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Abstract

This thesis focuses on the statistical analysis of well log data from two hydrocarbon

reservoirs located in Labrador Island, Western Newfoundland (Canada). The data is

obtained from two onshore wells (Finnegan and Seamus). We focus on the analysis

of four logs (spontaneous potential, Gamma radiation and two induction logs) from six

different formations. The thesis has three main objectives: (i) to estimate the probability

distributions and spatial correlations in data obtained from the same well, (ii) to evaluate

cross-correlations between logs across the two different wells, and (iii) to explore methods

for the reconstruction of missing well log data.

With respect to the first objective, the exploratory statistical analysis indicates that

the majority of the respective properties do not follow the Gaussian distribution. How-

ever, after removing an empirically determined trend function, the residuals are closer to

the Gaussian distribution. The spontaneous potential and Gamma radiation indicators

can be described by Cauchy and Gumbel distributions, while the induction indicators

by means of the Gamma and Weibull distributions. Variogram analysis suggests that

spontaneous potential and Gamma Radiation conform to the same type of theoretical

variogram model with similar sill and range values.

In reference to the second objective, the statistical analysis indicates weak cross cor-

relations between log data measured at the two different wells. The Gamma radiation

logs show both positive and negative cross correlations which are overall higher (in mag-

nitude) than for the respective correlations for the other three logs.

Regarding the third objective, the comparison of the performance of different im-

putation, interpolation and time series algorithms for gap filling indicates that linear

interpolation, linear weighted moving average and less often the Kalman-ARIMA meth-

ods are the top-performing algorithms for well log gap filling.



Περίληψη

Η Γεωστατιστική παρέχει εργαλεία στατιστικής ανάλυσης για την μελέτη χωρικών ή

χωροχρονικών φυσικών μεταβλητών. Η προσέγγιση μιας χωροχρονικής γεωστατιστικής

ανάλυσης σε δεδομένα υδρογονανθράκων τα όποια χαρακτηρίζονται από ανομοιογένεια αποτελεί

αντικείμενο έρευνας. Ωστόσο, μέθοδοι ανάλυσης χρονοσειρών που περιλαμβάνουν την

επεξεργασία μονοδιάστατων χρονικών δεδομένων, μπορούν κάλλιστα να εφαρμοστούν σε

προβλήματα που αφορούν μονοδιάστατα χωρικά δεδομένα, όπως για παράδειγμα δεδομένα

διαγραφιών από γεωτρήσεις. Τόσο η επιστήμη της Γεωστατιστικής όσο και η ανάλυση

Χρονοσειρών είναι αντικείμενα με ερευνητικό ενδιαφέρον και εφαρμογές σε πολλά επιστη-

μονικά πεδία, όπως στον τομέα της μεταλλευτικής, της μηχανικής πετρελαίου, σε τομείς

περιβαλλοντικών επιστημών, στη τηλεπισκόπηση και την επιστήμη των υλικών.

Σκοπός της εργασίας είναι η εφαρμογή γεωστατιστικών μεθόδων και μοντέλων ανάλυσης

χρονοσειρών με στόχο την ανάλυση των χωρικών συσχετίσεων διαγραφιών γεώτρησης,

όπως επίσης και την πρόβλεψη (αποκατάσταση) κενών δεδομένων (missing data). Τα

κενά δεδομένων προέρχονται είτε από αστοχίες εξοπλισμού, είτε από δυσλειτουργία των

αισθητήρων, ή ακόμη από σφάλματα στα συστήματα "αποστολής/ανάκτησης" δεδομένων.

Τα προβλήματα αυτά δυσχεραίνουν την διαδικασία εκτίμησης των γεωλογικών σχηματισμών

από τις διαγραφίες. Η παρούσα εργασία γράφτηκε με την προοπτική προσέγγισης των δύο

παραπάνω θεμάτων, δηλαδή της ανάλυσης των χωρικών συσχετίσεων και της αποκατάσταση

ς κενών δεδομένων.

Η παρούσα εργασία επικεντρώνεται στην ανάλυση διαθέσιμων δεδομένων από διαγραφίες

ταμιευτήρων υδρογονανθράκων που βρίσκονται στην νήσο Labrador στο Δυτικό Newfound-

land (Καναδάς). Η μελέτη βασίζεται στην ανάλυση των ακόλουθων τεσσάρων επιλεγμένων

διαγραφιών: φυσικό δυναμικό, δείκτης ακτινοβολίας γάμμα και ηλεκτρομαγνητικής επαγ-

ωγής από έξι σχηματισμούς που βρίσκονται σε δύο επάκτιες γεωτρήσεις, ονόματι Finnegan

και Seamus. Οι δύο γεωτρήσεις βρίσκονται σε απόσταση 14.5 χλμ μεταξύ τους. Αναλυ-

τικότερα, οι υπό μελέτη σχηματισμοί της γεώτρησης Finnegan είναι οι ακόλουθοι: Goose

(American) Tickle με 1422 δεδομένα, Table Point με 725 δεδομένα, Aguathuna με 250

δεδομένα, Catoche με 624 δεδομένα, Boat Harbour με 599 δεδομένα, και Watts Bight

με 349 δεδομένα. Αντίστοιχα, οι υπό μελέτη σχηματισμοί της γεώτρησης Seamus είναι οι

ακόλουθοι: Goose (American) Tickle με 1700 δεδομένα, Table Point με 871 δεδομένα,



Aguathuna με 347 δεδομένα, Catoche με 721 δεδομένα, Boat Harbour με 819 δεδομένα,

και Watts Bight με 406 δεδομένα.

Η συγκεκριμένη μελέτη εστιάζει σε τρία κύρια σημεία ενδιαφέροντος: (i) εκτίμηση

χωρικών συσχετίσεων από διαγραφίες που λαμβάνονται από την ίδια γεώτρηση, (ii) εκ-

τίμηση της ετεροσυσχέτισης μεταξύ των μετρήσεων των ίδιων φυσικών ιδιοτήτων από δύο

διαφορετικές γεωτρήσεις, (iii) διερεύνηση μεθόδων για την ανακατασκευή κενών δεδομένων.

Για τον πρώτο στόχο, προσδιορίσαμε τους διάφορους γεωλογικούς σχηματισμούς στα

σημεία των γεωτρήσεων. Εφαρμόσαμε διερευνητική στατιστική ανάλυση δεδομένων για να

προσδιοριστούν οι κατανομές πιθανότητας κάθε διαγραφίας ανά σχηματισμό, όπως επίσης

και για να προσδιοριστούν τα βέλτιστα μοντέλα βαριογραμμάτων ανά διαγραφία.

Για τον δεύτερο στόχο χρησιμοποιήσαμε μεθόδους παρεμβολής με σκοπό να δημιουργή-

σουμε δύο ευθυγραμμισμένα σύνολα δεδομένων με κοινό βήμα δειγματοληψίας. Αυτή η

διαδικασία κρίθηκε απαραίτητη διότι διαφορετικοί σχηματισμοί βρίσκονται σε διαφορετικά

βάθη κατά μήκος της κάθε γεώτρησης, ενώ το βήμα δειγματοληψίας διαφέρει μεταξύ των

γεωτρήσεων. Εν συνεχεία συγκρίναμε τα αποτελέσματα των τιμών των διάφορων μεθόδων

παρεμβολής που εφαρμόστηκαν για τον υπολογισμό της ετεροσυσχέτισης των γεωτρήσεων.

Οι μέθοδοι αυτοί περιλαμβάνουν την γραμμική παρεμβολή, την κυβική παρεμβολή, την παρεμ-

βολή σφηνοειδών συναρτήσεων (splines) όπως επίσης και την τεχνική του κοντινότερου

γείτονα.

Ο τρίτος στόχος αποσκοπεί στην διερεύνηση των εφαρμογών της ανάλυσης χρονοσειρών

στην εκτίμηση κενών δεδομένων διαγραφιών. Τα μοντέλα αντικατάστασης (imputation) και

παρεμβολής χρησιμοποιούνται συνήθως για να πληρώσουν κενά δεδομένων σε διαγραφίες

γεωτρήσεων. Για τον υπολογισμό της απόδοσης των διάφορων μεθόδων, οι καταγεγραμ-

μένες διαγραφίες διαχωρίζονται σε δύο διακριτά σύνολα: το σύνολο εκπαίδευσης (οι τιμές

των διαγραφιών σε αυτό το σύνολο θεωρούνται γνωστές) και το σύνολο ελέγχου (όπου

οι τιμές των διαγραφιών θεωρούνται άγνωστες). Η συμπλήρωση των κενών έγινε με την

χρήση των μεθόδων αντικατάστασης, παρεμβολής και χρονοσειρών. Οι μέθοδοι περιλαμβά-

νουν την Kalman Arima, την μέθοδο μέσο όρου, την γραμμική παρεμβολή και την παρεμ-

βολή σφηνοειδών συναρτήσεων (Spline) όπως επίσης και τον απλός κινούμενο μέσο όρο,

και τον ζυγισμένο κινητό μέσο όρο. Η ακρίβεια της πρόβλεψης βασίστηκε στην απόσταση

ανάμεσα στα αυθεντικά δεδομένα και στις εκτιμήσεις μέσω των μεθόδων αντικατάστασης,

παρεμβολής ή χρονοσειρών.



Σχετικά με τον πρώτο στόχο της εργασίας, η διερευνητική ανάλυση έδειξε ότι η πλειοψ-

ηφία των μετρούμενων ιδιοτήτων δεν ακολουθεί την Γκαουσσιανή κατανομή πιθανότητας.

Σε αυτές τις περιπτώσεις, κατόπιν αφαίρεσης μιας συνάρτησης τάσης τα στατιστικά υπ-

όλοιπα βρίσκονται πιο κοντά στην Γκαουσιανή κατανομή. Τα αποτελέσματα της μελέτης

αποδεικνύουν ότι οι διαγραφίες φυσικού δυναμικού και διάταξης ακτινοβολίας γάμμα περι-

γράφονται καλύτερα από κατανομές πιθανότητας που ορίζονται σε όλο το πεδίο των πραγ-

ματικών τιμών, όπως οι κατανομές Cauchy και Gumbel. Αντίθετα, οι διαγραφίες επαγωγής

περιγράφονται καλύτερα από κατανομές που ορίζονται στο σύνολο των θετικών αριθμών

όπως οι κατανομές Γάμμα και Weibull. Τα αποτελέσματα της ανάλυσης των βαριογραμ-

μάτων έδειξαν ότι οι διαγραφίες φυσικού δυναμικού και διάταξης ακτινοβολίας γάμμα, πολύ

συχνά προσαρμόζονται στο ίδιο θεωρητικό μοντέλο βαριογράμματος και αυτό οφείλεται στο

γεγονός ότι οι τιμές της οροφής και της ζώνη επιρροής είναι παρόμοιες. Η ανάλυση βαρι-

ογράμματος επιβεβαιώνει την υψηλή χωρική ετερογένεια που χαρακτηρίζει τις καταγραφές

διαγραφιών.

΄Οσον αφορά στο δεύτερο στόχο της εργασίας, τα αριθμητικά αποτελέσματα της στατισ-

τικής ανάλυσης έδειξαν ασθενή ετεροσυσχέτιση μεταξύ των ιδιοτήτων που μετρήθηκαν στις

δύο γεωτρήσεις. Η ετεροσυσχέτιση εξετάστηκε μέσω του υπολογισμού μέτρων στατισ-

τικής εξάρτησης όπως η συχέτιση Pearson και η συσχέτιση Spearman. ΄Οπως αναφέρθηκε

ανωτέρω, για τον υπολογισμό των ετεροσυσχετίσεων χρησιμοποιήθηκαν μεθόδοι παρεμ-

βολής με σκοπό την ομογενοποίηση του βήματος δειγματοληψίας. ΄Ολες οι μέθοδοι οδήγη-

σαν σε παρόμοιες εκτιμήσεις των συσχετίσεων. Οι διαγραφίες διάταξης ακτίνων γάμμα απέδ-

ωσαν το πιο ενδιαφέροντα αποτελέσματα σε σχέση με τις υπόλοιπες διαγραφίες, παρουσιά-

ζοντας τόσο θετικές όσο και αρνητικές τιμές συσχετίσεων. Οι τιμές των θετικών συντε-

λεστών συσχέτισης κυμαίνονται από 0.001 έως 0.483, ενώ οι τιμές των αρνητικών συντε-

λεστών συσχέτισης εκτείνονται από -0.142 έως -0.001.

Αναφορικά με τον τρίτο στόχο της εργασίας, η σύγκριση και η ποσοτικοποίηση της

απόδοσης των αλγορίθμων αντικατάστασης και παρεμβολής έδειξε ότι η γραμμική παρεμ-

βολή, ο ζυγισμένος μέσος όρος, και λιγότερο συχνά η μέθοδος Kalman-Arima, είναι τα πιο

αποδοτικά μοντέλα αποκατάστασης κενών δεδομένων.
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Chapter 1

Introduction

Geostatistics provides tools for the statistical analysis of spatial or spatiotemporal data.

On the other hand, time series analysis provides tools for processing temporal data; such

tools can also be applied to one-dimensional spatial data such as well log data. Both

geostatistics and time series analysis can be applied to mining and petroleum engineering

data, as well as ground-based environmental and remote sensing data. Well logs were

developed and used to perform geothermal ([90]; [79]; [87]; [68]), geotechnical ([75];

[19]; [82]) and environmental studies ([85]; [59]; [44]). Observations about how deep a

formation is and what type of lithologies are expected to be found while the borehole is

being drilled deeper and deeper, can be obtained and be further analyzed.

For example, in geology, well logging readings are a considerable source of information

that can be used to create a preliminary geological map that is necessary for surface

exploration ([66]; [42]; [76]), in petrophysics, they provide a unbias evaluation of the

potential production of hydrocarbon reservoirs ([99]; [88]; [48]); in geophysics, collecting

and assessing high precision well-log data is the first step of seismic analysis and real-

time evaluation of the formation’s and fluid’s properties ([63]; [91]; [94]); in petroleum

engineering well-log data is used to estimate parameters for numerical simulations ([28];

[65]; [86]). In this thesis we apply geostatistical methods and time series methods to

analyze well-log correlations and to predict missing data (missing data reconstruction).

In this thesis we apply geostatistical methods and time series models to analyze well-

log correlations and to predict (reconstruct) missing data. The missing data problem

occurs due to instrument failures, sensor malfunctions and data “send/retrieval” problems

1



Introduction 2

that hinder the evaluation of geological formations. Correlations reflect spatial continuity

and provide information needed for prediction methods that are used to reconstruct gaps

in the data.

The study focuses on the analysis of available well logs from two hydrocarbon reser-

voirs located in Labrador Island, Western Newfoundland (Canada). The data is obtained

from two onshore wells (Finnegan and Seamus). The distance between the Finnegan and

Seamus well is 14.7km. We will focus on the analysis of four select logs (Spontaneous Po-

tential, Gamma Radiation and two Induction logs) from six formations. More explicitly,

the examined formations from Finnegan well are the following: Goose (American) Tickle,

comprising 1422 data points; Table Point comprising 725 data points; Aguathuna with

250 data points; Catoche with 624 data points; Boat Harbour with 599 data points, and

Watts Bight with 349 data points. Accordingly, the formations probed in the Seamus

well are: Goose (American) Tickle with 1700 data points; Table Point with 871 data

points; Aguathuna with 347 data points; Catoche with 721 data points; Boat Harbour

with 819 data points, and finally Watts Bight with 406 data points.

This thesis has three main objectives: (i) to estimate spatial correlations in well log

data obtained from the same well, (ii) to evaluate cross-correlations between measure-

ments of the same property across the two different wells, and (iii) to explore methods

for the reconstruction of missing data.

To address the first objective, we identify the different geological formations at the

locations of the two wells. We apply exploratory data analysis to determine the relevant

probability distributions and summary statistics, as well as variogram analysis to identify

spatial correlations within each formation and to determine the optimal variogram model

for each measured property.

In order to address the second objective, we use several interpolation methods to create

two data sets with formation alignment and common sampling step. This processing is

necessary since different formations are found at different depths along each drill hole,

and the data in each drill hole have unequal sampling steps. We compare the different

interpolation methods used in terms of the resulting values of well-to-well log correlations;

these methods comprise: linear interpolation, cubic and spline interpolation, and nearest

neighbor interpolation.
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The third objective is to investigate the potential of time series methods for estimat-

ing missing data in the well log data series. Missing data imputation and interpolation

models are typically used to improve missing well log data quality. To assess the perfor-

mance of different methods, full data records are split into two disjoint sets: a training

set (where the log values are assumed to be known) and a testing set (where the log

values are assumed to be missing). We use different imputation, interpolation, and time

series methods for filling the gaps (testing set values); these methods comprise: Kalman

ARIMA, mean imputation, linear and spline interpolation, as well as linear weighted and

simple moving average methods. The prediction accuracy (which measures the agree-

ment between the original testing set values and the imputed or interpolated values) is

used to quantify the performance of the gap-filling methods.

With respect to the first objective of the study, the exploratory analysis indicates

that the majority of the respective properties do not follow the Gaussian distribution.

However, after removing a trend function, the residuals are closer to the Gaussian dis-

tribution. Results demonstrate that the Spontaneous potential and Gamma radiation

indicators can be most often described by Cauchy and Gumbel distributions. In contrast,

the Induction indicators can be most often described means of the Gamma and Weibull

distributions. The results of the variogram analysis indicate that Spontaneous potential

and Gamma Radiation indicators are mostly fitted to the same type of theoretical vari-

ogram model, with similar sill and range values. The variogram analysis confirmed that

high spatial heterogeneity characterizes the entire span of the logging records.

With respect to the second objective, the statistical analysis indicates a weak corre-

lation between the respective properties measured at the two different wells. The asso-

ciation between the data at the neighboring wells is examined by means of statistical

dependence measures such as the Pearson’s linear correlation coefficient and Spearman’s

rank correlation coefficient. The cross correlations calculated from the processed data

using different interpolation models lead to similar values. The Gamma radiation logs

show both positive and negative correlation which are overall higher (in magnitude) than

for the other three logs. The values of the positive correlation coefficients range from

0.001 to 0.483, while the values of the negative correlation coefficients range from -0.142

to -0.001.

Regarding the third objective of the study, the comparison of the performance of
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different imputation, interpolation and time series algorithms for gap filling indicates

that linear interpolation, linear weighted moving average and less often the Kalman-

ARIMA methods are the top-performing algorithms.



Chapter 2

Formation Evaluation : Well Logs

Using well logs in oil and gas

exploration is like "hunting on a game

preserve"

George R. Pickett

Colorado School of Mines

In situ measurements taken by running logs can give answers to whether a geological

structure of a potential oil or gas reservoir exists. Additional information includes the

finding of the reservoir’s location in the geological strata, the productivity of the up-

stream, midstream and downstream industry and the inductive inferences of evidence of

a near reservoir.

Interpretation of well-logs delineates the properties related to geology and petro-

physics, such as the determination of rock and reservoir fluids composition, which are

usually deduced from examinations of outcrops, cores and cuttings. Any other useful in-

formation can be obtained by measuring the natural gamma ray radiation, bulk density,

sonic transit time etc. Consequently, log data often constitutes the signature of the rock.

Those well logging techniques would be further examined in this section.

5
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2.1 Basic Log Types

The while drilling evaluation techniques are beneficial and allow a real-time character-

ization of the drilled formations. These techniques require expensive high-technology

sensors to be inserted in the bottomhole assembly, while performing high resolution

records ([24]; [62]; [18]; [81]). For this reason, a brief introduction of the main types of

logs will be presented.

Logging While Drilling (LWD)

The Logging-While-Drilling (LWD) formation evaluation sensors acquire downhole

data while drilling, collecting mainly petrophysical data. The measuring elements are

part of the instrumented Bottom Hole Assembly, also called BHA, the drilling collars;

pulses of the signals are transmitted to the surface via the mud column. The advantages

of LWD are:

1. Access to real time information.

2. Mud invasion does not have an effect on measurements.

3. The LWD tools is more serviceable for collecting data from tough structural envi-

ronments, such as deviated wells, horizontal wells or an unstable borehole.

4. The LWD sensor provides information about the well’s placement and stability

while minimizing the risk of a stuck pipe, thus a safer and more efficient hole is

drilled.

However, there are factors restricting the LWD tool’s efficiency and those are mentioned

below:

1. Data transmission/recording may be affected by the speed’s telemetry or by the

existence of pumped mud into the drill string.

2. Limited memory size.

3. Most LWD tools are powered by batteries with limited battery life that fluctuates

from 40 to 90 hours depending on the tool.
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4. LWD tool’s placement in the bit have to be taken into consideration due to some

technical limitations. For instance, ROP’s productiveness and sufficiency can pos-

sible be influenced by the location of the tool in the drill string.

Measurements While Drilling (MWD)

The Measurement-While-Drilling formation evaluation technique measures data which

is near the bit, without interrupting the standard drilling operations. The recorded

information reaches the surface by the exact mechanism of transmission of the LWD tool

(mud pressure pulses). The advantages of MWD are:

1. Real time directional drilling operations monitoring.

2. Advantageous use in wellbore completion.

3. Estimation of drilling formation properties and drilling parameters, such as the

bottom hole pressure, the torque and the weight on the bit, in the interest of

optimizing the drilling process.

2.2 Well Logging Methods

Drilling and geophysical techniques are more often used in modern exploration and eval-

uation of a formation. Well logging data acquisition and interpretation is of the utmost

interest of geoscientists. The measurements made with logging tools provide accurate and

reliable information of both the rock and its fluid content. Several significant advances

have been developed in order to make the acquisition of the data a credible process,

including the interpretation of well log data in various rock formations. This practice is

considered rather biased than to extract information given from a scattered core analysis

sample. Therefore gives the advantage of an objective visualization of the formations at

the specific scale plus a representative and more detailed description of the formations.

These developments can ensue a precise, even if errors are present, well log data inter-

pretation and reinterpretation and a quickly data obtainment, whereas reduce the total

well cost. It is of considerable importance to cite that a wireline logging cost is usually

ranging from 5 to 10% of the the total well cost covering approximately 90% of the total

geological information which is illustrated in figure 2.1 .
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Figure 2.1: Average logging cost represents the 10% of the total well cost which is
providing the 90% of the total geological information. Figure retrieved from [81]

We classify the various well logging measurements into two board categories according

to their properties ([80]). The first group includes natural or spontaneous phenomena.

The basic equipment employs a single detector to acquire data from the wellbore (passive

system). The second group includes induced phenomena. The basic equipment requires a

sources or an emitter to appropriately stimulate a response in the formation, annexed to

a detection system to track down the presence of electromagnetic waves and radioactivity.

The categories of the logging measurements that arise from natural or spontaneous

phenomena are: Natural gamma radioactivity, Spontaneous potential (SP), Temperature

of formation, Hole-diameter (caliper log) and the Hole inclination (deviation log).

The categories of the logging measurements that arise from induction phenomena

are: Electrical (resistivity, conductivity, dielectric constant), Nuclear (density, photo-

electric absorption, hydrogen index, macroscopic thermal neutron capture cross-section,

elemental composition, proton spin relaxation time) and Acoustic measurements (acous-

tic velocity, acoustic-signal amplitude, well seismics).

2.2.1 The Spontaneous Potential Log

Spontaneous Potential is proved to be a considerable useful tool that permits the efficient

collection of a substantial data set. Readings of spontaneous potential can give strong and
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significant evidence about the indication of lithology, porosity and permeability of the

different drilled formations. Conclusions about the location, the formation water salinity

and hence the formation oil saturation along the drilled hole are made. The drilling

operations are performed in order to find the pay zone rich in hydrocarbons. Readings

and core analysis samples are inspected and analyzed in order to make correlations

between the well to generally characterize the constituting rock properties ([8]).

Principle

Continuous recordings of the spontaneous potential include the electrochemical po-

tential difference, measured with a voltmeter, between a single electrode in the borehole

and a ground referenced electrode placed at the surface. Electrochemical potentials of

interest are the liquid junction potential and the membrane potential.

Liquid junction potential : Let’s consider two sodium chloride solutions and a mem-

brane barrier separating the two different concentrations. Then, the higher concentration

solution’s ion will tend to drift to the less concentrated solution, since the Na+ alacrity

is slower than the Cl – ions, thus creating a liquid junction potential. The maximum

liquid junction potential will be measured if the salinity between the mud filter (less

concentrated solution) and the formation water (more concentrated solution), is great.

Membrane potential : Created in molecular constructions between shale and sandstone

beds. In figure 2.2 a semipermeable shale barrier acts like an ionic sieve and separates

the two different salinities solution. The less mobile Na+ ions are travelling through the

membrane more rapidly that the Cl – ions since the shale barrier is more permeable to

Na+ ions than to Cl – ions. In figure 2.2a, the current density of the diffusing particles

is Jdiff and n is the particles concentration. At this point, the negative charge causes

no movement of the Na+ and Cl – ions in the region. In figure 2.2b, a charge separation

occurs when an electric field is applied. The magnitude of the ionic current Jcurrent

increases and the Na anions are passing to the right region while the Cl cations are

slowing down to the left until the anions and cations reach an equilibrium, thus creating

a membrane potential.

Factors affecting the measurements
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(a) Original Conditions

(b) Dynamic Conditions

Figure 2.2: Generation of the membrane potential. Figure retrieved from [32]

Some typical responses of a Spontaneous Potential log are illustrated in the figure 2.3.

Correspondence of spontaneous potential measurements depend mainly on the following

addressing factors:

1. Thickness of the permeable bed; when the SP curve is narrowed then it requires a

bed thickness correction.

2. Bed resistivity; high resistivity levels reduce the reflection of the SP curve

3. Shale content; reduces the SP deflection
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4. Hydrocarbon content; reduces the SP deflection

5. Mud and water resistivity; oil-based mud can not be used when SP is recorded

since electrical conductive paths through the mud are blocked.

Figure 2.3: Common responses of a Spontaneous Potential log. Adapted from [36]
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2.2.2 The Gamma Ray Log

Gamma Ray measurements are practically used for three main reasons. Readings of

gamma ray result in evaluation of the shale content of a formation or a shale reservoir.

In other applications, it can be used for analysis of the lithology and mineralogy of

the drilled formation. Moreover, it can be used for stratigraphic correlations. Those

correlations are based on shale distributions in the studied geological area and the age

of shale. When correlations are made, we need to take into account the contamination

from non-shale radioactive sources ([7]).

Principle

The gamma ray log records the total natural gamma radiation emitted from isotopes

of three main source elements: 40K(potassium), 232Th(thorium), 283U(uranium).

The gamma rays emitted from an isotope in the formation gradually discrete in energy.

Hence, the gamma ray intensity that the log measures is a function of: (a) the initial

gamma ray emission ; and (b) the Compton scattering in the formation that the gamma

rays encounter between the gamma emission and the detector. In figure 2.4, an illustra-

tion of the Gamma Ray log in comparison with the Spontaneous Potential and Caliper

log is presented. On average, a shale contains 6 ppm uranium, 12 ppm thorium, and 2

ppm potassium. The magnitude of gamma ray measurement in clean limestone, salts,

coal, anydrite, shaly sand and dolomite is usually small while in case of shale is relatively

large.

Factors affecting the measurements

The dependency of the measurements responds mainly to the concentration of K, Th,

U occur in the formation. Other minor factors including :

• Interfering peaks close to the principle peaks in each window of energy band.

• Two "escape peaks" related to each principle high energy peak, resulting in Th

interference in the U window, and Th and U interference in the K window.

• The bore-hole size, tool position (centering/eccentricity).

• Mud weight, casing size and weight and cement thickness.
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Figure 2.4: Caliper and gamma ray curve in comparison with the spontaneous poten-
tial curve. The studied formation is referred to clean and shale zones. Figure retrieved

from [32]

2.2.3 Induction Log

Induction logs are a type of Resistivity log. Induction logging devices are recommended

when the drilling fluid is oil-based, air or gas-based mud that do not conduct electricity.

