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Abstract  
Cancer is a global problem as it is described in the World Cancer Report. Today’s technology can give 

approaches that reveal the cellular and molecular level of cancer. In a cancer disease sample such a cell 

biopsy to be processed, thousands of genes at a time can be subjected simultaneously for analysis in a 

single chip, called Microarray.  

Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic 

and optimization techniques that allows computers to “learn” from past examples and to detect hard-

to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to 

medical applications, especially those that depend on complex proteomic and genomic measurements. 

As a result, machine learning is frequently used in cancer diagnosis and detection. More recently 

machine learning has been applied to cancer prognosis and prediction. This latter approach is 

particularly interesting as it is part of a growing trend towards personalized, predictive medicine. 

Our goal was, firstly, to construct a framework for statistical analysis, description and visualization of 

real biological data and secondly, build a predictive model for binary classification of cancer based on 

machine learning algorithms and feature selection techniques. We use six algorithms of supervised 

machine learning such as Logistic Regression (LR), Linear Discriminant Analysis (LDA), k-Nearest 

Neighbors (KNN), Classification and Regression Trees (CART), Naïve Bayes (NB) and Linear Support 

Vector Machines (SVM) to be tested in different datasets of Cervical, Breast, Acute Myeloid Leukemia 

and Pancreatic cancer, publicly available on Gene Expression Omnibus platform.  

During the learning procedure, the data were split to validation and train sets. The train set, is used in 5-

fold cross-validation for three different scenarios: on primary data, on standardized data, and finally on 

standardized data that have been transformed by the dimensionality reduction technique of Principal 

Component Analysis (PCA) and other feature reduction techniques. Finally we compare the results and 

use the validation dataset to evaluate our models’ predictions on unseen data. 

We end up with prediction accuracy: 100% of models trained with LR, NB and SVM on Cervical dataset, 

90% of models built with LDA on Breast dataset, 95.4% of models trained with NB on AML dataset and 

94.4% trained with LR Pancreatic dataset, respectfully. During the procedure, we compare the results of 

5-fold cross-validation on each step and finally we estimate more evaluation metrics such as precision, 

sensitivity, f1-score and ROC curves, in order to extract useful insights. 

Keywords: cancer diagnosis, predictive model, machine learning, microarrays, gene expression, feature 

selection techniques, dimensionality reduction, Logistic Regression, Linear Discriminant Analysis, k-

Nearest Neighbors, Classification And Regression Trees, Naïve Bayes, Support Vector Machines, Principal 

Component Analysis. 
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Περίληψη 
Θ Παγκόςμια Ζκκεςθ για τον Καρκίνο περιγράφει τθν αςκζνεια του καρκίνου ςαν ζνα παγκόςιο πρόβλθμα. 
Θ ςθμερινι τεχνολογία μπορεί να μασ δϊςει προςεγγίςεισ που αποκαλφπτουν τον καρκίνο ςε κυτταρικό και 
μοριακό επίπεδο. ε ζνα δείγμα καρκινικισ νόςου όπωσ μια βιοψία κυττάρων, χιλιάδεσ γονίδια κάκε φορά 
μποροφν να υποβλθκοφν ςε ανάλυςθ με τθν τεχνολογία μικροςυςτοιχιϊν. Οι μικροςυςτοιχίεσ βοθκοφν ςτθν 
ταυτόχρονθ ανάλυςθ των προφίλ γονιδιακισ ζκφραςθσ ενόσ μεγάλου αρικμοφ γονιδίων ςε ζνα μόνο 
πείραμα. Θ κατανόθςθ των προτφπων γονιδιακισ ζκφραςθσ μπορεί να βοθκιςει ςτθ διάγνωςθ και διάκριςθ 
διαφόρων τφπων καρκίνου. Θ μθχανικι μάκθςθ είναι ζνασ κλάδοσ τθσ τεχνιτισ νοθμοςφνθσ που 
χρθςιμοποιεί μια ποικιλία τεχνικϊν ςτατιςτικισ, πικανοτιτων και βελτιςτοποίθςθσ που επιτρζπουν ςτουσ 
υπολογιςτζσ να "μακαίνουν" από παλιά παραδείγματα και να ανιχνεφουν μορφζσ που είναι δφςκολο να 
διακρίνουν από μεγάλα, κορυβϊδθ ι ςφνκετα ςφνολα δεδομζνων. Αυτι θ ικανότθτα είναι ιδιαίτερα 
κατάλλθλθ για ιατρικζσ εφαρμογζσ, ειδικά εκείνεσ που εξαρτϊνται από ςφνκετεσ πρωτεϊνικζσ και γονιδιακζσ 
μετριςεισ. Ωσ αποτζλεςμα, θ μθχανικι μάκθςθ χρθςιμοποιείται ςυχνά ςτθ διάγνωςθ και ςτον εντοπιςμό 
του καρκίνου. Πιο πρόςφατα θ μθχανικι μάκθςθ ζχει εφαρμοςτεί ςτθν πρόγνωςθ καρκίνου. Αυτι θ 
τελευταία προςζγγιςθ είναι ιδιαίτερα ενδιαφζρουςα, κακϊσ αποτελεί μζροσ μιασ αυξανόμενθσ τάςθσ τθσ 
προγνωςτικισ ιατρικισ. 

Καταρχιν, ο ςτόχοσ μασ ιταν να επεξεργαςτουμε πραγματικά βιολογικά δεδομζνα κάνοντασ μια ςτατιςτικι 
ανάλυςθ, περιγραφι και οπτικοποίθςθ και ςτθ ςυνζχεια να εκπαιδεφςουμε μοντζλο προβλζψεων για 
δυαδικι ταξινόμθςθ του καρκίνου, βαςιςμζνο ςε αλγόρικμουσ μθχανικισ μάκθςθσ και τεχνικζσ εξαγωγισ 
γνωριςμάτων. Χρθςιμοποιοφμε ζξι αλγόρικμουσ μθχανικισ μάκθςθσ εποπτείασ, όπωσ Logistic Regression 
(LR), Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Classification and Regression Trees 
(CART), Naïve Bayes (NB) και Linear Support Vector Machines (SVM) ςε διαφορετικά δεδομζνα γονιδιακισ 
ζκφραςθσ για τον καρκίνο του τραχιλο, του  μαςτοφ, τθσ οξείασ μυελοειδοφσ λευχαιμίασ και του καρκίνου 
ςτο πάγκρεασ, όλα διακζςιμα δθμοςίωσ ςτθν πλατφόρμα GEO.  

Κατά τθ διάρκεια τθσ διαδικαςίασ, τα δεδομζνα χωρίςτθκαν τυχαία ςε δεδομζνα εκπαίδευςθσ (train set) των 
αλγορίκμων και ςε δεδομζνα για τισ τελικζσ προβλζψεισ (validation set). Σο train set χρθςιμοποείται με τθ 
μζκοδο 5-fold cross-validation για τρία διαφορετικά ςενάρια: ςτα αρχικά δεδομζνα, ςε  δεδομζνα που ζχουν 
επεξεργαςτεί με τθν μζκοδο standardization και τελικά ςε επεξεργαςμζνα δεδομζνα που ζχουν 
μεταςχθματιςτεί από τεχνικζσ εξαγωγισ και μείωςθσ γνωριςμάτων όπωσ Principal Component Analysis 
(PCA). το τζλοσ αφοφ εκπαιδεφςουμε τα μοντζλα, χρθςιμοποιοφμε το validation set για αξιολογιςουμε τθν 
απόδοςθ των μοντζλων μασ ςτισ προβλζψεισ. 

Καταλιγουμε να ζχουμε ποςοςτά ακρίβειασ (accuracy) : 100% ςτα μοντζλα που εκπαιδευτθκαν με LR, NB 
και SVM ςτα δεδομζνα γονιδιακισ ζκφραςθσ του καρκίνου του τραχιλου τθσ μιτρασ, 90% ςτα μοντζλα που 
εκπαιδευτθκαν με LDA ςτα δεδομζνα γονιδιακισ ζκφραςθσ του καρκίνου του μαςτοφ, 95,4% ςτα μοντζλα 
που εκπαιδευτθκαν με NB ςτα δεδομζνα γονιδιακισ ζκφραςθσ τθσ οξείασ μυελοειδοφσ λευχαιμίασ και 
94,4% ςτα μοντζλα που εκπαιδευτθκαν με LR ςτα δεδομζνα γονιδιακισ ζκφραςθσ του καρκίνου ςτο 
πάγκρεασ. Επιπλζον, κατά τθ διάρκεια τθσ διαδικαςίασ εξετάηουμε τα μοντζλα μασ για να αξιολογιςουμε 
περαιτζρω μετριςεισ ταξινόμθςθσ όπωσ θ ακρίβεια (precision), θ ευαιςκθςία (sensitivity) , θ βακμολογία f1 
(f1-score) και οι καμπφλεσ ROC. Σζλοσ, ςυγκρίνουμε τα αποτελζςματα του 5-fold cross-validation ςε κάκε 
ςενάριο, προκειμζνου να εξάγουμε χριςιμεσ γνϊςεισ.  

 

Λζξεισ κλειδιά: διάγνωςθ καρκίνου, μοντζλο προβλζψεων, μθχανικι μάκθςθ, μικροςυςτοιχίεσ, γονιδιακθ 
ζκφραςθ, τεχνικζσ εξαγωγισ γνωριςμάτων και μείωςθσ διαςτάςεων, Logistic Regression, Linear Discriminant 
Analysis, k-Nearest Neighbors, Classification And Regression Trees, Naïve Bayes, Support Vector Machines. 
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1. INTRODUCTION 
1.1  Problem 
The number of patients diagnosed with cancer is increasing rapidly. (World cancer report, 2014.) The 

World Cancer Report described cancer as a global problem and projected an increase to 20 million new 

cases by 2025. Currently, cancer diagnosis is practiced by using image processing techniques, blood 

analysis and biopsies. Cancer is caused by the accumulation of excessive amount of damaged cells. (A. 

TAşçi, 2017) There are approaches in technology that reveals the cellular and molecular level of cancer. 

In a cancer disease sample such a cell biopsy to be processed, thousands of genes at a time can be 

subjected for analysis in a single chip called microarray. Microarrays are microscopic slides that contain 

ordered series of samples of DNA (Deoxyribonucleic acids), RNA (Ribonucleic acids), protein, or tissue 

and others. (Wong) Gene expression provides the information of how active a gene is. Microarray is one 

of the widely used measurement methods for gene expression. Gene expression values obtained by 

microarrays can be employed in cancer diagnosis and the classification of cancer types. (Venugopal 

Mikkilineni, 2004) 

Microarray chip helps the simultaneous analysis of gene expression profiles of a large number of genes 

in a single experiment. Understanding gene expression pattern can help to diagnose and distinguish 

different type of cancer. (Gregory Piatetsky-Shapiro, 2003)  Generally, Microarray datasets have high 

number of features (ranges from 2000 to 30000) compared to the samples size (mostly less than 150) 

and this is called “curse of dimensionality”. (Anil Jain, 1997) So, microarray analysis brings an exciting 

field of study for Machine Learning researchers. In addition to this, noise and variability of the data 

make this domain more exciting. (Saeys Yvan, 2007) (C.ArunKumar, 2017) 

Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic 

and optimization techniques that allows computers to “learn” from past examples and to detect hard-

to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to 

medical applications, especially those that depend on complex proteomic and genomic measurements. 

As a result, machine learning is frequently used in cancer diagnosis and detection. More recently 

machine learning has been applied to cancer prognosis and prediction. This latter approach is 

particularly interesting as it is part of a growing trend towards personalized, predictive medicine. 

According to the latest PubMed statistics, more than 1500 papers have been published on the subject of 

machine learning and cancer. However, the vast majority of these papers are concerned with using 

machine learning methods to identify, classify, detect, or distinguish tumors and other malignancies. In 

other words machine learning has been used primarily as an aid to cancer diagnosis and detection 

(McCarthy et al. 2004). It has only been relatively recently that cancer researchers have attempted to 
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apply machine learning towards cancer prediction and prognosis. As a consequence the body of 

literature in the field of machine learning and cancer prediction/prognosis is relatively small. 

The fundamental goals of cancer prediction and prognosis are distinct from the goals of cancer 

detection and diagnosis. In cancer prediction/prognosis one is concerned with three predictive foci: 1) 

the prediction of cancer susceptibility (i.e. risk assessment); 2) the prediction of cancer recurrence and 

3) the prediction of cancer survivability. In the first case, one is trying to predict the likelihood of 

developing a type of cancer prior to the occurrence of the disease. In the second case one is trying to 

predict the likelihood of redeveloping cancer after to the apparent resolution of the disease. In the third 

case one is trying to predict an outcome (life expectancy, survivability, progression, tumor-drug 

sensitivity) after the diagnosis of the disease. In the latter two situations the success of the prognostic 

prediction is obviously dependent, in part, on the success or quality of the diagnosis. However a disease 

prognosis can only come after a medical diagnosis and a prognostic prediction must take into account 

more than just a simple diagnosis (Hagerty et al. 2005). (Joseph A. Cruz) 

The challenge of cancer classification using microarrays is the application of model based selection and 

prediction algorithm that will classify the cancer genes using gene expression data. The computation 

time, classification accuracy, and its biological relevance in the cancer classification is still in question. 

(Wong) Machine learning based prediction of clinical outcomes can be used for appropriate decision 

making and can lead to better patient care. ML is also a great advantage over traditional statistical 

models including high power and accuracy to predict disease. To our knowledge, there is no specific 

algorithm that performs better for the prediction model. (Md. Mohaimenul Islam)  
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1.2 Goals of thesis 
The main goal of this thesis is to build an efficient, robust and accurate predictive model for binary 

classification of cancer and healthy gene expression data. With this aim, this study explores and 

examines different machine learning techniques on different cancer datasets and retrieves useful 

insights.   

This work uses four binary microarray datasets of Cervical, Breast, Acute Myeloid Leukemia and 

Pancreatic Cancer which were retrieved  by the Gene Expression Omnibus platform (Gene Expression 

Omnibus: NCBI gene expression and hybridization array data repository). These datasets are high 

dimensional with different number of samples each, and include cases with balanced and imbalanced 

classes worthy of further examination in order to derive useful information.  

A statistical analysis of the four datasets and their features is necessary in order to determine the 

process and the characteristics of gene expression levels’ information. The machine learning procedure, 

which was followed for building a predictive model, includes the evaluation of six different well-known 

classification algorithms of supervised learning. Logistic Regression, Linear Discriminant Analysis, k-

Nearest Neighbors, Classification and Regression Trees, Naïve Bayes and Linear Support Vector 

Machines shape the algorithm group which this thesis use for further analysis.  

On the other hand on the, we aim not only to build a model but to contribute also by analyzing different 

scenarios with these algorithms. For these purposes and knowing the small number of the samples, 

cross-validation is chosen to evaluate the performance of the models during the procedure. Three 

different scenarios are going to be examined in order to derive insights.  

Firstly, we intent to check the behavior of the six algorithms in the primary data. Secondly, as data 

transformation is a necessary step on machine learning, we will reevaluate them in order to compare 

the results. Finally, we intent to use feature selection techniques, like Principal Component Analysis for 

feature dimensionality reduction, and reevaluate the models. 

Concluding, in this study we aim to build a predictive machine learning model trained on real biological 

data and also contribute by submitting the results and the insights respectfully during to the whole 

procedure. 
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2. THEORETICAL BACKGROUND  
2.1 BIOLOGY 

2.1.1 Cells 
All living things are made of cells: small, membrane-enclosed units filled with a concentrated aqueous 

solution of chemicals and endowed with the extraordinary ability to create copies of themselves by 

growing and dividing in two. The simplest forms of life are solitary cells. Higher organisms, including 

ourselves, are communities of cells derived by growth and division from a single founder cell: each 

animal, plant, or fungus is a vast colony of individual cells that perform specialized functions coordinated 

by intricate systems of communication. 

There are a multitude of specific chemical transformations that not only provide the energy needed by a 

cell, but also coordinate all of the events and activities within that cell. The life process involves a wide 

array of molecules ranging from water to small organic compounds (e.g., fatty acids and sugars), and 

macromolecules (DNA, proteins, and polysaccharides) that define the structure of the cells. 

Macromolecules control and govern most of the activities of life.  

Deoxyribonucleic acid (DNA) molecules store information about the structure of macromolecules, 

allowing them to be made precisely according to cells’ specifications and needs. DNA is a very stable 

molecule that forms the “blueprint” of an organism. The DNA structure encodes information as a 

sequence of chemically linked molecules that can be read by the cellular machinery and guides the 

construction of the linear arrangements of protein building blocks, which eventually fold to form 

functional proteins. Molecular biology deals with how information is stored and converted to all the 

components and interactions that make up a living organism. (LEE) (Alberts B. H.) 

 

2.1.1.1  Procaryotic and Eucaryotic cells 
Of all the types of cells revealed by the microscope, bacteria have the simplest structure and come 

closest to showing us life stripped down to its essentials. Indeed, a bacterium contains essentially no 

organelles—not even a nucleus to hold its DNA. This property—the presence or absence of a nucleus—is 

used as the basis for a simple but fundamental classification of all living things. Organisms whose cells 

have a nucleus are called eucaryotes. Organisms whose cells do not have a nucleus are called 

procaryotes. The terms “bacterium” and “procaryote” are often used interchangeably, although we 

shall see that the category of procaryotes also includes another class of cells, the archaea (singular 

archaeon), which are so remotely related to bacteria that they are given a separate name. (Alberts B. H.) 
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2.1.1.1.1 Procaryotes 

Procaryotes are typically spherical, rod 

like, or corkscrew-shaped, and small-

just a few micrometers long, although 

there are some giant species as much 

as 100 times longer than this. They 

often have a tough protective coat, 

called a cell wall, surrounding the 

plasma membrane, which encloses a 

single compartment containing the 

cytoplasm and the DNA. In the 

electron microscope, the cell interior 

typically appears as a matrix of varying 

texture without any obvious organized 

internal structure. The cells reproduce 

quickly by dividing in two.  

Most procaryotes live as single-celled organisms, although some join together to form chains, clusters, 

or other organized multicellular structures. In shape and structure, procaryotes may seem simple and 

limited, but in terms of chemistry, they are the most diverse and inventive class of cells. These creatures 

exploit an enormous range of habitats, from hot puddles of volcanic mud to the interiors of other living 

cells, and they vastly outnumber other living organisms on Earth. Some are aerobic, using oxygen to 

oxidize food molecules; some are strictly anaerobic and are killed by the slightest exposure to oxygen. 

Mitochondria-the organelles that generate energy for the eucaryotic cell-are thought to have evolved 

from aerobic bacteria that took to living inside the anaerobic ancestors of today’s eucaryotic cells. Thus 

our own oxygen-based metabolism can be regarded as a product of the activities of bacterial cells. 

(Alberts B. H.) 

 

  

Figure 2-1 The bacterium Escherichia coli The bacterium 
Escherichia coli (E. coli) is understood more thoroughly than any 
other living organism. An electron micrograph of a longitudinal 
section is show here; the cell’s Dna is concentrated in the lightly 
stained region. 

(Courtesy of e. Kellenberger.) (Alberts B. H.) 
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Figure 2-2 Membrane-enclosed organelles are distributed throughout 
the cytoplasm. (A) a variety of membrane enclosed compartment exist 
within eucaryotic cells, each specialized to perform a different function. 
(B) the rest of the cell, excluding all these organelles, is called the 
cytosol (colored blue). (Alberts B. H.) 

2.1.1.1.2 Eucaryotes 

Eucaryotic cells, in general, are 

bigger and more elaborate than 

bacteria and archaea. Some live 

independent lives as single-celled 

organisms, such as amoebae and 

yeasts; others live in multicellular 

assemblies. All of the more complex 

multicellular organisms-including 

plants, animals, and fungi-are 

formed from eucaryotic cells. By 

definition, all eucaryotic cells have a 

nucleus. But possession of a nucleus 

goes hand-in-hand with possession 

of a variety of other organelles, 

subcellular structures that perform 

specialized functions. Most of these 

are likewise common to all 

eucaryotic organisms. (Alberts B. H.)  

We will now take a look at the main organelles found in eucaryotic cells from the point of view of their 

functions. 

Lysosomes are small, irregularly shaped organelles in which intracellular digestion occurs, releasing 

nutrients from food particles and breaking down unwanted molecules for recycling or excretion. 

And peroxisomes are small, membrane-enclosed vesicles that provide a contained environment for 

reactions in which hydrogen peroxide, a dangerously reactive chemical, is generated and degraded. 

Membranes also form many different types of small vesicles involved in the transport of materials 

between one membrane-enclosed organelle and another. 

If we were to strip the plasma membrane from a eucaryotic cell and then remove all of its membrane-

enclosed organelles, including nucleus, endoplasmic reticulum, Golgi apparatus, mitochondria, 

chloroplasts, and so on, we would be left with the cytosol. In other words, the cytosol is the part of the 

cytoplasm that is not partitioned off within intracellular membranes. In most cells, the cytosol is the 

largest single compartment. It contains a host of large and small molecules, crowded together so closely 

that it behaves more like a water-based gel than a liquid solution. The cytosol is the site of many 

chemical reactions that are fundamental to the cell’s existence. 

The early steps in the breakdown of nutrient molecules take place in the cytosol, for example, and it is 

here that the cell performs one of its key synthetic processes—the manufacture of proteins. Ribosomes, 

the molecular machines that make the protein molecules, are visible with the electron microscope as 

small particles in the cytosol, often attached to the cytosolic face of the endoplasmic. 

(Alberts B. H.) 
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2.1.1.1.2.1 Golgi apparatus 

Stacks of flattened membrane-enclosed sacs constitute the Golgi apparatus, which receives and often 

chemically modifies the molecules made in the endoplasmic reticulum and then directs them to the 

exterior of the cell or to various locations inside the cell. (Alberts B. H.) 

 

  

 

 

 

 

 

  

Figure 2-3 The Golgi apparatus resembles a stack of flattened discs. This organelle is just visible under the light 
microscope but is often inconspicuous. the Golgi apparatus is involved in the synthesis and packaging of molecules 
destined to be secreted from the cell, as well as in the routing of newly synthesized proteins to the correct cellular 
compartment. (A) Schematic diagram of an animal cell with the Golgi apparatus colored red. (B) Drawing of the 
Golgi apparatus reconstructed from electron microscope images. the organelle is composed of flattened sacs of 
membrane stacked in layers. Many small vesicles are seen nearby; some of these have pinched off from the Golgi 
stack, while others are destined to fuse with it. Only one stack is shown here, but several can be present in a cell. 
(C) electron micrograph of the Golgi apparatus from a typical animal cell. (C, courtesy of Brij J. Gupta.)  (Alberts B. 
H.) 
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2.1.1.1.2.2 Mitochondria 

Mitochondria are present in 

essentially all eucaryotic cells, and 

they are among the most 

conspicuous organelles in the 

cytoplasm mitochondria are 

generators of chemical energy for 

the cell. They harness the energy 

from the oxidation of food 

molecules, such as sugars, to 

produce adenosine triphosphate, 

or ATP—the basic chemical fuel 

that powers most of the cell’s 

activities. Because the 

mitochondrion consumes oxygen 

and releases carbon dioxide in the 

course of this activity, the entire 

process is called cellular 

respiration—essentially, breathing 

on a cellular level. (Alberts B. H.) 

