	- 86± 1	- 83± 1
	φ _B °	37± 1	44± 1	62± 1	101± 1	117 ±1	139± 1	141± 1	143± 1	140± 1

Table 24β (συνέχεια) Ενδείξεις των αισθητήρων B_i (i=x,y,z), με τον x αισθητήρα προσανατολισμένο στη διεύθυνση των αυλακώσεων σε όστρακα του σώματος του **αγγείου 1**.

	Αγγείο 1									
(
		Α	В	Γ	Δ	E	Z	Н	Θ	Ι
	B _y (±1nT)	11	18	26	27	22	14			
	B _x (±1nT)	55	42	21	-1	-28	-48			
6	B _z (±1nT)	51	57	54	56	60	53			
	B(±1nT)	76	76	64	62	70	73			
	θ _B °	82± 1	76± 1	66± 1	64± 1	72± 1	79± 1			
	φ _B °	43± 1	54± 1	69± 1	91± 1	115± 1	132± 1			
	B _v (±1nT)	2	12	18	21	20	8			
	B _x (±1nT)	65	48	20	-5	-25	-52			
7	B _z (±1nT)	57	63	63	61	61	61			
'	B(±1nT)	86	81	69	65	69	84			
	θ _B ^o	89± 1	81± 1	75± 1	71± 1	73± 1	84± 1			
	φ _B °	41 ±1	53± 1	72± 1	95± 1	112± 1	130± 1			
	B _v (±1nT)	1	12	16	18	18	9			
	B _x (±1nT)	62	47	20	1	-27	-50			
0	B _z (±1nT)	56	71	67	74	71	65			
0	B (±1nT)	84	82	72	76	78	82			
	θ _B °	89± 1	82± 1	77± 1	76± 1	77± 1	84± 1			
	Φ _B ^o	42± 1	56± 1	73± 1	89± 1	111± 1	128± 1			
	B_y (±1nT)		6	14	16	15	4			
	B _x (±1nT)		44	27	-4	-29	-51			
9	B _z (±1nT)		64	72	75	72	66			
	B (±1nT)		86	78	77	79	84			
	θ _B °		86± 1	80± 1	78± 1	79± 1	87± 1			
	$\Phi_{\rm B}^{0}$		55± 1	71± 1	93± 1	112± 1	128± 1			

Πίνακας B25α. Ενδείξεις των αισθητήρων Bi (i = xy,z) και μετρήσεις των αποστάσεων D, L, με τον x αισθητήρα προσανατολισμένο στην κοινή κατεύθυνση των B_{xy} , M_{xy} σε όστρακα του σώματος του **αγγείου 2**.

	Αγγείο 2							α_v	a_x,z"	λ
	5 T							(cm)	(cm)	
Y								1,15±	1,66±	
	PESI							0,053	0,05	2,0±0,1
		٨	D	Г		Б	7	т	Α	T
	D (10.2) are	A	D	1	Δ	L		п 25	0	1
	D (±0.3) Cm						5.7	2.5	3.4	
							0.9	0.8	0.8	
1	$\mathbf{B}_{xz}(\pm 1)$ m						21	16	28	
	B _y (±1)n1						37	28	33	
	B (±1) n1						43	32	43	
	θ _B						30±1	30±2	40±1	
	D (±0.3) cm						9.3			2.0
	L (±0.1) cm						1.0			1.1
2	B _{xz} (±1) nT						35			71
	Β _y (±1) nT						38			32
	B (±1) nT						52			78
	θ _B °						43±1			66±1
	D (±0.3) cm						13.1	11.9	10.6	3.7
	L (±0.1) cm						1.2	1.3	1.1	1.2
3	B _{xz} (±1) nT						46	38	49	89
	B _y (±1) nT						38	42	38	24
	B (±1) nT						60	57	62	92
	θ _B °						50±1	42±1	52±1	75±1
	D (±0.3) cm						2.8	2.6	6.4	1.7
	L (±0.1) cm						1.5	1.6	1.5	1.5
4	B _{xz} (±1) nT						73	73	77	92
	B _y (±1) nT						37	33	28	20
	B (±1) nT						82	80	82	94
	θ _B °						63±1	66±1	70±1	78±1
	D (±0.3) cm						6.7	2.6	10.4	2.3
	L (±0.1) cm						1.6	1.6	1.4	1.3
5	B _{xz} (±1) nT						88	73	90	99
5	B _y (±1) nT						35	33	26	15
	B (±1) nT						95	80	94	100
	θ _B ^o						68±1	66±1	74±1	81±1

Πίνακας B25α (συνέχεια) Ενδείξεις των αισθητήρων Bi (i = xy,z) και μετρήσεις των αποστάσεων D, L , με τον x αισθητήρα προσανατολισμένο στην κοινή κατεύθυνση των B_{xy} , M_{xy} σε όστρακα του σώματος του αγγείου 2.