Induction logging tools measure the formation’s resistivity and conductivity for satura-

tion estimates (differentiate the water-bearing zones from the hydrocarbon-bearing ones)

when induced by a focused magnetic field.

Principle

The Array Induction Log (AIL) tool includes of a multiple transmitting coil and eight

groups of receiving coils, spacing from 6 inches to 6 ft at three or one frequency. Each

array consists of a single transmitter coil and two receivers. The tool measures the

conductivity of the formation by corresponding to multi-frequency and multi-coil pairs.
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Different resistivity curved with three vertical resolutions 1, 2 and 4 ft are obtained at

different investigation depths, 10, 20, 30, 60 and 90 inches. Other induction tools produce

two types of signals; the inphase (R-signal) and the quadrature (X-signal) induction sig-

nal. The inphase signal is presented on standard dual induction—SFL log presentations

while both the inphase and quadrature signal are combined during advanced processing

in the logging tool itself to run real time corrections for environmental and geological

conditions. Modern induction logs include several sets of coils with focused currents.

Thus, the effects of the borehole and surrounding formations are minimized. Most mod-

ern resistivity log suites use different depths of investigation with various combinations

of measurements ([4], [54]).

Factors affecting the measurements

Correspondence of conductivity measurements depend mainly on the following ad-

dressing factors:

1. Mud inside the borehole; recommended when the drilling fluid is oil-based, air or

gas-based mud

2. Bed thickness; is not recommended in resistive and compact formations since the

signal level is low.

3. Formation resistivities; dramatic increase of the difference between apparent and

true formation resistivity.
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Figure 2.5: Example of high resistivity induction log from Halliburton (Oil field
service company). Figure retrieved from [8]
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2.3 Well log quality

The key data points that we can collect from a drilled formation are the measurements of

a hydrocarbon-bearing productive zones; the definition of the reservoir type and thick-

ness; the distinct prediction of porosity and permeability of the prospective zones; the

determination of the fluid type, flow and migration through the pores of the complex

geological environment.

In a process of planning and conducting a well log operation, well log quality control is

a subject of major interest. Acquisition problems including skips, nose, spikes and miss-

ing data result in data misinterpretation. The majority of well logs include systematic

error and environmental corrections. Those corrections are not able to completely elim-

inate the occurred errors. Nevertheless, the measurements’ correctness becomes crucial

when observation points are very close to the decision making threshold. Additionally,

we need to clarify that by increasing the frequency of logging may not be a guarantee

of increased knowledge of information and by no means does reduce the overall logging

costs.



Chapter 3

An Introduction to Time Series

3.1 Stochastic Processes and Time Series

Time series are sets of observations taken sequentially at a specified time vector t =

(t1, . . . , tN )>. Observations that contain data points taken continuously over some time

interval are referred to as continuous-time series, while observations that consist of

individual data points separated by time intervals are referred to as discrete-time series

(e.g. seismic imaging data) ([100], [61]). An example of a discrete time series is illustrated

in figure 3.1. In this thesis the term "data" will always refer to acquired observations as a

discrete sequence at uniform intervals. Time series analysis is the statistical methodology

pertained to the analysis of such sequence of data.

The sequence of variables Y1, Y2, . . . , YN or (Yt), at times t = 1, 2, . . . , N , is called a

time series, where N is the number of observations of the time series Yt. The study of a

time series requires the collection of a large number of observations taken by a specific

time frequency. We often use time series analysis to understand the past and therefore

to predict the future. One basic feature of a time series analysis is the interpolation of

the observed correlation between two successive values.

17
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Figure 3.1: Example of displacement recorded during an explosion. Data retrieved
from "astsa" package in R statistical computing environment.

3.2 Fundamental Concepts

In this section an introduction on the principal points of the statistical moments will be

made. Statistical moments are functions expressed explicitly by an analytical expression1

and they are often used to express statistical characteristics of a random field. There are

four moments of a probability distribution that are briefly overviewed. The first moment

is the mean, the second moment is the variance, the third moment is the skewness and

the fourth moment is the kurtosis. The first two statistical moments provide information

about the appearance of a distribution, whereas the third and the fourth moments provide

information about the symmetry and shape of the distribution ([39]).

1Also defined as deterministic functions.
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3.2.1 Moments

Let us consider a stochastic process {Yt :t= 0,±1,±2,±3, ...}. Then we can define the

mean function as:

µt = E(Yt) (3.1)

for t = 0,±1,±2,±3, . . . .

Generally, µt may differ at each time point t.

The variance of a random variable X can be determined as:

V ar(X) = σ2X = E[X − E(X)]2 (3.2)

or

V ar(X) = σ2X = E(X2)− [E(X)]2 (3.3)

We call the standard deviation(σx) the positive square root of the variance of X.

The standardized version of X is described as:

X∗ =
(X − µX)

σX
(3.4)

The covariance of X and Y is defined as:

Cov(X,Y ) = E [(X − µX) (Y − µY )] (3.5)

In time series analysis, the same function is called autocovariance and it is given by:

γk = Cov(Yt, Yt+k) = E[(Yt − µt) · (Yt+k − µt+k)] = E(YtYt+k)− µtµt+k (3.6)

The autocorrelation function is defined as:

ρt,t+k = Corr(Yt, Yt+k) (3.7)

for t = 0,±1,±2,±3, . . ., where the correlation coefficient of Yt and Yt+k, is defined by:

ρt,t+k = Corr(Yt, Yt+k) =
Cov(Yt, Yt+k)√

σ2Y tσ
2
Y t+k

. (3.8)
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Note that the correlation coefficient satisfies

−1 ≤ Corr(Yt, Yt+k) ≤ 1. (3.9)

In the case of standardized variables Y ∗t and Y ∗t+k, then ρ = E(Y ∗t Y
∗
t+k).

Values of ρt,t+k near ±1 signify strong linear dependence between random variables,

whereas values below 0.2 signify low linear dependence. Values of Yt,Yt+k are uncorre-

lated if the autocorrelation function is equal to zero.

In order to examine the covariance function properties of every possible time series

models, lets consider x1,x2,. . . ,xm and y1,y2,. . . ,yn are constants while t1,t2,. . . ,tm and

s1,s2,. . . ,sn are time points, then:

Cov

[
m∑
i=1

xiYti ,
n∑
j=1

yiYsi ]

]
=

m∑
i=1

n∑
j=1

xiyiCov(Yti , Ysj ) (3.10)

The skewness measures the asymmetry of the distribution and is defined as ([96]):

st =
E[(X − µ)3]

σ3x
. (3.11)

This is estimated from a sample (x1, . . . xn) by means of the average

ŝt =
n∑
i=1

(xi − µ)3

n σ̂3x
,

where n is the sample size and σ̂x is the sample estimate of the standard deviation.

If

• st ∈ [−1, 1] then the distribution is highly skewed

• st ∈ [−1,−0.5] or st ∈ [0.5, 1] then the distribution is moderately skewed

• st ∈ [−0.5, 0.5] then the distribution is approximately symmetric

The kurtosis measures the heaviness or the lightness of the tail of the distribution

relative to the normal distribution of the same variance and is defined as:

kt =
E[(X − µ)4]

σ4x
. (3.12)
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This is estimated from a sample (x1, . . . xn) by means of the average

k̂t =
n∑
i=1

(xi − µ)4

n σ̂4x
,

where n is the sample size and σ̂x is the sample estimate of the standard deviation.

If

• kt = 3 then the distribution is Gaussian

• kt ∈ [3,∞] then the distribution is leptokurtic

• kt ∈ [−∞, 3] then the distribution is platykurtic

3.3 Time Series Analysis

There is a distinguished remark that we need to take under consideration when dealing

with time series data. The fact that there is the profound relationship between the impute

current values to that of its preceding or later data points that affect the parameter we

are interested in ([20], [61]).

In figure 3.2 the main time series components are illustrated.

1. Trend - the increasing or decreasing overall direction of the value in the series, over

time.

2. Seasonality - repeating variations or short-term cycles in the series caused by re-

occurring events.

3. Random component - random shifts in the time series that may be ascribed to

noise or other unsystematic events.
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Other time series components include:

1. Outliers (Special events) - abnormal observations due to random or special events.

Special attention needs to be taken when analyzing or interpreting the outliers in

order to be effectively characterized.

2. Level shifts - sudden fluctuations on the mean time series level.

Figure 3.2: Decomposition of multiplicative time series. The number of observations
is equal to 150 and the number of observations per unit of time is equal to 14.

At this point we need to elucidate the difference between the three dominant types of

time series, stationary, additive and multiplicative. Their composition is considered as

follows:

The stationary model’s main assertion is that the mean, variance and autocorrelation

(see section 4.2) are constant through the course of time.

stationary = seasonality and/or noise

The main characteristic of the additive model is that all components are independent

to each other and are implemented in the same attributed unit of measurement.

additive = trend + seasonality + noise
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On contrast, in the multiplicative model, only the trend component has the same at-

tributed unit of measurement of the observed time series, while all the other components

are independent to this same unit.

multiplicative = trend * seasonality * noise

In the additive model case, the trend component doesn’t affect the seasonality when

calculating the values of the series. This assumption can be verified, especially when

analyzing natural phenomena.

3.3.1 Trend Removal

We need to take into consideration that the data gathered through logging is liable to

sampling or measurement error. That is, real data often exhibit more complicated trend

models. By means of simplicity, the trend function ux will be modelled by low-order

polynomials of the coordinators of the series’ data points in order to ensure consistency

of interpretation of the spatial direction in the data, and on the other hand, to examine

under which possible circumstances the effect of a trend on a variogram (see section 5.3)

might be bypassed to allow a sufficient analysis of the data. In Table 3.1 some common

1D trend models are shown. The selection of the best trend model is done by means of

Least Squares Errors (LSE). An indicative plot appears in Figure 3.3.

Model Trend Function (1D)
Mean ux = a0

Linear ux = a0 + a1x

Quadratic ux = a0 + a1x+ a2x
2

Cubic ux = a0 + a1x+ a2x
2 + a3x

3

Quartic ux = a0 + a1x+ a2x
2 + a3x

3 + a4x
4

Table 3.1: Common trend functions
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Figure 3.3: Time series with linear trend (blue line) and residuals (red line) after
removing the trend (black dotted line).
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3.3.2 Stationarity

The term stationary process implies that the properties of the process do not change

over time ([40], [53]). A process Yt is said to be strictly stationary if the joint distri-

bution of Yt1 ,Yt2 ,...,Ytn is equal to the joint distribution of Yt1−k,Yt2−k,...,Ytn−k, at time

points t1,t2,...,tn and all possible time lag k. Thus, it follows that E(Yt) = E(Yt−k)

and V ar(Yt)=V ar(Yt−k) for all t and k so that the mean function is constant and the

variance is also constant over time. On the contrary, a process Yt, is said to be weakly

stationary if it has the same mean value, µ, at all time points; it has the same variance,

γ0, at all time points; and Cov(Yt, Yt+k) = γk for all lags k, meaning that the covariance

of the values at any two time points, t,t− k depend only on lag k.

Stationarity Tests

Fitting a model in time series usually implies the prerequisite that the time series

are stationary. It is possible to check the stationary behaviour by using a variety of

tools. Those include the Ljung-Box test; the Augmented Dickey-Fuller (ADF) t-test;

the Kwiatkowski-Philips-Schmidt-Shin (KPSS) test; the Wavelet Spectrum Test and the

Priestley-Subba Rao (PSR) test ([70]). In this thesis, the stationary or nonstationary

behaviour will be determined by the Kwiatkowski-Philips-Schmidt-Shin (KPSS) test.

In the KPSS test the model is based on linear regression and the represented compo-

nent are the sum of three parts: the deterministic trend (t), a random walk process (rt),

and a stationary error (εt) of the first equation, estimated by the ordinary least squares

regression (OLS) and by stationary assumption. The model is being described by the

following equation:

yt = at+ rt + εt (3.13)

when rt = rt−1 + ut. The component ut is the error term of the second equation, by

assumption of an i.i.d. series. If a = 0, then yt is stationary around rt, alternatively,

if a 6= 0, the yt is stationary around a linear trend ([89]). The data is usually log-

transformed in order to eliminate any exponential trends and transform them into linear

ones.
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KPSS test often erroneously rejects the hypothesis that the data can be modeled as

a stationary time series. This type of error can be prevented by combining the results of

the KPSS and the ADF tests.



Chapter 4

Non-stationary Time Series

4.1 Simple Time Domain Models

The main purpose of time series analysis is to develop a mathematical model that provides

plausible definitions for source data of a relevant stochastic process ([84]). One possible

way to define the stochastic process is to determine the joint probability density function

of the sequence of variables {Y1,Y2,. . . ,YN} that can be described as

f(Y1, Y2, . . . , YN ) (4.1)

If the probability density function were specified, then a future value point of the time

series could be easily assessed at a particular probability. However, it is impossible to

completely identify those multivariate distributions due to high number of parameters

that they contain.

In this section one group of simple time domain models will be analyzed. Those

models are used to produce more advanced models.

4.1.1 Independently and Identically Distributed

The term "independently and identically distributed" (iid) implies that the random vari-

ables of the sequence {Y1,Y2,. . . ,YN} have the same distribution and also are mutually

independent.

27
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Let us suppose that {Y1,Y2,. . . ,YN} are i.i.d. with the same distribution as a random

variable Y , then the probability distribution of this stochastic process is equal to the

product of single probability density functions:

f(Y1, Y2, .., YN ) = f(Y1) · f(Y2) · ... · f(YN ) (4.2)

thus,

E(Y1 + Y2 + ...+ YN ) = N · E(Y ) (4.3)

V ar(Y1 + Y2 + ...+ YN ) = N · V ar(Y ) (4.4)

4.1.2 White Noise

A white noise time series is an example of a stationary process. We assume that the {et}

so-called white noise process has zero mean and denote σ2 variance for all t, respectively:

{et} ∼WN(0, σ2) (4.5)

where W denotes the white independent noise, thus we write W ∼ i.i.d.(0, σ2W ),([16]).

In the case of a white noise, the previous values of a time series cannot be properly

processed in order to predict a future value, thus forecasting is impossible. The resid-

uals of a typical regression describe an example of white noise whereas define random

errors, stochastic shocks or other innovations. White noise can be used for synthetic

data simulation.

As mention in the 4.1.1 section , an i.i.d. process is a case of white noise. A sequence

of random variables {et} is i.i.d. if:

E(et) = µ, constant (4.6)

γ0 = E(e2s) = σ2es , ∀t (4.7)

where et is independent of es for all t and s , and t 6= s . If the values of a time series wt

follow a standard normal distribution:

wt ∼ N(0, σ2) (4.8)
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then the series is known as Gaussian white noise (Figure 4.1).

Figure 4.1: Simulation of N=100 random values of a Gaussian white noise (wt) with
mean µ = 5 and standard deviation σwt=0.3 (left). The auto-correlations of a simulated

white noise series are all zero except at zero lag (see ACF plot).

4.1.3 Random Walk Model

A random walk model describes a series in which the change from one time point t to

another time point t + 1 are random. It is defined as the time series Yt that results

when a completely random displacement εt is added to the previous Yt−1 according to

equation (4.9):

Yt = Yt−1 + εt, (4.9)

for t = 1, 2, 3...n, with Y0=0 and εt i.i.dN(0,σ2ε) variables.

A simple example of a random walk model is described in figure 4.2 where we can

assert that an individual is walking into a path. The probability of taking a step back,

forward or move in the right or left direction is equal.
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Starting from t=1 and then using the successive substitution method in 4.9 we may

rewrite it as follows:

Y1 = Y0 + ε1 (4.10)

Y2 = Y1 + ε2 = Y0 + ε1 + ε2 (4.11)

Yt = Y0 + ε1 + ε2 + ...+ εt = Y0 +

t∑
i=1

εi (4.12)

A random walk plus drift model is given by (Eq.4.13):

Yt = δ + Yt−1 + εt (4.13)

for t=1,2,3...,n, with Y0=0 and εt i.i.d N(0, σ2ε) are the white noise innovation terms.

The general solution of the equation 4.13 results from the same method of successive

substitution implemented in equation 4.9. Thus,

Yt = Y0 + δt+
t∑
i=1

εi (4.14)

for t=1,2,3...,n, with εt i.i.d normally distributed N(0, σ2ε ) innovation terms.

The random walk with drift is not stationary, which can be seen by calculating the

mean E(Yt) and the variance γ0 that are functions of time t ([33]):

E(Yt+n) = Yt + na+

n∑
i=1

E(εt−i) = Yt + na (4.15)

The first moment indicates that the process is not mean stationary:

V ar(Yt+n) =

n∑
i=1

V ar(εt−i) =
∑

σ2εt = nσ2εt (4.16)

The second moment indicates that the process in not variance stationary and the variance

changes depending on time t. A summarizing image of a simulated random walk with

and without drift appears at figure 4.3.
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Figure 4.2: Realization of a simulated 2D random walk with 1000 steps.
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Figure 4.3: Top left: Simulated random walk of 1000 random values. Bottom left:
Simulated random walk of 1000 random values with drift δ= 0.5. The decline of the re-
spective autocorrelation functions (ACF) (top right and bottom right plots) progresses
slowly in both cases. The decline of the ACF for the random walk with drift progresses

more slowly than the ACF of the random walk without drift.
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4.2 Autocovariance and Autocorrelation Function

As previously referred in chapter 3, the mathematical definition of the sample covariance

between two stochastic variables x = xt, y = yt is set as follows:

cxy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) (4.17)

Then the autocovariance at lag k is given by the following expression:

γk = Cov(yt, yt+k) = E[(yt − ȳ)(yt+k − ȳ)] (4.18)

where k = 0, 1, 2, ... and yt and yt+k are values of the time series at different times.

The variance of the time series corresponds to the autocovariance at lag k = 0. For a

stationary time series the variance is constant.

The autocorrelation coefficient at lag k is computed by means of the equation:

ρk =
E[(yt − ȳ)(yt+k − ȳ)]√
E[(yt − ȳ)2]E[(yt+k − ȳ)2]

=
Cov(yt, yt+k)

V ar(yt)
(4.19)

The cross-correlation statistics for positive values of lag k between the two variables is

defined by ([67])

cxy =
1

n

n−k∑
t=1

(xt − x̄)(yt+k − ȳ) (4.20)

Thus, the cross-correlation function is given by the expression:

ρxy =
cxy√
cxx cyy

. (4.21)

4.3 Non-Stationarity

A time series is called nonstationary if the mean and/or variance change over time. A

simple example of nonstationarity is the random walk with or without a drift. Non-

stationary behaviour is common in nature, especially in the fields of economics ([5]) or

signal analysis ([38]).
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Well log data is often corrupted by the different types of noise that results in nonlinear

and nonstationary characteristic behaviour, causing abrupt discontinuities in the series,

whereas making the recognition of the formation boundaries a difficult and ambiguous

process. Additional signal analysis techniques must be applied so as to take care of

nonstationary well log signals.

4.4 Forecasting Models

The second part of this thesis frames on predicting the values for the continuous gaps in

the well logs, acquired through sensing tools, providing better quality of information for

the following steps in the interpretative formation evaluation techniques.

Many study-cases have chosen a variety of well logs and used varied algorithms and

methods to identify the correlations between logs. The most commonly tested techniques

are the ones of generalised linear models - Ordinary least squares (OLS), Bayesian Ridge

Regression(BRR), and Random Sample Consensus (RANSAC) - and non-linear models

- Artificial Neural Net-works (ANN), Random Forests (RF), and Gradient Tree Boosting

(GB) ([52] ; [74]; [14]; [25]). There are other techniques for grid filling when the data

set is incomplete using the Maximum entropy spectrum analysis, minimum curvature or

natural neighbor shorting ([46]; [101]).

However, the science community considers the rapid growth of application of time se-

ries forecasting methods to be of great utilitarian value in order to fill missing data under

specific mathematical statements. Nevertheless, this practice is still in its incipient stages

due to some complex conditions concerning the analysis of data. For instance, a major

issue includes the unravelling and extraction of the convoluted trend and seasonality of

the well log data, which are often stymied by their high complexity.
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4.4.1 Auto-regression

The general equation for linear regression is defined as:

y = α+ βx+ ε (4.22)

where α is the intercept, β is the linear co-efficient, x is the independent variable and ε

is the random noise. In most cases, there are more than one parameters that affect the

study and thus multiple regression is preferably used. The following equation describes

the above:

y = α+ β1x1 + β2x2 + · · ·+ βnxn + ε (4.23)

Generally, we may assert that the auto-regression (AR) model predicts the next point

from the use of the previous value points of the data. This is defined by the equation:

Xt = c+ β1 ∗ xt−1 + β2 ∗ xt−2 . . . βn ∗ xt−n + ε (4.24)

where c is a constant which is, in some cases, zero and the mean of the time series, xt−n

are the independent previous value points, βn are the parameters of the model and ε is

the error term which is also called the innovation term. A white noise model is typically

used to describe the innovation term.

4.4.2 Moving Average

It’s possible to replace the white noise series wt by a moving average to smooth out

fluctuations, trends and cycles of the time series ([83]). Suppose that Vt is the moving

average of span N at time period t, then :

Vt =
Yt + Yt−1 + ...+ Yt−N+1

N
=

1

N

t∑
i=t−N+1

Yi (4.25)

where Yt, Yt−1, ..., Yt−N+1 are the most recent N observations with weight zero to all

other observations ([61]). An illustration of two moving average models of the white

noise process shown in figure 4.1 appear in the graphs of figure 4.4.
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Figure 4.4: Moving averages of the white noise process shown in figure 4.1. Left:
3-point moving average. Right: 10-point moving average.

4.4.3 Autoregressive Integrated Moving Average (ARIMA)

The combination of a d-degree differencing with autoregresssion and a moving average

model is called an ARIMA(p, d, q) model (Table 4.1, Table 4.2) and can be written as

follows :

Yt = δ + ϕ1Yt−1 + ...+ ϕp+dYt−p−d + ...+ εt − ...− θ1εt−1 − ...− θqεt−q (4.26)

where φ are the parameters of the AR(p) component model and θ are the parameters

of the MA(d). The model implies the assumption of a stationary times series, without

trend and a constant variance and mean throughout the series. In reality, thought, this
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is rarely the case. In order to model a non-stationary time series we initially remove the

trend next we transform the data into stationary data set, we perform the model on the

adapted data and finally the trend aspect is added back into the main series ([60]).

The model denotes the dependency of a number of previous values Yt−j , j = 1, . . . , p+

d, of a current random error εt and a number of previous errors εt−j ,j = 1, . . . , q.

p Order of the auto-regressive part
d Degree of first differencing involved
q Order of the moving average part

Table 4.1: ARIMA model of order p,d,q ([40]).

White noise ARIMA(0,0,0)
Random walk ARIMA(0,1,0) with no constant

Random walk with drift ARIMA(0,1,0) with a constant
Moving Average ARIMA(0,0,q)

Table 4.2: Basic ARIMA models ([40]).

4.4.3.1 ARIMA Parameter Selection

Based on the aforementioned statements, it is important to carefully choose the optimum

order of the ARIMA model. This selection process includes the determination of the

Auto-correlation function (ACF), referred in equation 4.19, and Partial-autocorrelation

function (PACF) in order to find the values p, d, q that optimize the metric of interest.

Auto-correlation is defined as the degree of correlation between the current observed

data point and its previous or future point, thus is a measurement of the order of the

dependence. The interval between the observed data point and its previous values used

in measure the correlation is called the lag. Partial-autocorrelation is a measurement of

correlation between observations’ residuals with the next lag k value.

If we consider m = p+ q + P +Q, where p, q are the non-seasonal components of an

ARIMA model and P,Q are the seasonal components of an ARIMA model (referred as

SARIMA) then the optimum chosen components are the ones that minimize the Akaike

Information Criterion (AIC) (see section 4.6).
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Figure 4.5: Correlogram estimate of the auto-correlation function.

Figure 4.6: Correlogram estimate of the partial-autocorrelation function

4.4.4 Model Selection

The following step in data analysis is to obtain a model with good prediction accuracy.

This statistical technique of evaluation and model selection is called Cross-Validation

(CV). It is crucial to identify and include all the important factors and interaction

and at the same time omit the unimportant ones. In practise, the data set will be

equally partitioned into two segments: one used for training and the other used for

testing. Various procedures of different validation methods are proposed in order to

estimate accuracy. The least biased accuracy types of cross-validation is the regual

cross-validation, the leave-one-out Cross-Validation (LOOCV), the leave-p-out Cross-

Validation (LpOCV) and the k-fold Cross Validation (k-fold CV) ([27], [45]). In this

analysis we are concerned with the common validation measures
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Validation Measures

A number of validation measurement formulas provide an evaluation of association

between each model. The tested equations are the Mean Absolute Error (MAE), the

Mean Squared Error (MSE), the Root Mean Squared Error (RMSE), the Pearson’s cor-

relation coefficient (rP ) and the Spearman’s correlation coefficient (rS). The regression

error metrics are useful for evaluating the model’s precision. Pearson’s and Spearman’s

correlation coefficients benchmark linear and monotonic relationships between the pre-

dicted and estimated variables, respectively. Let y be the observed values, ŷt be the

predictive values and n be the number of observations. Writing the formulas explicitly,

we have:

MAE =
1

n

n∑
t=1

|ŷt − y| (4.27)

The MAE is used to measure the prediction’s closeness and accuracy. MAE gives more

weight to the average magnitude of errors between predicted and the corresponding

observations.

MSE =
1

n

n∑
t=1

[ŷt − y]2 (4.28)

The MSE refers to the sum of squared bias and variance and is a useful metric for

providing indirect mathematical insight about the behaviour of the natural processes.

RMSE =

√√√√ 1

n

n∑
t=1

[ŷt − y]2 (4.29)

The RMSE is used to calculate the prediction’s closeness and accuracy while measuring

the quadratic average magnitude of relatively large errors.

MAPE =
100

n

n∑
i=t

|ŷt − yt|
|yt|

(4.30)

The MAPE expresses the mean absolute percentage error and has the advantage of being

scale independent. Very high actual values will result in extremely low error and vise
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versa.

rP =

∑n
t=1

(
ŷt − ¯̂y

)
(yt − ȳ)√∑n

t=1

(
ŷt − ¯̂y

)2∑n
t=1 (yt − ȳ)2

(4.31)

The Pearson’s correlation is frequently used to measure the degree to which two variables

are correlated, thus querying their linear dependency. The closer the Pearson’s product

(rP ) is to 1 or −1, the more accurate the linear fit is.

rS = 1−
−
∑n

t=1(dt)
2

n(n2 − 1)
(4.32)

The Spearman’s correlation measures the strength of association between two sets of

continuous variables ŷt and yt where di indicates the differences between the ranks of ŷt

and yt.

4.5 Correlation Techniques

K-Nearest Neighbor(KNN)

The K-Nearest Neighbor (KNN) technique will be used in order to correlate two

discrete physical property logs of two distinguished oil and gas wells that have different

depth steps resolutions and are located in the same studied area. This technique uses

a k-dimensional tree (also called k-d tree) to store and organize spatial data in a k -

dimensional space.

Given a set Ω of points n, we need to rapidly find the closest point in the metric space

(k-neighbor), more simply, we need to find the k objects nearest to the query point q

([3]).

First, the calculation of the Euclidean distance between the numeric values of the data

points is implemented. The algorithm will compute the distance between each data point

and the test data. Finally, the data points that have the highest probability in being

similar to the tested data are classified. The mathematical formula of the Euclidean
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distance is shown below.

d(p, q) = d(q, p) =
√

(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qi − pi)2

=

√∑n

i=1
(qi − pi)2

(4.33)

The KNN is a non-parametric technique, which means that no additional assump-

tions about the data sets needs to be taken. Yet, certain caution must be taken when

using this algorithm, especially when data points are in boundary which can lead to

misclassification.

