
Technical University of Crete

Doctoral Thesis

UniLogic (Unified Logic):
A Scalable Architecture for

Increased Programmability in
Highly Parallel Reconfigurable

Systems

Author:
Aggelos D. Ioannou

Supervisor:
Prof. Apostolos Dollas

A thesis submitted in fulfillment of the requirements for the
Doctor of Philosophy degree of Electrical and Computer Engineering

in the School of Electrical and Computer Engineering
Microprocessor and Hardware Lab

February 28, 2020

http://www.tuc.gr
https://www.linkedin.com/in/aggelos-ioannou-33ab345
http://www.mhl.tuc.gr/Controller?event=SHOW_FACULTY&ID=2
http://www.ece.tuc.gr/
http://www.mhl.tuc.gr/ 




iii

Doctoral Thesis Committee

Apostolos Dollas (Supervisor)
Professor, Technical University of Crete

Ioannis Papaefstathiou
Associate Professor, Aristotle University of Thessaloniki

Dionisios Pnevmatikatos
Professor, National Technical University of Athens

Dimitrios Soudris
Professor, National Technical University of Athens

Eftichios Koutroulis
Associate Professor, Technical University of Crete

Vasilis Samoladas
Associate Professor, Technical University of Crete

Sotiris Ioannidis
Principal Researcher, Foundation for Research and Technology - Hellas





v

Thesis Statement

“The state-of-the-art Supercomputers utilize many-core accelerators instead of energy-

efficient FPGAs, mainly due to low programmability of multi-FPGA environments.

This thesis provides and evaluates the scalable UNILOGIC architecture, which can

significantly improve the programmability of multi-FPGA environments without

sacrificing performance, and thus proves that FPGA technology can constitute a

viable alternative to tackle today’s HPC energy challenges. ”
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Abstract
School of Electrical and Computer Engineering

DOCTORAL THESIS

UniLogic (Unified Logic):

A Scalable Architecture for Increased Programmability in Highly

Parallel Reconfigurable Systems

by Aggelos D. Ioannou

One of the main characteristics of HPC applications is that they become in-

creasingly performance and power demanding, pushing HPC systems to their lim-

its. Existing HPC systems have not yet reached exascale performance mainly due

to power limitations. Extrapolating from today’s top HPC systems, about 100-

200 MWatts would be required in order to sustain an exaflop-level of performance.

A promising solution for tackling power limitations, is the deployment of energy-

efficient reconfigurable resources (in the form of FPGAs) tightly integrated with

conventional CPUs. However, current FPGA tools and programming environments

are optimized for accelerating a single application or even task on a single FPGA

device. In this thesis we present UNILOGIC (Unified Logic), a novel HPC-tailored

parallel architecture that efficiently incorporates FPGAs. UNILOGIC adopts the

Partitioned Global Address Space (PGAS) model, and extends it to include hard-

ware accelerators, i.e. tasks implemented on the reconfigurable resources. The

main advantages of UNILOGIC are that (i) the hardware accelerators can be ac-

cessed directly by any processor in the system, and (ii) the hardware accelerators

can access any memory location in the system. In this way, the proposed archi-

tecture offers a unified environment where all the reconfigurable resources can be

seamlessly used by any processor/operating system. The UNILOGIC architecture

also provides hardware virtualization of the reconfigurable logic so that the hard-

ware accelerators can be shared among multiple applications or tasks. The FPGA

layer of the architecture is implemented by splitting its reconfigurable resources

HTTP://WWW.TUC.GR
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into (i) a static partition, which provides the PGAS-related communication in-

frastructure, and (ii) fixed-size and dynamically reconfigurable slots that can be

programmed and accessed independently or combined together so as to support

both fine and coarse grain reconfiguration. Finally, the UNILOGIC architecture

has been evaluated on a custom prototype that consists of two 1U chassis, each of

which hosts eight interconnected daughter boards, called Quad-FPGA Daughter

Boards (QFDBs); each QFDB supports four tightly coupled Xilinx Zynq Ultra-

scale+ MPSoCs as well as 64 Gigabytes of DDR4 memory, and thus, the prototype

features a total of 64 Zynq MPSoCs and 1 Terabyte of memory. We tuned and

evaluated the UNILOGIC prototype using both low-level (baremetal) performance

tests, as well as two popular real-world HPC applications, one compute-intensive

and one data-intensive. Our evaluation shows that UNILOGIC offers impressive

performance that ranges from being 3 to 400 times faster and 46 to 370 times more

energy efficient compared to conventional parallel systems utilizing only high-end

CPUs, while it also outperforms GPUs by a factor ranging from 6 to 20 times in

terms of time to solution, and from 8 to 20 times in terms of energy to solution.
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Chapter 1

Introduction

High Performance Computing (HPC) has traditionally been a driver of advanced

technology in computing hardware. The wide spread of computational methods

in many scientific fields has propelled HPC systems even further, and current

deployment of HPC machines can support somewhere in the order of 100 petaflops,

i.e.1017 flops, with an immediate goal to deploy exaflop-scale machines in the near

future.

One of the main challenges in building larger HPC machines is power efficiency.

Scaling processor clock speed is infeasible due to power envelope restrictions, and

adding more and more processors, while feasible, soon hits the power consump-

tion wall. To increase efficiency and achieve high performance at a lower power

expenditure, the scientific community, performing a paradigm shift, introduced

the concept of heterogeneity into the domain of HPC. As a result, currently, most

HPC systems are comprised of conventional CPUs, tightly integrated with diverse

energy-efficient processing elements, such as the traditional Vector processors and

more recently GPUs; such processing elements have the advantage of being opti-

mized for throughput and performance per Watt when they perform bulk compu-

tations.

1.1 Motivation

An even more promising approach is to include reconfigurable units in the system.

Research shows that for a wide range of applications, reconfigurable (typically

streaming dataflow) accelerators can be crafted and, even if sometimes they do

not exceed the performance of classical approaches by much, they are significantly
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more energy-efficient. As a result, FPGAs are now becoming competitors to many-

core accelerators, such as GPUs and Vector processors. However, a major obstacle

in adopting FPGAs in HPC is their limited programmability and the maturity of

the development tools, that discourage application developers from utilizing them.

Historically, FPGAs are used as (reprogrammable) hardware blocks, and more

recently as standalone systems (SoCs), so the tools and programming environments

are usually optimized for compiling and running efficiently a single application on a

single FPGA. Moreover, there is increasing –but still limited– support for a number

of FPGA features necessary for an efficient HPC system, such as, managing the

FPGA through an Operating System (OS), executing an application in-parallel on

multiple FPGAs, and running multiple applications on the same FPGA. Hence,

what is missing is the programming flexibility that is taken for granted in multi-

core systems but is not well supported on FPGA-based environments.

This relates closely to a series of open problems, regarding the deployment of

FPGAs in the HPC domain. Currently FPGAs, although extensively used in cloud

infrastructure and data centers, are still not deployed in the HPC domain, mainly

as they are difficult to use. This difficulty comes from the aforementioned (i)

from their low programmability, with current tools mainly targeted on optimizing

a single application on a single FPGA device. Furthermore, (ii) different FPGA

vendors, as well as different FPGA families of the same vendor and varying FPGA

sizes per family, affect the HW realization of task accelerators. Very specialized

HW as well as SW skills are thus required, which correspond to great amounts of

effort. What is more, (iii) the offered solutions are not generic, and correspond to

very specific workloads, while they cannot be reprogrammed and reused in order

to provide broader solutions. Another important issue is that (iv) still FPGAs are

usually tightly coupled to traditional CPUs and do not leverage their competence

for efficient inter-FPGA connectivity. FPGAs need to become disaggregated from

the CPU/GPU infrastructure in order to prove fully effective in HPC infrastruc-

tures. Finally, (v) there are no reported solutions to the author’s knowledge that

present evaluations of such proposed, generic systems in realized hardware plat-

forms. Due to all the aforementioned issues, there exists a great concern on the

suitability of the FPGA alternative for the already heterogeneous HPC domain.

To tackle those issues we introduce the UNILOGIC architecture and frame-

work that incorporates FPGAs within an HPC platform seamlessly and efficiently.
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Not only does it provide a parallel hardware execution environment for applica-

tions running on multiple FPGAs, but also offers a simple programming environ-

ment and system software for using efficiently and seamlessly the reconfigurable

resources of multiple FPGAs. Our motivation and ultimate goal is to develop a

system that can seamlessly utilize all FPGA resources as if they were all packaged

in a single chip that offers massive amount of resources. Doing so in a straightfor-

ward and efficient manner, promotes performance while in parallel provides ease

of programmability.

1.2 Thesis Statement

This thesis demonstrates that the FPGA technology can and should be deployed

in the HPC domain. That is, FPGA devices are a viable alternative to elevate

the heterogeneous HPC infrastructure, if offered the proper architecture. The

proposed and realized UNILOGIC architecture offers a novel approach that in-

corporates a low latency, distributed interconnection infrastructure, along with

resource virtualization and partial reconfiguration, so that hundreds or more of

FPGA devices can be used in parallel, proving to be highly efficient and scalable.

In particular, this thesis showcases that, based on the novel UNILOGIC ar-

chitecture, we can provide an easily programmable, efficient and scalable multi-

processor-like FPGA infrastructure, where multiple hardware accelerators are spread

around the system. These can be easily orchestrated by an application and/or run-

time system, and highly parallelize the execution on the available reconfigurable

resources. The architecture offered is generic, so that it can facilitate the de-

ployment of any HW accelerator in any vendor’s FPGA and FPGA family. An

engineer can easily compile a deployable HW accelerator, while in turn multiple

instances of the implemented accelerator can be spread around the multi-FPGA

platform, offering the demanded parallelization. In this thesis a prototype system

was designed and built, dealing with all the architecture’s entailed complexities,

and proving that UNILOGIC is feasible. Furthermore the complete system is

evaluated, based on real world applications, accelerated on reconfigurable hard-

ware and proving that UNILOGIC is scalable, while also being efficient both in

terms of performance and power consumption.
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1.3 Contribution

The contribution of this work comes from the proposed, implemented and evalu-

ated UNILOGIC architecture. UNILOGIC offers an answer to the challenge that

rises when attempting the utilization of multiple reconfigurable devices in an ef-

ficient and transparent manner. It offers users the ability to access the available

hardware resources, and utilize/implement custom or popular accelerator mod-

ules. These modules execute an application’s computationally-intensive algorith-

mic tasks concurrently, therefore, taking full advantage of the inherent parallelism

of the HPC applications. In addition, the presented architecture allows for the

accelerator modules to be implemented, i.e. placed or, in FPGA terms, configured

close to where data are stored or, alternatively, move data into the memory located

near the accelerator module that will processes them.

The key features of UNILOGIC are (i) direct access of the entire system mem-

ory by the accelerators using the PGAS model, and (ii) transparent use of all avail-

able FPGA resource in the system by one or multiple applications. The hardware

architecture utilizes multi-core CPUs tightly integrated with the reconfigurable

modules. A static part in the FPGA implements the inter-FPGA communication,

the task scheduling and partial bitstream propagation into the dynamic reconfigu-

ration part. The dynamic part hosts the partial bitstreams for the HPC application

accelerated tasks. These modules are not bound to a single application, but on

the contrary, can be dynamically reconfigured and shared among many different

HPC applications.

In terms of the UNILOGIC system software, it comprises of a) the low-level

device drivers, i.e. middleware that supports software-hardware communication, as

well as the low-level API for monitoring and mapping accelerator modules onto the

reconfigurable resources, and b) the runtime system that manages system resources

as well as distributes and orchestrates the processing of HPC application data. The

runtime is hosted on a lightweight, custom, embedded Linux OS, and allows users

to effortlessly interact with the system as well as introduce application(s) at user-

space; in addition, it assesses the system resource status so that an application is

partitioned and distributed efficiently, thereby, allowing for in-parallel processing

of its sub-tasks in reduced time frames.
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The proposed UNILOGIC architecture was originally presented in [79], and in-

volves a high-level introduction of the architecture, that integrates multiple FPGAs

in a multi-processor environment. Then I moved on to a more detailed design of

this concept, i.e. a parallel environment, to which I analyzed all its basic compo-

nents, and importantly present detailed evaluation results for the first UNILOGIC-

based multi-FPGA server prototype. Specifically, the main contributions of this

thesis are the following:

• A scalable architecture for multi-FPGA platforms - The UNILOGIC

hierarchical architecture supports efficient use of hundreds of reconfigurable

accelerators distributed among hundreds of FPGAs.

• Improved programmability in a multi-FPGA platform - The UNI-

LOGIC architecture allows for the seamless exploitation of the reconfigurable

resources of the multi-FPGA system.

• Sharing of FPGA-based hardware resources - A hardware virtualiza-

tion mechanism that allows for sharing of the same hardware tasks, i.e. tasks

implemented in reconfigurable accelerators, by different applications, as well

as the deployment of many different hardware tasks by a single application.

• Low latency communication - A communication infrastructure, based on

the Advanced eXtensible Interface (AXI) protocol [7], designed and imple-

mented for fast low-latency intra- and inter-FPGA connectivity that provides

a very efficient and distributed interconnection.

• Implementation of the first 64-FPGA UNILOGIC platform - The

developed UNILOGIC prototype, supporting 64 tightly interconnected FPGAs

in two 1U chassis, was used for the deployment and the evaluation of the

UNILOGIC architecture by running two real-world applications.

1.4 Thesis Organization

The structure of this thesis is as follows:

• Chapter 2: We present a thorough survey on related work, demonstrating

the state-of-the-art and comparatively approaching the basic characteristics,
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showcasing both differences as well as common grounds with our proposed

approach. Both multi-FPGA systems as well as smaller-grade systems that

present interesting attributes are included, while we also consider commu-

nication infrastructure solutions as well as higher-level software tool flows

proposed. Furthermore we comment on related commercial infrastructure,

and finally report on linked work through collaborated projects.

• Chapter 3: We describe the proposed UNILOGIC architecture, that

unifies the reconfigurable logic of numerous HPC nodes in an extendable,

scalable, energy-efficient system. It is thus presented to the developer as a

seemingly undivided, continuous entity.

• Chapter 4: We present the first implementation of the UNILOGIC ar-

chitecture, reaching up to a fully functional prototype. Many innovative

underlying hardware components and respective customizations are show-

cased, surpassing obstacles encountered during the process. We also present

the firmware that complements the hardware components so as to compose

a complete UNILOGIC system.

• Chapter 5: We initially focus on the optimization of a single-FPGA

implementation, explaining quantitatively the performance bottlenecks and

the improvements. Next, we optimize the UNILOGIC implementation in

multiple FPGAs, optimizing the inter-FPGA efficiency so as to increase the

overall application performance.

• Chapter 6: We evaluate the UNILOGIC architecture on the QFDB-based

prototype. We progressively deploy and evaluate the architecture, introduc-

ing the hardware accelerators initially on a single FPGA and eventually on

all the FPGAs of our prototype. Two opposite cases of algorithms, and thus

two resulting diverse accelerators, are reported, a compute-intensive and a

data-intensive, providing the means for a comprehensive UNILOGIC evalu-

ation.

• Chapter 7: We provide directions for future work and possible extensions

to our work, based on latest technologies and devices launched, together with

current and future trends.
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• Chapter 8: We conclude this thesis.

We would like to note at this point that the writer of this thesis aimed at

producing text with a good flow throughout all chapters, so that it composes a

concrete "story". This way, the reader of this thesis can find interesting infor-

mation in any of the chapters/sections. However, it is also important to mention

that effort has been also invested so as to, without interrupting the flow of this

story-telling, separate the more detailed information on architectural and imple-

mentation related aspects, under sub-sub-headings. That is, under quad-numbered

sections of the form x.x.x.x, e.g. 4.2.5.2. Based on this reasoning, a reader that

wants to avoid getting into all the detailed techniques and entailed architectural

approaches and solutions contributed by this thesis, and wants to gain an insight

of a higher level for the information presented, can decide to selectively focus on

these parts.

1.5 Details on Contributions and Collaborative Ef-

forts

This thesis is part of the ECOSCALE project, which in parallel collaborated with

sister projects ExaNeSt and ExaNoDe. Hence it entails a lot of collaboration and

broader efforts by a number of participants, that made the realization of this re-

sult possible. Details on the contributions derived from this thesis are presented in

the introductory paragraphs of chapters and their main sections, however we also

briefly outline these here for ease of access. The main overall contribution, as al-

ready discussed, is the particularization of the UNILOGIC architecture stemming

from [79], and its realization and evaluation on an effective hardware platform.

The core architecture is formed through its "Worker" building block, which provi-

sions all the main attributes of UNILOGIC. The Worker structure and all related

intricacies are thoroughly explained throughout this thesis, while in Figure 1.1 a

color-coded, high-level version of its block diagram aims to gives an insight on the

specific contributions of this Thesis.

To be more specific and by referring to building blocks of the architecture, the

author of this thesis:

◦ devised the topology exploration and formalization
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Figure 1.1: The architecture of a Worker, i.e. the main building
block of UNILOGIC, shaded accordingly to clarify contributions of

this thesis

◦ proposed and implemented the forward/backward Address Translation Scheme

◦ devised the tailored PGAS model

◦ designed the hardware translation tables, the algorithms and the related software

for translation table configuration

◦ performed the initial MPSoC deployment

◦ took care of the QFDB-specific MPSoC & DDR configuration and fine-tuning

◦ analyzed connectivity through extensive multi-gigabit link bit error rate testing

(BERT)

◦ devised the MPSoC PS-to-PL Addressing Scheme

◦ designed and built the whole memory port virtualization scheme, as well as

the related investigation on optimized selection of port sets and exploration on

favorable path to port designation

◦ designed the selectively hierarchical AXI interconnect that achieves highly re-

duced FPGA resources, as well as the related optimized AXI address mapping

◦ devised the thorough AXI parameterization, including pending transactions,

registering and selective mapping, as well as Round Trip Time vs. transactions

formalization

◦ explored the scheduling-accelerator slot pairing & thoroughly evaluated alterna-

tives
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◦ contributed in the Scheduler specs, followed by co-design mainly by Chalmers

University, and then I performed the full hardware deployment and most of the

related software

◦ contributed in the QFDB design mainly done by FORTH, in bring Up process,

while I solely deployed it in the UNILOGIC platform

◦ fully designed and realized the RAM-less design and bare metal testing, with

the Linux OS mainly devised by FORTH.

◦ highly contributed in the baseboard design while devised most of the the bring

Up and deployment process

◦ fully carried out the Final hardware platform realization as well as its remote

management infrastructure, while partly contributed in the related Linux OS

and Drivers

◦ updated and enhanced the Conv-ID module adopted by UNIMEM

◦ devised ample investigation on the chip-to-chip module adopted by UNIMEM,

including debug, enhancements, support for the GTH transceivers, designed

clock-slave/clock-master versions, built 5, 10 and 16 Gbps versions, and con-

tributed in the deployment of the custom transceiver protocol as well as for link

bonding support

◦ provided specifications for the partial reconfiguration (PR) slots, the PR slot

merging and the partial bitstreams, which otherwise are mainly a contribution

of the University of Manchester

◦ designed and realized the PR-slot surrounding infrastructure

◦ persistently devised and executed bare metal testing and optimization

◦ contributed in the platform’s Linux OS & drivers which otherwise was mainly

contributed by TSI in Chania

◦ slightly contributed in the accelerator algorithms (Michelsen, Hyperbolic, KNP)

& HLS which otherwise was mainly contributed by Synelixis, PoliTo and Acciona

◦ Highly contributed in the co-design process of accelerator optimization and eval-

uation, as well as the exploration on algorithmic level (e.g. Michelsen vs. Hy-

perbolic) & and on the level of optimization

◦ mainly devised the power measurements & the related automation scripting

◦ slightly contributed on the software measurements for CPUs/GPUs, otherwise

mainly contributed by Synelixis, PoliTo and Acciona.
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Chapter 2

Related Work

In this chapter we will visit some of the main, state-of-the-art reported work that

closely relates to this thesis. We will first report related work on FPGAs directly

related to HPC, proving the efficiency of FPGAs as compared to CPUs and GPUs,

however mostly pertaining to single FPGA implementations, and emphasizing on

the low FPGA programmability drawback. We will then visit multi-FPGA sys-

tems, where FPGAs are mainly used as coprocessors, hosted on boards and con-

nected through PCI or Ethernet, however with very limited direct inter-FPGA con-

nectivity. Work on communication infrastructure is then reported, pointing out the

importance of custom communication infrastructures for the overall performance,

and the potential of the FPGA alternative to offer such, whereas only small scale

evaluations are reported. Then, in the resource virtualization field, interesting

work is presented on single FPGA resource virtualization, as well capable frame-

works and related middleware for effective multi-FPGA resource management.

We also visit commercial multi-FPGA infrastructures, where custom solutions are

built to target specific workloads and achieve performance while economizing on

power consumption. An overview of the road map to exascale is also reported.

Finally our work is identified as part of leading and closely collaborating EU HPC

projects.

FPGAs in HPC:

In the last few years, there has been an increasing interest in employing FPGAs in

the HPC domain. Escobar et al. in [23] present a thorough survey on implementing

algorithms in heterogeneous HPC infrastructures that integrate diverse resources,

including CPUs, GPUs and FPGAs, and provide guidelines for effectively employ-

ing FPGAs in HPC. In this survey, it has been estimated that half the lifetime

cost of HPC platforms is devoted to electrical power. Moreover, another important
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observation in this survey is that, in order to overcome the low-programmability

issues of older FPGA-based architectures, high level synthesis tools such as Vivado

HLS (by Xilinx) and Catapult C (by Mentor Graphics) have been recently heavily

improved. It is also noted that a basic part of the success of CPUs and GPUs, in

the HPC domain, is due to the widespread adoption of libraries, in contrast to the

existing custom FPGA based solutions. This thesis addresses the majority of the

main issues raised by this survey paper, since our work fundamentally focuses on

improving the programmability of multi-FPGA environments within HPC infras-

tructures, while, in parallel, we provide a low latency communication architecture,

scalable to a very large volume of interconnected FPGAs.

There are several other researchers [12, 15, 64, 17, 78, 80, 83] presenting encour-

aging performance results for reconfigurable systems, especially when comparing

the performance per watt of the FPGAs against that of their CPU and GPU coun-

terparts. Moreover, these papers also emphasize the numerous programmability

issues when designers build FPGA accelerators using common FPGA design tools.

Crucially, the work presented here stands apart from all those papers because their

focus is on the utilization of a single FPGA.

Multi-FPGA systems:

In the last decade, there has been an increasing interest in multi-FPGA systems,

such as the LEAP system [30], the JetStream [116], the CUBE Cluster [125], the

Melia framework [121], the FPGA Groups [52] and the Blaze FPGA Accelerator

[42]. Also, there are the Novo-G# system [33], which integrates the 192 Stratix

IV, the Amazon EC2 F1 instances containing up to eight FPGAs [44], the Max-

eler MPC nodes [47], which accelerate applications on reconfigurable Data Flow

Engines (DFEs) [87, 88, 46], and the Rivyera architecture from SciEngines sup-

porting up to 128 Xilinx Spartan FPGAs per machine [35]. Most of these systems

employ commercial FPGA boards, such as the ones developed by Bittware [43,

11], Hitech Global [71] and Digilent [45], and rely on Intel processors connected

to the FPGA boards over PCIe, however, such an interconnection scheme entails

high communication latency in the order of tens of microseconds, usually intro-

duces FPGAs only at the edges of large computation systems, while it also usually

entails increased aggregate power consumption.

The Convey with HC-2 [18], composes a hybrid-core computer that tightly inte-

grate two industry standard Intel Xeon processors with four Xilinx Virtex FPGAs
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as corpocessors, along with a very powerful memory subsystem. Also, there are

approaches that provide tightly coupled reconfigurable resources, such as BEE7

from BEEcube (now acquired by National Instruments) [9, 50] and SG280 from

ProFPGA [99, 34]. IBM proposes a multi-FPGA platform [122] that targets the

Data Center (CloudFPGA), and uses ethernet connectivity while mainly focusing

on decoupling the FPGAs from the CPU. Ethernet however results in a less effi-

cient interconnect, at least in terms of latency [16, 41, 117]. The CloudFPGA does

not aim to unify the FPGA resources as our architecture does, however this work

also advocates that the FPGA-to-CPU PCI connectivity should be relinquished

and effort should placed at providing architectures for self-contained FPGAs. In

essence, it becomes evident that in order to use such multi-FPGA infrastructures

within an HPC system, it is crucial to employ a highly parallel architecture, which

will offer ease of hardware resource utilization to the accompanying tool/program-

ming flow, and will meet the HPC requirements, e.g. low communication latency,

such as the UNILOGIC approach.

In [72], a multi-FPGA platform is built and evaluated, constructing a many-

core hardware prototype and focusing on parallel programming research. 64 single-

FPGA "Formic" custom boards hosting a total of 512 MicroBlaze processor cores,

along with 8 ARM A9 processors, that constitute a 520-core heterogeneous pro-

totype, which being greatly faster than simulators, can elevate parallel program-

ming research. The multi-FPGA approach of [70] is proposed as Network-on-Chip

(NoC) emulation Framework. A large sized five-FPGA board is used to host

processing cores and network elements, greatly outperforming software simula-

tors. 32-bit RISC processors configured in the FPGA, along with switching ele-

ments, are emulating 2x2 and 4x4 NoCs in various configurations. The AMBA bus

is used for communication inside the FPGAs, and the multi-gigabit transceivers

along with on-board parallel wires are deployed for cross-FPGA interconnection.

However, this approach does not target the accelerator field, while during the

evaluation process, cross-FPGA connectivity is not stressfully tested, as only low

communication-demanding applications are demonstrated.

A study presented in [107, 108] focuses on an efficient design flow to create

custom, FPGA-based, prototyping platforms, while taking into account a descrip-

tion of the target design, which may include a single or multiple interconnected

boards. A comparison among alternatives ranging from off-the-shelf to custom
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solutions is also presented. In [66] the authors present the TaPaSCo framework,

that aims to automate the construction of System-on-Chip (SoC) FPGA designs

for task parallel computation. In the case study presented, an FPGA is deployed

as a coprocessor next to a CPU, and uses MicroBlaze soft-core processors to offload

host CPU tasks.

Communication infrastructure:

Alongside and regardless of the CPUs’ processing speed, major bottlenecks in

high performance architectures are triggered by the vast data transfers, the slow

memory hierarchy and the relatively high inter-node communication latency. The

reconfigurable nature of FPGAs allows for implementations of custom efficient

communication infrastructures which are crucial for the overall system performance

as explained by Correa et al. [20] and Viswanathan et.al. [118].

In [20], the authors propose a scalable multi-FPGA interconnection architecture

implemented and evaluated on a small prototype comprising of 8 FPGAs. Simi-

larly, a small prototype is used in [118]. On the contrary, we have implemented

and evaluated our proposed communication infrastructure on a larger prototype

consisting of 64 FPGAs, demonstrating with more confidence the scalability and

the effectiveness of the proposed solution. Mondigo et.al. [81] propose a multi-

FPGA communication infrastructure that uses single FPGAs as pipeline stages.

This architecture can be very efficient only for certain applications.

Furthermore, interconnection topologies are studied in [60], describing the pros

and cons for different ones such as the fully-connected and torus. Here, we present

an enhanced torus-like topology that combines the pros of both worlds. More-

over, Ethernet is commonly used in several FPGA infrastructures [109, 122]. Our

approach supports both standard Ethernet connectivity for inter-processor com-

munication and custom FPGA-to-FPGA high-bandwidth and low-latency inter-

connection for highly-demanding hardware acceleration.

Finally, Kapre et al. [59] focus on low-level intra-FPGA communication, im-

plementing a custom FPGA Network-on-Chip (NoC) router that can be faster

than the overlay routers available today, while achieving an order of magnitude

reduced size. In our prototype we are using the Xilinx AXI interconnect but our

architecture could employ other routers as well.
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Resource Virtualization & Frameworks:

Research in FPGA virtualization is still at a very young age. RACOS is a Recon-

figurable ACcelerator OS (RACOS) that supports the concurrent use of multiple

accelerators by multiple applications by providing a software API to load/unload

reconfigurable hardware accelerators and share them between multiple processes in

a single-node system with PCIe-attached FPGA board(s) [115]. The VINEYARD

approach [56, 55] offers resource virtualization which supports openCL based ac-

celerators, while in parallel proposes a high-level framework for their efficient uti-

lization in the data centres. This kind of frameworks [54], as well as relative

commercial schemes such as the Coral [53] offered by InAccel, could take advan-

tage of the UNILOGIC architecture, complementary offering a holistic approach

for FPGA deployment. The work in [104], addresses the virtualization of hard-

ware accelerators through the Single-Root I/O Virtualization feature of the PCI

Express interface. The proposed system is capable of statically sharing predefined

co-processors in a single FPGA among a host and several virtual machines; there-

fore, co-processors are not shareable between domains, while in [120] the system

gets augmented with partial reconfiguration support. In [3] A. Al-Aghbari et al.

present a single FPGA virtualization approach targeted at clouds and data centers.

Vaishnav et. al. [114] highlight in their survey the importance of reconfigurable

resources virtualization at three different levels: the accelerator level, i.e. inside

an FPGA, the node level (few FPGAs) and the system-wide multi-node level. A

few solutions per level are referenced in this survey. Our proposed architecture is

probably the only one which efficiently targets all three designated levels, giving

maximum flexibility along with the desired transparency that allows the program-

mer to be fully unaware of the underlying virtualization mechanism.

FPGA-based parallel commercial infrastructure:

There are several commercial parallel systems that demonstrate that FPGAs con-

stitute an energy efficient and flexible choice for several parallel applications. Mi-

crosoft uses FPGAs in its Bing search engine [98, 97] under the Catapult project

to achieve 95% higher performance at the cost of 10% higher power consumption.

Cray delivers a CS500 cluster system with Stratix FPGAs for the Noctua project

[93]. Baidu is using low cost FPGAs to accelerate Deep Neural Networks [85],

while IBM deploys FPGAs for large NoSQL data stores [13].
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Road map to exascale:

Finally it is important to report on the significance of the exascale era and the

related efforts to realize exascale computing. [29] highlights the continuous scale

up in terms of nodes and accelerators, as well as software, infrastructure and tools

on the road to exascale. In the European Union side, [105] stresses that Euro-

pean supercomputing infrastructures represent a strategic resource for European

citizens in the years to come, as well as for the future of European industry, small

and medium-size enterprises (SMEs), and the creation of new jobs. The U.S. ex-

ascale computing strategy is described in [67], presenting the vision of an exascale

ecosystem adjoining capable and power efficient computing platforms, with en-

hanced applications, software, and hardware technologies. Nowadays, being really

close to the realization of such systems, [101, 27] report on exascale computers

that are just around the corner.