X										
		Α	В	Г	Δ	Е	Z	Н	Θ	Ι
	D (±0.3) cm		23.2	7.6	6.4		8.9	9.4	11.4	3.3
	L (±0.1) cm		1.3	1.3	1.3		1.4	1.3	1.3	1.3
6	B _{xz} (±1) nT		88	105	102		93	86	93	104
U	Β _γ (±1) nT		-26	-8	8		23	26	23	19
	B (±1) nT		92	105	102		96	90	96	106
	θ _B °		-74±1	-86±1	86±1		76±1	73±1	76±1	80±1
	D (±0.3) cm	27.8	21.2	14.6	11.0	8.1	3.9	2.7	14.6	3.0
	L (±0.1) cm	1.1	1.3	1.2	1.2	1.4	1.3	1.2	1.2	1.2
7	B _{xz} (±1) nT	47	88	100	107	94	95	89	95	107
'	B _y (±1) nT	-33	-26	-14	5	20	22	24	22	9
	B (±1) nT	57	92	101	107	96	98	92	98	107
	θ _B °	-55±1	-74±1	-82±1	87±1	78±1	77±1	75±1	77±1	85±1
	D (±0.3) cm	12.9	14.1	8.7	14.8	10.0	2.9	3.2	3.3	1.8
	L (±0.1) cm	1.0	1.1	1.0	1.1	1.2	1.1	1.1	1.1	1.1
8	B _{xz} (±1) nT	55	87	102	104	92	86	77	85	97
0	B _y (±1) nT	-36	-27	-9	9	22	25	30	27	12
	B (±1) nT	66	91	102	104	95	90	83	89	98
	θ _B °	-57±1	-73±1	-85±1	85±1	77±1	74±1	69±1	72±1	83±1
	D (±0.3) cm	4.9	7.6	8.7	16.6	13.0	4.1		4.4	2.4
	L (±0.1) cm	0.9	0.9	0.9	1.0	1.1	1.0		0.9	1.0
9	B _{xz} (±1) nT	51	81	108	101	88	77		77	102
'	Β _γ (±1) nT	-31	-24	-2	12	25	29		28	16
	B (±1) nT	60	84	108	102	91	82		82	103
	θ _B °	-59±1	- 73±1	- 89±1	83±1	74±1	69±1		70±1	81±1

Πίνακας B25α (συνέχεια) Ενδείξεις των αισθητήρων Bi (i = xy,z) και μετρήσεις των αποστάσεων D, L , με τον x αισθητήρα προσανατολισμένο στην κοινή κατεύθυνση των B_{xy} , M_{xy} σε όστρακα του σώματος του αγγείου 2.

	Αγγείο 2									
		K	Λ	Μ	Ν	[I]	0	П	Р	Σ
	D (±0.3) cm					7.2	9.4		4.2	
	L (±0.1) cm					1.1	1.1		1.0	
1	B _{xz} (±1) nT					101	101		86	
1	B _y (±1) nT					-15	-16		-22	
	B (±1) nT					102	102		89	
	θ _B °					-82±1	-81±1		-76±1	
	D (±0.3) cm			10.9	2.7	3.6	5.0	3.0	12.6	
	L (±0.1) cm			1.1	1.2	1.2	1.2	1.1	1.0	
2	B _{xz} (±1) nT			105	106	95	81	71	73	
-	B _y (±1) nT			-2	-10	-21	-30	-29	-32	
	B (±1) nT			105	106	97	86	77	80	
	θ _B °			- 89±1	-85±1	-78±1	-70±1	-68±1	-66±1	
	D (±0.3) cm			11.6	4.7	8.6	10.7	8.4	8.4	8.5
	L (±0.1) cm			1.2	1.3	1.3	1.3	1.2	1.1	1.1
3	B _{xz} (±1) nT			103	104	92	87	67	67	73
č	B _y (±1) nT			-5	-12	-23	-26	-33	-30	-30
	B (±1) nT			103	105	95	91	75	73	79
	θ _B °			- 87±1	-83±1	- 76±1	- 73±1	-64±1	- 66±1	-68±1
	D (±0.3) cm	3.6		6.7	3.3	8.6	8.4	2.0	2.6	3.2
	L (±0.1) cm	1.4		1.6	1.7	1.7	1.7	1.6	1.5	1.5
4	B _{xz} (±1) nT	103		107	97	81	65	45	50	57
•	B _y (±1) nT	17		-11	-19	-30	-33	-42	-38	-40
	B (±1) nT	104		108	99	86	73	62	63	70
	θ _B °	81±1		-84±1	- 79 ±1	- 70 ±1	-63±1	- 47 ±1	-53±1	-55±1
	D (±0.3) cm	3.0	4.0	9.9	3.9	5.4	7.9	14.8	11.7	7.6
	L (±0.1) cm	1.2	1.3	1.4	1.5	1.4	1.5	1.4	1.4	1.3
5	B _{xz} (±1) nT	107	109	99	90	79	52	35	31	48
-	B_y (±1) nT	6	-3	-16	-27	-32	-40	-41	-41	-38
	B (±1) nT	107	109	100	94	85	66	54	51	61
	θΒ	87±1	-88±1	- 81±1	-73±1	-68±1	- 52 ±1	-40±1	- 37 ±1	-52±1

Πίνακας Β25α (συνέχεια) Ενδείξεις των αισθητήρων Βί (i = xy,z) και μετρήσεις των αποστάσεων D, L , με τον x αισθητήρα προσανατολισμένο στην κοινή κατεύθυνση των Bxy, Mxy σε όστρακα του σώματος του αγγείου 2.

0

		K	Λ	Μ	Ν	Ξ	0	П	Р	Σ
	D (±0.3) cm	7.5	3.9	8.8	3.7	6.7	5.7	9.8	7.8	4.8
	L (±0.1) cm	1.2	1.2	1.3	1.4	1.5	1.4	1.3	1.3	1.3
	B _{xz} (±1) nT	104	103	99	86	68	49	27	26	36
6	B _y (±1) nT	6	-7	-16	-25	-36	-37	-40	-40	-41
	B (±1) nT	104	103	100	90	77	61	48	48	55
	θ _B °	87±1	-86±1	-81±1	-74±1	-62±1	- 53 ±1	-34±1	-33±1	-41±1
7	D (±0.3) cm	7.7	10.5	8.3	3.8	8.3	4.2	5.4	5.0	2.0
	L (±0.1) cm	1.2	1.2	1.2	1.2	1.3	1.3	1.3	1.2	1.2
_	B _{xz} (±1) nT	108	108	96	83	57	41	17	31	31
7	B _y (±1) nT	4	1	-20	-28	-37	-38	-43	-39	-39
	B (±1) nT	108	108	98	88	68	56	46	50	50
	θ _B °	88±1	89±1	-78±1	-71±1	-57±1	-47±1	-22±1	-38±1	-38±1
	D (±0.3) cm	2.3	1.8	6.6	2.7	3.8	2.0		2.0	
	L (±0.1) cm	1.1	1.1	1.1	1.1	1.2	1.2	1	1.1	
_	B _{xz} (±1) nT	108	104	104	88	63	46	1	26	
8	B _y (±1) nT	4	-5	-13	-24	-34	-37	1	-37	
	B (±1) nT	108	104	105	91	72	59		45	
	θ _B °	88±1	- 87±1	- 83 ±1	- 75±1	-62±1	- 51 ±		-35±1	
	D (±0.3) cm	2.1	1.8	2.7	2.5		2.1	2.7		
	L (±0.1) cm	0.9	1.1	0.9	1.0		1.1	1.0		
_	B _{xz} (±1) nT	103	108	105	91		48	32		
9	B _y (±1) nT	8	-6	-12	-23]	-35	-36		
-	B (±1) nT	103	108	106	94]	59	48		
	θ _B °	86±1	-87±1	-83±1	-76±1		-54±1	-42±1		