 

2.1.1.1.2.3 Endoplasmic Reticulum 

The endoplasmic reticulum (ER)—an irregular maze of interconnected spaces enclosed by a membrane -

is the site where most cell membrane components, as well as materials destined for export from the 

cell, are made. (Alberts B. H.)                          

Figure 2-4 Mitochondria have a distinctive structure. 

(A) an electron micrograph of a cross-section of a mitochondrion reveals 
the extensive folding of the inner membrane. (B) this three-dimensional 
representation of the arrangement of the mitochondrial membranes 
shows the smooth outer membrane and the highly convoluted inner 
membrane. the inner membrane contains most of the proteins 
responsible for cellular respiration, and it is highly folded to provide a 
large surface area for this activity. (C) In this schematic cell, the interior 
space of the mitochondrion is colored. (a, courtesy of Daniel S. Friend.) 
(Alberts B. H.) 

 

Figure 2-5 Many cellular components are 
produced in the endoplasmic reticulum. 

(A) Schematic diagram of an animal cell 
shows the endoplasmic reticulum in green. 

(B) electron micrograph of a thin section of 
a mammalian pancreatic cell shows a small 
part of the endoplasmic reticulum (er), of 
which there are vast tracts in this cell type, 
which is specialized for protein secretion. 
note that the er is continuous with the 
membrane of the nuclear envelope. the 
black particles studding the particular 
region of the er shown here are 
ribosomes—the molecular assemblies that 
perform protein synthesis. Because of its 
appearance, ribosome-coated er is often 
called “rough er.” (B, courtesy of Lelio 
Orci.) (Alberts B. H.) 
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2.1.1.1.2.4 Nucleus 

The nucleus is usually the most prominent 

organelle in a eucaryotic. It is enclosed 

within two concentric membranes that 

form the nuclear envelope, and it contains 

molecules of DNA—extremely long 

polymers that encode the genetic 

information of the organism. In the light 

microscope, these giant DNA molecules 

become visible as individual chromosomes 

when they become more compact as a cell 

prepares to divide into two daughter cells. 

DNA also stores the genetic information in 

procaryotic cells; these cells lack a distinct 

nucleus not because they lack DNA, but 

because they do not keep their DNA inside 

a nuclear envelope, segregated from the 

rest of the cell contents. (Alberts B. H.) 

 

  

Figure 2-6 The nucleus contains most of the DNA in a eucaryotic cell. 
(A) In this drawing of a typical animal cell—complete with its extensive 
system of membrane-enclosed organelles—the nucleus is colored 
brown, the nuclear envelope is green, and the cytoplasm (the interior of 
the cell outside the nucleus) is white. (B) an electron micrograph of a 
nucleus in a mammalian cell. Individual chromosomes are not visible 
because the Dna is dispersed as fine threads throughout the nucleus at 
this stage of the cell’s growth. (B, courtesy of Daniel S. Friend.) 

(Alberts B. H.) 

 

Figure 2-7 Chromosomes become visible when a cell is about to divide. As a eucaryotic cell prepares to divide, its 
DNA becomes compacted or condensed into threadlike chromosomes that can be distinguished in the light 
microscope. The photographs show three successive steps in this process in a cultured cell from a newt’s lung.  

(Courtesy of Conly L. rieder.) (Alberts B. H.) 
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2.1.2 DeoxyriboNucleic Acid  
A molecule of deoxyribonucleic acid (DNA) consists of two long polynucleotide chains. Each of these 

DNA chains, or DNA strands, is composed of four types of nucleotide subunits, and the two chains are 

held together by hydrogen bonds between the base portions of the nucleotides.  

 

 

Figure 2-8  

Cancer is caused by certain changes to genes, the basic physical units of inheritance. Genes are arranged in long 

strands of tightly packed DNA called chromosomes. 

Credit: Terese Winslow 
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Νucleotides 

Νucleotides are composed of a five-

carbon sugar to which are attached 

one or more phosphate groups and a 

nitrogen-containing base. For the 

nucleotides in DNA, the sugar is 

deoxyribose attached to a single 

phosphate group (hence the name 

deoxyribonucleic acid); the base may 

be either adenine (A), cytosine (C), 

guanine (G), or thymine (T). The 

nucleotides are covalently linked 

together in a chain through the 

sugars and phosphates, which thus 

form a “backbone” of alternating 

sugar–phosphate–sugar. Because it is 

only the base that differs in each of 

the four types of subunits, each 

polynucleotide chain in DNA can be 

thought of as a necklace (the 

backbone) strung with four types of 

beads (the four bases A, C, G, and T). 

These same symbols (A, C, G, and T) 

are also commonly used to denote 

the four different nucleotides—that 

is, the bases with their attached sugar 

and phosphate groups. 

 

 

 

 

 

Figure 2-9 DNA is made of four nucleotide building blocks. (A) each 
nucleotide is composed of a sugar– phosphate covalently linked to a 
base.(B) the nucleotides are covalently linked together into 
polynucleotide chains, with a sugar–phosphate backbone from which 
the bases (a, C, G, and t) extend. (C) a DNa molecule is composed of 
two polynucleotide chains (DNa strands) held together by hydrogen 
bonds between the paired bases. the arrows on the DNa strands 
indicate the polarities of the two strands, which run antiparallel to 
each other in the DNa molecule. (D) although the DNa is shown 
straightened out in (C), in reality, it is wound into a double helix, as 
shown here. (Alberts B. H.) 
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The way in which the nucleotide subunits are linked together gives a DNA strand a chemical polarity. If 

we imagine that each nucleotide has a knob (the phosphate) and a hole, each chain, formed by 

interlocking knobs with holes, will have all of its subunits lined up in the same orientation. Moreover, 

the two ends of the chain can be easily distinguished, as one will have a hole (the 3’ hydroxyl) and the 

other a knob (the 5’ phosphate). This polarity in a DNA chain is indicated by referring to one end as the  

3’ end and the other as the 5’ end. This convention is based on the details of the chemical linkage 

between the nucleotide subunits. 

The two polynucleotide chains in the DNA double helix are held together by hydrogen-bonding between 

the bases on the different strands. All the bases are therefore on the inside of the helix, with the sugar–

phosphate backbones on the outside. The bases do not pair at random, however: A always pairs with T, 

and G always pairs with C. 

  

Figure 2-10 The two strands of the DNA double helix are held together by hydrogen bonds between 
complementary base pairs. (A) the shapes and chemical structure of the bases allow hydrogen bonds to form 
efficiently only between a and t and between G and C, where atoms that are able to form hydrogen bonds can be 
brought close together without perturbing the double helix. two hydrogen bonds form between A and T, whereas 
three form between G and C. the bases can pair in this way only if the two polynucleotide chains that contain them 
are antiparallel—that is, oriented in opposite polarities. (B) A short section of the double helix viewed from its side. 
Four base pairs are shown. The nucleotides are linked together covalently by phosphodiester bonds through the 
3’-hydroxyl (–OH) group of one sugar and the 5’-phosphate (–PO4) of the next. This linkage gives each 
polynucleotide strand a chemical polarity; that is, its two ends are chemically different. The 3’ end carries an 
unlinked –oh group attached to the 3’ position on the sugar ring; the 5’ end carries a free phosphate group 
attached to the 5’ position on the sugar ring. (Alberts B. H.) 
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In each case, a bulkier two-ring base is paired with a single-ring base (a pyrimidine). Each purine– 

pyrimidine pair is called a base pair, and this complementary base-pairing enables the base pairs to be 

packed in the energetically most favorable arrangement in the interior of the double helix. In this 

arrangement, each base pair is of similar width, thus holding the sugar–phosphate back-bones an equal 

distance apart along the DNA molecule. The members of each base pair can fit together within the 

double helix because the two strands of the helix run antiparallel to each other—that is, they are 

oriented with opposite polarities. 

DNA encodes information in the order, or sequence, of the nucleotides along each strand. Each base—A, 

C, T, or G—can be considered as a letter in a four-letter alphabet that is used to spell out biological 

messages in the chemical structure of the DNA. Organisms differ from one another because their 

respective DNA molecules have different nucleotide sequences and, consequently, carry different 

biological messages. (Alberts B. H.) 

2.1.2.1 Chromosomes 
In eucaryotic cells, very long double-stranded 

DNA molecules are packaged into structures 

called chromosomes, which not only fit readily 

inside the nucleus but can be easily 

apportioned between the two daughter cells at 

each cell division. The complex task of 

packaging DNA is accomplished by specialized 

proteins that bind to and fold the DNA, 

generating a series of coils and loops that 

provide increasingly higher levels of 

organization and prevent the DNA from 

becoming an unmanageable tangle. Amazingly, 

the DNA is compacted in a way that allows it to 

remain accessible to all of the enzymes and 

other proteins that replicate it, repair it, and 

direct the expression of its genes. 

In eucaryotes, such as ourselves, the DNA in 

the nucleus is distributed among a set of 

different chromosomes. The human genome, 

for example, contains approximately 3.2×109 

nucleotides parceled out into 24 

chromosomes. Each chromosome consists of a 

single, enormously long, linear DNA molecule 

associated with proteins that fold and pack the 

fine thread of DNA into a more compact 

structure. The complex of DNA and protein is 

Figure 2-11 DNA packing occurs on several levels in 

chromosomes. This schematic drawing shows some of the levels 

thought to give rise to the highly condensed mitotic chromosome. 

(Alberts B. H.) 
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called chromatin. In addition to the proteins involved in packaging the DNA, chromosomes are also 

associated with many other proteins involved in gene expression, DNA replication, and DNA repair. 

In addition to being different sizes, human chromosomes can be distinguished from one another by a 

variety of techniques.  

Each chromosome can be “painted” a different color using sets of chromosome-specific DNA molecules 

coupled to different fluorescent dyes. This involves the technique of DNA hybridization. The most 

important function of chromosomes is to carry the genes—the functional units of heredity. (Alberts B. 

H.) 

2.1.3 RiboNucleic Acid  
Once the structure of DNA (deoxyribonucleic acid) had been determined in the early 1950s, it became 

clear that the hereditary information in cells is encoded in DNA’s sequence of nucleotides. Even before 

the DNA code had been broken, it was known that the information contained in genes somehow 

directed the synthesis of proteins. Proteins are the principal constituents of cells and determine not only 

their structure but also their functions. We have encountered some of the thousands of different kinds 

of proteins that cells can make. The properties and function of a protein molecule are determined by the 

linear order—the sequence—of the different amino acid subunits in its polypeptide chain: each type of 

protein has its own unique amino acid sequence, and this sequence dictates how the chain will fold to 

give a molecule with a distinctive shape and chemistry. The genetic instructions carried by DNA must 

therefore specify the amino acid sequences of proteins. 

DNA does not direct protein synthesis itself, but acts rather like a manager, delegating the various tasks 

to a team of workers. When a particular protein is needed by the cell, the nucleotide sequence of the 

appropriate section of an immensely long DNA molecule in a chromosome is first copied into another 

type of nucleic acid—RNA (ribonucleic acid). These RNA copies of short segments of the DNA are then 

used to direct the synthesis of the protein. Many thousands of these conversions from DNA to protein 

occur each second in every cell in our bodies. 

Like DNA, RNA is a linear polymer made of four different types of nucleotide subunits linked together by 

phosphodiester bonds. It differs from DNA chemically in two respects: (1) the nucleotides in RNA are 

ribonucleotides—that is, they contain the sugar ribose (hence the name ribonucleic acid) rather than 

deoxyribose; (2) although, like DNA, RNA contains the bases adenine (A), guanine (G), and cytosine (C), it 

contains uracil (U) instead of the thymine (T) found in DNA. Because U, like T, can base-pair by 

hydrogen-bonding with A, the complementary base-pairing properties described for DNA in Chapter 5 

apply also to RNA. 

Although their chemical differences are small, DNA and RNA differ quite dramatically in overall 

structure. Whereas DNA always occurs in cells as a double-stranded helix, RNA is single-stranded. This 

difference has important functional consequences. Because an RNA chain is single-stranded, it can fold 

up into a variety of shapes, just as a polypeptide chain folds up to form the final shape of a protein; 

double-stranded DNA cannot fold in this fashion. The ability to fold into a complex three dimensional 

shape allows RNA to carry out functions in cells in addition to conveying information between DNA and 

protein. 
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FROM DNA TO RNA 

The first step a cell takes in reading out one of its many thousands of genes is to copy the nucleotide 

sequence of that gene into RNA. The process is called transcription because the information, though 

copied into another chemical form, is still written in essentially the same language—the language of 

nucleotides. 

Transcription produces RNA Complementary to One strand of DNA  

All of the RNA in a cell is made by transcription, a process that has certain similarities to DNA replication. 

Transcription begins with the opening and unwinding of a small portion of the DNA double helix to 

expose the bases on each DNA strand. One of the two strands of the DNA double helix then acts as a 

template for the synthesis of RNA. Ribonucleotides are added, one by one, to the growing RNA chain, 

and as in DNA replication, the nucleotide sequence of the RNA chain is determined by complementary 

base-pairing with the DNA template. When a good match is made, the incoming ribonucleotide is 

covalently linked to the growing RNA chain in an enzymatically catalyzed reaction. The RNA chain 

produced by transcription—the transcript—is therefore elongated one nucleotide at a time and has a 

nucleotide sequence exactly complementary to the strand of DNA used as the template. 

 

Several Types of RNA are produced in Cells  

The vast majority of genes carried in a cell’s DNA specify the amino acid sequence of proteins, and the 

RNA molecules that are copied from these genes (and that ultimately direct the synthesis of proteins) 

are collectively called messenger RNA (mRNA). In eucaryotes, each mRNA typically carries information 

transcribed from just one gene, coding for a single protein; in bacteria, a set of adjacent genes is often 

transcribed as a single mRNA that therefore carries the information for several different proteins. 

The final product of other genes, however, is the RNA itself. These, non-messenger RNAs, like proteins, 

serve as regulatory, structural, and enzymatic components of cells, and they play key parts in translating 

the genetic message into protein. Ribosomal RNA (rRNA) forms the core of the ribosomes, on which 

mRNA is translated into protein, and transfer RNA (tRNA) forms the adaptors that select amino acids 

and hold them in place on a ribosome for their incorporation into protein. Other small RNAs, called 

microRNAs (miRNAs), serve as key regulators of eucaryotic gene expression. (Alberts B. H.) 

 

The sequence of messenger RNA is complementary to the sequence of the bottom strand of DNA and is 

identical to the top strand of DNA, except for the replacement of T with U. A messenger RNA includes a 

sequence of nucleotides that corresponds to the sequence of amino acids in the protein. This part of the 

nucleic acid is called the coding region. Because mRNA is an exact copy of the DNA coding regions, 

mRNA analysis can be used to identify polymorphisms in coding regions of DNA. A polymorphism is a 

DNA region for which nucleotide sequence variants exist in a population of organisms. Such variations 

can sometimes explain the occurrence of a disease or enzyme deficiency within a population. Hence, a 

considerable effort has been put into trying to identify such variations. 

Microarray technology can be used both in the identification of polymorphisms and in the diagnosis of 

polymorphism-related disease. In eukaryotic cells, the initial pre-mRNA transcription product can be 

many times longer than needed for translation into protein. At the end of a eukaryotic gene, there is a 
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regulatory region to which various proteins bind, causing the gene to be transcribed at the right time 

and in the right amount. A region at the end of the gene contains a sequence encoding the termination 

of transcription. In the genes of many eukaryotes, the protein-encoding sequence is interrupted by 

varying numbers of segments called introns. The coding sequence segments interrupted by the introns 

are called exons. Introns are removed in the splicing process to generate the final mature mRNA ready 

to be translated by the protein synthesis machinery. (LEE) 

 

FROM RNA TO PROTEIN 

In contrast, the conversion of the information in RNA into protein represents a translation of the 

information into another language that uses quite different symbols. Because there are only 4 different 

nucleotides in mRNA but 20 different  types of amino acids in a protein, this translation cannot be 

accounted for by a direct one-to-one correspondence between a nucleotide in RNA and an amino acid in 

protein. The rules by which the nucleotide sequence of a gene, through the medium of mRNA, is 

translated into the amino acid sequence of a protein are known as the genetic code. 

2.1.4 Central dogma of molecular biology 
The conversion of genotype to phenotype 

requires information stored in DNA to be 

converted to protein. The nature of information 

flow in cells was first described by Francis Crick 

as the central dogma of molecular biology. 

Information passes in one direction from the 

gene (DNA) to an RNA copy of the gene, and the 

RNA copy directs the sequential assembly of a 

chain of amino acids into a protein. Stated briefly, 

DNA → RNA → protein 

The central dogma provides an intellectual 

framework that describes information flow in 

biological systems. We call the DNA-to-RNA step 

transcription because it produces an exact copy 

of the DNA, much as a legal transcription 

contains the exact words of a court proceeding. 

The RNA-to-protein step is termed translation 

because it requires translating from the nucleic 

acid to the protein “languages.” Since the original formulation of the central dogma, a class of viruses 

called retroviruses was discovered that can convert their RNA genome into a DNA copy, using the viral 

enzyme reverse transcriptase. This conversion violates the direction of information flow of the central 

dogma, and the discovery forced an updating of the possible flow of information to include this 

“reverse” flow from RNA to DNA. (Biology -- 9th ed.) 

 

Figure 2-12 The central dogma of molecular biology. 
DNA is transcribed to make mRNA, which is translated to 

make a protein. (Biology -- 9th ed.) 
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2.1.5 Genes 
Genes are the units of the DNA sequence that control the identifiable hereditary traits of an organism. A 

gene can be defined as a segment of DNA that specifies a functional RNA. The total set of genes carried 

by an individual or a cell is called its genome. The genome defines the genetic construction of an 

organism or cell, or the genotype. The phenotype, on the other hand, is the total set of characteristics 

displayed by an organism under a particular set of environmental factors. The outward appearance of an 

organism (phenotype) may or may not directly reflect the genes that are present (genotype). Today the 

complete genome sequences of several species are known, including several bacteria, yeasts, and 

humans. With microarray technology we can study the expression of all the genes in an organism 

simultaneously. Such genome-wide studies will help to uncover and decipher cellular processes from a 

completely new perspective. (LEE) 

2.1.6 The Genetic Code 
The sequence of nucleotides in DNA is important not because of its structure, but because it codes for 

the sequence of amino acids that dictate the structure of a protein with a defined function, be it 

structural or catalytic. The relationship between a sequence of DNA and the sequence of the 

corresponding protein is called the genetic code. The genetic code is read in groups of three nucleotides, 

or codons, each of which represents one amino acid. Because each position in the three nucleotide 

codon could be one of the four bases A, C, G, and T, there are a total of 4 × 4 × 4 = 64 possible different 

codons, each representing an amino acid or a signal to terminate translation. As there are only 20 

common amino acids, several different codons can code for the same amino acid (the genetic code is 

said to be degenerate due to this many-to-one relationship). Since the genetic code is read in non-

overlapping triplets, there are three possible ways of translating any nucleotide sequence into a protein, 

depending on the starting point. These are called reading frames. A reading frame that starts with a 

special initiation codon (AUG-methionine) and extends through a series of codons representing amino 

acids until it ends at one of three termination codons (UAA, UAG, UGA) can potentially be translated 

into a protein and is called an open reading frame (ORF). A long open reading frame is unlikely to exist 

by chance. The identification of a lengthy open reading frame is strong evidence that the sequence is 

translated into protein in that frame. An open reading frame for which no protein product has been 

identified is sometimes called an unidentified reading frame (URF). 

Figure 2-13 The updated direction of information flow of the central dogma 
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2.1.7 Gene Expression and Microarrays 
Gene expression is the process by which mRNA, and eventually protein, is synthesized from the DNA 

template of each gene. The first stage of this process is transcription, when an RNA copy of one strand 

of the DNA is produced. In eukaryotes it is followed by RNA splicing, during which the introns are cut out 

of the primary transcript and a mature mRNA is made. As part of the maturation process, a tail of 

adenine nucleotides is added to the 3’ end of the mRNA. This poly A tail can vary greatly in length and is 

believed to stabilize the mRNA molecule. Transcription and splicing of RNA occur in the nucleus. The 

next stage of gene expression is the translation of the mRNA into protein. This occurs in the cytoplasm. 

In the process of gene expression RNA provides not only the essential substrate (mRNA) but also 

components of the protein synthesis apparatus (tRNA, rRNA). 

Some protein-encoding genes are transcribed more or less constantly; they are sometimes called 

housekeeping genes and are always needed for basic reactions. Other genes may be rendered 

unreadable or, to suit the functions of the organism, readable only at particular moments and under 

particular external conditions. The signal that masks or unmasks a gene may come from outside the cell; 

for example, from a nutrient or a hormone. Special regulatory sequences in the DNA dictate whether a 

gene will respond to the signals, and they in turn affect the transcription of the protein-encoding gene. 

Understanding which genes are expressed under which condition gives invaluable information about the 

biological processes in the cell. The power of microarray technology lies in its ability to measure the 

expression of thousands of genes simultaneously. (LEE) 

 

2.1.8 Hybridization 
The specific base pairing of nucleic acids is the foundation of microarray technology. The specific pairing 

of an artificial DNA sequence probe with its biological counterpart allows for exact identification of the 

sought-after unique sequence or gene. 

Because of the base-pairing arrangments, the two strands of DNA can separate and re-form very quickly 

under physiological conditions that disrupt the hydrogen bonds between the bases but are much too 

mild to pose any threat to the covalent bonds in the backbone of the DNA. The process of strand 

separation is called denaturation or melting. Because of the complementarity of the base pairs, the two 

separated complementary strands can be re-formed into a double helix (the two strands are then said to 

be annealed). This process is called renaturation. The technique of renaturation can be extended to 

allow any two complementary nucleic acid sequences to anneal with each other to form a duplex 

structure. 
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Hybridization is the biochemical method on which DNA microarray technology is based. Nucleic acid 

sequences can be compared in terms of complementarity that is determined by the rules for base 

pairing. In a perfect duplex of DNA, the strands are precisely complementary. It is possible to measure 

complementarity because the denaturation of DNA is reversible under appropriate conditions. Detecting 

and identifying nucleic acid (DNA, mRNA) with a labeled cDNA probe that is complementary to it is an 

application of nucleic acid hybridization. DNA microarrays utilize hybridization reactions between single-

stranded fluorescent dye-labeled nucleic acids to be interrogated and single-stranded sequences 

immobilized on the chip surface. (LEE) 

2.1.9 Complementary DNA 

(cDNA) 
Complementary DNA (cDNA) is used in recombinant 

DNA technology. cDNA is complementary to a given 

mRNA and is usually made by the enzyme reverse 

transcriptase, first discovered in retroviruses. Reverse 

transcription allows a mature mRNA to be retrieved 

as cDNA without the interruption of non-coding 

introns. The coexistence of mRNA and cDNA 

establishes the general principle that information in 

the form of either type of nucleic acid sequence can 

be converted into the other type. In microarray 

technology the process of reverse transcription is 

frequently used to incorporate fluorescent dyes into 

cDNA complementary to the mRNA transcripts. (LEE) 

  

Figure 2-14 A molecule of DNA can undergo denaturation and renaturation (hybridization). For hybridization to occur, the 
two single strands must have complementary nucleotide sequences that allow base-pairing. In this example, the red and 
orange strands are complementary to each other, and the blue and green strands are complementary to each other. (Alberts 
B. H.) 