Linked work:

The work of this thesis is part of the ECOSCALE project which collaborated

closely with the ExaNeSt [62] and ExaNoDe [100, 10] EU projects, as successor

projects to the Euroserver project [22]. ExaNeSt main focus was on the intercon-

nection infrastructure, while ExaNoDe main focus was on improving the on-chip

packaging technologies. ExaNeSt has designed and implemented the QFDB com-

pute node that we use as a building block in our final prototype (see Section 4.1).

Finally the currently ongoing EuroEXA project [24], inherits the findings of all

these projects.
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Chapter 3

The UNILOGIC Architecture

In this section we describe the UNILOGIC architecture [79] focusing also on the

communication infrastructure of the HPC platform, which allows for seamless and

fast access of any data and any computational logic resource in the system. The

target of the UNILOGIC architecture is to provide an extendable, scalable, energy-

efficient system, unifying the reconfigurable logic of numerous HPC nodes, and

presenting it to the developer as a seemingly undivided, continuous entity. In

this thesis, the originally proposed generic UNILOGIC architecture [79] gets con-

cretized in it complete form as presented herein. Also, the whole communication

infrastructure was devised as part of this thesis.

3.1 Description of UNILOGIC

The UNILOGIC approach is an extension to the UNIMEM (Unified Memory)

architecture [77]. UNIMEM has been a novelty in its own right and its purpose

is to provide a uniform memory address space across multiple HPC nodes. It

was first introduced within the EuroServer project [25], [22] and it consists of a

powerful set of mechanisms that provide efficient communication among remote

CPU-based nodes of a large HPC system. The main advantage of the UNIMEM

architecture over conventional communication architectures, i.e. coherent shared

memory systems and message passing computational systems, is that it offers

more efficient communication mechanisms than the conventional message passing

systems and eliminates the complexities, performance overheads, and costs that

the large coherent shared memory systems induce.

An HPC system implementing the UNIMEM architecture consists of a set of

computational nodes that are connected through a custom network. UNIMEM
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enables the nodes to seamlessly access data items located in remote nodes. More

specifically, in the UNIMEM architecture, the memories of the system are mapped

into a Partitioned Global Address Space (PGAS) that is accessible by any node.

Therefore, any node in the system can directly access the physical memory of any

other node through the GAS.

In the PGAS of a UNIMEM multi-node machine, a memory page can be

cacheable at the local processing node or at a remote processing node, but not

at both, as seen in Figure 3.1. This is the basis of the UNIMEM consistency

model, which eliminates global-scope cache coherence protocols, providing a scal-

able solution. Progressive address translation [61] can be further applied on top

of UNIMEM in order to provide interprocessor communication.

Figure 3.1: Unimem allows pages of DRAM1 cached in CACHE0
of CPU0 -OR- in CACHE1 of CPU1 etc.

UNIMEM allows remote DRAM borrowing and remote load/store instructions,

which enable remote-mailbox and remote-interrupt notifications for low-latency

protocols. It also allows communication using Remote Direct Memory Access

(RDMA) operations, which efficiently deliver data in-place and avoid receiver-

side copying. The complexity and costs that the system-level coherence protocols

induce [69] are eliminated in the UNIMEM architecture, as it imposes exclusive

caching.

Subsequently, UNILOGIC has been envisaged as an extension to UNIMEM,

and introduces the uniform and virtualized access of reconfigurable logic, i.e. of

acceleration resources, residing in the different FPGA-populated nodes of the HPC

heterogeneous system. Since a fundamental aim is the extension to a very large

number of heterogeneous nodes, which incorporate FPGAs, so as to eventually

reach exascale capabilities, the UNILOGIC architecture has been developed to be
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inherently scalable. The way UNILOGIC expands upon UNIMEM is by including

accelerator controllers in the UNIMEM architecture that can be seamlessly ac-

cessed by any node in the system in order to accelerate tasks in the reconfigurable

resources. Furthermore, partial reconfiguration can be employed in order to load

new hardware-accelerated tasks in the reconfigurable resources or to relocate a

task to any node in the system [65].

The UNILOGIC architecture partitions the system design into several process-

ing nodes, called Workers, which communicate through a hierarchical communica-

tion infrastructure or mesh-like topology. Each Worker comprises of conventional

processing units, memory, reconfigurable logic, and accelerator controllers that

provide access to the reconfigurable resources in order to program and execute

accelerated tasks in hardware at runtime (Figure 3.2).

Figure 3.2: The Hardware Architecture

The coding framework used has been that of OpenCL [110, 84] since an OpenCL

kernel call is split into OpenCL Work Groups (WGs), which can provide coarse-

grain parallelism among different FPGAs. Subsequently, each WG is further

split into OpenCL Work Items, which can provide fine-grain parallelism within

an FPGA.

The main advantages of UNILOGIC are the following: (1) the architecture in-

cludes accelerator controllers, which can be reached using memory accesses that are

part of the UNIMEM PGAS, making the controllers visible by any system node,

(2) accelerated tasks in the reconfigurable logic can access directly any data in the

UNIMEM PGAS via regular data transactions or via initiating block transfers in
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an RDMA fashion, and, finally, (3) resource sharing is supported by the accelera-

tor controllers by serving requests from different nodes in-parallel, as depicted in

Figure 3.2 where two nodes access controllers of a third, remote node.

Figure 3.3: OpenCL Kernel WG Distribution with the Virtual-
ization Scheduler

The resource sharing requires the inclusion of a Virtualization Scheduler, which

allows for the execution of multiple requests for the same function to be executed

in-parallel. As shown in Figure 3.3, upon the execution of an OpenCL kernel call,

the Virtualization Scheduler creates the WGs of the kernel, which are dispatched

for execution in hardware. Since the hardware reconfigurable resources are lim-

ited, a small number of WGs can be implemented in hardware and executed in

parallel. The Reconfigurable Hardware Accelerator includes a number of the same

WG implementations, i.e. a number of identical parallel hardware pipelines that

can operate in a superscalar fashion, which actually corresponds to the number

of the outstanding WGs that can be scheduled in-parallel by the Virtualization

Scheduler. The Virtualization Scheduler needs to remember only what WGs have

been executed or scheduled for execution so far. Furthermore, it can mix the ex-

ecution of the WGs from different calls for the same OpenCL kernel, as well as

provide Quality of Service (QoS) by controlling the rate at which the WGs are

executed.

In an HPC application, virtualization and context switching enables multiple

tasks or threads to share a single CPU in order to maximize the utilization of

the CPU resources. Similarly, our UNILOGIC architecture supports fine-grain

sharing of the FPGA resources, where a function implemented in hardware, which

can be “called”, i.e. invoked, by different tasks or threads running on different
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HPC nodes, in parallel, through a custom-designed hardware Virtualization mech-

anism. This virtualization/scheduling block will allow multiple function calls from

different HPC nodes to be executed in a fully pipelined fashion. This can be seen

depicted in Figure 3.2, where both applications running in Worker 0 and Worker

1 can employ the reconfigurable accelerator of Worker 3. They do so by accessing

the corresponding accelerator controller, which will then properly schedule and

dispatch the tasks to the hardware WGs. The accelerator in turn, as directed

by the application, may have to proceed by accessing data either from its local

memory, or from the memory of any other Worker. A second case scenario, is that

of an application accessing many accelerator controllers. In this case, tasks can

be send over to accelerator controllers of either the same or different kinds, and

either on the local or on many/remote Workers. This way we can allow for a sin-

gle application to a) assign a large computational task to many identical hardware

accelerators, by accessing controllers in a single or in any number of discrete Work-

ers, b) assign different computational tasks to diverse accelerators, by accessing

controllers in a single on any number of discrete Workers. More detailed figures

and descriptions on openCL kernel execution and virtualization can be found in

Appendix A

Moreover, the UNILOGIC architecture supports coarse-grain time-sharing of

the reconfigurable resources through partial runtime reconfiguration. Partial re-

configuration is supported both locally and remotely, i.e. any node in the system

can invoke partial reconfiguration to an FPGA in any other remote node. The

partial reconfiguration mechanisms have been already integrated and evaluated in

our platform, but are outside the scope of this thesis; the reader can find more

details on this work in [90], [91]. However, as a lot of effort that was invested as

part of this thesis in order to support the mechanisms developed by the University

of Manchester, and to effectively integrate those in the UNILOGIC architecture,

hence part of the solutions contributed will be described.

Depending on the UNILOGIC implementation, the functionality of the Vir-

tualization Scheduler can be implemented in software, in hardware (inside the

Acceleration Controllers) or both. A software application may send a large task

to an accelerator controller, which can then in hardware split this large task into

WGs, based on the configured hardware accelerator it controls. Otherwise, the

software itself can choose to deal with the WG splitting, and likewise to properly
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dispatch the resulting WGs. Similarly, the more complex role of orchestrating con-

current, local and remote running applications, that ask to be serviced by the same

underlying hardware, i.e. accelerators, can be relied upon hardware or software.

3.2 UNILOGIC Communication Infrastructure

The fundamental aim of UNILOGIC is to enable hardware modules, such as accel-

erators controllers and hardware WGs, located in any of the numerous Workers,

to communicate through a unifying and easily configurable interconnect, while

appearing within a single, consistent PGAS and seemingly presented as if they

all reside within a single node. This leads to a completely unified and virtual-

ized Worker environment, supporting intercommunication in a uniform, seemingly

local-access manner. In that respect, it allows data transfer or, symmetrically,

computation task migration, in such a way that the system will behave as if every-

thing is executed within a single node, i.e. in a vast, contiguous and reconfigurable

resource space. Details on the communication infrastructure implemented on the

UNILOGIC prototype, are presented next in Section 4.

Figure 3.4: A generic view of the UNIMEM+UNILOGIC global
address space. Each Worker corresponds to an address window

The novel UNILOGIC inter-communication infrastructure, developed so as to

provide this multi-Worker memory and hardware resources unification, adopts the

PGAS paradigm depicted in Figure 3.4. On the left, each Worker has its own

dedicated and continuous address region in the PGAS. Workers are grouped into
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Compute Nodes. Finally, many such nodes make up the complete PGAS. On the

right, each Worker is shown with its own address space, comprising of a memory

region and a region that corresponds to the accelerator controllers and other pe-

ripherals. The latter is used for accelerator invocation, peripheral configuration,

local or remote partial reconfiguration, etc.

Figure 3.5: An generic example for a global address resolution

An example address is shown in Figure 3.5 and comprises of three basic fields,

the Compute Node ID (NID), the Worker ID (WID) and the remaining address

bits that pertain to the address space within each Worker. The width of these

fields is implementation-dependent and can grow as much as required for a system

to scale. In the example depicted, the NID’s 6 bits support up to 64 nodes, with

each node integrating 4 Workers as implied by the WID’s 2 bits. Therefore, this

example address resolution is configured to support 64 × 4 = 256 Workers, with

each Worker exposing 4 GBytes (32 bits) of address space, thus accumulating to

a total global address space of 1 TByte (6 + 2 + 32 = 40 bits).
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Chapter 4

UNILOGIC System Implementation

In this section we present the first implementation of the UNILOGIC architec-

ture, reaching up to a fully functional prototype. We first present the innovative

underlying hardware components that build up our custom prototype. For each

component we highlight the implemented architectural aspects as well as the main

implementation obstacles encountered and the corresponding solutions. We then

present the firmware that complements the hardware components so as to compose

the complete UNILOGIC architecture. Details on the author’s exact contributions

are given through the introductory paragraphs in the sections of this chapter.

4.1 Low Level Architecture: Hardware Components,

Topology & Prototype

The UNILOGIC-based prototype comprises of custom built components that are

designed and built in order to support efficient, ultra-high density, FPGA-based,

compute-node oriented infrastructures. Moreover, many of the implemented fea-

tures may be utilized in other parallel FPGA platforms. We first present the

custom-made multi-FPGA board (called Quad-FPGA Daughter Board - QFDB)

that achieves a very dense, tightly interconnected FPGA placement. We then

present our approach on the interconnection topology, with the target to better

exploit the potential of the QFDB’s available outgoing links. We then move on

to the next level of building blocks, i.e. the hosting boards for the QFDBs, and

present our custom 1U server board that hosts eight QFDBs. Finally we gain

insight on our final prototype, used to fine-tune and evaluate UNILOGIC.

I was highly involved in the QFDB board design presented herein, as well as

the bring up process and subsequent deployment. The extreme memory borrowing
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scheme is also based on hw fully implemented by the author of this thesis, while

the specialized sw stack was designed by specialized collaborators. I also devised

the whole topology along with the corresponding formalization, while I took great

part in the baseboard specifications, and took care of most of the subsequent

deployment. Finally I set up the full prototype along with all the local and remote

management automation, while I was greatly involved in the SW stack co-design,

including the custom Linux OS and device drivers.

4.1.1 The Quad-FPGA Daughter Board

Our basic compute node is implemented through the custom-made Quad FPGA

Daughter Board (QFDB) [14, 4], which, as its name also denotes, hosts four

FPGAs. In particular, each QFDB supports four state-of-the-art Xilinx Zynq

Ultrascale+ devices (part number: xczu9eg-ffvc900-2-i). Each such FPGA device

contains a quad-core ARM A53 Processing System (PS), and significant reconfig-

urable resources referred to as Programming Logic (PL), tightly coupled with the

PS, thus it is also referred to as a Multi-Processor System-on-Chip (MPSoC). In

addition, the QFDB board couples 16 GB of DDR4 memory and a 64 MB QSPI

memory to each FPGA.

Figure 4.1: Top view of the QFDB

Targeting a compact design, the QFDB dimensions are squeezed down to the

extremely compact 120×130mm, while no component on top or below the printed

circuit board (PCB), seen in Figure 4.1, is taller than 10mm. The PCB stackup
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Figure 4.2: The QFDB block diagram

consists of 16 layers using Megtron-6 dielectric. The high concentration of com-

ponents and high-speed traces required significant effort for the placement of the

components and the routing of the traces.

There are also numerous interconnection paths, as shown in the simplified archi-

tecture presented in Figure 4.2, so as to allow for the efficient implementation of the

UNILOGIC architecture. Each FPGA is connected to the outside world through

10 High Speed Serial Links (HSSL) by means of Multi-Gigabit Transceivers, re-

ferred to as "GTH Transceivers" by Xilinx. Each external link has a maximum

line rate of 10.3125Gbit/s. A MAC-to-PHY RGMII interface also allows Giga-

bit Ethernet (GbE) connections which are mainly used for management purposes.

Within the board, the FPGAs are connected together through 2 HSSLs operating

at the maximum line rate of 16.375Gbit/s.

The Processing System (PS) of each FPGA device is configured with all four

ARM A53 cores operating at their maximum 1333 MHz frequency. Each of the

paired DDR4 memories (SODIMM) is ECC-protected and interfaces with the

FPGA device through a 64-bit wide datapath. The DDR controller is configured

to run at DDR4-PC2133, which actually exceeds Xilinx’s MPSoC specifications

for SODIMM modules, as the precise routing of the QFDB allows for higher speed

than conventional SODIMM based boards. The coupled QSPI memory is used as

a primary boot device. The reconfigurable logic features 274K LUTs, 2520 DSP

cores and about 4 MBytes of SRAM memory (Block-RAM).
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The QFDB also incorporates a number of I2C-compliant sensors, including

both power sensors that measure current and voltage, as well as temperature

sensors. Those sensors have been utilized in the evaluation of our system so as

to have the most accurate results possible. In our initial prototype, we mounted

QFDBs on top of unit carriers called Mini-feeders. Each such carrier hosts a

single QFDB, so a corresponding prototype is build of QFDB + mini-feeder pairs.

However, in our latest prototype, we utilized our custom and powerful carrier

board, which can host eight QFDBs, and is presented below in section 4.1.4.

4.1.1.1 An extreme case of Memory Borrowing, devised to expedite

QFDB bring up: RAM-less Linux boot

Figure 4.3: The prototype implementing the extreme case of mem-
ory borrowing: RAM-less boot

At this point it is useful to present an important step at the evolution of the

QFDB based prototype, as it proved quite beneficial for both the UNILOGIC

implementation, and for other platforms deploying this module, like the ExaNeSt

project’s liquid cooled prototype. During the bring-up of the QFDB, a critical

error in the DDR connection was uncovered, which rendered DDR unusable, and

thus hindered OS booting. At this point, a redesign and remanufacture (respin)
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of the board was needed, and this process would render a lot of time unproductive

in respect to QFDB bring up and exploitation. This is so as, while prohibiting

Linux boot, testing other peripherals on the board is likewise restricted, as is the

case for Ethernet connectivity or SD card communication. Importantly, testing

all components before conducting a respin is critical, in order to incorporate all

needed modifications in a single reproduction cycle.

Nevertheless, we seized the chance to investigate on a memory-borrowing en-

vironment, which aims to orchestrate diverse components, and allow Linux boot

under complete absence of local memory. This way we it would allow us to speed

up the validation of the board. In this setup, presented in Figure 4.3 and explained

through the block diagram of Figure 4.4, the Linux OS was booted by borrowing

the memory of a third-party "donor" board. In our case, a Trenz TEBF0808 [36]

was used as a memory donor, which features an identical Zynq Ultrascale+ FPGA

along with 2 GB of DDR4-RAM.

Figure 4.4: The block diagram of the HW design for the RAM-less
OS boot through memory borrowing

As indicated with arrows, the F1 FPGA, unable to access its coupled, external

DDR memory, and likewise no other DDR memory on the QFDB, has to divert
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memory access. All memory accesses of the processing system, are directed to

the FPGA logic instead of the DDR controller. "Firmware" labeled clouds on

the FPGAs, represent custom logic we specifically designed for this setup. This

technique of exclusive memory borrowing may be applied to any other FPGA-

based board lacking significant external memory.

However, not just using remote memory, but instead booting a Linux in this

setup, presented many pitfalls. In effect, Zynqs are not meant to access program

memory through the Programmable Logic. On the software side, a very minimal

software environment was squeezed into the 32 MB of the QSPI flash memory.

To that end, the U-Boot loader was trimmed aggressively, a custom Linux kernel

(v4.9) configuration was used, and a minimal BusyBox setup was instantiated in

the form of an initramfs image. The overall storage space used per node reached

a mere 20 MB, including a 16 MB compressed bitstream. The First Stage Boot

Loader (FSBL) was also modified not to require external RAM, and the code

re-location of the U-Boot loader was bypassed.

On the firmware side, complementary designs were built on the QFDB and the

Trenz board. Following Figure 4.4, any memory access from the QFDB MPSoC

is steered to the Programmable Logic (PL), instead of reaching the local DDR-

RAM. The memory access then exits the FPGA through a GTH transceiver. When

reaching the other end, passing over SFP cables, the access is transformed using a

specifically designed logic block, and reaches the functioning remote DDR through

the Processing System (PS). The response then travels back in a similar manner.

The whole mechanism is transparent to the software execution environment. The

transceivers operate at their maximum lane rate (10.3125 Gb/s), which offers a

reasonable memory throughput for moderate workloads. Each DDR-lacking node

may just assume it uses a memory with higher latency.

Since only the Network FPGA of the QFDB is directly connected to the outside

world, as seen in Figure 4.2, additional effort was required for the boot of the other

FPGAs. Hence, the bitstream of the Network FPGA is enhanced to also act as

a proxy, which forwards transactions for the other three nodes, and steers them

to discrete memory ranges on the other end, as shown in Figure 4.4. 256 MB of

memory where dedicated per FPGA, completely utilizing the 2 GB available on

the Trenz "donor" board. With this approach, the F2 "Storage" FPGA was also

successfully booted, with the Linux accessing its physical memory through the
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F1 intermediate hop. This helped to earlier test, among others, the SSD (M.2)

functionality, as the SSD is attached to the F2 FPGA of a QFDB. After having the

SSD properly enumerated, and performed large I/O transfers we executed some

early storage benchmarking.

4.1.2 Communication Infrastructure Topology

Figure 4.5: Intra-QFDB MPSoC connectivity

Figure 4.6: A quad of QFDBs fully interconnected

In terms of the interconnection topology, this derives partly from the results of

the ExaNeSt project [62], as one of its prime efforts was to investigate the different
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interconnection schemes and propose the most efficient ones. In our case, we were

driven by the need to increase the actual hardware interconnection density at its

highest possible level since UNILOGIC’s main feature is the efficient unification

of reconfigurable hardware resources. Thus, since we deployed the QFDB as the

basic building block of our implementation, we opted for exploiting its offered

connectivity to the maximum.

Figure 4.7: Unfolded Cube, as realized on UNILOGIC prototype’s
building blocks

As already presented in Figure 4.2, the QFDB offers an all to all interconnection

topology (fully connected mesh) to its four hosted MPSoCs. Each such connec-

tion is realized through not a single, but a pair of links, i.e. GTH multi-gigabit

transceivers. This intra-QFDB topology is abstractly presented in Figure 4.5.

Then, moving on to inter-QFDB connectivity, each QFDB offers 10 outgoing looks

through one of the FPGAs. So we proceeded to the next level by similarly offering

an all to all interconnection among four QFDBs, thus forming a tightly intercon-

nected quad. Such a quad of QFDBs, in an all to all topology, is demonstrated in

Figure 4.6, where QFDBs are depicted as circles at the vertices. This figure man-

ifests that each QFDB gets interconnected through a single "Network" FPGA,

which engages 6 out of the 10 available links for implementing this quad, again by

deploying pairs of links per connection.

Based on an analysis of the possible applications that could be executed on top

of our system, and mainly in order to make the best use of all transceivers cur-

rently available by the QFDB architecture, we concluded with the most favourable
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Figure 4.8: The 3D Cube with enriched connectivity

scheme at the current level being this all-to-all quad-QFDB interconnection. As

each FPGA device, of the flavor used for the QFDB assembly, incorporates 16

transceivers in total, and as 6 of those where already deployed for the intra-QFDB

connectivity, 4 still remain available to be used.

Moving on to the next level, and based on the still available links of a QFDB,

we proceeded by interconnecting two such quads, leading to an interconnection

scheme as that presented Figure 4.7. This actually comprises an unfolded cube.

The same topology is presented in a three-dimensional way in Figure 4.8, where

we more clearly visualize the formed cube topology. Actually, it more specifically

forms a cube that also included with some extra diagonal connectivity. We can

refer to this as an enriched cube topology. If one ignores the diagonal connections,

something that can also be done at the application level, a user can actually operate

on a more symmetrical and well known cube topology.

However, by adding those diagonals, the maximum intermediate hop count for

any two nodes falls from 2 down to 1. We should note that this interconnection is

completely analogous to the alternative that deploys the four internal diagonals of

the cubes instead of the four we deployed at the two opposite faces. Furthermore,

since in the depicted topologies not all 10 external QFDB connections are utilized,

we could also create topologies of tighter interconnected cubes, even alternatives

close to or even a complete fully interconnected cube, and thus more QFDB pairs
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Figure 4.9: A 4D Hypercube with enriched connectivity

with distance equal to 1, i.e. with zero intermediate hops.

It is meaningful however to record at this point a simple metric on hop count

versus link costs. We were able to reduce maximum intermediate hop count from

2 down to 1, by just adding these 22 = 4 diagonals. However, if we wanted to go

on to the last step, i.e. reducing maximum intermediate hop count from 1 down

to 0, we would need (22)2 = 16 diagonals. Based on the moderate count of QFDB

link availability, deploying 4 diagonals seems as the most sensible and effective

solution.

As we want to move on to the next level, we want many such cubes to get

interconnected, in order to form a topology that can grow as desired. So, it is

more important to use the remaining QFDB-outgoing links to allow further in-

terconnects. So we proceed to the next step by creating a hypercube. This is

accomplished by suitably interconnecting a pair of cubes, and is depicted in Fig-

ure 4.9. Each of the cubes encompasses the –optionally enriched– cube topology.

This leads to a hypercube with a maximum intermediate hop count of 2, instead

of 3, as would be the case without the enriching diagonals. A more formal analysis

on this hypercube variation can be found in Appendix F.

Furthermore, a scaled-up platform can also be implemented, by using all the
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Figure 4.10: Interconnecting many Cubes

links offered by each QFDB. For example we can use the remaining available

links to combine multiple cubes, as for example by creating a topology of a ring

of interconnected cubes. Such a ring of cubes is presented in Figure 4.10. In

fact, this can be considered as a 3D-torus variant, with two of the dimensions

remaining narrow. Furthermore, other more standardized forms of 3D-tori can

also be supported, as it has been demonstrated in [62, 94].

4.1.3 The earlier stages of the prototype, deploying QFDBs

on mini-Feeder boards

A QFDB board comprises a system on module that plugs through a single con-

nector, which provides power as well as all the desired interfacing. For our initial

developments, we mounted QFDBs on top of unit carriers called Mini-feeders.

These carriers essentially provide power to the QFDB, and formulates connectiv-

ity to the board. They feature 10 SFP+ cages, which allow us to interconnect

the external high-speed serial links of different QFDBs together, at speeds up to

10 Gbps. Finally, these Mini-feeder feature a 1GbE PHY that enable the man-

agement of the QFDB, together with two UARTs. In our latest experiments, we

moved on to using our custom and much larger carrier board, that is presented in

the following section.

Before the custom baseboard was available, an in order to effectively evaluate

scaling, we had to move on with scaled-up implementations and execute respective



36 Chapter 4. UNILOGIC System Implementation

Figure 4.11: 4 QFDBs sitting on 4 mini-feeder boards

measurements, proving that the unification of FPGAs scales gracefully. We thus

build a platform that incorporates 4 QFDBs (16 MPSoCs) as seen in Figure 4.11,

each fitted on mini-Feeder boards, and interconnected through SFP+ cables.

Various interconnecting topologies have been taken into consideration. All the

building blocks used, as well as the implemented architecture, are designed with

the ability to give a high connectivity approach, so eventually, we utilized the

available links to implement the full interconnection, i.e. an all to all connectivity,

just as the one depicted in Figure 4.6. A lot of work was devoted in order to

properly deploy, verify, configure and efficiently use the mini-feeder boards

As already explained, intra-QFDB connectivity is realized through a pair of

16.25Gbps GTH transceivers for each connection, i.e. with an aggregate through-

put of 32.5Gbps. One of the four FPGAs, designated as the "Network FPGA",

offers "outside world" connectivity through ten links of 10 Gbps each, i.e. with

an aggregate of 100 Gbps. These are driven through ten corresponding GTH

transceivers in the network FPGA, adjusted to this speed due to the mini-feeder’s

SFP+ connector and the passive copper cabling limitations.

4.1.4 The Baseboard: 32-FPGAs in a 1U Chassis

In order build a prototype that exhibits the highly parallel UNILOGIC architec-

ture, we designed a custom board referred to as "baseboard". This is a 52.8cm x

41cm dimensioned board, designed for and fitted in a standard 1U, 19-inch chassis

of 420 mm width and 550 mm depth. As graphically presented in Figure 4.12a, it

hosts 8 QFDBs, introduces them in a tightly interconnected manner, and provides

them with all the needed interfacing, including UARTs, 1Gb management ethernet

and as many as twenty external 10.3 Gbps SFP+ links.
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(a) Annotated baseboard design (b) A partially populated
baseboard, hosting 4

QFDBs

Figure 4.12: The specially designed baseboard, densely hosting 8
QFDBs and offering tight interconnection

Figure 4.13: A fully populated baseboard, getting enclosed in a
1U chassis

A real life photo a baseboard laying on our lab bench can be seen in Fig-

ure 4.12b. It shows a partially populated baseboard hosting 4x QFDBs, allowing

most of the underlying baseboard to be seen. A fully populated baseboard can

be seen in Figure 4.13. This is hosting all 8 QFDBs and is placed in a standard

1U chassis enclosure. Fans in the front and back side of the enclosure provide the

required cooling, so, as seen in the photo, the fully populated and functional blade

can be completely covered.

While the QFDB boards are densely placed in a jigsaw puzzle fashion to provide

the smallest achievable form factor, the inter-QFDB multi-gigabit interconnections

are designed to support symmetrical, easy to deploy and flexible topologies, as the

ones presented in the previous section [26]. In Figure 4.14, the QFDB slots are

conceptually repositioned, in order to clearly present the offered connectivity; the

two quads of QFDBs, left and right, are internally connected in an all to all manner.

Then, these two quads are interconnected in a way that realizes the aforementioned
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Figure 4.14: Baseboard’s connectivity diagram

"enriched" cube topology of Figure 4.8. This way, any QFDB on the baseboard,

ends up connected to any other either, directly or through a single intervening

hop.

As for external connectivity, every QFDB is presented with at least a pair of

10.3 Gbps external links, aggregating to a total of 20 SFP+ connectors. Properly

interconnecting through these connectors, varying topologies can be formed, as the

ones in Figures 4.9 and 4.10. Six out of eight QFDBs are offered with two such

links, while two of them can be selectively offered with an extra pair of links to

the outside world. An intervening high-speed multiplexer at that point, as seen at

the top of Figure 4.14, can be dynamically configured to dispense extra outgoing

links to these QFDB slots, one to each quad. This flexibility leads to a wider

range of topologies that can be supported. As these SFP+ links can be selectively

deployed to enhance either inter- or intra-baseboard connectivity, it also addresses

the need for various torus alternatives, as well as lead to further enriched cube

interconnections, already discussed in section 4.1.2. The interconnection paths

of Figure 4.14 are again represented with double lines, as each denotes a pair of

deployed transceivers. Each baseboard, when fully populated hosts, eight QFDBs,

thus a total of 32 FPGAs and 32 × 16GBytes = 0.5TBytes of aggregate DDR4

memory.
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Finally the baseboard offers a wealth of configurable signals, which drive various

pins of the QFDB and the hosted MPSoCs consecutively. These signals include

◦ the boot mode of the devices (jtag, QSPI or SD-card)

◦ the power-up switch

◦ Processing System reset

◦ selective Programming Logic (PL, i.e. FPGA fabric) resets

◦ a number of signals that connects to pins of the configurable logic of the FPGAs

and can be used e.g. to give a designated ID

These signals are driven through I2C bus expanders, header connectors or both,

while they can also be controlled through buttons and/or jumpers. A Baseboard

Management Controller (BMC) can be used to control both the headers and the

I2C bus. Popular alternatives include the microZed [6] and the Raspberry Pi [31].

Simple software running on such a BMC module can easily control e.g. the ID bits

given to the FPGAs, the high-speed multiplexer, the boot mode, etc.

4.1.5 The Final Prototype

Adding more QFDB nodes, in order to better evaluate and exploit our UNILOGIC

architecture properties, we reached to our final prototype, depicted in Figure 4.16.

It deploys two fully populated baseboards, as the ones described above. So, each

baseboard hosts 8 QFDBs, translating to 32 FPGAs (MPSoCs). Both baseboards

are displayed "open", i.e. outside their chassis or with open lid, in Figure 4.15, so

we can grasp a better look of the hosted QFDBs. Then, in Figure 4.16, the base-

board on the left is depicted with the 1U-chassis case lid closed, as was explained

above through Figure 4.13, while the one on the right remains outside its chassis

for better insight to hardware.