Πίνακας 25β. Ενδείξεις των αισθητήρων B_i (i=x,y,z), με τον x αισθητήρα προσανατολισμένο στη διεύθυνση των αυλακώσεων σε όστρακα του σώματος του αγγείου 2.

		Α	В	Γ	Δ	E	Z	Н	Θ	Ι
	B_y (±1nT)						35	29	34	
	B _x (±1nT)						-13	-2	19	
1	B _z (±1nT)						19	11	17	
-	B(±1nT)						42	31	42	
	θ _B ^o						33± 1	21± 2	37± 1	
	φ _B °						124± 2	100± 5	42± 2	
	Β_γ (±1nT)						38			32
	B_x(±1nT)						-15			51
2	B _z (±1nT)						32			43
-	B (±1nT)						52			74
	θΒ						43± 1			64± 1
	φ _B °						115± 2			40± 1
	B_y (±1nT)						38	41	37	25
	B_x(±1nT)						-24	-5	25	65
3	B _z (±1nT)						44	41	44	59
-	B (±1nT)						63	58	63	91
	θ _B ^o						53± 1	45± 1	54± 1	74± 1
	φ _B °						119± 1	97± 1	60± 1	42± 1
	B_y (±1nT)						37	33	29	20
	B _x (±1nT)						-27	-17	36	61
4	B _z (±1nT)						71	72	70	73
-	B (±1nT)						84	81	84	97
	θΒ						64±	66± 1	70±	78± 1
	<u>ه</u> ٥						111+1	102+1	1 62+1	50+ 1
	$\Psi_{\rm B}$						24	22	25	16
	$\mathbf{B}_{\mathbf{y}}(\pm 1 \text{ mT})$						34 22	33	25	10
	$\mathbf{P}_{\mathbf{X}}(\pm 1 nT)$						-32	-12	33 82	75
5	$\mathbf{B}_{z}(\pm 1 \text{ mT})$						93	85	93	97
							69+1	67+1	74+1	80+1
	<u>о</u> в						112±1	99±1	67±1	52±1
	Ψβ						*****	33-1	07-1	

Πίνακας 25β (συνέχεια). Ενδείξεις των αισθητήρων B_i (i=x,y,z), με τον x αισθητήρα προσανατολισμένο στη διεύθυνση των αυλακώσεων σε όστρακα του σώματος του αγγείου 2.

		Α	В	Г	Δ	E	Z	Н	Θ	Ι
	B _y (±1nT)		-29	-8	8		23	27	23	18
	B _x (±1nT)		-75	-83	-75		-38	-5	31	56
6	B _z (±1nT)		53	66	78		87	78	84	81
U	B(±1nT)		96	106	109		98	83	92	100
	θ _B °		- 72± 1	- 86± 1	86± 1		76± 1	71± 1	76± 1	80± 1
	φ _B ^o		145± 1	142 ±1	134± 1		114± 1	94 ±1	70± 1	55± 1
	B _y (±1nT)	-33	-25	-15	5	20	22	25	22	10
	B _x (±1nT)	-37	-76	-82	-70	-42	-22	-10	26	67
7	B _z (±1nT)	24	53	61	73	87	91	83	89	80
<i>'</i>	B(±1nT)	55	96	103	101	99	96	87	95	105
	θ _B ^o	- 53± 1	- 75± 1	- 82± 1	87± 1	78± 1	77± 1	73± 1	77± 1	85± 1
	φ _B ^o	147 ±1	145± 1	143 ±1	134± 1	116± 1	104± 1	97± 1	74± 1	50± 1
	B _y (±1nT)	-35	-27	-9	7	22	25	29	26	11
	B _x (±1nT)	-42	-66	-81	-67	-44	-33	-16	23	64
8	B _z (±1nT)	31	45	64	77	83	86	84	89	72
0	B(±1nT)	63	84	104	102	96	95	90	96	97
	θ _B ^o	- 56 ±1	- 71 ±1	- 85± 1	86± 1	77± 1	75± 1	71 ±1	74± 1	83± 1
	φ _B °	144± 1	146± 1	142± 1	131± 1	118± 1	111± 1	101± 1	76± 1	48± 1
	B_y (±1nT)	-30	-24	-1	13	26	28		28	16
	B _x (±1nT)	-35	-70	-80	-78	-50	-27		29	65
9	B _z (±1nT)	32	54	67	78	76	68		77	75
1	B (±1nT)	56	92	104	111	95	78		87	101
	θ _B °	- 58± 1	- 75± 1	- 89± 1	83± 1	74± 1	69± 1		71± 1	81± 1
	Φ _B °	138± 1	142± 1	140 1	135± 1	123± 1	112± 1		69± 1	49± 1

Πίνακας 25β (συνέχεια). Ενδείξεις των αισθητήρων B_i (i=x,y,z), με τον x αισθητήρα προσανατολισμένο στη διεύθυνση των αυλακώσεων σε όστρακα του σώματος του αγγείου 2.