Classification measures for missing values

Missing data on model induction is a rather major drawback concerning the fields

of Machine Learning (ML); Data Mining (DM) and other correlated areas. Some good

reference in the area are : [9], [56], [17], [55], [37].

In the scientific field of applied geophysics the majority of data sets are obtained

from measurements of natural (or spontaneous) phenomena and induced phenomena at

prediction time. The conditions under which the open-hole and cased-hole measurements

are made often cause the data to have several gaps. Classification measures in such cases

is useful so as to classify the unknown values.

Cost function

When performing multiple well logs correlation a practical solution for optimizing a

reasonable computational cost is of high significance for computer implementation. In

his study, [50], proposes the dynamic depth warping method where a pair of well logs

A(n) and B(m) with the n-th and m-th point in the well A and B, respectively, the

cost function is a difference metric d(n,m) of matching points between the two well logs,

|A(n)−B(m)|. The cost function is defined as:

d(n,m) =

√∑k
i=1 |Ai(n)−Bi(m)|2W (k)

k
(4.34)

for i = 1, 2, ..., k logs and W (k) the weighting coefficient for the k-th log.
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More resent studies emphasize in the intrinsic importance of utilizing deliberated

training models of neural networks. A more comprehensive description of this practise

can be found in [31], [10].

4.6 Fitting Criteria

Maximum Likelihood Estimation

The Maximum likelihood estimation method (MLE ) is an indispensable tool used for

parameter estimation and is preferred for a variety of mathematical modelling techniques

when the data is non-normal. Suppose that xi are i.i.d, then the likelihood is defined as:

L(θ) =

n∏
i=1

f(xi | θ)

The L(θ) signifies the observing probability f the given data as a function of θ. In order

to maximize the product of the previous function, we maximize the log likelihood, using

the fact that the logarithm is an increasing function:

l(θ) =
n∑
i=2

log(f(xi | θ))

This method can be performed on data so as to extract as much information as possible.

Information criteria are useful for model selection. In this thesis the AIC and BIC

criteria are used to determine which distribution model is most appropiate for a given

set of stochastic variables. The mathematical expressions of these criteria are written

below:

AIC : Akaike Information Criterion

The AIC approach aims to clarify the best fitted model of the observed data via the

principles of MLE and negative entropy 1.

AIC = −2 logL(θ) + 2k (4.35)

1Measure of diveregence of normality ([15])
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BIC : Bayesian Information Criterion

The BIC approach aims to identify the best fitted model of the observed data by

comparing probabilities, under the consideration that each of the candidate models is

the true model.

BIC = −2 logL(θ) + k log(n) (4.36)

Concisely, both criteria can be used in order to reassure the robustness of a model’s

fitness. These criteria are giving optimal model selection results under defined condi-

tions, whereas fail to fully describe the complexity of a real model problem. Hence, the

understanding of the nature of the problem is necessary.

Goodness-of-fit statistics

The measurements of goodness of fit of a statistical model is an important step on

data analysis in order to examine if the initial hypotheses about the observation process

fit a model adequately as well as if we can consider it consistent with those hypothe-

ses. The following tests can be used for such a reason are the Kolmogorov–Smirnov

test ; the Cramér–von Mises criterion; the Anderson–Darling test. In this thesis the

Anderson–Darling test would be used for the analysis. All distributions tested for this

particular thesis are fully specified in chapter 5.2.



Chapter 5

Data Analysis Processes

When it comes to data processing for interpretation, there is not a standard procedure for

every data set. Usually the investigator follows a sequence of operations to result in cor-

rect conclusions. In time series analysis and forecasting there are some general accepted

steps performed, including the evaluation and trend model removal and then residuals

diagnostic processes. In the following section, a brief description of each procedure is

presented.

5.1 Preliminary and Exploratory Analysis

Preliminary data analysis aims to provide summary statistics for all data and examine

if there are issues that can affect the modeling processes. Univariate analysis refers to

the analysis of data that contain only one variable. Multivariate analysis is the analysis

which examines the relationship between two or more variables. The primary analysis

includes both univariate and multivariate analysis ([21]).

Exploratory data analysis aims to provide information about the various character-

istics of a data-set by displaying several graphical techniques and tools. The following

tools are going to be used in this thesis.

44
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Histograms

A histogram is a graphical display that forms the shape of a probability distribution

function by plotting a number of observations from a distribution. We can define a

histogram as a function that calculates a number of intervals ni and then divides them

into variable values. The calculated density histogram is a discrete function with values

fi
n(cR,i − cL,i)

, i = 1, . . . , Nb (5.1)

where fi is the frequency of the data for each histogram class (bin) i, [cL,i, cR,i] is the

width of each bin (note that cL,i+1 = cR,i), n is the number of samples and Nb is the

number of bins.

QQ plots

A commonly used technique for informally calculating goodness-of-fit as well as es-

timating the scale and location for a family of distributions F, is called QQ plot or

quantile-quantile plot ([2]). The scale parameter defines the heaviness of the tail. In

some cases, is hard to judge the normality from a histogram. A normal QQ plot graphs

the shape of the empirical distribution (y-axis) against the shape of a normal distribu-

tion (x-axis) thus provides a visual check in order to examine whether or not the points

are close to a straight line. For the thesis’s purposes we will adapt this method to the

problem of detecting the lack-of-fit at the distribution tails.

PP plots

Probability-probability plots (also known as PP plots) are a graphical tool for inter-

preting CDFs of a family of distributions against one another ([97]). PP plots are well

suited to compare probability distributions that are not overlapping. Notably, the PP-

plot is sensitive to differences in the middle of a distribution, in comparison with those

in the case of the QQ plot.
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Figure 5.1: Example of 1000 generated random values from the standard normal
distribution, with zero mean and standard deviation equal to one.
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5.2 Probability Distributions

Many geophysical processes are usually modeled and based on the distributions1 de-

scribed in this section. Those distributions refer to stochastic processes. In this study,

we will use the term stochastic instead of random to describe a non-random evolution of

the natural process. Estimating the parameters of a distribution is a challenge. Those

parameters are usually complicated functions that depend on the geophysical parameters

of interest ([26]). The data is subject to a great degree of uncertainty that we wish to

describe, in a simple and effective way. Thus, we use the probability theory.

While geophysical data-sets obtained by formation evaluation tools can compute nat-

ural properties or describe natural phenomena, we have to do some simplifications, as

time discretization at the annual time scale ([47]), so that we can perform a classical

statistics implementation of our data.

The typical elements of any distribution are variables included in the probability dis-

tribution function (PDF) and the cumulative distribution function (CDF). Even different

order moments can be regarded as parameters that can make inferences about the lo-

cation, scale and shape of the distribution. Common discrete distributions include the

Binomial, Geometric, Logarithmic, Poison, Zipf and more, while common continuous

distributions include Cauchy, Laplace, Gaussian (or Normal), Beta, Gamma, Student -

t, Weibull, Pareto, Exponential, Gumpel and many more ([58]). Only a few of them will

be analyzed for the propose of this thesis.

Cumulative Distribution Function

A FX(x) function is said to be a Cumulative Distribution Function (CDF) if it has

the following characteristics:

1. dFX(x)
dx ≥ 0

2. FX(−∞) = 0

3. FX(+∞) = 1

The CDF function gives the corresponding probability of a set of random variables x

that occur below a specific value and is expressed by the mathematical formula of :
1Primary statistical tool for analysing and illustrating raw data.
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FX(x) =

∫ x

−∞
fX(u)du (5.2)

Probability Density Function

A fX(x) function is called a Probability Density Function (PDF), for a sample area

X, if it has the following properties:

1. fX(x) > 0

2.
∫
X fX(x)dx = 1

The PDF function gives the probability of both continuous and discrete distributions

within a specific range of values and is expressed by the equation of:

Pr[b ≥ X ≥ α] =

∫ b

α
fX(x)dx (5.3)

5.2.1 Probability distribution models

Normal Distribution

We call X a normal random variable with elements µ ∈ IR, σ2 > 0 and we can rewrite

it as X ∼ N(µ, σ2). The Normal distribution is also known as Gaussian distribution and

in non-technical literature is called the bell curve.

Probability density function :

f(x;σ, µ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (5.4)

where x ∈ IR. We can imply that fY (µ − y) = fY (µ + y), y ∈ IR, which means that fY

is symmetrical to the µ parameter. There is maximum point at y0 = µ that is the only

local (and absolute) maximum. The inflection points are y1 = µ− σ and y2 = µ+ σ.
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Weibull Distribution

The Weibull distribution can be considered as the generalization of the exponential

distribution.

Probability density function :

f(x;λ, α) = αλαxα−1eλx
α

(5.5)

where x ∈ IR, λ > 0, α ≥ 0. The α parameter is called shape parameter. When α

increases, the curve narrows. The λ parameter is called the scale parameter. Weibull

distributions with α < 1 have a decreasing failure rate, whereas Weibull distributions

with a > 1 have an increasing failure rate.

Gamma Distribution

The Gamma distribution can be considered as the generalization of the exponential

distribution.

Probability density function :

f(x;λ, α) =
λα

Γ(α)
xα−1e−λx (5.6)

where x ≥ 0. The gamma function is defined as : Γ(α) =
∫∞
0 xα−1e−xdx, a > 0. The

Gamma distribution is right-skewed.

Logistic Distribution

Probability density function :

f(x;σ,w) =
e−w

[σ(1 + e−w)]2
(5.7)

for any α ∈ IR, β > 0 and x ∈ IR while w is defined as : w = x−α
β . A The f(x) is

symmetric about x = α plus the f increases on (−∞,α) and decreases on (a,∞).
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Log-logistic Distribution

Probability density function :

f(x; k, z) =
kzk−1

(1 + zk)2
(5.8)

for any k ∈ (0,∞) while k and z are defined as : k = β
α , z = x

α , x > 0, α > 0, β > 0.

The α and β elements denote the scale and the shape parameters, respectively.

Chauchy Distribution

We call X a cauchy random variable with elements α ∈ IR, γ > 0.

Probability density function :

f(x;α, γ) =
1

πγ
[1 + (

x− α
γ

)2]−1 (5.9)

for x ∈ IR. The f(x) is symmetric about x = α, it increases and then decreases, when

the mode is x = α. As x approaches ∞ or −∞ then f(x) −→ 0.

Gumbel Distribution

We call X a gumbel random variable with elements µ ∈ IR and β > 0 and is a

particular case of the class of extreme-value distributions. A Gumbel distribution is

right-skewed.

Probability density function :

f(x;µ, β) =
1

β
e−(z+e

−1) (5.10)

where z is defined as : z = x−µ
β , x ∈ IR. At the location of the mode (x = µ), the

density f(x) = e−1 is approximately 0.37, regardless of the value of β.

5.3 Spatial Modelling : Estimation of Spatial Correlation

This section refers to the well-log data correlations and the importance of investigation of

spatial correlation of the heterogeneity and variability of physical properties the geolog-

ical strata. This can be done with variography, which establishes the rate of similarity
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between sample points as a function of a distinct seperation distance h. Their visual

representation is displayed in Figure 5.2.

5.3.1 Experimental Variogram

The computational method of the experimental variogram is the Matheron’s method of

moments (MoM) estimator ([64]):

γ̂(h) =
1

2N(h)

∑
N(h)

[z(u)− z(u+ h)]2 (5.11)

where N(h) is the number of comparison pairs for lag h, z(u) and z(u + h) are the

observed values of z at locations u and u + h. In other words, the variogram is defined

as equal to one half of the average of squared differences between the field values.

Nugget

The existence of nugget effect (or nugget) is related to the fluctuation of the short

range variability in the data. The nugget is equal to the intersection of the variogram

with the y-axis of the graph. If the nugget is larger in comparison with the sill then

that indicates too much noise and really small spatial correlation. Notice that below the

intersection point no information can be obtained for interpretation ([77]) .

Sill

The sill of a variogram is the inflection point of the curve at which levels off and

represents the variance of the variables. Positive or negative spatial correlation occurs

when the data points are below or above the sill, respectively. The existence of trends in

the data can be indicated by the behavior of the variogram curve based on the sill. In

that case, the trends have to be proceed accordingly ([41]).

Range

The distance at which the variogram’s value points level off to the sill is known as

the range and is a maximum correlation length estimation between two sampling points

at separation distance h. One remark is that spatial correlation can be calculated if the

point distances are greater than the range, but is practically zero. ([34]).
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Figure 5.2: The three principal parameters of the variogram from [11]



Data Analysis Processes 53

5.3.2 Theoretical Variogram model

Bochner’s Theorem

The covariance is defined as a deterministic function between two points and denotes

the interdependence of those points on a field Z on IRd. However, it is not correct to

consider that a deterministic function can be defined as a covariance function. The covari-

ance functions cannot be any functions unless they meet under some conditions. Those

conditions must be determined, as they represent several theoretical models. Therefore,

the experimental spatial correlation adjust to a defined fitting model. The conditions

that define the permissible covariance functions are provided by the Bochner’s theorem.

Theorem 5.1 (Bochner’s Theorem). A function c̃X is a permissible covariance function,

if the following conditions hold:

1. The integral c̃X(k) =
∫
cX(r) eik·rdr exists and is symmetric, i.e., c̃X(k) = c̃X(−k),

2. it is non negative for all frequencies k, an

3. is bounded for all frequencies k.

Variogram Models

Fitting a variogram model to the empirical variogram is necessary for two main reasons

([71]):

1. Spatial prediction algorithm (Kriging) requires spatial continuity of the data.

2. A variogram model can ensure a positive definite model of spatial variability.

The most common are the spherical, exponential, gaussian, and power functions. These

models ensure mathematical stability during calculations ([41]) and are known to be

positive defined. Examples of experimental and theoritical variogram models used in the

present thesis are :
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Nugget Effect Model

The nugget effect model represents a constant value for all distances greater to zero.

It is described by the function:

γ(h) =


0 if h = 0

1 if h < 0
(5.12)

In order to optimize any process under study is essential to understand the nature of the

nugget effect since the model describes the spatially uncorrelated range of the observed

values.

Spherical Model

Represented by quadratic modified equation. It is described by the function:

γ(h) =

 C0 + C1

[
3
2
h
a −

1
2(ha )3

]
if 0 < h ≤ a,

C0 + C1 if h ≥ a.
(5.13)

C0 denotes the nugget variance and C1 refers to the variance of the spatially correlated

component. The quantity α is a distance parameter and indicates the spatial dependence.

Exponential Model

Similar to the spherical model in variability with distance reaching the sill asymptot-

ically. It is described by the function:

γ(h) =

 C0 + C1

[
1− e

−h
a

]
h > 0,

0 h = 0.
(5.14)

The parameter a denotes the range of the spatial dependence, also referred to as corre-

lation length.

Gaussian Model

The Gaussian model uses the normal distribution curve, thus has a parabolic shape

in short distances where phenomena identical. It is described by the function:

γ(h) = C0 + C1(1− e(
−h
a

)2) (5.15)



Data Analysis Processes 55

The Gaussian model has smoother spatial changes than other experimental variogram

models.

Matérn Model

The Matérn model can be characterized as a generalization of various variogram model

functions. The Exponential model for ν = 0.5, the Whittle’s model for ν = 1, as well

as the Gaussian model for ν = ∞ are some of the cases. Τhe parameter v is referred

to the literature as the smoothness parameter. Different behaviors of the model can be

described due to great flexibility of the number of the parameter ν. The corresponding

variogram function with ν =∞ denotes a smooth behavior. Alternatively, if the ν ≈ 0,

then is related to a very rough behavior. The model is described by the function:

γ(h) = C0 + C1[1−
1

2ν−1Γ(ν)
(
h

a
)ν Kν(

h

a
)] (5.16)

where C0 is the nugget effect. The sill is the sum of C0 and C1. The Kν denotes the

Bessel function:

Kν(t) =
Γ(a)

2
(
t

2
)−ν (5.17)

and the Γ(ν) denotes the Gamma function :

Γν =

∫ ∞
0

e−tuν−1dt (5.18)

The non-negative parameter of the covariance is the component ν.

Power Model

A spacial case of the power model is the Linear model, where a = 1 and h describes

the slope. It is described by the function:

γ(h) = C0h
a (5.19)

for 0 < a < 2. The parameter a describes the variation’s intensity while the parameter

2H describes the curvature. There is no sill for the power-law variogram. Thus, allow

for infinite variance.
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Pentaspherical Model

Represents a five-dimensional analogue of the spherical model. The formula is de-

scribed by the function:

γ(h) =

 C1[
15h
8a −

5
4(ha )3 + 3

8(ha )5] h ≤ a

C1 h > a
(5.20)

The parameter a denotes the range and the C1 is the sill. One remark is that the curve

rises gradually in comparison with the spherical model, with gradient 15C1/8a.

Circular Model

The formual is describe by the function:

γ(h) =

 C1[1− 2
π cos

−1 h
a + 2h

πa

√
1− h2

a2
] h ≤ a

C1 h > a
(5.21)

The parameter a denotes the range and the C1 is the sill. The model’s curve rises

rightly and reaches the range with gradient 4C1/aπ.
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(a) Variogram models

(b) Permissible covariance models

Figure 5.3: The used parameters are range parameter a = 1 and sill b = 1. Image
retrieved from [49].
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(a) Variogram functions of the Matérn class

(b) Covariance functions of the Matérn class

Figure 5.4: The used parameters are range parameter a = 1 and sill b = 1 and varying
ν smoothness parameter. Image retrieved from [49].
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5.4 Variogram Fitting Methods

The purpose of fitting a theoritical variogram model to the calculated experimental

variogram model is to estimate the optimum variogram parameters. The smoothing

parameter of the variogram is defined by the number of lags k, yet there is no established

rule for selecting the optimum number of lags. Some proposed methods for choosing

the optimum fitted model, based on the leave-one-out cross-validation (LOOCV) and

the Akaike information criterion (AIC) are the Ordinary Least Squared (OLS) and the

Weighted Least Squares (WLS) ([43]). Some good studies in the area are the ones of [57]

and [69] with applications in the geophysical study field.

Least Squares

In the Ordinary Least Squares (OLS) method we attemp to estimate the parameter

vector θ of the theoritical variogram γ(h) fitted in the experimental variogram γ̂(h),

hence minimize the sum of square differences R(θ) given by the following equation :

For i = 1, 2, ..., k

R(θ) =
k∑
i=1

w2
i [γ̂(hi)− γ(hi; θ)]

2 (5.22)

In the case of OLS the weights wi are equal to 1. The OLS method assumes that all

differences resulted from the optimization process are normally distributed and indepen-

dent.

In the case of Weighted Least Squares (WLS) the weights wi are dependent upon the

weighting method and w2
i = 1/V ar(γ̂(hi)). One method of weighting is described by

[22] and is given by the formula:

R(θ) =
1

2

k∑
i=1

Ni[
γ̂(hi)

γ(hi; θ)
− 1]2 (5.23)

where Ni are the number of pairs for the lag i. WLS fitting is more accurate for short

distances, while on the hand the OLS performs an overall best fit at all distances con-

sidering constant variance. In R environment this could be done by using the argument

fit.method. For the purpose of the thesis, the fit.method=1 with weights Nj from the

experimental variogram and fit.method=7 with weights Nj/h
2
j from the experimental

variogram, are going to be used. Those weights depend on fitting parameters.
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Cross-Validation Method

With the cross-validation method it is possible to calculate the error between the real

and the predicted value for a number of data points with known values. Therefore, it

allows us to compute the goodness of the performance of each interpolation algorithm.

The main selected methods of CV for the purpose of this thesis have been analytically

extensively adverted in the subsection 4.4.4



Chapter 6

Well Logs Correlation

In this section our research aims at finding a solution for the problem of correlation

between available well logging data. This section seeks to address the following concepts:

• Implement geostatistical preliminary and exploratory analysis in order to demon-

strate spatial dependencies.

• Investigate methods of improving accuracy of well to well log correlations. The

solution to the problem is based on interpolation methods.

Figure 6.1: Finnegan and Seamus hydrocarbon wells location in Western Newfound-
land and Labrador Island. Image retrieved from the Government of Newfoundland and

Labrador website, section; Onshore Maps and Data.

61
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6.1 Information about the Hydrocarbon Gas Reservoir

In this thesis we use well logs from two onshore natural gas reservoirs in Western New-

foundland and Labrador Island (Canada). The onshore exploration wells Seamus and

Finnegan were drilled by Nalcor Energy and partners in 2010/2011 and had good gas

shows. However, both were suspended since the natural gas encountered in the wells was

non-commercial. The Seamus well was drilled to a total final depth of 3, 160m while the

Finnegan well reached an onshore depth of 3, 130m. The data-sets gathered as a result

of drilling, testing and seismic analysis of the wells can be integrated for (i) the better

understanding of the Western Newfoundland and Labrador Island petroleum geology,

(ii) onshore studies of the regional stratigraphy and correlation into offshore blocks, (iii)

extrapolation to various offshore exploration licences in the area.

The two drilled well-bores are located within the Cambrian Ordovician-Anticosti

basin. The Anticosti basin is the largest Paleozoic basin of Western Newfoundland and

Labrador Island with both offshore and onshore covered areas. The geological model of

the basin contains rock sequences from Lower Cambrian to Devonian evolution period

of the northern Appalachian orogen including a sliver of overlying carboniferous clastics

that are associated with multiple tectonic events. Good oil and gas production reservoirs

are presented in the Lower Ordovician and Mid-Upper Ordovician (HTD), the Carbon-

ate thrust slice, and the Lower Devonian sandstone. Dolomitized carbonate rocks and

sandstones are the predominant reservoir rocks in the Anticosti basin.

The studied group of Goose Tickle includes the Goose (American) Tickle formation,

the Table Head group includes the Table Point formation while the St.George group

includes the Aguathuna, Catoche, Boat Harbour and Watts Bight formation. All those

formations are present to both studied wells. Reservoir potential is recognized within the

stratigraphic unit of Goose (American) Tickle and Table Point formations while main

reservoirs are recognized within the St.George group.

These hydrocarbons occurrences associated with the Paleozoic basin are considered

of high geological risk with regard to hydrocarbon mitigation, oil biodegradation, and

lateral seal. The use of high quality acquisitive data can lead to the direct detection of

porosity and fluid type and thus minimize the specified risk.
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The recorded data includes the GR (Gamma Ray), SP (Spontaneous Potential), A10

(Array Induction Two Foot Resistivity, Depth of Investigation: 10in) and A20 (Array

Induction Two Foot Resistivity, Depth of Investigation: 20in) well logs.

All the information and data used for this thesis has been retrieved from the Final

well reports of Seamus and Finnagan wells found in [1].

Figures 6.2, 6.3, 6.4, 6.5 illustrate the available well log data of the selected formations.
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Figure 6.2: Finnegan well logs of 311mm hole section. The spontaneous and gamma-
ray logs are displayed on the left side of the log. The induction resistivity logs are on

the right.

Figure 6.3: The spontaneous and gamma-ray logs of Finnegan 216mm hole section
and Seamus 216mm hole section are displayed on the left and right side of the log,

respectively.
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Figure 6.4: Finnegan well logs of the induction resistivity logs of 216mm hole section.

Figure 6.5: Seamus well logs of the induction resistivity logs of 216mm hole section.
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6.1.1 Notions and Assumptions for the Data

In table 6.1 a summary of the selected formations’ thickness and data consistency is

represented. Indications of complex, non-stationary behavior can be visualized by the

figures 6.2, 6.3, 6.4, 6.5, as the means and variances are not constant over depth.

Formations Formation thickness (m) Observed data (n)
Finnegan Goose (American) Tickle 284.4 1422

Table Point 145 725
Aguathuna 50 250
Catoche 124.8 624
Boat Harbour 119.8 599
Watts Bight 69.8 349

Seamus Goose (American) Tickle 259.1 1700
Table Point 132.6 871
Aguathuna 52.7 347
Catoche 109.8 721
Boat Harbour 124.8 819
Watts Bight 61.8 406

Table 6.1: Summary of studied data-sets.

The analysis is progressed by removing potential trends in the datasets; in order

to ensure consistency of interpretation of the spatial direction in the data and on the

other hand, to examine under which possibly circumstances the effect of a trend on a

semivariogram might be bypassed to allow a sufficient analysis of the data.

For a quick-well log interpretation the principle data sources have been used in order

to locate and identify the different geological formations. Firstly, the formation interval

is identified by the SP and GR log responses. High SP usually represent permeable

beds, or fresh water, while low SP often represent shale beds, or salt water. If the

SP is constant over depth then the formation is impermeable. Additionaly, high GR

represent shaly sandstones, or shandy shales, while low GR usually represent sand, or

coal, limestone and dolomite. The process of visual evaluation and identification was

surely ambiguous but nevertheless capable of resulting enough information. However,

the optimum selection of a formation delimitation can best impact the field development

and benefit the planning of a drilling program. Thus, the recognition of the stratigraphic

boundaries were defined by district lithological and coring analysis reported by the Nalcor

Energy Oil & Gas Inc.
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6.2 Methodology

Different types of noise result in nonlinear and nonstationarity characteristic behaviour,

the convoluted trend and seasonality of the well log data is difficult to extract. We like

to examine the effectiveness of a trend in the analysis of the data, so there is no need for

any transformations or removal of extremely complected trend models. For the analysis

procedure the following variogram models have been used: 1) Exponential, 2) Gaus-

sian, 3) Spherical, 4) Pentaspherical, 5) Circular. The utilized algorithms for statistical

analysis and construction of the variograms, as well as the algorithm for calculating the

correlations between well logs were developed and run in R and Matlab environment.

The algorithms were developed for:

1. Detrending 1D data,

2. Fitting probability distributions to data series,

3. Plotting QQ, Empirical and Theoretical CDFs, and PP graphs,

4. Calculating the experimental variogram and fitting the theoretical variogram model,

5. Performing cross-validation for a given model, and

6. Interpreting several interpolation methods to estimate the query point of the stud-

ied data and improve the performance of correlation algorithm .

In order to estimate the empirical semivariogram we used the Cressie-Hawking robust

estimator which provides a satisfactory model that improves the variogram estimation

of a described geologically continuous process. This developed model deals with outliers

and non-normality for distributions particularly heavy in the tails region ([23]).
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6.3 Goose (American) Tickle Formation

The Goose (American) Tickle formation is a geological unit dominated by silty argillite

with minor sandstones ([72]). The Goose (American) Tickle formation is found in

Finnegan well at depth of around 1965m and 2250m. The formation contains more

than 60% sandstone and less than 40% shale rocks. The same formation is present in

Seamus well in a depth range from about 2225m and 2585m, and contains more than

60% sandstone, less than 40% shale and less than 10% limestone rocks [1].

Finnegan 311mm hole section

To begin with, the statistical moments were calculated and presented in table 6.2.

The next step is the elimination of any possible trend in order to remove any long-time

scale fluctuations. The chosen logs are the Spontaneous Potential and Gamma Ray logs,

as they both contain a describable trend component. The complete expressions of the

resulting trend models are shown in table 6.4, while the statistics of the detrended values

can be seen in table 6.3. In figure 6.6 the histograms of the original and detrended

data-sets are plotted.

In figures 6.7, 6.8, 6.9, 6.10 the fitting of the tested distributions is presented. The

values of Spontaneous Potential and Gamma ray determine the total field Ω ⊂ IR, so the

tested distributions were the Gaussian, Cauchy and Gumbel distribution. The data-sets

of Array Induction logs determine the total field Ω+ ⊂ IR+ , so the tested distribu-

tions were the Gaussian, Weibull and Gamma distributions. In Table 6.5 the estimated

parameters and validation measures are presented. The formations of Table Point and

Aguathuna are presented in Appendix A.2.