Figure 2-15 Complementary DNA (cDNA) can be 
prepared from mRNA. Total mRNa is extracted from a 
particular tissue, and DNA copies (cDNa) of the mRNa 
molecules are produced by the enzyme reverse 
transcriptase. For simplicity, the copying of just one of 
these mRNas into cDNa is illustrated here. (Alberts B. H.) 

 



21 

 

2.1.10 PCR 
Now that so many genome sequences are available, genes can be cloned directly without the need to 

construct DNA libraries first. A technique called the polymerase chain reaction (PCR) makes this rapid 

cloning possible. PCR allows the DNA from a selected region of a genome to be amplified a billion fold, 

effectively "purifying" this DNA away from the remainder of the genome. Two sets of DNA 

oligonucleotides, chosen to flank the desired nucleotide sequence of the gene, are synthesized by 

chemical methods. These oligonucleotides are then used to prime DNA synthesis on single strands 

generated by heating the DNA from the entire genome. The newly synthesized DNA is produced in a 

reaction catalyzed in vitro by a purified DNA polymerase, and the primers remain at the 5’ ends of the 

final DNA fragments that are made. 

Nothing special is produced in the first cycle of DNA synthesis;  the power of the PCR method is revealed 

only after repeated rounds of DNA synthesis. Every cycle doubles the amount of DNA synthesized in the 

previous cycle. Because each cycle requires a brief heat treatment to separate the two strands of the 

template DNA double helix, the technique requires the use of a special DNA polymerase, isolated from a 

thermophilic bacterium, that is stable at much higher temperatures than normal, so that it is not 

denatured by the repeated heat treatments. With each round of DNA synthesis, the newly generated 

fragments serve as templates in their turn, and within a few cycles the predominant product is a single 

species of DNA fragment whose length corresponds to the distance between the two original primers. 

In practice, 20 30 cycles of reaction are required for effective DNA amplification, with the products of 

each cycle serving as the DNA templates for the next hence the term polymerase "chain reaction." A 

single cycle requires only about 5 minutes, and the entire procedure can be easily automated. PCR 

thereby makes possible the "cell-free molecular cloning" of a DNA fragment in a few hours, compared 

with the several days required for standard cloning procedures. This technique is now used routinely to 

clone DNA from genes of interest directly starting either from genomic DNA or from mRNA isolated from 

cells. The PCR method is extremely sensitive; it can detect a single DNA molecule in a sample. Trace 

amounts of RNA can be analyzed in the same way by first transcribing them into DNA with reverse 

transcriptase. The PCR cloning technique has largely replaced Southern blotting for the diagnosis of 

genetic diseases and for the detection of low levels of viral infection. It also has great promise in forensic 

medicine as a means of analyzing minute traces of blood or other tissues even as little as a single cell 

and identifying the person from whom they came by his or her genetic "fingerprint". (Alberts W. J.) 
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2.2 MICROARRAY TECHNOLOGY 
A DNA microarray consists of a solid surface, usually a microscope slide, onto which DNA molecules have 

been chemically bonded. The purpose of a microarray is to detect the presence and abundance of 

labeled nucleic acids in a biological sample, which will hybridize to the DNA on the array via Watson–

Crick duplex formation, and which can be detected via the label. In the majority of microarray 

experiments, the labeled nucleic acids are derived from the mRNA of a sample or tissue, and so the 

microarray measures gene expression. The power of a microarray is that there may be many thousands 

of different DNA molecules bonded to an array, and so it is possible to measure the expression of many 

thousands of genes simultaneously.  

Also, comparing healthy and diseased cells can yield vital information on the causes of diseases. 

Microarrays have been successfully applied to several biological problems and, as arrays become more 

easily available to researchers, the popularity of these kinds of experiments will increase. The demand 

for good statistical analysis regimens and tools tailored for microarray data analysis will increase as the 

popularity of microarrays grows. The future will likely bring many new microarray applications, each 

with its own demands for specialized statistical analysis. 

In order to analyze any experimental data correctly, it is fundamental to understand the experiments 

that generated the data. Microarray experiments contain many steps, each with its individual noise and 

variation. The final result may be affected by any of the steps in the process. Good experimental design 

and careful statistical analysis are required for successful interpretation of microarray data. (Stekel) 

(LEE) 

Microarray technology has evolved from Ed Southern’s insight that labeled nucleic acid molecules could 

be used to identify nucleic acid molecules attached to a solid support. Hybridization methods, such as 

Southern and Northern blots, colony hybridizations, and dot blots, have long been used to identify and 

quantify nucleic acids in biological samples. These methods traditionally attempt to identify and 

measure only one gene or transcript at a time. 

Hybridization methods have evolved from these early membrane-based, radioactive detection 

embodiments to highly parallel quantitative methods using fluorescence detection. Some key 

innovations have made it possible to develop techniques that analyze hundreds or thousands of 

hybridizations in parallel. The first was the use of non-porous solid supports, such as nylon filters or glass 

slides, which facilitate miniaturization. The second was the development of methods for spatial 

synthesis and robotic spotting of oligonucleotides and cDNAs on a very small scale. These methods have 

made it possible to generate arrays with very high densities of DNA, allowing tens of thousands of genes 

to be represented in areas smaller than standard glass microscope slides. In fact, today it is technically 

possible to generate arrays of probes representing all the genes of a genome on a single slide. Finally, 

improvements in fluorescent labeling of nucleic acids, fluorescent-based detection, and image 

processing have improved the accuracy of microarrays. 

Before describing the process of generating and using microarrays in more detail, a clarification of the 

nomenclature is needed. At least two nomenclature systems currently exist in the literature for referring 

to DNA hybridization partners. There is no general consensus on the usage of the terms probe and 
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target, and researchers have used these two terms interchangeably in a number of publications. With 

respect to the nucleic acids whose entwining represents the hybridization reaction, the identity of one is 

defined as it is tethered to the solid phase, making up the microarray itself. The identity of the other is 

revealed by hybridization. Nature Genetics14 and Duggan et al.15 adopted the nomenclature that the 

tethered nucleic acids spotted on the array are the probes, and the fluor-tagged cDNAs from a complex 

mRNA mixture extracted from cells are the targets. (LEE) 

2.2.1 The Technology behind DNA Microarrays 
When DNA microarrays are used for measuring the concentration of messenger RNA in living cells, a 

probe of one DNA strand that matches a particular messenger RNA in the cell is used. The concentration 

of a particular messenger is a result of expression of its corresponding gene, so this application is often 

referred to as expression analysis. When different probes matching all messenger RNAs in a cell are 

used, a snapshot of the total messenger RNA pool of a living cell or tissue can be obtained. This is often 

referred to as an expression profile because it reflects the expression of every single measured gene at 

that particular moment. Expression profile is also sometimes used to describe the expression of a single 

gene over a number of conditions.  

 

 

Figure 2-16 The Affymetrix GeneChip technology. 
Gene expression monitoring with oligonucleotide arrays. 
a, A single 1.28´1.28 cm array containing probe sets for approximately 40,000 human genes and ESTs. This array contains 
features smaller than 22´22 mm and only four probe pairs per gene or EST. 
b, Expression probe and array design. Oligonucleotide probes are chosen based on uniqueness criteria and composition design 
rules. For eukaryotic organisms, probes are chosen typically from the 3´ end of the gene or transcript (nearer to the poly(A) tail) 
to reduce problems that may arise from the use of partially degraded mRNA. The use of the PM minus MM differences 
averaged across a set of probes greatly reduces the contribution of background and cross-hybridization and increases the 
quantitative accuracy and reproducibility of the measurement. (Robert J. Lipshutz) 

 

Expression analysis can also be performed by a method called serial analysis of gene expression (SAGE). 

Instead of using microarrays, SAGE relies on traditional DNA sequencing to identify and enumerate the 

messenger RNAs in a cell.  

Another traditional application of DNA microarrays is to detect mutation in specific genes. The massively 

parallel nature of DNA microarrays allows the simultaneous screening of many, if not all, possible 

mutations within a single gene. This is referred to as genotyping.  
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The treatment of array data does not depend so much on the technology used to gather the data as it 

depends on the application in question. For expression analysis the field has been dominated in the past 

by two major technologies. The Affymetrix, Inc. GeneChip system uses prefabricated oligonucleotide 

chips. Custom-made chips use a robot to spot cDNA, oligonucleotides, or PCR products on a glass slide 

or membrane. More recently, several new technologies have entered the market. (Knudsen, 2006) 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2-17 In-situ synthesis of oligonucleotides. The oligonucleotides are built on the glass array one base at a time. At each 
step, the base is added via the reaction between the hydroxyl group 5of the terminal base and the phosphate group of the next 
base. There is a protective group on the 5 of the base being added, which prevents the addition of more than one base at each 
step. Following addition, there is a deprotection step at which the protective group is converted to a hydroxyl group to allow 
addition of the next base. 
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2.2.2 Spotted cDNA Arrays 
In spotted cDNA arrays full-length cDNA clones or expressed sequence tag (EST) libraries are robotically 

spotted and immobilized on the support. Many laboratories already have cDNA libraries, so generation 

of these arrays requires only investment in the robotic equipment to spot, or array, the cDNA. Spotted 

cDNA arrays have an advantage over other types of arrays in that unknown sequences can be spotted. 

Thus, for organisms for which no or only limited genome sequence information is available, spotted 

cDNA microarrays are the only choice for genome-wide transcriptional profiling. (LEE) 

2.2.3 Spotted Oligonucleotide Arrays 
This is the technology by which the first microarrays were manufactured. The array is made using a 

spotting robot via three main steps: 

1. Making the DNA probes to put on the array 

2. Spotting the DNA onto the glass surface of the array with the spotting robot 

3. Post spotting processing of the glass slide 

There are three main types of spotted array, which can be subdivided in two ways: by the type of DNA 

probe, or by the attachment chemistry of the probe to the glass. The DNA probes used on a spotted 

array can either be polymerase chain reaction (PCR) products or oligonucleotides. In the first case, highly 

parallel PCR is used to amplify DNA from a clone library, and the amplified DNA is purified. In the second 

case, DNA oligonucleotides are presynthesised for use on the array. (Stekel, 2003) 

Figure 2-18 The spotted array technology. A robot is used to transfer probes in solution from a microtiter plate to a glass slide 
where they are dried. Extracted mRNA from cells is converted to cDNA and labeled fluorescently. Reference sample is labeled 
red and test sample is labeled green. After mixing, they are hybridized to the probes on the glass slide. After washing away 
unhybridized material, the chip is scanned with a confocal laser and the image is analyzed by computer. (Knudsen, 2006) 
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2.2.4 In-Situ Oligonucleotide Arrays 
In-situ oligonucleotide arrays were developed by Fodor et al.16 and Affymetrix, Inc. In-situ 

oligonucleotide arrays use a combination of photolithography and solid-phase oligonucleotide chemistry 

to synthesize short oligonucleotide probes (25-mer oligos) directly on the solid support surface. The 

number of oligonucleotides (50,000 probes per 1.28 square centimeters) on a chip manufactured by this 

method vastly exceeds what can be achieved by spotting solution robotically. This takes place by 

covalent reaction between the 5’ hydroxyl group of the sugar of the last nucleotide to be attached and 

the phosphate group of the next nucleotide. Each nucleotide added to the oligonucleotide on the glass 

has a protective group on its 5’ position to prevent the addition of more than one base during each 

round of synthesis. The protective group is then converted to a hydroxyl group either with acid or with 

light before the next round of synthesis. 

Affymetrix Inc. has chosen to utilize this advantage to construct an array with several oligonucleotide 

probes and cross-hybridization controls for each target gene. However, the researcher has little, if any, 

control over what probes are used on pre-manufactured arrays like the Affymetrix GeneChip arrays. On 

the other hand, comparison of results between different laboratories is facilitated by the use of 

products from a common manufacturer. 

For in-situ oligonucleotide arrays, the test and reference samples (or the treatment and control samples) 

are hybridized separately on different chips. In contrast, for either spotted cDNA arrays or spotted 

oligonucleotide arrays, a test and a reference sample labeled with two different fluorescent dyes are 

commonly simultaneously hybridized on the same arrays. This difference affects how microarray data 

generated with single-color or two-color arrays are analyzed. (Stekel, 2003) (LEE)  

Figure 2-19 Affymetrix technology. Affymetrix arrays are manufactured using in-situ synthesis with a light-mediated deprotection step. 
During each round of synthesis, a single base is added to appropriate parts of the array. A mask is used to direct light to the appropriate 
regions of the array so that the base is added to the correct features. Each step requires a different mask. The masks are expensive to 
produce, but once made, it is straightforward to use them to manufacture a large number of identical arrays. (Reproduced with Permission 
from Affymetrix Inc.) (Stekel, 2003) 
a. Light directed oligonucleotide synthesis. A solid support is derivatized with a covalent linker molecule terminated with a photolabile 
protecting group. Light is directed through a mask to deprotect and activate selected sites, and protected nucleotides couple to the activated 
sites. The process is repeated, activating different sets of sites and coupling different bases allowing arbitrary DNA probes to be constructed 
at each site. 
b. Schematic representation of the lamp, mask and array. (Robert J. Lipshutz) 
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2.2.5 Affymetrix GeneChip Technology 
Affymetrix uses equipment similar to that which is used for making silicon chips for computers, and thus 

allows mass production of very large chips at reasonable cost. Where computer chips are made by 

creating masks that control a photolithographic process for removal or deposition of silicon material on 

the chip surface, Affymetrix uses masks to control synthesis of oligonucleotides on the surface of a chip. 

The standard phosphoramidite method for synthesis of oligonucleotides has been modified to allow 

light control of the individual steps. The masks control the synthesis of several hundred thousand 

squares, each containing many copies of an oligo. So the result is several hundred thousand different 

oligos, each of them present in millions of copies. 

That large number of oligos, up to 25 nucleotides long, has turned out to be very useful as an 

experimental tool to replace all experimental detection procedures that in the past relied on using 

oligonucleotides: Southern, Northern, and dot blotting as well as sequence specific probing and 

mutation detection. 

For expression analysis, up to 40 oligos are used for the detection of each gene. Affymetrix has chosen a 

region of each gene that (presumably) has the least similarity to other genes. From this region 11 to 20 

oligos are chosen as perfect match (PM) oligos (i.e., perfectly complementary to the mRNA of that 

gene). In addition, they have generated 11 to 20 mismatch (MM) oligos, which are identical to the PM 

oligos except for the central position 13, where one nucleotide has been changed to its complementary 

nucleotide. Affymetrix claims that the MM oligos will be able to detect nonspecific and background 

hybridization, which is important for quantifying weakly expressed mRNAs. However, for weakly 

expressed mRNAs where the signal-to-noise ratio is smallest, subtracting mismatch from perfect match 

adds considerably to the noise in the data (Schadt et al., 2000). That is because subtracting one noisy 

signal from another noisy signal yields a third signal with even more noise.  

The hybridization of each oligo to its target depends on its sequence. All 11 to 20 PM oligos for each 

gene have a different sequence, so the hybridization will not be uniform. That is of limited consequence 

as long as we wish to detect only changes in mRNA concentration between experiments.  

To detect hybridization of a target mRNA by a probe on the chip, we need to label the target mRNA with 

a fluorochrome. The steps from cell to chip usually are as follows: 

 Extract total RNA from cell (usually using TRIzol from Invitrogen or RNeasy from QIAGEN). 

• Separate mRNA from other RNA using poly-T column (optional). 

• Convert mRNA to cDNA using reverse transcriptase and a poly-T primer. 

• Amplify resulting cDNA using T7 RNA polymerase in the presence of biotin-UTP and biotin-CTP, 

so each cDNA will yield 50 to 100 copies of biotin-labeled cRNA. 

• Incubate cRNA at 94 degrees Celsius in fragmentation buffer to produce cRNA fragments of 

length 35 to 200 nucleotides. 

• Hybridize to chip and wash away non hybridized material. 

• Stain hybridized biotin-labeled cRNA with streptavidin-phycoerythrin and wash. 

• Scan chip in confocal laser scanner (optional). 

• Amplify the signal on the chip with goat IgG and biotinylated antibody. 

• Scan chip in scanner. 
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Usually, 5 to 10 μg of total RNA are required for the procedure. But new improvements to the cDNA 

synthesis protocols reduce the required amount to 100 ng. If two cycles of cDNA synthesis and cRNA 

synthesis are performed, the detection limit can be reduced to 2 ng of total RNA (Baugh et al., 2001). 

MessageAmp kits from Ambion allow up to 1000 times amplification in a single round of T7 polymerase 

amplification. (Knudsen, 2006) 

 

 

Figure 2-20 Preparation of sample for GeneChip arrays. Messenger RNA is extracted from the cell and converted to cDNA. It 
then undergoes an amplification and labeling step before fragmentation and hybridization to 25-mer oligos on the surface of 
the chip. After washing of unhybridized material, the chip is scanned in a confocal laser scanner and the image is analyzed by 
computer. (Image courtesy of Affymetrix) 
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Figure 2-21 Schematic overview of spotted cDNA microarrays and high-density oligonucleotide arrays. cDNA microarrays : 
Array preparation: inserts from cDNA collections or libraries are amplified and the PCR products printed at specified sites on 
glass slides using high-precision arraying robots. These probes are attached by chemical linkers. Target preparation: RNA from 2 
different tissues or cell populations is used to synthesize cDNA in the presence of nucleotides labeled with 2 different 
fluorescent dyes (eg: Cy3 and Cy5). Both samples are mixed in a small volume of hybridization buffer and hybridized to the 
array, resulting in competitive binding of differentially labeled cDNAs to the corresponding array elements. High resolution 
confocal fluorescence scanning of the array with two different wavelengths corresponding to the dyes used provides relative 
signal intensities and ratios of mRNA abundance for the genes represented on the array. High-density oligonucleotide 
microarrays : Array preparation: sequences of 16-20 short oligonucleotides (typically 25mer) are chosen from the mRNA 
reference sequence of each gene, often representing the unique part of the transcript. Light-directed, in situ oligonucleotide 
synthesis is used to generate high- density probe arrays containing over 300,000 individual elements. Target preparation: Total 
RNA from different tissues or cell populations is used to generate cDNA carrying a transcriptional start site for T7 DNA 
polymerase. During IVT, biotin-labeled nucleotides are incorporated into the synthesized cRNA molecules which is then 
fragmented. Each target sample is hybridized to a separate probe array and target binding is detected by staining with a 
fluorescent dye coupled to streptavidin. Signal intensities of probe array element sets on different arrays are used to calculate 
relative mRNA abundance for the genes represented on the array. Modified and reprinted with permission from Nature Cell 
Biology (Vol. 3, No. 8, pp. E190-E195) Copyright ©2001 Macmillan Publishers Limited. 262 (The microarray: Potential aplications 
for ophthalmic research) 
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2.3 CANCER 
We pay a price for having bodies that can renew and repair themselves. The delicately adjusted 

mechanisms that control these processes can go wrong, leading to catastrophic disruption of the body’s 

structure. Foremost among the diseases of tissue renewal is cancer, which stands alongside infectious 

illness, malnutrition, war, and heart disease as a major cause of death among humans. In Europe and 

North America, for example, one in four of us will die of cancer.  

Cancers arise from violations of the basic rules of social cell behavior. To make sense of the origins and 

progress of the disease, and to devise treatments, we have to draw upon almost every part of our 

knowledge of how cells work and interact in tissues. Conversely, much of what we know about cell and 

tissue biology has been discovered as a byproduct of cancer research. 

Cancer is due to failures of the mechanisms that usually control the growth and proliferation of cells. 

During normal development and throughout adult life, intricate genetic control systems regulate the 

balance between cell birth and death in response to growth signals, growth-inhibiting signals, and death 

signals. Cell birth and death rates determine adult body size, and the rate of growth in reaching that 

size. In some adult tissues, cell proliferation occurs continuously as a constant tissue-renewal strategy. 

Intestinal epithelial cells, for instance, live for just a few days before they die and are replaced; certain 

white blood cells are replaced as rapidly, and skin cells commonly survive for only 2–4 weeks before 

being shed. The cells in many adult tissues, however, normally do not proliferate except during healing 

processes. Such stable cells (e.g., hepatocytes, heart muscle cells, neurons) can remain functional for 

long periods or even the entire lifetime of an organism.  

The losses of cellular regulation that give rise to most or all cases of cancer are due to genetic damage. 

Mutations in two broad classes of genes have been implicated in the onset of cancer: proto-oncogenes 

and tumor-suppressor genes. Proto-oncogenes are activated to become oncogenes by mutations that 

cause the gene to be excessively active in growth promotion. Either increased gene expression or 

production of a hyperactive product will do it. Tumor-suppressor genes normally restrain growth, so 

damage to them allows inappropriate growth. Many of the genes in both classes encode proteins that 

help regulate cell birth (i.e., entry into and progression through the cell cycle) or cell death by apoptosis; 

others encode proteins that participate in repairing damaged DNA. Cancer commonly results from 

mutations that arise during a lifetime’s exposure to carcinogens, which include certain chemicals and 

ultraviolet radiation. Cancer-causing mutations occur mostly in somatic cells, not in the germ-line cells, 

and somatic cell mutations are not passed on to the next generation. In contrast, certain inherited 

mutations, which are carried in the germ line, increase the probability that cancer will occur at some 

time. In a destructive partnership, somatic mutations can combine with inherited mutations to cause 

cancer. 

Thus the cancer-forming process, called oncogenesis or tumorigenesis, is an interplay between genetics 

and the environment. Most cancers arise after genes are altered by carcinogens or by errors in the 

copying and repair of genes. Even if the genetic damage occurs only in one somatic cell, division of this 

cell will transmit the damage to the daughter cells, giving rise to a clone of altered cells. Rarely, 

however, does mutation in a single gene lead to the onset of cancer. More typically, a series of 

mutations in multiple genes creates a progressively more rapidly proliferating cell type that escapes 
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normal growth restraints, creating an opportunity for additional mutations. Eventually the clone of cells 

grows into a tumor. In some cases cells from the primary tumor migrate to new sites (metastasis), 

forming secondary tumors that often have the greatest health impact. 

Metastasis is a complex process with many steps. Invasion of new tissues is nonrandom, depending on 

the nature of both the metastasizing cell and the invaded tissue. Metastasis is facilitated if the tumor 

cells produce growth and angiogenesis factors (blood vessel growth inducers). Motile, invasive, 

aggregating, deformable cells are most dangerous. Tissues under attack are most vulnerable if they 

produce growth factors and readily grow new vasculature. They are more resistant if they produce anti-

proliferative factors, inhibitors of proteolytic enzymes, and anti-angiogenesis factors. 