		K	Λ	Μ	Ν	Ξ	0	Π	Р	Σ
	B_v (±1nT)					-14	-17		-23	
	B _x (±1nT)					59	45		-13	
1	B _z (±1nT)					83	90		89	
1	B (±1nT)					103	102		93	
	θ _B ^o					-82± 1	- 80± 1		- 76 ±1	
	φ _B °					55± 1	63± 1		98± 1	
	B_y (±1nT)			-1	-10	-20	-29	-30	-31	
	B _x (±1nT)			82	70	63	42	8	-19	
2	B _z (±1nT)			70	71	76	74	73	66	
2	B (±1nT)			108	100	101	90	79	75	
	θ _B ^o			- 89 ±1	- 84± 1	- 79± 1	- 71 ±1	- 68± 1	- 66± 1	
	φ _B °			40± 1	45± 1	50± 1	60± 1	84± 1	106± 1	
	B_y (±1nT)			-6	-12	-22	-26	-33	-30	-30
	B _x (±1nT)			78	77	60	46	4	-23	-33
3	B _z (±1nT)			69	73	67	66	67	68	61
5	B (±1nT)			104	107	93	85	75	78	76
	θ _B ^o			- 87 ±1	- 84± 1	- 76± 1	- 72± 1	- 64± 1	- 67± 1	- 67± 1
	φ _B °			41± 1	43± 1	48± 1	55± 1	87± 1	109± 1	118± 1
	B_y (±1nT)	17		-10	-18	-30	-34	-41	-38	-39
	B _x (±1nT)	68		81	76	65	44	1	-23	-28
4	B _z (±1nT)	66		66	63	56	53	46	50	44
-	B (±1nT)	96		105	100	91	77	62	67	65
	θ _B ^o	80± 1		- 85 ±1	- 80± 1	- 71 ±1	- 64± 1	- 48± 1	- 55± 1	- 53± 1
	φ _B °	44± 1		39± 1	40± 1	41± 1	50±1	89± 1	115± 1	122± 1
	B_y (±1nT)	6	-2	-14	-26	-32	-39	-42	-41	-38
	B _x (±1nT)	74	77	80	70	59	38	-2	-14	-30
5	B _z (±1nT)	70	65	59	54	47	36	35	29	31
5	B (±1nT)	102	101	100	92	82	65	55	52	57
	θ _B °	87± 1	- 89± 1	- 82± 1	- 74± 1	- 67 ±1	- 53± 1	- 40± 1	- 38 ±1	-49± 1
	φ _B °	43± 1	40± 1	36± 1	38± 1	39± 1	43± 1	93± 2	116± 2	134± 1

Πίνακας 25β (συνέχεια). Ενδείξεις των αισθητήρων B_i (i=x,y,z), με τον x αισθητήρα προσανατολισμένο στη διεύθυνση των αυλακώσεων σε όστρακα του σώματος του αγγείου 2.

		K	Λ	Μ	Ν	Ξ	0	П	Р	Σ
	B_v (±1nT)	6	-6	-17	-25	-34	-38	-40	-40	-41
	B _x (±1nT)	73	80	81	71	55	41	-5	-13	-25
~	B _z (±1nT)	76	68	57	49	42	34	23	23	30
6	B (±1nT)	106	105	100	90	77	65	465	48	57
	θ _B °	87± 1	- 87± 1	- 80± 1	- 74 ±1	- 64± 1	- 54± 1	- 30± 1	- 33± 1	- 44± 1
	φ _B °	46± 1	40± 1	35 ±1	35 ±1	37 ±1	40± 1	102± 2	119± 2	130 ±1
	B _y (±1nT)	5	1	-20	-27	-36	-39	-43	-39	-39
	B _x (±1nT)	75	80	78	74	48	35	-1	-12	-26
_	B _z (±1nT)	74	74	50	48	33	29	19	23	23
7	B (±1nT)	105	109	95	92	68	60	47	47	52
	θ _B °	87± 1	89± 1	- 78± 1	- 73 ±1	- 58± 1	- 49 ±1	- 24 ±1	- 34± 1	- 42 ±1
	φ _B °	45± 1	43± 1	33± 1	33± 1	35 ±1	40± 1	93± 3	118± 2	139± 2
	B _y (±1nT)	5	-4	-15	-25	-35	-37		-38	
	B _x (±1nT)	79	77	80	68	51	29		-11	
	B _z (±1nT)	73	63	58	48	35	31		28	
8	B (±1nT)	103	100	100	87	71	56		48	
	θ _B °	87± 1	- 88± 1	- 81± 1	- 73 ±1	- 60± 1	- 49 ±1		- 38± 1	
	φ _B °	45± 1	39± 1	36 1	35 ±1	34 ±1	47 ±1		111± 2	
	B _v (±1nT)	7	-4	-13	-24		-36	-37		
	B _x (±1nT)	72	81	82	68		33	3		
_	B ₂(±1n⊤)	67	67	63	55		36	32		
9	B (±1nT)	99	105	104	91		61	49		
	θ _B °	86± 1	- 88± 1	- 83± 1	- 75± 1		- 54± 1	- 41 ±1		
	Φ	43 ±1	40± 1	38± 1	39± 1		47 ±1	85± 2		

Πίνακας B26a Ενδείξεις των αισθητήρων Bi (i = xy,z) και μετρήσεις των αποστάσεων D, L , με τον x αισθητήρα προσανατολισμένο στην κοινή κατεύθυνση των B_{xy} , M_{xy} σε όστρακα του σώματος του αγγείου 3.