Spontaneous Potential

As presented by Figure 6.7 the, the Q-Q plot shows luck-of-fit at the Cauchy and Gum-

bel distribution tails. The graph of Empirical and theoretical CDFs confirms that the

empirical values don’t match up well with theoretical distributions. The P-P cross-plot

shows that the matching cumulative probabilities from the two cumulative distributions

don’t agree. The information criteria presented in Table 6.5 agree that the best model

is the Gaussian model, followed by Cauchy and Gumbel.
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Gamma Ray

As presented by Figure 6.8 the, the Q-Q plot shows luck-of-fit at the Cauchy and

Gumbel distribution tails. The graph of Empirical and theoretical CDFs confirms that

the empirical values don’t match up well with the Cauchy and Gumbel theoretical dis-

tributions. The P-P cross-plot shows that the matching cumulative probabilities from

the two cumulative distributions of Cauchy and Gumbel don’t agree. The information

criteria presented in Table 6.5 agree that the best model is the Gaussian model, followed

by Cauchy and Gumbel.

Array Induction (10in)

As presented by Figure 6.9 the, the Q-Q plot shows no significant luck-of-fit at the

studied distribution tails and a good indication that the dataset comes from a Gaussian

distribution. The graph of Empirical and theoretical CDFs confirms that the empirical

values don’t match up well with the Weibull theoretical distribution. The P-P cross-plot

shows that the matching cumulative probabilities from the tested cumulative distribu-

tions match up pretty well. The information criteria presented in Table 6.5 agree that the

best model is the Gaussian model, followed by Gamma and Weibull. We will continue

under the assumption that the dataset comes from a Gaussian distribution.

Array Induction (20in)

As presented by Figure 6.10 the, the Q-Q plot shows no significant luck-of-fit at the

studied distribution tails and a good indication that the dataset comes from a Gaussian

distribution. The graph of Empirical and theoretical CDFs confirms that the empirical

values don’t match up well with the Weibull theoretical distribution. The P-P cross-plot

shows that the matching cumulative probabilities from the tested cumulative distribu-

tions match up pretty well. The information criteria presented in Table 6.5 agree that

the best model is the Gamma model, followed by Gaussian and Weibull.

Variogram Analysis

A set of theoretical variograms were constructed for each physical property in order

to determine the required nugget, sill and range. The experimental variograms were cal-

culated based on the 5.11 equation. The set maximum correlation distance is split into

lag distance bins in order to construct each variogram for each variable. The respective

minimum lag distance for the physical property of Spontaneous Potential is equal to
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2.5m, Gamma Ray is equal to 4m, Array induction of 10in is equal to 0.5m and Array

induction of 20in is equal to 0.2m. The variogram plots are illustrated in Figure 6.11.

Four available models were fitted to the studied physical property and the determination

modelling parameters for each fit is summarized in table 6.6. The determination coeffi-

cients are summarized in Table 6.7. An initial observation is that the best fitted models

for the Spontaneous Potential property are the Circular model, followed by Spherical

and Pentaspherical. For the Gamma Ray property the best fitted model is the Circular

model, followed by Spherical and Pentaspherical. For the Array Induction (10in) prop-

erty the best fitted model is the Exponential, followed by Penthaspherical and Gaussian,

while for the Array Induction (20in) case, the best fitted model is the Gaussian, followed

by Circular and Spherical.

The fact that not all properties fit optimally to the same theoretical model is possibly

due to different number of points used to each experimental variogram calculation. The

sill and range seems to be close for the Spontaneous Potential and Gamma Ray, which

were fitted to the same theoretical variogram models.

Logs Min Max Mean Median Mode
SP(mV) -124.31 -11.84 -67.11 -64.39 -93.08

GR(GAPI) 44.83 113.21 78.67 81.12 87.88
A10(Ohmm) 9.77 26.41 17.41 17.43 16.21
A20(Ohmm) 30.8 93.67 56.82 55.93 55.1

Logs Variance SD Skewness Kurtosis
SP(mV) 813.43 28.52 -0.03 1.84

GR(GAPI) 90.46 9.51 -1.01 3.90
A10(Ohmm) 5.5 2.34 -0.03 3.04
A20(Ohmm) 82.63 9.09 0.53 3.63

Table 6.2: Data statistics of Finnegan 331mm hole section.

Log Min Max Mean Median Mode
SP(mV) -22.33 19.21 1.54e-14 -0.25 -9.14

GR(GAPI) -32.98 33.84 4.96e-14 1.56 6.02

Log Variance SD Skewness Kurtosis
SP(mV) 43.16 6.57 0.18 3.00

GR(GAPI) 73.79 8.60 -1.07 4.65

Table 6.3: Detrended data statistics of Finnegan 331 hole section.
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(a) Spontaneous Potential (b) Gamma Ray

Figure 6.6: Histogram of original and detrended data-sets of SP and GR logs of the
Goose (American) Tickle formation found in Finnegan 311 hole section. Histograms

with binwidth = 30.

Log Model Estimated Trend Function
SP Linear −115 + 6.75 · 10−2x+ εi, ε ∼ N(0, 6.572)

GR Quadratic 68 + 4.23 · 10−2x− 5.70 · 10−5x2 + 2.64 · 10−8x3 + εi, ε ∼ N(0, 8.62)

Table 6.4: Estimated trend models.

Histograms
Distribution Parameters Information Criteria

SP norm µ=1.546e-14,σ=6.577 AIC=9398.92, BIC=9409.44
Cauchy a=-0.399,γ=3.772 AIC=9843.06, BIC=9853.59
Gumbel µ=-3.229,b=6.354 AIC=9558.30, BIC=9568.82

GR norm µ=4.965e-14,σ=8.587 AIC=10161.95, BIC=10172.47
Cauchy a=1.977,γ=3.987 AIC=10216.97, BIC=10227.49
Gumbel µ=-4.691,b=10.586 AIC=10824.91, BIC=10835.43

A10 norm µ=17.408,σ=2.344 AIC=6466.42, BIC=6476.94
Weibull a=8.008,λ=18.427 AIC=6543.608, BIC=6554.129
Gamma a=53.607,λ= 3.079 AIC= 6489.494, BIC=6500.01

A20 norm µ=56.817,σ=9.087 AIC=10322.96, BIC=10333.48
Weibull a=6.238,λ= 60.757 AIC=10513.14, BIC= 10523.66
Gamma a=39.844,λ=0.701 AIC=10272.02, BIC=10282.55

Table 6.5: Distributions’ estimated parameters and information criteria of the Goose
(American) Tickle formation found in Finnegan 311mm hole section. The units of

measurement are [mV], [GAPI], [Ωhmm] for SP, GR and A10, A20 respectively.
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Figure 6.7: Fitting of the distributions by maximum likelihood. Featured data-set;
SP log of Finnegan 311mm hole section.
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Figure 6.8: Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Finnegan 311mm hole section.
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Figure 6.9: Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Finnegan 311mm hole section.
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Figure 6.10: Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Finnegan 311mm hole section.
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(a) Spontaneous Potential (b) Gamma Ray

(c) Induction A10 (d) Induction A20

Figure 6.11: Variogram plots. The weights are determined using Nj/h
2
j , where Nj is

the number of pairs at certain lag.
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Variograms
Model Sill Range Nugget

SP Cir 55.148 39.170 6.066
Exp 92.257 43.880 5.625
Pen 58.584 59.45 5.96
Sph 56.174 46.010 5.996

GR Cir 57.55 34.83 20.26
Gau 46.07 13.83 23.66
Pen 58.83 49.68 19.96
Sph 58.03 40.13 20.09

A10 Exp 4.514 0.807 0.000
Gau 3.258 0.766 0.871
Pen 4.021 1.885 0.158
Sph 3.945 1.567 0.221

A20 Cir 46.5 0.725 0.000
Gau 47.25 0.356 0.000
Pen 47.69 1.069 0.000
Sph 47.200 0.858 0.000

Table 6.6: Fitting of the best theoretical model to the experimental variograms of the
field.

Variograms
Model MSE MAE RMSE

SP Cir 3.223 1.369 1.795
Exp 11.199 2.639 3.346
Pen 5.726 1.953 2.393
Sph 4.438 1.668 2.107

GR Cir 8.348 2.379 2.889
Gau 40.261 5.522 6.345
Pen 11.024 2.782 3.320
Sph 9.278 2.497 3.046

A10 Exp 0.180 0.318 0.425
Gau 0.296 0.471 0.544
Pen 0.293 0.459 0.542
Sph 0.299 0.467 0.547

A20 Cir 27.237 3.672 5.219
Gau 26.560 3.867 5.154
Pen 32.164 4.317 5.671
Sph 29.746 3.963 5.454

Table 6.7: Fitting of the best theoretical model to the experimental variograms of the
field.
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Seamus 216mm hole section

First, the statistical moments were calculated and presented in table 6.9. The following

step is to remove any possible trend in order to eliminate any present variations. The

Gamma Ray log is the only one with a present removable trend component. The complete

expressions of the resulting trend models are shown in Table 6.11 , while the statistics

of the detrended values can be seen in table 6.10. In figure 6.13 the histogram of the

original and detrended data-set is plotted.

In figures 6.14, 6.15, 6.16, 6.17 the fitting of the tested distributions is presented.

The values of Spontaneous Potential and Gamma ray determine the total field Ω ⊂ IR,

so the tested distributions were the Gaussian, Cauchy and Gumbel distribution. The

data-sets of Array Induction logs determine the total field Ω+ ⊂ IR+ , so the tested

distributions were the Gaussian, Weibull and Gamma distributions. In Table 6.12 the

estimated parameters and validation measures are presented. The formations of Table

Point and Aguathuna are presented in Appendix A.1.

Spontaneous Potential

As presented by Figure 6.14 the, the Q-Q plot shows luck-of-fit at the Cauchy distri-

bution tails. The graph of Empirical and theoretical CDFs confirms that the empirical

values don’t match up well with theoretical distributions. The P-P cross-plot shows

that the matching cumulative probabilities from the two cumulative distributions don’t

agree. The information criteria presented in Table 6.12 agree that the best model is the

Gaussian model, followed by Gumbel and Cauchy.

Gamma Ray

As presented by Figure 6.15 the, the Q-Q plot shows luck-of-fit at the Cauchy and

Gumbel distribution tails. The graph of Empirical and theoretical CDFs confirms that

the empirical values don’t match up well with the Cauchy and Gumbel theoretical dis-

tributions. The P-P cross-plot shows that the matching cumulative probabilities from

the two cumulative distributions of Cauchy and Gumbel don’t agree. The information

criteria presented in Table 6.12 agree that the best model is the Gaussian model, followed

by Cauchy and Gumbel.
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Array Induction (10in)

As presented by Figure 6.16 the, the Q-Q plot shows luck-of-fit at the studied distri-

bution tails. The graph of Empirical and theoretical CDFs confirms that the empirical

values don’t match up well with the Weibull theoretical distribution. The P-P cross-plot

shows that the matching cumulative probabilities from the tested cumulative distribu-

tions match up well. The distribution is higly right skewed (positive skew). The infor-

mation criteria presented in Table 6.12 agree that the best model is the Gamma model,

followed by Weibull and Gaussian.

Array Induction (20in)

As presented by Figure 6.17 the, the Q-Q plot shows luck-of-fit at the studied distri-

bution tails. The graph of Empirical and theoretical CDFs confirms that the empirical

values don’t match up well with the Weibull theoretical distribution. The P-P cross-plot

shows that the matching cumulative probabilities from the tested cumulative distribu-

tions match up pretty well. The distribution is higly right skewed (positive skew). The

information criteria presented in Table 6.12 agree that the best model is the Gamma

model, followed by Weibull and Gaussian.

Variogram Analysis

In figure 6.18 the constructed theoretical variograms of each log are presented. We

set the maximum correlation distance bins in way that we can construct each variogram

for each physical property log. The respective minimum lag distance for the property of

Spontaneous Potential is equal to 2m, Gamma Ray is equal to 8m, Array induction of

10in is equal to 3m and Array induction of 20in is equal to 2m. The modelling parameters

of each fitted model are summerized in Table 6.13, while their coefficients are summed up

in Table 6.14.First we observed that the best fitted models for the Spontaneous Potential

log are the Spherical model, followed by Pentaspherical and Circular. For the Gamma

Ray log the best fitted model is the Pentaspherical model, followed by Spherical and

Gaussian. For the Array Induction (10in) log the best fitted model is the Gaussian,

followed by Penthaspherical and Spherical, while for the Array Induction (20in) case,

the best fitted model is the Penthaspherical, followed by Exponential and Spherical.
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As previously mentioned, the fact that not all logs fit optimally to the same theoretical

model is probably due to different number of points used to each experimental variogram

calculation.

6.4 Well Log Correlations

Interpolation Methods Interpolation processes are used to estimate the values of a

function between two known points on a line or a curve. The problem of interpolation can

be easily described as: Lets consider a range of a function f(x0), f(x1), f(x2), . . . , f(xn)

that corresponds to x0, x1, x2, . . . , xn data points. We need to find a function yx, that

has the same values with the fx function, at the same x0, x1, x2, . . . , xn data points.

If we agree that px is a known function, then we can "read" the fx function in the

intermediate data points, x0, x1, x2, . . . , xn, called interpolated points. In this thesis the

methods that are going to be applied are the Linear, Nearest Neighbor, Cubic and

Spline interpolation.

The selected logs of the two wells were correlated with the Pearson and Spearman

correlation coefficient; the RMSE measure was as well calculated. The depth measure

used in the correlation was the standard true vertical depth. The depth step of Finnegan

216 mm and 311 mm diameter hole section is 0.2m, while the Seamus 215 mm hole

section is 0.1524m. As the scale changes so does the range of the data sets. In order

to correctly correlate two series we need to perform a range standardization. The first

step is to insert the data set to the Matlab environment. Then, use several interpolation

methods to create two data sets with formation alignment and common sampling step.

This is done by removing the difference of the initial distances of each set and then set

the initial points to zero. The next step is to choose one of the two studied series of a

selected formation, with a known and constant depth step. We keep this step constant

and we will create a common depth step scale for both series by choosing a maximum

cutoff point. Finally we compare the different interpolation methods used in terms of

the resulting values of well-to-well log correlations. We will apply the same process for

all the studied formations. To illustrate, their graphical representation is presented in

figures 6.12, A.21, A.22, A.23, A.24, A.25.
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The Gamma Ray log has been used as the lithological indicator for the correlation.

Measurements of the gamma ray index are primarily used to correlate stratigraphic

sections. Shales and clays found in oil and gas wells are usually responsibly for emitting

natural radioactivity as their radioactive isotope content and mineralogy can be tracked

down by gamma ray devices. Gamma-ray fluctuations indicate changes in formation

mineralogy. Thus, gamma-ray logs taken from different wells within the same region of

study can be efficiently used for well to well correlation, since similar formations will

result in similar feature measurements.

Cross Correlation Scores
Model rP rS RMSE(GAPI)

Goose ( American ) Tickle Linear 0.257 0.295 23.613
NN 0.255 0.294 23.653
Cubic 0.255 0.294 23.648
Spline 0.255 0.294 23.656

Table Point Linear 0.09 0.192 8.083
NN 0.094 0.199 8.098
Cubic 0.089 0.19 8.105
Spline 0.089 0.187 8.110

Aguathuna Linear 0.261 0.483 18.310
NN 0.261 0.480 18.322
Cubic 0.260 0.480 18.371
Spline 0.257 0.479 18.396

Catoche Linear -0.104 -0.142 18.483
NN -0.107 -0.140 18.537
Cubic -0.103 -0.139 18.556
Spline -0.102 -0.138 18.572

Boat Harbour Linear -0.070 -0.401 11.415
NN -0.066 -0.038 11.460
Cubic -0.069 -0.040 11.470
Spline -0.102 -0.138 18.572

Watts Bight Linear -0.002 0.042 16.025
NN 0.001 0.043 15.965
Cubic -0.003 0.040 16.127
Spline -0.001 0.040 16.150

Table 6.8: Leave-One-Out Cross Correlations of the known geological series of
Finnegan and Seamus wells.
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6.5 Synopsis

Preliminary and exploratory data analysis tools allow the user to examine the data in

more quantitative ways. The tools used were Histograms, Normal QQ-plots, Emprirical

and theoretical CDF’s plots, and P-P plots. Moreover, variogram analysis was used to

examine the spatial autocorrelation between the measured respective properties.

Thee exploratory analysis indicates that the majority of the respective properties do

not follow the Gaussian distribution. However, after removing a trend function, the

residuals are closer to the Gaussian distribution. Results demonstrate that the Sponta-

neous potential and Gamma radiation indicators can be most often described by Cauchy

and Gumbel distributions. In contrast, the Induction indicators can be most often de-

scribed means of the Gamma and Weibull distributions. The theoretical variograms’

formalization was manually achieved by applying WLS, for weights equal to Nj and

Nj/h
2
j , accordingly. The weighting scheme of Nj/h

2
j gives more weight to early lags. On

the contrary, the weighting scheme of Nj give more weight to later lags. The results of

the variogram analysis indicate that Spontaneous potential and Gamma Radiation in-

dicators are mostly fitted to the same type of theoretical variogram model, with similar

sill and range values. The variogram analysis confirmed that high spatial heterogeneity

characterizes the entire span of the logging records.

The statistical analysis indicates a weak correlation between the respective properties

measured at the two different wells. The association between the data at the neighbor-

ing wells is examined by means of statistical dependence measures such as the Pearson’s

linear correlation coefficient and Spearman’s rank correlation coefficient. The cross cor-

relations calculated from the processed data using different interpolation models lead to

similar values. The Gamma radiation logs show both positive and negative correlation

which are overall higher (in magnitude) than for the other three logs. The values of

the positive correlation coefficients range from 0.001 to 0.483, while the values of the

negative correlation coefficients range from -0.142 to -0.001. These findings support the

notion that the Gamma ray log is influenced by lithological changes.
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Figure 6.12: Graphical representation of the correlated physical property of GR be-
tween the wells of Seamus and Finnegan.
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Logs Min Max Mean Median Mode
SP(mV) 110.937 173.937 142.347 141.312 141.312

GR(GAPI) 35.167 113.907 72.472 71.049 62.583
A10(Ohmm) 9.762 1950 94.512 70.810 37.734
A20(Ohmm) 9.001 1950 163.904 117.945 63.713

Logs Variance SD Skewness Kurtosis
SP(mV) 155.356 12.464 -0.025 2.788

GR(GAPI) 206.604 14.374 0.208 2.351
A10(Ohmm) 20172.2 142.029 9.115 99.550
A20(Ohmm) 26316.1 162.22 3.226 20.405

Table 6.9: Data statistics of Seamus 216mm hole section.

(a) Spontaneous Potential

Figure 6.13: Histogram of original and detrended data-sets of GR logs of the Goose
(American) Tickle formation found in Seamus 216 hole section. Histograms with bin-

width = 30.
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Log Min Max Mean Median Mode
GR(GAPI) -33.230 34.531 1.33e-13 0.642 -4.614

Log Variance SD Skewness Kurtosis
GR(GAPI) 142.921 11.955 -0.017 2.365

Table 6.10: Detrended data statistics of Seamus 216mm hole section.

Log Model Estimated Trend Function
GR Linear 58.65 + 1.841 · 10−2x+ εi, ε ∼ N(11.962)

Table 6.11: Estimated trend model.

Figure 6.14: Fitting of the distributions by maximum likelihood. Featured data-set;
SP log of Seamus 216mm hole section.
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Figure 6.15: Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Seamus 216mm hole section.

Histograms
Distribution Parameters Information Criteria

SP norm µ=142.347,σ=12.460 AIC=11836.3 BIC=11846.9
cauchy a=142.419,γ=7.209 AIC=12340.2, BIC=12350.8
gumbel µ=136.085,b=12.219 AIC=12057.2, BIC=12067.8

GR norm µ=1.33e-13,σ=11.95 AIC=11711.1, BIC=11721.7
cauchy a=0.536,γ=8.080 AIC=12421.3, BIC=12431.9
gumbel µ=-5.978,b=11.354 AIC=11880, BIC=11890.6

A10 norm µ=94.512,σ=141.981 AIC=19140.7, BIC=19151.3
weibull a=1.142,λ=100.450 AIC=16596.5, BIC=16607.2
gamma a=1.885,λ=0.012 AIC= 16363.8, BIC=16374.5

A20 norm µ=163.904,σ=162.168 AIC=19539.7, BIC=19550.4
weibull a=1.212,λ= 176.322 AIC=18214.7, BIC= 18225.3
gamma a=1.638,λ=0.010 AIC=18122.6, BIC=18133.2

Table 6.12: Distributions’ estimated parameters and information criteria of the Goose
(American) Tickle formation found in Seamus 216mm hole section. The units of mea-

surement are [mV], [GAPI], [Ωhmm] for SP, GR and A10, A20 respectively.
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Figure 6.16: Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Seamus 216mm hole section.
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Figure 6.17: Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Seamus 216mm hole section.
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(a) Spontaneous Potential (b) Gamma Ray

(c) Induction A10 (d) Induction A20

Figure 6.18: Variogram plots. The weights are determined using Nj , where Nj is the
number of pairs at certain lag.
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Variograms
Model Sill Range Nugget

SP Sph 191.089 21.120 0
Pen 193.064 25.056 0
Cir 189.217 17.192 0

GR Sph 107.790 32.895 59.588
Gau 88.947 13.576 71.532
Exp 125.756 14.106 47.824
Pen 109.254 39.894 58.691

A10 Sph 2463.633 12.880 572.131
Exp 2880.569 6.009 358.367
Pen 2504.862 15.942 560.626
Cir 3431.690 11.301 592.550

A20 Sph 8888.640 7.699 3697.260
Gau 7612.02 3.432 4789
Exp 10460.82 3.250 2592.67
Pen 9020.19 9.356 3617.89
Cir 8755.98 6.664 3757.48

Table 6.13: Fitting of the best theoretical model to the experimental variograms of
the field.

Variograms
Model MSE MAE RMSE

SP Sph 700.453 22.935 26.466
Pen 707.263 22.936 26.594
Cir 711.312 23.465 46.670

GR Sph 164.396 10.737 12.822
Gau 180.643 10.849 13.440
Exp 228.621 12.541 15.120
Pen 164.04 10.769 12.808

A10 Sph 117608 274.766 342.940
Gau 83937 249.511 289.719
Pen 107069 259.225 327.213
Cir 122047 282.321 349.353

A20 Sph 986212 804.021 993.082
Gau 1060172 853.261 1029.65
Exp 952405 731.143 975.912
Pen 952353 784.392 975.886
Cir 1044511 843.266 1022.01

Table 6.14: Fitting of the best theoretical model to the experimental variograms of
the field.



Chapter 7

Interpolation and Imputation

Methods

7.1 Missing Data

Missing data cases arise in all types of statistical analysis. In the geophysical literature,

the interest rate in evaluation and prediction of a model’s performance and accuracy

was relatively low until the development and utilization of stimulation models became a

necessity in predicting geophysical phenomena ([98], [51]).

In the beginning we need to distinguish the three major missingness patterns. Different

imputation methods are requisite for different missing data patterns. Those patterns

describe which values are missing and which values are observed as well as denote where

those values are located in the dataset ([29]). In this thesis, only one dependent variable

has missing data and thus, a univariate missing data pattern is formed.

Missing Data Mechanism

Missing Data Mechanisms arouse the interest of data scientists who work with miss-

ing data handling tools and methods. Those tools and methods are to a large extend

dependent upon the nature of the mechanism impaired in a subset of missing values

([78]).

Let’s consider a set Y = (yij) which is supplemented with data and an array of

missing data cumulants, M = (Mij). The mechanism of the emergence of missing data

91
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is characterized by the conditional distribution M , given Y . The above consideration

can be mathematically attributed by the expression:

f(M |Y, ϕ) (7.1)

where ϕ are the unknown parameters. We then define the missing patterns as Ymis, and

the observed patterns as Yobs. In case the values of a missing pattern are not randomly

missing, then the analysis will interpret to non-significant results.

Some analysis procedures are used only when specific missing data values are sorted

into groups of order. The advantages of identifying the patterns and reasons for missing

data are ([93]):

1. Classification of given data in the rows and columns in order to check in which

pattern the data is imputed.

2. Finding of the appropriate technical analysis of missing data that will give rise to

reliable and accurate results.

In this thesis we consider only one variable with missing data, so we distinguish the

univariate type of pattern. In figure 7.1 the standard taxonomy of the main types of

missing data patterns are displayed. There are three main mechanisms described in the

literature. The Missing Completely at Random (MCAR), Missing at Random (MAR)

and Missing Not at Random (MNAR). For the purposes of the thesis we will analyse the

following two mechanisms.

• Missing Completely at Random (MCAR): The missingness of the measurements

are not dependent upon neither the observed nor the lost data values of the Y set.

We can mathematically describe this statement as follows:

f(M |Y, ϕ) = f(M |ϕ),∀Y, ϕ

Therefore, the missing variables are unrelated to the measured variables and the

missingness rate is completely unsystematic. For example when data is missing

for the mud pulse telemetering system for which the signal was lost due to hole

sloughing, the presence of mudcake, or the invasion of the formation by drilling

mud. Those factors affect the data rate transmission ([35]).
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• Missing at Random (MAR): The missingness of the measurements are exclusively

related to the observed variables, Yobs and not to the missing patterns. This is

described as:

f(M |Y, ϕ) = f(Yobs|ϕ),∀Ymis, ϕ

For example when data is missing because the mud pulse telemetry has low trans-

mission data rate which is also affected by the input voltage threshold, pulse timing

process or the pulse pressure of the fluid drilling site ([35]).

Figure 7.1: Missing Data Patterns. (a) Univariate, (b) Monotone, (c) Connected, (d)
Random. The rows correspond to observations, the columns to variables. Annotated

by [92].



Interpolation and Imputation Methods 94

7.2 Missing Data in a Univariate Sample

The data used for the purposes of this thesis concerns a equi-spaced univariate series,

meaning that depth increments between successive data observations are equal,

|x1 − x2| = |x2 − x3| = · · · = |xn−1 − xn|.

The simulation algorithm of missing values in a univariate sample data-set that de-

scribes the MCAR mechanism was introduced by [51]. In figure 7.2 the algorithm’s

flowchart used for this thesis is represented. The first step is the analysis of the project’s

documentation. The next step is to randomly delete 10% of the univariate input data.

Now that 10% of the data is lost we check in which pattern the data is imputed and

for that reason an univariate t-test comparison is used to compare the missing data sub-

groups. This test checks for statistically significant differences. The null-hypothesis is

that the two means are equal and that the test statistics follow a Student-t distribution.

The t-test statistic is defined by the formula:

t =
ȳobs − ȳmis
σ2
1√
n1

+
σ2
2√
n2

(7.2)

where, ȳobs, ȳmis, σ21, σ22, n1, n2 are the mean, the variance and the sample size for the

observed and the missing data, respectively. At last, the degrees of freedom ν that are

associated with the variability estimate are defined. The ν parameter will eventually

specify the t-distribution that is used to calculate the p − values and t − values for

the test ([95]). Considering that the MCAR mechanism asserts that both complete and

missing data belong to the same population, the null-hypothesis which defines, that the

two means and variances are equal, has to be accepted accordingly. If the p-value is less

than or equal to 0.05, then the null-hypothesis is accepted and the MCAR is chosen as

the main Missing Data Mechanism. If the p-value is greater than 0.05 then the main

Missing Data Mechanism is the MAR. The algorithm will run the same commands in

order to classify the missing patterns and mechanisms for missing data rates of 0.25, 0.5,

0.8.
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Figure 7.2: Algorithm flowchart of created missing data used in the univariate sample
of physical properties logging measurements. The algorithm is structured based on [51].

7.3 Imputation Methods

The aim of imputation is to “preserve the characteristics of their distribution and rela-

tionships between different variables” as noted by [6].