Research on the genetic foundations of a particular type of cancer often begins by identifying one or 

more genes that are mutationally altered in tumor cells. Subsequently it is important to learn whether 

an altered gene is a contributing cause for the tumor, or an irrelevant side event. Such investigations 

usually employ multiple approaches: epidemiological comparisons of the frequency with which the 

genetic change is associated with a type of tumor, tests of the growth properties of cells in culture that 

have the particular mutation, and the testing of mouse models of the disease to see if the mutation can 

be causally implicated. A more sophisticated analysis is possible when the altered gene is known to 

encode a component of a particular molecular pathway (e.g., an intracellular signaling pathway). In this 

case it is possible to alter other components of the same pathway and see whether the same type of 

cancer arises. 

Because the multiple mutations that lead to formation of a tumor may require many years to 

accumulate, most cancers develop later in life. The occurrence of cancer after the age of reproduction 

may be one reason that evolutionary restraints have not done more to suppress cancer. The 

requirement for multiple mutations also lowers the frequency of cancer compared with what it would 

be if tumorigenesis were triggered by a single mutation. However, huge numbers of cells are, in essence, 

mutagenized and tested for altered growth during our lifetimes, a sort of evolutionary selection for cells 

that proliferate. Fortunately the tumor itself is not inherited. 

Tumors arise with great frequency, especially in older individuals, but most pose little risk to their host 

because they are localized and of small size. We call such tumors benign; an example is warts, a benign 

skin tumor. The cells composing benign tumors closely resemble, and may function like, normal cells. 

The cell-adhesion molecules that hold tissues together keep benign tumor cells, like normal cells, 

localized to the tissues where they originate. A fibrous capsule usually delineates the extent of a benign 

tumor and makes it an easy target for a surgeon. Benign tumors become serious medical problems only 

if their sheer bulk interferes with normal functions or if they secrete excess amounts of biologically 

active substances like hormones. Acromegaly, the overgrowth of head, hands, and feet, for example, 

can occur when a benign pituitary tumor causes overproduction of growth hormone. In contrast, cells 

composing a malignant tumor, or cancer, usually grow and divide more rapidly than normal, fail to die 

at the normal rate (e.g., chronic lymphocytic leukemia, a tumor of white blood cells), or invade nearby 

tissue without a significant change in their proliferation rate (e.g., less harmful tumors of glial cells). 

Some malignant tumors, such as those in the ovary or breast, remain localized and encapsulated, at 

least for a time. When these tumors progress, the cells invade surrounding tissues, get into the body’s 

circulatory system, and establish secondary areas of proliferation, a process called metastasis. Most 
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malignant cells eventually acquire the ability to metastasize. Thus the major characteristics that 

differentiate metastatic (or malignant) tumors from benign ones are their invasiveness and spread. 

(Alberts B. H.) (Lodish) 
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2.4 MACHINE LEARNING 
Machine learning is an application of artificial intelligence (AI) that provides systems the ability to 

automatically learn and improve from experience without being explicitly programmed. Machine 

learning focuses on the development of computer programs that can access data and use it learn for 

themselves. 

The process of learning begins with observations or data, such as examples, direct experience, or 

instruction, in order to look for patterns in data and make better decisions in the future based on the 

examples that we provide. The primary aim is to allow the computers learn automatically without 

human intervention or assistance and adjust actions accordingly. (expertsystem.com) 

The name machine learning was coined in 1959 by Arthur Samuel (Some Studies in Machine Learning 

Using the Game of Checkers, 1959). Tom M. Mitchell provided a widely quoted, more formal definition 

of the algorithms studied in the machine learning field 

Definition: A computer program is said to learn from experience E with respect to some class of tasks T 

and performance measure P, if its performance at tasks in T, as measured by P, improves with experience 

E (Mitchell, 1997) 

 

Generally, there are four types of Machine Learning Algorithms: 

 Supervised learning refers to any machine learning process that learns a function from an input 

type to an output type using data comprising examples that have both input and output values. 

Two typical examples of supervised learning are classification learning and regression. In these 

cases, the output types are respectively categorical (the classes) and numeric. Supervised 

learning stands in contrast to unsupervised learning, which seeks to learn structure in data, and 

to reinforcement learning in which sequential decision-making policies are learned from reward 

with no examples of “correct” behavior. 

 Unsupervised learning refers to any machine learning process that seeks to learn structure in 

the absence of either an identified output or feedback. Three typical examples of unsupervised 

learning are clustering, association rules, and self-organizing maps. 

 Reinforcement learning describes a large class of learning problems characteristic of 

autonomous agents interacting in an environment: sequential decision-making problems with 

delayed reward. Reinforcement-learning algorithms seek to learn a policy (mapping from states 

to actions) that maximizes the reward received over time. Unlike in supervised learning 

problems, in reinforcement learning problems, there are no labeled examples of correct and 

incorrect behavior. However, unlike unsupervised learning problems, a reward signal can be 

perceived. 

 Semi-supervised learning uses both labeled and unlabeled data to perform an otherwise 

supervised learning or unsupervised learning task. 

(Sammut C., 2010) 
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2.4.1 Classification 
In common usage, the word classification means to put things into categories, group them together in 

some useful way. If we are screening for a disease, we would group people into those with the disease 

and those without. We, as humans, usually do this because things in a group, called a class in machine 

learning, share common characteristics. If we know the class of something, we know a lot about it. In 

machine learning, the term classification is most commonly associated with a particular type of learning 

where examples of one or more classes, labeled with the name of the class, are given to the learning 

algorithm. 

The input data for a classification task is a collection of records. Each record, also known as an instance 

or example, is characterized by a tuple (x,y), where x is the attribute set and y is a special attribute, 

designated as the class label (also known as category or target attribute). The class label, on the other 

hand, must be a discrete attribute. This is a key characteristic that distinguishes classification from 

regression, a predictive modeling task in which g is a continuous attribute. (Pang Ning Tan) 

Also (Pang Ning Tan) defines classification in his book (Introduction to Data Mining.) as the task of 

learning a target function / that maps each attribute set x to one of the predefined class labels y.  

The target function is also known informally as a classification model. A classification model is useful for 

the following purposes. 

 Descriptive Modeling A classification model can serve as an explanatory tool to distinguish 

between objects of different classes. 

 Predictive Modeling A classification model can also be used to predict the class label of 

unknown records. A classification model can be treated as a black box that automatically assigns 

a class label when presented with the attribute set of an unknown record. 

 

A classification rule is an IF-THEN rule. The condition of the rule (the rule body or antecedent) typically 

consists of a conjunction of Boolean terms, each one constituting a constraint that needs to be satisfied 

by an example. If all constraints are satisfied, the rule is said to fire, and the example is said to be 

covered by the rule. The rule head (also called the consequent or conclusion) consists of a single class 

value, which is predicted in case the rule fires. This is in contrast to association rules, which allow 

multiple features in the head. (Sammut C., 2010) 

2.4.2 Binary Classification 
Binary classification problems (Duda et al. 2001) consider assigning an individual to one of two 

categories, by measuring a series of attributes. An example is medical diagnosis for a single medical 

condition (say disease vs. no disease) based on a battery of tests. (Science Direct) 

There are many influential binary classification methods such as kernel methods (Hofmann et al., 2008), 

ensemble methods (Polikar, 2006), and deep learning methods (Bengio, 2009). Support vector machine 

(SVM) (Vapnik, 1999) is a classical kernel method. Ensemble methods include boosting (Freund and 

Schapire, 1997; Friedman et al., 2000) and random forest (RF) (Breiman, 2001). Deep learning methods 

are based on artificial neural networks (ANNs) (Bishop and et al., 1995). (Science Direct) 
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2.4.3 Classification Algorithms 
There are a very large number of classification algorithms. The most common are separated in linear 

and non-linear. A simple way of representing the output from machine learning is a linear model, the 

output of which is just the sum of the attribute values, except that weights are applied to each attribute 

before adding them together. The trick is to come up with good values for the weights-ones that make 

the model’s output match the desired output. Here, the output and the inputs-attribute values-are all 

numeric. Linear models can also be applied to binary classification problems. In this case, the line 

produced by the model separates the two classes: It defines where the decision changes from one class 

value to the other. Such a line is often referred to as the decision boundary. (Ian H. Witten) 

2.4.3.1 Logistic Regression 
Statisticians use the word regression for the process of predicting a numeric quantity, and regression 

model is another term for this kind of linear model. 

Logistic regression provides a mechanism for applying the techniques of linear regression to 

classification problems. It utilizes a linear regression model of the form   

                      

where    to    represent the values of the n attributes and    to    represent weights. This model is 

mapped onto the interval ,   - using   (  |     )  
 

     
 where    represents class 0. 

2.4.3.2 Linear Discriminant Analysis 
A discriminant is a function that takes an input variable x and outputs a class label y for it. A linear 

discriminant is a discriminant that uses a linear function of the input variables and more generally a 

linear function of some vector function of the input variables   ( ). This entry focuses on one such linear 

discriminant function called Fisher’s linear discriminant. Fisher’s discriminant works by finding a 

projection of input variables to a lower dimensional space while maintaining a class separability 

property. (Sammut C., 2010) 

Given N observed training data points *(     )+   
   where      *     +  is the label for an input variable 

       
 , our task is to find the underlying discriminant function,         *     +. The linear 

discriminant seeks a projection of d-dimensional input onto a line in the direction of        , such that 

 ( )      

Fisher’s criterion maximizes a large separation between the projected class means while simultaneously 

minimizing a variance within each class. (Sammut C., 2010) 
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Learning LDA Models 

LDA makes some simplifying assumptions about our data: 

 That our data is Gaussian, that each variable is is shaped like a bell curve when plotted. 

 That each attribute has the same variance, that values of each variable vary around the mean by 

the same amount on average. 

With these assumptions, the LDA model estimates the mean and variance from our data for each class. 

It is easy to think about this in the univariate (single input variable) case with two classes. 

The mean (mu) value of each input (x) for each class (k) can be estimated in the normal way by dividing 

the sum of values by the total number of values. 

muk = 1/nk * sum(x) 

Where muk is the mean value of x for the class k, nk is the number of instances with class k. The variance 

is calculated across all classes as the average squared difference of each value from the mean. 

ς2 = 1 / (n-K) * sum((x – mu)2) 

Where ς2 is the variance across all inputs (x), n is the number of instances, K is the number of classes 

and mu is the mean for input x. 

Making Predictions with LDA 

LDA makes predictions by estimating the probability that a new set of inputs belongs to each class. The 

class that gets the highest probability is the output class and a prediction is made. 

The model uses Bayes Theorem to estimate the probabilities. Briefly Bayes’ Theorem can be used to 

estimate the probability of the output class (k) given the input (x) using the probability of each class and 

the probability of the data belonging to each class: 

 (   |   )    (        ( ))      (        ( )) 

Where PIk refers to the base probability of each class (k) observed in your training data (e.g. 0.5 for a 50-

50 split in a two class problem). In Bayes’ Theorem this is called the prior probability.  

           

The f(x) above is the estimated probability of x belonging to the class. A Gaussian distribution function is 

used for f(x). Plugging the Gaussian into the above equation and simplifying we end up with the 

equation below. This is called a discriminate function and the class is calculated as having the largest 

value will be the output classification (y): 

  ( )        (       
 )   (   

  (     ))      (   ) 

Dk(x) is the discriminate function for class k given input x, the muk, ς
2  and PIk are all estimated from your 

data. (J.Brownlee) 
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2.4.3.3 SVM 
A support vector machine (SVM) is a supervised learning technique that has proven useful in 

classification problems encountered in working with microarray data. In the simplest case of two class 

classification, SVMs find a hyperplane that separates the two classes of data with as wide a margin as 

possible. This leads to good generalization accuracy on unseen data and supports specialized 

optimization methods that allow SVM to learn from a large amount of data.  

SVM has a stronger mathematical basis than some machine learning methods such as neural networks 

and is closely related to some well-established theories in statistics. As a linear model, it not only tries to 

correctly classify the training data but also maximizes the margin for better generalization performance. 

This formulation leads to a separating hyperplane that depends only on the (usually small fraction of) 

data points that lie on the margin, which are called support vectors. Hence the whole algorithm is called 

support vector machine. In addition, since real-world data analysis problems often involve nonlinear 

dependencies, SVMs can be easily extended to model such nonlinearity by means of positive semi-

definite kernels. Moreover, SVMs can be trained via quadratic programming, which (a) makes 

theoretical analysis easier and (b) provides much convenience in designing efficient solvers that scale for 

large datasets. Finally, when applied to real-world data, SVMs often deliver state of- the-art 

performance in accuracy, flexibility, robustness, and efficiency. (C., 2010) 

2.4.3.3.1 Linearly Separable Binary Classification 

Theory 

We have L training points, where each input    has D attributes (i.e. is of dimensionality D) and is in one 

of two classes              , i.e our training data is of the form: 

*      +                             *    +                  (1.0) 

Here we assume the data is linearly separable, meaning that we can draw a line on a graph of    vs     

separating the two classes when       and a hyperplane on graphs of           for when      . 

This hyperplane can be described by             where: 

   is normal to the hyperplane. 

 
 

‖ ‖
  is the perpendicular distance from the hyperplane to the origin. 

Support Vectors are the examples closest to the separating hyperplane and the aim of Support Vector 

Machines (SVM) is to orientate this hyperplane in such a way as to be as far as possible from the closest 

members of both classes. 
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Referring to Figure 22, implementing a SVM boils down to selecting the variables   and   so that our 

training data can be described by: 

                                                                    (1.1) 

                                                                              (1.2) 

These equations can be combined into:     (        )                         (1.3) 

If we now just consider the points that lie closest to the separating hyper plane, i.e. the Support Vectors 

(shown in circles in the diagram), then the two planes H1 and H2 that these points lie on can be 

described by: 

                                                                            (1.4) 

                                                                                (1.5) 

Referring to Figure 21, we define    as being the distance from H1 to the hyperplane and     from H2 to 

it. The hyperplane's equidistance from H1 and H2 means that d1 = d2 - a quantity known as the SVM's 

margin. In order to orientate the hyperplane to be as far from the Support Vectors as possible, we need 

to maximize this margin. 

Simple vector geometry shows that the margin is equal to 
 

‖ ‖
 and maximizing it subject to the 

constraint in is equivalent to finding: 

   ‖ ‖  such that   (        )         

Minimizing ‖ ‖ is equivalent to minimizing   
 

 
‖ ‖   and the use of this term makes it possible to 

perform Quadratic Programming (QP) optimization later on. We therefore need to find: 

     
 

 
‖ ‖    s.t.       (        )                                 (1.6) 

In order to cater for the constraints in this minimization, we need to allocate them Lagrange multipliers 

α, where          : 

Figure 2-22 SVM Hyperplane through two linearly separable classes 
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‖ ‖    ,   (        )       -         (1.7) 

  
 

 
‖ ‖   ∑   ,   (        )   - 

                    (1.8) 

  
 

 
‖ ‖   ∑     (        )  ∑   

 
   

 
             (1.9) 

We wish to find the w and b which minimizes, and the α which maximizes (whilst keeping          ). 

We can do this by differentiating    with respect to w and b and setting the derivatives to zero: 

   

  
=0 →     ∑       

 
                                (1.10) 

   

  
=0  →  ∑       

 
   =0                    (1.11) 

Substituting (1.10) and (1.11) into (1.9) gives a new formulation which, being dependent on α, we need 

to maximize: 

    ∑    
 

 

 
   ∑          

 
 
                    ∑        

         (1.12) 

  ∑    
 

 

 
   ∑                                         (1.13) 

  ∑    
 

 

 
                      ∑        

             (1.14) 

This new formulation    is referred to as the Dual form of the Primary    . It is worth noting that the 

Dual form requires only the dot product of each input vector   to be calculated, this is important for the 

Kernel Trick.  

Having moved from minimizing    to maximizing   , we need to find: 

    [∑    
 

 

 
       ]                                     ∑        

          (1.15) 

This is a convex quadratic optimization problem, and we run a QP solver which will return α and from 

(1.10) will give us w. What remains is to calculate b. 

Any data point satisfying (1.11) which is a Support Vector    will have the form: 

  (      )    

Substituting in (1.10): 

  (∑     

   

       )    

Where S denotes the set of indices of the Support Vectors. S is determined by finding the indices i where 

     . Multiplying through by    and then using    
       from (1.1) and (1.2): 

  
 (∑     

   

       )     

     ∑     

   

      

Instead of using an arbitrary Support Vector   , it is better to take an average over all of the Support 

Vectors in S: 

  
 

  
∑ (   ∑             )                 (1.16) 
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We now have the variables w and b that define our separating hyperplane's optimal orientation and 

hence our Support Vector Machine. 

Application 

In order to use an SVM to solve a linearly separable, binary classification problem we need to: 

 Create H, where              . 

 Find α so that     ∑    
 

 

 
            is maximized, subject to the constraints 

                      ∑        
    

This is done using a QP solver. 

 Calculate     ∑       
 
    . 

 Determine the set of Support Vectors S by finding the indices such that      . 

 Calculate   
 

  
∑ (   ∑             )      

 Each new point    is classified by evaluating        (        ) . 

2.4.3.3.2 Binary Classification for Data that is not Fully Linearly Separable 

Theory 

In order to extend the SVM methodology to handle data that is not fully linearly separable, we relax the 

constraints for (1.1) and (1.2) slightly to allow for misclassi_ed points. This is done by introducing a 

positive slack variable            : 

                                                    (2.1) 

                                                  (2.2) 

                                              (2.3) 

Which can be combined into:  

  (      )          where                                (2.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-23 SVM Hyperplane through two non-linearly separable classes 
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In this soft margin SVM, data points on the incorrect side of the margin boundary have a penalty that 

increases with the distance from it. As we are trying to reduce the number of misclassifications, a 

sensible way to adapt our objective function (1.6) from previously, is to find: 

     
 

 
‖ ‖   ∑   

 
       s.t.      (      )                      (2.5) 

Where the parameter C controls the trade-off between the slack variable penalty and the size of the 

margin. Reformulating as a Lagrangian, which as before we need to minimize with respect to w, b and    

and maximize with respect to α (where          ,          ): 

    
 

 
‖ ‖    ∑   

 
      ∑   ,  (        )      -  ∑    

 
   

 
            (2.6) 

Differentiating with respect to w, b and    and setting the derivatives to zero: 

   

  
=0  →     ∑       

 
                    (2.7) 

   

  
=0  →  ∑     

 
   =0               (2.8) 

   

   
=0  →                        (2.9) 

Substituting these in,    has the same form as (1.14) before. However (2.9) together with          , 

implies that    . We therefore need to _nd: 

    [∑    
 

 

 
       ]                                      ∑        

           (2.10) 

 

b is then calculated in the same way as in (1.6) before, though in this instance the set of Support Vectors 

used to calculate b is determined by finding the indices i where       . 

Application 

In order to use an SVM to solve a binary classification for data that is not fully linearly separable we 

need to: 

 Create H, where              .  

 Choose how significantly misclassifications should be treated, by selecting a suitable value for 

the parameter C. 

 Find α so that     ∑    
 

 

 
            is maximized, subject to the constraints 

                                ∑        
    

This is done using a QP solver. 

 Calculate     ∑       
 
    . 

 Determine the set of Support Vectors S by finding the indices such that       . 

 Calculate   
 

  
∑ (   ∑             )      

 Each new point    is classified by evaluating         (        ) . 

(Fletcher, 2008) 
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2.4.3.4 KNN 
The k-nearest neighbor classifier (kNN) is based on the Euclidean distance between a test sample and 

the specified training samples. A test sample x is assigned to the class x of its nearest neighbor, where m i 

is a nearest neighbor to x if the distance. 

 (    )         *  (     ) + 

Where  (    )    ‖    ‖  is the Euclidean distance. The k-nearest neighbors to x are identified and 

the decision rule is D(x→ꙍ) to assign sample x to the class ꙍ which is the most popular among the k 

nearest training samples. 

The class of nearest-neighbor methods can be viewed as direct estimates of this conditional expectation, 

but we have seen that they can fail in at least two ways: 

• if the dimension of the input space is high, the nearest neighbors need not be close to the target point, 

and can result in large errors; 

• if special structure is known to exist, this can be used to reduce both the bias and the variance of the 

estimates. 

We anticipate using other classes of models for f(x), in many cases specifically designed to overcome the 

dimensionality problems, and here we discuss a framework for incorporating them into the prediction 

problem. Nearest neighbors are useful in many machine learning and data mining tasks, such as 

classification, anomaly detection and motif discovery and in more general tasks such as spell checking, 

vector quantization, plagiarism detection, web search, and recommender systems. The naive method to 

find the nearest neighbor to a point q requires a linear scan of all objects in in a data collection M. 

(Sammut C., 2010)  (Hastie) (Leif E. Peterson, 2008) 
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2.4.3.5 NB 
Naıve Bayes is a simple learning algorithm that utilizes Bayes’ rule together with a strong assumption 

that the attributes are conditionally independent given the class. While this independence assumption is 

often violated in practice, naıve Bayes nonetheless often delivers competitive classification accuracy. 

Coupled with its computational efficiency and many other desirable features, this leads to naıve Bayes 

being widely applied in practice. 

Naıve Bayes provides a mechanism for using the information in sample data to estimate the posterior 

probability  ( | ) of each class y given an object x. Once we have such estimates, we can use them for 

classification or other decision support applications. 

Naıve Bayes’ features include the following: 

 Computational efficiency: training time is linear with respect to both the number of  training 

examples and the number of attributes, and  classification time is linear with respect to the 

number of attributes and unaffected by the number of training examples. 

 Low variance: because naıve Bayes does not directly fit the posterior distribution, it has low 

variance, albeit at the cost of high bias. 

 Incremental learning: naıve Bayes operates from estimates of low-order probabilities that are 

derived from the training data. These can readily be updated as new training data are acquired. 

 Direct prediction of posterior probabilities. 

 Robustness in the face of noise: naıve Bayes always uses all attributes for all predictions and 

hence is relatively insensitive to noise in the examples to be classified. Because it uses 

probabilities, it is also relatively insensitive to noise in the training data. 

 Robustness in the face of missing values: because naıve Bayes always uses all attributes for all 

predictions, if one attribute value is missing, information from other attributes is still used, 

resulting in graceful degradation in performance. It is also relatively insensitive to missing 

attribute values in the training data due to its probabilistic framework. 

Structure of Learning System 

Naıve Bayes is a form of Bayesian network classifier based on Bayes’ rule: 

 ( | )   ( ) ( | ) ( ) (1) 

together with an assumption that the attributes are conditionally independent given the class. For 

attribute-value data, this assumption entitles 

 ( | )   ∏  (  | ) 
     (2) 

where xi is the value of the i th attribute in x and n is the number of attributes: 

 ( )   ∏  (  ) ( |  ) 
     (3) 

where k is the number of classes and ci is the ith class. Thus, (1) can be calculated by normalizing the 

numerators of the right-hand side of the equation. The resulting classifier uses a linear model, 

equivalent to that used by logistic regression, differing only in the manner in which the parameters are 

chosen.  