Figure 4.15: Two interconnected baseboards, aggregating 16
QFDBs
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Figure 4.16: Two interconnected baseboards, with the leftmost
inside a 1U-chassis enclosure

This prototype realizes the hypercube topology of Figure 4.9, while it hosts

2 × 8 = 16 QFDBs, 16 × 4 = 64 FPGAs, and a total 64 × 16GB = 1TByte of

DDR4 memory, operated at 2133 DDR speed (1066.66 MHz).

4.1.5.1 Infrastructure for Remote Prototype Management

Remote manageability is offered for all QFDBs hosted, including UARTs, Eth-

ernet connectivity, jtag access, fine grained power consumption monitoring, se-

lective power on/off, resets and more. For that reason, a dedicated Linux host

machine (PC) was configures, which offers selective access to the board hardware

and software. Remote access capability, originally allowed users from our lab at the

Telecommunication Systems Institute (TSI) in Chania to effectively use the proto-

type. Eventually remote access is also granted to users from collaborating partners

of the funding ECOSCALE project, such as Synelixis from Greece, University of

Manchester from United Kingdom, Politecnico di Torino from Italy and Queen’s

University in Belfast. To offer remote low level hardware management, network

operated relays allow users to selectively power on/off each QFDB separately, any

selection of QFDBs at once, each of the baseboards, or the whole platform. Cus-

tom scripts offer simple commands for such operations, while corresponding scripts

also offer a straightforward interface in order to separate among jtag controllers per

QFDB, program QSPI memories, monitor FPGA through chipscope, etc. Also,

depending on the targeted configuration, all 64 FPGAs of the prototype have their

attached QSPIs properly programmed. This way on power up all FPGAs get con-

figured with valid bitstreams, and the processing systems in turn automatically

execute custom baremetal software in order to configure basic hardware settings
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such as chip ID and node ID. In brief, some of the most prominent operations,

that an authorized remote user has access to are:

◦ turn on/off and power cycle QFDBs

◦ turn on/off and power cycle baseboards

◦ turn on/off and power cycle groups of QFDBs and/or baseboards

◦ have selective access jtag controllers of QFDBs

◦ reprogram QSPI memories per FPGA

◦ connect to and monitor UARTs

◦ differentiate among the management Ethernet connections

◦ run baremetal verification and micro-evaluation software on each MPSoC

◦ monitor hardware execution per FPGA, through the chipscope tool flow

◦ configure FPGA clocks through MPSoC management

◦ run high level software, e.g. deploying accelerators

◦ monitor power consumption per FPGA

4.2 Worker Architecture: FPGA Design & Ad-

dressing Scheme

In this section we demonstrate in detail the hardware design developed to imple-

ment the UNILOGIC architecture and allow any node in the platform to : a) access

any accelerator core, b) (re)configure any accelerator slot and c) access any mem-

ory region, throughout the parallel platform. This allows for easy deployment

and invocation of any available accelerator, according to demand, thus, greatly

easing the FPGA platform’s programmability. Mapping our high-level description

of the UNILOGIC architecture, comprising of Workers (FPGAs) and Compute

nodes (QFDBs), we demonstrate how each FPGA can be configured to become

a self-contained Worker, while a full QFDB board can be tailored to comprise a

highly effective Compute Node.

As part of this thesis, I almost fully devised the Worker architecture and moved

on with its implementation on the Xilinx MPSoC. Devising the block diagram was

both the first thing to do, as well as an ongoing process. Concerning the scheduler,

I was involved in the specifications, while the HDL implementation was carried out

by Chalmers University. I was then highly involved in the deployment, debug and
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upgrade process, as the scheduler was integrated in the FPGA implementation

which was fully devised by me thought the whole UNILOGIC realization. I also

devised the investigation on the Accelerator Slot Count per Controller. The PGAS

addressing was also solely devised by me, as well as the addressing scheme under

the MPSoC restrictions. The whole AXI translation scheme was also devised by

me, as well as the HW translation tables and the SW for their pretranslated ad-

dressing setup. The memory port virtualization was also fully devised as part of

this thesis, as was the selectively hierarchical AXI infrastructure and the related ex-

ploration. The conv-ID module was adopted from the EuroServer project as it was

also part of the UNIMEM architecture by FORTH, while is was altered, fine-tuned

and debugged for the more demanding purposes of the UNILOGIC infrastructure.

Likewise, the C2C module was adopted from the UNIMEM implementation by

FORTH, however it was upgraded to the newly deployed GTH transceivers, was

debugged and upgraded for higher speeds now reaching 16.3 Gbps, while spe-

cific clock master/slave versions were devised to facilitate extensive activation of

transceivers in each FPGA.

4.2.1 FPGA (Worker) Block Diagram

In this section we present an abstract view of the Worker (our Zynq UltraScale+

MPSoC device), focusing on the reconfigurable logic, i.e. the FPGA part of the

device, that implements the UNILOGIC architecture. To keep the view more

comprehensive, at this point we omit depicting blocks that would otherwise need

deeper elaboration on our investigation concerning the architecture. Interesting

parts of this analysis will be presented later in corresponding subsections. Going

through the basic components, we should have in mind the core aim of the archi-

tecture, i.e. system wide unification and virtualization of hardware resources, as

well as seamless access to any memory location, while realizing this globalization

in a highly scalable manner.

Figure 4.17 provides the abstract view of such aWorker. We will need to explain

how the depicted components interoperate so as to offer the required functionality.

The shaded region denotes internal MPSoC device components, while for simplicity

only the DDR memory is depicted externally. At the upper left of the figure,

designated as the ZYNQ MPSoC and colored grey, is the Multi-Processor System
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of the device. It includes four ARM A53 cores, a DDR controller, DMA engines,

while it interfaces to the rest of the chip, the FPGA part, through a number of

master and slave ports, adhering to the AXI protocol. The off-chip DDR memory

has a 64-bit bus, that has been configured to operate at 2133 DDR rate (1066.6

MHz).

Figure 4.17: An abstract block diagram representation of a node’s
main configurable architecture

Looking in the FPGA’s reconfigurable fabric, in blue color we see the acceler-

ators. Accelerators can be built through the standard vendor tool flow, and need

only adhere to the Scheduler interface. Each such blue block can actually corre-

spond to an accelerator slot that can be configured with any different accelerator

core, even at runtime, under dynamic partial reconfiguration. Furthermore, these

slots can be dynamically combined, depending on accelerator size, so that two,

three, or even all four can be dynamically merged to host a single accelerator core.

Before each such accelerator slots, on the left, stands a dedicated Accelerator

Controller. This actually comprises of a pair of blocks. A virtualization scheduler

is deployed to manage accelerators and organize task execution. The scheduler is

coupled with a mailbox, which can accept and store commands, so that they can

be processed at an appropriate point in time. Each such accelerator controller

pair is depicted in green. These paired components will be later explained in more

detail. Access to any of the accelerators, has to go through its coupled controller,



44 Chapter 4. UNILOGIC System Implementation

which is done by just accessing the proper addresses in the global address space.

The schedulers’ attribute of software configurability, becomes of high importance,

especially as the blue accelerator slots can be replaced by partial reconfiguration

slots, allowing deferred accelerator types to be hosted. And also with the ability

to perform the swapping at runtime. Also of note, when partially reconfigured,

the apposite controller need to take charge of the combined slots, allowing bigger

accelerators to be properly managed, no matter if they occupy a slot pair, or even

merge three or all four slots, depending on the resources required.

On the right side of the figure, depicted in yellow, are the chip-to-chip (C2C)

IP blocks which are associated with the multi-gigabit GTH transceivers. The

C2C is responsible for adapting the intra-FPGA AXI interconnection protocol

into the protocol used by the transceivers, and offers off-chip communication. The

transceivers are FPGA vendor specific hardware primitives that can achieve highly

efficient communication through serial links. In our case, they reach up to 16.3

Gbps, while achieving low latency. The C2C logic block presents them to the rest

of the FPGA components, as an address mapped peripheral. So a processor, as well

as any FPGA component, e.g. the hardware accelerators, can initiate read/write

transactions that address C2C modules. The components of each Worker can thus

communicate seamlessly, through the serial GTH transceivers, no matter if logic

resides on the same or different FPGA. Hence, the system’s resources appear as if

they constituted a single, vast Worker. In the example of Figure 4.17, four such

blocks are depicted. This can correspond to a miniature topology that designates

three of the corresponding connections to each of the QFDB’s three remaining

FPGAs, and a fourth one to a remote board. More details on the C2C are presented

later on.

In the middle of the FPGA logic, a central AXI interconnect infrastructure,

depicted in red, is deployed and configured in order to allow all components to

communicate efficiently. We have adopted the Xilinx AXI protocol in our ar-

chitecture, to harmonize both the local and remote accesses, correspondingly for

intra- as well as inter-FPGA communication. AXI allows for a standard, uni-

form, and efficient way to interconnect hardware modules. It can support bursts,

variable address-bus and data-bus widths, multiple outstanding transactions and

user defined signals, while its efficiency as an on-chip interconnection framework

has been widely demonstrated [102, 73, 103, 74]. On the other hand, AXI is not
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designed for communicating across chips, and for providing the desired interoper-

ation. This restriction can become even more puzzling, when more complicated

intercommunication topologies have to be supported, as in our case. This poses

certain obstacles, while addressing and overcoming these obstacles is part of the

UNILOGIC architecture, with more details presented in the AXI related sections

below.

Complementing the Worker architecture, scattered in the block diagram and

shaded in purple, stand the addressing related blocks. These blocks are assigned

with the task to translate the addresses produced either by the processors or

by the accelerators. They also intervene in any transaction leaving towards or

arriving from the boundaries of the FPGA. Addresses generated by the processor

aim to either invoke a local or a remote accelerator via accessing its designated

controller, or to directly access data that reside in memory, anywhere across the

unified system. The accelerators, in turn, generate addresses to request data from

memory across the system, and likewise to send back the results. The translation

blocks have to properly translate all of these transactions. At the same time, as

denoted by the dashed lines, they are being orchestrated by a hardware translation

table that is software configurable through software running on the processors. The

necessity of such intervention in the transactions flowing through the system, and

the enforcement of proper address translation, is of primary importance for our

architecture implementation, involved significant effort and investigation, and will

be presented in more detail below.

4.2.1.1 Details on the Block Diagram

Before moving on with elaborating on the most important parts of the block di-

agram, comprising the basic infrastructure of a UNILOGIC Worker, we believe

that a more detailed perspective of the diagram can prove beneficial, offering a

closer to the UNILOGIC designer point of view. A sample of such a block level

view on the implemented architecture is shown through a Xilinx’s Vivado tool

block diagram snapshot, depicted and annotated in Figure 4.18. At the bottom of

the Figure, legend bars provide insight on which blocks accommodate UNILOGIC

functionality, UNIMEM, or both of them in tandem. On the top left we can see

the Accelerator Controllers, i.e. the pairs of mailboxes and schedulers. These

are attached to accelerators a bit to the right, which then get serviced through
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Figure 4.18: A block diagram perspective of a single Worker
(FPGA) as seen in Xilinx’s Vivado tool, highlighting main compo-
nents of the collaborating UNIMEM and UNILOGIC architecture

blocks that provide the UNILOGIC address translation mechanism. The acceler-

ators blocks are substituted by partial reconfiguration slots, not disclosed in this

view for simplicity. At the bottom of the diagram we see the the C2C blocks that

offer external connectivity, standing in between address translation blocks, and

provide the forward/backward address translation we have seen purple-shaded in

Figure 4.17. The conv-ID portion augments the UNILOGIC address mechanism,

mainly for cross-chip communication, and will be presented later. Above these,

blocks offering UNILOGIC translation for the processor initiated transaction are

also depicted.

As this view of the block diagram can give a better insight on the architecture

implementation, if not to the architecture itself as well, we aimed to further disclose

more details on the designs employed in our final prototype. These include all the

UNILOGIC blocks, along with blocks related to dynamic partial reconfiguration.

For that reason, and as the discussion is of a more technical nature, this information

is presented in Appendix B
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4.2.2 Accelerator Controller: Virtualization of the Acceler-

ator Slots

Starting our more elaborate description from the bottom left of our abstract block

diagram (Figure 4.17), we visit the Scheduler-Mailbox pairs. This block comes

to support one of our principal objectives, when building an architecture that

efficiently supports distributed and shared reconfigurable resources, i.e. ease of

programmability. This involves automating the distribution and dividing of big

tasks into smaller ones, which can be executed by the reconfigurable hardware

accelerators, while being transparent at the application level. Such a goal pertains

to a virtualization infrastructure which, at Worker-level, should target to virtualize

the acceleration resources of a single FPGA, and then at System-level, upscale by

similarly operating on a multi-FPGA unified environment.

The virtualization block is realized through the "Mailbox" - "Scheduler" pair.

The hardware Scheduler [79] can be connected to, and thus control, a varying num-

ber of hardware accelerators. These accelerators, typically built by the standard

tool flow, have an AXI-lite slave interface to accept configuration arguments and

start/stop commands. The Scheduler gets hooked to this interface. Accelerators,

also incorporate an AXI master interface that they use to access memory. The

reasoning behind having the Scheduler gain control through this interface, is that

it is supported by the standard High-Level Synthesis (HLS) tools of the FPGA

provider (i.e. Xilinx). Now the accelerator is "hidden" behind the Scheduler, along

with any configuration-specific details. The Scheduler in turn can be configured,

through the Mailbox, to operate on any kind of available accelerator.

Figure 4.19: Overview of the virtualization block and its interfaces
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In more detail, to configure and trigger an accelerator, a set of commands has to

be sent. These commands are initially generated by the application running in the

processor and sent over to the Mailbox module that resides in the reconfigurable

logic. By introducing the mailbox hardware primitive, we can setup, start and

stop hardware accelerators that reside on local or remote workers. Then, our

novel Scheduler hardware module, dequeues the configuration commands from

the mailbox, and once a complete set of parameters is received, it can invoke

the corresponding hardware accelerator. This is a key feature, as it makes the

Scheduler "generic"; generic in that a single implementation of the Scheduler will

work with any number of different hardware accelerators as long as a suitable set

of configuration commands is driven through the mailbox.

The Scheduler is additionally capable of dividing large accelerator tasks to

smaller ones, that exactly fit into the targeted reconfigurable hardware resources.

Thus it can separate and issue a series of smaller subtasks which, when combined,

execute the larger task originally requested. Furthermore, as a single Scheduler

can be connected to multiple hardware accelerators at the same time, it is able

to orchestrate all available resources so as to execute a volume of subtasks, even

originating from different applications that ask for the same hardware resources.

The Scheduler works in a logic loop as follows :

• If no work is ongoing, check the mailbox for a new command.

• If work is ongoing, look for the next free accelerator to place the next computa-

tion subtask.

• If the work assigned to an accelerator has been completed, put a message on the

outgoing mailbox to indicate that this accelerator has completed computation.

This functionality is graphically presented in Figure 4.19, where accelerators

are designated as Hardware Work Groups (WG). The Mailbox on top incorporates

two FIFOs for write and read operations. Acceleration request commands are first

issued to the mailbox (to be then propagated to the Scheduler) by writing to the

incoming FIFO. Any required status information can be read from the mailbox’s

outgoing FIFO, which actually receives data from the Scheduler. The Mailbox and

the Scheduler intercommunicate through a dedicated AXI Stream interface.

Each Scheduler command is a multi-word packet, with the number of words per

command varying according to the specific accelerator type. The main commands

are:
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• "Configure Type": Containing information about how the work of a new type

of accelerator should be scheduled, how the available bitstreams are addressed

etc.

• "Configure Setup": sets the actual number of accelerators and their address

mapping.

• "Accelerate": describes the aggregate acceleration task through proper argu-

ments.

• "Kill Scheduler": terminates Scheduler execution.

The Scheduler in turn responds with messages through the mailbox. These

messages notify the initiator application for configuration completion, work com-

pletion, as well as various errors that may occur, such as wrong opcodes etc.

So, in a high level summary, the complete virtualization block works as follow-

ing:

• Software running on a PS instructs the Scheduler to start, by just writing a word

at a specific address.

• Then, by writing to the mailbox address, software indirectly configures and

starts the accelerators.

• The Scheduler transparently slits and orchestrates tasks, based on available ac-

celerators

• In parallel, there is always status (debug) information available in the Scheduler

status registers.

As a result, by just using the memory mapped Mailboxes and Schedulers, an

application can use simple load/store commands that will end up to transpar-

ently configure/start/stop/check any accelerator in the system. As described in

the next section, this virtualization scheme is still effective, no matter where the

reconfigurable resources reside, either locally or remotely (i.e. to a distant node)

by properly integrating our virtualization approach within the UNILOGIC com-

munication infrastructure.

4.2.2.1 Investigation on Alternative Setups for Accelerator Slot Count

per Controller

Before getting to more details on the addressing scheme, we would like to discuss

some accelerator controller related alternatives that we have investigated on and

are available to the designer that implements the UNILOGIC architecture. The
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(a) One Scheduler per Accelerator (b) A single scheduler for all Accelera-
tors

(c) One Scheduler per Accelerator pair (d) A mixed Scheduler approach

Figure 4.20: Various design alternatives concerning the varying
number of accelerators (or partial reconfiguration slots) that can be

controlled by a Scheduler

Scheduler as discussed can accept instructions through the mailbox, corresponding

to the current accelerator it has to control. These instructions can correspond to

a very large acceleration task, consisting of smaller subtasks, and the Scheduler

has the ability to send the smaller tasks one after the other. It can furthermore

dispatch these subtasks either to a single or to multiple hardware accelerators.

Hence, controlling in parallel many accelerator slots, it can assign each following

subtask to the next available accelerator, i.e. to any of the attached ones that

has just reported to have finished its previously assigned subtask. They are all

operated in a parallel fashion, orchestrated in hardware by the Scheduler, and have

to be of the same type.

In our final and presented UNILOGIC prototype, as already seen in Figure 4.17,

we have chosen to couple a single scheduler/mailbox pair with a single accelerator.

This case is also depicted in Figure 4.20a. However, in Figure 4.20 we also see

other possible alternatives. Figure 4.20b, depicts the other end, which is a single

Scheduler for all four accelerators. In this case, all accelerators of the same kind can

be controlled and run in parallel by the Scheduler, with no software intervention.
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The Scheduler itself can support a much higher number of accelerators, however

the examples depicted are based on the four accelerators per FPGA setup, as

supported by our implemented prototype, for ease of understanding. This one-

to-many solution has been already implemented and tested. We have successfully

used it on our first, proof-of-concept, single FPGA prototype [75]. Some analysis

on this will be presented in the evaluation section 6, however it is important to

note here that we have even analyzed hardware architecture realizations with up

to 12 accelerators controlled by a single scheduler, with encouraging results. It is

also important to explain, that even under this one-to-many configuration, it is

not prohibited to attach diverse accelerator cores. However, the software running

should be cautious on properly configuring the scheduler, as it should only be

guided to control a single type of accelerators each time. For example, we could

configure the first three slots with accelerator type "A", and the single remaining

slot with accelerator type "B". The scheduler can then be configured for type

"A" accelerator controlling, and accelerator count equal to 2. After the requested

job is finished, the scheduler’s configuration can be altered to control type "B"

accelerators, and count equal to 1.

Finally, Figure 4.20c presents a solution in between the previous two, with

one accelerator controller per couple of accelerator slots. This allows for more

flexibility, with moderate hardware complexity due to the reduced hardware blocks

used. Finally Figure 4.20d presents a mixed solution. It’s up to the designer and

based on the predicted accelerator utilization and execution patterns to select the

best fitted solution.

In our final prototype we deployed discrete accelerator controllers per accel-

erator slot, offering the highest flexibility by allowing diverse accelerator cores to

be deployed and run in parallel. We have carried out thorough investigation, and

implemented the solution of Figure 4.20a, as this a) allows the highest level of

diversity and parallelism, i.e. four different accelerators all running in parallel, as

directed by the designated controller, b) can support the most flexible runtime

partial reconfiguration, as any number of adjacent slots is allowed to be merged,

and merging can have any starting slot, thus also providing the means for re-

source defragmentation through accelerator migration, as will be presented later

in section 4.3.

It is important to note that this choice, while being the most profitable,
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nonetheless entails the highest realization effort. This is so because a) hardware

complexity increases, as more scheduler/mailbox pairs need to be encompassed

and controlled through the PGAS, and furthermore this means that they have to

be accessed through the central AXI interconnect, which requires special care in

order not to excessively grow, threatening performance, b) software applications

need to become a bit more fine-grained, in that when many accelerators of the

same kind are configured, a big task needs to be software divided to more sub-

tasks, and be sent over to 4 controllers per FPGA, instead of four times larger and

less tasks, and c) although importantly flexible, such a setup does not easily favor

performance metrics, and more design effort was devoted for performance to scale

gracefully, as more accelerator controller invocation messages need to be sent over,

and special care such as low latency and multiple supported transactions need to

be efficiently deployed. So it should be clear that this choice was made in order to

archive the best result, although the realization effort was greater.

Finally we would like to report that the final, 4 accelerator slot setup was chosen

as our proposed middle ground solution, based on accelerator sizes, and deploying

accelerator core alternatives of varying optimization levels and corresponding sizes.

Also as the static logic overhead is kept modest, most FPGA resources are left

to the accelerator slots, therefore allowing for considerable logic per slot. This

way, each of four slots can fit satisfying accelerator sizes, thus not causing logic

fragmentation. Furthermore it becomes an effective setup under dynamic partial

reconfiguration, and in the case when slot merging has to occur, configuring large

accelerators that do not fit in a single slot. Lastly, four slots can get optimally

coupled to the four parallel ports of the PS, thus driving a discrete fast path to

DDR memory for any of them.

4.2.3 PGAS: The realized Addressing Scheme

Before visiting any other components of the architecture’s abstract block design,

it is beneficial to present the global addressing scheme realized. We will start

with highlighting its basic parameters such as the number of nodes that should be

supported to allow system scaling, as well as the per-node memory region. Then

we will clarify the need for the aforementioned translation blocks. The addressing
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scheme of the UNILOGIC architecture, has to scale in an efficient way up to exas-

cale related sizes, while each node has to include tens of Gigabytes of memory. The

current implementation actually corresponds to a specific instance of the generic

addressing scheme already demonstrated in Figure 3.4. In our prototype, each node

is implemented so as to expose a 32GB address region, depicted in Figure 4.21.

The exposed region includes the 16 GB of the DDR memory that is coupled with

each MPSoC, and is supported by the current QFDB implementation. In the other

16 GB, a few MBytes are needed to address the Worker’s peripherals, i.e. the logic

blocks residing in the FPGA. In order to retain alignment per Worker, the remain-

ing region is reserved, resulting to the more convenient 32GB-sized region. This

way, MS bits of an address can easily designate a node, i.e. FPGA, and LS bits

can designate the memory or peripheral.

Figure 4.21: A portion of the UNILOGIC global address space,
focusing on a node’s address window

Based on this designation of low and high order bits, the resulting address for

our prototype system can be seen in Table 4.1. The 32 GB region designated per

Worker, needs 35 bits to be addressed, either to target its memory, i.e. 35th bit

is 0, or its peripherals. The 6 MS bits specify a unique Worker (MPSoC): they

include 2 Worker-ID bits (WID) referencing one of the 4 MPSoCs of a QFDB, and

4 Node-ID bits (NID) designating one of the 16 QFDB boards available in our

prototype. 41 bits are needed in aggregate, while we can add as many NID bits as

needed in order to deploy an increasing number of Compute Nodes, i.e. QFDBs, in

our implementation as desired. The way the addressing mechanism is integrated

in the overall architecture implementation imposes no limitation whatsoever to

the width of the supported addresses, so that any number of Compute Nodes can
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easily be supported by just defining the proper NID field width. Encompassing 16

QFDBs aggregates 16 × 4 = 64 FPGAs, and 64 × 16 Gbytes = 1 TByte of DDR

Memory, all addressed through the PGAS, as designated by the 41-bit addresses.

It is important that we surpass the 40 bit address width threshold, as it relates to

an MPSoC addressing restriction that will be explained below. By getting above

this threshold, we had to implement and verify certain hardware mechanisms that

allow the 40-bit capable Processing System (PS) transactions to access this 41-bit

address region.

Table 4.1: The fields of the addresses used in the UNILOGIC Sys-
tem’s global addressing scheme, for the 16-QFDB/64-FPGA plat-

form

41-bit UNIMEM + UNILOGIC global address
NID WID ~mem/per LS Address bits
4b 2b 1b 34b

4.2.4 Zynq MPSoC: Addressing Restrictions & Solutions

Looking again at Figure 4.17, at the upper left side stands what we designate

as the ZYNQ MPSoC, which corresponds to the multi-processor block shortly

described above. This block interfaces with the reconfigurable logic, i.e. the FPGA

fabric, through multiple interfaces, all adhering to the AXI protocol. However,

the actual maximum addressing space allowance for this fixed hardware block,

is necessarily limited by construction. We will thus begin with presenting some

entanglements that arise from using such an FPGA SoC, which therefore require

proper handling. The addressing method we opt to implement in our prototype

that gets comprised of such SoCs, will have to be based on the generic UNILOGIC

architecture, ans likewise the PGAS scheme presented in section 3.2, with the

actual PGAS addressing realized as will be presented below.

We will start our analysis by considering a new transaction initiated in the

system. This usually starts at the Processing System (PS) of an MPSoC, and

its destination is signified through a target address. he initiating processor would

firstly need to communicate with the FPGA part of the MPSoC (PL) through

the AXI-compliant interface ports. In this case the AXI addressing is confined
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Figure 4.22: Address map simplified view

to a 40-bit address scheme, hence supporting up to a maximum of 1 TB physi-

cal address space. Fig. 4.22 gives a simplified view of how the MPSoC’s address

space is statically partitioned. In this statically configured address map, we have

highlighted the regions of highest interest for UNILOGIC, while a more detailed

analysis can be found in the respective Xilinx datasheets [126]). AXI, i.e. the

Xilinx’s interconnect protocol, comes along with the corresponding interconnec-

tion IPs [7] offered by Xilinx, i.e the configurable hardware modules that allow for

efficient intra-FPGA communication among deployed logic blocks. Inside the PS,

any transaction, either generated internally or originating from the FPGA’s logic

blocks, is routed based on this mapping. For example, if a transaction’s address

falls inside the lower 2 GBytes, it will be routed to the on-chip memory controller

which handles it accordingly to access off-chip DDR memory. If an address falls

in the AXI Master 0 or 1 regions, then it will leave the PS block through the

corresponding AXI port and enter the Programmable Logic (PL), i.e. the recon-

figurable FPGA fabric. Hence this address region is of main significance, as it

pertains to the path that leads both to the local node’s reconfigurable logic, i.e.

local accelerators, as well as to remote nodes, i.e. through the C2C blocks to

remote accelerators or memory of the system.

Stepping into more details, there exist some further restrictions imposed as to

how this address mapping is implemented in the MPSoCs. Firstly, all the AXI

Master regions of Figure 4.22 add to a total of 448 GB. This is the aggregate
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Figure 4.23: Alignment and Fragmentation of the PS to PL ad-
dress space

memory region through which an MPSoC can access remote Workers and Nodes,

i.e. by initiating transactions that will be passed on to the PL and then get

forwarded through the multi-gigabit transceivers existing therein. We thus have to

use it accordingly, in order to support a desirable and scalable number of nodes in

the prototype. An related implication arises again due the MPSoC implementation

and as the PS ports adhere to the Xilinx’s AXI interconnection protocol: AXI

imposes that every slave module targeted through a master port should be mapped

in an address region that is power-of-two sized and correspondingly aligned. This

is better demonstrated through Figure 4.23. When trying to map a peripheral e.g.

to AXI Master 0, the largest consecutive address space available is just 128 GB

wide. The next larger power-of-two size would be 256 GB which does not fit in this

Master’s space. Additionally, it is mandatory to have the base address configured

to a multiple of 128 GB, i.e. 128G or 0x20_0000_0000 in this case., so that it

becomes properly aligned. The same goes for a second similar range that can be

utilized by AXI Master 1.

Added to the aforementioned limitation, a single AXI peripheral cannot be

assigned a concatenation of two regions, e.g. a 64GB and a 128GB region. Thus
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finally an MPSoC’s slave AXI peripheral can only be mapped to a maximum

address region of 128GB. We should note here that using some tricks, a designer

can bypass this "region-stitching" restriction, however not in an elegant way; one

can, for example, use three intermediate PL peripherals that map to an AXI Master

with a size of 32, 64 and 128GB respectively. Then, through an AXI interconnect,

all these peripherals can map to the originally targeted PL block. This will end up

to an indirect mapping for the targeted peripheral of the complete 224 GB region.

This cumbersome design trick can extend the visible address space, but on the

other hand it also increases both design complexity and critical path latency, with

the later being of most importance for our architecture.

In order to device a solution we need to focus on a transaction, and thus a tar-

get address. This can be launched either by an accelerator, or by an application

running on the PS. Accelerators on one side use addresses that are submitted by

an accelerator controller, with both the accelerators and the controllers residing

within the reconfigurable logic. Hence they can be built to directly use the global

addressing scheme, i.e. 41-bits for our prototype implementation. A PS initiated

transaction on the other hand, need to leaves the PS in order to target either a

remote memory region, or any peripheral, and thus cannot adhere to the global ad-

dress width, restricted due to its implementation as described through Figure 4.23.

Since the PS has two main outgoing (master) ports, we can use one for memory

accesses, and the other for peripherals. The limiting factor is the maximum of 128

GB continuous address region that can get addressed through each of those, as

seen in Figure 4.23. Nevertheless, for our current implementation, we are able to

allow full system addressing even by using just 64 GB per port. What is more,

the solutions developed scales easily to much larger platform sizes.

For memory accesses, 64 GB suffice in order to access the entire memory of a

single QFDB. On the other hand, since peripherals span just a few MBs of address

space, 64 GB can suffice for accessing peripherals system-wide. As a result, we

follow a twofold approach. To have a better understanding, we should once more

look back at the address resolution of Table 4.1.

On one hand, for memory accesses, the whole 41-bit address of table 4.1 should

be used to signify the target. Thus it cannot fit within the 40-bit PS addresses

and even worse within the 36 bits of the aforementioned 64 GB region. We can,

however, separate the 4-bit NID of an address, as seen in table 4.2, and store it
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Table 4.2: The ’intermediate’ memory addresses, as issued by the
PS to the PL, aiding to target system-wide memory

Global memory address passed from PS to PL
NID (QFDB) WID (FPGA) Peripheral

4b 2b 34b

into a special register in the reconfigurable logic, prior to issuing the corresponding

memory access. The remaining 36 bits, which designate the memory address inside

a QFDB, fit and can be issued directly by the PS. Then, both this address and

the special NID register get properly concatenated to form a proper 41-bit global

memory address. This technique comes both in a straightforward and a scalable

manner. Separating just the NID easily fits to our general addressing scheme, while

simply writing wider values to the NID register, allows for any number of nodes in

the system, and, consequently, allows for scaling to any desired size. Furthermore,

although this NID separation leads to a two stage addressing, it injects only minor

latency. This is so, as minor delay is added with the actual transaction following in

the minimum AXI allowable gap. Even more importantly this mechanism needs to

be invoked rarely, because most often numerous memory transactions, e.g. through

DMA accesses that actually require high throughput, are issued for consecutive

memory accesses. And accesses towards a certain Worker, i.e. FPGA, and even

more to a whole Compute Node, i.e. all four FPGAs of a QFDB, pertain to a single

NID. So steering to a different NID happens once every many memory accesses. So

this set-once/use-many two-step addressing scheme does not hinder performance.