Consider Y , as a completely observed n × p matrix and a X as a partially observed

n× p matrix of the complete sample data Y . Imputation techniques are applied to the

aforementioned X matrix in order to fully record a matrix Y ∗ that is the approximation

of the previously considered Y matrix. Several methods are reported in the literature to

address the process of imputation. In the following lines the main techniques applied in

this thesis are described.
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7.3.1 Mean Imputation

One of the easiest ways to fill in each missing value is with the sample mean of the

corresponding variable of the valid value units. Nonetheless, the major disadvantage of

the mean imputation is that it reduces the variability, since all imputed values are equal

to mean. That also affects other inferential statistics which are also underestimated,

such as the standard deviation and the confident intervals. The method results to bias

mean estimates when data are not MCAR. This method should be generally avoided and

only be used as a rapid fix when, for example, the handful information is not or hardly

related to the studied variable. Let ŷ∗ the imputed values of the studied observation y.

Then the imputed values are estimated by the observed mean by the following formula:

ŷ∗ =
1

N

∑
i∈obs

yi (7.3)

The yi is defined as the i-th observed value on a set of observed units, while N is the

number of the i-th observed values for the studied variable y.

7.4 Kalman Filter

State Space Form

The State Space Model was originally developed by electrical engineers to control linear

dynamic systems in either continuous or discrete forms. The way a system changes is a

function of the current state of the system which can be influenced by external input state

variables. Those are defined as the minimum variables that fully describe the studied

system. Therefore, the derivatives of a dynamic system are a function of both the current

state as well as any external inputs. We can simply describe the state space modelling

process as a repackaging of the high order differential equations into a set of first order

equations. Thus, we can look at the underlying behavior of the interconnected system

as well as how the system is affected by external or even multiple external inputs.

For the purpose of this thesis, we will determine a set of vectors x1, x2, . . . , xn which

we will assume to be an unobserved series of unobserved values associated with an ob-

served series of observed values y1, y2, . . . , yn. The defined relationship between those

two vectors is described by a state space model.
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The simplest way to describe a time series state model is by a time series additive

form; additive = trend + seasonality + system noise or yt = τt+st+εt for t = 1, . . . , n. A

suitable model is then constructed for the trend and seasonal component using a random

walk model yi of size n. Therefore, yt+1 = yt + ηt, where ηt are i.i.d. random variables

of zero mean and variance σ2η. Considering that the random walk is a non-stationary

process, we conclude that the model is non-stationary as well. Differencing is a technique

used to make a model stationary.

A full description of the General Linear Gaussian time series space model is described

in the following lines ([30]):

yt = Ztat + εt, εt ∼ N(0, Ht)

at+1 = Ttat +Rtηt, ηt ∼ N(0, Ht)
(7.4)

The considered simple classical state model of a random walk plus measurement error

exhibits the characteristics of a state model structure. The yt is the observation equation

with a1, a2, . . . , an unobserved values that form the at state equation. The yt is a p× 1

observation vector and the at is a m×1 state vector. Considering the above, the analysis

must be based on the observations yt. The matrices Zt, Tt, Rt, Ht and Qt are assumed

to be known.

The analysis of trend, seasonal and error components of the time series will be exam-

ined by simple generated state space models.

Trend Component

The model of the trend component is given by the following equations:

yt = µt + εt, εt ∼ N(0, σ2ε )

µt+1 = µt + vt + ξt, ξt ∼ N(0, σ2ξ )

vt+1 = vt + ζt, ζt ∼ N(0, σ2ζ )

(7.5)

where vt is a slope term generated by a random walk. If the variances of ξ and ζ are both

greater than zero then the the trend level and slope will produce a different trend state

over time. In the case when the error measurements of ξ and ζ are equal to zero then the

slope term remains constant over time while the state equation of a future observation

µt+1 is dependent upon the previous observation µt and the slope term in that way
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that the trend becomes linear. Eventually the produced equation will be reduced to the

deterministic linear trend and noise model.

Seasonal Component

The model for the seasonal component, when the seasonal pattern is constant over

time, say, s, is modelled by the constant γ∗j , for j = 1, . . . , s, and is given by the form

s∑
j=1

γ∗j = 0 (7.6)

Since, in practise, the seasonality changes over time, we assume an added potential

error ωt in the above equation, considering a j − th number of seasons in the data, for

j = 1, . . . , s, and γt = γ∗j , since the observations of the model are constant seasonal

components. Thus, the following equations are formed

s−1∑
j=0

γt+1−j + ωt = 0

or

γt+1 = −
s−1∑
j=1

γt+1−j + ωt

(7.7)

where ωt ∼ N(0, σ2ω)

ARIMA Models in State Space Form

The components of a state space model are consider the same as in time series yt, based

on [12]. First, the trend and seasonal component needs to eliminated from the series by

differencing. Thus, the produced model will have a stationary behavior, meaning that

means and covariances will remain invariant over the course of time.

In section 4.4.3 the ARIMA non-negative integers (p, d, q) where defined. The number

of differences d is defined by the transformation ∆yt = yt−yt−1 and ∆dyt = ∆d−1(∆t) for

the first and d− th differences used to eliminate the trend component. At the important

special case when there is a seasonal component, and s is the number of seasons in the

data, the ∆syt = yt − yt−s and ∆d
syt = ∆d−1(∆st) are the first and s − th differences

used to eliminate the seasonal component. Finally, when stationarity is achieved the
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transformed variables are defined as

y∗t = ∆d∆D
s yt (7.8)

where d,D = 0, 1, . . . and now a stationary autoregressive moving average model ARMA(p, q)

equation is modelled given the following form:

y∗t = ϕ1y
∗
t−1 + · · ·+ ϕpy

∗
t−p + ζt + θ1ζt−1 + · · ·+ θqζt−p (7.9)

where ζt ∼ N(0, σ2ζ ) is an i.i.d. series of error measurements. The above equation can

be rewritten as:

y∗t =

r∑
j=1

ϕjy
∗
t−j + ζt +

r−1∑
j=1

θjζt−j (7.10)

where t = 1, . . . , n and r = max(p, q + 1) considering the fact that some coefficients are

zero.

Kalman Filter

The Kalman Filter is used to fit an ARIMA model in a time series and is a appropriate

form for online real time processing. The Kalman Algorithm Filter initially calculates

the distribution of the current state model by taking into consideration the available

observation until a certain time, for each time period. Thus, the unobserved state is

estimated under the conditions that this estimation is irrelevant to the future observed

states. Additionally, it estimates the maximum likelihood of the data in a way that the

ARIMA model fits the data optimally. The Kalman Filter can be used to correct ARIMA

forecast results by removing measurement errors.
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7.5 Interpolation Methods

In section 6.4, a short introduction about what are the interpolation processes was made.

In this section, we will use two interpolation methods, named, Linear and Spline inter-

polation to predict missing values of a discrete time series.

7.5.1 Linear Interpolation

Linear Interpolation is a method of approximation of the value of function f(x), at a

specific point x̂ that interprets between to known points x1, x2, when x1 < x̂ < x2. We

estimate the value of the function f(x̂) using a linear line that passes through points

(x1, f(x1)) and (x2, fx2). Those conditions are satisfied when the linear function is

calculated by the formula

y(x̂)− y(x1) =
y(x2)− y(x1)

x2 − x2
(x̂− x1)

or

y(x̂) =
f(x1(x2 − x̂)) + f(x2)(x̂− x1)

x2 − x1
x̂ ∈ [x1, x2]

(7.11)

where, y(x1) = f(x1) and y(x2) = f(x2) with estimated error: Rf = f ′′(ξ)
2 (x̂−x2)(x̂−x2),

when ξ ∈ [x1, x2].

7.5.2 Spline Interpolation

We need to estimate a function, say s(x), which is defined from a set of point [xi, s(xi)],

for i = 0, 1, . . . , n, by using low order polynomials pieces on sub-intervals joined together

with certain continuity conditions in a domain of the function, x0 ≤ x ≤ xi .

A cubic spline S3,i(x) is a piece-wise of third order polynomials. Let’s consider a cubic

polynomial form: S3,i(xi) = ai + bi(x − x1)2 + di(x − xi)3, for i = 0, 1, . . . , n − 1. The

four unknown coefficients need to be specified in order to find the cubic splines. Thus,

S3,i(xi) = s(xi) (7.12)
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for i = 0, 1, . . . , n. The first n+1 conditions are based upon the fact that the S3 function

has to pass through all the points of its domain. Moreover, n− 1 conditions can possible

be produced by the equivalence of the neighboring polynomials at the joint points. Thus,

S3,i(xi) = S3,i+1(xi) (7.13)

for i = 1, 2, . . . , n− 1. Additionally the equivalence of the first and second order deriva-

tives of the function, at the same points, can ensure extra 2n − 2 conditions. That

is,

S′3,i(xi) = S′3,i+1(xi), i = 1, 2, . . . , n− 1

S′′3,i(xi) = S′′3,i+1(xi), i = 1, 2, . . . , n− 1
(7.14)

Therefore, there are a total of 4n − 2 linear constraints on the 4n unknown coefficients

and we need two extra constrains. The additional constrains can be specified by the

following various ways

• Natural Cubic Splines. The imposed conditions are S′′3,i+1(xi) = 0 and S′′3,1(x0) = 0.

• Not–a–knot. The imposed conditions are S′′′3,i(xi) = S′′′3,i+1(xi) and S′′′3,1(x1) =

S′′′3,2(x1).

• Complete cubic spline. The imposed conditions are S′3,i(xi) = f ′(xi) and S′3,0(x0) =

f ′(x0).



Chapter 8

Gap Filling

Usually, the gaps of logging records are rather small, especially when compared to the

total depth of a well. In this section we take a topic in well log time series analysis where

missing data can be estimated by means of interpolation and imputation. This section

seeks to address the following concepts:

• Missing data imputation, interpolation and time series analysis algorithms are used

to improve missing well log data quality.

• Prediction precision between the original and the imputed time series data is used

to quantify the performance of the predictive modeling methods.

Preliminary Data Analysis

Firstly we will properly convert the scale of depth axis to the scale of time axis. Then

we simulate missing values on continuous data sets by performing imputation algorithms

of Kalman Smoothing (KS) with a ARIMA model, Spline Interpolation, Linear Interpo-

lation, Simple Moving Average, Linear Weighted Moving Average and Mean Imputation

models and then finally compare them to the original selected data sets.

For our example, we select the Table Point Formation data set of the Seamus well. In

our case, we need to analyze a formation that is present in both Seamus and Finnegan

hydrocarbon and gas wells. We use the available Spontaneous Potential, Gamma Ray

and Array Induction Two Resistivity logs to demonstrate our experiment. Missing
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completely at random (MCAR) and Missing at random (MAR) were used as a generated

missing value mechanism ([78]).

8.1 Data Characterization of Table Point Formation

Decomposition

The four different well log data sets of Table Point Formation of the Seamus well,

consist of n=871 observations. Before we implement the imputation algorithms, we

need to decompose the time series in order to examine their characteristics as refered

in section 3.3. The STL (Seasonal and Trend decomposition using Loess) method of

decomposition is performed to split the time series into seasonality, trend and remainder

component using the stl function in R. From figures 8.1a to 8.2b we extract the following

considerable information. The Spontaneous Potential (Figure 8.1a), Gamma Ray (Figure

8.1b), Array Induction Two Resistivity A10 (Figure 8.2a) and Array Induction Two

Resistivity A20 (Figure 8.2b) data-sets show no apparent trend and no regular seasonality

and display non-stationary and non-linear characteristics. This is quite common due to

well log data complex behavior which is a result of several factors affecting the signal

transmission and recording system. Petrophysical properties of the porous media, such as

the porosity, permeability and water saturation of the reservoir rock as well as the drilling

mud composition, mud weight, mud cake and casing can significantly effect the record

and display of the well logging sound waves signals. Those effects must be accounted for

to obtain accurate measurements.
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(a) Spontaneous Potential Data

(b) Gamma Ray Data

Figure 8.1: STL Decomposition
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(a) Array Induction Two Resistivity A10 Data

(b) Array Induction Two Resistivity A20 Data

Figure 8.2: STL Decomposition
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Autocorrelation Function

The next step of the analysis is to detect non-randomness in data and at the same

time to identify an appropriate forecast and imputation model if our data is a result

of a non-random process. Indications of strong correlation across all the lags suggest

that the future observations are highly dependent on available past observations, thus

the predictions and imputations would be both accurate and precise. In figures 8.3a

to 8.4b the lag is returned in units of time. The blue dotted lines indicate bounds for

statistical significance. The horizontal lines are at a distance of ±2/
√
n = ±2/

√
871.

The three first following correlograms demonstrate signs of non-stationary behavior due

to very slow decrease of ACF, which means that the mean will change over time. We

will compute the KPSS test to accept or reject the null-hypothesis that the series is

stationary. In 8.3a the p-values = 0.083, while in 8.3b, 8.4a and 8.4b the p-value is less

than 0.01, meaning that in all cases the null-hypothesis is rejected. This behavior is also

confirmed by the ADF test. The results of ADF test for the raw data of the given data

sets confirm the assumptions of non-stationary. In 8.3a the p-values = 0.99, in 8.3b the

p-values = 0.085, in 8.4a the p-values = 0.837 and in 8.4b the p-values is less than 0.01.

For the three fist cases, the p-values of the ADF test is less than the critical value 0.05

and the assumptions about the non-stationarity is confirmed. In the case of 8.4b the

p-values of the test confirm the null-hypothesis of stationarity. By comparing the two

tests we conclude that only in the case of 8.4b the two tests suggest that the time series

is stationary.

• In figure 8.3a there is a strong positive correlation decreasing over the course of

time.

• In figure 8.3b the autocorrelation function demonstrates a slowly decreasing pro-

cess and then, at lag 6, it reaches the boundaries of the confidence interval under

which the values with either positive or negative change are no longer statistically

significant.

• In figure 8.4a the time series dies off positively and slowly. After the lag 10, the au-

tocorrelation function continues to decreases and becomes negative; corresponding

to the presence of a trend component.
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• In figure 8.4b the time series is trended, since the autocorrelations are large and

positive for short lags and then decreasing slowly for large lags.

(a) Spontaneous Potential Data

(b) Gamma Ray Data

Figure 8.3: Autocorrelation Function
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(a) Array Induction Two Resistivity A10 Data

(b) Array Induction Two Resistivity A20 Data

Figure 8.4: Autocorrelation Function
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8.2 Imputation Algorithms

Spontaneous Potential

In error metrics 8.5 and 8.6 two type of errors where calculated, the Root Mean Square

Error (RMSE) and Mean Absolute Percentage Error (MAPE), respectively. Results

demonstrated that the Linear Weighted Moving Average and Simple Moving Average

performance is almost identical. Obviously, the Mean Imputation algorithm exhibits the

worst performance due to the presence of a strong trend component. In general, all the

rest of the algorithms performed in a similar way, producing more accurate predictions

for the observable rate of missingness equal to 0.1. The occurrence of very few high

outliers in some cases is the result of . Based on the produced figures we can cite that

RMSE and MAPE lead to similar results. The corresponding histograms and scatter

diagrams of the original and estimated values of the several missingness factor 0.1, 0.25,

0.5, 0.8 are presented in figures 8.7, 8.8, 8.9 and 8.10, respectively. The model used

is the Kalman ARIMA. Generally, the estimated values follow the original observations

for a missing rate of 0.1, without, however, exhibiting satisfying proximity of the total

distribution. As the missing rate increases to a maximum rate of 0.8, the distribution’s’

convergence weakens.

Gamma Ray

In error metrics 8.11 and 8.12 the same two type of errors where calculated, the Root

Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE), respectively.

Results show that Linear Interpolation and Linear Weighted Moving Average show the

best modeling performance. The Spline Interpolation model display small error values

for missing rate equal to 0.1, 0.25 and 0.5, while for rate equal to 0.8 show great variance.

On the other hand, the Kalman Arima model produces a few extreme error values includ-

ing the small rates of missing values. The Mean Imputation algorithm exhibits the worst

performance due to the presence of a trend component. Based on the produced figures

we can cite that RMSE and MAPE lead to similar results. The corresponding histograms

and scatter diagrams of the original and estimated values of the several missingness fac-

tor 0.1, 0.25, 0.5, 0.8 are presented in figures 8.13, 8.14, 8.15 and 8.16, respectively. The

model used is the Kalman ARIMA. Generally, the estimated values follow the original

observations for a missing rate of 0.1, without, however, exhibiting satisfying proximity
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of the total distribution. As the missing rate increases to a maximum rate of 0.8, the

distribution’s convergence weakens.

Array Induction Two resistivity A10

In error metrics 8.17 and 8.18 the two type of errors where calculated, the Root

Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE), respectively.

Results show that Linear Interpolation and Linear Weighted Moving Average show the

best modeling performance and they are almost identical. The Spline Interpolation model

display small error values for missing rate equal to 0.1, 0.25 and 0.5, while for rate equal

to 0.8 show great variance. On the other hand, the Kalman Arima model produces a few

extreme error values including the small rates of missing values. The Mean Imputation

algorithm exhibits the worst performance due to the presence of a trend component. The

Simple Moving Average shows good performance. Based on the produced figures we can

cite that RMSE and MAPE lead to similar results. The corresponding histograms and

scatter diagrams of the original and estimated values of the several missingness factor

0.1, 0.25, 0.5, 0.8 are presented in figures 8.19, 8.20, 8.21 and 8.22, respectively. The

model used is the Kalman ARIMA. Generally, the estimated values follow the original

observations for a missing rate of 0.1, without, however, exhibiting satisfying proximity

of the total distribution. As the missing rate increases to a maximum rate of 0.8, the

distribution’s convergence weakens.

Array Induction Two resistivity A20

In error metrics 8.23 and 8.24 the two type of errors where calculated, the Root

Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE), respectively.

Results show that Kalman Arima, Linear Interpolation and Linear Weighted Moving

Average show the best modeling performance and they are almost identical. The Kalman

Arima model produces one extreme error value at missing rate equal to 0.5. The Spline

Interpolation model display small error values for missing rate equal to 0.1, 0.25 and

0.5, and then for rate equal to 0.8 show great variance. The Mean Imputation algorithm

exhibits the worst performance due to the presence of a trend component. The Simple

Moving Average shows good performance. Based on the produced figures we can cite

that RMSE and MAPE lead to similar results. The corresponding histograms and scatter

diagrams of the original and estimated values of the several missingness factor 0.1, 0.25,
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0.5, 0.8 are presented in figures 8.25, 8.26, 8.27 and 8.28, respectively. The model used

is the Kalman ARIMA. Generally, the estimated values follow the original observations

for a missing rate of 0.1, without, however, exhibiting satisfying proximity of the total

distribution. As the missing rate increases to a maximum rate of 0.8, the distribution’s

convergence weakens.
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Figure 8.5: RMSE of Spontaneous Potential Data
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Figure 8.6: MAPE of Spontaneous Potential Data
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(a) (b)

Figure 8.7: Histogram and Scatter plot of the Spontaneous Potential original and
estimated values when the missing rate of the data is 0.1. The missing values are

imputed by Kalman Arima.

(a) (b)

Figure 8.8: Histogram and Scatter plot of the Spontaneous Potential original and
estimated values when the missing rate of the data is 0.25. The missing values are

imputed by Kalman Arima.
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(a) (b)

Figure 8.9: Histogram and Scatter plot of the Spontaneous Potential original and
estimated values when the missing rate of the data is 0.5. The missing values are

imputed by Kalman Arima.

(a) (b)

Figure 8.10: Histogram and Scatter plot of the Spontaneous Potential original and
estimated values when the missing rate of the data is 0.8. The missing values are

imputed by Kalman Arima.
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Figure 8.11: RMSE of Gamma Ray Data



Gap Filling 117

Figure 8.12: MAPE of Gamma Ray Data
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(a) (b)

Figure 8.13: Histogram and Scatter plot of the Gamma Ray original and estimated
values when the missing rate of the data is 0.1. The missing values are imputed by

Kalman Arima.

(a) (b)

Figure 8.14: Histogram and Scatter plot of the Gamma Ray original and estimated
values when the missing rate of the data is 0.25. The missing values are imputed by

Kalman Arima.
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(a) (b)

Figure 8.15: Histogram and Scatter plot of the Gamma Ray original and estimated
values when the missing rate of the data is 0.5. The missing values are imputed by

Kalman Arima.

(a) (b)

Figure 8.16: Histogram and Scatter plot of the Gamma Ray original and estimated
values when the missing rate of the data is 0.8. The missing values are imputed by

Kalman Arima.
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Figure 8.17: RMSE of Array Induction Two Resistivity A10 Data
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Figure 8.18: MAPE of Array Induction Two Resistivity A10 Data
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(a) (b)

Figure 8.19: Histogram and Scatter plot of the Array Induction Two Resistivity A10
original and estimated values when the missing rate of the data is 0.1. The missing

values are imputed by Kalman Arima.

(a) (b)

Figure 8.20: Histogram and Scatter plot of the Array Induction Two Resistivity 10in
original and estimated values when the missing rate of the data is 0.25. The missing

values are imputed by Kalman Arima.



Gap Filling 123

(a) (b)

Figure 8.21: Histogram and Scatter plot of the Array Induction Two Resistivity 10in
original and estimated values when the missing rate of the data is 0.5. The missing

values are imputed by Kalman Arima.

(a) (b)

Figure 8.22: Histogram and Scatter plot of the Array Induction Two Resistivity 10in
original and estimated values when the missing rate of the data is 0.8. The missing

values are imputed by Kalman Arima.
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Figure 8.23: RMSE of Array Induction Two Resistivity 20in Data
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Figure 8.24: MAPE of Array Induction Two Resistivity 20in Data
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(a) (b)

Figure 8.25: Histogram and Scatter plot of the Array Induction Two Resistivity 20in
original and estimated values when the missing rate of the data is 0.1. The missing

values are imputed by Kalman Arima.

(a) (b)

Figure 8.26: Histogram and Scatter plot of the Array Induction Two Resistivity 20in
original and estimated values when the missing rate of the data is 0.25. The missing

values are imputed by Kalman Arima.
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(a) (b)

Figure 8.27: Histogram and Scatter plot of the Array Induction Two Resistivity 20in
original and estimated values when the missing rate of the data is 0.5. The missing

values are imputed by Kalman Arima.

(a) (b)

Figure 8.28: Histogram and Scatter plot of the Array Induction Two Resistivity 20in
original and estimated values when the missing rate of the data is 0.8. The missing

values are imputed by Kalman Arima.
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8.3 Synopsis

One of the goals of this study was to investigate how the analysis of well log data and

the resulting models are affected by various amounts of missing data and missing data

patterns. Imputation, interpolation and time series algorithms for gap filling in univariate

time series (well log data) are compared by means of cross validation. Τhese methods

comprise: Kalman ARIMA, mean imputation, linear and spline interpolation, as well as

linear weighted and simple moving average method.

The results show that Linear interpolation, Linear weighted Moving Average and

in certain cases Kalman Arima, exhibit similar performance, which is superior to the

other methods. Histograms and Scatter plots used for the analyses confirm the good

performance of the Kalman Arima algorithm. For high rates of missing data, the cross-

validation measures tend to deteriorate for all the methods considered. Finally, the Mean-

based imputation algorithm produced the largest bias and seems to be most severely

affected by the presence of the trend component.
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Conclusions

This thesis seeks to address questions related to the statistical analysis of well log data.

For this purpose, we obtained datasets from two hydrocarbon reservoirs that are located

in Labrador Island, Western Newfoundland (Canada). The data, which are obtained from

two wells (Finnegan and Seamus) that located onshore, contain a significant amount of

geophysical information. To simplify the analysis we focused on four logs (corresponding

to spontaneous potential, Gamma radiation and two induction logs). The data from

these logs span six different formations. Thus, data analysis must face the challenge of

handling transitions between different formations.

The thesis has three distinct objectives. The first objective is the estimation of the

probability distributions and spatial correlations in data pertaining to the same well log.

The second objective is to evaluate potential cross-correlations between logs which are

obtained from different wells. The motivation for this task is to investigate if information

from one well can be used to fill gaps in the data logs from a neighboring well. Finally,

the third objective is to explore methods for the reconstruction of missing well log data

using univariate methods (which do not account for cross-correlations between properties

in the same well or across different wells).

We report on the conclusions regarding the three main objectives which have been

reached by means of the well log data analysis in the two sections below. The first two

section comprises conclusions related to the first two objectives, since they both refer to

spatial correlations. The second section addresses the goal of missing data reconstruction.
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9.1 Spatial Correlations

One of the objectives of this study was to investigate whether geostatistical tools can be

used to provide useful information concerning spatial correlations in recorded well logs.

Exploratory data analysis was used to summarize the statistical properties of the large

data sets from the Seamus and Finnegan wells using graphical tools. We also investigated

the fit of several probability distribution models to the data. The distribution fitting

procedure suggests that regardless of the specific formation that is being considered,

Spontaneous potential and Gamma radiation indicators can be best described by means

of Cauchy and Gumbel distributions. In contrast, the Induction indicators are best

described means of the Gamma and Weibull probability distributions. In some cases

of well logs with skewed histograms, we also investigated the probability distributions

of the data logarithms. It was realized that the respective histogram plots of the data

logarithms seem to follow more closely the Gaussian distribution than the original values.

These observations are useful, since a number of geostatistical methods work best for

Gaussian and near-Gaussian data. However, their direct application to data that follow

highly skewed distributions and/or fat-tailed (e.g., Gamma, Weibull, Gumbel, Cauchy)

is not recommended.

The issue of spatial auto-correlations in logs from a single well was investigated by

means of variogram analysis. A thorough analysis of the variogram functions for differ-

ent logs and within different formations was carried out. This involved the estimation of

the empirical (data-based) variogram estimates and their fits with theoretical variogram

models using the method of weighted least squares. An overview of the results showed

that a single optimal theoretical model for all the properties cannot be established. Fur-

thermore, the results of the variogram analysis indicate that Spontaneous potential and

Gamma Radiation indicators are mostly fitted to the same type of theoretical variogram

model, with similar sill and range values. The most commonly obtained theoretical model

is the Spherical, followed by the Pentaspherical and Gaussian models. The typical values

for the range and the sill depend on the formations.

The results of the geostatistical analysis suggest that geostatistical tools can sup-

plement available geophysical methods by providing useful information about regional

stratigraphy and the spatial correlation patterns of a given exploration area.
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The geostatistical study also involved the calculation of well log cross-correlations

between Seamus and Finnegan wells. The respective gamma ray logs for the two wells

are displayed in figures 6.12, A.21, A.22, A.23, A.24, A.25. The log data from the two

wells were processed by means of interpolation methods to establish a common sampling

step in order to calculate cross correlations. Different interpolation models were tested

but it was found that they all lead to similar cross-correlation values. The Gamma

radiation logs exhibit both positive and negative correlation values which are overall

higher (in magnitude) than those of the other three logs that are studied. The values

of the positive correlation coefficients range from 0.001 to 0.483, while the values of the

negative correlation coefficients range from −0.142 to −0.001. These findings support

the notion that the Gamma ray log is influenced by lithological changes according to the

explanation provided in Section 6.4.

The analysis of the well log data shows clear signs of non-stationarity. The analysis of

data with non-stationary statistics is challenging and remains an open research field. The

broad implication of the present study is that methods can only be good as the context

within which they are applied. The human factor cannot be eliminated from the process:

Experts still need to choose which well log can give meaningful information and which

method or set of methods should be applied to extract the information. Alternative and

additional suggestions include the calculation of cross-correlation between Spontaneous

potential logs and Gamma radiation logs, as well as the calculation of the uncertainty

propagation through exemplary algorithms or the estimation of the effect of manually

imputed parameters, defined by the user, in the calculation of experimental variograms.