For categorical attributes, the required probabilities  ( ) and  (  | ) are normally derived from 

frequency counts stored in arrays whose values are calculated by a single pass through the training data 
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at training time. These arrays can be updated as new data are acquired, supporting incremental 

learning. Probability estimates are usually derived from the frequency counts using smoothing functions 

such as the Laplace estimate or an m-estimate. 

(Sammut C., 2010) 

 

2.4.3.6 CART 
The induction of decision trees is one of the oldest and most popular techniques for learning 

discriminatory models, which has been developed independently in the statistical (Breiman et al. 1984; 

Kass 1980) and machine learning (Hunt et al. 1966; Quinlan 1983, 1986) communities. A decision tree is 

a tree-structured classification model, which is easy to understand, even by non expert users, and can 

be efficiently induced from data. 

A decision tree is a largely used non-parametric effective machine learning modeling technique for 

regression and classification problems. To find solutions a decision tree makes sequential, hierarchical 

decision about the outcomes variable based on the predictor data. 

Decision tree builds regression or classification models in the form of a tree structure. It breaks down a 

dataset into smaller and smaller subsets while at the same time an associated decision tree is 

incrementally developed. The final result is a tree with decision nodes and leaf nodes. 

The Understanding Level of Decision Tree algorithm is so easy as compared to classification algorithm. 

In Decision tree algorithm we solve our problem in tree representation. Each internal node of the tree 

corresponds to an attributes. Each leaf node corresponds to a Class Label. 

In decision tree for predicting a class label for a record we start from the root of the tree. We compare 

the value of the root attribute with record’s attribute on the basis of comparison. We follow the branch 

corresponding to that values & jump to the next node. We continue comparing our record’s attribute 

value with other internal nodes of the tree until we reach a leaf node. 

Learning Algorithm 

Decision trees are learned in a top-down fashion, with an algorithm known as top-down induction of 

decision trees (TDIDT), recursive partitioning, or divide-and-conquer learning. The algorithm selects the 

best attribute for the root of the tree, splits the set of examples into disjoint sets, and adds 

corresponding nodes and branches to the tree. The simplest splitting criterion is for discrete attributes, 

where each test has the form     (   )where u is one possible value of the chosen attribute A. The 

corresponding set    contains all training examples for which the attribute A has the value t. This can be 

easily adapted to numerical attributes, where one typically uses binary splits of the form     (    ), 

which indicate whether the attribute’s value is above or below a certain threshold value   . 

Alternatively, one can transform the data beforehand using a discretization algorithm. 

After splitting the dataset according to the selected attribute, the procedure is recursively applied to 

each of the resulting datasets. If a set contains only examples from the same class, or if no further 

splitting is possible (e.g., because all possible splits have already been exhausted or all remaining splits 

will have the same outcome for all examples), the corresponding node is turned into a leaf node and 

labeled with the respective class. For all other sets, an interior node is added and associated with the 
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best splitting attribute for the corresponding set as described above. Hence, the dataset is successively 

partitioned into non overlapping, smaller datasets until each set only contains examples of the same 

class (a so-called pure node). Eventually, a pure node can always be found via successive partitions 

unless the training data contains two identical but contradictory examples, i.e., examples with the same 

feature values but different class values. (Medium.com) (C., 2010) 

CART Algorithm. 

function TDIDT(S) 

Input: S, a set of labeled examples. 

Tree = new empty node 

if all examples have the same class c 

   or no further splitting is possible 

then  // new leaf 

           LABEL(Tree) = c 

else  // new decision node 

          (A, T) = FINDBESTSPLIT(S) 

   for each test t ∈ T do 

   = all examples that satisfy t 

      = TDIDT(  ) 

ADDEDGE(Tree 
 
       ) 

endfor 

endif 

return Tree 
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2.4.4 Classification metrics 
In practice, a binary classifier *…+ can make two types of errors: it can incorrectly assign an individual 

who defaults to the no default category, or it can incorrectly assign an individual who does not default 

to the default category. It is often of interest to determine which of these two types of errors are being 

made. A confusion matrix *…+ is a convenient way to display this information. (Gareth James, 2013)  

 A false negative is an example of positive class that has been incorrectly classified as negative. 

 A false positive is an example of a negative class that has been incorrectly classified as positive. 

 True negatives are the negative examples that are correctly classified by a classification model. 

 True positives are the positive examples that are correctly classified by a classification model. 

2.4.4.1 Confusion Matrix 
A confusion matrix summarizes the classification performance of a classifier with respect to some test 

data. It is a two-dimensional matrix, indexed in one dimension by the true class of an object and in the 

other by the class that the classifier assigns. 

A special case of the confusion matrix is often utilized with two classes; one designated the positive class 

and the other the negative class. In this context, the four cells of the matrix are designated as true 

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). 

(Sammut C., 2010) 

 

 Predicted Positive Predicted Negative  

Actual 
Positive 

(True) 

True Positive (TP) False Negative (FN) 

Sensitivity or Recall 

TP / (TP + FN) 

 

Actual 
Negative 

(False) 

False Positive (FP) True Negative (TN) 

Specificity 

TN / (TN + FP) 

 

 
Precision 

TP/(TP+FP) 

Negative Predictive 
value 

TN/(TN+FN) 

        

           
 

        

 
     

           
 

Table 1-Confusion Matrix 

2.4.4.2 Sensitivity and Specificity 
Sensitivity and specificity are two measures used together in some domains to measure the predictive 

performance of a classification model or a diagnostic test. For example, to measure the effectiveness of 

a diagnostic test in the medical domain, sensitivity measures the fraction of people with disease (i.e., 

positive examples) who have a positive test result; and specificity measures the fraction of people 

without disease (i.e., negative examples) who have a negative test result. They are defined with 
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reference to a special case of the confusion matrix, with two classes; one designated the positive class 

and the other the negative class, as indicated in Table 1. 

Sensitivity is equivalent to recall, sometimes also is called true positive rate.  

Specificity is sometimes also called true negative rate. 

They are defined as follows: 

                   (       ) 

                   (       ) 

Instead of two measures, they are sometimes combined to provide a single measure of predictive 

performance as follows: 

                                      , (       )    (       ) - 

(C., 2010) 

2.4.4.3 Precision 
Precision is defined as the ratio of true positives (TP) and the total number of positives predicted by a 

model. This is defined with reference to a special case of the confusion matrix, with two classes: one 

designated the positive class and the other the negative class, as indicated in Table 1. Precision can then 

be defined in terms of true positives and false positives (FP) as follows.  

             (     ) 

(C., 2010) 

 

2.4.4.4 F1-Score 
It is often possible to construct baseline models that maximize one metric but not the other. For 

example, a model that declares every record to be the positive class will have a perfect recall, but very 

poor precision. Conversely, a model that assigns a positive class to every test record that matches one of 

the positive records in the training set has very high precision, but low recall. Building a model that 

maximizes both precision and recall is the key challenge of classification algorithms. Precision and recall 

can be summarized into another metric known as the F1 measure. 

   
                  

                
 

     

           
 

In principle,    represents a harmonic mean between recall and precision, i.e. 

   
  

 
      

    
         

 

The harmonic mean of two numbers z and gr tends to be closer to the smaller of the two numbers. 

Hence, a high value of F1-measure ensures that both precision and recall are reasonably high. (Pang 

Ning Tan, 2006) 
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2.4.4.5 Accuracy 
Accuracy refers to a measure of the degree to which the predictions of a model matches the reality 

being modeled. Accuracy is also used as a statistical measure of how well a binary classification test 

correctly identifies or excludes a condition. That is, the accuracy is the proportion of true results (both 

true positives and true negatives) among the total number of cases examined. The formula for 

quantifying binary accuracy is: 

           (     )   (           ) 

(wikipedia.org) (C., 2010) 

2.4.4.6 ROC Curve 
During the past four decades, ROC analysis has become a popular method for evaluating the accuracy of 

medical diagnostic systems. The most desirable property of ROC analysis is that the accuracy indices 

derived from this technique are not distorted by fluctuations caused by the use of arbitrarily chosen 

decision criteria or cut-offs. In other words, the indices of accuracy are not influenced by the decision 

criterion (i.e. the tendency of a reader or observer to choose a specific threshold on the separator 

variable) and/or to consider the prior probability of the "signal". The derived summary measure of 

accuracy, such as the area under the curve (AUC) determines the inherent ability of the test to 

discriminate between the diseased and healthy populations. Using this as a measure of a diagnostic 

performance, one can compare individual tests or judge whether the various combination of tests (e.g. 

combination of imaging techniques or combination of readers) can improve diagnostic accuracy. 

ROC analysis is used in clinical epidemiology to quantify how accurately medical diagnostic tests (or 

systems) can discriminate between two patient states, typically referred to as "diseased" and "non-

diseased". An ROC curve is based on the notion of a "separator" scale, on which results for the diseased 

and non-diseased form a pair of overlapping distributions. The complete separation of the two 

underlying distributions implies a perfectly discriminating test while complete overlap implies no 

discrimination. 

The receiver operating characteristics (ROC) curve is a two-dimensional graph in which the TPR 

represents the y-axis and FPR is the x-axis. The ROC curve has been used to evaluate many systems such 

as diagnostic systems, medical decision-making systems, and machine learning systems. It is used to 

make a balance between the benefits, i.e., true positives, and costs, i.e., false positives. Any classifier 

that has discrete outputs such as decision trees is designed to produce only a class decision, i.e., a 

decision for each testing sample, and hence it generates only one confusion matrix which in turn 

corresponds to one point into the ROC space. However, there are many methods that were introduced 

for generating full ROC curve from a classifier instead of only a single point such as using class 

proportions or using some combinations of scoring and voting. On the other hand, in continuous output 

classifiers such as the Naive Bayes classifier, the output is represented by a numeric value, i.e., score, 

which represents the degree to which a sample belongs to a specific class. The ROC curve is generated 

by changing the threshold on the confidence score; hence, each threshold generates only one point in 

the ROC curve. 

  



49 

 

Figure 22 shows an example of the ROC curve. As shown, 

there are four important points in the ROC curve. The 

point A, in the lower left corner (0,0) represents a 

classifier where there is no positive classification, while 

all negative samples are correctly classified and hence 

TPR=0 and FPR=0 The point C, in the top right corner 

(1,1), represents a classifier where all positive samples 

are correctly classified, while the negative samples are 

misclassified. The point D in the lower right corner (1,0) 

represents a classifier where all positive and negative 

samples are misclassified. The point B in the upper left 

corner (0,1) represents a classifier where all positive and 

negative samples are correctly classified; thus, this point 

represents the perfect classification or the Ideal 

operating point. Figure 22 shows the perfect classification 

performance. It is the green curve which rises vertically 

from (0,0) to (0,1) and then horizontally to (1,1). This 

curve reflects that the classifier perfectly ranked the 

positive samples relative to the negative samples. A point in the ROC space is better than all other points 

that are in the southeast, i.e., the points that have lower TPR, higher FPR, or both. Therefore, any 

classifier appears in the lower right triangle performs worse than the classifier appears in the upper left 

triangle. A point in the ROC space is better than all other points that are in the southeast, i.e., the points 

that have lower TPR, higher FPR, or botθ. Therefore, any classifier appears in the lower right triangle 

performs worse than the classifier appears in the upper left triangle. (Tharwat, 2018) (INDRAYAN, 2011) 

(Hajian-Tilaki, 2013) 

The AUC Statistic 

The most important statistic associated with ROC curves is the area under (ROC) curve or AUC. Since the 

curve is located in the unit square, we have 0 ≤ AUC ≤1. AUC=1 is achieved if the classifier scores every 

positive higher than every negative; AUC= 0 is achieved if every negative is scored higher than every 

positive. AUC=1/2 is obtained in a range of different scenarios, including: (i) the classifier assigns the 

same score to all test examples, whether positive or negative, and thus the ROC curve is the ascending 

diagonal; (ii) the per-class score distributions are similar, which results in an ROC curve close (but not 

identical) to the ascending diagonal; and (iii) the classifier gives half of a particular class the highest 

scores and the other half the lowest scores. Notice that, although a classifier with AUC close to one half 

is often said to perform randomly, there is nothing random in the third classifier: rather, its excellent 

performance on some of the examples is counter balanced by its very poor performance on some others 

(Sometimes a linear rescaling 2·AUC-1 called the Gini coefficient is preferred, which has a related use in 

the assessment of income or wealth distributions using Lorenz curves: a Gini coefficient close to 0 

means that income is approximately evenly distributed. Notice that this Gini coefficient is often called 

the Gini index, but should not be confused with the impurity measure used in decision tree learning). 

AUC has a very useful statistical interpretation: it is the expectation that a (uniformly) randomly drawn 

Figure 2-24 A basic ROC curve showing important 
points, and the optimistic, pessimistic and expected 
ROC segments for equally scored samples. (Tharwat, 
2018) 
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positive receives a higher score than a randomly drawn negative. It is a normalized version of the 

Wilcoxon-Mann-Whitney sum of ranks test, which tests the null hypothesis that two samples of ordinal 

measurements are drawn from a single distribution. The “sum of ranks” epithet refers to one method to 

compute this statistic, which is to assign each test example an integer rank according to decreasing 

score (the highest scoring example gets rank 1, the next gets rank 2, etc.); sum up the ranks of the n- 

negatives, which we want to be high; and subtract ∑   
  (    )

 

  

    to achieve 0 if all negatives are 

ranked first. The AUC statistic is then obtained by normalizing by the number of pairs of one positive and 

one negative,     . There are several other ways to calculate AUC, for instance, we can calculate, for 

each negative, how many positives precede it, which basically is a column wise calculation and yields an 

alternative view of AUC as the expected true positive rate if the operating point is chosen just before a 

randomly drawn negative. (C., 2010) 

2.4.5 Learning Procedure 

2.4.5.1 Algorithm Evaluation 
Learning the parameters of a prediction function and testing it on the same data is a methodological 

mistake: a model that would just repeat the labels of the samples that it has just seen would have a 

perfect score but would fail to predict anything useful on yet-unseen data. This situation is 

called overfitting1. To avoid it, it is common practice when performing a supervised machine learning 

experiment to hold out part of the available data as a test set. Note that the word “experiment” is not 

intended to denote academic use only, because even in commercial settings machine learning usually 

starts out experimentally. Here is a flowchart of typical cross validation workflow in model training.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-25 Cross Validation workflow in model training flowchart 
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When evaluating different settings (“hyperparameters”) for estimators, such as the C setting that must 

be manually set for an SVM, there is still a risk of overfitting1 on the test set because the parameters can 

be tweaked until the estimator performs optimally. This way, knowledge about the test set can “leak” 

into the model and evaluation metrics no longer report on generalization performance. To solve this 

problem, yet another part of the dataset can be held out as a so-called “validation set”: training 

proceeds on the training set, after which evaluation is done on the validation set, and when the 

experiment seems to be successful, final evaluation can be done on the test set. 

However, by partitioning the available data into three sets, we drastically reduce the number of samples 

which can be used for learning the model, and the results can depend on a particular random choice for 

the pair of (train, validation) sets. 

A solution to this problem is a procedure called cross-validation (CV for short). A test set should still be 

held out for final evaluation, but the validation set is no longer needed when doing CV. In the basic 

approach, called k-fold CV, the training set is split into k smaller sets (other approaches are described 

below, but generally follow the same principles). The following procedure is followed for each of 

the k “folds”. (Scikit-learn: Machine Learning in Python, 2011) (API design for machine learning software: 

experiences from the scikit-learn project, 2013) 

2.4.5.1.1 Hold Out Evaluation Dataset 

Holdout evaluation is an approach to out-of-sample evaluation whereby the available data are 

partitioned into a training set and a test set. The test set is thus out-of-sample data and is sometimes 

called the holdout set or holdout data. The purpose of holdout evaluation is to test a model on different 

data to that from which it is learned. This provides less biased estimate of learning performance than in-

sample evaluation. In repeated holdout evaluation, repeated holdout evaluation experiments are 

performed, each time with a different partition of the data, to create a distribution of training and test 

sets with which an algorithm is assessed. (C., 2010) 

                                                             

 

 

 

 

 

 

 

 
1 A model overfits the training data when it describes features that arise from noise or variance in the 
data, rather than the underlying distribution from which the data were drawn. Overfitting usually leads 
to loss of accuracy on out-of-sample data. 
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2.4.5.1.2 K-Fold Cross Validation 

Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data 

sample. The procedure has a single parameter called k that refers to the number of groups that a given 

data sample is to be split into. As such, the procedure is often called k-fold cross-validation. When a 

specific value for k is chosen, it may be used in place of k in the reference to the model, such as k=10 

becoming 10-fold cross-validation. 

Cross-validation is primarily used in applied machine learning to estimate the skill of a machine learning 

model on unseen data. That is, to use a limited sample in order to estimate how the model is expected 

to perform in general when used to make predictions on data not used during the training of the model. 

It is a popular method because it is simple to understand and because it generally results in a less biased 

or less optimistic estimate of the model skill than other methods, such as a simple train/test split. 

The general procedure is as follows: 

1. Shuffle the dataset randomly. 

2. Split the dataset into k groups 

3. For each unique group: 

1. Take the group as a hold out or test data set 

2. Take the remaining groups as a training data set 

3. Fit a model on the training set and evaluate it on the test set 

4. Retain the evaluation score and discard the model 

4. Summarize the skill of the model using the sample of model evaluation scores 

Importantly, each observation in the data sample is assigned to an individual group and stays in that 

group for the duration of the procedure. This means that each sample is given the opportunity to be 

used in the hold out set 1 time and used to train the model k-1 times. 

This approach involves randomly dividing the set of observations into k groups, or folds, of 

approximately equal size. The first fold is treated as a validation set, and the method is fit on the 

remaining k − 1 folds. (An Introduction to Statistical Learning, 2013) 

It is also important that any preparation of the data prior to fitting the model occur on the CV-assigned 

training dataset within the loop rather than on the broader data set. This also applies to any tuning of 

hyperparameters. A failure to perform these operations within the loop may result in data leakage and 

an optimistic estimate of the model skill. 

Despite the best efforts of statistical methodologists, users frequently invalidate their results by 

inadvertently peeking at the test data. (Artificial Intelligence: A Modern Approach (3rd Edition), 2009.) 

The results of a k-fold cross-validation run are often summarized with the mean of the model skill 

scores. It is also good practice to include a measure of the variance of the skill scores, such as the 

standard deviation or standard error. 
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Configuration of k 

The k value must be chosen carefully for data sample. 

A poorly chosen value for k may result in a mis-representative idea of the skill of the model, such as a 

score with a high variance (that may change a lot based on the data used to fit the model), or a high 

bias, (such as an overestimate of the skill of the model). 

Three common tactics for choosing a value for k are as follows: 

 Representative: The value for k is chosen such that each train/test group of data samples is 

large enough to be statistically representative of the broader dataset. 

 k=10: The value for k is fixed to 10, a value that has been found through experimentation to 

generally result in a model skill estimate with low bias a modest variance. 

 k=n: The value for k is fixed to n, where n is the size of the dataset to give each test sample an 

opportunity to be used in the hold out dataset. This approach is called leave-one-out cross-

validation. 

The choice of k is usually 5 or 10, but there is no formal rule. As k gets larger, the difference in size 

between the training set and the resampling subsets gets smaller. As this difference decreases, the bias 

of the technique becomes smaller (Applied Predictive Modeling, 2013) 

Figure 2-26 5-Fold Cross Validation 
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A value of k=10 is very common in the field of applied machine learning, and is recommend if you are 

struggling to choose a value for your dataset.To summarize, there is a bias-variance trade-off associated 

with the choice of k in k-fold cross-validation. Typically, given these considerations, one performs k-fold 

cross-validation using k = 5 or k = 10, as these values have been shown empirically to yield test error rate 

estimates that suffer neither from excessively high bias nor from very high variance. (An Introduction to 

Statistical Learning, 2013)If a value for k is chosen that does not evenly split the data sample, then one 

group will contain a remainder of the examples. It is preferable to split the data sample into k groups 

with the same number of samples, such that the sample of model skill scores are all equivalent. 

(Jason, 2018) 

2.4.5.2 Data Transformation 
It is frequently necessary to transform data from one representation to another. There are many 

reasons for changing representations: 

 To generate symmetric distributions instead of the original skewed distributions. 

 Transformation improves visualization of data that might be tightly clustered relative to a few 

outliers. 

 Data are transformed to achieve better interpretability. 

 Transformations are often used to improve the compatibility of the data with assumptions 

underlying a modeling process, for example, to linearize (straighten) the relation between two 

variables whose relationship is nonlinear. Some of the data mining algorithms require the 

relationship between data to be linear. 

Different types of transformation will be referred whereby each data point    is replaced with a 

transformed value     (  ), where   f is the transformation function. Many techniques are applied 

for data transformation. Each technique has its own purpose and dependency on the nature of data. 

Some of the major transformations are discussed below. (C., 2010) 

2.4.5.2.1 Normalization 

Min-max normalization projects the original range of data onto a new range. Very common 

normalization intervals are [0, 1] and [-1, 1]. This normalization method is very useful when we apply a 

machine learning or data mining approach that utilizes distance. For example, in k-nearest neighbor 

methods, using un-normalized values might cause attributes whose values have greater magnitudes to 

dominate over other attributes. Therefore, normalization aims to standardize magnitudes across 

variables. A useful application for min-max scaling is image processing where pixel intensities have to be 

normalized to fit within a certain range (i.e., 0–255 for the RGB color range). Also, typical neural network 

algorithms (ANN) require data that is on a 0–1 scale. Normalization provides the same range of values 

for each of the inputs to the model. 
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2.4.5.2.2 Standardization  

Z-score normalization (also referred to as standardization) is a normalization method that transforms 

not only the data magnitude but also the dispersion. Some data mining methods are based on the 

assumption that data follow a certain distribution. For example, methods such as logistic regression, 

SVM, and neural network when using gradient descent/ascent optimization methods assume data 

follow a Gaussian distribution. Otherwise, the approaches will be ill conditioned and might not 

guarantee a stable convergence of weight and biases. Other approaches such as linear discriminant 

analysis (LDA), principal component analysis (PCA), and kernel principal component analysis require 

features to be on the same scale to find directions that maximize the variance (under the constraints 

that those directions/eigenvectors/principal components are orthogonal). Z-score normalization 

overcomes the problem of variables with different units as it transforms variables so that they are 

centered on 0 with a standard deviation of 1. 

2.4.5.3 Dimensionality Reduction 
Every data object in a computer is represented and stored as a set of features, for example, color, price, 

dimensions, and so on. Instead of the term features, one can interchangeably use the term dimensions 

because an object with n features can also be represented as a multidimensional point in an n-

dimensional space. Therefore, dimensionality reduction (dR) refers to the process of mapping an n-

dimensional point into a lower k-dimensional space. This operation reduces the size for representing 

and storing an object or a dataset in general; hence, dimensionality reduction can be seen as a method 

for data compression. In addition, this process promotes data visualization, particularly when objects are 

mapped onto two or three dimensions. Finally, in the context of classification, dimensionality reduction 

can be a useful tool for (a) making tractable classification schemes that are superlinear with respect to 

dimensionality tractable, (b) reducing the variance of classifiers that are plagued by large variance in 

higher dimensionalities, and (c) removing the noise that may be present, thus boosting classification 

accuracy. 