Table 4.3: The ’intermediate’ peripheral addresses, as issued by
the PS to the PL, and targeting any peripheral system-wide

Global peripheral address passed from PS to PL
NID (QFDB) WID (FPGA) Peripheral

4b 2b 30b

On the other hand, peripheral accesses are usually short and non-contiguous as

they pertain to short configuration commands. However, peripherals themselves

only span a small address region per FPGA. So, in this case, even a single 64 GB

address window suffices to target all the peripherals system wide, including the

NID/WID portion of the address at once. The 36-bits of the 64 GB window can

be separated, as seen in table 4.3, to 6 MS bits for NID/WID designation (jointly
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named NWID), while the remaining 30 bits (1 GByte) more than suffice to target

the designated node’s peripheral. Proper address padding and concatenation is

performed in a transparent manner, when such an access exits the PS and enters

the PL. As for scaling, even deploying the current Xilinx MPSoC generation, we

can: (a) map much less than 1 GB for peripherals per Worker as needed, and (b)

utilize the complete 128 GB of the PS port AXI address window, and end up with

many thousands of QFDB nodes that can still be directly accessed.

A last thing to note is the build-in fragmentation of the DDR memory address

space that can be seen in the blue-colored regions of Figure 4.22. These regions

allow any logic block residing in the FPGA to access DDR memory through the

PS ports available. It is fragmented into two distinct regions, in order to facilitate

prior 32-bit PS architecture backward compatibility. For such a compliance, a

limited lower address space of 2 GB is mapped to memory, to fit with the con-

fined addressing mode of the 32-bits versions. This is designated as "DDR Low".

Memory addressing fragmentation could prove cumbersome when trying to have a

uniform global address space in a multi-node system. We thus opted for a solution

to offer a contiguous and aligned memory region, i.e. mapped to the lower address

space. Unfortunately, the lower 2GB region cannot be omitted, in order to solely

use the "DDR High" memory region for the mapping of our 16 GB total available

memory. Hence, we devised a a custom hardware block that intervenes in the PS

ports and translates all memory accesses on the fly, i.e. without adding any extra

clock cycles to the memory access path. It transparently allows all the memory

address space to be accessed by the "external world" as if it was contiguous.

4.2.5 Central AXI Interconnect: Overcoming cross-FPGA

communication restraints

As we have already mentioned, the AXI interconnect offers many benefits for

intra-FPGA communication. However, it is not a perfect fit for inter-chip commu-

nication. A notable entanglement emerges when deploying the AXI interconnect

as a fundamental building block of the global interconnect. Consider a transaction

initiated inside a Worker, i.e. MPSoC device, which tries to access some other

remote Worker. In our case this has to route through the Central AXI Inter-

connect (the red block of Figure 4.17), using proper AXI address mapping. This
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mapping has to include an address range to map intra-Worker resources, and also

three such identical ranges to map the other three interconnected Workers on the

same QFDB. What is more, another range has to map to remote QFDBs. But

what would the address be, to steer towards a QFDB’s outgoing link? This sit-

uation is conceptually depicted in Figure 4.24. We have to somehow efficiently

target the remaining hardware resources, but this addressing cannot be directly

translated to a properly configured AXI interconnect. It depends on the topology,

and on the specific QFDB we refer to in the whole system. This would have to

include address fragments across all remaining address ranges, which makes it al-

most impossible to compose. What is more, it would additionally ruin any effort

for hardware uniformity across Workers; any node would require a disparate and

complex configuration.

Figure 4.24: An AXI addressing empuzzlement

In order to overcome this problem we propose and implement a uniform hard-

ware translation mechanism, that is distributed and realized on all nodes. It

comprises of a forward/backward address translation scheme, tailored to the AXI

protocol’s inherent characteristics. An abstract representation of our approach is

demonstrated in Figure 4.25. A wide global address, i.e. 41-bit in our prototype,

should pass through the AXI interconnect. Address width itself is not an issue,

as the AXI protocol, and any AXI compliant block, can support up to 128 bit

wide addresses, or even higher. The forward/backward translation is deployed

only around our central AXI interconnection block.

What we actually do, is to allow for an alternate addressing scheme, that exists

in parallel and comes to life only in the reconfigurable part of a node. We are thus

able to encompass the whole mechanism in a completely transparent manner, either
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Figure 4.25: An abstract representation of a forward/backward
AXI-aware address translation scheme

to the processor and any running software, or to any other peripheral accessing

the global address space. These internal addresses consist of 39-bits. The lower

35 bits pertain to the 32 GB that comprise a Worker’s address window and need

not be translated. The remaining 4 MS bits are enough to differentiate among

a local access and any of the 8 or 9 possible outgoing paths of figure 4.10 (3

for FPGAs of the current QFDB, 4 for accessing the directly connected QFDBs

of the same cube, and 1 or 2 for targeting remote cubes). Each such possible

target is mapped onto a distinct memory region. All these memory regions can

now appear in a consecutive manner, and so become an easy match for the AXI

interconnect. This is true since each node only has to address the next hop on

the way to the destination node, using its translation map, and this is uniform

in our architecture. This arrangement actually constitutes a distributed routing

scheme, as a transaction advances across nodes. Any node needs to handle only a

single-step routing, just resolving which is the way on to the next node.

Now to compose these 4 MS bits, a translation has to occur, that uses the 6

MS bits of the original 41-bit address and information for the current node’s ID.

Looking back to Figure 4.17 this takes place in the purple blocks of the datap-

ath. To allow for uniformity of this translation mechanism across Workers, it gets

orchestrated by a software-configurable, hardware translation table, also seen in

purple in Figure 4.17. This translation mechanism actually has a twofold effect:

not only does it help uniformity, but also helps so that the hardware translation

blocks remain as simple as possible. To do so, the representation it holds actually

comprises of a semi-precompiled address, so that only simple last steps have to be

executed in hardware.



62 Chapter 4. UNILOGIC System Implementation

More details on reaching to an efficient translation table scheme to serve our

objectives are presented in the following section, however its worth clarifying here

the reverse translation. After a transaction is routed on the proper output of the

AXI interconnect, Figure 4.25, the original address has to be reconstructed. In

order to re-fit the original 6 MS bits of the address, they accompany the transaction

through AXI’s "user bits". These are configurable AXI bits that travel along with

each AXI transaction, configurable to much larger sizes, and are depicted with

dashed lines in Figure 4.25.

Both forward and backward address translation is carried out by specially de-

veloped hardware modules. In order to avoid bottlenecks, as several paths exercise

these translation primitives, dedicated translation modules are replicated. As each

transaction may travel a number of hops, and thus translations, before reaching

its destination in an HPC-sized system, the translation modules are as simple, fast

and scalable as possible. As a result they get implemented as pure combinational

circuits, adding no extra clock cycles in any address path.

4.2.5.1 Details on how Cross-Chip Communication is Restrained by

AXI IDs, and the Deployed Solution

Figure 4.26: The Convert-ID (ConvID) logic block, properly
translating AXI IDs

We already discussed on limitations having to do with deploying AXI intercon-

nects for cross-chip communication. There is another important limitation on the

same aspect, having to do with the AXI protocol itself, that involved a specially

developed solution. This was initially part of the UNIMEM architecture imple-

mentation, however it now required special improvements in order to be deployed

in our UNILOGIC approach, as well as contextual configuration and tuning, along

with debug and upgrade to support the demanding accelerator traffic produced

within the UNILOGIC platform.
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This new entanglement that arises, is as follows. In the AXI protocol, each

transaction is accompanied with a unique ID, which distinguishes it from any

other transaction on the same path. As many AXI-compliant logic blocks connect

to the same AXI interconnect infrastructure, the size (width) of this ID has to grow

accordingly. This way it is able to differentiate transactions, which are initiated by

a number of associated masters. When staying on-chip, this ID size can be easily

bounded, as the number of AXI master blocks cannot grow enormously. However,

this is not the case when we want to combindly consider multiple nodes, as should

be the case in a large scale HPC system, consisting of thousands of nodes. In such

a case, even if we could use an enormous size of ID bits in order to accommodate

corresponding system sizes, the cyclic fashion of the master-slave transactions of

the AXI protocol does not allow ID widths to converge. The AXI ID field of

all slave blocks of an AXI interconnect should be of the same width, and each

master’s ID grows at every AXI interconnect crossing, depending on the master

count. When multiple chips, i.e. nodes, get interconnected, each one contributes

its enclosed AXI interconnect, and this leads the ID width definition into a kind

of an endless incremental loop.

In order to resolve this, a special hardware module was developed, that engages

in order to properly convert the IDs, so it is called convID (aka convert ID). The

goal is to have a relatively small ID size even for complicated, multi-node systems,

so it adopts in a way the approach of the Network Address Translation (NAT)

used in standard networks. Thus a discrete convID block, abstractly depicted in

Figure 4.26, has to intervene in any path that exits the current node, i.e. the

FPGA. It has to change the ID, and narrow it down to a size that is compliant to

the implemented architecture, and as such can by design be adopted by all nodes

of the system. Subsequently, the transaction with the suitably converted ID will

proceed to the network through the corresponding Chip-to-chip module.

The convID block hooks to the AXI datapath as a slave, with the appropriate

ID width, dictated by the intra-chip architecture. After processing, it delivers the

transaction on the master side, with a converted, narrow ID. We should note that

narrow IDs can easily be handled by receivers (slaves) that accept wider ID, while

the opposite case is that raises issues, as was presented above. In order for the

convID to process the ID conversion, it owns a pool of unused IDs. These IDs are of

a predetermined width and correspondingly a number of values. This is constant,
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configurable at design time, and is not directly depending on the number of nodes

being added to the system. As a transaction enters the convID block, accompanied

by a wide ID, the next available narrow ID of the pool is extracted, and is used to

replace the wide one. The transaction is then forwarded with the newly appointed

ID. The corresponding wide and narrow ID pair is stored in Content Addressable

Memory (CAM). When the transaction response will come back, traveling in the

opposite direction, the original, wide AXI ID, will have to accompany this response,

in order to be properly identified by the receiver. A search in the CAM based on

the narrow ID will efficiently retrieve the corresponding wide IP, and it can then

be restored. When there are no pending transaction associated with a narrow ID,

then it need to reenter the ID pool.

However, based on the AXI protocol, many ongoing transactions coming from

the same initiator, will be coupled with the same ID. So, in order to accurately

reestablish a free narrow ID keep, we need to keep track of the pending transaction

count per ID. That is why an associated counter is deployed next to each ID pair,

i.e. next to each CAM entry. Properly increasing/decreasing each counter, based

on the AXI semantics, we can acquire precise knowledge of the ongoing transac-

tions. Lastly, when for some reason, there exist two many ongoing transactions,

and there is no available narrow ID in the pool, a forthcoming transaction will be

stalled by proper AXI signaling, i.e. deactivating the ready signals.

We have up to now mentioned that the convID block is deployed on all the

paths that lead to the network, i.e. leaving the chip boundaries. Likewise, it is

deployed in all the paths that reach the current FPGA and lead to the processing

system (PS) ports, i.e. targeting the local memory. These paths are traversed

when a transaction designated the current FPGA as the final destination, and

requests local data access. These PS ports are by vendor design build with a

specific ID width (this equals to six for the Xilinx’s MPSoC flavor we use). So

these specific convID blocks, are entrusted with the task to narrow all incoming

IDs down to this width, or narrower.

We should bare in mind that deploying a CAM introduces a notable amount

of logic, with some parts of it growing superlinearly. Furthermore, CAM size is

depending on the narrow ID width we choose, as the CAM entries grow quadrat-

ically (entries = width2). In our current prototype, and after investigating on

the usual requirements of hardware accelerators, as well as the usual spawning of
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hardware tasks by software applications, we ended up with a mixed configuration

of convID blocks. Any block uses 18-bit wide (intra-FPGA) AXI IDs, i.e. in the

slave side of the block of Figure 4.26. As for the master side, the convID blocks

attached to memory ports use 4-bit wide (inter-FPGA) IDs. This is chosen as

most usually there is an upper bound on paths that need to simultaneously drive

the same PS port. Moreover, as we have already discussed, various incoming paths

are selectively steered discrete PS ports, and likewise convID blocks. Another im-

portant aspect of the AXI protocol that allows for narrower IDs, is that in most

cases, transaction initiated by the same master, obtain the same ID, which limits

the number of active IDs, pertaining to outstanding transactions in the system.

Lastly, the network attached convID blocks use 5-bit wide (inter-FPGA) IDs, as

we want to allow an increased number of IDs. The paths involving links can act as

intermediate hops inside the system, and may need to concentrate many incoming

paths.

With these enhancements, the local FPGA interconnect remains oblivious of

the chip-boundaries trespassing, and the AXI IDs can be effective, in a transparent

manner, for both intra- and inter-FPGA AXI transactions.

4.2.5.2 Evolution and Complexities of the Internal Translation Scheme

In this section we elaborate on how the translation tables where devised, in order

to offer an easy to deploy, low-latency and low-resource solution. Each ongoing

transaction in the system, targets a Worker’s peripheral or memory. This Worker

in turn is globally designated by both the Node-ID (NID) and Worker-ID (WID),

which concatenated give the Node &Worker ID (NWID) value. We should think of

this NWID value as a number designating a unique FPGA in the system. Based

on the NWID, each transaction has to be navigated either to the proper block

inside the same FPGA, targeting local resources, or towards a remote FPGA. In

the latter case, it has to proceed through one of the FPGA’s outgoing links. The

associated routing has to be based on both the local Worker’s (FPGA’s) NWID,

and the targeted NWID.

Devising a solution for HW-aided, topology aware, Node-ID designation

As a first step in the process, each FPGA has to gain its unique -topology

aware- identifier, the NWID. This process has to be aided by hardware and done

by the OS or any other software, e.g. bare metal, at startup. It is furthermore
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topology aware, in the sense that the underlying hardware components, i.e. the

baseboard, offers NWIDs that are topology dependent. What is more, in order

to support alternative topologies, these baseboard offered NWIDs can be config-

urable by SW running on a platform manager. The given NWID will become part

of the Worker’s translation table, which resides in the reconfigurable logic. We

have considered various ways that allows each FPGA to gain its position on the

system, encompassing awareness on the topology of the interconnection board. In

our implementation, each baseboard is built to drive each FPGA with a number

of bits through specific pins. In the FPGAs we deployed we drive the NWID

through the General Purpose IO (GPIO) pins, or more specifically through the

so called Extended Multiplexed I/O (EMIO) pins. These pins can be configured

to pass through the FPGA’s reconfigurable logic, and through a simple custom

block we built reaches the Processing System’s registers. Running software on the

processor can then use this register to construct the proper translation table, as

will be explained below. Elaborating on the NID bits reaching this register, each

baseboard includes 3 bits to designate IDs from 0 to 7 for the 8 hosted QFDBs.

Then extra bits are needed to designate the baseboard’s number. In our imple-

mentation with two baseboards, one bit suffices, and this gives an aggregate of

31 = 4 bits, sufficient for the NID part of the NWID, i.e. to identify each of the

16 QFDBs. Both the first 3 bits, and the remaining baseboard-specific bits are

created with a mechanism incorporated into the custom baseboard in a way that

can be controlled by both static setup through jumpers, and dynamically through

SW running on a programmable module such as a microZed or a Raspberry Pi.

Composing a proper translation table for the network-FPGA (F1)

This NID needs only enter the network-FPGA of a QFDB, also referred to

as the F1 FPGA. The F1 can initially construct its own Static Translation Table

(STT). It can then also proceed with constructing and remotely configuring the

STTs of the other 3 FPGAs. In this way there is no need for any extra HW

mechanism to inform these other three FPGAs of the NID their QFDB corresponds

to and has acquired. Having constructed the appropriate STT values, the F1

FPGA is able to suitably configure each one remotely, as it is aware of each distinct

link that leads to the corresponding remote FPGAs, i.e. F2, F3 and F4. And each

such link is actually mapped to a corresponding region of the partitioned global

address space (PGAS). Addressing a specific address within this region, ends up
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configuring the proper STT.

Figure 4.27: Static Translation Table (STT) snapshot for the
network FPGA of a QFDB (F1)

As already mentioned, effort was made to construct a translation table that

actually offers the related information in a partially pre-translated manner. This

is crucial in order to simplify the hardware implementation, and as mentioned

to achieve low-latency and minimal resource requirements. A snapshot of such a

tailored STT is given in Figure 4.27. The specific STT presented corresponds to

the F1 FPGA, and we will explain why. In the first column the current FPGA’s

NID is included, i.e. we are in the QFDB numbered 6 (0110). The second column

includes an entry for each of the four possible Worker-IDs, i.e. FPGAs, inside a

QFDB, i.e. from "00" to "11". Then, the third column includes the corresponding

translated address for each of the four possible WIDs. Typically, only the MS

bits need to be included, as low order bits remain untranslated. In this example,

we can see in the first row and in blue color the WID = "00", which means that

the current FPGA is the one numbered "0", i.e. we are in the F1 FPGA. It is

worth reminding here that we need the 6 MS bits to be translated into 4 MS bits,

however in this simple example only 3 resulting MS bits are needed.

Now we can think of a transaction, progressing on its way to the targeted logic,

either memory or peripherals. This transaction carries a target address, designated

by a valid point in the PGAS address space. It will now have to be driven through a

forward address translation block, as the purple blocks of Figure 4.17. Each such

– AXI-compliant – translation results to a new, FPGA-internal, corresponding

target address. Looking to the blue-shaded row of Figure 4.27, the MS bits of

the address corresponding to this row are equal to "0110-00", so it targets QFDB

No.6 and FPGA No.0, i.e. F1. The third column specifies that this needs to be
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internally translated to "000", and this will steer it to the local FPGA peripherals,

as noted in the last column. This is so, as such a transaction would target the local

FPGA. As a next example, looking in the next row, we have the translation for

a transaction that targets "0110-01". This needs to be translated to "001", and

this way it will get routed to the F2 FPGA, through the "N1" network interface.

The same goes for the next two rows of the table. The last row, in red, pertains to

the case that the target address does not have a matching NID. This means that

the target is outside the current Compute Node, i.e. QFDB, and will need to exit

trough the outgoing link. This is achieved by translating the MS bits to "100". As

this is a simple example, in order to incorporate our final topology, more "red" rows

are needed, which steer to the proper outgoing link, depending on the targeted

NID, and such a case will be presented below. Clearly, the addresses designated

by the MS bits of the third column, should be correspondingly incorporated in the

FPGA design, through the proper configuration of the central AXI interconnect

address mapping.

Solving the uniformity issue of the translation scheme across FPGAs

Figure 4.28: The cyclic notion for link selection of the network
interfaces across the FPGAs of a QFDB offers h/w design uniformity

As the translation described above, has to be done for every FPGA of the

QFDB, a problem emerges as with the uniformity of this approach. Unluckily,

each FPGA on the QFDB incorporates a disparate transceiver designation. This

means that a different address mapping has to be used for each of the four FPGAs.



4.2. Worker Architecture: FPGA Design & Addressing Scheme 69

Although this alone can be considered acceptable, it also leads to disparate trans-

lation to each FPGA, which in turn renders a uniformly pre-translated scheme

non-applicable. So effort was devoted to solve this problem in a uniform man-

ner. The proposed solution is to properly designate the links of each of the four

FPGAs, i.e. the names of the 4th column of the STT. The qualified solution was

that of assigning network interfaces, i.e. links, in a cyclic manner, as depicted in

Figure 4.28. This cyclic designation of links, can allow for a uniformly devised

translation mechanism across FPGAs. This also offers the basis for a more con-

densed, pre-translated hardware representation. And in turn this will also lead to

less complicated logic for the hardware translation. This can be easier to com-

prehend by describing a second STT which is constructed under this approach,

e.g. that of the second FPGA of a QFDB (F2). Such an STT is presented in

Figure 4.29.

Figure 4.29: Static Translation Table (STT) snapshot of QFDB’s
FPGA 2 (F2). Comprises a pre-translated address notion, entailing

the implemented topology

During the explanation of the devised translation scheme, it is helpful to have

in mind both Figures 4.28 and 4.29. Looking at 4.29 we see a translation table

similar to that of Figure 4.27. However, looking in more detail, we have now

rearranged the table lines for each of the four WID column. This is done based

on the proper permutation that leads to an identical 3rd column for all STTs of

the four FPGAs. The "01" FPGA now appears first, as this is the address that

should end up in the local resources, and can be seen highlighted in blue. Then

the "10", i.e. the FPGA-3 is internally mapped to the subsequent address space

"001", FPGA-4 to "010" and the network FPGA-1 to "011". This is actually a

"rotated" representation of that in Figure 4.27, and adheres to what is dictated

by the scheme of Figure 4.28. Additionally, any transaction that targets another
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QFDB, again in the last row and shaded in red, now has to depart through the

F1 FPGA. So any such address is now translated to "011", corresponding to the

F1 FPGA as seen in the previous row of the table.

The proper permutation for the rows of all STTs can be extracted, as noted,

based on Figure 4.28: each FPGA lists the three deployed link interfaces named

N1, N2 and N3, but each of those has a different meaning in each FPGA, assigned

in a cyclic manner. Thus for example N1 for F3 designates the link to F1, while

N1 for F4 designates the link to F3. For all FPGAs however, we can think of

N1 leading to the counterclockwise placed FPGA, N2 to the diagonally opposite

FPGA, and N3 to the clockwise placed one. For purposes of better understanding,

and as a complete reference we also include the STTs of F3 and F4 in 4.30

(a) STT for F3 (b) STT for F4

Figure 4.30: Static Translation Table (STT) snapshots of QFDB’s
FPGA F3 and F4

In this way, the correspondingly permuted 2nd column, embodies all the needed

topology designation. What is interesting, is that now we can omit the 3rd col-

umn in the HW translation table. By just including only what resides inside the

red-outlined square, we give sufficient, pre-translated information for the actual

translation to take place. For example, in any of the STTs, if the WID of an ad-

dress matches the 1st row it always gets translated to "000", for the 2nd it translates

to "001", and so on.

Incorporating the complete implemented topology in the translation table of each

network FPGA

With the scheme we presented above, each FPGA can have a pre-translated

STT, programmable by SW and allowing for an all-to-all interconnection inside

the QFDB, thus utilizing the maximum underlying hardware connectivity of the

Compute Node. Taking the next step with connectivity, the translation of the

Network FPGA itself has to be enhanced, as we already mentioned, in order to
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include all the available routes of our implemented final topology. Since more

outgoing paths have to be incorporated in the translated address, the enhanced

scheme now needs to include 4 MS bits for this resulting address. Looking in

Figure 4.31, the six NWID bits get translated to the four bits of the 3rd column.

In blue shade, we see again the target address pertaining to the local FPGA. The

designation of these four bits allows for the translated bits to get constructed by

just concatenating "01" to the original address’ WID, thus requiring no logic to

compute. To achieve this, we had to encompass the proper AXI configuration

and address mapping inside the FPGA, as was the case with the simplified F1

translation table we have seen before.

Figure 4.31: The enhanced Static Translation Table (STT) for the
network FPGA of a QFDB (F1), including the entire implemented

topology

The remaining rows, which correspond to different outgoing paths and depend

on topology, had to be constructed in a similarly efficient, easy to materialize in

hardware, manner. Remember that each baseboard offers an all-to-all connectivity

among the four QFDBs of each of the two quads, with such a quad presented before

in Figure 4.6. Then these two quads get interconnected, edge to edge, resulting

to the enriched cube connectivity we have seen in Figure 4.8. Furthermore, as we

devised the baseboard through a co-design process, we have chosen to designate
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the appropriate transceivers to the appropriate QFDB positions in a advantageous

manner. This is deployed in the hardware connections of the baseboard, and

greatly simplifies the overlying translation hardware introduced in the QFDBs.

Elaborating on this, and as briefly noted in the 4th column of Figure 4.31 labeled

’Destination’, all the QFDBs of a quad have the same transceiver leading to the

same FPGA. This means that e.g. "transceiver-1" leads to QFDB-1, "transceiver-

2" leads to QFDB-2 and so on, and this stands for all four QFDBs. Additionally,

each FPGA, e.g. FPGA-2, deploys the transceiver with the same number, i.e.

"transceiver-2", to lead to the corresponding QFDB of the opposite quad.

Under this solution, the composition of the STT corresponding to the trans-

lation mechanism for the network FPGA can be accomplished in a more simple

way. The second quad of rows for Figure 4.31 are in effect when the target Node

is in the same baseboard. This is so if the MS bit of the local NID matches that

of the target address. In a larger prototype, e.g. deploying more baseboards, the

NID would grow proportionally, and accordingly more MS bits would be used.

The translated address, aided by the interconnection co-design explained above, is

composed by concatenating MS bits "10" to the two LS bits of the targeted Node,

i.e. the 2 LS bits of the NID. As mentioned, the NID for this rows gives a match

to the same baseboard, and thus this addressing need to just steer to the proper

QFDB of the quad, or just change quad.

Finally, the last four rows are used when a different baseboard is targeted. In

this case we concatenate "11" to the 2 LS bits of NID. In our prototype only the

first of these last rows is valid, leading to the topology of Figure 4.9. This is why

the next rows are marked as Reserved for Future Use (RFU). If we deployed a

bigger prototype, the second of these rows could be used to serve a topology as

this of Figure 4.10. Furthermore, using the high-speed multiplexers residing in

the baseboard as mentioned in section 4.1.4, thus designating more baseboard-

outgoing links, fancier topologies could be implemented, e.g. realizing a 2-D torus

of Cubes using the up, down, left and right address translations, as indicated in

the last two rows of the table.

Importantly, the aforementioned straightforward composition leads to a corre-

spondingly low-resource and low-latency hardware translation mechanism. As a

matter of fact, we were able to include all the intervening translation blocks with-

out any registered logic, thus not adding any clock cycles to the datapaths they
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interpose. We furthermore thoroughly measured the clock rates achievable with

and without the UNILOGIC translation blocks and we observed no change to the

critical paths. In that manner, we can in a sense consider the resulting scheme as

a zero latency translation.

Optimizing throughput to memory by deploying four parallel, globally accessible

Processing-System ports

As we moved on with our investigation on the efficiency of the UNILOGIC

approach, a subsequent issue emerged that had to do with memory bandwidth.

Although seemingly unrelated with the AXI interconnect, the solution is closely

related to the AXI addressing. The problem we had to solve is as follows. The

DDR memory, paired with each MPSoC of the QFDB, deploys a 64-bit wide data

bus. We have managed to clock this interface at 2133 MHz DDR frequency (i.e.

with a 1066.66 MHz clock). At this clock rate, the DDR memory should be able

to provide an ideal peak throughput of about 2133×64 ' 136 Gbits per second, or

equally about 17 GBytes per second. However, the circuitry inside the Processing

System (PS) of the MPSoC, within which the DDR controller is included, allowed

us to measure a peak throughput close to 9 GBytes per second, or in the best case

10 GBytes per second. This result is indeed in par with the maximum achievable

throughput reported by most recent publications such as [76], while it is highly

improved compared to the other evaluation results reported such as [8], which

does not incorporate burst transactions. In order to reach this peak measured

throughput, we had to deploy four slave ports of the PS, all running in parallel

and accessing the DDR. The PS offers 6 such ports in total, however not all are

internally independent (i.e. two pairs go though the same multiplexers). We

have performed various low lever benchmarks in order to properly decide which

configuration produces the optimal results. Based on this, and on our targeted

FPGA architecture, we ended up with selecting 4 of these ports, which give the

most efficient, combined configuration.

The challenge we had to confront next was to encompass these four ports to our

design. When we want to run accelerators only locally, i.e. allow them to access

only local memory, then each of these accelerators can get hooked to each of the

four PS ports. We have gone even further on such explorations during our research,

by even adding up to 12 accelerators, organized in six pairs and with each pair

sharing one of the total 6 PS ports. However, when we opt to allow accelerators
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Figure 4.32: A simplified portion of the FPGA block diagram,
highlighting that in order to have a global all to all resource access,
accelerators just as any other peripheral, have to pass through the
central AXI interconnect. Thus the get restricted to a single point

of entry towards the memory

to access any memory in the system, or symmetrically allow the memory ports to

be accessible by any entity in the system, the AXI interconnect has to intervene

between the PS and the entity, i.e. processors, accelerators, network ports etc.

This was seen in Figure 4.17, but can be better understood through the highly

simplified view of the block diagram in Figure 4.32, showing only the accelerators,

that now along with any other peripheral have to traverse the common central

AXI interconnect. In this case, the AXI is not capable to include multiple distinct

PS ports to its address map. This is so, as all the available master PS ports map

to the same regions, including the actual memory addresses, as was presented in

Figure 4.22. So the AXI interconnect has no way to differentiate memory accesses

targeting a specific memory portion, has no justification to select among various

peripherals with the same mapping, and thus reasonably disallows multiple PS

ports to get connected. Under this restriction, a single path to the memory has

a limited throughput: the maximum allowed datapath width of each PS port is

128 bits, and e.g. at a 200 MHz clocked design would reach a peak throughput

of 200 × 128 = 25.6 Gbits per second, or equally about 3.2 GBytes per second.

As understood, this causes a hard bottleneck, that would greatly impoverish our

implementation.

What we propose and implemented to resolve this restriction, is adding a cus-

tom built address dispersal block between the forward translation blocks and the
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Figure 4.33: A detailed portion of the abstract FPGA block di-
agram, showing the deployment of four slave PS ports in parallel,
as well as both master ports, and the necessary augmented Address

Translation blocks

AXI interconnect. This address dispersal block, alters any transaction that targets

memory. What it does is to translate each memory address into one of 4 possible

discrete regions, of the same size as the actual memory. This way, as the altered

transaction enters the AXI interconnect, it now targets one of four corresponding

discrete blocks. These blocks are custom built and are AXI compliant in order to

be address mapped. Each such block is in turn assigned with the task to reverse

translate transaction addresses, from discrete regions into the region that maps to

the original memory addresses. They are mapped as slaves to the AXI intercon-

nect, at each of the different address regions than that of the memory, and of the

same size. Then each such block is hooked as a master to each of the PS ports,

and has to transpose each access into the actual memory region. This memory

region pertains to the lower 16 GB of the 32 GB region assigned per Worker.

In our final implemented version we moved on with integrating this block with

the overall translation scheme, with a detailed portion of the block diagram pre-

sented in Figure 4.33. This Figure actually corresponds to an expanded repre-

sentation of the upper left part of Figure 4.17. The augmented translation block

depicted, constitutes a specialization of the generic translation blocks we have re-

ferred to before, and is deployed solely at the paths that are allows to route to the

memory. The purpose of this integration with the translation block, is to allow for

better optimizations inside the mixed block logic. This way we were able to still

devise a resulting hardware translation mechanism that essentially introduces no
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added latency.