9.2 Missing data reconstruction

The third objective of this study was to explore the performance of different methods

that can be used for the reconstruction of missing data in well logs. The results of our

analysis confirm that different gap-filling methods may be most suitable for different

patterns of missing data.

The algorithms that are used herein relied on the assumption that the handling missing

values come from a univariate time series. Importantly, our analysis concluded that
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identifying the patterns and reasons for the missing data can help to provide reliable and

accurate reconstructions.

For the reconstruction of missing values, we used a number of interpolation, im-

putation and time series methods which included Kalman Smoothing (KS) with an

ARIMA model, Spline Interpolation, Linear Interpolation, Simple Moving Average, Lin-

ear Weighted Moving Average and Mean Imputation. Based on statistical validation

measures and comparison maps, we conclude that Linear Interpolation, Linear Weighted

Moving Average and in some cases Kalman Arima, are the methods that exhibit superior

and quite similar performance. Histograms and scatter plots confirm the good perfor-

mance of the Kalman Arima algorithm. Moreover, we can conclude that significant biases

occur in the reconstructions if the data sets involve non-modeled spatial trends and when

the missing data rate is high (i.e. > 50%)

Imputation and interpolation methods can be easily applied to univariate time series.

Future research could investigate the effects of sampling size and number of random-

effects (i.e. when performing Multiple Imputation algorithms) and algorithmic improve-

ments. Further studies should focus on exploring different imputation techniques under

more comprehensive missing data scenarios (i.e. Complete Case Analysis (CCA), Last

Observation Carried Forward (LOCF), Complete Case Missing Value (CCMVPM) re-

striction, Available Case Missing Value (ACMVPM) restriction, Neighboring Case Miss-

ing Value (NCMVPM) restriction, and the selection model (SMPM).

Overall, our results show that well log data analysis can benefit from the application

of geostatistical and time series methods. The latter can be effectively applied to one-

dimensional spatial data, such as those obtained by well logs. While the current study

focused on the modeling of spatial correlations in each well independently of other wells

in the area, multivariate time series models could be used to provide jointly analyze data

across different wells.
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Appendix A

Geostatistical analysis of the

selected formations

The Table point formation is a geological unit dominated by dolomitized carbonate

conglomerates and calcarenites, while fossils dating back to the Ordovian period are also

present. The Aguathuna formation is a geological unit dominated mainly by limestone,

dolostone, and shale ([13]).

A.1 Seamus 216mm hole section

The statistical parameters of the the Table Point and Aguathuna formation of the Seamus

216 hole section are presented.

SP (.mV) Min Max Mean Median Mode
Table Point -102.81 -13.37 -67.97 -75.25 -93.06
Aguatha -75.25 18.68 -30.77 -34.5 14.37

SP (.mV) Variance SD Skewness Kurtosis
Table Point 618.08 24.86 0.64 2.07
Aguatha 753.19 27.44 0.27 1.84

Table A.1: Spontaneous potential statistical parameters of Seamus 216mm.

GR (GAPI) Min Max Mean Median Mode
Table Point 6.43 46.95 15.72 14.52 13.34
Aguatha 8.92 97.44 27.07 22.14 14.18
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GR (GAPI) Variance SD Skewness Kurtosis
Table Point 24.43 4.94 1.74 7.6
Aguatha 254.26 15.95 1.32 4.62

Table A.2: Gamma ray statistical parameters of Seamus 216mm.

A10 Min Max Mean Median Mode
Table Point 20.27 235.82 92.7 83.08 85.33
Aguatha 65.95 197.78 140.55 143.9 108.65

A10 Variance SD Skewness Kurtosis
Table Point 1162.45 34.09 1.72 5.7
Aguatha 868 29.46 -0.45 2.6

Table A.3: Array Induction 10in statistical parameters of Seamus 216mm.

A20 Min Max Mean Median Mode
Table Point 24.73 1950 877.8 764.98 1950
Aguatha 83.46 1950 920.15 887.61 1950

A20 Variance SD Skewness Kurtosis
Table Point 239297.4 489.18 0.6 2.43
Aguatha 258693.5 508.62 0.27 2.1

Table A.4: Array Induction 20in statistical parameters of Seamus 216mm.
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A.1.1 Table Point Formation

Log Min Max Mean Median Mode
SP(mV) -30.077 22.496 7.219e-14 0.155 -21.828

Log Variance SD Skewness Kurtosis
SP(mV) 134.33 11.590 -0.111 2.106

Table A.5: Detrended data statistics of Table Point formation found in Seamus
216mm hole section.

Log Model Estimated Trend Function
SP Qubic −33.9 + 2.61 · 10−2x+−6.34 · 10−4x2 + 6.96 · 10−7x3 + εi, ε ∼ N(0, 11.62)

Table A.6: Estimated trend models.

Figure A.1: Fitting of the distributions by maximum likelihood. Featured data-set;
SP log of Seamus 216mm hole section.
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Figure A.2: Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Seamus 216mm hole section.

Histograms
Distribution Parameters Information Criteria

SP norm µ=7.219e-14,σ=11.58 AIC=6742.95, BIC=6752.49
Cauchy a=-0.309,γ=8.465 AIC= 7219.65, BIC=7229.19
Gumbel µ=-5.826,b=11.160 AIC=6857.59, BIC=6867.13

GR norm µ=15.718,σ=4.940 AIC=5258.35, BIC= 5267.89
Weibull a=3.102,λ=17.473 AIC=8622.55, BIC=8632.09
gamma a=12.167,λ= 0.774 AIC= 5049.42, BIC= 5058.95

A10 norm µ=92.701,σ=34.075 AIC=5258.35, BIC= 5267.889
Weibull a=2.746,λ=103.987 AIC=8593.23, BIC=8602.76
gamma a=9.318,λ=0.101 AIC= 8358.49, BIC=8368.03

A20 norm µ=877.803,σ=488.899 AIC=13262.5, BIC=13272.1
Weibull a= 1.878,λ=990.129 AIC=13132.3 , BIC= 13141.8
gamma a=2.856,λ=0.003 AIC=13146.4, BIC= 13156

Table A.7: Distributions’ estimated parameters and information criteria of the Table
Point formation found in Seamus 216mm hole section. The units of measurement are

[mV], [GAPI], [Ωhmm] for SP, GR and A10, A20 respectively.
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Figure A.3: Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Seamus 216mm hole section.

Variograms
Model Sill Range Nugget

SP Gau 229.263 10.078 3.410
GR Cir 13.893 3.095 1.303

Gau 11.992 1.744 3.231
Pen 10.738 8.043 4.933
Sph 14.216 3.447 0.981

A10 Cir 713.728 16.272 0.000
Pen 717.241 22.522 0.000
Sph 714.986 18.505 0.000

A20 Exp 213056 2.171 0.000
Gau 170931.4 2.143 32864.3
Pen 181428.5 7.005 27292.6
Sph 177039.4 5.915 31402.4

Table A.8: Fitting of the best theoretical model to the experimental variograms of
the field.
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Figure A.4: Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Seamus 216mm hole section.

Variograms
Model MSE MAE RMSE

SP Gau 82.054 7.493 9.058
GR Cir 2.706 1.329 1.645

Gau 2.285 1.212 1.511
Pen 1.850 1.045 1.360
Sph 2.712 1.326 1.647

A10 Cir 4440.83 56.005 66.639
Pen 4394.45 56.105 66.291
Sph 4395 56.042 66.295

A20 Exp 1386·105 8455.11 11774.3
Gau 25524·105 13309.9 15976.3
Pen 17091·105 10084.6 13073.2
Sph 18224·105 10704.3 13500

Table A.9: Fitting of the best theoretical model to the experimental variograms of
the field.
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(a) Spontaneous Potential (b) Gamma Ray

(c) Induction A10 (d) Induction A20

Figure A.5: Variogram plots. The weights are determined using Nj , where Nj is the
number of pairs at certain lag. For the calculation of the Spontaneous potential the

weights are determined using Nj/h
2
i .
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A.1.2 Aguathuna Formation

Log Min Max Mean Median Mode
A10(Ohmm) -83.268 45.952 1.233e-13 4.303 1.847

Log Variance SD Skewness Kurtosis
A10(Ohnmm) 485.109 22.025 -0.781 3.715

Table A.10: Detrended data statistics of Aguathuna formation found in Seamus 216
hole section.

Log Model Estimated Trend Function
A10 Linear 106.61− 0.19x+ εi, ε ∼ N(0, 22.12)

Table A.11: Estimated trend models.

Figure A.6: Fitting of the distributions by maximum likelihood. Featured data-set;
SP log of Seamus 216mm hole section.
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Figure A.7: Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Seamus 216mm hole section.

Histograms
Distribution Parameters Information Criteria

SP norm µ=-30.771,σ=27.405 AIC=3286.38, BIC=3294.08
Cauchy a=-36.001,γ=19.518 AIC=3476.17, BIC=3483.87
Gumbel µ=-44.006,b=23.065 AIC=3274.43, BIC=3282.13

GR norm µ = −4.895e−15,σ=15.68 AIC=2898.93, BIC= 2906.63
Cauchy a=-8.045,λ=5.786 AIC=2886.79, BIC=2894.49
Gumbel a=-6.710,λ= 10.262 AIC= 2767.84, BIC= 2775.54

A10 norm µ = 1.23e−13,σ=21.99 AIC=3133.72, BIC= 3141.42
Cauchy a=5.192,λ=11.841 AIC=3222.16, BIC=3229.86
Gumbel a = −11.710,λ=25.847 AIC= 3269.59, BIC=3277.29

A20 norm µ=920.154,σ=570.886 AIC=5312.54, BIC=5320.24
Weibull a=1.863,λ=1034.914 AIC=5278.68, BIC= 5286.38
Gamma a=2.568, λ=0.003 AIC=5298.38, BIC= 5306.08

Table A.12: Distributions’ estimated parameters and information criteria of the Table
Point formation found in Seamus 216 hole section. The units of measurement are [mV],

[GAPI], [Ωhmm] for SP, GR and A10, A20 respectively.



Geostatistical Analysis 151

Figure A.8: Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Seamus 216mm hole section.

Variograms
Model Sill Range Nugget

SP Gau 2035.890 7.629 0.000
A10 Gau 403.185 4.816 0.000

Sph 390.383 10.151 0.000
Pen 408.810 13.288 0.000
Cir 388.817 8.944 0.000

A20 Sph 269635.7 6.979 36447.3
Gau 234617.4 3.38148 71416.5
Exp 310531 2.642 0.000
Pen 272134.8 8.463 34517.7
Cir 264979.3 6.240 40977.7

Table A.13: Fitting of the best theoretical model to the experimental variograms of
the field.
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Figure A.9: Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Seamus 216mm hole section.

Variograms
Model MSE MAE RMSE

SP Gau 2314.63 38.7431 48.111
A10 Gau 634.203 18.409 25.183

Sph 1098.68 28.921 33.146
Pen 1292.77 30.844 35.955
Cir 900.201 25.840 30.003

A20 Sph 10965× 105 27872.2 33112.8
Gau 10938× 105 27604.8 33072.3
Exp 12133× 105 29224.7 34832.4
Pen 110415× 105 28174.4 33228.7
Cir 10854× 105 27639.9 32945.5

Table A.14: Fitting of the best theoretical model to the experimental variograms of
the field.
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(a) Spontaneous Potential

(b) Induction A10 (c) Induction A20

Figure A.10: Variogram plots. The weights are determined using Nj , where Nj is
the number of pairs at certain lag.



Geostatistical Analysis 154

A.2 Finnegan 216mm hole section

The statistical parameters of the the Table Point and Aguathuna formation of the

Finnegan 216 hole section are presented.

SP (.mV) Min Max Mean Median Mode
Table Point 206.11 316.73 254.49 243.96 245.17
Aguathuna 195.36 257.63 224.02 220.66 212.17

SP (.mV) Variance SD Skewness Kurtosis
Table Point 697.33 26.40 0.46 1.92
Aguathuna 204.38 14.29 0.41 2.06

Table A.15: Spontaneous potential statistical parameters of Finnegan 216mm.

GR (GAPI) Min Max Mean Median Mode
Table Point 3.65 34.78 11.64 11.82 12.42
Aguathuna 5.26 70.38 21.63 17 12.3

GR (GAPI) Variance SD Skewness Kurtosis
Table Point 29.54 5.44 0.85 4.13
Aguathuna 143.21 11.97 1.51 5.36

Table A.16: Gamma ray statistical parameters of Finnegan 216mm.

A10 (Ohmm) Min Max Mean Median Mode
Table Point 189.76 2927.43 1239.76 1239.32 1232.15
Aguathuna 58.56 9280.18 1290.24 1288.16 1157.22

A10 (Ohmm) Variance SD Skewness Kurtosis
Table Point 33911.99 184.15 1.9 27.62
Aguathuna 664848.5 815.38 6.04 54.82

Table A.17: Array induction 10in statistical parameters of Finnegan 216mm.

A20 (Ohmm) Min Max Mean Median Mode
Table Point 245.35 1818.34 1231.72 1238.03 1232.15
Aguathuna 33.38 3567.02 1206.96 1276.09 1218.03

A20 (Ohmm) Variance SD Skewness Kurtosis
Table Point 13612.58 116.67 -2.22 24.79
Aguathuna 173256.6 416.24 0.41 10.13

Table A.18: Array induction 20in statistical parameters of Finnegan 216mm.
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A.2.1 Table Point Formation

Log Min Max Mean Median Mode
SP(.mV) -48.818 31.691 2.673e-13 4.513 -1.636

GR(.GAPI) -6.928 21.143 -1.247e-14 -0.909 3.745
A20(Ohmm) -988.255 584.777 4.568e-13 6.186 17.826

Log Variance SD Skewness Kurtosis
A10(Ohnmm) 270.041 16.433 -0.795 3.113
GR(.GAPI) 18.696 4.324 1.285 5.325
A20(Ohmm) 13603 116.632 -2.257 25.008

Table A.19: Detrended data statistics of Table Point found in Finnegan 216 hole
section.

Log Model Estimated Trend Function
SP Linear 290.32− 0.09x+ εi, ε ∼ N(0, 16.42)
GR Linear 17.35− 0.016x+ εi, ε ∼ N(0, 4.332)
A20 Linear 1237.09− 0.015x+ εi, ε ∼ N(0, 1172)

Table A.20: Estimated trend models.

Histograms
Distribution Parameters Information Criteria

SP norm µ=2.672e-13,σ=16.42 AIC=6127.86, BIC=6137.04
Cauchy a=5.232,γ=8.332 AIC= 6291.04, BIC= 6300.22
Gumbel µ=-8.779,b=18.466 AIC=6379.97, BIC=6389.15

GR norm µ = −1.247e−14,σ=4.321 AIC=4189.26, BIC= 4198.43
Cauchy a=-1.205,λ=2.293 AIC=4306.18, BIC=4315.35
Gumbel a=-1.903,λ= 3.175 AIC= 4002.98, BIC= 4012.16

A10 norm µ = 1239.764,σ=184.025 AIC=9636.58, BIC= 9645.76
Cauchy a=1239.361,λ=39.761 AIC=8841.62, BIC=8850.8
Gumbel a = 1150.319,λ=255.331 AIC=10011.5 , BIC=10020.7

A20 norm µ=4.965e−14,σ=8.587 AIC=10161.9 , BIC=10172.5
Cauchy a=1.967,λ=3.977 AIC=10217, BIC= 10227.5
Gumbel a=-4.691, λ=10.576 AIC=10824.9, BIC= 10835.4

Table A.21: Distributions’ estimated parameters and information criteria of the Table
Point formation found in Seamus 216 hole section. The units of measurement are [mV],

[GAPI], [Ωhmm] for SP, GR and A10, A20 respectively.
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Figure A.11: Fitting of the distributions by maximum likelihood. Featured data-set;
SP log of Finnegan 216mm hole section.

Variograms
Model Sill Range Nugget

SP Cir 2035.890 7.629 0.000
Gau 2035.890 7.629 0.000
Pen 2035.890 7.629 0.000
Sph 2035.890 7.629 0.000

GR Exp 403.185 4.816 0.000
Gau 390.383 10.151 0.000
Pen 408.810 13.288 0.000
Sph 388.817 8.944 0.000

A10 Exp 269635.7 6.979 36447.3
Gau 234617.4 3.38148 71416.5

Table A.22: Fitting of the best theoretical model to the experimental variograms of
the field.
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Figure A.12: Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Finnegan 216mm hole section.

Variograms
Model MSE MAE RMSE

SP Cir 21.871 3.786 4.676
Gau 51.565 5.575 7.181
Pen 22.166 3.849 4.708
Sph 22.070 3.825 4.698

GR Exp 0.933 0.771 0.966
Gau 0.993 0.759 0.996
Pen 0.710 0.700 0.842
Sph 0.673 0.695 0.820

A10 Exp 1784640 956.02 1335.9
Gau 1148419 852.498 1071.64

Table A.23: Fitting of the best theoretical model to the experimental variograms of
the field.
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Figure A.13: Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Finnegan 216mm hole section.
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Figure A.14: Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Finnegan 216mm hole section.
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(a) Spontaneous Potential

(b) Gamma Ray (c) Induction A10

Figure A.15: Variogram plots. The weights are determined using Nj , where Nj is
the number of pairs at certain lag.
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A.2.2 Aguathuna Formation

Log Min Max Mean Median Mode
SP(.mV) -29.441 28.190 -1.473e-15 -1.159 28.189

GR(.GAPI) -20.638 41.896 1.553e-14 -1.453 -3.914
A10(Ohmm) -1270.69 7955.62 7.846e-14 -65.771 -193.574
A20(Ohmm) -1150.17 2321.79 2.274e-13 22.513 -79.281

Log Variance SD Skewness Kurtosis
A10(Ohnmm) 114.036 10.679 0.200 2.600
GR(.GAPI) 107.700 10.378 1.217 5.166
A10(Ohmm) 649360 805.829 6.141 56.023
A20(Ohmm) 162932 403.649 0.505 10.477

Table A.24: Detrended data statistics of Aguathuna formation found in Finnegan 216
hole section.

Log Model Estimated Trend Function
SP Linear 202 + 0.271x− 5.81 · 10−4x2 + εi, ε ∼ N(0, 10.72)
GR Linear 11.193− 0.082x+ εi, ε ∼ N(0, 10.42)
A10 Linear 1486.817− 1.560x+ εi, ε ∼ N(0, 8072)
A20 Linear 1377.926− 1.354x+ εi, ε ∼ N(0, 4042)

Table A.25: Estimated trend models.

Histograms
Distribution Parameters Information Criteria

SP norm µ= -1.472e-15,σ=10.657 AIC=1904.17, BIC= 1911.22
Cauchy a=-1.493,γ=6.990 AIC= 2015.16, BIC=2022.21
Gumbel µ=-5.212,b= 9.976 AIC=1922.86, BIC=1929.91

GR norm µ = 1.553e−14,σ=10.357 AIC=1889.82, BIC= 1896.87
Cauchy a=-1.986,λ=5.168 AIC=1909.45, BIC=1916.5
Gumbel a=-4.604,λ= 8.095 AIC= 1841.2, BIC=1848.25

A10 norm µ = 7.846e−14,σ=804.222 AIC=4074.62, BIC= 4081.68
Cauchy a=39.125,λ=113.621 AIC=3566.45, BIC=3573.5

A20 norm µ=2.273e−13,σ=402.844 AIC=3727.58 , BIC=3734.63
Cauchy a=39.125,λ=113.621 AIC=3566.45, BIC= 3573.5

Table A.26: Distributions’ estimated parameters and information criteria of the Table
Point formation found in Seamus 216 hole section. The units of measurement are [mV],

[GAPI], [Ωhmm] for SP, GR and A10, A20 respectively.
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Figure A.16: Fitting of the distributions by maximum likelihood. Featured data-set;
SP log of Finnegan 216mm hole section.
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Figure A.17: Fitting of the distributions by maximum likelihood. Featured data-set;
GR log of Finnegan 216mm hole section.
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Figure A.18: Fitting of the distributions by maximum likelihood. Featured data-set;
A10 log of Finnegan 216mm hole section.
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Figure A.19: Fitting of the distributions by maximum likelihood. Featured data-set;
A20 log of Finnegan 216mm hole section.
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(a) Spontaneous Potential (b) Gamma Ray

(c) Induction A10 (d) Induction A20

Figure A.20: Variogram plots. The weights are determined using Nj , where Nj is
the number of pairs at certain lag.
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Variograms
Model Sill Range Nugget

SP Gau 156.957 6.263 19.116
Pen 181.122 16.780 0.000
Sph 178.355 13.704 0.527

GR Exp 259.38 10.858 0.000
Gau 158.032 6.341 19.529
Sph 180.957 14.201 1.651

A10 Exp 105.904 2.428 1.500
Gau 79.836 2.781 23.569
Sph 87.332 6.720 17.702

A20 Exp 232382.0 6.037 58595.3
Gau 163960.4 4.791 87586.9
Sph 184620.1 12.042 76319.8

Table A.27: Fitting of the best theoretical model to the experimental variograms of
the field.

Variograms
Model MSE MAE RMSE

SP Gau 52.395 5.294 7.238
Pen 33.896 4.782 5.822
Sph 178.355 13.704 0.527

GR Sph 45809 · 106 205523 214031
Gau 45815 · 106 205540 214045
Exp 45817 · 106 205543 214050

A10 Exp 87474 · 103 8042.73 9352.79
Gau 12790 · 104 9350.49 11309.4
Sph 21954 · 104 12556.6 14817

A20 Exp 15356 · 104 10089.4 12392
Gau 30253 · 104 14065.4 17393.5
Sph 21955 · 104 12555.8 14817.5

Table A.28: Fitting of the best theoretical model to the experimental variograms of
the field.
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A.3 Correlation Graphs

All correlations computation presented in appendices, are based on Pearson’s rank cor-

relation and have been verified through Spearman’s rank correlation. The graphical

outcomes of the correlation table 6.12 are compiled in figures A.21, A.22, A.23, A.24,

A.25. Results show no strong sign of correlation between the values of Gamma Ray log

in Seamus and Finnegan well.
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Figure A.21: Graphical representation of the correlated physical property of GR
between the wells of Seamus and Finnegan.
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Figure A.22: Graphical representation of the correlated physical property of GR
between the wells of Seamus and Finnegan.
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Figure A.23: Graphical representation of the correlated physical property of GR
between the wells of Seamus and Finnegan.
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Figure A.24: Graphical representation of the correlated physical property of GR
between the wells of Seamus and Finnegan.
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Figure A.25: Graphical representation of the correlated physical property of GR
between the wells of Seamus and Finnegan.



Appendix B

Data Structures and Algorithms

All algorithms for statistical and spatial analysis as well as the algorithms for the esti-

mation of missing values in data, were developed and run in R and Matlab environment.

B.1 Correlations

The preliminary, exploratory and variogram analysis was developed and run in R envi-

ronment. The calculation of the well-log correlations was developed and run in Matlab

environment.

#R packages

library(gstat)

library(automap)

library(ggplot2)

library(MASS)

library(fitdistrplus)

library(gridExtra)

library(actuar)

library(extraDistr)

library(imputeTS)

library(Amelia)

library(forecast)

library(readr)

174
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library(caret)

#Set graph size

x11(width=8, height=9, pointsize=15)

par(mfrow=c(1,1), mar=c(3,3,3,3))

#Import data

setwd("c:\\ users \\ Anastasia \\ Desktop \\ NalcorEnergy"’)

rm(list=ls(all.names=TRUE))

graphics.off()

F311<-read_delim (" Finnegan311.csv", ";", escape_double = FALSE ,

trim_ws = TRUE)

F216<-read_delim (" Finnegan216.csv", ";", escape_double = FALSE ,

trim_ws = TRUE)

S216<-read_delim (" Seamus311.csv", ";", escape_double = FALSE ,

trim_ws = TRUE)

#Select formations

#Formations of the Finnegan 311 hole section

#Goose (American) Tickle

Goose311_1=matrix(F311$DEPT[7087:8509])

Goose311_2=matrix(F311$SP[7087:8509])

Goose311_3=matrix(F311$GR[7087:8509])

Goose311_4=matrix(F311$M2R1[7087:8509])

Goose311_5=matrix(F311$M2R2[7087:8509])

GooseDataF <-cbind(Goose311_1,Goose311_2,Goose311_3,Goose311_4,Goose311_5)

#Formations of the Finnegan 216 hole section

#Table Point

TableF_1<-F216$DEPT[180:905]

TableF_2<-F216$SP[180:905]

TableF_3<-F216$GR[180:905]

TableF_4<-F216$M2R1[180:905]

TableF_5<-F216$M2R2[180:905]

TableDataF <-cbind(TableF_1,TableF_2,TableF_3,TableF_4,TableF_5)



R and Matlab environment 176

#Aguathuna

AguathF_1<-F216$DEPT[906:1155]

AguathF_2<-F216$SP[906:1155]

AguathF_3<-F216$GR[906:1155]

AguathF_4<-F216$M2R1[906:1155]

AguathF_5<-F216$M2R2[906:1155]

AguathDataF <-cbind(AguathF_1,AguathF_2,AguathF_3,AguathF_4,AguathF_5)

#Formations of the Seamus 216 hole section

#Goose (American) Tickle

Goose216_1<-S216$DEPT[500:2000]

Goose216_2<-S216$SP[500:2000]

Goose216_3<-S216$GR[500:2000]

Goose216_4<-S216$M2R1[500:2000]

Goose216_5<-S216$M2R2[500:2000]

GooseDataS <-cbind(Goose216_1,Goose216_2,Goose216_3,Goose216_4,Goose216_5)

#Table Point

TableS_1<-S216$DEPT[2700:3570]

TableS_2<-S216$SP[2700:3570]

TableS_3<-S216$GR[2700:3570]

TableS_4<-S216$M2R1[2700:3570]

TableS_5<-S216$M2R2[2700:3570]

TableDataS <-cbind(TableS_1,TableS_2,TableS_3,TableS_4,TableS_5)

#Aguathuna

AguathS_1<-S216$DEPT[3571:3917]

AguathS_2<-S216$SP[3571:3917]

AguathS_3<-S216$GR[3571:3917]

AguathS_4<-S216$M2R1[3571:3917]

AguathS_5<-S216$M2R2[3571:3917]

AguathDataS <-cbind(AguathS_1,AguathS_2,AguathS_3,AguathS_4,AguathS_5)

###############################################################
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#CALCULATION OF MOMENTS

set.seed(1)

options(digits = 6)

Moments.gen <-function(x){

min=min(x)

max=max(x)

mean=mean(x)

med=median(x)

mod=getmode(x)

var=var(x)

sd=sqrt(var(x))

sk=skewness(x)

kur=kurtosis(x)

print(min)

print(max)

print(mean)

print(med)

print(mod)

print(var)

print(sd)

print(sk)

print(kur)

}

x<-c(2:5)

for (j in x){

k<-( GooseDataF[,j])

print(Moments.gen(k))

print("Next Formation ")

l<-( TableDataF[,j])

print(Moments.gen(l))

print("Next Formation ")

m<-( AguathDataF[,j])

print(Moments.gen(m))

print("Next Formation ")

n<-( GooseDataS[,j])

print(Moments.gen(n))

print("Next Formation ")
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q<-( TableDataS[,j])

print(Moments.gen(q))

print("Next Formation ")

p<-( AguathDataS[,j])

print(Moments.gen(p))

}

###############################################################

#DETRENDED DATA

#Transform the data into time series

#Formations of the Finnegan 311 hole section

#Goose (American) Tickle

#Spontaneous Potential

AAPL1 <-ts(Goose311_2,start(Goose311_1,0.2))

reg1 <- lm(AAP1L~time(AAPL1))

detrended <-as.numeric(AAPL1-predict.lm(reg1))

summary(req1)