	Αγγείο 3								α_v^{L}	a_x.z"	λ
1									(cm)	(cm)	
	Y-61								1,07	1,61	2,0
	AR								±0,05	±0,03	± 0,1
											-
		A	В	Г	Δ	Ε	Z	Н	Θ	I	K
	D (±0.3) cm	5.3	4.4		2.9	4.8	4.6	7.6	4.3		2.6
	L (±0.1) cm	1.1	0.9		0.8	1.0	1.1	0.9	9.0		1.2
1	B _{xz} (±1) nT	29	53		105	96	90	92	105		59
	B _y (±1) nT	34	34		-5	-16	-17	-19	4		40
	B (±1) nT	45	63		105	97	92	94	105		71
	θ _B °	40±1	57±1		-87±1	-81±1	- 79±1	-78±1	88±1		56±1
	D (±0.3) cm	7.8	9.7		5.4			4.5		1.9	3.7
	L (±0.1) cm	1.4	1.3		1.5			1.5		1.4	1.5
2	B _{xz} (±1) nT	50	79		99			97		94	60
4	B _y (±1) nT	36	28		-14			-22		14	38
	B (±1) nT	62	84		100			99	1	95	71
	θ _B °	54±1	70±1		-82±1	1		-77±1	1	82±1	58±1
	D (±0.3) cm	8.6		4.1	3.1	5.1	3.0	12.3	4.1	4.6	8.9
	L (±0.1) cm	1.4		1.2	1.4	1.3	1.3	1.4	1.5	1.4	1.3
2	B _{xz} (±1) nT	94		102	76	44	38	73	95	106	96
3	B _y (±1) nT	20		-13	-30	-40	-42	-31	-13	2	14
	B (±1) nT	96±1		103±1	82±1	59±1	57±1	79±1	95±1	106±1	97±1
	θ _B °	78		-83	-68	-48	-42	-67	-82	89	82
	D (±0.3) cm	4.1	5.6	5.0	2.4	2.0	3.8	8.7	2.7	8.3	15.7
	L (±0.1) cm	1.4	1.3	1.3	1.5	1.3	1.3	1.3	1.4	1.4	1.3
4	B _{xz} (±1) nT	102	104	87	55	52	27	52	89	99	102
4	B _y (±1) nT	16	7	-20	-34	-35	-44	-33	-23	-1	12
	B (±1) nT	103	104	89	65	63	52	62	92	99	103
	θ _B °	81±1	86±1	-77±1	-58±1	-56±1	-32±1	-58±1	-76±1	-89±1	83±1
	D (±0.3) cm	9.8	10.7	4.5	7.4	8.4	2.3	3.2	6.8	4.9	18.8
	L (±0.1) cm	1.3	1.2	1.1	1.2	1.2	1.1	1.1	1.2	1.2	1.3
F	B _{xz} (±1) nT	88	95	96	71	59	39	64	101	104	95
э	B _y (±1) nT	19	18	-13	-30	-38	-35	-32	-12	6	18
	B (±1) nT	90	97	97	77	70	52	72	102	104	97
	θ _B °	78±1	79±1	-82±1	-67±1	-57±1	-48±1	-63±1	- 83 ±1	87±1	79±1

3	
10cm	

1											
		Α	В	Г	Δ	Ε	Z	Н	Θ	Ι	K
	B _v (±1nT)	36	34		-6	-16	-17	-19	4		40
	B _x (±1nT)	-22	-38		-60	-34	31	51	75		51
1	B _z (±1nT)	26	40		82	87	91	86	78		39
T	B (±1nT)	50	65		102	95	98	102	108		76
	θ _B ^o	43± 1	58± 1		-87 ±1	-80± 1	-80 ±1	- 79± 1	88± 1		58± 1
	Φ _B ^o	130± 2	134 ±1		126± 1	111± 1	71 ±1	59± 1	46± 1		37± 1
	B_y (±1nT)	36	28		-15			-22		15	37
	B _x (±1nT)	-24	-51		-57			55		73	37
2	B _z (±1nT)	49	51		71			84		67	46
4	B (±1nT)	65	77		92			103		100	70
	θ _B ^o	57± 1	69± 1		-81 ±1			- 78± 1		81± 1	58± 1
	φ _B °	116± 1	135 ±1		129± 1			57 ±1		43± 1	51± 1
	B_y (±1nT)	19		-14	-31	-39	-41	-32	-14	2	14
	B _x (±1nT)	-36		-70	-58	-31	18	48	74	65	46
3	B _z (±1nT)	84		64	43	30	33	49	65	74	94
5	B (±1nT)	93		96	79	58	56	76	99	99	106
	θ _B °	78± 1		- 82± 1	- 67 ±`1	- 48± 1	- 43± 1	- 65± 1	- 82± 1	89± 1	82± 1
	φ _β °	113 ±1		138 ±1	143 ±1	136± 1	61± 2	46± 1	41± 1	49± 1	64± 1
	B_y (±1nT)	16	9	-19	-35	-35	-43	-34	-22	-1	12
	B _x (±1nT)	-25	-55	-72	-46	-41	16	48	73	63	34
4	B _z (±1nT)	97	83	58	36	32	22	30	55	84	88
-	B (±1nT)	101	100	94	68	63	51	66	94	105	95
	θ _B °	81± 1	85± 1	- 78± 1	- 59± 1	- 56± 1	- 32± 1	- 59± 1	- 76± 1	- 89± 1	83± 1
	φ _B °	104± 1	124 ±1	141 ±1	142 ±1	142 ±1	54± 2	32± 1	37± 1	53± 1	69± 1
	B_y (±1nT)	19	17	-15	-30	-37	-36	-33	-13	-5	17
	B _x (±1nT)	-21	-52	-72	-49	-36	21	44	70	71	49
5	B _z (±1nT)	86	89	62	42	42	28	43	62	82	85
2	B(±1nT)	91	104	96	71	67	50	70	94	109	100
	θ _B °	78± 1	81± 1	- 81± 1	- 65± 1	- 56± 1	- 44± 1	- 62 1	- 82± 1	87± 1	80± 1
	φ _B ^o	104± 1	120± 1	139± 1	139± 1	131± 1	53± 2	44±1	42± 1	49± 1	60± 1

Πίνακας 26β. Ενδείξεις των αισθητήρων B_i (i=x,y,z), με τον x αισθητήρα προσανατολισμένο στη διεύθυνση των αυλακώσεων σε όστρακα του σώματος του αγγείου 3.