Now as seen at the leftmost part of Figure 4.33, any number of entities that

want to access the local memory, will have to pass through the augmented address

translation. Then, any of the access that targets memory will exit the translation

block with an new target address, and will enter the AXI interconnect. The

memory address dispersal blocks are abstractly represented by a circle in the entry

point of each incoming path to the translation. Then, exiting the AXI interconnect,

any memory transaction will have been routed to one of the four blocks leading

to the PS ports. Any other access that does not target memory, will exit the

AXI from different ports, not shown in this explanatory view. These blocks will

reverse translate the address to the original memory address, thus designated by

"R" inside the block, and will thus properly deliver the transaction to the DDR

memory controller.

As for the "Low16" designation in this block, we should have in mind that

the lower 16 GB of the address space do not actually comply with the Xilinx’s

MPSoC architecture. Adversely, this is split in two regions of 2 GB and 14 GB,

and so the "Low16" logic has to properly restructure the address, as was presented

in section 4.2.4. To better allow logic optimizations, we once again merged the

two address handling blocks, so now the "Low16" part is also annotated with the

"R" part of the reverse translation, i.e. the capability to transpose any of the

four equal –dispersed– address ranges, back to the originally targeted 16 GB of

DDR memory. It is important to also note that possible entities initiating memory

targeting transactions include a local processor or a local accelerator and also a

network interface that likewise delivers a transaction equally initiated by a remote

processor or accelerator. So before entering a PS port, the ’AXI-ID-conversion’

function need to also take effect, so a "conv-ID" block as presented in section 4.2.5.1

need to also intervene in this path to memory, not depicted here for simplification.

An important last step to be explained, is how to advantageously take care

of the assignment of memory accessing paths to PS ports, i.e. to on of the four

address dispersal blocks. As explained, each one has a distinct address mapping.

We have to originally alter the memory targeted transactions of each incoming

path to one of those regions. As a first distribution, we have chosen 1) to appoint

one such block per local accelerator block. This way, when all four accelerators

run in parallel, they will gain maximum memory throughput. This is important
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as such a case of stressing local accelerator is expected to be an often one. Then,

as transactions come from the network interfaces, we have appointed, each such

interface to one of the four blocks. However, instead of simply performing the

assignment in an oblivious cyclic fashion, we have rather chosen to separately

assign network interfaces that are expected to operate simultaneously, and thus

produce concurrent accesses to memory. So 2) FPGAs of the same QFDB, which

are regarded as first class neighbors, are assigned to different blocks. Usual multi-

accelerator scenarios are expected to mostly deploy the intra-QFDB neighboring

Workers, i.e. FPGAs, and make use of a data sets residing in either a single DDR

module, or other modules of the local QFDB. Similarly, on the opposite scale, we

3) assigned interfaces that lead to large subsets of nodes in disjoint PS ports. This

separation was performed with the implemented topology in mind, and with the

routing priority implemented, and will be explained below.

We have also formulated a further step, with designing and implementing a

version of the dispersal blocks, that alternates the PS port assignment in a round

robin fashion. That is, as a series of transactions enter the FPGA, each one is

cyclically assigned to a different block. This would offer the maximum versatility.

Each path can dynamically associate to different ports, resulting to the aggregate

traffic of all incoming paths spread equally among the memory-targeting ports.

This would still stand, no matter which or how many of these paths are injecting

the heaviest traffic. Unfortunately, this cannot comply with the AXI protocol, as

AXI does not support out of order completion of transactions. And in a large scale

system, dispersing a series of transactions to different targets, would lead to out

of order responses, which cannot be carried out by the AXI protocol and likewise

by the central AXI interconnect.

Finally, in this detailed portion of the block diagram, surrounding the Process-

ing System, we have also included the two master ports, already mentioned firstly

in section 4.2.1. As discussed, the main master ports are used to globally access

memory and peripherals, e.g. accelerator controllers, respectively. The memory

appointed block bears the task to implement the two-stages addressing for global

memory. The peripheral appointed block has to properly process a corresponding,

SW-originating, global peripheral address. Both mechanisms were described in

section 4.2.4 and manage to compile narrower addresses generated in the PS, into

UNILOGIC-compliant, wider global addresses.
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Figure 4.34: The network FPGA STT, annotated with proper
translation for allowing multiple ports to memory

Incorporating this final annotation of the UNILOGIC implementation for mul-

tiple memory ports, adds to the internal address representation, i.e. the Static

Translation Table, and brings it to the final form, now presented in Figure 4.34.

Once again, the blue shaded part corresponds to local accesses, which however has

grown lengthier. It now incorporates four identical regions for the local memory.

Targeting each of this regions, will actually lead to one of the four PS ports as

discussed. The proper forward translating logic is configured statically, as also

discussed, in order to steer transactions coming from each of the possible paths,

on to the proper port. Then, once reaching just before this port, the proper logic

will again reverse translate the addresses to the originally targeted memory region,

actually residing in the lower section, i.e. the first blue shaded row of the STT.

Again we aimed to allow for the translated MS bits to be composed through the

simplest possible circuitry, supported in parallel by properly configuring the AXI

interconnect address mapping.
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The final internal central-AXI address mapping for the Network FPGAs

For a better insight and as a thorough reference, we present at this point the

resulting central-AXI address mapping for the network Worker of each compute

Node, i.e. the F1 FPGA of each QFDB. This address mapping, as presented in

Figure 4.35, was realized in a side to side co-design process with all the incorpo-

rated optimizations and hardware simplification methods already described above.

This results in a tailor made intra-FPGA, AXI-compliant address mapping, that

perfectly suits the progressive, forward-backward address translation scheme. The

internal representation, as described, includes 39 bits for our implementation, and

can be easily configured to support implementations of highly increased size.

Figure 4.35: The network FPGA address mapping for the central
AXI interconnect, based on the HW simplification objective
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Each Worker, i.e. FPGA, as mentioned above exposes 32 GB of address space

to the system’s PGAS. 16 GB for a full access to the existing DDR memory, and

then extra address space for the peripherals, complemented by "RFU" padding

to properly align at 32 GB boundaries. The local memory region can be seen

in the first row of Figure 4.35, mapped to the lower 16 GB and shaded in grey.

Then, in the green shaded rows, we can see the main peripherals targeted, i.e.

the schedulers and mailboxes. Each scheduler-mailbox pair actually constitutes

an accelerator controller. Four such pairs are shown here, while depending on

implementation, this can be tuned to include more or less such controllers. Proper

padding follows this region, and aligns it to 32 GB, as seen in the bottom green-

shaded row and clarified by the rightmost column. A useful detail to notice, is that

the "0x04..." addresses of the peripheral mapping, assign the 35th address bit to 1,

therefore designating a peripheral, as dictated by the addressing scheme presented

in Table 4.1. Conveniently, the lower 35 address bits remain untranslated, and get

concatenated with the forward-translated 4 bits, to form the 39 bit address. After

properly routed inside the AXI interconnect, a transaction will undergo backwards

address translation which will restore the original 6 MS address bits, and will then

be forwarded on to the next destination in its path.

The following rows in Figure 4.35, shaded in grey, include three "mirror" copies

of the 16 GB DDR memory address map. As explained, each one will lead to a

different port of the PL-to-PS interface, and then on to the DDR controller, in

order to avoid single port congestion. This way, following the path of a transaction,

any master-sided module that wants to access memory is configured to target one

of these regions. Custom hardware just before each PS port will reversely translate

any such region to the only existing one, that recorded in the first row.

Moving on with the address mapping table, next come the yellow shaded rows,

which designate all the outgoing paths, i.e. the paths that lead outside the chip

through the network interfaces. These pertain to the links that are driven by

the Xilinx’s GTH multi-gigabit transceivers. As the translation happen partly

in any of the network FPGAs traversed, it can be as distributed, and takes place

progressively. Due to this progressive address translation, all address regions of the

complete platform need not appear in this mapping. Only the next hop, i.e. next

node, needs to appear, and this aspect greatly enhances scalability. Elaborating on

this, and as clarified in the rightmost column, the first 3 yellow rows designate the
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network interfaces to each of the other three FPGA residing in the same Compute

Node, i.e. QFDB. Then, having in mind the enriched cube topology offered to

the hosted QFDBs by the baseboard, the next four rows give the mapping for

addresses targeting the same baseboard. Each QFDB is a vertex in one of the two

QFDB quads, or likewise to the QFDB cube. Proper hardware link assignment

allows to target any vertex in a uniform way from any other vertex. One region is

assigned for each vertex, while targeting the "identity vertex" will lead to the same

vertex of the opposite quad. In other words, in the QFDB-1 of a quad, the first

of these four regions leads to the opposite quad’s QFDB-5, as designated in the

table. Likewise, in QFDB-2 of a quad, the second of these four regions leads to the

opposite quad’s QFDB-6, etc. This designation comes naturally due to the devised

scheme, and does not require any specific configuration for discrete QFDBs.

Subsequently, as designated in the last row, if the address matches none of the

local baseboard’s eight vertices, i.e. QFDBs, the transaction has to be routed on to

the next baseboard. In our implementation, only one such other baseboard exists,

however more baseboards can be added, connected either in a ring topology, or even

realizing more dense topologies such as 2D-tori. Since the baseboard-outgoing link

leads to an SFP+ connector, depending on how the cables are connected, we can

reach a different vertex of the opposite cube, i.e. the one on the opposite baseboard.

We tried various connections to verify our architecture and implementation, while

in most of the evaluated cases we used the most inherent one, that is connecting

a vertex to the same vertex of the opposite cube.

A interesting matter to describe at this point, is that when a transaction has

to be routed to a distant QFDB, a lot of different paths exist. Depending on the

precedence designated by the translation blocks, a transaction can be maneuvered

to follow any of the –mainly– shortest paths to the destination. For example, in

our tests we usually configure the translation blocks to firstly direct for a base-

board crossing, i.e. change cube, then quad crossing, i.e. change quad inside a

cube, and then QFDB, i.e. one of four inside the quad. This method can also

intrinsically incorporate a method to split traffic, as we can differentiate the path

between two nodes designated as an initiator and a target. This happens as one

path can be followed for the request, and a different –symmetrical– one for the

response. A request that leaves the initiator travels on to the next cube, then

quad, then QFDB, while the responds travels the opposite way back. However



82 Chapter 4. UNILOGIC System Implementation

if this target needs to act as a initiator, e.g. serving a different application, and

issue a transaction to the other node, then it would follow a different route, as

it would symmetrically first change cube etc. It would actually reach the other

node through a path that conceivably creates a circle when coupled with the pre-

viously followed path. Nonetheless, as the address translation blocks are designed

to be easily configurable, proper configuration can conveniently alter this steering

precedence. It can be done both statically or even at runtime, provided the process

followed does not violate the AXI protocol specifications.

Finally it should also be mentioned that the F2, F3, and F4 routing, i.e. the

routing for the other three FPGAs of each QFDB, remains simplified. So the

translation tables, address translation blocks and corresponding address mappings

remain much more simple, and actually pertain to what was presented through our

initial analysis of the STTs in the beginning of this section and around Figures 4.29

and 4.30. This is so, as in all cases when inside these FPGAs, an originating

transaction that has to leave the current QFDB, only needs to be routed to the

Network (F1) FPGA. This Network FPGA will then be responsible for properly

routing the transaction to its actual destination.

4.2.5.3 Exploration on reducing AXI interconnect resources

As has been already described, the UNILOGIC architecture needs to be composed

of two main logic segments: the static part implementing the interconnection,

routing, partial reconfiguration support, as well as the accelerator controllers, and

the dynamic part, incorporating the accelerators, either configured on power up,

or by allowing large placeholders, i.e. partial reconfiguration slots, that can be

dynamically reconfigured at run time. Thus, a main objective while implementing

the UNILOGIC architecture, and to better prove that it constitutes an effective

approach, is to take care in order to consume as less FPGA resources for the

static part as possible. This way, the hardware logic can spare the highest possible

percentage of FPGA estate for the accelerators themselves. In this section we will

explain our efforts and the methods followed and evaluated to economize resources

spent for the central AXI interconnect. This logic block accounts for a large

amount of the static part, so it constitutes a main target in order to achieve logic

reduction. As for the rest of the static part, we have already mentioned various

techniques that were incorporated, through which we also economized that portion
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of the logic as well. Then, in a following, summarising section we will also present

a brief recap of the main resulting resource overheads for all four FPGAs of the

QFDB.

Table 4.4: F2, F3 & F4 FPGA resources consumed for various
AXI interconnect approaches

Strategy (Full topology, 4 slots) Total Static Central AXI

full topology, 4 slots (default) 15.27% 7.87%
default with 2-Level AXI 8.30% 2.40%
2-Level AXI with Regs 8.70% 2.80%
2-Level AXI with Regs, reconf, Synth:PerfOpt 10.86% 3.46%
2-Level AXI with Regs, reconf, Synth:Default 9.43% 2.78%
full topology, 4 slots, Regs, 4 PS-ports 21.14% 11.91%
2-Level AXI with Regs, reconf, Synth:Default, 4
PS-ports

12.05% 4.62%

We will start initially with the UNILOGIC implementation of the three FPGAs

excluding the network one, i.e. the F2, F3 and F4, which have an almost iden-

tical design. A resume of the main approaches and optimization strategies we

followed will be explained through Table 4.4. Many other variations have been

implemented and evaluated, however not presenting any significant, additional in-

formation at this level of analysis. At first we can see the result for a full topology

for these FPGAs, i.e. giving an all to all connectivity among the four QFDB’s

FPGA. In parallel the design allows allowing global access to and from any of

four accelerator slots. This results in an AXI interconnect that spends about 8%

of FPGA resources, with the aggregate static design consuming about 15%. The

critical FPGA resource mostly spent in all these cases is Look Up Tables (LUTs),

so all the percentages reported pertain to LUTs. Furthermore, all the important

resources will also be later presented in brief.

The first and most important improvement we deployed, was splitting the cen-

tral AXI interconnect into a hierarchical AXI interconnect approach. An insight

on this can be provided though Figure 4.36, which presents a snapshot for a split-

AXI strategy. Importantly, this was similarly implemented on all four FPGAs of

the QFDB. Splitting the AXI into a hierarchical interconnect greatly reduces the

size of the main crossbar, which in both cases resides in the Level-1 interconnect.

Prior to splitting, the central crossbar becomes very large, and consequently less
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efficient it terms of clock speed. By splitting the central AXI, one has to be cau-

tious, as to properly arrange and configure the L2 interconnects. For instance,

in Figure 4.36 the accelerator controllers, i.e. mailboxes and virtualization sched-

ulers, are grouped together, driven by a single master port of L1 AXI, as these

receive only configurations commands and do not produce a lot of traffic. On the

contrary, the four masters driving the four lines in the center, correspond to the

four memory ports, and should thus remain autonomous. Subsequently, referring

to the interconnect driving to the network interfaces, a single AXI is presented in

this example, however it usually gets split into two or more smaller interconnects.

This optimization, as seen in the 2nd row of Table 4.4 greatly reduces the resources

spent, which now drop to a mere 2.4% for the hierarchical AXI interconnect, and

8.3% in total.

Figure 4.36: The hierarchical central AXI interconnect, greatly
reducing FPGA resource requirements

Moving on based on this design, we added registers at the input and output

ports of the AXI interconnects, which greatly improves timing closure, i.e. helps

reach a higher targeted clock rate. In parallel we reverted to the "unmanaged"

AXI configuration, which allows the designer to manually raise the supported
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outstanding transactions. However, both these optimization were not applied in a

blindfolded fashion. As the AXI is now split in two levels, we are able to deploy tai-

lored optimization per AXI port and related path. Particularly, we can add registers

only to the input and output ports that actually engage in critical paths, thus

avoiding unneeded overhead. Also, with the crossbars now being smaller, timing

closure is further eased. Furthermore, continuing our investigation on selective

AXI configuration within the hierarchical approach, we see that a high number

of outstanding requests is not needed for all paths. We can economize on the

configuration related ports, as the ones driving the accelerator controllers, or even

the network interfacing C2C modules, while we can opt for the maximum AXI

allowance on the memory related ones. We could even select some of the AXI

blocks in the hierarchy to remain managed, i.e. their default initial state, as for

example in the case of the AXI 2nd-level block leading to the accelerator controllers.

This is so in the example of Figure 4.36, with the block on the top right that

drives the accelerator controllers configured in its default state, and shaded for

that purpose in lighter blue. Under this approach, i.e. adding the selectively

registered AXI together with fine-tuned multiple outstanding support, only raises

consumed resources by 0.4%, as seen in the 3rd row of Table 4.4.

Then we moved on to adding logic that fully supports the partial reconfigura-

tion process for the accelerator slots deployed. This includes additions such as a

configurable clock wizard in order to allow for separate clocks between the recon-

figuration slots and the static logic. Also the Xilinx’s hardware Internal Configu-

ration Access Port (ICAP) block, which allows for partial bitstreams to be driven

to reconfiguration slots. Importantly, deploying this block within the UNILOGIC

architecture, and driven through the AXI interconnect, allows us to perform both

local and remote partial reconfiguration. Furthermore, required reconfiguration

logic decouplers were added per slot. These additions increase the static logic, and

slightly the AXI interconnect itself due to the addition of the ICAP controller as

a slave. In the first stages that we incorporated reconfiguration, we had tested

various alternatives to the Synthesis strategy. Up to now, as the FPGA utilization,

including the accelerators was not that high, we used the Vivado tool’s "Perfor-

mance Optimization" directive in the Synthesis flow. Under this strategy, the

resulting static resources get raised to 10.86% and 3.46% for the total static and

the AXI respectively, as seen in the 4th row of Table 4.4. This is so as the tool flow
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increases logic in favor of timing closure. However, with all our aforementioned

optimizations deployed, timing closure gets greatly aided, and we could now opt

for less stressing Synthesis directives. Even with the "Default" directive and as

the tool does not struggle to achieve timing, no extra optimization-related logic

gets introduced, and the logic percentages now fall to 9.43% and 2.78% as seen in

the 5th row of Table 4.4.

Finally on the last row, we can see the resources required for one of our lat-

est and "qualified" approaches, i.e. an approach that was deployed in our final

prototype. Using the adequate "Default" Synthesis directive, we could now even

add all four independent paths to the DDR memory. Adding these paths does not

hinder timing closure. It increases the size of the level-1 AXI, but still remains

within a modest overhead range, while offering the desired efficiency. The total

static logic overhead now reaches at about 12% of the FPGA, with the hierar-

chical AXI contributing 4.62%. On second to last row, we report on a version

that gives a metric of how large the static resources can grow in the absence of

the examined alternative schemes. We have included four PS port support for

memory access, which enlarges the AXI internal crossbar, and also added input

and output registers to easier achieve timing closure, along with the support for

multiple outstanding transactions. Deploying none of the specially examined op-

timizations, the AXI alone grows to about 12% of FPGA resources, with the total

static overhead reaching about 21%. What is more, in this configuration the tool

fails to achieve timing closure for the requested 200 MHz clock frequency.

Moving on to the Network FPGA (F1), we have also investigated on various

schemes as can be seen through Table 4.5. In F1 the AXI crossbar becomes much

larger, as it gathers more network interfaces to interconnect. These are needed in

order to support the required outgoing links, and consequently the implemented

topology. One added optimization we incorporated on all the FPGA designs, but

becomes mostly important to the F1 FPGA, is to selectively map AXI slaves to

AXI masters, thus avoiding a full-scale internal all to all interconnect. This helps

the AXI interconnect become simpler, and thus economize on resources. What

one has to do is to map to each master only the peripherals that actually need

to be accessed, based on the UNILOGIC architecture’s signification. For example

an accelerator need not have access to the accelerator controllers, as it can only

request for memory accesses, and need not encompass the ability to configure
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Table 4.5: Network FPGA (F1) resources consumed for various
AXI interconnect approaches

Strategy Total Static Central AXI

2xQFDB topology, 4 slots 22.03% 11.30%
full topology, 2 slots 25.52% 12.55%
full topology, 3 slots 29.32% 15.85%
full topology, 4 slots 34.15% 19.07%
full topology, 4 slots, 4 PS-ports 44.05% 27.85%
full topology, 4 slots, 4 PS-ports, 2-Level AXI
(1xL1 + 3xL2) 21.92% 6.41%
full topology, 4 slots, 4 PS-ports, 2-Level AXI
(1xL1 + 2xL2) 27.62% 11.50%
topology, 3 slots, 4 PS-ports, 2-Level AXI
(1xL1 + 2xL2) 23.13% 8.45%

peripherals.

Under this optimization, and along with all the suited ones from those discussed

before, we can see the resulting resource overheads in Table 4.5. For a simple 2-

QFDB topology, i.e. only one added network interface that leaves the F1, as we

see in the first row we get to spent 22% and 11.3% of resources for total static

and AXI interconnect respectively. If we move on with the complete topology,

incorporating all required network interfaces, we reach up to a total of 34% while

still supporting four accelerator slots, as seen in the 4th row. However we we can

economize on resources if we opt for less accelerator slots in this FPGA, which

reduces otal overhead to 29% for three slots (3rd row), and about 25% for two

slots (2nd row). If we opt to support four accelerator slots and in the same time

encompass four parallel PS ports to access memory, we end up with an inordinate

44% of logic overhead for the static part (5th row), owed mostly to the pricey AXI

interconnect, now greatly enlarged and consuming 28% of resources.

Deploying the hierarchical AXI interconnect approach described before, we can

greatly economize on resources, as seen in the following rows of Table 4.5. As the

targeted AXI interconnect becomes larger, which is the case for F1, this technique

becomes even more effective. In the sixth row we can see how static resource

overhead significantly drops when 2-Level AXI is incorporated, with this design

incorporating in parallel all the configuration optimizations described in detail

above. The total static resources now constitute just about 22%, while the AXI
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itself accounts for about 6.4%.

It is important to mention here that as noted in this row in parentheses, this

is achieved with 3 blocks at the L2 AXI. Actually, in such more enlarged and

complicated interconnects, it is justified to further investigate on the level or paral-

lelism offered in the Level-2 AXI interconnect, leading to available alternatives that

can evenly be supported in an effective manner. The selection of the alternatives

to be implemented can be carried out depending on the usual scenarios expected to

be operated on the platform. Looking back in Figure 4.36, the 6th row of Table 4.5

pertains to a case that excludes the 4 memory-related paths in the middle. Instead,

only one such path exit the L1 AXI, and it then enters an additional third L2 block,

that would span it into the four required paths. However this could prove efficiently

useful only in the cases that the accesses through this single path are not expected

to concurrently require high memory throughput.

As this is not the case for our specific accelerator scenarios that seek for the

highest memory performance available, we move on to another approach, reported

in the next (7th) row. This approach again allows for the four parallel paths to

memory. Static overhead now reaches 27.6% and 11.5% for total logic and AXI

interconnect respectively. This constitutes a reasonable implementation alterna-

tive, which we deployed in many of our tests. However, our architecture needs to

support reconfiguration slots, and in such a case uniformity of the slots becomes of

high importance. We thus opted for a less congested static design, which includes

three accelerator slots along with three accelerator controllers. These accelerator

slots can be of the exact same size as the slots in the other three FPGAs. This

reduced inclusion of modules results in a design that requires about 23% for the

total static logic, with the hierarchical AXI interconnect contributing 8.45%.

4.2.6 Introducing AXI Address Mapping to the multi-gigabit

Link Interfaces: The Chip-to-chip module

Looking back to Figure 4.17, on the right side we can see the chip-to-chip (C2C)

IP logic blocks, depicted in yellow. Such a C2C block is separately depicted in

Figure 4.37. It incorporates a multi-gigabit transceiver, offered along with the

FPGA fabric. Through this transceiver, a serial link to the outside world, i.e.

crossing the FPGA boundaries, is offered, so we can also consider these blocks
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Figure 4.37: The Chip-to-chip (C2C) logic block, enabling uni-
form access to remote FPGAs, by offering an AXI address mapped

interface to the mutli-gigabit transceivers

as the interfaces to the network. Briefly elaborating on the transceivers, FPGA

vendors introduce custom, hardware interconnection primitives, that can achieve

highly efficient, serial communication. Proper serialization/deserialization (serdes)

is performed. The Xilinx devices we currently deploy, include the so called GTH

transceivers, able to reach up to 16.3 Gbps, while being able to achieve low latency.

The C2C is responsible for adapting the intra-FPGA AXI interconnection protocol

into the protocol used by the transceivers, in order to offer off-chip communication.

In other words it converts a parallel, address-mapped AXI transaction, to a serial

one that matches the transceiver’s serial communication protocol and vice-versa.

Through the C2C module, the serial links (GTH transceivers) of an FPGA,

get presented to the rest of the FPGA components, as a usual address mapped

peripheral. So a processor, as well as any FPGA component, e.g. the hardware

accelerators, can initiate read/write transactions that address C2C modules. Thus,

through these modules, they can indirectly access a remote Worker node, i.e. a

remote FPGA, efficiently and in a transparent manner, passing through the serial

GTH transceivers. Hence, components of each Worker are able to communicate

seamlessly, no matter if logic resides on the same or discrete FPGA device. They

can indeed operate just as if they constituted a single, vast Worker.

Multiple C2C blocks within a single FPGA can have distinct AXI address map-

pings. As each C2C orchestrates a dedicated GTH transceiver, and a transceiver

drives a serial link, each such link can then be connected to different remote

FPGAs. This way we have the ability to realize a topology of Workers. As
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mentioned above, in the example of Figure 4.17, only four C2C blocks are de-

picted for simplicity. Such a number of network interfaces, could correspond to

a miniature topology. For example, it could designate three of the corresponding

connections to each of the QFDB’s three remaining FPGAs, and a fourth one to

a remote board. So it would just support a double-QFDB interconnection, i.e. a

double-QFDB prototype. More C2C blocks should be deployed to support more

complex topologies of QFDBs. This is realized in our actual prototype, however

not displayed here for clarity. Each FPGA device of the ones we deploy includes

16 GTH transceivers, and the Network FPGA is the one that interfaces the QFDB

to the rest of the world. We can thus deploy all of the transceivers at this point,

in order to achieve favorable topologies.

4.2.6.1 Details on the Exploration for Effectively Encompassing

Transceivers Through the C2C Modules

The Aurora IP updates and wrapper code enhancements

The C2C block fully supports the latest AXI4 protocol. It supports bursts,

and multiple pending requests, while it supports configurable Address and Data

widths, as well as configurable number AXI ID and user defined bits to be send

along with the data. Internally, it interfaces to the transceivers by either encom-

passing the Aurora protocol, or using a novel, very low-latency, custom transceiver

communication module which enhances efficiency as discussed in the optimization

related section 5.2. The initial C2C we deployed, uses the Aurora protocol, which

is deployed in the design through an IP provided by Xilinx. However, as the Aurora

based C2C was much earlier built, for designs supporting the UNIMEM architec-

ture, an update of the Aurora IP was needed in order to be used under later tool

versions. As the updated Aurora protocol included a partially diverse interface,

changes as well as testing and verification cycles were needed. During this process,

and as the distributed accelerator scheme of the UNILOGIC architecture puts a

lot of strain to the interconnection points, some existing hidden bugs having to do

with the custom design surrounding the Aurora were exposed and resolved.

Offering Support for Various C2C Bandwidths

Furthermore, the QFDB links, as mentioned, are able to support speeds of up to

16.3 Gbps on board, i.e. among FPGAs of the same QFDB, reaching the maximum

rate supported. This has to do with the very precise and effective design of the
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QFDB. On the outgoing links, passing through SFP+ cages and corresponding

SFP passive copper cables, a 10 Gbps maximum rate is imposed due to the cabling

specification (or to be more exact, reaching up to a maximum of 10.3 Gbps). So the

initial C2C inherited by the UNIMEM architecture, had to be lead to segregated

versions. We have build C2C versions for 16.3 Gbps and 10 Gbps, as well as version

for other frequencies, which proved greatly useful during the exploration process.

Each such version required different, custom setting for the Aurora protocol, and

different ways to instantiate the GTH transceivers, as this also depends on targeted

speed. It also includes extensive examination and targeting debugging to fully

verify. In parallel, many special Bit Error Rate Testing (BERT) was comprised,

deploying Xilinx tools, and custom configurations depending on the platform and

intercommunication scenarios to be tested.

Transceiver Clocking Support for Multiple Transceivers of Diverse Configuration

Another troublesome complication at this point, has to do with transceiver

clocking. Instantiating a single or a couple of transceivers in an FPGA is one

think, while trying to deploy many, or even further all of them becomes a much

complicated task. The transceivers are sensitive circuits, and in order to be op-

erated on maximum speeds, they require dedicated clocks and properly designed

clocking infrastructure to optimally minimize clocking discrepancies such as ex-

cessive skew. In order to compose a proper clocking scheme, certain constraints

are imposed by the design tools. In brief, the transceivers of a ZYNQ device are

grouped to quads. Then these quads are separated to a left and right side. Each

side includes dedicated but limited clocking resources. These primitives should

be properly encompassed if many transceivers need to be instantiates and thus

share the scarce resource. And the configuration becomes further perplexed as

GTH transceivers in the same quad may need to have discrete operating speeds.

This required a lot of additional changes to the original C2C block: a) the GTH

designated clocks entering the FPGA, had to be processed by proper GTH-related

clock buffers that create a single clock from a differential one, b) the clocking

primitives, as well as related logic (as the GTH_COMMON primitive) had to be

excluded from the C2C block, involving various other alterations, c) a common

clocking primitive had to be instantiated per left/right row of transceiver quads,

d) a single C2C per row had to be configured as clock "master" and the rest as

clock "slaves". Again a lot of low level testing was needed, as well as monitoring
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through the chipscope tool flow, and finally validation through stressful testing by

incorporating remote acceleration scenarios.