#Gamma Ray

AAPL2<-ts(Goose311_3,start(Goose311_1,0.2))

reg2 <- lm(AAPL2~time(AAPL2)+ I(time(AAPL2)^2) + I(time(AAPL2)^3))

detrended1<-as.numeric(AAPL2-predict.lm(reg2))

summary(req2)

#Formations of the Finnegan 216 hole section

#Table Point

#Spontaneous Potential

AAPL3 <-ts(TableF_2,start(TableF_1,0.2))

reg3 <- lm(AAPL3~time(AAPL3))

detrended3<-as.numeric(AAPL3-predict.lm(reg3))

summary(req3)

#Gamma Ray

AAPL4 <-ts(TableF_3,start(TableF_1,0.2))

reg4 <- lm(AAPL4~time(AAPL4))

detrended4<-as.numeric(AAPL4-predict.lm(reg4))

summary(req4)
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#Array Induction 20

AAPL9 <-ts(TableF_5,start(TableF_1,0.2))

reg9 <- lm(AAPL9~time(AAPL9))

detrended9<-as.numeric(AAPL9-predict.lm(reg9))

summary(req9)

#Aguathuna

#Spontaneous Potential

AAPL12 <-ts(AguathF_2,start(AguathF_1,0.2))

reg12 <- lm(AAPL12~time(AAPL12)+ I(time(AAPL12)^2))

detrended12<-as.numeric(AAPL12-predict.lm(reg12))

summary(req12)

#Gamma Ray

AAPL5 <-ts(AguathF_2,start(AguathF_1,0.2))

reg5 <- lm(AAPL5~time(AAPL5))

detrended5<-as.numeric(AAPL5-predict.lm(reg5))

summary(req5)

#Array Induction 10

AAPL10 <-ts(AguathF_4,start(AguathF_1,0.2))

reg10 <- lm(AAPL10~time(AAPL10))

detrended10<-as.numeric(AAPL10-predict.lm(reg10))

summary(req10)

#Array Induction 20

AAPL11 <-ts(AguathF_5,start(AguathF_1,0.2))

reg11 <- lm(AAPL11~time(AAPL11))

detrended11<-as.numeric(AAPL11-predict.lm(reg11))

summary(req11)

#Formations of the Seamus 216 hole section

#Goose (American) Tickle

#Gamma Ray

AAPL6 <-ts(Goose216_3,start(Goose216_1,0.1524))

reg6 <- lm(AAPL6~time(AAPL6))

detrended6<-as.numeric(AAPL6-predict.lm(reg6))

summary(req6)
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#Table Point

AAPL7<-ts(TableS_3,start(TableS_1,0.1524))

reg7<-lm(AAPL7~time(AAPL7)+ I(time(AAPL7)^2) + I(time(AAPL7)^3))

detrended7<-as.numeric(AAPL7-predict.lm(reg7))

summary(req7)

#Aguathuna

AAPL8<-ts(AguathS_4,start(AguathS_1,0.1524))

reg8<-lm(AAPL8~time(AAPL8))

detrended8<-as.numeric(AAPL8-predict.lm(reg8))

summary(req8)

###############################################################

#PLOT DISTRIBUTIONS

list.of.data.sets <- list(

y1<-as.vector(detrended),

y2<-as.vector(detrended1),

y3<-as.vector(Goose311_4),

y4<-as.vector(Goose311_5),

y5<-as.vector(detrended3),

y6<-as.vector(detrended4),

y7<-as.vector(TableF_4),

y8<-as.vector(TableF_5),

y9<-as.vector(AguathF_2),

y10<-as.vector(detrended5),

y11<-as.vector(AguathF_4),

y12<-as.vector(AguathF_5),

y13<-as.vector(Goose216_2),

y14<-as.vector(detrended6),

y15<-as.vector(Goose216_4),

y16<-as.vector(Goose216_5),

y17<-as.vector(detrended7),

y18<-as.vector(TableS_3),

y19<-as.vector(TableS_4),

y20<-as.vector(TableS_5),

y21<-as.vector(detrended8),
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y22<-as.vector(AguathS_2),

y23<-as.vector(AguathS_3),

y24<-as.vector(AguathS_5)

)

my.distr.function1<-function(neg.data){

fg <- fitdist(y1,"norm")

fm <- fitdist(y1,"cauchy")

fk <- fitdist(y1,"gumbel", start=list(a=100, b=100))

f_list <- list(fg,fm ,fk)

plot.legend <- sapply(c(1:length(f_list)),

function(x) f_list[[x]]$ distname)

f1 <- denscomp(f_list , legendtext = plot.legend ,

xlegend = "right",

plotstyle = "ggplot",breaks=30)

f2 <- qqcomp(f_list , legendtext = plot.legend ,

xlegend = "right",

plotstyle = "ggplot")

f3 <- cdfcomp(f_list , legendtext = plot.legend ,

xlegend = "right",

plotstyle = "ggplot")

f4 <- ppcomp(f_list , legendtext = plot.legend ,

xlegend = "right",

plotstyle = "ggplot")

grid.arrange(f1,f2,f3,f4)

summary(fg,fm,fk)}

my.distr.function2<-function(pos.data){

fg <- fitdist(y1,"norm")

fl <- fitdist(y1,"weibull")

fmm <-fitdist(y1,"gamma")

f_list <- list(fg,fl ,fmm)

plot.legend <- sapply(c(1:length(f_list)),

function(x) f_list[[x]]$ distname)

f1 <- denscomp(f_list , legendtext = plot.legend ,

xlegend = "right",

plotstyle = "ggplot",breaks=30)
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f2 <- qqcomp(f_list , legendtext = plot.legend ,

xlegend = "right",

plotstyle = "ggplot")

f3 <- cdfcomp(f_list , legendtext = plot.legend ,

xlegend = "right",

plotstyle = "ggplot")

f4 <- ppcomp(f_list , legendtext = plot.legend ,

xlegend = "right",

plotstyle = "ggplot")

grid.arrange(f1,f2,f3,f4)

summary(fg,fl,fmm)

}

for(i in 1:length(list.of.data.sets )){

if(list.of.data.sets[[i]]>0) {

my.distr.function2(pos.data=list.of.data.sets[[i]])

} else if {list.of.data.sets[[i]]<0} {

my.distr.function1(neg.data=list.of.data.sets[[i]]) }}

results.of.all.data.sets1 <- lapply(list.of.data.sets ,

FUN=c(my.distr.function1)

results.of.all.data.sets2 <- lapply(list.of.data.sets ,

FUN=c(my.distr.function2)

###############################################################

#EMPIRICAL VARIOGRAMS

##Finnegan 311###

#Goose(American) Tickle

#Spontaneous potential

Test = data.frame(DEPTH=Goose311_1, SP=detrended)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=50,cressie=TRUE ,width=2.5)
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#Gamma ray

Test = data.frame(DEPTH=Goose311_1, SP=detrended1)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=60,cressie=TRUE ,width=4)

#Array Induction 10

Test = data.frame(DEPTH=Goose311_1, SP=Goose311_4)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=16,cressie=TRUE ,width=0.5)

#Array Induction 20

Test = data.frame(DEPTH=Goose311_1, SP=Goose311_5)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=3,cressie=TRUE ,width=0.2)

##Seamus 216##

#Goose (American) Tickle

#Spontaneous potential

Test = data.frame(DEPTH=Goose216_1, SP=Goose216_2)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=50,cressie=TRUE ,width=2)

#Gamma Ray

Test = data.frame(DEPTH=Goose216_1, SP=detrended6)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=150,cressie=TRUE ,width=8)
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#Array Induction 10

Test = data.frame(DEPTH=Goose216_1, SP=Goose216_4)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=50,cressie=TRUE ,width=3)

#Array Induction 20

Test = data.frame(DEPTH=Goose216_1], SP=Goose216_5)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Goose",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=55,cressie=TRUE ,width=2)

#Table Point

#Spontaneous Potential

Test = data.frame(DEPTH=TableS_1, SP=TableS_2)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=35,cressie=TRUE ,width=1.5)

#Gamma Ray

Test = data.frame(DEPTH=TableS_1, SP=detrended7)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=20,cressie=TRUE ,width=1)

#Array Induction 10

Test = data.frame(DEPTH=TableS_1, SP=TableS_4)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y
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k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=50,cressie=TRUE ,width=2)

#Array Induction 20

Test = data.frame(DEPTH=TableS_1, SP=TableS_5)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=15,cressie=TRUE ,width=0.7)

#Aguathuna

#Spontaneous Potential

Test = data.frame(DEPTH=AguathS_1, SP=AguathS_2)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=15,cressie=TRUE ,width=0.6)

#Array Induction 10

Test = data.frame(DEPTH=AguathS_1, SP=detrended8)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=11,cressie=TRUE ,width=0.5)

#Array Induction 20

Test = data.frame(DEPTH=AguathS_1, SP=AguathS_5)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=30,cressie=TRUE ,width=1)

##Finnegan 216

#Table Point

#Spontaneous Potential



R and Matlab environment 186

Test = data.frame(DEPTH=TableF_1, SP=detrended3)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=10,cressie=TRUE ,width=0.5)

#Gamma Ray

Test = data.frame(DEPTH=TableF_1, SP=detrended4)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=40,cressie=TRUE ,width=1)

#Array Induction 20

Test = data.frame(DEPTH=TableF_1, SP=detrended9)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Table Point",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=20,cressie=TRUE ,width=1)

#Aguathuna

#Spontaneous Potential

Test = data.frame(DEPTH=AguathF_1, SP=AguathF_2)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=16,cressie=TRUE ,width=0.7)

#Gamma Ray

Test = data.frame(DEPTH=AguathF_1, SP=detrended5)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=15,cressie=TRUE ,width=0.5)

#Array Induction 10

Test = data.frame(DEPTH=AguathF_1, SP=detrended10)
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Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=15,cressie=TRUE ,width=0.5)

###A20

Test = data.frame(DEPTH=AguathF_1, SP=detrended11)

Test$y = matrix(1L, nrow = length(Test$DEPTH), ncol = 1)*50

coordinates(Test) = ~ DEPTH+y

k1 <- gstat(id="Aguathuna",formula = SP~1, data=Test)

vk1 = variogram(k1,cutoff=15,cressie=TRUE ,width=0.5)

###############################################################

#THEORETICAL VARIOGRAMS

#Finnegan 311 hole section

#Goose (American) Tickle

#Spontaneous Potential

tested_par1=fit.variogram(vk1,model=vgm(55,"Sph",42,5 ))

tested_par2=fit.variogram(vk1,model=vgm(55,"Exp",42,5 ))

tested_par3=fit.variogram(vk1,model=vgm(55,"Pen",42,5 ))

tested_par5=fit.variogram(vk1,model=vgm(55,"Cir",42,5 ))

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk2$dist)),id="Exp"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Pen"),

cbind(variogramLine(tested_par5,maxdist =

max(vk2$dist)),id="Cir"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+ geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size =15))+ scale_y_continuous(name="$\gamma $(h)") +
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scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FE2712",

"#008000","#100C08","#00FFFF","#FF00FF","#0000FF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle =element_text(size =

15),plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15))

+ xlim(0,50) + xlab("lag(m)")

#Gamma Ray

tested_par1=fit.variogram(vk1,model=vgm(45,"Sph",75,

nugget =25 ))

tested_par2=fit.variogram(vk1,model=vgm(45,"Gau",75,

nugget =25 ))

tested_par3=fit.variogram(vk1,model=vgm(45,"Pen",75,

nugget =25 ))

tested_par4=fit.variogram(vk1,model=vgm(45,"Cir",75,

nugget =25 ))

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk2$dist)),id="Gau"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Pen"),

cbind(variogramLine(tested_par4,maxdist =

max(vk2$dist)),id="Cir"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3) +

geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FE2712",
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"#000000","#100C08","#00FFFF","#FF00FF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + xlim(0,60) +

xlab("lag(m)")

#Array Induction 10

tested_par1=fit.variogram(vk1,model=vgm(5,"Sph",2,5 ))

tested_par2=fit.variogram(vk1,model=vgm(5,"Gau",2,5 ))

tested_par3=fit.variogram(vk1,model=vgm(5,"Exp",2,5 ))

tested_par4=fit.variogram(vk1,model=vgm(5,"Pen",2,5 ))

tested_par6=fit.variogram(vk1,model=vgm(5,"Cir",2,5 ))

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist=

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk2$dist)),id="Gau"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Exp"),

cbind(variogramLine(tested_par4,maxdist =

max(vk2$dist)),id="Pen"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FF0000",

"#7CFC00","#000000","#00FFFF","#0000FF","#FF00FF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),
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plot.caption = element_text(size = 12,face="italic"))

+ theme(legend.text=element_text(size=15)) + xlim(0,16) +

xlab("lag(m)")

#Array Induction 20

tested_par1=fit.variogram(vk1,model=vgm(50,"Sph",1,0))

tested_par2=fit.variogram(vk1,model=vgm(50,"Gau",1,0))

tested_par3=fit.variogram(vk1,model=vgm(50,"Pen",1,0))

tested_par5=fit.variogram(vk1,model=vgm(50,"Cir",1,0))

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk2$dist)),id="Gau"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Pen"),

cbind(variogramLine(tested_par5,maxdist =

max(vk2$dist)),id="Cir"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FF0000",

"#7CFC00","#000000","#00FFFF","#0000FF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + xlim(0,3.5) +

xlab("lag(m)")

#Seamus 216



R and Matlab environment 191

#Goose (American) Tickle

#Spontaneous Potential

tested_par1=fit.variogram(vk1,model=vgm(200,"Sph",30,10))

tested_par2=fit.variogram(vk1,model=vgm(200,"Pen",30,10))

tested_par3=fit.variogram(vk1,model=vgm(200,"Cir",30,10))

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk2$dist)),id="Pen"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Cir"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FF0000",

"#000000","#7CFC00","blue")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + xlim(0,50) +

xlab("lag(m)")

#Gamma Ray

tested_par1=fit.variogram(vk1,model=vgm(200,"Sph",40,0))

tested_par2=fit.variogram(vk1,model=vgm(200,"Gau",40,0))

tested_par3=fit.variogram(vk1,model=vgm(200,"Exp",40,0))

tested_par4=fit.variogram(vk1,model=vgm(200,"Pen",40,0))
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vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk2$dist)),id="Gau"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Exp"),

cbind(variogramLine(tested_par4,maxdist =

max(vk2$dist)),id="Pen"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FF0000",

"#7CFC00","#000000","#00FFFF","#0000FF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme(legend.text=element_text(size=15)) + xlim(0,105) +

xlab("lag(m)")

#Array Induction 10

tested_par1=fit.variogram(vk1,model=vgm(2000,"Sph",10,0))

tested_par2=fit.variogram(vk1,model=vgm(2000,"Exp",10,0))

tested_par3=fit.variogram(vk1,model=vgm(2000,"Pen",10,0))

tested_par5=fit.variogram(vk1,model=vgm(2000,"Cir",10,0))

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk2$dist)),id="Exp"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Pen"),
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cbind(variogramLine(tested_par5,maxdist =

max(vk2$dist)),id="Cir"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FF0000",

"#7CFC00","#000000","#00FFFF","#0000FF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + xlim(0,50) +

xlab("lag(m)")

#Array Induction 20

tested_par1=fit.variogram(vk1,model=vgm(1500,"Sph",20,0))

tested_par2=fit.variogram(vk1,model=vgm(1500,"Gau",20,0))

tested_par3=fit.variogram(vk1,model=vgm(1500,"Exp",20,0))

tested_par4=fit.variogram(vk1,model=vgm(1500,"Pen",20,0))

tested_par6=fit.variogram(vk1,model=vgm(1500,"Cir",20,0))

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk2$dist)),id="Gau"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Exp"),

cbind(variogramLine(tested_par4,maxdist =

max(vk2$dist)),id="Pen"),

cbind(variogramLine(tested_par6,maxdist =

max(vk2$dist)),id="Cir"))
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ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FF0000",

"#7CFC00","#0000FF","#000000","#00FFFF","#FF00FF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + xlim(0,55) +

xlab("lag(m)")

#Table Point

#Spontaneous Potential

tested_par2=fit.variogram(vk1,model=vgm(300,"Gau",10,20),

fit.method = 7)

vgLine1<-rbind(cbind(variogramLine(tested_par2,maxdist =

max(vk2$dist)),id="Gau"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#0000FF","#000000")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))
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+ theme( legend.text=element_text(size=15)) + xlim(0,35) +

xlab("lag(m)")

#Gamma Ray

tested_par1=fit.variogram(vk1,model=vgm(200,"Sph",2,0),

fit.method = 1)

tested_par4=fit.variogram(vk1,model=vgm(200,"Pen",2,0),

fit.method = 1)

tested_par5=fit.variogram(vk1,model=vgm(200,"Gau",2,0),

fit.method = 1)

tested_par6=fit.variogram(vk1,model=vgm(200,"Cir",2,0),

fit.method = 1)

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par4,maxdist =

max(vk1$dist)),id="Pen"),

cbind(variogramLine(tested_par5,maxdist =

max(vk1$dist)),id="Gau"),

cbind(variogramLine(tested_par6,maxdist =

max(vk2$dist)),id="Cir"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FF0000",

"#7CFC00","#0000FF","#FFA500","#000000")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + xlim(0,20) +

xlab("lag(m)")
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#Array Induction 10

tested_par1=fit.variogram(vk1,model=vgm(1000,"Sph",20,0),

fit.method = 1)

tested_par3=fit.variogram(vk1,model=vgm(1000,"Pen",20,0),

fit.method = 1)

tested_par5=fit.variogram(vk1,model=vgm(1000,"Cir",20,0),

fit.method = 1)

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par3,maxdist =

max(vk1$dist)),id="Pen"),

cbind(variogramLine(tested_par5,maxdist =

max(vk1$dist)),id="Cir"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FF0000",

"#0000FF","#FFA500","#000000")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + xlim(0,50) +

xlab("lag(m)")

#Array Induction 20

tested_par1=fit.variogram(vk1,model=vgm(200000,"Sph",3,0),

fit.method = 1)

tested_par2=fit.variogram(vk1,model=vgm(200000,"Gau",3,0),
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fit.method = 1)

tested_par3=fit.variogram(vk1,model=vgm(200000,"Exp",3,0),

fit.method = 1)

tested_par4=fit.variogram(vk1,model=vgm(200000,"Pen",3,0),

fit.method = 1)

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk1$dist)),id="Gau"),

cbind(variogramLine(tested_par3,maxdist =

max(vk1$dist)),id="Exp"),

cbind(variogramLine(tested_par4,maxdist =

max(vk2$dist)),id="Pen"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FF0000",

"#0000FF","#FFA500","#00FFFF","#000000")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + xlim(0,15) +

xlab("lag(m)")

#Aguathuna

#Spontaneous Potential

tested_par1=fit.variogram(vk1,model=vgm(1000,"Gau",15,20),

fit.method = 1)
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vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Gau"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#000000",

"#FF0000")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic")) + theme(

legend.text=element_text(size=15)) + xlim(0,15) +

xlab("lag(m)")

#Array Induction 10

tested_par1=fit.variogram(vk1,model=vgm(550,"Gau",1,0),

fit.method = 1)

tested_par2=fit.variogram(vk1,model=vgm(550,"Sph",1,0),

fit.method = 1)

tested_par3=fit.variogram(vk1,model=vgm(550,"Pen",1,0),

fit.method = 1)

tested_par4=fit.variogram(vk1,model=vgm(550,"Cir",1,0),

fit.method = 1)

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Gau"),

cbind(variogramLine(tested_par2,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par3,maxdist =

max(vk1$dist)),id="Pen"),



R and Matlab environment 199

cbind(variogramLine(tested_par4,maxdist =

max(vk2$dist)),id="Cir"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FF0000",

"#0000FF","#000000","#FFA500","#00FFFF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic")) + theme(

legend.text=element_text(size=15)) + xlim(0,12) +

xlab("lag(m)")

#Array Induction 20

tested_par1=fit.variogram(vk1,model=vgm(300000,"Sph",2,0),

fit.method = 1)

tested_par2=fit.variogram(vk1,model=vgm(300000,"Gau",2,0),

fit.method = 1)

tested_par3=fit.variogram(vk1,model=vgm(300000,"Exp",2,0),

fit.method = 1)

tested_par4=fit.variogram(vk1,model=vgm(300000,"Pen",2,0),

fit.method = 1)

tested_par5=fit.variogram(vk1,model=vgm(300000,"Cir",2,0),

fit.method = 1)

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk1$dist)),id="Gau"),

cbind(variogramLine(tested_par3,maxdist =

max(vk1$dist)),id="Exp"),
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cbind(variogramLine(tested_par4,maxdist =

max(vk2$dist)),id="Pen"),

cbind(variogramLine(tested_par4,maxdist =

max(vk2$dist)),id="Cir"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c("#FF0000",

"#0000FF","#FFA500","#000000","#00FFFF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic")) + theme(

legend.text=element_text(size=15)) + xlim(0,30) +

xlab("lag(m)")

#Finnegan 216

#Table Point

#Spontaneous Potential

tested_par1=fit.variogram(vk1,model=vgm(150,"Gau",5,0),

fit.method = 1)

tested_par2=fit.variogram(vk1,model=vgm(150,"Sph",5,0),

fit.method = 1)

tested_par3=fit.variogram(vk1,model=vgm(150,"Cir",5,0),

fit.method = 1)

tested_par4=fit.variogram(vk1,model=vgm(150,"Pen",5,0),

fit.method = 1)

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Gau"),

cbind(variogramLine(tested_par2,maxdist =

max(vk1$dist)),id="Sph"),
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cbind(variogramLine(tested_par3,maxdist =

max(vk1$dist)),id="Cir"),

cbind(variogramLine(tested_par4,maxdist =

max(vk2$dist)),id="Pen"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c(

"#0000FF","#FFA500","#FF0000","#00FFFF","#000000")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15)

, plot.caption = element_text(size = 12,face="italic")) +

theme( legend.text=element_text(size=15)) + xlim(0,10) +

xlab("lag(m)")

#Gamma Ray

tested_par1=fit.variogram(vk1,model=vgm(25,"Gau",20,0),

fit.method = 1)

tested_par2=fit.variogram(vk1,model=vgm(25,"Sph",20,0),

fit.method = 1)

tested_par3=fit.variogram(vk1,model=vgm(25,"Exp",20,0),

fit.method = 1)

tested_par4=fit.variogram(vk1,model=vgm(25,"Pen",20,0),

fit.method = 1)

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Gau"),

cbind(variogramLine(tested_par2,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par3,maxdist =
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max(vk1$dist)),id="Exp"),

cbind(variogramLine(tested_par4,maxdist =

max(vk2$dist)),id="Pen"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c(

"#0000FF","#FFA500","#FF0000","#00FFFF","#000000")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + xlim(0,40) +

xlab("lag(m)")

#Array Induction 10

tested_par1=fit.variogram(vk1,model=vgm(10000,"Gau",1,7000))

tested_par2=fit.variogram(vk1,model=vgm(10000,"Exp",1,7000))

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Gau"),

cbind(variogramLine(tested_par2,maxdist =

max(vk1$dist)),id="Exp"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +
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scale_color_manual(values = c( "#000000","#FFA500"))

+ theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme(legend.text=element_text(size=15)) + xlim(0,20) +

xlab("lag(m)")

#Aguathuna

#Spontaneous Potential

tested_par1=fit.variogram(vk1,model=vgm(50,"Gau",5,0),

fit.method = 1)

tested_par2=fit.variogram(vk1,model=vgm(50,"Sph",5,0),

fit.method = 1)

tested_par3=fit.variogram(vk1,model=vgm(50,"Pen",5,0),

fit.method = 1)

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Gau"),

cbind(variogramLine(tested_par2,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Pen"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c(

"#000000","#FFA500","#FF0000","#00FFFF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))
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+ theme(legend.text=element_text(size=15)) + xlim(0,15) +

xlab("lag(m)")

#Gamma Ray

tested_par1=fit.variogram(vk1,model=vgm(100,"Sph",5,0),

fit.method = 1)

tested_par2=fit.variogram(vk1,model=vgm(100,"Gau",5,0),

fit.method = 1)

tested_par3=fit.variogram(vk1,model=vgm(100,"Exp",5,0),

fit.method = 1)

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk1$dist)),id="Gau"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Exp"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c(

"#000000","#FFA500","#FF0000","#00FFFF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic")) +

theme( legend.text=element_text(size=15)) + xlim(0,15) +

xlab("lag(m)")

#Array Induction 10
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tested_par1=fit.variogram(vk1,model=vgm(300000,"Sph",5,0),

fit.method = 1)

tested_par2=fit.variogram(vk1,model=vgm(300000,"Gau",5,0),

fit.method = 1)

tested_par3=fit.variogram(vk1,model=vgm(300000,"Exp",5,0),

fit.method = 1)

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk1$dist)),id="Gau"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Exp"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c(

"#000000","#FFA500","#FF0000","#00FFFF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme(legend.text=element_text(size=15)) + xlim(0,15) +

xlab("lag(m)")

#Array Induction 10

tested_par1=fit.variogram(vk1,model=vgm(150000,"Sph",5,0),

fit.method = 1)

tested_par2=fit.variogram(vk1,model=vgm(150000,"Gau",5,0),
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fit.method = 1)

tested_par3=fit.variogram(vk1,model=vgm(150000,"Exp",5,0),

fit.method = 1)

vgLine1<-rbind(cbind(variogramLine(tested_par1,maxdist =

max(vk1$dist)),id="Sph"),

cbind(variogramLine(tested_par2,maxdist =

max(vk1$dist)),id="Gau"),

cbind(variogramLine(tested_par3,maxdist =

max(vk2$dist)),id="Exp"))

ggplot(vk1, aes(x=dist ,y=gamma ,colour=id)) +

geom_line(data=vgLine1,size=0.8) + geom_point(size=3)

+geom_line() + theme_light ()+ theme(axis.title.x =

element_text(size=15),axis.title.y =

element_text(size=15))+ theme(axis.text.x =

element_text(size=15),axis.text.y = element_text(size = 15)) +

scale_y_continuous(name="$\ gamma(h)$") +

scale_x_continuous(name="Distance (h)") +

scale_color_manual(values = c(

"#000000","#FFA500","#FF0000","#00FFFF")) +

theme(legend.title=element_blank ())+ theme(plot.title =

element_text(size=15), plot.subtitle = element_text(size = 15),

plot.caption = element_text(size = 12,face="italic"))

+ theme( legend.text=element_text(size=15)) + xlim(0,15) +

xlab("lag(m)")

#Calculate Validation Scores

#Experimental variogram

exp.var <-vk1$gamma

#Estimated variogram

est.var <-variogramLine(tested_par1,maxdist =

max(vk1$dist),n=nrow(vk1))
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my.val.scores <- function(exp.var ,est.var){

d = exp.var[[i]]-est.var[[i]]$ gamma)

mse = mean((d)^2)

mae = mean(abs(d))

rmse = sqrt(mse)

}

#Print the following code for each exp.var and est.var

print <-my.val.scores(exp.var ,est.var)

##############################################################

#MATLAB

##############################################################

#CORRELATIONS

clc; clear variable; close all;

load(’Finnegan311.dat’)

load(’Finnegan216.dat’)

load(’Seamus216.dat’)

% Table Point

DEF=DEPT(180:905); %Depth of Finegan

GRF=GR(180:905);

DES=DEPT1(2700:3571); %Depth of Seamus

GRS=GR1(2700:3571);

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min(DEF);

DES=DES -min(DES);

M=max(DES);

find(DEF <=M+0.5 & DEF >=M-0.5)

Cutoff=663;

StepDEF=DEF(2)-DEF(1);

DEKOINO =(0:StepDEF:DEF(Cutoff ))’;

plot(DEKOINO , GRF(1:Cutoff ))