Πίνακας B27α Ενδείξεις των αισθητήρων Bi (i = xy,z) και μετρήσεις των αποστάσεων D, L , με τον x αισθητήρα προσανατολισμένο στην κοινή κατεύθυνση των B_{xy}, M_{xy} σε όστρακα

του σώματος του αγγείου 4.

C. Containing							_			
1 Alert	0.1.1				α _v ∟(cr	n)	α_x,z"(cm)	λ	
	NY Y				0.67± 0	,03	1.15±	0,02	1.97±	0,01
		Α	В	Γ	Δ	E	Ζ	Н	Θ	Ι
	D (±0.3) cm			1.7	1.6		4,2		5,7	
	L (±0.1) cm			0.9	1.2		1,1		0,9	
1	B _{xz} (±1) nT			37	35		40		54	
-	Β _γ (±1) nT			16	15		17		5	
	B (±1) nT			40	38		44		54	
	θ _B °			66±1	66±2		67±1		85±1	
	D (±0.3) cm		4.2	6.7	5.3	4.1	8.8	2.4	2.7	3.5
	L (±0.1) cm		1.3	1.3	1.3	1.2	1.3	1.3	1.3	1.5
2	B _{xz} (±1) nT		47	43	43	43	46	43	48	55
-	Β _y (±1) nT		15	14	18	18	12	10	9	3
	B (±1) nT		49	45	47	47	48	44	49	55
	θ _B °		72±1	72±1	67±1	67±1	75±1	77±1	79±1	87±1
	D (±0.3) cm	1.9	10,6	2.0	9.1	9.9	13.9	4.4	9.6	2.8
	L (±0.1) cm	1.8	1.7	1.8	1.8	1.8	1.7	1.7	1.6	1.7
3	B _{xz} (±1) nT	53	52	47	47	47	50	53	55	49
č	Β _γ (±1) nT	5	12	13	12	14	10	7	2	-3
	B (±1) nT	53	53	49	49	49	51	53	55	49
	θ _B °	85±1	77±1	74±1	75±1	73±1	79±1	82±1	88±1	- 86±1
	D (±0.3) cm			1.7	2.8	3.0	2.3	7.5	3>8	2.0
	L (±0.1) cm			2.1	2.1	2.0	2.1	2.1	2.0	2.0
4	B _{xz} (±1) nT			50	45	49	53	55	55	53
-	Β _y (±1) nT			9	9	10	5	4	-2	-5
	B (±1) nT			51	46	50	53	55	55	53
	θ _B °			80±1	79±1	78±1	85±1	86±1	-88±1	- 85±1
	D (±0.3) cm			4.8	2.6	6.6	5.5	2.5	2.3	4.4
	L (±0.1) cm			2.2	2.3	2.2	2.1	2.3	2.1	2.2
5	B _{xz} (±1) nT			53	54	53	55	54	48	51
č	B _y (±1) nT			6	7	6	3	-1	-6	-9
	B (±1) nT			53	54	53	55	54	48	52
	θ _B °			83±1	83±1	83±1	87±1	- 89±1	- 83 ±1	-80±1

Πίνακας 27β. Ενδείξεις των αισθητήρων B_i (i=x,y,z), με τον x αισθητήρα προσανατολισμένο στη διεύθυνση των αυλακώσεων σε όστρακα του σώματος του **αγγείου 4**.

Αγγείο 4										
		Α	В	Γ	Δ	Е	Z	Н	Θ	Ι
	B _y (±1nT)			16	16		17		6	
	B _x (±1nT)			10	3		-23		-39	
1	B _z (±1nT)			33	14		37		38	
-	B(±1nT)			38	38		47		55	
	θ _B ^o			65± 1	65± 2		68± 1		84± 1	
	φ _B °			73± 1	85± 2		122± 1		136± 1	
2	Β _γ (±1nT)		14	15	17	18	12	10	8	2
	B _x (±1nT)		27	13	2	-11	-16	-27	-30	-35
	B _z (±1nT)		45	41	38	40	34	33	33	33
	B (±1nT)		54	46	42	45	40	44	45	48
	θ _B °		75± 1	71± 1	66± 2	66± 1	72± 2	77± 1	80± 1	88± 1
	φ _B °		59± 1	72± 1	87± 2	105± 1	115± 2	129± 1	132± 1	137± 1
	B_y (±1nT)	6	11	13	12	14	10	7	1	-2
	B _x (±1nT)	33	21	4	6	-8	-24	-32	-40	-35
	B _z (±1nT)	37	38	40	41	43	43	43	39	32
3	B (±1nT)	50	45	42	43	46	50	54	56	47
-	θ _B °	83± 1	76± 1	72± 1	74± 1	72±1	78± 1	82± 1	89± 1	- 88± 1
	φ _B °	48± 1	61± 1	84± 1	82± 1	101±1	119± 1	127± 1	136± 1	138± 1
	B_y (±1nT)			9	9	11	6	4	-1	-6
	B _x (±1nT)			12	1	-9	-26	-27	-35	-38
4	B _z (±1nT)			49	44	51	41	40	34	32
-	B (±1nT)			51	45	53	49	48	49	50
	θΒο			80± 1	78± 1	78±1	83± 1	85± 1	- 89± 1	- 83± 1
	φ _Β σ			76± 1	89± 1	100±1	122± 1	124 ±1	136± 1	140± 1
	Β_γ (±1nT)			6	7	7	3	-1	-5	-9
	B _x (±1nT)			8	3	-11	-19	-32	-39	-41
5	B _z (±1nT)			51	51	48	44	43	35	33
	B(±1nT)			52	52	50	48	54	53	53
	θ _B ĭ			83±1	82±1	82±1	86± 1	- 89± 1	- 84 ±1	- 80± 1
				81± 1	87±1	103± 1	113± 1	127± 1	138± 1	141± 1

Αγγείο 5	α _v └(cm)	α _{x,z} ″ (cm)	λ

Πίνακας B28*a* Ενδείξεις των αισθητήρων Bi (i = xy,z) και μετρήσεις των αποστάσεων D, L , με τον x αισθητήρα προσανατολισμένο στην κοινή κατεύθυνση των B_{xy} , M_{xy} σε όστρακα του σώματος του **αγγείου 5**.