Genomic Microarray Data is usually short and fat data – high dimensionality with a small sample size, 

which poses a great challenge for computational techniques. Their dimensionality can be up to tens of 

thousands of genes, while their sample sizes can only be several hundreds. Furthermore, additional 

experimental complications like noise and variability render the analysis of microarray data an exciting 

domain. Because of these issues, various feature selection algorithms are adopted to reduce the 

dimensionality and remove noise in microarray data analysis. 

There are many techniques for dimensionality reduction. The objective of these techniques is to 

appropriately select the k dimensions (and also the number k) so that the important characteristics of 

the original object are retained. For example, when performing dimensionality reduction on an image, 

e.g., using a wavelet based technique, the desirable outcome is that the difference between the original 

and the final images is almost imperceptible. When performing dimensionality reduction not on a single 

object, but on a dataset, an additional requirement is that the relationship between the objects in the 

original space be preserved. This is particularly important for reasons of classification and visualization in 

the new space.  
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Two important categories of dimensionality reduction techniques exist: 

• Feature selection techniques, in which only the most important or descriptive features/dimensions 

are retained, and the rest are discarded. More details on such techniques can be found under the entry 

Feature Selection 

• Feature projection methodologies, which project the existing features onto different dimensions or 

axes. The aim here is, again, to find those new data axes that retain the dataset structure and preserve 

its variance as closely as possible 

2.4.5.3.1 Feature Selection 

Feature selection, as a dimensionality reduction technique, aims to choose a small subset of the relevant 

features from the original ones by removing irrelevant, redundant, or noisy features. Feature selection 

usually leads to better learning performance, i.e., higher learning accuracy, lower computational cost, 

and better model interpretability. Generally speaking, irrelevant features are features that cannot help 

discriminate samples from different classes (supervised) or clusters (unsupervised). Removing irrelevant 

features will not affect learning performance. In fact, the removal of irrelevant features may help learn a 

better model, as irrelevant features may confuse the learning system and cause memory and 

computation inefficiency. 

A redundant feature is a feature that implies the copresence of another feature. Individually, each 

redundant feature is relevant, but removal of one of them will not affect the learning performance. A 

noisy feature is a type of relevant feature. However, due to the noise introduced during the data 

collection process or because of the nature of this feature, a noisy feature may not be so relevant to the 

learning or mining task. It can discriminate a part of the points from the two classes and may confuse 

the learning model for the overlapping points (Noisy features are very subtle. One feature may be a 

noisy feature itself. However, in some cases, when two or more noisy features can complement each 

other to distinguish samples from different classes, they may be selected together to benefit the 

learning model.) 

In many real-world applications, such as data mining, machine learning, computer vision, and 

bioinformatics, we need to deal with high dimensional data. In the past 30 years, the dimensionality of 

the data involved in these areas has increased explosively. The huge number of high-dimensional data 

has presented serious challenges to existing learning methods. First, due to the large number of features 

and relatively small number of training samples, a learning model tends to overfit, and their learning 

performance degenerates. Data with high dimensionality not only degenerates many algorithms’ 

performance due to the curse of dimensionality and the existence of irrelevant, redundant, and noisy 

dimensions, it also significantly increases the time and memory requirement of the algorithms. Second, 

storing and processing such amounts of high-dimensional data become a challenge. Dimensionality 

reduction is one of the most popular techniques to reduce dimensionality and can be categorized into 

feature extraction and feature selection. Both feature extraction and feature selection are capable of 

improving performance, lowering computational complexity, building better generalization models, and 

decreasing required storage. Feature extraction maps the original feature space to a new feature space 

with lower dimensionality by combining the original feature space. Therefore, further analysis of new 

features is problematic since there is no physical meaning for the transformed features obtained from 
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feature extraction. In contrast, feature selection selects a subset of features from the original feature 

set. Therefore, feature selection keeps the actual meaning of each selected feature, which makes it 

superior in terms of feature readability and interpretability. 

Structure of the Learning System 

From the perspective of label availability, feature selection methods can be broadly classified into 

supervised, unsupervised, and semi-supervised methods. In terms of different selection strategies, 

feature selection can be categorized as filter, wrapper, and embedded models. 

 Supervised feature selection is usually used for classification tasks. The availability of the class 

labels allows supervised feature selection algorithms to effectively select discriminative features 

to distinguish samples from different classes. A general framework of supervised feature 

selection is shown in Figure 25. Features are first generated from training data. Instead of using 

all the data to train the supervised learning model, supervised feature selection will first select a 

subset of features and then process the data with the selected features to the learning model. 

The feature selection phase will use the label information and the characteristics of the data, 

such as information gain or Gini index, to select relevant features. The final selected features, as 

well as with the label information, are used to train a classifier, which can be used for 

prediction. 

 Unsupervised feature selection is usually used for clustering tasks. A general framework of 

unsupervised feature selection is very similar to supervised feature selection, except that there’s 

no label information involved in the feature selection phase and the model learning phase. 

Without label information to define feature relevance, unsupervised feature selection relies on 

another alternative criterion during the feature selection phase. One commonly used criterion 

chooses features that can best preserve the manifold structure of the original data. Another 

frequently used method is to seek cluster indicators through clustering algorithms and then 

transform the unsupervised feature selection into a supervised framework. There are two 

different ways to use this method. One way is to seek cluster indicators and simultaneously 

perform the supervised feature selection within one unified framework. The other way is to first 

seek cluster indicators, then to perform feature selection to remove or select certain features, 

and finally to repeat these two steps iteratively until certain criterion is met. In addition, certain 

supervised feature selection criterion can still be used with some modification. 

 Semi-supervised feature selection is usually used when a small portion of the data is labeled. 

When such data is given to perform feature selection, both supervised and unsupervised feature 

selection might not be the best choice. Supervised feature selection might not be able to select 

relevant features because the labeled data is insufficient to represent the distribution of the 

features. Unsupervised feature selection will not use the label information, while label 

information can give some discriminative information to select relevant features. Semi-

supervised feature selection, which takes advantage of both labeled data and unlabeled data, is 

a better choice to handle partially labeled data. The general framework of semi-supervised 

feature selection is the same as that of supervised feature selection, except that data is partially 

labeled. Most of the existing semi-supervised feature selection algorithms rely on the 

construction of the similarity matrix and select features that best fit the similarity matrix. Both 
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the label information and the similarity measure of the labeled and unlabeled data are used to 

construct the similarity matrix so that label information can provide discriminative information 

to select relevant features, while unlabeled data provide complementary information. 

 Filter Models For filter models, features are selected based on the characteristics of the data 

without utilizing learning algorithms. This approach is very efficient. However, it doesn’t 

consider the bias and heuristics of the learning algorithms. Thus, it may miss features that are 

relevant for the target learning algorithm. A filter algorithm usually consists of two steps. In the 

first step, features are ranked based on certain criterion. In the second step, features with the 

highest rankings are chosen. A lot of ranking criteria, which measures different characteristics of 

the features, are proposed: the ability to effectively separate samples from different classes by 

considering between class variance and within class variance, the dependence between the 

feature and the class label, the correlation between feature class and feature-feature, the ability 

to preserve the manifold structure, the mutual information between the features, and so on. 

 Wrapper Models The major disadvantage of the filter approach is that it totally ignores the 

effects of the selected feature subset on the performance of the clustering or classification 

algorithm. The optimal feature subset should depend on the specific biases and heuristics of the 

learning algorithms. Based on this assumption, wrapper models use a specific learning algorithm 

to evaluate the quality of the selected features. The feature search component will produce a 

set of features based on certain search strategies. The feature evaluation component will then 

use the predefined learning algorithm to evaluate the performance, which will be returned to 

the feature search component for the next iteration of feature subset selection. The feature set 

with the best performance will be chosen as the final set. The search space for m features is 

 (  ). To avoid exhaustive search, a wide range of search strategies can be used, including hill-

climbing, best-first, branch-and-bound, and genetic algorithms. 

 Embedded Models Filter models are computationally efficient, but totally ignore the biases of 

the learning algorithm. Compared with filter models, wrapper models obtain better predictive 

accuracy estimates, since they take into account the biases of the learning algorithms. However, 

wrapper models are very computationally expensive. Embedded models are a tradeoff between 

the two models by embedding the feature selection into the model construction. Thus, 

embedded models take advantage of both filter models and wrapper models: (1) they are far 

less computationally intensive than wrapper methods, since they don’t need to run the learning 

models many times to evaluate the features, and (2) they include the interaction with the 

learning model. The biggest difference between wrapper models and embedded models is that 

wrapper models first train learning models using the candidate features and then perform 

feature selection by evaluating features using the learning model, while embedded models 

select features during the process of model construction to perform feature selection without 

further evaluation of the features. (C., 2010) 
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2.4.5.3.2 Feature Projection 

Feature projection techniques typically exploit the correlations between the various data dimensions, 

with the goal of creating dimensions/axes that are uncorrelated and sufficiently describe the data. One 

of the most popular dimensionality reduction techniques is principal component analysis or PCA. It 

attempts to discover those axes (or components) onto which the data can be projected while 

maintaining the original correlation between the dimensions. 

PCA uses the Euclidean distance as the measure of dissimilarity among objects. The first principal 

component (or axis) indicates the direction of maximum variance in the original dimensions. The second 

component shows the direction of the next highest variance 

Figure 2-28 Feature selection categories 

Figure 2-27 Feature Selection. A general framework of supervised feature selection. 
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2.4.5.3.2.1 PCA 

PCA is defined as an orthogonal linear transformation with the property that it transforms the data into 

a new coordinate system, such that the projection of the data on the first coordinate has the greatest 

variance among all projections on a line, the projection of the data on the second coordinate has the 

second greatest variance, and so on. Let X denote the data matrix, with each point written as a column 

vector in X, and modified so that X has empirical mean zero (i.e., the mean vector is subtracted from 

each data point). Then the eigenvectors of the matrix XX T are the coordinates of the new system. To 

reduce the dimensionality, keep only the eigenvectors corresponding to the largest few eigenvalues.  

Principal components analysis (PCA) produces a low-dimensional representation of a data set. It finds a 

sequence of linear combinations of the variables that have maximal variance and are mutually 

uncorrelated. Apart from producing derived variables for use in supervised learning problems, PCA also 

serves as a tool for data visualization. (Diego Galar, 2017) (C., 2010) 

Sort Definitions for PCA steps 

2.4.5.3.2.1.1 Variance 

It is a measure of the variability or it simply measures how spread the data set is. Mathematically, it is 

the average squared deviation from the mean score. The following formula is used to compute variance  

   ( ). 

   ( )   
∑(    ̅) 

 
 

2.4.5.3.2.1.2 Covariance 

Covariance: It is a measure of the extent to which corresponding elements from two sets of ordered 

data move in the same direction. Formula is shown denoted by    (   ) as the covariance of x and y. 
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Here,    is the value of   in     dimension.   bar and   bar denote the corresponding mean values. 

One way to observe the covariance is how interrelated two data sets are.  

 

 

 

 

 

 

 

 

 

Figure 2-29 Covariance 

Positive covariance means X and Y are positively related i.e. as X increases Y also increases. Negative covariance 
depicts the exact opposite relation. However zero covariance means X and Y are not related. 
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Since we try to find the patterns among the data sets so we want the data to be spread out across each 

dimension. Also, we want the dimensions to be independent. Such that if data has high covariance when 

represented in some n number of dimensions then we replace those dimensions with linear 

combination of those n dimensions. Now that data will only be dependent on linear combination of 

those related n dimensions. (related = have high covariance) 

PCA finds a new set of dimensions (or a set of basis of views) such that all the dimensions are orthogonal 

(and hence linearly independent) and ranked according to the variance of data along them. It means 

more important principle axis occurs first. (more important = more variance/more spread out data) 

How does PCA work: 

1. Calculate the covariance matrix X of data points. 

2. Calculate eigen vectors and corresponding eigen values. 

3. Sort the eigen vectors according to their eigen values in decreasing order. 

4. Choose first k eigen vectors and that will be the new k dimensions. 

5. Transform the original n dimensional data points into k dimensions. 
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2.4.5.3.2.1.3 Eigenvalues-Eigenvectors 

Eigenvalues/vectors are instrumental to understanding electrical circuits, mechanical systems, ecology 

and even Google's PageRank algorithm. To begin, let   be a vector (shown as a point) and   be a matrix 

with columns    and    (shown as arrows). If we multiply   by  , then    sends   to a new vector   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If a line can be drew through the three points (0,0),   and    , then     is just   multiplied by a number 

 ; that is,        . In this case,   is called an eigenvalue and   an eigenvector. For example, here (1,2) 

is an eigvector and 5 an eigenvalue. 

 

 

 

Below, change the columns of   and drag   to be an eigenvector. Note three facts: First, every point on 

the same line as an eigenvector is an eigenvector. Those lines are eigenspaces, and each has an 

associated eigenvalue. Second, if you place   on an eigenspace (either    or   ) with associated 

eigenvalue    , then    is closer to (0,0) than v  ; but when    , it's farther. Third, both 

eigenspaces depend on both columns of  : it is not as though     only affects   . 

Figure 2-30 EigenValues-EigenVectors example 
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,                 -  ,           -  ,          -  ,           - 

2.4.5.3.2.1.4 Covariance Matrix 

As variance and covariance are defined, we shall look into what a Covariance matrix is. 

[
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A covariance matrix of some data set in 4 dimensions a,b,c,d. 

   : variance along dimension a 

     : Covariance along dimension a and b 

 

If we have a matrix X of m*n dimension such that it holds n data points of m dimensions, then 

covariance matrix can be calculated as 

   
 

   
(   ̅)(   ̅)                           

It is important to note that the covariance matrix contains; variance of dimensions as the main diagonal 

elements, covariance of dimensions as the off diagonal elements. Also, covariance matrix is symmetric. 

As, it’s mentioned earlier data need to be spread out i.e. it should have high variance along dimensions. 

Also we want to remove correlated dimensions i.e. covariance among the dimensions should be zero 

(they should be linearly independent). Therefore, our covariance matrix should have; large numbers as 

the main diagonal elements, zero values as the off diagonal elements. We call it a diagonal matrix. So, 

the original data have to be transformed to points such that their covariance is a diagonal matrix. The 

process of transforming a matrix to diagonal matrix is called diagonalization.  

 

This defines the goal of PCA: 

1. Find linearly independent dimensions (or basis of views) which can losslessly represent the data 

points. 

2. Those newly found dimensions should allow to predict/reconstruct the original dimensions. The 

reconstruction/projection error should be minimized. 
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Projection error: Suppose we have to transform a 2 dimensional representation of data points to a one 

dimensional representation. So we will basically try to find a straight line and project data points on 

them. (A straight line is one dimensional). There are many possibilities to select the straight line, two of 

them are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Magenta line will be our new dimension. The red lines (connecting the projection of blue points on 

magenta line) i.e. the perpendicular distance of each data point from the straight line is the projection 

error. Sum of the error of all data points will be the total projection error. Our new data points will be 

the projections (red points) of those original blue data points. As we can see we have transformed 2 

dimensional data points to one dimensional data points by projection them on 1 dimensional space i.e. a 

straight line. That magenta straight line is called principal axis. Since we are projecting to a single 

dimension, we have only one principal axis. Clearly, Second choice of straight line is better because:  The 

projection error is less than that in the first case, newly projected red points are more widely spread out 

than the first case. i.e. more variance. The above mentioned two points are related i.e. if we minimize 

the reconstruction error, the variance will increase. 

 

  

Figure 2-31 PCA. Principal Axis. 
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Now the original data points need to be transformed such that the covariance matrix of transformed 

data points is a diagonal matrix.  

 

Here’s the trick: If we find the matrix of eigen vectors of    and use that as   (  is used for transforming 

  to  , see the image above), then    (covariance of transformed points) will be a diagonal matrix. 

Hence   will be the set of new/transformed data points. Now, if we want to transform points to   

dimensions then we will select first k eigen vectors of the matrix    (sorted decreasingly according to 

eigen values) and form a matrix with them and use them as  .  

So, for m dimensional original n data points then 

             

        (   )(   )    (   ) 

Hence, our new transformed matrix has n data points having k dimensions. 

(Kumar, 2018) 
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3.  DATA DESCRIPTION & S/W 
IMPLEMENTATION 

3.1 DATA PLATFORM 
The National Center for Biotechnology Information (NCBI) is part of the United States National Library 

of Medicine (NLM), a branch of the National Institutes of Health (NIH). The NCBI houses a series of 

databases relevant to biotechnology and biomedicine and is an important resource for bioinformatics 

tools and services. Major databases include GenBank for DNA sequences and PubMed, a bibliographic 

database for the biomedical literature. Other databases include the NCBI Epigenomics database. All 

these databases are available online through the Entrez search engine. 

The Gene Expression Omnibus (GEO) is a public repository supported by the American National Center 

for Biotechnology Information (NCBI) at the American National Library of Medicine (NLM) that accepts 

raw and processed data with written descriptions of experimental design, sample attributes, and 

methodology for studies of high-throughput gene expression and genomics, also archives and freely 

distributes comprehensive sets of microarray, next-generation sequencing, and other forms of high-

throughput functional genomic data submitted by the scientific community. In addition to data storage, 

a collection of web-based interfaces and applications are available to help users query and download 

the studies and gene expression patterns stored in GEO. 

GEO was designed around the common features of most of the high-throughput and parallel molecular 

abundance-measuring technologies in use today. These include data generated from microarray and 

high-throughput sequence technologies, for example:  

 Gene expression profiling by microarray or next-generation sequencing 

 Non-coding RNA profiling by microarray or next-generation sequencing  

 Chromatin immunoprecipitation (ChIP) profiling by microarray or next-generation sequencing  

 Genome methylation profiling by microarray or next-generation sequencing 

 High-throughput RT-PCR  

 Genome variation profiling by array (arrayCGH)  

 SNP arrays   

 Serial Analysis of Gene Expression (SAGE) 

 Protein arrays  

The GEO database has a flexible and open design that is responsive to developing trends. 

GEO requires raw data, processed data and metadata. Raw data facilitates the unambiguous 

interpretation of the data and potential verification of conclusions. For microarray data, raw data may 

be supplied either within the Sample record data tables or as external supplementary data files, e.g., 

Affymetrix CEL. For high-throughput sequencing, GEO brokers the complete set of raw data files, e.g., 

FASTQ, to the SRA database on your behalf. 

https://en.wikipedia.org/wiki/GenBank
https://en.wikipedia.org/wiki/NCBI_Epigenomics
https://en.wikipedia.org/wiki/Entrez
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3.1.1 DATA TYPES 
Processed sequence data files: GEO hosts processed sequence data files, which are linked at the bottom 

of Sample and/or Series records as supplementary files. Requirements for processed data files are not 

yet fully standardized and will depend on the nature of the study, but data typically include genome 

tracks or expression counts.  

Raw sequence data files: Raw data are loaded to NCBI's Sequence Read Archive (SRA) database. Use the 

SRA Run Selector to list and select Runs to be downloaded or analyzed with the SRA Toolkit.  

GEO DataSets is a study-level database which users can search for studies relevant to their interests. The 

database stores descriptions of all original submitter-supplied records, as well as curated DataSets. 

Geo Database Organization 

Platform 

Platform records are supplied by submitters 

A Platform record is composed of a summary description of the array or sequencer 
and, for array-based Platforms, a data table defining the array template.Each 
Platform record is assigned a unique and stable GEO accession number (GPLxxx). A 
Platform may reference many Samples that have been submitted by multiple 
submitters. 

Sample 

Sample records are supplied by submitters 

A Sample record describes the conditions under which an individual Sample was 
handled, the manipulations it underwent, and the abundance measurement of each 
element derived from it. Each Sample record is assigned a unique and stable GEO 
accession number (GSMxxx). A Sample entity must reference only one Platform and 
may be included in multiple Series 

Series 

Series records are supplied by submitters 

A Series record links together a group of related Samples and provides a focal point 
and description of the whole study. Series records may also contain tables describing 
extracted data, summary conclusions, or analyses. Each Series record is assigned a 
unique and stable GEO accession number (GSExxx). 

DataSet 

DataSet records are assembled by GEO curators 

As explained above, A GEO Series record is an original submitter-supplied record that 
summarizes an experiment. These data are reassembled by GEO staff into GEO 
Dataset records (GDSxxx). 

A DataSet represents a curated collection of biologically and statistically comparable 
GEO Samples and forms the basis of GEO's suite of data display and analysis tools. 

Samples within a DataSet refer to the same Platform, that is, they share a common set 
of array elements. Value measurements for each Sample within a DataSet are 
assumed to be calculated in an equivalent manner, that is, considerations such as 
background processing and normalization are consistent across the DataSet. 
Information reflecting experimental factors is provided through DataSet subsets. 

Both Series and DataSets are searchable using the GEO DataSets interface, but only 
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DataSets form the basis of GEO's advanced data display and analysis tools including 
gene expression profile charts and DataSet clusters. Not all submitted data are 
suitable for DataSet assembly and we are experiencing a backlog in DataSet creation, 
so not all Series have corresponding DataSet record(s). 

Profile 

Profiles are derived from DataSets 

A Profile consists of the expression measurements for an individual gene across all 
Samples in a DataSet. Profiles can be searched using the GEO Profiles interface. 

3.1.2 Download GEO data 
All GEO data2 can be downloaded in various formats using a variety of mechanisms. A popular method 

for downloading data for specific studies is to download directly from Series pages. At the bottom of 

each Series page, there is a banner with the text “Download family” under which there are links for 

downloading the data for that Series in 3 different formats: 

1. SOFT formatted family file(s) is a link for downloading all of the Series, Sample and Platform data in 

a single SOFT formatted file. SOFT is an acronym that stands for “Simple Omnibus Format in Text” 

and formats the data as line-based, plain text. 

2. MINiML formatted family file(s) is a link for downloading all of the Series, Sample, and Platform 

data in MiNIML formatted files. MiNIML is an acronym that stands for MIAME Notation in Markup 

Language, and formats the data as XML with separate data tables. MINiML is essentially an XML 

rendering of SOFT format. 

3. Series Matrix File(s) is a link for downloading a tab-delimited value-matrix table generated from the 

“VALUE” column of each Sample record, headed by Sample and Series metadata. This format is 

convenient for uploading into data programs such as Microsoft Excel or R. 