GRS2=interp1(DES ,GRS ,DEKOINO ); %Linear
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GRS3=interp1(DES ,GRS ,DEKOINO ,’nearest ’);

GRS4=interp1(DES ,GRS ,DEKOINO ,’cubic ’);

GRS5=interp1(DES ,GRS ,DEKOINO ,’spline ’);

%corrcoef(GRS2,GRS3)

% corrcoef(GRS4,GRS3)

% corrcoef(GRS5,GRS3)

figure

hold on

plot(DEKOINO ,GRS2,’m’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS3,’c’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS4,’g:’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS5,’r:’,’LineWidth ’,1.5)

plot(DEKOINO ,GRF(1:Cutoff),’k’,’LineWidth ’,1.5)

legend(’Linear ’,’Nearest ’,’Cubic ’,’Spline ’,’GRF’)

RS=corr(GRS3,GRF(1:Cutoff),’type’,’Spearman ’);

[RP ,P]=corr(GRS3,GRF(1:Cutoff),’type’,’Pearson ’);

rmse=sqrt(mean((GRS3,GRF(1:Cutoff )).^2))

% Aguathuna

DEF=DEPT(906:1155); %Depth of Finnegan

GRF=GR(906:1155);

DES=DEPT1(3572:3917); %Depth of Seamus

GRS=GR1(3572:3917);

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min(DEF);

DES=DES -min(DES);

M=max(DEF);

find(DES <=M+0.5 & DES >=M-0.5)

Cutoff=325;

StepDEF=DES(2)-DES(1);

DEKOINO =(0:StepDEF:DES(Cutoff -1))’;

plot(DEKOINO , GRS(1:Cutoff -1))

GRS2=interp1(DEF ,GRF ,DEKOINO ); %Linear

GRS3=interp1(DEF ,GRF ,DEKOINO ,’nearest ’);

GRS4=interp1(DEF ,GRF ,DEKOINO ,’cubic ’);
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GRS5=interp1(DEF ,GRF ,DEKOINO ,’spline ’);

% corrcoef(GRS2,GRS3)

% corrcoef(GRS4,GRS3)

% corrcoef(GRS5,GRS3)

figure

hold on

plot(DEKOINO ,GRS2,’m’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS3,’c’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS4,’g:’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS5,’r:’,’LineWidth ’,1.5)

plot(DEKOINO , GRS(1:Cutoff -1),’k’,’LineWidth ’,1.5)

legend(’Linear ’,’Nearest ’,’Cubic ’,’Spline ’,’GRF’)

RS=corr(GRS3,GRF(1:Cutoff),’type’,’Spearman ’);

[RP ,P]=corr(GRS3,GRF(1:Cutoff),’type’,’Pearson ’);

rmse=sqrt(mean((GRS3,GRF(1:Cutoff )).^2))

%Catoche

DEF=DEPT(1156:1780); %Depth of Finegan

GRF=GR(1156:1780);

DES=DEPT1(3918:4639); %Depth of Seamus

GRS=GR1(3918:4639);

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min(DEF);

DES=DES -min(DES);

M=max(DES);

find(DEF <=M+0.5 & DEF >=M-0.5)

Cutoff=548;

StepDEF=DEF(2)-DEF(1);

DEKOINO =(0:StepDEF:DEF(Cutoff ))’;

plot(DEKOINO , GRF(1:Cutoff -1))

GRS2=interp1(DES ,GRS ,DEKOINO ); %Linear

GRS3=interp1(DES ,GRS ,DEKOINO ,’nearest ’);

GRS4=interp1(DES ,GRS ,DEKOINO ,’cubic ’);

GRS5=interp1(DES ,GRS ,DEKOINO ,’spline ’);

%corrcoef(GRS2,GRS3)
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%corrcoef(GRS4,GRS3)

%corrcoef(GRS5,GRS3)

figure

hold on

plot(DEKOINO ,GRS2,’m’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS3,’c’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS4,’g:’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS5,’r:’,’LineWidth ’,1.5)

plot(DEKOINO ,GRF(1:Cutoff -1),’k’,’LineWidth ’,1.5)

legend(’Linear ’,’Nearest ’,’Cubic ’,’Spline ’,’GRF’)

RS=corr(GRS3,GRF(1:Cutoff -1),’type’,’Spearman ’);

[RP ,P]=corr(GRS3,GRF(1:Cutoff -1),’type’,’Pearson ’);

rmse=sqrt(mean((GRS3,GRF(1:Cutoff -1)).^2))

%Boat Harbour

DEF=DEPT(1781:2380); %Depth of Finegan

GRF=GR(1781:2380);

DES=DEPT1(4640:5459); %Depth of Seamus

GRS=GR1(4640:5459);

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min(DEF);

DES=DES -min(DES);

M=max(DEF);

find(DES <=M+0.5 & DES >=M-0.5)

Cutoff=784;

StepDEF=DES(2)-DES(1);

DEKOINO =(0:StepDEF:DES(Cutoff ))’;

plot(DEKOINO , GRF(1:Cutoff -1))

GRS2=interp1(DEF ,GRF ,DEKOINO ); %Linear

GRS3=interp1(DEF ,GRF ,DEKOINO ,’nearest ’);

GRS4=interp1(DEF ,GRF ,DEKOINO ,’cubic ’);

GRS5=interp1(DEF ,GRF ,DEKOINO ,’spline ’);

%corrcoef(GRS2,GRS3)

%corrcoef(GRS4,GRS3)

%corrcoef(GRS5,GRS3)



R and Matlab environment 211

figure

hold on

plot(DEKOINO ,GRS2,’m’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS3,’c’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS4,’g:’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS5,’r:’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS(1:Cutoff),’k’,’LineWidth ’,1.5)

legend(’Linear ’,’Nearest ’,’Cubic ’,’Spline ’,’GRF’)

RS=corr(GRS3,GRF(1:Cutoff),’type’,’Spearman ’);

[RP ,P]=corr(GRS3,GRF(1:Cutoff),’type’,’Pearson ’);

rmse=sqrt(mean((GRS3,GRF(1:Cutoff -1)).^2))

% Watts Bight

DEF=DEPT(2381:2730); %Depth of Finegan

GRF=GR(2381:2730);

DES=DEPT1(5460:5866); %Depth of Seamus

GRS=GR1(5460:5866);

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min(DEF);

DES=DES -min(DES);

M=max(DES);

find(DEF <=M+0.5 & DEF >=M-0.5)

Cutoff=308;

StepDEF=DEF(2)-DEF(1);

DEKOINO =(0:StepDEF:DEF(Cutoff ))’;

plot(DEKOINO , GRF(1:Cutoff -1))

GRS

GRS2=interp1(DES ,GRS ,DEKOINO ); %Linear

GRS3=interp1(DES ,GRS ,DEKOINO ,’nearest ’);

GRS4=interp1(DES ,GRS ,DEKOINO ,’cubic ’);

GRS5=interp1(DES ,GRS ,DEKOINO ,’spline ’);

% corrcoef(GRS2,GRS3)

% corrcoef(GRS4,GRS3)

% corrcoef(GRS5,GRS3)

figure
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hold on

plot(DEKOINO ,GRS2,’m’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS3,’c’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS4,’g:’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS5,’r:’,’LineWidth ’,1.5)

plot(DEKOINO ,GRF(1:Cutoff -1),’k’,’LineWidth ’,1.5)

legend(’Linear ’,’Nearest ’,’Cubic ’,’Spline ’,’GRF’)

RS=corr(GRS3,GRF(1:Cutoff -1),’type’,’Spearman ’);

[RP ,P]=corr(GRS3,GRF(1:Cutoff -1),’type’,’Pearson ’);

rmse=sqrt(mean((GRS3-GRF(1:Cutoff )).^2))

% Goose (American) Tickle

DEF=DEPT2(7087:8509); %Depth of Finegan

GRF=GR2(7087:8509);

DES=DEPT1(13:2200); %Depth of Seamus

GRS=GR1(13:2200);

save TEMP DES GRF GRS DEF

cle

load TEMP

DEF=DEF -min(DEF);

DES=DES -min(DES);

M=max(DEF);

find(DES <=M+0.5 & DES >=M-0.5)

Cutoff=1864;

StepDEF=DES(2)-DES(1);

DEKOINO =(0:StepDEF:DES(Cutoff ))’;

GRF

plot(DEKOINO , GRS(1:Cutoff ))

GRS

GRS2=interp1(DEF ,GRF ,DEKOINO ); %Linear

GRS3=interp1(DEF ,GRF ,DEKOINO ,’nearest ’);

GRS4=interp1(DEF ,GRF ,DEKOINO ,’cubic ’);

GRS5=interp1(DEF ,GRF ,DEKOINO ,’spline ’);

% corrcoef(GRS2,GRS3)

% corrcoef(GRS4,GRS3)

% corrcoef(GRS5,GRS3)

figure
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hold on

plot(DEKOINO ,GRS2,’m’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS3,’c’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS4,’g:’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS5,’r:’,’LineWidth ’,1.5)

plot(DEKOINO ,GRS(1:Cutoff),’k’,’LineWidth ’,1.5)

legend(’Linear ’,’Nearest ’,’Cubic ’,’Spline ’,’GRF’)

RS=corr(GRS3,GRF(1:Cutoff -1),’type’,’Spearman ’);

[RP ,P]=corr(GRS3,GRF(1:Cutoff -1),’type’,’Pearson ’);

rmse=sqrt(mean((GRS3-GRF(1:Cutoff )).^2))

B.2 Missing data

The missing values generator and MCAR test is achieved by using the [73]’s code, as

well as the Amelia, imputeTS and forecast packages in R .

#Table Point

#Spontaneous Potential

Timeseries1 <- ts(TableS_2,start(TableS_1,0.1524),frequency = 6)

plot(stl(Timeseries1,s.window = c("periodic")),

main="Seamus 216 SP Data Decomposition")

acf(Timeseries1,main="")

complete.ts <-Timeseries1

seeds <- 30

n <- length(complete.ts)

miss.rate <- c(0.1,0.25,0.5,0.8)

incomplete.ts <- array(,dim=c(n,seeds ,length(miss.rate )))

NAs <- array(,dim=c(seeds ,length(miss.rate )))

Impute1<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute2<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute3<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute4<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute5<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute6<- array(,dim=c(n,seeds ,length(miss.rate )))
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for (c in 1:length(miss.rate )){

for (i in 1:seeds){

set.seed(i)

incomplete.ts[,i,c] <-ts(miss.gen(complete.ts ,miss.rate[c]))

b=0

for (a in 1:length(complete.ts)){if(is.na(incomplete.ts[a,i,c]))

{b=b+1}

NAs[i,c] <-b}

incomp.ts <- as.numeric(incomplete.ts[,i,c])

Impute1[,i,c] <- na.kalman(incomp.ts ,model="auto.arima")

Impute2[,i,c] <- na.interpolation(incomp.ts)

Impute3[,i,c] <- na.interpolation(incomp.ts,option="spline")

Impute4[,i,c] <- na.ma(incomp.ts ,weighting="simple")

Impute5[,i,c] <- na.ma(incomp.ts ,weighting="linear")

Impute6[,i,c] <- na.mean(incomp.ts)

}}

inc <- as.data.frame(incomplete.ts[,5 ,])

names(inc) <- c("0.1","0.25","0.5","0.8")

missmap(inc ,rank.order = TRUE)

#Gamma Ray

Timeseries2 <- ts(TableS_3,start(TableS_1,0.1524),frequency = 6)

plot(stl(Timeseries2,s.window = c("periodic")),

main="Seamus 216 GR Data Decomposition")

acf(Timeseries2,main="")

complete.ts <-Timeseries2

seeds <- 30

n <- length(complete.ts)

miss.rate <- c(0.1,0.25,0.5,0.8)

incomplete.ts <- array(,dim=c(n,seeds ,length(miss.rate )))

NAs <- array(,dim=c(seeds ,length(miss.rate )))

Impute1<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute2<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute3<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute4<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute5<- array(,dim=c(n,seeds ,length(miss.rate )))
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Impute6<- array(,dim=c(n,seeds ,length(miss.rate )))

for (c in 1:length(miss.rate )){

for (i in 1:seeds){

set.seed(i)

incomplete.ts[,i,c] <-ts(miss.gen(complete.ts ,miss.rate[c]))

b=0

for (a in 1:length(complete.ts)){if(is.na(incomplete.ts[a,i,c]))

{b=b+1}

NAs[i,c] <-b }

incomp.ts <- as.numeric(incomplete.ts[,i,c])

Impute1[,i,c] <- na.kalman(incomp.ts ,model="auto.arima")

Impute2[,i,c] <- na.interpolation(incomp.ts)

Impute3[,i,c] <- na.interpolation(incomp.ts,option="spline")

Impute4[,i,c] <- na.ma(incomp.ts ,weighting="simple")

Impute5[,i,c] <- na.ma(incomp.ts ,weighting="linear")

Impute6[,i,c] <- na.mean(incomp.ts)

}}

inc <- as.data.frame(incomplete.ts[,5 ,])

names(inc) <- c("0.1","0.25","0.5","0.8")

missmap(inc)

#Array Induction 10

Timeseries3 <- ts(TableS_3,start(TableS_1,0.1524),frequency = 6)

plot(stl(Timeseries3,s.window = c("periodic")),

main="Seamus 216 AT10 Data Decomposition")

acf(Timeseries3,main="")

complete.ts <-Timeseries3

seeds <- 30

n <- length(complete.ts)

miss.rate <- c(0.1,0.25,0.5,0.8)

incomplete.ts <- array(,dim=c(n,seeds ,length(miss.rate )))

NAs <- array(,dim=c(seeds ,length(miss.rate )))

Impute1<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute2<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute3<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute4<- array(,dim=c(n,seeds ,length(miss.rate )))
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Impute5<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute6<- array(,dim=c(n,seeds ,length(miss.rate )))

for (c in 1:length(miss.rate )){

for (i in 1:seeds){

set.seed(i)

incomplete.ts[,i,c] <-ts(miss.gen(complete.ts ,miss.rate[c]))

b=0

for (a in 1:length(complete.ts)){if(is.na(incomplete.ts[a,i,c]))

{b=b+1}

NAs[i,c] <-b }

incomp.ts <- as.numeric(incomplete.ts[,i,c])

Impute1[,i,c] <- na.kalman(incomp.ts ,model="auto.arima")

Impute2[,i,c] <- na.interpolation(incomp.ts)

Impute3[,i,c] <- na.interpolation(incomp.ts,option="spline")

Impute4[,i,c] <- na.ma(incomp.ts ,weighting="simple")

Impute5[,i,c] <- na.ma(incomp.ts ,weighting="linear")

Impute6[,i,c] <- na.mean(incomp.ts)

}}

inc <- as.data.frame(incomplete.ts[,5 ,])

names(inc) <- c("0.1","0.25","0.5","0.8")

missmap(inc)

#Array Induction 20

Timeseries4 <- ts(TableS_5,start(TableS_1,0.1524),frequency = 6)

plot(stl(Timeseries4,s.window = c("periodic")),

main="Seamus 216 AT20 Data Decomposition")

acf(Timeseries4,main="")

complete.ts <-Timeseries4

seeds <- 30

n <- length(complete.ts)

miss.rate <- c(0.1,0.25,0.5,0.8)

incomplete.ts <- array(,dim=c(n,seeds ,length(miss.rate )))

NAs <- array(,dim=c(seeds ,length(miss.rate )))

Impute1<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute2<- array(,dim=c(n,seeds ,length(miss.rate )))
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Impute3<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute4<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute5<- array(,dim=c(n,seeds ,length(miss.rate )))

Impute6<- array(,dim=c(n,seeds ,length(miss.rate )))

for (c in 1:length(miss.rate )){

for (i in 1:seeds){

set.seed(i)

incomplete.ts[,i,c] <-ts(miss.gen(complete.ts ,miss.rate[c]))

b=0

for (a in 1:length(complete.ts)){if(is.na(incomplete.ts[a,i,c]))

{b=b+1}

NAs[i,c] <-b }

incomp.ts <- as.numeric(incomplete.ts[,i,c])

Impute1[,i,c] <- na.kalman(incomp.ts ,model="auto.arima")

Impute2[,i,c] <- na.interpolation(incomp.ts)

Impute3[,i,c] <- na.interpolation(incomp.ts,option="spline")

Impute4[,i,c] <- na.ma(incomp.ts ,weighting="simple")

Impute5[,i,c] <- na.ma(incomp.ts ,weighting="linear")

Impute6[,i,c] <- na.mean(incomp.ts)

}}

inc <- as.data.frame(incomplete.ts[,5 ,])

names(inc) <- c("0.1","0.25","0.5","0.8")

missmap(inc)

#Calculated errors of simulated data

MRSE1<- array(,dim=c(seeds ,length(miss.rate )))

MRSE2<- array(,dim=c(seeds ,length(miss.rate )))

MRSE3<- array(,dim=c(seeds ,length(miss.rate )))

MRSE4<- array(,dim=c(seeds ,length(miss.rate )))

MRSE5<- array(,dim=c(seeds ,length(miss.rate )))

MRSE6<- array(,dim=c(seeds ,length(miss.rate )))

MAPE1<- array(,dim=c(seeds ,length(miss.rate )))

MAPE2<- array(,dim=c(seeds ,length(miss.rate )))
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MAPE3<- array(,dim=c(seeds ,length(miss.rate )))

MAPE4<- array(,dim=c(seeds ,length(miss.rate )))

MAPE5<- array(,dim=c(seeds ,length(miss.rate )))

MAPE6<- array(,dim=c(seeds ,length(miss.rate )))

for(l in 1:length(miss.rate )){

for(f in 1:seeds){

MRSE1[f,l]<-sqrt((sum(( Impute1[,f,l]-complete.ts[,f,l])^2)

)/NAs[f,l])

MRSE2[f,l]<-sqrt((sum(( Impute2[,f,l]-complete.ts[,f,l])^2)

)/NAs[f,l])

MRSE3[f,l]<-sqrt((sum(( Impute3[,f,l]-complete.ts[,f,l])^2)

)/NAs[f,l])

MRSE4[f,l]<-sqrt((sum(( Impute4[,f,l]-complete.ts[,f,l])^2)

)/NAs[f,l])

MRSE5[f,l]<-sqrt((sum(( Impute5[,f,l]-complete.ts[,f,l])^2)

)/NAs[f,l])

MRSE6[f,l]<-sqrt((sum(( Impute6[,f,l]-complete.ts[,f,l])^2)

)/NAs[f,l])

MAPE1[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute1[,f,l]

-complete.ts[,f,l])/ complete.ts)))

MAPE2[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute2[,f,l]

-complete.ts[,f,l])/ complete.ts)))

MAPE3[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute3[,f,l]

-complete.ts[,f,l])/ complete.ts)))

MAPE4[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute4[,f,l]

-complete.ts[,f,l])/ complete.ts)))

MAPE5[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute5[,f,l]

-complete.ts[,f,l])/ complete.ts)))

MAPE6[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute6[,f,l]

-complete.ts[,f,l])/ complete.ts)))

}}

#Calculated errors of original data

MRSE1<- array(,dim=c(seeds ,length(miss.rate )))
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MRSE2<- array(,dim=c(seeds ,length(miss.rate )))

MRSE3<- array(,dim=c(seeds ,length(miss.rate )))

MRSE4<- array(,dim=c(seeds ,length(miss.rate )))

MRSE5<- array(,dim=c(seeds ,length(miss.rate )))

MRSE6<- array(,dim=c(seeds ,length(miss.rate )))

MAPE1<- array(,dim=c(seeds ,length(miss.rate )))

MAPE2<- array(,dim=c(seeds ,length(miss.rate )))

MAPE3<- array(,dim=c(seeds ,length(miss.rate )))

MAPE4<- array(,dim=c(seeds ,length(miss.rate )))

MAPE5<- array(,dim=c(seeds ,length(miss.rate )))

MAPE6<- array(,dim=c(seeds ,length(miss.rate )))

for(l in 1:length(miss.rate )){

for(f in 1:seeds){

MRSE1[f,l]<-sqrt((sum(( Impute1[,f,l]-complete.ts)^2))/

NAs[f,l])

MRSE2[f,l]<-sqrt((sum(( Impute2[,f,l]-complete.ts)^2))/

NAs[f,l])

MRSE3[f,l]<-sqrt((sum(( Impute3[,f,l]-complete.ts)^2))/

NAs[f,l])

MRSE4[f,l]<-sqrt((sum(( Impute4[,f,l]-complete.ts)^2))/

NAs[f,l])

MRSE5[f,l]<-sqrt((sum(( Impute5[,f,l]-complete.ts)^2))/

NAs[f,l])

MRSE6[f,l]<-sqrt((sum(( Impute6[,f,l]-complete.ts)^2))/

NAs[f,l])

MAPE1[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute1[,f,l]

-complete.ts)/ complete.ts)))

MAPE2[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute2[,f,l]

-complete.ts)/ complete.ts)))

MAPE3[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute3[,f,l]

-complete.ts)/ complete.ts)))

MAPE4[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute4[,f,l]

-complete.ts)/ complete.ts)))

MAPE5[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute5[,f,l]
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-complete.ts)/ complete.ts)))

MAPE6[f,l]<-(100/NAs[f,l])*( sum(abs(( Impute6[,f,l]

-complete.ts)/ complete.ts)))

}}

missing.rate <- c()

missing.rate[1:30] <- 0.1

missing.rate[31:60] <- 0.25

missing.rate[61:90] <- 0.5

missing.rate[91:120] <- 0.8

#Visualization of data

z <- cbind(as.vector(NAs),as.vector(MRSE1),missing.rate)

r <- cbind(as.vector(NAs),as.vector(MRSE2),missing.rate)

p <- cbind(as.vector(NAs),as.vector(MRSE3),missing.rate)

q <- cbind(as.vector(NAs),as.vector(MRSE4),missing.rate)

w <- cbind(as.vector(NAs),as.vector(MRSE5),missing.rate)

x <- cbind(as.vector(NAs),as.vector(MRSE6),missing.rate)

data1 <- as.data.frame(z)

data2 <- as.data.frame(r)

data3 <- as.data.frame(p)

data4 <- as.data.frame(q)

data5 <- as.data.frame(w)

data6 <- as.data.frame(x)

names(data1) <-c("NAs","RMSE","missing.rate")

names(data2) <-c("NAs","RMSE","missing.rate")

names(data3) <-c("NAs","RMSE","missing.rate")

names(data4) <-c("NAs","RMSE","missing.rate")

names(data5) <-c("NAs","RMSE","missing.rate")

names(data6) <-c("NAs","RMSE","missing.rate")

plot1 <- ggplot(data=data1, aes(x=NAs , y=RMSE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("RMSE Kalman Arima") + theme_light () + ylim(0,18)
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plot2 <- ggplot(data=data2, aes(x=NAs , y=RMSE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("RMSE Linear Interpolation") + theme_light()

plot3 <- ggplot(data=data3, aes(x=NAs , y=RMSE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("RMSE Spline Interpolation") + theme_light()

plot4 <- ggplot(data=data4, aes(x=NAs , y=RMSE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("RMSE MA") +theme_light ()

plot5 <- ggplot(data=data5, aes(x=NAs , y=RMSE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("RMSE LMA") +theme_light()

plot6 <- ggplot(data=data6, aes(x=NAs , y=RMSE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("RMSE Mean Imputation") +theme_light ()

multiplot(plot1,plot2, plot3, plot4, plot5, plot6, cols=3)

z1 <- cbind(as.vector(NAs),as.vector(MAPE1),missing.rate)

r1 <- cbind(as.vector(NAs),as.vector(MAPE2),missing.rate)

p1 <- cbind(as.vector(NAs),as.vector(MAPE3),missing.rate)

q1 <- cbind(as.vector(NAs),as.vector(MAPE4),missing.rate)

w1 <- cbind(as.vector(NAs),as.vector(MAPE5),missing.rate)

x1 <- cbind(as.vector(NAs),as.vector(MAPE6),missing.rate)

data11 <- as.data.frame(z1)

data22 <- as.data.frame(r1)

data33 <- as.data.frame(p1)

data44 <- as.data.frame(q1)

data55 <- as.data.frame(w1)

data66 <- as.data.frame(x1)

names(data11) <-c("NAs","MAPE","missing.rate")

names(data22) <-c("NAs","MAPE","missing.rate")

names(data33) <-c("NAs","MAPE","missing.rate")

names(data44) <-c("NAs","MAPE","missing.rate")

names(data55) <-c("NAs","MAPE","missing.rate")

names(data66) <-c("NAs","MAPE","missing.rate")
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plot11 <- ggplot(data=data11, aes(x=NAs , y=MAPE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("MAPE Kalman Arima") + theme_light ()

plot21 <- ggplot(data=data22, aes(x=NAs , y=MAPE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("MAPE Linear Interpolation") + theme_light()

plot31 <- ggplot(data=data33, aes(x=NAs , y=MAPE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("MAPE Spline Interpolation") + theme_light()

plot41 <- ggplot(data=data44, aes(x=NAs , y=MAPE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("MAPE MA")+ theme_light ()

plot51 <- ggplot(data=data55, aes(x=NAs , y=MAPE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("MAPE LMA")+ theme_light()

plot61 <- ggplot(data=data66, aes(x=NAs , y=MAPE ,

colour=factor( missing.rate )))+ geom_point ()+

ggtitle("MAPE Mean Imputation") + theme_light ()

multiplot(plot11,plot21, plot31, plot41, plot51, plot61, cols=3)

###############################################################

#HISTOGRAMS AND SCATTER PLOTS

complete.ts <-c(Timeseries1,Timeseries2,

Timeseries3,Timeseries4)

seedd <-30

miss.rate1 <- c(0.1,0.25,0.50,0.80)

incomplete.ts <- array(,dim=c(n,seeds ,length(miss.rate1)))

NAss <- array(,dim=c(seeds ,length(miss.rate1)))

Impute11<- array(,dim=c(n,seeds ,length(miss.rate1)))

Original.data <- Timeseries

Estimated.data <- Impute1[,i,c]

make.scatters.function <-function(Original.data ,Estimated.data)

{

data <-data.frame(x=Original ,y=Simulated)

ggplot(data ,aes(x,y)) + geom_point() + theme_light() +
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xlab("Observed Data") + ylab("Estimated Data")+

geom_smooth(method="lm",col="red") + theme(axis.title.y =

element_text(size=14)) + theme(axis.title.x =

element_text(size=14)) + theme(axis.text.x =

element_text(size=14)) + theme(axis.text.y =

element_text(size=14))}

make.hist.function <-function (( Original.data ,Estimated.data))

{

p1<-hist(Original ,breaks=30, col=alpha(rgb(0.9,0.1,0),0.7),

xlab="", ylab="", main="" ,cex.lab=1.5, cex.axis=1.5)

#Second distribution with add=T to plot on top

p2<-hist(Simulated ,breaks=30, col=alpha(rgb(0,0,0.6),0.7),

add=T,cex.lab=1.5, cex.axis=1.5)

#Add legend

legend("topright", legend=c("Original","Estimated"),

col=c(alpha(rgb(0.9,0.1,0),0.7), alpha(rgb(0,0,0.6),0.7)),

pt.cex=2, pch=15,lwd=3)

}

for (c in 1:length(miss.rate1)){

for (i in 1:seeds){

set.seed(i)

incomplete.ts[,i,c]<-ts(miss.gen(complete.ts,miss.rate1[c])

b=0

for (a in 1:length(complete.ts)){if(is.na(incomplete.ts[a,

i,c])){b=b+1}

NAs[i,c] <-b }

incomp.ts <- as.numeric(incomplete.ts[,i,c])

Impute11[,i,c] <-na.kalman(incomp.ts ,model="auto.arima")

make.scatters.function(Original.data ,Estimated.data)

make.hist.function(Original.data ,Estimated.data)

}}
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