				1,0	4±0,03	1,4	1±0,03	2,03	±0,01
		Α	В	Г	Δ	Е	Z	Н	Θ
	D (±0.3) cm	10.4	2.2	4.7	1.8	10.4	7.6	3.3	1.2
	L (±0.1) cm	2.9	2.8	2.7	2.7	2.6	2.6	2.5	2.6
	B _{xz} (±1) nT	45	53	58	62	66	66	71	67
1	B _y (±1) nT	-24	-22	-19	-17	-14	-9	-7	-6
	B (±1) nT	51	57	61	64	67	67	71	67
	θ _B °	- 62 ±1	-68±1	- 72 ±1	- 75 ±1	- 78 ±1	- 82±1	- 84 ±1	-85±1
	D (±0.3) cm	3.0	6.0	7.1	8.6	6.9	3.8	1.8	4.7
	L (±0.1) cm	2.4	2.4	2.3	2.3	2.3	2.2	2.2	2.2
	B _{xz} (±1) nT	55	57	61	64	64	70	70	72
2	B _y (±1) nT	-21	-20	-18	-15	-12	-6	-7	-1
	B (±1) nT	59	60	64	66	65	70	70	72
	θ _B °	-69±1	- 71±1	- 74 ±1	- 77 ±1	- 80±1	- 85±1	- 84 ±1	- 89±1
	D (±0.3) cm	15.4	25.0	26.4	32.1	23.1	6.7	4.8	
	L (±0.1) cm	2.2	2.2	2.1	2.0	2.0	2.0	1.9	
2	B _{xz} (±1) nT	53	60	64	66	66	68	68	
3	B _y (±1) nT	-21	-19	-15	-14	-10	-11	-3	
	B (±1) nT	57	63	66	67	67	69	68	
	θ _B °	-69±1	-73±1	-77±1	-78±1	-82±1	-81±1	-88±1	
	D (±0.3) cm	7.4	12.9	4,3	20.7	20.8	13.1	6.4	
	L (±0.1) cm	2.0	2.0	1.9	1.9	1.8	1.8	1.7	
	B _{xz} (±1) nT	41	49	57	61	61	65	66	
4	Β _γ (±1) nT	-26	-24	-20	-17	-17	-14	-11	
	B (±1) nT	48	54	60	63	63	66	67	
	θ _B °	-58±1	-64±1	-71±1	-75±1	-75±1	-78±1	- 81±1	
	D (±0.3) cm		28.4	6.0	20.0	14.2	9.2	3.6	
	L (±0.1) cm		1.7	1.6	1.5	1.5	1.5	1.4	
_	B _{xz} (±1) nT		38	50	51	57	62	64	
5	Β _γ (±1) nT		-27	-23	-22	-19	-16	-14	
	B (±1) nT		46	55	55	60	64	65	
	θ _B °		-55±11	-66±1	-67±1	- 72 ±1	-76±1	- 78 ±1	

Πίνακας B28α (συνέχεια). Ενδείξεις των αισθητήρων Bi (i = xy,z) και μετρήσεις των αποστάσεων D, L , με τον x αισθητήρα προσανατολισμένο στην κοινή κατεύθυνση των B_{xy} , M_{xy} σε όστρακα του σώματος του αγγείου 5.

		Α	В	Г	Δ	Ε	Z	Н	Θ
	D (±0.3) cm	12.9	17.1	6.1	15,5	9,.0	3.0	3.3	
	L (±0.1) cm	1.4	1.4	1.4	1.4	1.4	1.3	1.3	
6	B _{xz} (±1) nT	21	22	34	41	51	56	59	
U	B_y (±1) nT	-29	-29	-26	-25	-21	-21	-17	
	B (±1) nT	35	36	43	48	55	60	61	
	θ _B °	-36±2	-38±2	-53±1	-59±1	-68±1	-70±1	-74±1	
	D (±0.3) cm	4.5	6.3	5.3	14.9	8.0	1.8	1.4	
	L (±0.1) cm	2.5	1.5	1.4	1.4	1.5	1.5	1.5	
7	B _{xz} (±1) nT	16	25	27	37	53	53	51	
ľ	B _y (±1) nT	-30	-28	-27	-26	-22	-19	-18	
	B (±1) nT	34	37	38	45	57	56	54	
	θ _B °	-28±2	-42±2	-45±2	-55±1	-68±1	-71±1	-71±1	
	D (±0.3) cm	9.1	10.0	5.7	13.8	7.6	2.0	1.7	
	L (±0.1) cm	1.6	1.7	1.6	1.6	1.6	1.7	1.7	
8	B _{xz} (±1) nT	8	19	28	40	47	52	54	
Ŭ	B _y (±1) nT	-32	-31	-29	-25	-24	-22	-21	
	B (±1) nT	33	36	40	47	53	56	58	
	θ _B °	-14±2	-32±2	-44±1	-58±1	-63±1	-67±1	-69±1	
	D (±0.3) cm	5.3	13.5	3.7	11.1	5.6	5.5	2.4	
	L (±0.1) cm	1.7	1.7	1.7	1.8	1.8	1.9	1.9	
0	B _{xz} (±1) nT	11	24	34	38	44	49	56	
	B _y (±1) nT	-31	-29	-27	-27	-26	-23	-20	
	B (±1) nT	33	37	43	46	51	54	59	
	θ _B °	-19±2	-40±2	- 52±1	-55±1	-60±1	-65±1	- 71±1	
		7,8	21.7	15.2	9.9	4.2			
		2,1	2.1	2.2	2.3	2.3			
1		17	22	31	37	43			
0		-32	-31	-30	-28	-27			
		-28+2	-36+2	43 -46+1	40 -53+1	-58+1			

Πίνακας 28β. Ενδείξεις των αισθητήρων B_i (i=x,y,z), με τον x αισθητήρα προσανατολισμένο στη διεύθυνση των αυλακώσεων σε όστρακα του σώματος του αγγείου 5.