The Series page also contains links to any supplementary files associated with the Series and a link to a 

tar archive of all supplementary files provided with the Samples, typically raw data files (see Note 10). If 

only a subset of the supplementary files are required there is an option to customize the set of files in 

the tar archive by clicking the word “custom” on same line as “GSExxx_RAW.tar”. Clicking the “custom” 

button expands the page to include a list of all Sample supplementary files in the Series with check 

boxes to select the desired files. Once the boxes next to the needed files have been selected, pressing 

“Download” initiates the download of a tar archive containing only the selected files. Additional options 

                                                             

 

 

 

 

 

 

 

 
2 https://www.ncbi.nlm.nih.gov/sites/GDSbrowser/ 
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for downloading data, including downloading specific portions of records, or programmatic approaches 

are described at http://www.ncbi.nlm.nih.gov/geo/info/download.html. (Barrett, 2016)  

http://www.ncbi.nlm.nih.gov/geo/info/download.html
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3.2 DATASETS 

Sample type RNA 

Extracted 
molecule 

total RNA 

Extraction 
protocol 

 RNA extraction was performed as Affymetrix GeneChip expression technical 
manual (Affymetrix, Inc., Santa Clara, CA). Briefly, total RNA samples were 
extracted, followed by measurement of the A2260/a280 ratio with at least 1.8 
for pure RNA. Quality of the RNA was checked by an Agilent 2100 
Bioanalyzer.  The Bioanalyzer gel profile exhibited a 28S band that is 2 times 
more intense than 18S ribosomal RNA. The quality of RNA was assessed by 
agarose gel electrophoresis. 

 Total RNA was isolated from laser-capture microdissected tissue using the 
Picopure RNA isolation kit from Arcturus. 

Label biotin 

Label 
protocol 

 Labeling was performed according to Affymetrix Gene Chip technical manual 

 TRIzol extraction 

 A dual-round amplification procedure was performed on 100 nanograms total 
RNAusing the MessageAMP aRNA kit from Ambion. In the second round, biotin-
labeled cRNA was generated from the double-stranded cDNA template using a 
nucleotide mix that contained biotinylated CTP and UTP (Enzo RNA Transcript 
Labeling Kit; Enzo Diagnostics, Farmingdale, NY). The biotinylated cRNA was 
purified using RNeasy affinity columns (Qiagen, Valencia, MD). 

 Target was labeled with Enzo BioArray High Yield RNA Trascript Labeling Kit 
(Enzo Life TEchnologies, Farmingdale, NY) according to manufacturer's protocol. 

Hybridization 
protocol 

 The targets for Affymetrix DNA microarray analysis were prepared according to 
the manufacturer’s instructions. Biotin-labeled cRNA, produced by in vitro 
transcription, was fragmented and hybridized to Affymetrix GeneChip Human 
Genome U133 Plus 2.0 Arrays at 45°C for 16 hr and then washed and stained 
using the GeneChip Fluidics. 

 For each GeneChip, 20 micrograms of the labeled product was fragmented in 40 
mM Tris-acetate, pH 8.1, 100mM KOAc, 30mM MgOAc, for 35 minutes at 94 
degrees-Celsius, to an average size of 35 to 200 bases. 15 micrograms of this 
fragmented, biotinylated cRNA, along with hybridization controls supplied by 
the manufacturer (Affymetrix), were hybridized to the arrays for 16 hours at 45 
degrees-Celsius and 60 rpm. Arrays were washed and stained according to the 
standard Antibody Amplification for Eukaryotic Targets protocol (Affymetrix) 

Scan 
protocol 

 The arrays were scanned by a GeneArray Scanner and patterns of hybridization 
detected as light emitted from the fluorescent reporter groups incorporated 
into the target and hybridized to oligonucleotide probes. 

 The stained GeneChip arrays were scanned at 488 nm using an Affymetrix Gene 
Chip Scanner 3000 (Affymetrix, Santa Clara, CA). 

Data The data were analyzed with Agilent Gene Spring GX 7.3 version using 
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Processing Affymetrix default analysis settings and GC-RMA as normalization method. 
• .DAT files were generated using GCOS 1.2.1 software (Affymetrix). CEL files 

were generated using MAS 5.0 softare (Affymetrix) with target signals for 
probe sets scaled to 500. Log2 expression values for individual probe sets 
were generated from .CEL files via robust multi-array average (gcRMA). 

Table 2 Data Information from https://www.ncbi.nlm.nih.gov/geo/ 

 

 

 

For the purposes of this study, 4 datasets have been obtained from Gene Expression Omnibus (GEO) 

database. The data which were chosen contain both healthy and cancer samples for the classification. 

1. GDS4102-Pancreatic Tumor and Normal tissue samples.  

Analysis of tumor tissue and normal tissue in pancreatic cancer samples. The fresh frozen 

samples were obtained during surgical procedures. The cell types include: bone marrow, 

peripheral blood, bone marrow CD34plus and PBSC CD34plus. This experiment consists of 36 

tumor samples and 16 normal samples. A total of 52 samples, with 54,613 gene expression 

levels for each sample, which run on Platform GPL96 Affymetrix [Human Genome U133 Plus 2.0 

Array] GeneChip® which Technology type is in situ oligonucleotide.  

2. GDS3233-Cervical cancer tumorigenesis 

Analysis of cervical cancer (CC) primary tumors and cell lines. A total of 52 samples were   

included in this study, which include 33 primary tumors, 9 cell lines, and 24 normal cervical 

epithelium with 14,062 gene expression levels for each sample. The gene expression profiles in 

cervical cancer run on Platform GPL96 Affymetrix [Human Genome U133A Array] GeneChip® 

which Technology type is in situ oligonucleotide. 

3. GDS3139-Breast cancer: histologically normal breast epithelium 

Analysis of histologically normal breast epithelia of breast cancer patients. Results provide 

insight into the molecular abnormalities in normal appearing breast epithelium in breast cancer 

and the roles these abnormalities play in carcinogenesis. 29 samples from histologically normal 

microdissected breast epithelium are included in this series. 14 samples are from epithelium 

adjacent to a breast tumor, 15 samples were obtained from patients undergoing reduction 

mammoplasty without apparent breast cancer. Each sample has 22,283 gene expression levels. 

The gene expression data run on Platform GPL96 Affymetrix [Human Genome U133A Array] 

GeneChip® which Technology type is in situ oligonucleotide. 

4. GDS3057-Acute myeloid leukemia 

Leukemic blasts from 26 acute myeloid leukemia (AML) patients with normal hematopoietic 

cells at a variety of different stages of maturation from 38 healthy donors. Results provide 

insight into the possible clinical significance of those genes with AML-specific expression 

changes. Each sample has 22,283 gene expression levels run on Platform GPL96 Affymetrix 

[Human Genome U133A Array] GeneChip® which Technology type is in situ oligonucleotide. 

 

 

https://www.ncbi.nlm.nih.gov/geo/
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Cancer 
Type 

Dataset Reference 
Series 

Platform Total 

Samples 

Healthy 

Samples 

Cancer 

Samples 

Features 

Pancreatic GDS4102 GSE16515 GPL570 52 16 36 54,613 

Cervical GDS3233 GSE9750 GPL96 52 24 28 14,062 

Breast GDS3139 GSE9574 GPL96 29 15 14 22,283 

Acute 
Myeloid 
Leukemia 

GDS3057 GSE9476 GPL96 64 38 26 22,283 

Table 3 Overview of Study Datasets 

 

In our study, we interest in supervised classification of different cancer cases. In order to do so, we have 

assigned the class, in which each sample belongs to, as a separate binary feature with name “class”. So 

we created labels for each sample depending on its disease state. The patient state is declared in the 

annotation note following the .SOFT file we downloaded. For healthy donors the “class” value is zero (0) 

and for cancer patients the “class” value is one (1). This process has been done in Microsoft Excel, where 

we can open in tabular view files of big data (like .SOFT files) with thousands of features and transform 

them into .csv files, which are the most common and manageable dataset file for machine learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16515
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9750
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9574
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9476
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
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Figure 3-1 A tabular view of gene expression levels for GDS4102-Pancreatic tissue samples 

The first column titled “ID_REF” contains the gene symbols, our features. As we can see, the last one is the label for each sample with the name class. The 
first row contains the Donors’ number. 

The GDS4102 data shape is 52 x 54614 (Samples x Features) 
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3.3 SOFTWARE 

3.3.1 Python 
There are a lot of choices in order to apply machine learning techniques like Matlab and R. For our 

study, we chose the programming language Python (version 3.7). Python is an interpreted, high-level, 

general-purpose programming language. Created by Guido van Rossum and first released in 1991, 

Python's design philosophy emphasizes code readability with its notable use of significant whitespace. 

Its language constructs and object-oriented approach aim to help programmers write clear, logical code 

for small and large-scale projects. Python is dynamically typed and garbage-collected. It supports 

multiple programming paradigms, including procedural, object-oriented, and functional programming. 

Python is often described as a "batteries included" language due to its comprehensive standard library. 

Python is developed under an OSI-approved open source license, making it freely usable and 

distributable, even for commercial use. Python's license is administered by the Python Software 

Foundation.  

The open-source Anaconda Distribution is the easiest way to perform Python/R data science and 

machine learning on Linux, Windows, and Mac OS X. Directly from the platform and without involving 

DevOps, data scientists can develop and deploy AI and machine learning models rapidly into production. 

In its environment it contains a variety of application. Here, we develop our program in Jupyter 

Notebook and JupyterLab.  

Project Jupyter is a non-profit, open-source project, born out of the IPython Project in 2014 as it evolved 

to support interactive data science and scientific computing across all programming languages. Jupyter 

will always be 100% open-source software, free for all to use and released under the liberal terms of the 

modified BSD license. Jupyter is developed in the open on GitHub, through the consensus of the Jupyter 

community. (Jupyter.org) (anaconda.com/why-anaconda/) (python.org/about/) (Kuhlman, 2013) 

 

3.3.2 Python Libraries 
Python provides us with a variety of scientific libraries for data mining and machine learning tasks. In 

this study we have used the followings: 

• Scipy (version 1.3.1) is a collection of mathematical algorithms and convenience functions 

built on the NumPy extension of Python. It adds significant power to the interactive Python 

session by providing the user with high-level commands and classes for manipulating and 

visualizing data. With SciPy, an interactive Python session becomes a data-processing and 

system-prototyping environment rivaling systems, such as MATLAB, IDL, Octave, R-Lab, and 

SciLab. (scipy) 

• Numpy: (version 1.17.2) is the fundamental package for scientific computing with Python. It 

contains among other things: a powerful N-dimensional array, object sophisticated 

(broadcasting) functions, tools for integrating C/C++ and Fortran code, useful linear algebra, 

Fourier transform, and random number capabilities. 

https://www.python.org/psf
https://www.python.org/psf
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Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional 

container of generic data. Arbitrary data-types can be defined. This allows NumPy to 

seamlessly and speedily integrate with a wide variety of databases. 

 

• Matplotlib: (version 3.0.3) is a Python 2D plotting library which produces publication quality 

figures in a variety of hardcopy formats and interactive environments across platforms. 

Matplotlib can be used in Python scripts, the Python and IPython shells, the Jupyter notebook, 

web application servers, and four graphical user interface toolkits. 

 

• Pandas: (version 0.24.2) pandas is an open source, BSD-licensed library providing high-

performance, easy-to-use data structures and data analysis tools for the Python programming 

language. 

 

• Sklearn: (version 0.21.3) is a free software machine learning library for the Python 

programming language. It features various classification, regression and clustering algorithms 

including support vector machines, random forests, gradient boosting, k-means and DBSCAN, 

and is designed to interoperate with the Python numerical and scientific libraries NumPy and 

SciPy. (Buitinck et al.) (wiki/Scikit-learn) (scikit-learn.org)  

http://ipython.org/
http://jupyter.org/
http://www.python.org/
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4. PROPOSED EXPERIMENT 
All the figures are Cell results from 4 different Notebooks run in Jupyter Notebook. 

4.1 Preprocess 
A necessary step in machine learning is data preprocess. Before data can be analyzed, they must be 

organized into an appropriate form. Data preparation is the process of manipulating and organizing data 

prior to analysis. Data preparation is typically an iterative process of manipulating raw data, which is 

often unstructured and messy, into a more structured and useful form that is ready for further analysis. 

The whole preparation process consists of a series of major activities (or tasks) including data profiling, 

cleansing, integration, and transformation. (C., 2010) 

In this study, we have loaded the .csv files with the help of pandas read_csv() function and DataFrame 

structure. In some of the cases, we had to transpose the matrix in order to get a shape in the form 

(                  ) where samples are in rows and their features in columns. The next step is to 

drop duplicate values and find the NA tabs, which were filled the median of the data. 

4.2 Analyze Data 

4.2.1 Peek on Data 
We can take a look at our DataFrame by printing it. A useful information to keep here is that the gene 

expression datasets have a small number of examples and a large number of features.  

  

Figure 4-1 (A) Peek at values of Breast Cancer Dataset GDS3139 as an example 
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4.2.2 Data Dimensions  
The results are listed in rows then columns. In this study we have chosen 4 different datasets depending 

on their shape. We cover cases with big number of samples and also features, big number of samples 

but fewer features, small number of samples with also small number of features and finally big number 

of samples but small number of features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 Cervical Cancer Dataset GDS3233 shape 

Figure 4-3 Pancreatic Cancer Dataset GDS4102 shape 

Figure 4-5 AML Cancer Dataset GDS3057 shape 

Figure 4-6 Breast Cancer Dataset GDS3139 shape 

Figure 4-2 (B) Peek at values of Breast Cancer Dataset GDS3139 as an example 
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4.2.3 Attribute Data Type  
The type of each attribute is important. Strings may need to be converted to floating point values or 

integers to represent categorical or ordinal values. We can get an idea of the types of attributes by 

peeking at the raw data, as above. (Brownlee) In our experiment, all the features are float64 type.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4-8 First example of 

Data Type Attributes on 
GDS4102. 

The first column shows the 
names of features (genes). 
The second column is each 
feature’s type.  

Figure 4-7 Second example of 

Data Type Attributes on 
GDS3139. 

The first column shows the 
names of features (genes). 
The second column is each 
feature’s type.  
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4.2.4 Descriptive Statistics  
Descriptive statistics can give us great insight into the properties of each attribute. Often you can create 

more summaries than you have time to review. The describe () function on the Pandas DataFrame lists 8 

statistical properties of each attribute. (Brownlee) They are:  

 Count. The count of rows (samples) 

 Mean or average. Symbolically, if we have a data set consisting of the values            then 

the arithmetic mean   is defined by the formula:    
 

 
∑     

          

 

 
      (wiki/Arithmetic_mean) 

 Standard Deviation is a measure of the amount of variation or dispersion of a set of values.  A 

low standard deviation indicates that the values tend to be close to the mean (also called the 

expected value) of the set, while a high standard deviation indicates that the values are spread 

out over a wider range. The formula is:  √
 

   
∑ (    ̅)  

    . Let   be a random variable with 

mean value μ: , -    . Here the operator   denotes the average or expected value of X. Then 

the standard deviation of X is the quantity    √ ,(   ) -  (wiki/Standard_deviation) 

 Minimum and Maximum Value  

 25th 50th and 75th Percentile. A percentile is a measure used in statistics indicating the value 

below which a given percentage of observations in a group of observations fall. (wiki/Percentile) 

 

 

 

 

Figure 4-9 Statistical Description of Features (genes) on Breast Cancer Dataset GDS3139 
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Figure 4-10 Statistical Description of Features (genes) on Cervical Cancer Dataset GDS3233 

Figure 4-11 Statistical Description of Features (genes) on Pancreatic Cancer Dataset GDS4102 
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Figure 4-12 Statistical Description of Features (genes) on AML Cancer Dataset GDS3057 
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4.2.5 Class Distribution 
On classification problems we need to know how balanced the class values are. Highly imbalanced 

problems (a lot more observations for one class than another) are common and may need special 

handling in the data preparation stage of our project. (Brownlee)  

 

 

 

 

As we can observe here, we have datasets with almost equal number of sample in the two classes 

(Cervical and Breast Cancer Datasets) and we have the imbalanced distributions with almost double 

cancer versus the healthy samples like Pancreatic Dataset or otherwise like AML Dataset. 

  

Figure 4-15 Class Distribution of Pancreatic Cancer Dataset GDS4102. 

16 healthy donors are labeled with zero value in “class” and 36 patients are labeled with one value. 

Figure 4-14 Class Distribution of Breast Cancer Dataset GDS3139. 

15 healthy donors are labeled with zero value in “class” and 14 patients are labeled with one value. 

Figure 4-13 Class Distribution of AML Cancer Dataset GDS3057. 

38 healthy donors are labeled with zero value in “class” and 26 patients are labeled with one value. 

Figure 4-16 Class Distribution of Cervical Cancer Dataset GDS3233. 

24 healthy donors are labeled with zero value in “class” and 28 patients are labeled with one value. 
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4.2.6 Skew of Univariate Distributions 
Skew refers to a distribution that is assumed Gaussian (normal or bell curve) that is shifted or squashed 

in one direction or another. Many machine learning algorithms assume a Gaussian distribution. Knowing 

that an attribute has a skew may allow us to perform data preparation to correct the skew and later 

improve the accuracy of your models. (Brownlee) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                          

 

 

 

 

 

 

 

Figure 4-17 Features Skew of Pancreatic Cancer 
Dataset GDS4102 
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Figure 4-18 Features Skew of AML Cancer Dataset GDS3057 

Figure 4-19 Features Skew of Breast Cancer Dataset GDS3139 
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As we can conclude the features distribution are skewed. For models like Logistic Regression that 

assumes Gaussian distribution we need to generate a normal symmetric distribution. For fixing this, we 

can apply a Data Transformation technique like Standardization (Z-score normalization) overcomes the 

problem of variables with different units as it transforms variables so that they are centered on 0 with a 

standard deviation of 1. 

 

 

 

 

 

Figure 4-20 Features Skew of Cervical Cancer Dataset GDS3233 
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4.3  Data Visualization 

4.3.1 Histograms 
A fast way to get an idea of the distribution of each attribute is to look at histograms. Histograms group 

data into bins and provide you a count of the number of observations in each bin. From the shape of the 

bins you can quickly get a feeling for whether an attribute is Gaussian, skewed or even has an 

exponential distribution. It can also help you see possible outliers. (Brownlee) 

As we took a first idea of the statistical analysis of skew on each feature, now we will visualize some 

features histogram of our datasets. Due to the large computational power it takes, in order to produce 

them we used Orange3. It is open source machine learning and data visualization tool provided in 

Anaconda that has an interactive graphical environment for machine learning. (Orange3) 

 

 

 

                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-21 Histogram Distributions of 10 different features on Pancreatic Cancer Dataset GDS4102 

Figure 4-22 Histogram Distributions of 10 different features on Cervical Cancer Dataset GDS3233 
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As we can observe from the histograms the data features distribution differs. In most cased the data are 

skewed right or left like assuming an exponential distribution. Some others but only few of them in total 

are symmetric assuming a Gaussian or nearly Gaussian distribution. This information must be noted, 

because many machine learning techniques assume a Gaussian univariate distribution on the input 

variables. So, this leads us to apply a data transformation technique like Standardization, which 

transform attributes to a standard Gaussian distribution with a mean of 0 and a standard deviation of 1. 

 

 

 

 

Figure 4-23 Histogram Distributions of 10 different features on Breast Cancer Dataset GDS3139 

 

Figure 4-24 Histogram Distributions of 10 different features on AML Cancer Dataset GDS3057 
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4.3.2 Correlation Matrix Plot 
Correlation refers to the relationship between two variables and how they may or may not change 

together. The most common method for calculating correlation is Pearson's Correlation Coefficient that 

assumes a normal distribution of the attributes involved. A correlation of -1 or 1 shows a full negative or 

positive correlation respectively. Whereas a value of 0 shows no correlation at all. Some machine 

learning algorithms like linear and logistic regression can suffer poor performance if there are highly 

correlated attributes in your dataset. The matrix lists all attributes across the top and down the side, to 

give correlation between all pairs of attributes (twice, because the matrix is symmetrical). We can see 

the diagonal line through the matrix from the top left to bottom right corners of the matrix shows 

perfect correlation of each attribute with itself. (Brownlee) 

This task needed high RAM space in order to find thousands of data correlation. To run this part of code, 

we used the Google Colaboratory. It is a free Jupyter notebook environment that requires no setup and 

runs entirely in the cloud. With Colaboratory we can write and execute code, save and share our 

analyses, and access powerful computing resources, all for free from our browser. (Google Colaboratory ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-25 Pearson’s Correlation Plot of Pancreatic Cancer Dataset GDS4102 with 54614 features 
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Figure 4-26 Pearson’s Correlation Plot of Cervical Cancer Dataset GDS3233 with 14063 features 

 

Figure 4-27 Pearson’s Correlation Plot of Breast Cancer Dataset GDS3139 with 14063 features 
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Figure 4-28 Pearson’s Correlation Plot of AML Cancer Dataset GDS3057 with 22284 features 
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4.4 Data Analysis and Preparation 

4.4.1 Validation Dataset 
As it is mentioned on second chapter, it is a good idea to use a validation hold-out set. This is a sample 

of the data that we hold back from our analysis and modeling. We use it right at the end of our project 

to confirm the accuracy of our final model. It is a smoke test that we can use to see if we messed up and 

to give us confidence on our estimates of accuracy on unseen data. (Brownlee) In our study the 4 

datasets will be split randomly in train and validation data with 67% and 33% of total samples each. X 

array is the data values (gene expression levels) and the Y array is the binary label (cancer or healthy 

class) for the supervised classification process. 

 

 

 

 

 

 

 

 

 

Figure 4-30 GDS4102 split 
X_array stores data values Y_array stores the labels 
X_train (34 x 54,613) for modeling Y_train (34 x 1)  

X_validation (18 x 54,613) held out data for predictions 
and final evaluation Y_validation (18 x 1) 

 

Figure 4-29 GDS3057 split 
X_array stores data values Y_array stores the labels 

X_train (42 x 22,283) for modeling Y_train (42 x 1) 

X_validation (22 x 22,283) held out data for predictions 

and final evaluation Y_validation (22 x 1) 
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Table 4 Overview of Datasets Split on Train and Validation Data 

Figure 4-32 GDS3139 split 
X_array stores data values Y_array stores the labels 

X_train (19 x 22,283) for modeling Y_train (19 x 1) 

X_validation (10 x 22,283) held out data for predictions and 

final evaluation Y_validation (10 x 1) 

 

Figure 4-31 GDS3233 split 
X_array stores data values Y_array stores the labels 

X_train (34 x 14,062) for modeling Y_train (34 x 1) 

X_validation (18 x 14,062) held out data for predictions 

and final evaluation Y_validation (18 x 1) 
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4.5 Implementation of different Machine 
Learning Algorithms: Training and Evaluation 
In this section, we evaluate the performance of different Machine Learning Algorithms in 3 scenarios: on 

baseline level, on standardized data and last, with the use of PCA for feature extraction on standardized data. 

The evaluation is made in two stages. The most important evaluation metric is accuracy which gives us a first 

insight on how correct our models are in this binary classification problem. First, we measure the accuracy 

with k-fold Cross-Validation on the train dataset to see a first picture on our models. The second and last 

stage is to make predictions on unseen data, using the held out validation dataset. As a result, it sums up to a 

final accuracy score, a confusion matrix and a classification report. 

The Classification Algorithms 

In order to find the best performance on our data we have to experiment with different algorithms. 