Replacing the Aurora IP with a Custom Low-latency Module

A very important characteristic of the C2C module is that of the introduced

latency. Standing in the boundaries of each FPGA, a considerable amount of la-

tency is added in order to properly Serialize/Deserialize parallel traffic into the

multi-gigabit links driven by the GTH transceivers. A series of measurements and

evaluation, identified the Xilinx’s Aurora IP, embodied within the C2C, as the

component that contributes most of the measured latency. One reason is that a

lot of extra functionality is included in the Aurora IP, in order to be adaptable in

various possible configurations, however not applicable in our case. Nonetheless,

there exists no other simpler, out of the shelf module offered, in order to make

proper use of the available transceivers. This "Aurora-aided" version of the C2C

was measured to introduce a latency of about 220ns, and we should bare in mind

that this latency is appended at every chip (i.e. FPGA) boundary. This means

that it gets added four times in a cross-chip round trip time (RTT). We moved on

to replacing the Aurora IP with a custom, low-latency Serialization-Deserialization

(SerDes) IP block, that directly wraps the GTH transceivers and incorporates the

respecive low level protocol. This was designed by the CARV team at FORTH,

and after initial validation through simulation, it was deployed in the UNILOGIC

infrastructure for actual hardware testing. Initial low level bare-metal testing re-

vealed some first problems, and after improvements the new C2C was stressed

under the much more demanding real accelerator traffic. Corner case bugs where

then revealed and proper modifications were applied. Also, the chipscope tool flow

used to enhance verification, was also employed to accurately measure the latency

overhead for the updated C2C. This "custom-serDes" C2C was measured to offer

substantially reduced latency, now contributing a mere 90ns at each FPGA bound-

ary. As mentioned this latency is quadrupled in a Round-Trip measurement, so

it becomes of most importance under the UNILOGIC architecture, encompassing

remote accelerator invocation, and symmetrically remote data access by acceler-

ators. As these paths get greatly affected by FPGA crossing latency, this can

easily ruin any effort for a meaningful remote acceleration, and likewise effective

resource unification. More details on the aggregate latency and how this affects

the UNILOGIC infrastructure are given in section 5.1, regarding optimization.
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Further Possible Enhancements Through Link Bonding and New Flavors of

Transceivers

As data transfer, or equally throughput availability, is a common cause of

bottlenecks, additional research that targets optimizations for inter-FPGA com-

munication throughput is beneficial. A favorable approach is to further enhance

the C2C IP block by incorporating link bonding. As we have seen, the FPGAs

offer many transceivers that can in turn drive serial links, while pairs of such links

are deployed per connection in our prototype implementation. Having more than

one link per connection provides flexibility, as they can be used to support different

topologies, separation of communication protocols, etc. One other advantageous

usage scenario of multiple links, is that of throughput aggregation. An effective

way to do so is through link bonding. What this means is to have a pair of GTH

transceivers (or more) deployed in parallel, and presented as a transceiver with

double throughput. This is more difficult to implement than just using the two

transceivers/links separately, as efficient off-the-shelf solution are not available,

and thus customization analysis need to take place. A pair of bonded links inter-

face through a single AXI interface to the rest of the FPGA logic, which appears

as if it encompasses a single transceiver of double the throughput. This allows

transparent utilization of the bonded links, and, in case of link pairs, doubling

of link capacity. This now provides 2 × 16.3Gbps = 32.6Gbps of throughput for

intra-QFDB communication, while for inter-QFDB communication, it translates

to 2× 10.3125Gbps = 20.625Gbps.

A link bonding scheme using the Aurora protocol, and customizing through

the Xilinx Aurora IP was employed and verified. A drawback of the Aurora IP

worth mentioning is that it renders transceivers under link-bonding as one way

communication paths, i.e. either as senders or receivers. This may be useful in

some cases, however not advantageous in a broader aspect, so as to perfectly fit our

UNILOGIC approach. More interestingly, effort was invested on custom serDes

versions of the C2C module, i.e. deploying a custom transceiver wrapper as before,

which additionally bonds a pair of links. This entailed a lot of added techniques

concerning e.g. synchronization and clocking, with great effort from the CARV

laboratory at FORTH. This module, after initial cycles of simulation and adjust-

ments, was employed and tested in real hardware, and also incorporated in the

UNILOGIC prototype’s infrastructure and has reached a functioning state. This
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revealed that custom link bonding through GTH transceiver pairing constitute a

feasible approach, even if this was not deployed and fully evaluated on the full plat-

form, as a final stage of verification is still to be taken care of. Nevertheless, this

causes no drawbacks, as the prototype implementation is either way performing

gracefully.

Resource Unification Potential, Based on the Latest State-of-the-art Transceiver

Availability

One final important aspect we examined and would like to cover in brief, is that

of FPGA transceiver availability. As mentioned, the ZYNQ MPSoC devices of our

platform, being the state-of-the-art at the time of building the prototype, embody

the GTH transceivers, which can reach a maximum of 16.3 Gbps. Furthermore,

these devices constitute a viable option concerning procurement cost. In parallel,

there is also a continuous blooming of enhancements on this field. FPGA vendors

relentlessly try to push the bandwidth of the hardware interconnection primitives

to the maximum. They do so, as the offered connectivity is one of the main ad-

vantages of FPGAs, as it allows fast cross-chip interfacing, with limited protocol

delay overheads. As a first example, few of the current Xilinx’s MPSoC devices

encompass the upgraded GTY transceivers, which can offer up to 32.75Gbps of

throughput per link. PCB boards in turn can deploy Quad-SFP (QSFP) or Quad-

CFP (CFP4) connectors and respective cables, which allow 4 such transceivers to

be driven through a single connector and correspondingly through a single cable,

usually able to reach up to 100 Gbps per single-cable. The latest GTM transceiver

flavor, included in the Xilinx’s Versal family of SoCs [49] operate at data rates up

to 58 Gbps. Importantly, appropriate hardware as the previously mentioned cus-

tom link bonding would likewise prove beneficial to properly utilize such enhanced

interconnectivity. The Altera FPGA vendor (acquired by Intel) on the other hand

offers the GX/GXT/GXE transceivers, similarly reaching up to 57.8 Gbps. It also

delivers the 10nm Agilex FPGA SoC family, which features transceivers capable of

up to 112 Gbps [19]. All this continuous improvement on the FPGA interconnec-

tion hardware primitives is a great match for our UNILOGIC architecture, as it is

quite promising to even further elevate transparent FPGA resource unification.
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4.2.7 Summarizing the UNILOGIC-incorporating FPGA de-

sign

As a summary, the presented UNILOGIC architecture allows for the implementa-

tion of a unified and virtualized multi-FPGA platform, where all the memory and

the reconfigurable accelerator modules appear uniformly in a global address space.

Any node that seeks access to any memory or accelerator in this address space,

issues the same commands as if everything was local, i.e. as if the complete system

comprises of a huge contiguous reconfigurable fabric along with the corresponding

enormous memory resources. The hardware primitives implemented are responsi-

ble to transparently forward any transaction, thus deploying distant accelerators

as well as remote memories without any user application intervention. All the

interconnection infrastructure is designed with efficiency in mind, both in terms

of latency as well as throughput, allowing any intersecting module to simultane-

ously perform effectively. This leads to parallelizing of all the resources, enabling

accelerators to run in parallel, in local as well as remote FPGAs, in a multi-CPU

parallel system fashion. In order to verify the correctness and efficiency of our ap-

proach, and evaluate performance both in terms of execution time as well as power

consumption, we have performed several tests at various hardware and software

levels (e.g. from bare-metal to OS running application, and from single FPGA

to multi-FPGA scenarios), as our prototype evolved. These tests, for example,

include intra- and inter-node memory transfers, configuration and parallel invoca-

tion of local and remote accelerators, as well as accelerators and processors using

both local and distant memories. Our testing and evaluation process is presented

in Section 6

4.2.8 FPGA Utilization

Keeping our design’s demand on resources as low as possible becomes of prominent

importance in the UNILOGIC context, as it allows for more resources available for

the accelerators. This overhead of resources spent corresponds to the "static" part

of the design, i.e. the part that will not be reconfigured at run time, as can happen

with the accelerator slots. It pertains to all the FPGA’s hardware design described

previously, i.e. the interconnection scheme and any accelerator surrounding logic,

excluding only the reconfiguration slots. For the complete and final prototype
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design, which incorporates the full interconnection scheme and any presented op-

timization, the static design overhead can be seen in Table 4.6. It is kept to a

mere 23% of LUTs for the Network’ FPGA, i.e. the most congested one, including

the full topology realization, and as low as 12% of LUTs for the remaining three

QFDB FPGAs. The 11% difference between these two percentages, mainly has to

do with the quite larger AXI interconnect deployed in the Network FPGA, and to

a smaller extent with the higher number of C2C modules. In absolute numbers, a

Network-FPGA’s overhead requires 63K LUTs (23%), 72K CLB Registers (13%)

and 105 BRAM tiles (11%). The other three FPGAs’ overhead falls down to 33K

LUTs (12%), 33K CLB Registers (6%) and 20 BRAM tiles (2%) It is also worth

mentioning that absolutely no DSPs are spent in this "static" part. This is impor-

tant, as DSPs are in most cases the critical resource for implementing hardware

accelerators.

Table 4.6: Static overhead per FPGA: the resources consumed for
the static portion of the UNILOGIC implementation

FPGA LUTs CLB Registers BRAM tiles DSPs
F1 (Network) 23% 13% 11% 0%
F2, F3 & F4 12% 6% 2% 0%

4.3 Runtime Partial Reconfiguration Support

& System Software Flow

In order to introduce runtime partial reconfiguration in our architecture, we had

to deploy proper hardware modules within our design, and in parallel develop

the proper software that efficiently utilizes the additional hardware functionality.

The architecture itself was thoroughly devised, with reconfiguration inherently

envisioned, so that the needed extra hardware can easily be introduced. As for

software, it aims to both offer the low level device drivers, as well as the high level

distribution of tasks among available resources. We describe the changes in the

Operating System and the Runtime support developed on top of the hardware

infrastructure so as to facilitate the programming of the parallel heterogeneous

platform, and also briefly present the way this software supports and automates

the partial reconfiguration process.
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The accelerator slot (Partial Reconfiguration slot, or PR-Slot) interface specifi-

cations was part of this thesis, as well as the PR-slot isolation hardware described

in section 4.3.1. Also a lot of co-designs efforts took place, pertaining to PR-slot

deployment and partial bitstream propagation. The PR-slots themselves, as well

as the partial bitstreams and partial bitstream manipulation was contributed by

the University of Manchester. I also contributed in the development of the soft-

ware stack, which otherwise was mostly contributed by TSI Institute in Chania,

Greece. In addition, all the related dynamic partial reconfiguration testing, as

well as all the scenarios executed and reported herein were performed in a close

collaboration between the author of this thesis and the TSI team in Chania.

4.3.1 Hardware Infrastructure for Remote Partial Reconfig-

uration

One of the main capabilities that need to be added to the architecture, in order to

offer the partial reconfiguration attribute, is that of transferring a partial bitstream

on to the FPGA designated slots. What is most commonly used for this reason is

the Processor Configuration Access Port (PCAP). This is a primitive provided by

Xilinx, and already included in the Processing System of our Zynq MPSoC. PCAP

is used to configure the FPGA part, also referred to by Xilinx as Programmable

Logic (PL), from within the Processing System (PS). Using this path is not only

the most common mechanism for partial reconfiguration, but also comprises the

primary configuration mechanism itself, for the FPGA part (PL) of the Zynq

Ultrascale+ MPSoC, as in the normal configuration process of the FPGA, the

Processing System actually delivers bitstreams to the PCAP. This can be seen on

the left of Figure 4.38.

Directly managing remote partial reconfiguration, using ICAP

However, to manage partial reconfiguration completely within the PL, partial

bitstreams can also be delivered to the Internal Configuration Access Port (ICAP).

This is a Xilinx provided block that can be included in the FPGA design, as seen

on the right of Figure 4.38. The ICAP is essentially an internal version of the

SelectMAP interface [48, 86]. What is most important for our architecture, is that

by allowing partial bitstreams to flow through the reconfigurable logic, without

intervention by the processing system, we can also perform this process remotely.
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Figure 4.38: The PCAP and the ICAP controllers constitute the
two alternatives for FPGA partial reconfiguration

That is we can send a partial bitstream, in the same way we send data, over the

UNILOGIC architecture, and thus target any available reconfigurable slot in the

system.

This can be seen in Figure 4.38. The PCAP resides in the PS part of the

MPSoC, and so partial reconfiguration must be initiated within the local PS,

while the ICAP resides in the PL part and includes an AXI interface. Having an

AXI interface, it can be accessed by either the local PS, or by any other entity in

the whole system. By initiating suitable AXI transactions, either from the local

or from a remote Node, and aided by the UNILOGIC architecture, they can be

routed in order to drive the specific ICAP block.

It is useful to mention that the PCAP and ICAP interfaces are mutually exclu-

sive and cannot be used simultaneously. Switching between ICAP and PCAP is

possible, but we must ensure that no commands or data are being transmitted or

received before changing interfaces. What we usually do in our implementation, is

to allow the usual PCAP configuration process for the initial FPGA configuration,

and then as the configurable/programmable slots (PR Slots) are available in the

PL, we switch the operating interface by disabling the PCAP and enabling the

ICAP one.

Having added the ICAP in our FPGA block diagram, actually just adds one

more local peripheral, and a corresponding configuration address space of 64 KB.
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Figure 4.39: The FPGA block diagram detail, with the ICAP
controller included in the reconfigurable logic, in order to partially

reconfigure accelerator slots

The partial bitstream is passed to the ICAP, and then the proper accelerator slot

will be programmed, as seen in Figure 4.39 which is another augmented detail of

the original FPGA block diagram.

The need to temporarily disable AXI interfaces using decoupling

During the partial reconfiguration of the FPGA, used to load a new hardware

accelerator, all signals crossing the boundary between the partial and the static

regions must have predefined values in order to both keep the static FPGA logic

function trouble free, even if the reconfiguration generates unpredictable values to

its outputs, and also prevent the hardware accelerator to enter an unknown state

when, during the reconfiguration process, it receives unpredictable values from the

static portion.

A decoupler block is used to prevent such problems. This is mainly build

by two multiplexers as shown in Figure 4.40. A ’Decouple’ signal controls the

inputs/outputs to/from the hardware accelerator, and can choose between the

actual signals or a predefined value set to pass through the interface.

The decoupler shown in Figure 4.40 must be used to control each signal of the

interface generated by Vivado HLS for the hardware accelerator. This contains

one AXI-lite bus to control the kernel and one AXI bus to communicate with the

system memory. For this reason, this IP can be parameterizable to decouple all

the signals in the interface, both in terms of interface widths and for the predefined

values to be used during the partial reconfiguration process. The decoupler can be

address mapped, and then again the decoupling can be controlled by commands
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Figure 4.40: The decoupler block intervenes in order to protect
the FPGA logic from faulty signals produced during the partial

reconfiguration process

that write to the proper addresses.

Accelerator slot isolation with AXI-registers for improved timing

The PR slots themselves are devised by the University of Manchester, and

details can be found in [91, 89, 40, 113]. However due to internal PR Slot architec-

tural reasons, a problem arose as to the timing closure. What we understood after

though redesign and testing, was that the tool, when compiling the static logic

was oblivious of the –still empty– PR slot logic. And the same applied for the

process of constructing a partial bitstream that would fill a PR slot. In order to

bypass these issues, and to achieve efficient timing even with PR slots, we added

registers at both sides of the PR slot. This can be seen in Figure 4.41, where the

decoupler is also shown, embracing the PR slot related logic. Of course just placing

registers in an AXI interface path, would uniformly delay all the control signals,

which would violate the AXI protocol, adhering e.g. to specific constraints as for

the timing between requests and associated responses. Instead an "AXI register

slice" IP is deployed on both sides, which both isolates the PR slot from the static
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Figure 4.41: The accelerator is exchanged for a Programmable
Accelerator Slot (PR Slot) to allow partial reconfiguration. A de-
coupler, along with AXI register slices, have to intervene in order

to have an efficient solution

logic with registers, and properly preserves the AXI protocol attributes.

Offering the feature of accelerator slot merging

As a last thing, we would like to refer to the briefly aforementioned slot merging

capability offered. An important aspect when offering resources for a purpose, as

is the case with accelerator logic, is to efficiently share available resources among

possible occupants. There are cases when many small accelerators, either different

or all the same, need to use parts of the logic in order to execute task. This is why

we have selected to upscale our implementation by deploying four independent

accelerator controllers, that run in parallel. They all include dedicated translation

blocks, attach to a distinct Processing System port to access memory, and each

can be disjointly configured to support disparate accelerators on their controlling

slot. Such a case is depicted in Figure 4.42a, with four single-slot sized accelerators

occupying the slots. They can be either of the same accelerator core, or of different

ones.

Nonetheless, one equally popular scenario, is that of having to host larger

accelerators cores, that require a higher amount of logic resources. Just having
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(a) Single slot Accelerators (b) A double slot Accelerator

(c) A three slot Accelerator (d) A four slot Accelerator

Figure 4.42: Accelerator slot merging, allowing diverse accelera-
tors, even with resource requirements greater than a single slot, to

jointly occupy a varying number of available slots

the available logic spread in disjoint accelerator slots, would decisively disallow

such valuable as well as common cases. In order to support favorable utilization of

the available resources, for either scenarios, the static logic supports slot merging.

As seen in Figure 4.42, more than one consecutive slots can jointly offer their

resources, in order to host a single accelerator of proportionate size. When slots

are jointly deployed, only one accelerator controller, i.e. scheduler-mailbox pair,

takes charge of the combined slot. All other controllers corresponding to he merged

slots get disabled. For example in 4.42b a double-slot sized accelerator occupies

the two first slots, and only the first of the two accelerator controllers remains

active. Certainly all the other controllers can remain active in order to manage

corresponding slots. In 4.42c and 4.42d we also depict cases for larger accelerators

of increasing size, occupying three and all four slots respectively. We should also

mention here for completeness, that proper care has also been given on the other

side, that of the partial bitstream, in order to conduct valid partial bitstreams for

multiple slots, however not in the scope of this thesis.

Accelerator slot defragmentation
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Figure 4.43: Slot migration in order to overcome fragmentation

All this accelerator slot resource handling, reminds that of memory manage-

ment techniques. So, as it occurs with memory allocation, likewise for accelerator

slot allocation, resource fragmentation can occur. For example, in Figure 4.43, we

see a snapshot in time, at which we have come to the situation where, as seen

on the left, two small accelerators occupy alternating single slots, with the other

two being unused at the moment. If a larger, double-slot accelerator needs to be

hosted, although the volume of resources exist, they are fragmented. In this case,

migration of accelerators can be used to resolve this issue. For this example, one

accelerator can get relocated to another slot, leaving two adjacent slots that can

now be jointly used. In the right of the figure, the resulting configuration serves all

accelerators concurrently, utilizing all slots, and with just the needed accelerator

controllers activated.

4.3.2 Software Support for Runtime Partial Reconfigura-

tion

UNILOGIC can support numerous hardware accelerators implemented in different

Compute Nodes/Workers and reconfigured at execution time. In that respect, we

have implemented in our prototype, higher-level (software) mechanisms needed

to allow for this reconfiguration to be efficiently supported. This includes the

mechanisms so as to transfer the partial bitstreams into the corresponding FPGA

slot(s). In addition, in order to increase the efficiency of our approach we have to

optimally assign/manage the reconfiguration resources/slots at real-time. Finally,

it is important that the system is user-friendly and that most of the work takes

place under-the-hood, in other words, a perspective user should not be concerned

with how a new accelerator is going to be introduced to the system. Similarly, the
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system must be able to scan through a number of different accelerator modules

and select the one(s) that serve the executed application best.

The reconfiguration-related tasks have been implemented within the adopted

prototype as part of the custom Linux OS hosted on the PS of the Network FPGA

of a QFDB as shown in Figure 4.44. The OS is crucial since it introduces a

layer that corresponds to the application activity, i.e. User-Space, while isolating,

therefore protecting critical system aspects such as its physical domain. In such a

way the user introduces an application, parts of which will be executed on hardware

accelerator(s) without being burdened by details on how to perform the actual

reconfiguration slot programming and/or, for example, running the risk of directing

bitstreams towards forbidden areas of the FPGA programmable logic.

The OS is complemented by an appropriate (Character Device) Driver, Figure

4.44, which is the bridge between what the user desires to do and how this is

executed on the the actual hardware. The device driver is located in the kernel

space of the operating system, which is the in-between layer among user-space and

the physical domain, and uses well known APIs, such as copy_to_user() for user-

space and kernel space communication. On the other hand, the communication

between the kernel space and the physical domain is done via the use of virtual

addresses, i.e. data from user-space are passed onto virtual addresses, therefore,

the risk of accessing the wrong physical address is eliminated.

The reconfiguration of the resources is done through the ICAP module pro-

vided by Xilinx, which is responsible for allocating the partial bitstream at the

appropriate coordinates in the reconfigurable fabric. Therefore, the Character De-

vice Driver (CDD) we have designed communicates and manages that particular

module in order to implement the partial reconfiguration feature of our system.

Additionally, it is either the user or an automated runtime system process that

selects the appropriate partial bitstream as well as the accelerator slot, in the

parallel system, that the bitstream will occupy.

Hence, these two pieces of information are propagated onto the kernel space.

Subsequently, the ICAP device driver is registered with the Linux kernel and a

virtual address is assigned to the ICAP hardware module. That particular address

is then used for writing the partial bitstream into the ICAP’s FIFO buffer and after

this is completed, the partial bitstream is programmed into the reprogrammable

fabric of the target FPGA. When this is done, the user or the automated process
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Figure 4.44: Example Dynamic Partial Reconfiguration Flow

is notified that reconfiguration has been completed and application execution can

commence.

If the user does not want to get involved with where the hardware accelerators

will be implemented, the designed automated runtime process assumes responsi-

bility for this task, Figure 4.45. The designed runtime daemon uses two types of

information: One has to do with the user application(s) while the second has to

do with the status of the system’s hardware resources.

Regarding the information from the user application, the runtime analyses the

application and identifies which algorithmic elements are suitable for hardware

implementation. Such elements mainly have to do with computation tasks rather

than control ones; in other words hardware acceleration is selected for the com-

putationally intensive tasks. Next, the system’s Acceleration Library is consulted



106 Chapter 4. UNILOGIC System Implementation

Figure 4.45: High-level view of system operation

in order to identify the partial bitstream that correspond to the task/sub-task

selected for hardware implementation. In the event that the acceleration library

is missing a suitable partial bitstream for the desired algorithm, the user has the

ability to refer to another tool [38] which allows for the generation of new partial

bitstreams that can be used as accelerator modules and, consequently, become

part of the system’s acceleration library.

Subsequently, the runtime system takes into account the Resources’ Status in

order to partially reconfigure the appropriate FPGA slots according to the process

presented in Figure 4.44. Since in our prototype we have used applications devel-

oped in Open-CL, the developed runtime daemon operates in terms ofWorkGroups

(WGs) which are assigned onto different FPGA slots via the Scheduler. The run-

time uses, the sizes of the bitstreams, as well as the historical data from previous
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executions so as to perform this assignment in a (near) optimal manner in terms

of execution time and/or energy consumption. As also stated in the Introduction

section, the details of the implemented hardware reconfiguration mechanisms are

beyond the scope of this thesis, and the related information can be found in [91].

4.4 A Compound Example: Summing Up the Ef-

fectiveness of the UNILOGIC Implementation

Figure 4.46: A snapshot of a UNILOGIC operational scenario

At this point, and just before we move on with elaborating on the systematic

performance optimization process in section 5 and the thorough system evaluation

in section 6, we consider beneficial to present a small recap. A brief summary of

the UNILOGIC architecture’s high level contributions, along with a demonstrative

example including a blend of possible accelerator scenarios that the UNILOGIC

architecture and current implementation is able to support.
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In order to implement efficient sharing, the UNILOGIC architecture supports

partitioned global address space so that a) the hardware accelerators on all the

FPGAs of the system, residing in QFDB boards in this current implementation,

can be accessed directly by any processor in the system, and b) the hardware

accelerators can access any memory in the system. In this way, the architecture

offers a unified environment where all the system resources can be seamlessly

accessed by software running on any processor.

Instead of just deploying FPGAs as nodes in the system, each node is an entire

sub-system including a processing unit, memory, storage and reconfigurable re-

sources that can be accessed by any other node in the system. The reconfigurable

resources are split into a static partition, which provides the communication in-

frastructure, and four fixed-size slots that can be reconfigured and accessed inde-

pendently or combined together (slot merging), in order to support fine or coarse

grain partitioning and utilization of the reconfigurable resources.

Partial runtime reconfiguration is supported, in order to dynamically reconfig-

ure the accelerator slots. These slots can be remotely reconfigured and accessed

directly by any processor in the system using the Xilinx Internal Configuration

Access Port (ICAP) that resides in the UNILOGIC global address space. The

tight coupling of the resources on the QFDB, along with cautious implementation

of the UNILOGIC principles, allows an accelerator on any reconfigurable slot to

access any DDR memory in the system with minimal communication overhead. A

runtime system can be deployed, to monitor the system status and manage the

reconfigurable resources across the whole platform.

As a demonstrative example, we present in Figure 4.46 a small UNILOGIC sys-

tem with four interconnected QFDBs. In each Zynq Ultrascale+, the UNILOGIC

firmware implements four dynamically reconfigurable accelerator slots, that are

accessible to applications through the accelerator controllers that offer a virtual-

ization and scheduling layer. Four applications share resources in this example,

each differentiated by a different color. Inside each MPSoC, the four accelerator

slots are depicted as rectangles, while the four ARM processor cores are depicted

as circles. Each application running on a processor fills it with the corresponding

color, and the same happens when an accelerator slot is deployed. The smaller

rectangles outside each MPSoC pertain to the DDR memory modules (DIMMs),

and likewise get filled with data by each application. In the middle, a switching
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element is displayed, however just to declare connectivity and routing among the

QFDBs. In the actual implementation, this routing takes place inside each net-

work FPGA, standing at the "edge" of each QFDB, and thus providing a modular

and scalable approach, discarding the need for additional and disparate central

interconnection modules.

Getting in more details, we see that e.g. the software part of the Red applica-

tion runs on a node of QFDB 1 (red circle in the rightmost FPGA), and spreads

its data in the memory of the local as well as other nodes (red memory DIMMs).

Accelerators for this application (red slots inside FPGAs) are spawned close to

the data, however all accelerators can also access remote memory with a moderate

latency. So this Red application has also acquired resources from two additional

FPGAs in QFDB 4. Another application, the Blue one, requires two coarse grain

accelerators, i.e. deploys two kinds of accelerators that require respectively the

merging of 2 and 4 slots. Again, as the QFDB 2 resources do not suffice, it also

spawns to QFDB 4 as well.

Two more applications, the Green and Yellow, run in and share QFDB 3. Since

the UNILOGIC virtualization and scheduling layer allows for seamless sharing of

accelerators across applications, they also reuse a common accelerator function

(double-colored slots). That is, as seen in the Figure, each of them needs to

deploy a distinct accelerator, but also, both of them need to use a common accel-

erator core. So the double colored rectangle, is a hardware accelerator that can be

shared between both software applications. Likewise, as with the previous applica-

tions, these also use resources of QFDB 4. Thus, through the execution snapshot

of Figure 4.46, a summarizing view of the flexibility offered by the UNILOGIC

architecture gets illustrated.
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Chapter 5

Performance Optimization

The initial evaluation results, that proved the feasibility of our approach, were

based on a commercial board hosting a single-MPSoC and are presented in [75],

while part of these can be found in Appendix D. In this part of the thesis, we

report execution results for accelerators that implement the Michelsen algorithm,

which is used in the calculation of the Rachford-Rice [124] equation. A variation of

this equation is specifically tuned and extensively used in the field of oil-Reservoir

Simulation (RS). A high level insight can be gained through Figure 5.1, where a

rock matrix is mapped to a grid model1 for which the RS simulation predicts the

oil and gas flow within the rock formation. As the initial implementation of the

Michelsen kernel is not optimized for FPGA execution, manual code transforma-

tions have been applied in order to reach efficient hardware implementations [51].

The early phase of our work, included in our first publications, confirmed that the

UNILOGIC architecture can, indeed, be effectively implemented in today’s recon-

figurable MPSoCs; even a very simple implementation on a single device triggered

a 30% speedup over a quad-core Intel-i5 CPU and more than 2x reduction in

energy consumption.

The Michelsen accelerator core proves even more useful for the UNILOGIC

implementation on the multi-FPGA prototype, as it generates a lot of data move-

ment, thus offering an approach that stresses memory bandwidth as well as multi-

gigabit link throughput. This way we can identify bottlenecks and seek for im-

provements that will optimize the UNILOGIC implementation. We first optimize

the implementation on a single FPGA, and then we proceed to the optimization

for multi-FPGA scenarios. In particular, we initially focus on the optimization of

1figure by the University of Calgary, http://ucalgaryreservoirsimulation.ca/study-on-matrix-
itsrole-in-controlling-oil-and-water-movement/
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Figure 5.1: Reservoir simulation rock matrix and respective grid
structure

a single-FPGA implementation, explaining quantitatively the performance bottle-

necks and the improvements. Next, we optimize the UNILOGIC implementation

in multiple FPGAs of a QFDB, optimizing the inter-FPGA efficiency so as to

increase the remote acceleration performance. In this section we also explain all

the steps, choices and decisions during our optimization process, through the eval-

uation on different implementations of the accelerated tasks as well as different

communication alternatives.

I devised the testing infrastructure and related scenarios, as well as all the

bare metal testing and scripting for test automation and gathering of optimization

and evaluation results. I also build the complete FPGA firmware and used the

chipscope tool flow to identify bottlenecks, and the investigate on the proposed

solutions. This in turn led to new iterations of restructuring both accelerators

and the UNILOGIC architecture in a co-design process and currying out refreshed

tests. The HLS accelerators and related HLS code optimizations was the part

contributed by Synelixis S.A.

5.1 Optimizations on a Single FPGA

In this case, the main challenge has been to optimize accesses to the main memory.

The throughput to the memory was limited largely due to the limited throughput

of the AXI-based communication between the accelerators and the DDR memory

controller. Moreover, the latency to access the memory is high. We measured

a latency of 300 ns (request to to first data response time), which is mostly due

to the PS-to-PL interfacing and internal PS switching, as well as the processing

time of the memory access by the DDR controller. The DDR memory access time
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itself is expected to usually contribute just about 15 to 20 ns. As verified, this

remains almost unchanged regardless of the programming logic’s clock speed. For

example, when the accelerator was clocked at 200 MHz we measured a 60 clock

cycles (cc) delay, while at 125 MHz we got 37 cc, which both give (60cc× 1
200

) '
(37cc× 1

125
) ' 300ns. It should also be noted that we have configured the internal

PS clocks (CPU, buses and peripherals) at their highest supported frequencies. To

work around this, we aimed to generate enough continuous data traffic to hide the

300 ns latency. A number of performance optimizations were applied to achieve

this. The reported optimizations concern a continuous co-design process, involving

the accelerator design, i.e. High Level Synthesis (HLS) [21], the FPGA surrounding

logic, i.e. Xilinx Vivado tool, and the corresponding software application.

The initial transition from a fully-unoptimized to a first-level optimization stage

is reported in [75] and constitutes the starting point in this section. At that

time, commercial single-FPGA boards was used, manufactured by Trenz Elec-

tronic GmbH and deploying the exact same FPGA, yet at that time provided only

as engineering samples. Subsequently, the next-level optimization has been to al-

leviate the impact of latency by allowing for many more ongoing data. To achieve

this, we had to enhance the interface of the accelerators in order to support burst

transactions. Hence, bursts of 16 accesses were introduced, with each being 256

Bytes in size, resulting in a burst size of 4 KB, i.e. reaching the maximum burst

size supported by the AXI interconnect.