Αγγείο 5									
		Α	В	Γ	Δ	Ε	Z	Н	Θ
	B_y (±1nT)	-23	-23	-19	-17	-14	-9	-7	-6
	B _x (±1n⊤)	-11	-24	-32	-40	-49	-53	-58	-59
1	B _z (±1nT)	48	45	47	45	41	42	38	38
1	B (±1nT)	54	56	60	62	65	68	70	70
	θ _B °	115±1	- 66± 1	- 72± 1	- 74± 1	- 78± 1	- 83± 1	- 84± 1	- 85± 1
	φ _B °	103 1	118± 1	124± 1	132 ±1	140± 1	142± 1	147± 1	147± 1
	B_y (±1nT)	-20	-21	-18	-15	-12	-6	-7	-1
	B _x (±1nT)	-12	-20	-35	-40	-46	-53	-53	-57
2	B _z (±1nT)	56	53	47	50	47	43	43	39
-	B (±1nT)	61	60	61	66	67	70	69	69
	θ _B °	- 71± 1	- 70± 1	- 73± 1	- 77± 1	- 80± 1	- 85± 1	- 84± 1	-89± 1
	φ _B °	102± 1	111± 1	127± 1	129± 1	134 ±1	141± 1	141± 1	146± 1
	B_y (±1nT)	-22	-19	-15	-14	-10	-11	-3	
	B _x (±1nT)	-17	-24	-31	-45	-47	-48	-55	
3	B _z (±1nT)	47	52	55	46	49	46	42	
5	B (±1nT)	54	60	65	66	69	67	69	
	θ _B ^o	- 67 ±1	- 72± 1	- 77± 1	- 78± 1	- 82± 1	- 81 ±1	- 88± 1	
	φ _B °	110± 1	115± 1	119± 1	134 ±1	134 ±1	136± 1	143± 1	
	B _y (±1nT)	-26	-23	-20	-17	-16	-13	-11	
	B _x (±1nT)	-13	-23	-32	-43	-46	-54	-57	
4	B _z (±1nT)	40	44	45	44	40	40	42	
-	B (±1nT)	49	55	59	64	63	68	72	
	θ _B °	- 59± 2	- 65± 1	- 70± 1	- 75± 1	- 76± 1	- 79± 1	- 81 ±1	
	φ _B °	108± 1	118± 1	125± 1	134 ±1	139 ±1	143 ±1	144± 1	
	B_y (±1nT)		-27	-23	-22	-18	-15	-14	
	B _x (±1nT)		-21	-36	-37	-48	-50	-55	
5	B _z (±1nT)		33	36	34	34	35	33	
5	B (±1nT)		47	56	55	61	63	66	
	θ _B °		-56± 2	-66± 1	- 67 ±1	- 73± 1	- 76± 1	- 78± 1	
	φ _B °		122±1	135± 1	137± 1	145± 1	145± 1	149± 1	

Πίνακας 28β (συνέχεια) Ενδείξεις των αισθητήρων B_i (i=x,y,z), με τον x αισθητήρα προσανατολισμένο στη διεύθυνση των αυλακώσεων σε όστρακα του σώματος του αγγείου 5.

		Α	В	Г	Δ	E	Z	Н	Θ
	B_y (±1nT)	-28	-28	-26	-24	-20	-20	-17	
	B _x (±1nT)	-10	-16	-25	-40	-45	-48	-53	
6	B _z (±1nT)	16	14	24	19	25	27	25	
U	B(±1nT)	33	35	43	50	55	58	61	
	θ _B °	- 34± 4	- 38± 3	- 54± 2	- 62± 1	- 69± 1	- 70± 1	- 74 ±1	
	φ _B °	122± 3	139± 3	136± 2	155± 1	151± 1	151± 1	155± 1	
	B_y (±1nT)	-30	-29	-27	-26	-22	-19	-19	
	B _x (±1nT)	-9	-20	-24	-35	-47	-48	-47	
7	B _z (±1nT)	11	13	12	16	22	20	22	
'	B(±1nT)	33	37	38	46	56	55	55	
	θ _B °	- 26± 5	- 40± 3	- 45± 3	- 56± 2	- 67± 1	- 70± 1	- 70± 1	
	φ _B °	129± 4	147 ±2	153± 2	155± 1	155± 1	157 ±1	155± 1	
	B_y (±1nT)	-31	-31	-29	-25	-23	-21	-20	
	B _x (±1nT)	-8	-21	-30	-39	-45	-51	-53	
8	B _z (±1nT)	5	4	4	13	12	14	18	
0	B(±1nT)	32	37	42	48	52	57	59	
	θ _B °	- 17± 8	- 35± 3	- 47 ±2	- 59± 2	- 64± 1	- 69± 1	- 71 ±1	
	φ _B °	148± 6	169± 3	172± 2	162± 1	165± 1	165± 1	161± 1	
	B_y (±1nT)	-32	-29	-27	-27	-25	-23	-21	
	B _x (±1nT)	-11	-23	-33	-38	-44	-52	-56	
0	B _z (±1nT)	-10	-5	-4	0	2	5	9	
,	B(±1nT)	35	37	43	46	50	57	60	
	θ _B °	- 25± 5	- 39± 3	- 51± 2	- 55± 2	- 61± 1	- 67± 1	- 70 ±1	
	φ _B °	222± 4	192 ±2	187 ±2	180± 2	177± 1	175± 1	171± 1	
	B_y (±1nT)	-32	-31	-30	-28	-26			
	B _x (±1nT)	-7	-21	-34	-38	-45			
10	B _z (±1nT)	-14	-12	-8	-11	-6			
10	B(±1nT)	35	39	46	48	52			
	θ _B °	- 26± 5	- 38± 3	- 50± 2	- 55± 2	- 61±1			
	φ _B °	243± 4	210± 2	193± 2	196± 1	188±1			