Both linear and non-linear algorithms are selected for this problem. The algorithms all use default tuning 

parameters. The suite of six algorithms is 

 Logistic Regression (LR)  

 Linear Discriminant Analysis (LDA) 

 Classification and Regression Trees (CART) 

 Linear Support Vector Machines (SVM)  

 Gaussian Naive Bayes (NB) 

 k-Nearest Neighbors (KNN) 
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Table 5 Overview of Datasets Structure with 5-Fold Cross-Validation and Split on Train and Validation Data  
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4.6  Algorithm Evaluation: Baseline 

4.6.1 Cross-Validation Results 
The choice of k must allow the size of each test partition to be large enough to be a reasonable sample 

of the problem, whilst allowing enough repetitions of the train-test evaluation of the algorithm to 

provide a fair estimate of the algorithms performance on unseen data. For modest sized datasets in the 

thousands or tens of thousands of records, k values of 3, 5 and 10 are common. (Brownlee)  

In our data we use 5-fold cross-validation. We compare the algorithms, by displaying the mean and 

standard deviation of accuracy, on training dataset with 5-fold cross-validation, for each algorithm as we 

calculate it and collect the results for use later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-33  Cervical Cancer Dataset GDS3233 5-fold Cross-Validation Accuracy Results 

Figure 4-34 Cervical Cancer Dataset GDS3233  

Graphical representation of 5-fold Cross-Validation Accuracy Results using box and whisker plots  
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Figure 4-35 Breast Cancer Dataset GDS3139 5-fold Cross-Validation Accuracy Results 

Figure 4-36 Breast Cancer Dataset GDS3139 

Graphical representation of 5-fold Cross-Validation Accuracy Results using box and whisker plots  

 

Figure 4-37 AML Cancer Dataset GDS3057 5-fold Cross-Validation Accuracy Results 

 

Figure 4-38 AML Cancer Dataset GDS3057 

Graphical representation of 5-fold Cross-Validation Accuracy Results using box and whisker plots  
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These were the mean accuracy values. We check the distribution of accuracy values calculated across 

cross-validation folds. From a quick look, we observe that Logistic Regression and Linear SVM gives us 

the best accuracy scores with low variance. 

The results on Breast Dataset are surprisingly bad, comparing to others. However we have to take into 

consideration that the Breast Cancer Dataset is the dataset with the fewest samples (29 samples, 15 

healthy and 14 cancer), only with 19 sample left after split, for cross validation. 

 

 Cervical Breast AML Pancreatic 

LR 93.8 56.6 97.5 90.9 

LDA 85.2 51.6 80.5 84.7 

KNN 91.4 30.0 90.2 78.5 

CART 84.2 50.0 90.5 85.2 

NB 90.9 56.6 97.5 79.0 

SVM 90.9 63.3 97.5 88.0 

Table 6 Overview of 5-fold Cross-Validation Accuracy Results (%) 

Figure 4-39 Pancreatic Cancer Dataset GDS4102 5-fold Cross-Validation Accuracy Results 

Figure 4-40 Pancreatic Cancer Dataset GDS4102 

Graphical representation of 5-fold Cross-Validation Accuracy Results using box and whisker plots  
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4.7 Algorithm Evaluation: Standardized Data 
Standardization is a useful technique to transform attributes with a Gaussian distribution and differing 

means and standard deviations to a standard Gaussian distribution with a mean of 0 and a standard 

deviation of 1. It is most suitable for techniques that assume a Gaussian distribution in the input 

variables and work better with rescaled data, such as linear regression, logistic regression and linear 

discriminate analysis. (Brownlee) 

In order to avoid a negative impact on algorithms’ skill, due to raw data’s differing distribution, now we 

revaluate them with a standardized copy of the training dataset. Also, a useful technique that scikit-

learn library provide us in order to avoid data leakage is pipelines. In this stage, we give pipelines the 

scaler and the algorithm and after we test the model with 5-fold Cross-Validation. 

4.7.1 Cross-Validation Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-41 Cervical Cancer Dataset GDS3233  5-fold Cross-Validation Accuracy Results on Standardized Data 

 

Figure 4-42 Cervical Cancer Dataset GDS3233 

Graphical representation of 5-fold Cross-Validation Accuracy Results on Standardized Data using box and whisker plots  
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Figure 4-43 Breast Cancer Dataset GDS3139 5-fold Cross-Validation Accuracy Results on Standardized Data 

 

Figure 4-44 Breast Cancer Dataset GDS3139 

Graphical representation of 5-fold Cross-Validation Accuracy Results on Standardized Data using box and whisker plots  

 

Figure 4-45 AML Cancer Dataset GDS3057 5-fold Cross-Validation Accuracy Results on Standardized Data 

 

Figure 4-46 AML Cancer Dataset GDS3057 

Graphical representation of 5-fold Cross-Validation Accuracy Results on Standardized Data using box and whisker plots  
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 Cervical Breast AML Pancreatic 

 Primary Scaled Primary Scaled Primary Scaled Primary Scaled 

LR 93.8 93.8 56.6 46.6 97.5 97.5 90.9 84.2 

LDA 85.2 85.2 51.6 51.6 80.5 80.5 84.7 84.7 

KNN 91.4 91.4 30.0 48.3 90.2 78.6 78.5 75.7 

CART 84.2 84.7 50.0 51.6 90.5 88.0 85.2 91.4 

NB 90.9 90.9 56.6 51.6 97.5 97.5 79.0 70.4 

SVM 90.9 93.8 63.3 51.6 97.5 95.0 88.0 87.6 

Table 7 Overview of 5-fold Cross-Validation Accuracy Results (%) before and after Data Standardization 

Figure 4-47 Pancreatic Cancer Dataset GDS4102 5-fold Cross-Validation Accuracy Results on Standardized Data 

 

 

Figure 4-48 AML Cancer Dataset GDS3057 

Graphical representation of 5-fold Cross-Validation Accuracy Results on Standardized Data using box and whisker plots  
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4.8 Algorithm Evaluation: Feature Reduction 

on Standardized Data 
The data features that are used to train the machine learning models have a huge influence on the 

performance we can achieve. Irrelevant or partially relevant features can negatively impact model 

performance. 

Feature selection is a process where you automatically select those features in the data that contribute 

most to the prediction variable or output in which you are interested. Having irrelevant features in our 

data can decrease the accuracy of many models, especially linear algorithms like linear and logistic 

regression. Three benefits of performing feature selection before modeling your data are: 

 Reduces Overfitting: Less redundant data means less opportunity to make decisions based on 

noise. 

 Improves Accuracy: Less misleading data means modeling accuracy improves. 

 Reduces Training Time: Less data means that algorithms train faster. (Brownlee) 

4.8.1 PCA 
Principal Component Analysis (or PCA) uses linear algebra to transform the dataset into a compressed 

form. Generally this is called a data reduction technique. A property of PCA is that you can choose the 

number of dimensions or principal components in the transformed result. (Brownlee)  

In this stage of our study, we find the how many components to use by selecting 95% of total variance 

of the Train Set. After we use PCA, as a part of pipelines, on standardized data and reevaluate our 

models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-49 Cervical Cancer Dataset GDS3233 Explained Variance  

X axis: Number of PCA Components, Y axis: Variance (%) 
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Figure 4-50 Breast Cancer Dataset GDS3139 Explained Variance  

X axis: Number of PCA Components, Y axis: Variance (%) 

Figure 4-51 AML Cancer Dataset GDS3057 Explained Variance  

X axis: Number of PCA Components, Y axis: Variance (%) 
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The threshold of variance for transforming the train set features into PCA components was set for the 

95%. In each dataset, the train set was transformed into a dataset whose features now are compressed 

and their information represents the 95% of variance information of the previous dataset. 

 

 original shape: transformed shape: 

Cervical (34, 14062) (34, 20) 

Breast (19, 22283) (19, 12) 

AML (42, 22283) (42, 27) 

Pancreatic (34, 54613) (34, 16) 

Table 8 Train Datasets features transformation with PCA Components  

(a) Original shape of Train Dataset (Samples, Features) 

(b) Transformed shape of Train Dataset (Samples, Components) 

 

 

Figure 4-52 Pancreatic Cancer Dataset GDS4102 Explained Variance  

X axis: Number of PCA Components, Y axis: Variance (%) 
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4.8.2 Cross-Validation Results 
There are standard workflows in applied machine learning. Standard because they overcome common 

problems like data leakage in your test harness. Python scikit-learn provides a Pipeline utility to help 

automate machine learning workflows. Pipelines work by allowing for a linear sequence of data 

transforms to be chained together culminating in a modeling process that can be evaluated. The goal is 

to ensure that all of the steps in the pipeline are constrained to the data available for the evaluation, 

such as the training dataset or each fold of the cross-validation procedure. 

In the final stage of the study, we build the pipelines with transformed features and the algorithms. The 

pipeline provides a handy tool called the FeatureUnion which allows the results of multiple feature 

selection and extraction procedures to be combined into a larger dataset on which a model can be 

trained. Importantly, all the feature extraction and the feature union occurs within each fold of the 

cross-validation procedure. (Brownlee)  

Our study is finalized with pipelines in the steps below: 

1. Data Standaridization 

2. Feature Extraction with Principal Component Analysis. 

 

3. Feature Extraction with Statistical Selection. Select features according to the k highest 

scores with SelectKBest() function. It scores the features using a function (in this case 

f_classif) and then removes all but the k highest scoring features. The score function 

refers to ANOVA F-value for the classification. (wiki/F-test) 
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4. Feature Union. Concatenates results of multiple transformer objects. 

5. Learn the six algorithms. 

The pipeline is then evaluated using 5-fold cross-validation. 

 

 

 

 

 

 

 

Figure 4-53 Cervical Cancer Dataset GDS3233 5-fold Cross-Validation Accuracy Results after PCA on 
Standardized Data 
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LR 93.8 93.8 91.6 56.6 46.6 50.0 97.5 97.5 97.5 90.9 84.2 90.8 

LDA 85.2 85.2 88.3 51.6 51.6 55.0 80.5 80.5 88.0 84.7 84.7 83.3 

KNN 91.4 91.4 92.5 30.0 48.3 25.0 90.2 78.6 78.4 78.5 75.7 75.0 

CART 84.2 84.7 91.6 50.0 51.6 50.0 90.5 88.0 97.5 85.2 91.4 90.8 

NB 90.9 90.9 95.0 56.6 51.6 45.0 97.5 97.5 95.0 79.0 70.4 65.0 

SVM 90.9 93.8 95.0 63.3 51.6 50.0 97.5 95.0 97.5 88.0 87.6 87.4 

Figure 4-54 Breast Cancer Dataset GDS3139 5-fold Cross-Validation Accuracy Results after PCA on 
Standardized Data 

 

Figure 4-55 AML Cancer Dataset GDS3057 5-fold Cross-Validation Accuracy Results after PCA on 
Standardized Data 

 

Figure 4-56 Pancreatic Cancer Dataset GDS4102 5-fold Cross-Validation Accuracy Results after PCA on 
Standardized Data 
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Table 9 Overview of 5-fold Cross-Validation Accuracy Results (%) on three different scenarios 

(c) Not scaled data (b) Standardized Data (c) with PCA feature extraction on standardized data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4-57 ROC Curve of 5-fold cross-validation of 6 Classification models on Cervical Cancer Dataset GDS3233 
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Figure 4-58 ROC Curve of 5-fold cross-validation of 6 Classification models on Breast Cancer Dataset GDS3139 
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Figure 4-59 ROC Curve of 5-fold cross-validation of 6 Classification models on AML Cancer Dataset GDS3057 
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Figure 4-60 ROC Curve of 5-fold cross-validation of 6 Classification models on Pancreatic Cancer Dataset 
GDS4102 
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4.8.3 Predictions Results 
Unlike statistics, where models are used to understand data, predictive modeling is laser focused on 

developing models that make the most accurate predictions at the expense of explaining why 

predictions are made. Why can't we prepare your machine learning algorithm on our training dataset 

and use predictions from this same dataset to evaluate performance? The simple answer is overfitting. 

Imagine an algorithm that remembers every observation it is shown during training. If we evaluated our 

machine learning algorithm on the same dataset used to train the algorithm, then an algorithm like this 

would have a perfect score on the training dataset. But the predictions it made on new data would be 

terrible. We must evaluate our machine learning algorithms on data that is not used to train the 

algorithm. (Brownlee) 

The last stage of our study is to check the performance of our models on unseen data. We will finalize 

the models by training them on the entire training dataset and make predictions for the hold-out 

validation dataset to confirm our findings. 

Confusion matrix here has biological meaning too. Considering how we have assigned the classes 

healthy in 0 (Positives) and cancer with 1 (Negatives), the True Negatives (TN) in confusion matrix play 

the most important role for medical diagnosis, as they predict the cases of cancer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-61 Predictions Results of 6 Classification models of Cervical Cancer Dataset GDS3233 

(a) Accuracy of predictions on Validation Data (b) Confusion matrix (c) Classification Report 
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Figure 4-62 Predictions Results of 6 Classification models of Breast Cancer Dataset GDS3139 
(a) Accuracy of predictions on Validation Data (b) Confusion matrix (c) Classification Report 

 

Figure 4-63 Predictions Results of 6 Classification models of AML Cancer Dataset GDS3057 
Accuracy of predictions on Validation Data (b) Confusion matrix (c) Classification Report 
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Figure 4-64 Predictions Results of 6 Classification models of Pancreatic Cancer Dataset GDS4102 
(a) Accuracy of predictions on Validation Data (b) Confusion matrix (c) Classification Report 
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Table 9 Summarization of basic study results of Accuracy (%) and Confusion Matrix. 

(a) In cross-validation columns we see the accuracy score of 5-fold cross-validation on train data at the 3rd scenario. 

(b) In Predictions columns we see the accuracy score and confusion matrix of the 6 models on unseen data 

(validation dataset). 

 Cervical Breast AML Pancreatic 

 
Cross-
Validation 

Predictions  
Cross-
Validation 

Predictions  
Cross-
Validation 

Predictions  
Cross-
Validation 

Predictions  

LR 91.6 

100.0 

9 0 

0 9 

 

50.0 

60.0 

2 2 

2 4 

 

97.5 

90.0 

14 0 

2 6 

 

90.8 

94.4 

3 0 

1 14 

 

LDA 88.3 

72.2 

4 5 

0 9 

 

55.0 

90.0 

4 0 

1 5 

 

88.0 

86.3 

13 1 

2 6 

 

83.3 

88.8 

2 1 

1 14 

 

KNN 92.5 

94.4 

8 1 

0 9 

 

25.0 

60.0 

1 3 

1 5 

 

78.4 

68.1 

14 0 

7 1 

 

75.0 

83.3 

2 1 

2 13 

 

CART 91.6 

77.7 

7 2 

2 7 

 

50.0 

70.0 

3 1 

2 4 

 

97.5 

81.8 

14 0 

4 4 

 

90.8 

77.7 

2 1 

3 12 

 

NB 95.0 

100.0 

9 0 

0 9 

 

45.0 

60.0 

0 4 

0 6 

 

95.0 

95.4 

13 1 

0 8 

 

65.0 

88.8 

2 1 

1 14 

 

SVM 95.0 

100.0 

9 0 

0 9 

 

50.0 

80.0 

3 1 

1 5 

 

97.5 

90.9 

14 0 

2 6 

 

87.4 

88.8 

2 1 

1 14 
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4.9  Final Model 
In our study, finally, we picked the most accurate model considering its performance in predictions and 

metrics like confusion matrix and classification report. After picking the right model for each dataset we 

can save and load the model using the Joblib library. The Joblib library is part of the SciPy ecosystem and 

provides utilities for pipelining Python jobs. It provides utilities for saving and loading Python objects 

that make use of NumPy data structures, efficiently. 

Running the Jupyter Notebook saves the model to file as finalized model.sav and also creates one file for 

each NumPy array in the model. After the model is loaded an estimate of the accuracy of the model on 

unseen data is reported (Brownlee). 

 In case of Cervival Cancer Classification dataset GDS3233 we can pick models between 

Logistic Regression, Naïve Bayes and Linear SVM algorithms, with final accuracy on unseen 

data at 100%. 

 In case of Breast Cancer Classification dataset GDS3139 we picked the model trained with 

Linear Discriminant Analysis algorithm with final accuracy on unseen data at 90%. 

 In case of AML Cancer Classification dataset GDS3057 we picked the model trained with 

Naïve Bayes algorithm with final accuracy on unseen data at 95.4%. 

 In case of Pancreatic Cancer Classification dataset GDS4102 we picked the model trained 

with Logistic Regression algorithm with final accuracy on unseen data at 94.4%. 
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5. CONCLUSIONS AND FUTURE 
WORK 
5.1 CONCLUSIONS 
The aim of our thesis is to make a robust and efficient binary classification predictive model, which 

applies in gene expression datasets with high accuracy, for medical diagnosis of cancer. Through the 

whole procedure, useful results came along with interesting thoughts and outcomes.  

Firstly, in order to have a spherical view on the problem, we chose to conclude 4 different cancer 

datasets of 4 different cancers (Cervical, Breast, AML and Pancreatic) which were retrieved from 

different tissues or cell lines.  A main characteristic of these datasets is that they are high dimensional 

(thousands of gene expression levels), but the number of samples is significantly lower (tens of people). 

These 4 different datasets have different shapes (samples x features) as well: The Cervical dataset: 52 x 

14063, the AML dataset:  64 x 22284, the Breast dataset: 29 x 22284, the Pancreatic dataset: 52 x 54614 

So, we examine big and smaller datasets comparing the one with another. For example the AML dataset 

has twice samples than the Breast dataset with the same amount of features. Also, in case of Cervical 

cancer we have the same number of sample with the Pancreatic or AML cancer dataset, but under the 

half of features. An interesting insight will come up if we see how different algorithms will behavior in 

different shaped datasets. 

Another criterion is how the data distribute into classes. In this thesis we examine imbalanced and 

balanced cases.  

a) Cervical and Breast cancer dataset have balanced cases of cancer and healthy samples in 

different proportions each. For Cervical 24 healthy and 28 cancer and for Breast 15 healthy and 

14 cancer samples. 

b) AML dataset has more cases of healthy samples than cancer samples. (38 healthy, 26 cancer) 

c) Pancreatic has almost double cancer samples than healthy. (16 healthy, 36 cancer) 

Continuing, a very useful result that came up from feature statistics and visualization was that the most 

data are skewed right or left, like assuming an exponential distribution, some others, but only few of 

them in total, are symmetric assuming a Gaussian or nearly Gaussian distribution. Also, it is shown that 

datasets like AML, Breast and Pancreatic Cancer have high correlated features and might cause issues in 

models trained with linear algorithms. For algorithms like Linear Regression and Linear Discriminant 

Analysis which assume a Gaussian distribution in the input variables we have first to rescale the data. 
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The first results from cross-validation accuracy scores Table 6 gives us a first impression on how the 6 

algorithms behave on different datasets and how they classify the data. The smallest dataset (Breast) 

with the fewest samples gives the worst scores in the evaluation. On the other hand the algorithms give 

the best performance on the dataset with the biggest number of samples (AML). Also, if we examine the 

results from the algorithms view, we can observe that the Logistic Regression has the highest scores in 

all the datasets. Also 10/24 of scores are higher than 90% in accuracy and 16/24 are higher than 80%.  

Proceeding in the next stage of the study, we have the results from cross-validation accuracy scores on 

the standardized data. In Table 7 we compare the old results with the new and we can find interesting 

insights. To begin with from datasets view, the Cervical cancer dataset has the same results, except of 

CART and SVM algorithms whose accuracy is now higher. In Breast cancer dataset the results of cross-

validation on standardized data showed same performance for LDA, lower for LR, NB and SVM, but 

higher for KNN and CART. In AML cancer dataset LR, LDA and NB had the same results, but KNN, CART 

and SVM had lower performance than before. Finally in Pancreatic cancer Dataset LDA performance is 

the same, CART’s is higher and LR, KNN, NB, SVM got lower. On the other hand, from the algorithms 

view, LDA’s performance stayed the same by the data transformation in all the cancer datasets and we 

noted high scores like 97.5% with LR and NB on AML cancer dataset. 

In the third step, where we apply PCA and feature extraction techniques on standardized data, useful 

insights came up in Table 8. In case of Cervical cancer all the results scaled up, except of LR. In case of 

Breast cancer all the results scaled down, except of LDA. In AML case all results scaled up, except of NB 

which was 2.5% lower and finally, in Pancreatic cancer the results scaled down except of LR.  

The last step of our study was to evaluate our models’ predictions on unseen data and compare them to 

the last cross-validation’ results, as it seems in Table 9. At first sight, the accuracy score of all the models 

in Breast cancer is significantly higher on unseen data than in cross-validation results. After, in Cervical 

cancer three models with LR, NB and SVM scores 100% accuracy on unseen data and the models with 

LDA(72.2%) and KNN (94.4%) scores 9/9 cancer samples correctly as it seems on confusion matrix. In 

AML cancer the models scored lower accuracy on unseen data, except of NB which also classified 

correctly all the cancer cases. At last, in Pancreatic cancer case models scored higher except CART. 9/24 

cases scored higher than 90% accuracy on predictions and  

Concluding, the best scores achieved in the Cervical cancer dataset which has 52 samples with 14,063 

features, the biggest amount of samples with the fewest features, comparing to the other datasets. The 

poorest scores were given by the Breast cancer dataset, which has 29 samples with 22,284, the smallest 

dataset of them all. From the other hand Logistic Regression performed with high evaluation scores 

through all the datasets and Naïve Bayes classified all the cancer samples correctly in 3/4 datasets. 

Finally, we end this thesis by proposing the models which were built, along with the each step’s results 

for more observation and study in the case of supervised cancer classification and prediction. Also we 

propose, respectfully any procedure that occurred and can contribute in the classification and prediction 

of Cervical, Breast, Acute Myeloid Leukemia and Pancreatic cancer research. 
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5.2 FUTURE WORK 
Microarrays of gene expression levels challenge nowadays computer science to develop procedures in 

order to process and extract knowledge from them. In the field of cancer classification different 

approaches of machine learning can be applied in order to identify patterns, develop efficient and 

accurate model for classification and finally medical diagnosis. On the other hand, in the big data era of 

computational biology, machine learning can progress as well. 

In this thesis, we studied different, proposed ways from literature, with the intention of building models 

for cancer classification. The three steps sum up to building models among the best performance of 6 

different algorithms’ on primary data, on transformed data and finally on dimensionally reduced data. 

The framework that was followed in this thesis can be applied with different techniques in each step. 

For future studies, more classification algorithms can be examined, with different data transformation 

and feature selection techniques in different step or combination.  

To continue this thesis, a proposal is to improve performance with Ensembles methods that can boost 

the accuracy scores.  Bagging, Boosting and Majority Voting are the most proposed methods in order to 

combine different models’ predictions. Another step that can be added in this thesis is Algorithm 

Tuning. It can be considered as the last step of model finalizing in the applied machine learning 

procedure. On a given specific problem, machine learning models’ behavior can be tuned with the 

purpose of finding the best combination of parameters. 

We can extend this study, by using different classifier such as the Artificial Neural Networks which are 

related with cancer classification. The findings in that study can be compared with the finding in this 

thesis. Another approach could be to test different datasets in same way of this examination. Different 

cases of cancer classification or different shaped datasets could be lead to a better view on the problem 

and could extract different and important insights. 

Finally as it is massively referred in the literature, machine learning is a field that requires practice of 

different experimental methodologies.   
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