As a result, the execution time for a single Michelsen core, processing a sample

dataset of 2400 blocks of 100K elements each, dropped from about 324 sec down to

108 sec, as shown in Table 5.1. As each element uses 16 numbers to describe an Oil

Reservoir simulation grid point, these 100K elements correspond to 100K × 16×
4Bytes = 6.4MBytes of data, and 2400 such blocks add up to 6.4 MB × 2400 ≈
15 GBytes of data. Importantly, all reported measurements are based on this date

Table 5.1: Execution time and performance (sec and GFLOPS)
for Michelsen cores, for various co-design optimization, on single-

FPGA design versions running at 200 MHz

Time (sec) Optimization Version GFLOPS step improvement
324.26 HLS optimized Michelsen 1.8 –
108.12 Burst-enabled co-design 5.4 3x
27.15 Burst & 128-bit datapaths 21.6 4x (12x)
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set size, and captured on designs that are all clocked at 200 MHz.

A consecutive optimization was to increase the width of the AXI datapath on

all the logic blocks and interfaces of the design. Hence, it was increased from 32 bits

to 128 bits, which matches the maximum bus width supported by the processing

system ports of our MPSoC device. This led to a further performance boost, with

the execution time decreasing to 27 sec. The improved execution times are shown

in Table 5.1, along with the equivalent GFLOPS, while the corresponding plot can

be seen in Figure 5.2.

Figure 5.2: Execution time for various optimizations, in an FPGA
deploying a single Michelsen accelerator core

An important point, which can also act as a guideline for anyone designing

reconfigurable systems incorporating Xilinx’s AXI implementations, is that the

new approach not only allows four times more data to be sent to the accelerator

Table 5.2: Execution time and performance (sec and GFLOPS)
for multiple Michelsen accelerator cores, properly deployed on a

single FPGA, and clocked at 200 MHz

Time (sec) Parallel accelerators GFLOPS speedup
27.15 1x accelerator slot 21.6 –
14.26 2x accelerator slots 40.9 1.9
9.84 3x accelerator slots 59.3 2.75
7.97 4x accelerator slots 73.3 3.39
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due to the four times wider datapath, but also offers a reduced latency path that

has to do with the AXI’s disposal of all width conversion circuits in the path

to the external memory. This reduced latency, now measured to about 250 ns,

and resulted in a faster completion time for the issued AXI requests. We now

measured a latency of 50cc at 200MHz and 76 clock cycle at 300MHz which give

a latency of (50cc× 1
200

) ' (76cc× 1
300

) ' 250ns. This will become of even greater

importance, once we have memory accesses generated by accelerators on remote

FPGAs. This twofold effect, i.e. higher bandwidth & reduced latency, accounts

for the established 4x improvement.

Subsequently, the next step was to employ more Michelsen accelerator cores

within the same FPGA in order to process subsets of the original data set, in-

troducing, therefore, in-parallel processing, e.g. two cores executing half of the

2400 blocks of 100K elements each. For the specific accelerator type, it has been

possible to fit a maximum of four cores, utilizing 85% of the FPGA resources.

Nonetheless, even at this high resource utilization, we could still reach a clock

frequency of 200 MHz.

A related optimization while deploying multiple accelerators, pertains to the

communication between the reconfigurable region of the MPSoC, i.e. the FPGA

section where accelerators reside, and the DDR memory. Such accesses go through

the Processing System (PS) of the MPSoC, and specifically through six ports that

allow this. However, as two pairs of these links pass through single paths inside

the PS, only 4 ports seem to be independent. Deploying these 4 independent ports

and performing an analysis through various hardware accelerator configurations,

has indeed been validated to produce the most efficient results. Minor deviations

were also detected between coherent and non coherent ports, however not inducing

any significant effect.

In order to exploit maximum available memory throughput, we properly used

the UNILOGIC-related translation blocks, and through those we managed to as-

sign a separate such port per accelerator. This allows for a maximum memory

bandwidth exploitation. As investigated and presented in section 4.2.5 and through

Figure 4.33, the aggregate memory bandwidth availability at the PS ports can

reach about 9 to 10 GB/sec, and this can be achieved by deploying four PS ports

in parallel.

Table 5.2 provides the performance results as we increase the number of cores,
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also plotted in Figure 5.3. The performance improvement with 4 accelerators run-

ning in-parallel reaches about 3.4x compared to a single accelerator. The deviation

from the ideal 4x mainly appears as we move from 3 to 4 accelerators, as the max-

imum sustained memory bandwidth gets reached, revealing a memory bandwidth

limit of the deployed MPSoC devices at about 9 GBytes/sec. The best perfor-

mance we can achieve is 7.97 sec (equivalent to 73.3 GFLOPS), which is reported

in [51] and is about 2.5 times better than our prior reported results in [75], demon-

strating a significant improvement over our previous single-FPGA implementation

of the UNILOGIC architecture.

Figure 5.3: Execution time when properly deploying multiple
Michelsen accelerators in a single FPGA

Finally, it is worth reporting that we were able to increase the clock frequency

for various UNILOGIC architecture configurations. Designs were clocked up to the

maximum allowed by the Xilinx tool flow for this FPGA technology, i.e. 333 MHz

(regarding the PS-to-PL interface). We even performed some enhancements, that

surpassed the tool limitations, through software configured, hardware clock man-

agers on the configurable logic, making measurements for clock speeds up to 400

MHz. Successful implementation on such high frequencies was achieved by per-

forming a full design space exploration of the High Level Synthesized accelerators

[28, 123, 32, 82] and by hand-optimizing the HDL code of the scheduler-mailbox

pair. Accelerator execution times were improved, near-linear in many cases. For
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example running a single Michelsen accelerator at 400 MHz resulted to about

half the execution time compared to the 200 MHz execution. Deploying more

such accelerators on the other hand, once again exposed and thus confirmed the

memory bottleneck already revealed for the 200 MHz designs. However, running

accelerators that are not so data hungry, would benefit from higher frequencies, as

would be the case when mixing data-bound and computation-bound accelerators.

Furthermore, the high frequencies reached guarantee that the UNILOGIC archi-

tecture would easily benefit from newer device versions, as vendors continuously

introduce enhanced ones. More information on this investigation can be found in

the following subsections, addressing earlier stages of our optimizations.

Moreover, we measured the performance of a design that does not support

UNILOGIC and thus the Michelsen cores are directly connected to the Processing

System of the device. In this way, we derived that the UNILOGIC architecture

reduces the performance only by 3-4%, as the modest added latency of the UNI-

LOGIC infrastructure is hidden by the aforementioned optimizations. We also

measured that the latency, e.g. round trip time for a memory read access, in-

troduced by the UNILOGIC architecture is just about 40 ns, which mainly cor-

responds to the latency of the central interconnect required by the UNILOGIC

architecture. This is a small portion of the overall latency which adds up to 250

ns, which as stated above gets mainly introduced by the device specific latency of

the Processing System interface and the access to memory. As will be presented

in the multi-FPGA optimization and evaluation, UNILOGIC’s latency comprises

an even smaller portion of the more important cross-node round trip latency.

5.1.1 Earlier Optimizations for Single FPGA Acceleration

Before deploying the previously reported single FPGA optimizations, a lot of re-

search and development effort has been invested, regarding aspects of the archi-

tecture such as HLS algorithmic optimizations, accelerator hosting logic and PS

interfacing improvements (as parts of the UNILOGIC), along with bare metal test-

ing and evaluation, with more details available in Appendix D. And preceding this

phase, at the very early stages of this work, the architectural investigation and

exploration of available devices took place, including the first Zynq Ultrascale+

device deployment through the first available commercial board by Trenz. This
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involved studying its features, interfaces, and available tools, and perform ear-

lier test and evaluation. Then it was used to port existing architectures such as

UNIMEM, as well encompass earlier components of the UNILOGIC architecture,

while more details are available in Appendix C. The optimization aspects we want

to present at this point include a wider variety of earlier configurations, so we

have chosen to include part of those and arranged at this point as subsections.

The reader can choose to bypass them, and consistently pass from the coherent

single-FPGA optimizations reported above, on to the next section 5.1, that focuses

on our investigation for remote acceleration.

5.1.1.1 HLS Algorithmic Optimizations

As we have mentioned above, the kernel originally implemented, is a variation of

the Newton-Raphson method [1], specifically tuned for the Reservoir Simulation

(RS) problem. The respective OpenCL kernel used in this work is “Michelsen” and

provides a faster convergence in solving the Rachford-Rice equation for oil reservoir

simulation. The initial implementation of the Michelsen kernel is not optimized

for execution on FPGAs. Hence, manual code transformations have been applied

in order to reach efficient hardware implementations. In the Michelsen case, at

each grid point, the original OpenCL code is sequential due to a while loop, and

the aim of the optimizations has been to overcome this obstacle and, therefore,

introduce and maximize parallelism. The main work related to this thesis was

the co-design of the accelerator and hosting hardware, as well as continuous and

incremental hardware deployment, testing and evaluation.

In addition, a set of directives have been manually introduced for further opti-

mization benefits. This work has been heavily based on Xilinx’s Vivado HLS [119].

This is a tool that produces equivalent RTL designs [111] to high-level model de-

scriptions of various algorithms. The Vivado HLS tool offers a set of Directives

in order to make the respective codes more efficient for FPGA implementation.

Therefore, the process has been to start off with an initial set of directives as well

as code modifications introduced manually that improve the performance of the

OpenCL kernels. Consequently, further exploration steps have been performed

automatically using the ECOSCALE Design Space Exploration [58] (DSE) tool,

which has been developed by Politecnico di Torino, and our joined efforts on its

exploitation are reported in [75]. The latter has been used to enable automated
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design space exploration and micro-architecture definition without requiring the

designer to specifically know the architectural features of the underlying FPGA.

The DSE tool provided an additional set of directives for the OpenCL kernels of

the manual stage and through the merging of the two, came the final version used

in the production of the accelerator core.

The manual analysis consisted of carefully investigating the Michelsen OpenCL

kernel. The main characteristic of the algorithm to take advantage of, is that of

multiple small optimization problems, which are independent of one another. A

suitable way for doing this is by pipelining the process.

Algorithm 1 Initial Reservoir Simulation (RS) pseudocode

1 f l o a t a , b
2 f o r ( a l l g r i d po in t s )
3 /∗ i n i t i a l i z a t i o n ∗/
4 a=amin
5 b=bmin
6 opera t i on 3
7 . . .
8 whi le ( opt imiza t i on ta r g e t )
9 b=b+1

10 a=a+1
11 opera t i on 3
12 opera t i on 4
13 . . .
14 end whi l e
15 opera t i on 1
16 . . .
17 wr i t e r e s u l t
18 end f o r

The original OpenCL pseudocode of the target application looks like the one

shown in Algorithm 1. The problem here is that this form of the code description

does not allow for the use of a pipeline directive due to the while loop, other-

wise called optimization loop since the coefficient it produces approximates, to an

acceptable level of deviation, a real-life value. This loop is burdened with depen-

dencies as well as being non-statically bounded, thereby making it a sequential

process that cannot be pipelined. This would make the FPGA implementation of

such algorithms inefficient due to the inherently slow FPGA clock frequency, which
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results in significant slow downs compared to the equivalent software running on

a conventional processor.

Hence, we propose a method for making such cases efficient for implementation

on FPGAs. The HLS tools cannot pipeline non-statically bounded while loops but

they can pipeline statically bounded loops very efficiently. A restriction is that the

small optimization problems have to be independent from one another. Therefore,

we had to move the while loop to the top of the code and the for loop inside

it. As such the tool can pipeline the latter which results in significant speedups.

Consequently, the pseudocode that represents the modified architecture is shown in

Algorithm 2. The two architectures, i.e. initial and optimized are also graphically

depicted in Figures 5.4 and 5.5.

Algorithm 2 Optimized Reservoir Simulation (RS) pseudocode

1 /∗Al l v a r i a b l e s become ar rays ∗/
2 i n t a [ p i p e l i n e_s i z e ]
3 i n t b [ p i p e l i n e_s i z e ]
4 whi le ( a l l problems so lved )
5 f o r (n : a l l g r i d po in t s )
6 i f ( i n i t i a l i z a t i o n )
7 /∗ i n i t i a l i z a t i o n ∗/
8 a [ n]=amin
9 b [ n]=bmin

10 opera t i on 3
11 . . .
12 end i f
13 e l s e /∗whi le loop code ∗/
14 b [ n]=b [ n]+1
15 a [ n]=a [ n]+1
16 opera t i on 3
17 opera t i on 4
18 . . .
19 I f ( opt imiza t i on reached )
20 opera t i on 1
21 . . .
22 wr i t e r e s u l t [ n ]
23 so lved++
24 end i f
25 end e l s e
26 end f o r
27 end whi l e

The improvement of such an approach is that the hardware that would remain



5.1. Optimizations on a Single FPGA 121

unused while each loop is executing is now utilized by another optimization prob-

lem. Each independent problem will have exactly the same amount of iterations

inside the while loop as it had with the previous code.

Unrolling the for loop at the top was also investigated, however, no significant

benefits were obtained, hence, this option was rejected. That is because it led to

a small speedup at a cost of significantly high area overhead.

A significant optimization on the kernel compared to the ones presented in

[75] was the usage of vector types (float4) for the I/O in order to support 128bit,

a feature co-designed with and supported by the UNILOGIC platform. This,

along with the modification of the code segments that perform the I/O in order

to invoke 256 word bursts provided the significant reduction of the I/O overhead,

as was presented above.

Figure 5.4: Block diagram of initial architecture

For the initial kernel, a manual set of directives was chosen as the appropriate

directives were obvious. The main calculations are done inside the unbounded

while loop body which cannot take any performance oriented directive. The only

meaningful performance improvement was achieved by partitioning the temporary

input tables which allowed pipelining the smaller for loops over the components

in the code, including those inside the while loop.

Figure 5.5: Block diagram of optimized architecture

5.1.1.2 Earlier UNILOGIC & accelerator co-design enhancements

The first evaluation results, that mainly proved the feasibility of our approach, were

based on a single-FPGA board and they are presented in [75]. In this work, we

mainly reported execution metrics for two accelerators implementing the Michelsen
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and Hyperbolic algorithms, which are utilized in the calculation of the Rachford-

Rice [124] equation. The main outcome was that the UNILOGIC/UNIMEM ar-

chitecture can be implemented; even this very simple implementation on a single

FPGA triggered a 30% speedup of a multi-core CPU and a 2x to 13x better energy

consumption.

Moving to the multi-FPGA QFDB boards and the multi-node system, the ef-

ficiency of the intercommunication between the FPGAs, within the same and/or

in remote nodes, and the remote deployment became a matter of principal impor-

tance.

By analyzing the performance of the accelerator in our QFDB platform, we

realized that the problem was mainly I/O bound since the bottleneck was on the

AXI interconnect (which is connected to the memory controller) since its standard

version does not support more than a mere of two pending transactions. As we

already reported, in order to overcome this bottleneck we first incorporated burst

transactions and then we employed a wider datapath. Then we upgraded the

accelerators and all the design blocks in its datapath to match the maximum bus-

width supported by the AXI implementation on the new FPGAs, i.e. 128-bits

while still supporting bursts. The plots and tables on the 200 MHz designs, were

reported above in section 5.1.

Table 5.3: Execution time (ms) for a single semi-optimized
(pipeline 2) Michelsen core in various configurations

Time (ms) Optimization Version Frequency (MHz)

300 No Optimization 125
187 No Optimization 200
100 32-bit with bursts 125

29.5 128-bit with bursts 100
25.0 -//- 125
17.4 -//- 200
15.3 -//- 250
13.8 -//- 300
13.3 -//- 333

However, looking in Table 5.3 and Figure 5.6 we can see this this improvement

on our earlier designs reaching at that time 125 MHz, while in Figure 5.7 and on

the remaining rows of Table 5.3, we can see how the execution time dropped as
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Figure 5.6: Optimizations on early UNILOGIC designs, operating
at 125 MHz

we improved the design’s clock frequency. It even reaches the 333MHz frequency

barrier for a single clock domain design, as at that point the FGPA was not

congested, reaching a utilization of about 72%. The 333 MHz frequency is the

upper limit allowed by the Xilinx tools for the MPSoC ports.

Furthermore, we added more accelerators running in parallel. Here we also

included results with higher frequencies, as be seen in Table 5.4 and Figure 5.8.

Two different versions were implemented and tested. One has an AXI interconnect

between the accelerators and the MPSoC (and hence the DRAM memory). The

other does not, but instead the accelerators are connected directly to the MPSoC

ports. The second version, which triggers better performance, was implemented

and evaluated at two clock frequencies. At this point, moderate FPGA congestion

due to higher resource utilization, allowed clock frequency to reach 300 MHz.

Table 5.4: Execution time (ms) for muplitple semi-optimized
(pipeline=2) Michelsen cores running in a single FPGA

1x ACC 2x ACC 3x ACC 4x ACC Freq. (MHz) Ver.

15.3 10.4 9.7 9.3 250 AXI
11.6 6.9 6.1 5.9 250 no AXI
9.9 6.4 6.0 5.8 300 no AXI

Observing the results, we should note that the intervening AXI interconnect

hindered performance. Even with wide 128 bit buses and bursts, the latency of
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Figure 5.7: Improving clock frequency on the optimized design

the path to the memory, although quite low, again does not allow the path to be

saturated and fully utilized. This is the reason we get these differences in execution

times. To make sure it was this case, we again turned to observing the hardware

execution. Indeed, the latency of the non AXI version, dropped from 250ms down

to 210ms. Chipscope assisted measurement showed 42cc @200MHz (42cc× 1
200
'

210ns). As for the other two cases of Table 5.4, we should first note that the

value in bold, namely the 5.8ms, is the lowest execution time and quite lower that

the 9.3 ms achieved at the quad-accelerator version of our prior Trenz platform

reported in [75]. This corresponds to a 60% improvement, which also translated

to a 2 times faster execution than the 4-threaded CPU run. Another information

worth noticing on this table, is that execution speed reaches a boundary somewhere

around the 5.8ms to 6ms mark, and the improvement in frequency cannot offer

much once we come near this. This actually reveals a point where the DDR path

throughput gets saturated. The best performing software execution in the CPU

and then the corresponding best performing hardware execution in the FPGA, can

be seen in Tables 5.5 and 5.6.

This saturation was then investigated, and as reported through our latest evalu-

ation reported above, it corresponds to the 9 GBytes per second maximum memory

throughput, bottlenecked by the PL-to-PS and PS-to-memory interfacing. What

is more, by later incorporating more pending AXI transactions for local access
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Figure 5.8: Results for multiple accelerator cores, running in par-
allel, in a single FPGA, either with an intervening AXI interconnect

or directly connected to the MPSoC ports

Table 5.5: Best software execution times (ms) form single- and
four-threaded Software (CPU) execution (OpenMP)

CPU 1 thread CPU 4 threads
Data size 100K 200K 100K 200K
Hyperbolic 25.5 50 8.8 17.2
Michelsen 29 56 11.7 22.3

paths as well, diminished the negative effect of the intervening AXI that was seen

through Figure 5.4.

Table 5.6: Best hardware execution times (ms) for simple
(non-optimized) and optimized Michelsen Hardware Accelerators

(FPGA)

Data size 100K 200K SpeedUp vs. SW
Simple 8-core 117 235 0.1
Opt. 4-core AXI 9.3 18 1.2
Opt. 4-core no AXI 5.8 11.2 2

Importantly, at that time, in order to perform a design space exploration on the

Michelsen to be used as a reconfigurable accelerator, we have built two versions of

it: one with a deep pipeline and another one with a swallow one; the latter, simpler

version, utilizes 40K LUTs (14.5%), 65K CLB regs (12%), 8.7K CLBs (25%)

and 176 DSPs(7%), while the former utilizes 69K LUT (25%), 105K CLB reg
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Figure 5.9: Fully optimized accelerator (pipeline=1) execution at
various frequencies

(19%), 12K CLB (35%), 307 DSPs(12%). Although the performance-optimized

one consumes about 70% more resources than the resource-optimized version (in

terms of LUTs which seem to be the crucial resource for the complete FPGA

design), it can still be utilized in our system, by combining two reconfigurable

slots. However, in our performance exploration we opted for the use of the resource-

optimized version since it covers only one slot and its performance is more than

50% of the performance of the fully optimized one. This is important, when we

think of a design that targets partial reconfiguration, and does not pertain to

the usual flow that gives an inflexible, static FPGA design. Furthermore, this

lighter version also gives us more freedom in testing a variety of parallel execution

patterns.

Table 5.7: Extreme case measurements with fully (performance)
optimized Michelsen core (pipeline=1) to test accelerator limits and

investigate on DDR path saturation

Time (ms) Interconnection Freq. (MHz)
12.5 Managed AXI 333
8.9 Straight to PS port 300
8.4 -//- 333
8.2 -//- 350
7.9 -//- 380
7.7 -//- 400
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Still the deep pipeline version provided a useful aspect on the design explo-

ration, as this modules can test the saturation throughput of a single MPSoC

port. The results, on this aspect, can be seen through Table 5.7, and Figure 5.10.

The execution time is decreased almost linearly with the frequency increase. Note

that in the tables we report those numbers as extreme cases. This has mainly to

do with the clock frequency and the fact that we surpassed the 333 MHz MPSoC

port restriction. In order to do so, a clock wizard was added in the designs, inside

the reconfiguration logic. This is intervening between the PL clock generated by

the MPSoC and the clock signal that controls the main FPGA logic. We added

a configuration AXI lite port to this clock generation module (aka clock wizard),

in order to be able to alter the clock frequency after the FPGA fabric is config-

ured and running. So we initially synthesize and place and route the design with

the design tool’s maximum allowed frequency, which is 333 MHz for our devices.

Then we alter the clock frequency of the accelerator in runtime, configuring ap-

propriately the clock wizard through the AXI lite port, through processor simple

commands. The clock can thus be hot-switched to any desired frequency value.

We moved on with increasing it, up to the point we can still have the hardware

running sound, providing fully proven results and no error indication. By applying

this method we were able to successfully clock the accelerator up to 400MHz.

Table 5.8: Extreme case measurements (execution time in ms)
with 1x and 2x fully opt Michelsen cores (pipeline=1)

Freq. (MHz) 1x ACC 2x ACC
300 8.9 6.4
333 8.4 6.2
350 8.2 6.1

Moving to Table 5.8, we can see the results of our next design exploration

efforts, which include deploying two fully optimized cores, running in parallel on

a single FPGA. Figure 5.10 plots these results, along with the single accelerator

ones described above. Even though the performance improves, the improvement

is not linear as to the number of accelerators. This has to do with the memory

communication saturation point around the 6ms mark, which has been described

above. Also it verifies our assumption, that the resource-optimized version of

the accelerator, can be more convenient than the performance-optimized one for

design space exploration purposes; the former can give fully utilized 2x, 3x, or
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Figure 5.10: Two fully optimized cores (pipeline=1) running in
parallel on a single FPGA

4x design versions. On the other hand, the performance-optimized version proves

how efficient we can get through a single accelerator, connected to a single MPSoC

port. So if our limiting factor is the MPSoC ports, we can use less but performance

optimized accelerator versions, in a ’single accelerator per port’ approach.

5.2 Optimizations for remote (cross-FPGA) accel-

eration

An important milestone on the way to offer an FPGA unification platform, where

parallel accelerator tasks can run either locally or remotely in an effective manner,

is that of reaching a close match between local and remote execution times. Re-

mote in the sense of invoking an accelerator in a remote FPGA, which in turn will

have to operate on data that reside remotely. Using our data hungry, optimized

Michelsen accelerator core, makes this milestone harder to reach, but provides a

more sound proof. Even non perfect matches between local and remote execution,

would indicate that remote accelerator invocation is a viable alternative. For ex-

ample, a 30% degraded remote performance, would signify a benefit from invoking

an already configured remote accelerator slot, or, in a similar case, a pair of remote

accelerators. However, as we will describe below, we further opted for the closest

match possible.
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Not encompassing any specific optimizations for remote accelerator scenarios,

proves to greatly degrade performance. Using the same data sizes, and design

frequencies for ease of comparison, we measured the Michelsen accelerator execu-

tion to increase from 27 sec in the local execution scenario, to a discouraging 119

sec when remote invocation and remote data usage takes place. This happens as

latency now grows substantially, advancing from one node to the other, passing

through the GTH links and their surrounding logic, as well as through the ad-

ditional AXI interconnect on the remote node. Paired with AXI’s poor count of

allowable pending transactions, it leads to significant stalls while waiting for a re-

sponse to arrive, and before issuing subsequent requests. In order to confront such

an inefficiency, a series of optimizations had to be examined and incorporated. We

report here on two main optimizations, while we also present our research on two

more critical aspects, that can further fortify the UNILOGIC approach.

5.2.1 Hiding latency

More pending transactions had to be allowed, as this can compensate for the added

latency presented in the inter-FPGA path. The round trip, measured with hard-

ware monitoring through the Xilinx Chipscope tool flow, reached an impressively

low 240 cc @200MHz, thus (240cc× 1
200
' 1200ns). This is quite lower than what

we have seen reported by other multi-FPGA implementations. Nonetheless, this is

still 950 ns higher than the 250 ns latency presented in the local accelerator path.

In order to hide this added latency through ongoing transactions, we switched to a

completely manual AXI interconnect configuration. For this, Xilinx gives the op-

tion to enable manual interconnection configuration, referred to as "un-managed".

This non reversible process, halts any automatic configuration offered (such as

address mappings, automatically adding and removing slaves and masters, using

width and protocol converters and many other), and everything is left to the de-

signer’s discretion. Most importantly, a positive outcome is that through this

added manageability the pending transaction availability is affected, which can

now be substantially raised. The actual number depends on various interconnect

and related design parameters, and in our case the design parameters allowed for

the maximum allowance that can be offered, i.e. 32 pending transactions. These

ongoing -mostly burst- transactions add up to a total amount of time that is quite
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higher than the round trip time, thus eliminating stalls. This approach triggered

a significant performance increase, as recorded in row 2 of Table 5.9 and plot-

ted in Figure 5.11. The remote execution time now drops impressively from 119

sec down to 35 sec. This renders the local execution comparable, outperforming

remote execution by 32%.

Table 5.9: Execution time for remote FPGA accelerator utiliza-
tion. A Michelsen core with 128-bit bus and bursts is used

Local (sec) Remote (sec) Central AXI Version GTH link
27.15 77 default AXI 10.3 Gbps
27.15 23 un-managed/max-Pending AXI 10.3 Gbps
27.15 28.11 un-managed/max-Pending AXI 16.25 Gbps

5.2.1.1 An Analysis on Latency, Hop Count & Bursts

It is useful to devise a formal mathematical representation of the latency intro-

duced per node traversed, and in parallel of the burst size and burst count that

needs to be supported so that this latency can be hidden. If the metrics to be cal-

culated are met, then depending on the accelerated algorithm, by encompassing a

proper data fetch mechanism we should be able to absorb the introduced latency.

In our implementation, that deploys the AXI protocol and interconnects, a burst

can reach a maximum size of 4 KB. With the data bus at its maximum allowed

width of 128 bits (16 Bytes), and with a clock cycle (cc) of 5 nanoseconds (ns) for

our 200 MHz designs, the burst duration, BD(1), equals:

BD(1) =
BURST_SIZE

BUS_WIDTH

which for the implementation sizes mentioned above accounts for BD(1) = 4096
16

=

256 cc and in nanoseconds BD(1) = 256 ∗ 5 ns = 1280 ns. In order to further

examine the amount of latency that can be hidden by a varying number of bursts,

we should determine the multi-burst duration. Since the single burst duration,

BD(1), is 1280 ns, for a number of ’b’ back to back bursts we get a total burst

duration, BD(b), equal to:

BD(b) =
BURST_SIZE

BUS_WIDTH
× b (5.1)
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which actually results to BD(b) = BD(1)× b = 1280ns× b

Then, to properly formalize latency, we should firstly focus on the following

latency related designations:

◦ DDR access from PL (DDRL): 250 ns from data request to data response,

which is independent of the PL clock. This equals to 50cc @200MHz

◦ C2C latency (C2CL): 220 ns or 44cc @200MHz, applicable at any FPGA bound-

ary

◦ RTT between two FPGAs (RTT(1)): 1200 ns or 240cc @200MHz. This is the

Round Trip Time for a remote FPGA access, including DDR access and the

four related FPGA boundaries, thus four times the C2C latency

◦ Intra-FPGA latency (INTRAL) is the time spent in the intra-FPGA circuits,

which however are minimal, as the UNILOGIC related translation circuits oper-

ate on the fly, adding no extra clock cycles to the paths they intervene. This will

be calculated below, and includes both forward (request phase) and backward

(response phase) traversing of the FPGA logic

Now, if RTT(1) is the Round Trip Time to travel 1 hop away, and RTT(h)

corresponds to traversing ’h’ hops, we get:

RTT (1) = C2CL × 4 +DDRL + INTRAL × 2 (5.2)

Since the above latency is was measured on the prototype to reach a total of

1200ns, while also verified by the partial measurements that resulted to the num-

bers reported above, we get:

RTT (1) = 220ns× 4 + 250 + INTRAL × 2 = 1200ns

This means that the INTRAL accounts for 35 ns per FPGA, which as mentioned

accounts both for forward and backward FPGA traversal. Moving on to the gen-

eralized RTT(h) type, we get:

RTT (h) = C2CL × 4× h+DDRL + INTRAL × (h+ 1) (5.3)

or in nanoseconds (ns):

RTT (h) = 220× 4× h+ 250 + 35× (h+ 1)
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Now if we want to calculate the minimum number of bursts required to hide the

latency for a number of ’h’ traversed hops, or symmetrically, to find the maximum

hop count that can be traversed for a specific implementation that supports a

number of ’b’ bursts, we should rely on the following equation:

RTT (h) = BD(b) =⇒

C2CL × 4× h+DDRL + INTRAL × (h+ 1) =
BURST_SIZE

BUS_WIDTH
× b (5.4)

and using our implementation specific numbers, we get:

RTT (h) = BD(b) =⇒ 220× 4× h+ 250 + 35× (h+ 1) = b× 1280

Then solving for ’h’ or for ’b’, one gets the maximum hop count, or the minimum

burst number for a specific implementation. As a short reference, we include a

small number of representative examples in Table 5.10.

Table 5.10: Correspondence between hop count and number of
bursts

Hop Count (h) No. of Bursts (b)
1 1
4 3
8 6
11 8
15 11
44 32

Elaborating on our implementation of the Michelsen accelerator as a use case,

every data read phase includes 2048 elements, of 16 4-Byte float numbers. This

results to a data transfer size of 2048 × 16 × 4 Bytes = 128 KB. This size is

equal to 32× 4 KB or in other words it gets transferred through 32 AXI bursts2.

With 32 bursts we could hide a round trip latency corresponding up to 44 hops.

Taking into account that our 64-FPGA prototype has a max distance of 3 hops,

the performance of this accelerator implementation could scale to much higher

platform sizes.

2In our final implementation, each 4 KB AXI burst is fulfilled through 16 bursts of 16 cycles
each. 16 cycles on a 128 bit bus transfer 256 Bytes, so 16 small bursts result to the 4 KB burst
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Figure 5.11: Accelerator execution times for local and remote
FPGA runs. A remote run includes remote accelerator configura-
tion, and then remote memory usage. Almost similar local and

remote execution time is achieved

5.2.2 Supporting higher bandwidths

Further investigating, and monitoring the actual execution patterns on the real re-

configurable hardware, we noticed that the bottleneck of the design has now been

shifted from the AXI interconnect, to the inter-FPGA links, which were at that

time set to 10.3 Gbps. Such speed is mostly supported by both SFP+ connectors

and copper cabling as well as board traces connecting FPGAs on the same board.

It is also the maximum operational speed on the commercial platforms we have

utilized in the initial phases of validation. To further improve this, while making

good use of the highly efficient QFDB board design, we designed an improved ver-

sion of the chip2chip (C2C) module. This utilizes the maximum FPGA transceiver

speed supported by the current devices, reaching 16.3 Gbps. Deploying this new

C2C module led to significantly reducing remote acceleration time, as seen in the

3rd row of Table 5.9. Time to solution now reaches 28.11 sec, which now brings

the remote acceleration almost on a par with the local one, now getting outper-

formed by a marginal 3.5%. In other words, remote accelerator delivers almost

the same performance, which greatly consolidates the UNILOGIC architecture in

its principal aim to offer efficiently unified, reconfigurable resources in an effective,

virtualized environment.
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5.2.3 Further reducing latency

In parallel, we continued our efforts in order to achieve lower latency. On this

directions, we targeted on the chip2chip (C2C) IP block, as it contributes a main

portion of the inter-FPGA latency. The C2C which embodies the Xilinx’s Aurora

IP as presented in section 4.2.6, introduces a latency of about 220ns, which is

appended at a path every time it crosses a chip boundary, i.e. at every FPGA

boundary. This means that it gets added four times in a cross-chip round trip

time (RTT). We replaced the Aurora IP with a custom, low-latency Serialization-

Deserialization (SerDes) IP block, that directly controls the GTH transceivers.

This was measured to offer substantially reduced latency, now falling to 90ns at

each FPGA boundary. Our efforts on this custom C2C module have been detailed

above in section 4.2.6.1. This reduction is reflected to the RTT, which dropped

from the 1200ns reported above, down to an impressive 680ns. Although even the

previous 1200ns of latency allowed a near-match of local to remote acceleration,

this significantly reduced latency of 680ns allows for a higher number of intermedi-

ate nodes (hops) to be traversed, e.g. from an accelerator to the remote memory it

accesses, with no considerable performance degradation. What is more, the initial

setup of a remote accelerator comes at almost zero cost, especially compared to

the time it will spend for the designated job. Real hardware tests on remote accel-

eration tasks revealed that, even when the maximum distance of our implemented

topology had to be traversed (i.e. three FPGAs away), no significant performance

degradation occurs.

5.2.3.1 Updating the Hop Count Analysis under Reduced Latency

Table 5.11: Updated results for hop & burst count correspon-
dence, deploying the custom C2C that reduces latency to 90 ns

Hop Count (h) No. of Bursts (b)
1 0.5
6 2
9 3
12 4
15 5
103 32
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If we want to update our analysis based on the custom C2C latency, we should

use this reduced latency to recalculate equation (5.4), which now results to:

RTT (h) = BD(b) =⇒ 90× 4× h+ 250 + 35× (h+ 1) = b× 1280

If we solve this equation either for the number of hops ’h’, or for the number

of bursts ’b’ we get highly improved results. Table 5.11 now gives the updated

representative examples of Table 5.10, for the same or similar hop count.

5.2.4 Further enhancing connectivity

As data transfer, or equally throughput availability, is a common cause of bottle-

necks, additional research that targets optimizations for inter-FPGA communica-

tion throughput is beneficial. A favorable approach is to further enhance the C2C

IP block by incorporating link bonding, as presented in 4.2.6. This way, pairs of

transceivers are presented through a single AXI interface to the rest of the FPGA

logic, giving the notion of a single link of double the throughput. For the GTH

transceivers this means 2 × 16.3Gbps = 32.6Gbps of throughput for intra-QFDB

communication. Such a higher bandwidth availability relaxes the link’s marginal

capacity, and allows our system to efficiently support applications that require very

high bandwidths between Workers. For inter-QFDB communication, link bond-

ing translates to 2 × 10.3125Gbps = 20.625Gbps, contributing for a similar effect

within larger "neighborhoods" of Workers.

We would additionally like remind the aforementioned state-of-the-art improve-

ments on available FPGA transceiver bandwidths which have currently reached up

to 58 Gbps or even greater, as in the case of Intel FPGA incorporating transceivers

up to the 112 Gbps mark. Furthermore, a variety of FPGA or MPSoC flavors,

from either Xilinx or other vendors, incorporate DDR controllers that offer much

higher memory bandwidths, while many of these controllers can be encompassed

per FPGA. This manifests that the memory bandwidth domain, is not to be consid-

ered as a typical disadvantage of the reconfigurable technology field. Importantly,

the UNILOGIC approach and techniques can gracefully be deployed to maximize

utilization of available capabilities in any state-of-the-art platform alternative.
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Chapter 6

Full System Evaluation

In this section we evaluate the UNILOGIC architecture on the QFDB-based pro-

totype described in Section 4.1. We progressively deploy and evaluate the ar-

chitecture, introducing the hardware accelerators initially on a single FPGA and

eventually on more FPGAs on a single or multiple QFDBs of our prototype. Then,

reaching to the final evaluation step, our architecture is deployed on all QFDBs of

our platform, allowing acceleration tasks to be spread and running in parallel on all

64 FPGAs of the prototype. Depending on the accelerator characteristics, proper

fine-tuning for compute intensive accelerators, or appropriate data distribution

for data intensive accelerators, allows the architecture to scale efficiently. There-

fore two opposite cases of algorithms, and thus two resulting diverse accelerators,

are reported, providing the means for a comprehensive UNILOGIC evaluation.

Both algorithms are based on third party software, in order to fulfill the needs

of real life computational loads. This means that the evaluation is not based on

synthetic, possibly convenient workloads, thus giving higher credibility to the re-

sults presented. The first case concerns the aforementioned Michelsen algorithm,

which after a thorough flow of optimizations, leads to a data-intensive acceler-

ator implementation. In the second case, deploying the KNP algorithm results

in a compute-intensive accelerator. This KNP accelerator is based on the Lukas

Kanade’s optical flow algorithm, widely used in monitoring road traffic, with more

deployment details presented in section 6.3.

In the same manner as in Chapter 5, I devised the whole platform hardware,

with the KNP HLS code contributed by Synelixis, Acciona and Politecnico di

Torino (PoliTo). I set up the whole FPGA firmware which implements the com-

plete UNILOGIC architecture through its Worker building block. Also I explored

on the execution scenarios for the platform-wide testing, and the testing itself,
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while also devised the architecture for remote access to the platform. The CPU

and GPU porting and executions for the Michelsen and the KNP accelerators was

taken care by Synelixis and Acciona/PoliTo respectively.

6.1 Case 1: Evaluation with the Data-Intensive

Michelsen Accelerator Core

In order to evaluate how the UNILOGIC approach scales, we ported our architec-

ture on the final prototype, incorporating 64 FPGAs, as presented in Section 4.1.5.

The UNILOGIC architecture is eventually implemented on all the FPGAs, allow-

ing for reconfigurable resource unification and promoting parallel execution of dis-

tributed accelerators. The advantage of UNILOGIC is that it offers and utilizes

the resources of many FPGAs in a way that they are all treated as one, unified,

parallel-processing platform. Hence, it is important to evaluate the performance

of UNILOGIC when one such parallelizable application is to be processed.

Figure 6.1: Michelsen accelerator distribution for 2 interconnected
QFDBs

For this test, the Michelsen accelerator core has been used. Each QFDB hosts

4 FPGAs and one of them, which we have designated above as the "Network"

FPGA, is loaded with added hardware functionality, compared to the other three.

This, as reported before, is owed to the networking infrastructure it hosts, in order

to cooperate with other QFDBs. This limits the space available for accelerator
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core instantiation, thereby, allowing for a total of three. Therefore, as many as

240 hardware instances have been deployed across the evaluation platform that

consists of 64 FPGAs; 48 FPGAs hosting 4 Michelsen accelerator cores while the

remaining 16 hosting 3. This is due to the particular evaluation setup that consists

of a platform that uses 16 QFDBs.

Figure 6.1 shows the accelerator core distribution across a simple setup of two

QFDBs. Hence, FPGAs 1 and 5 host three in contrast to the remaining FPGAs

that can host four. Inter-QFDB communication takes place via FPGAs 1 and

5, which is why there is less space available for accelerator hosting. Note that

the accelerator concentrations (3 and 4) are a function of the algorithm that they

realize, i.e. Michelsen. Simpler/more complex algorithms lead to accelerators with

smaller/greater hardware imprint, hence, more/less can be hosted within the same

FPGA.

Figure 6.2: 240 Michelsen accelerator cores (green boxes) and a
single OS (red circle) in 64 FPGAs

Subsequently, Figure 6.2 shows the entire many-accelerator evaluation setup.

Specifically, it consists of two interconnected baseboards, each hosting 8 QFDBs,

Figure 4.16, i.e. 16 in total. Hence, Figure 6.2, shows the 240 Michelsen accelerator

core distribution, depicted in green "M" labeled boxes within a pair of baseboards,

and with the QFDBs interconnected in the hypercube topology of Figure 4.9. Each

baseboard hosts 120 Michelsen accelerators and the two baseboards are connected

together via the two SFP+ cables in the middle of Figure 6.2. Finally, for one

of the two baseboards, a Linux Operating System has been hosted on the ARM
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Table 6.1: Execution times (sec) using 1 vs 240 in-parallel accel-
erator cores

1 accel. core 240 accel. cores
Execution time (sec) 27.15 0.179

processors of FPGA 1 of Q6, depicted in a red circle, to facilitate the experiment,

i.e. user-interfacing.

Furthermore, owed to its parallelizable nature, the complete application task

has been separated into 2400 sub-tasks that can be distributed across the eval-

uation platform in different combinations. Each accelerator core can tackle one

sub-task at a time. Hence, at the worst, the total workload can be served using

a single accelerator core, i.e. fully serialized implementation, or, at best, in ten

groups of 240 in-parallel executions. Each task at both its initialization phase

as well as the subsequent completion phase, entails light synchronization, which

slightly affects overall execution time, due to the beneficial implementation’s low

latency attribute. The aforementioned examples are the two extremes of the eval-

uation scenario and are shown along with their corresponding completion times

in Table 6.1. An initial observation is that with full accelerator core utilization, a

152x speedup over the equivalent in-series execution has been measured.

Figure 6.3: Speedup vs no. of accelerators in the case of a single
accelerator per FPGA
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In-between those two figures, lays a set of measurements that shows the plat-

form’s execution times under varying numbers of accelerator cores and the cor-

responding speedups. Ideally, the resulting speedup should increase linearly with

the number of accelerator cores. For instance, Figure 6.3 shows the relationship

between speedup and number of accelerators for the scenario where a single accel-

erator per FPGA is used, i.e. a maximum of 64 accelerators since the evaluation

setup uses 64 FPGAs. Most points of the results plotted are reported in detail

through Table 6.2, where the GFLOPS equivalent is also presented. As we can

see, a near-perfect scalability has been measured, since the maximum number of

accelerators yields an almost identical processing speedup.

Table 6.2: Results when using one Michelsen accelerator per
FPGA: Execution time, GFLOPS and speedup

Accelerators Exec Time (sec) GFLOPS speedup
1 27.15 21.6 1.00
2 13.64 42.9 1.99
3 9.11 64.4 2.98
4 6.82 85.9 3.98
6 4.55 129 5.97
8 3.41 172 7.97
12 2.27 258 11.95
16 1.71 343 15.90
20 1.37 429 19.88
24 1.14 515 23.82
30 0.91 643 29.78
32 0.85 686 31.78
40 0.68 858 39.72
48 0.57 1030 47.68
60 0.46 1287 59.56
64 0.43 1372 63.52

A similar pattern has been measured in the case of a maximum of 2 accelerators

per FPGA, hence, a maximum of 128 accelerators in total. Nonetheless, a slight

slope reduction in the speedup versus number of accelerators plot starts to unravel

an important point that needs to be taken into account. Compute-intensive ap-

plications such as the Michelsen may rely on considerable data sizes in order to

yield results. This can lead to memory bottlenecks that, in turn, begin to pose

performance limitations. The Michelsen implementation has been one such case,
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whereby the accelerator core operates so fast that runs the risk of being starved

of input data.

In the case of the Michelsen accelerator, this phenomenon is further accentuated

when the number of accelerators per FPGA becomes 3 and 4. Figure 6.4 shows the

measured speedup in relation to number of accelerators for parallel execution for

all four cases, i.e. 1, 2, 3 and 4 accelerator(s) per FPGA, resulting in a maximum

of 64, 128, 192 and 240 respectively. Representative result points are also reported

in Table 6.3 along with execution times collected through a number of repetitive

measurements. First, it is clear that a one-to-one relation between speedup versus

number of accelerators exists only in the case of one core per FPGA. This is

almost the case for two cores per FPGA while a distinct slope reduction appears

in the cases of three and four cores per FPGA. Naturally, a less data-hungry, in

terms of processing speed to data transfer ratio, accelerator core would more easily

maintain the one-to-one ratio. Various such revisions of the Michelsen accelerator

where deployed to validate this, however achieving linear speedup only in the

expense of reduced time to solution, hence, less speedup compared to that shown

in Figures 6.3 and 6.4.

Figure 6.4: Speedup vs no. of accelerators, compared to a single
accelerator execution, and for varying number of activated acceler-

ators per FPGA
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Table 6.3: Representative result points when deploying multi-
ple Michelsen accelerators per FPGA: Execution time (sec) and

speedup compared to single-accelerator execution
To

ta
l

A
cc
el
er
at
or
s

Accelerators per FPGA

1 2 3 4

Time Speedup Time Speedup Time Speedup Time Speedup

1 27.15 1.00 – – – – – –
2 13.64 1.99 14.21 1.91 – – – –
3 9.11 2.98 – – 10.17 2.67 – –
4 6.82 3.98 7.37 3.68 – – – –
8 3.41 7.97 3.69 7.36 – – – –
12 2.27 11.95 2.45 11.06 2.75 9.88 – –
15 1.82 14.93 – – 2.21 12.29 2.74 9.91
16 1.71 15.90 1.85 14.77 – – – –
24 1.14 23.82 1.24 21.98 1.41 19.25 – –
30 0.91 29.78 0.98 27.58 1.14 23.72 1.38 19.63
48 0.57 47.68 0.62 43.60 0.72 37.68 – –
60 0.46 59.56 0.50 54.80 0.58 46.84 0.70 38.90
120 – – 0.248 109.40 0.291 93.45 0.352 77.2
128 – – 0.233 116.53 – – – –
180 – – – – 0.195 139.32 0.236 115.1
192 – – – – 0.183 148.45 – –
240 – – – – – – 0.179 152.1

For the particular evaluation setup, the maximum speedup achievable, while

also considering accelerator count, can be considered the 148x figure achieved for

192 total accelerator cores in a three-core-per-FPGA setup, offering a favorable

consumption of hardware resources to speedup ratio. The 240 core setup improves

performance marginally, i.e. raising to 152x, albeit considerably increasing core

count. Nevertheless, this is tied to the particular accelerator type. The advantage

of UNILOGIC is that it allows for the use of alternative reservoir simulation ac-

celerator types, that could potentially prove to be even more efficient compared to

Michelsen. The system’s performance is a function of a number of parameters, the

most important being accelerator core size and availability of data. The former has

to do with accelerator core occupancy of the hardware resources, i.e. the smaller

the hardware imprint, the more can fit in a single FPGA. The latter has to do

with how quickly the data can be provided to the accelerator core so that it does
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not idle during processing, i.e. the faster the memory controller throughput or the

greater the memory controller count, the faster data can be delivered.

For example, in the case of the Michelsen, the accelerator core processes data

very fast, therefore, the data had to be transferred close to the point of processing

so that they could be introduced quick enough to the accelerators. Hence, each

FPGA had the corresponding data stored in its local DDR while using all four ports

of the Processing System in parallel. This way the maximum memory throughput

of 9 to 10 GB/s can solely be shared among accelerators of the same FPGA.

This way notable performance degradation does not occur in the case of a single

accelerator per FPGA, minor deviations have been recorded in the case of two

accelerators, while in the cases of three and four, data access bottlenecks begin to

play a more considerable role.

6.2 Comparison & Power Efficiency Evaluation

The custom built QFDB, as mentioned in section 4.1, features many power sensors

which can provide accurate power consumption measurements for our platform.

We measured power consumption of each FPGA that encompasses the complete

UNILOGIC architecture, with 4 Michelsen accelerators operating in paraller. This

reaches a mere of 8.2 watts, as seen in the 1st row of Table 6.4, including the DDR

consumption. As stated before, this hardware configuration yields 73.3 GFLOPS

per FPGA, which corresponds to a power efficiency of almost 9 GFLOPS per

Watt. This power efficiency is comparable to the Top500’s [112] and Green500’s

[37] GFLOPS/watt measurements [106], which however were measured in 2019

using a 7nm technology and benchmarks that usually perform better than real-life

applications [95] [96]. Furthermore, it has the potential to be further improved

significantly, as we will explain below in this section.

It is useful to also report that power consumption delta (i.e. the excess power

consumed when acceleration is ongoing as opposed to a programmed but idling

FPGA), adds up to just 3.6 Watts. On the other hand, if we take take into account

the full system consumption, measuring the power entering each chassis whilst

acceleration is in full-throttle, and dividing this by the aggregate FPGA count, we

end up to an all-included consumption equivalent of 12 Watts per MPSoC device.
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Table 6.4: Power Efficiency results, both for the quad-Michelsen
scenario, as well as for the matrixMult core. Both FPGA power

consumption is given, as well as power Delta

Accelerator
Watts per FPGA

GFLOPs
GFLOPs per Watt

(Watt-Delta) (Delta)
Michelsen (4x) 8.2 (3.6) 73.3 9 (20.3)
Matrix Mult. 16.2 (11.3) 275 17 (24)

In order to have a power efficiency comparison of our current system accelera-

tion and a high scale alternative, we ported the same application to a recent Dell

PowerEdge T630 Server, utilizing all Virtual cores. This Dell server includes 36

cores, or equally 72 virtual cores (threads), based on the Intel Xeon E5-v4 pro-

cessor family. Compared to a single UNILOGIC chassis (half our prototype), we

measured an improvement gained with our approach of 2.67x regarding speedup,

and an even more appealing 46x improvement regarding energy to solution, as

seen in Table 6.5. Deploying both UNILOGIC chassis almost doubles speedup,

now reaching 5.31x, while preserving the same energy efficiency. What is more,

the 14 nm technology of the CPU server should be considered at least a generation

ahead of our FPGA’s 16 nm, which directly affects consumption.

Table 6.5: Evaluation of the UNILOGIC-Blade vs. a CPU-Blade

Number of Speedup Over 36-core Energy Efficiency
UNILOGIC Blades blade (72 Vcores) over CPU-blade

1 2.67 46
2 5.31 46

Furthermore, in order to compare the UNILOGIC system with GPU execu-

tion, we ported the application deploying the Nvidia 980GTX. The execution time

for the same dataset reached 3.6 seconds in the GPU, while in Table 6.6 this is

compared to a varying number of QFDBs, along with the related speedup and

energy consumption measurements. The QFDB related numbers are taken from

Table 6.3, and correspond to the worst-scaling scenario of deploying four acceler-

ators per FPGA. The resulting numbers show a single QFDB outperforming the

GPU execution by 30%, while being almost eight times more energy efficient. The

energy efficiency, reported as energy to solution, remains almost stable as we scale

to more QFDBs, while the performance, i.e. time to solution, reaches a ten times
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improvement, compared to the GPU, when deploying a single UNILOGIC blade,

and about 20 times for two blades, i.e. the full prototype.

Table 6.6: Comparison on the Michelsen execution on the UNI-
LOGIC platform (15 accelerators per QFDB) versus GPU execution

Platform
Runtime

SpeedUp
Energy Energy

(s) (J) Efficiency
GPU (Nvidia 980GTX) 3.63 - 1018 -

1x QFDB 2.74 1.3 131 7.8
4x QFDB 0.70 5.2 131 7.8

8x QFDB (1 blade) 0.35 10.4 133 7.7
16x QFDB (2 blades) 0.18 20.4 134 7.6

Regarding further improvement potential, we should point out that the imple-

mented and primarily used Michelsen accelerator actually has a data transfer to

computation ratio that does not favor consumption metrics. However it consti-

tutes our selected accelerator case, as it is better fitted for our prime requirement

to stress the system in terms of data traffic. This way we could deeper investi-

gate on the system’s unification behavior under stressful traffic. Accelerator cores

that apply a higher computation to data transfer ration, benefit even more by the

FPGA’s low power consumption. We should also mention that we report on our

full-prototype design for fairness, which is clocked at 200 MHz, whereas we have

single QFDB (4x FPGA) design versions operating at 333 MHz, with respective

performance improvement, and comparatively lower power overhead.

Another metric, in a way related to the previous one, is DSP utilization. DSPs

are the best performing blocks of the FPGA as far as FLOPs are concerned, and

utilized mostly by computation oriented hardware. Our 4x Michelsen accelerator

design utilizes just about 30% of the total DSPs available, indicating that the

platform is able to reach further improved power efficiency. Accelerator cores that

exploit the majority of the DSPs available are certain to reach a much higher

efficiency mark.

Coming to confirm this, we report on another accelerator [14] implemented on

the QFDB, that reaches an impressive 275 GFLOPs per FPGA. This is likewise

measured on a true case scenario, including all the data transfer back-and-forth

the off-chip DDR, and was developed by the FORTH team1 under the ExaNeSt

1Foundation for Research and Technology - Hellas (FORTH), www.forth.gr
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project [62]. This accelerator corresponds to a highly optimized and MPSoC-

tailored matrix multiplication core. This core is parameterizable to different sizes,

with the reported performance achieved for a version utilizing 82% of DSPs, and

56% of LUTs. The relatively low LUT utilization allows this design to fit in the

UNILOGIC framework, as the supporting excess logic requires just about 12% to

23% of LUTs. As for power efficiency, and looking in the 2nd row of Table 6.4,

again power sensor monitoring, cross verified with lab tests observing lab power

supplies, yielded 16.2 Watts for this accelerator version, which accounts for an

almost doubled efficiency of 17 GFLOPs per watt.

Finally it’s worth reporting that our selected Worker device is a medium sized

MPSoC, considering the current MPSoC range. As an example, even if we con-

sider the currently available XCZU15EG MPSoC, which is pin-compatible to our

XCZU9EG, it includes 25% more LUTs and 40% more DSPs, and is thus capable

to offer a proportionate improvement in term of FLOPs at a very modest con-

sumption increase (as only the extra logic/DSPs’ consumption is to be accrued).

Furthermore, based on currently available technologies and the graceful scaling

characteristics of the UNILOGIC architecture, a projection to exascale perfor-

mance can be found in Appendix E.

6.3 Case 2: EvaluationWith the Compute-Intensive

KNP Accelerator Core

In order to provide additional results on the performance of UNILOGIC, a sec-

ond accelerator type has been introduced to the evaluation platform, namely the

KNP kernel. This kernel is based on Lucas Kanade’s Optical Flow algorithm and

it is widely used in monitoring average road traffic speed. This is achieved by

using video streams coming from standard surveillance road cameras, as seen in

Figure 6.5, while more details about the kernel implementation can be found in

[5].

For the KNP kernel, the evaluation setup differs to that of the Michelsen in that

the FPGA can host a maximum of two accelerator modules. Hence, comparatively,

KNP takes up more hardware resources than the Michelsen. On the other hand,

it processes data at a rate that allows for remote storage. This means, that under
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Figure 6.5: Optical Flow algorithm presentation - KNP

the UNILOGIC optimizations for cross-FPGA acceleration, data do not need to

be stored locally for avoidance of delays incurred due to lack of accelerator input

data, as could be the case for Michelsen. Instead, it is the memory of a single

FPGA in the QFDB that is solely used for data storage, and thus all the acceler-

ators efficiently access the same memory, mostly benefiting from the UNILOGIC

architecture. So, as the KNP accelerator is compute intensive, the UNILOGIC

implementation helps to avoid memory contention. Thus the execution time is

not affected significantly by just using a single memory data source. This helps

illustrate the functional advantages of UNILOGIC; a single storage point for the

input frames is needed for all the accelerators that work on different parts of it,

while no performance degradation is incurred although remote DDR is used.

The execution was initially performed using one QFDB, which, as shown in Ta-

ble 6.7, achieves the real-time requirements for such an application. Subsequently,

a second QFDB was deployed so that workload is shared between two QFDBs in

order to provide a significant runtime margin as I/O from the platform to a re-

mote server or workstation may add additional overheads. Similarly distinct, real

time streams can be processed in parallel. Each QFDB can be assigned to process

different video streams from different cameras in real-time.

The evaluation results in Table 6.7 as well as Figure 6.6, clearly show that the

scalability of the specific application running on multiple QFDBs is guaranteed.

That is, the performance increase is linear to the amount of accelerators deployed

across all accelerators from both QFDBs. Finally, Table 6.8 provides additional

information on how the execution of the KNP kernel on different processing plat-

forms compares. These are a CPU, a GPU, two FPGA architectures and, finally,
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Table 6.7: Execution times of the KNP kernel in up to 2 QFDBs
(8 FPGAs) for 60 frames

Accelerators per FPGA Execution
time (s)

Number of
accelerators

Relative
speedupF1 F2 F3 F4

1 6.40 1 1.00
2 3.20 2 2.00
2 1 2.25 3 2.85
2 2 1.63 4 3.92
2 2 2 1.11 6 5.78
2 2 2 2 0.81 8 7.89
3 3 3 3 0.55 12 11.64
4 4 4 4 0.40 16 15.81

Figure 6.6: Optical Flow algorithm (KNP) speedup while activat-
ing multiple accelerators, compared to a single accelerator execution

the UNILOGIC scheme with a pair of QFDBs. The listed results suggest that

the density provided by the QFDB, in conjunction with UNILOGIC, create a

processing setup that can achieve significant results with respect to performance,

especially for applications suited for parallel execution such as KNP.

Specifically, utilizing a single QFDB outperforms the CPU implementation by

a factor of 446 and the GPU by a factor of 3. Moreover, it outperforms the

other FPGA implementations by a factor of 2.7, mostly due to the extra paral-

lelization provided by the utilization of a QFDB’s 4 FPGAs. Also, employing a

second QFDB, linearly increases the performance gains over the other platforms

by a factor of 2. Slight slope variations occur mainly due to imperfect dataset
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distribution.

Table 6.8: Performance and Energy Efficiency per frame for the
KNP algorithm

Parameters
CPU Intel

Xeon
@3.5GHz

GPU
NVIDIA
GeForce
GTX960

FPGA

Virtex 7
Virtex

Ultrascale+
(AWS-EC2)

1x QFDB
(8 accel.)

2x QFDBs
(16 accel.)

Device time (ms) 5925.8 42.7 36.3 37.3 13.3 6.7
SpeedUp vs. CPU 1 139 163 159 446 884
Device power (W) 10 75 8.4 8 12 24
Energy (mJ) 59258 3202.5 304.9 298.4 159.6 160.8
Energy Efficiency 1.0 18.5 194.3 198.6 371.3 368.5

With respect to energy efficiency, the results are also shown in Table 6.8.

The power consumption measurements of the CPU and the Ultrascale+ FPGA

are taken from the power reporting tool of the Amazon AWS, while the GPU

power consumption was measured using the NVIDIA System Management Inter-

face (NVIDIA-SMI).The power consumption of the Virtex 7 FPGA was estimated

using the Xilinx Power Estimator (XPE). Finally, the QFDB’s power consump-

tion was measured using the dedicated power measuring circuitry provided by the

board. The power consumption presented refers to the power consumption of each

respective platform minus the power consumption in the idle state. From these

results we can see that the FPGAs offer an impressive two orders of magnitude

less energy consumption than a CPU and one order of magnitude less than a GPU.

Finally, all the FPGA implementations offer comparable energy efficiency with the

QFDB being almost twice more efficient.
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Chapter 7

Future Work

This section addresses the main challenges and issues that are currently under

investigation that will result in a complete and robust framework that has UNI-

LOGIC at its core. Hence, we are currently working on extending the runtime

system with new features which will significantly increase the productivity of de-

velopers. This includes the development of a toolset for a fully-automated devel-

opment flow of UNILOGIC-compatible hardware accelerators, as well as a toolset

for the decentralized management of a global acceleration library. Building such

an acceleration library is also an important part of the ongoing work, with several

widely-used math modules evaluated so that they can be added. Furthermore, we

are experimenting with efficient HPC application candidates in other areas such

as potential well analysis which is key in quantum mechanics, shock polars being

important in aerodynamics, plane frame analysis used on structural as well as civil

engineering, complex chemical equilibrium and satellite space imaging [92, 57].

Moreover, we investigate emerging, newly launched solutions, which may well

allow for the implementation of the UNILOGIC architecture in an even more

efficient manner. Such candidates include the newly introduced Xilinx Versal

Adaptive Compute Acceleration Platform (ACAP), which combines processors

and reconfigurable logic rich in DSPs, together with Vector processors; it also

deploys transceivers that bring off-chip throughput to the Tera-bit/sec range. As

another candidate, the recently launched Xilinx Alveo Data Center accelerator

cards feature reconfigurable solutions that overcome both (i) memory saturation

points, through the use of High Bandwidth Memory (HBM2) offering 460GB/s

bandwidth, as well as (ii) interconnection bottlenecks with a few Tera-bits/sec

of aggregate transceiver throughput. In addition, Intel, which formerly acquired

Altera, encompasses the GX/GXT/GXE transceivers, reaching up to 57.8 Gbps.
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Intel has also delivered the 10nm Agilex FPGA SoC family [19], also incorporating

ARM A53 processor cores and featuring transceivers capable of up to 112 Gbps,

increased DSP capabilities and coherent interconnect to Intel Xeon processors,

providing a platform for high performance and low power solutions, for data cen-

ter, networking, as well as edge computing applications. Based on the UNILOGIC

characteristics, i.e the exploitation of powerful FPGA-to-FPGA interconnection as

well as high memory bandwidth, it is expected that those new devices will allow

for even more efficient implementations of HPC systems based on the proposed

architecture.
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Chapter 8

Conclusion

One of the most active research areas in computer architecture is that of the HPC

systems. An important challenge is the energy efficiency of today’s HPC systems,

which cannot be improved simply by scaling the numbers of CPU cores alone.

This motivated a move towards heterogeneous systems including GPUs, Vector

Processors and FPGAs.

This thesis presents the UNILOGIC architecture for deploying and program-

ming HPC heterogeneous systems, incorporating multiple CPUs and FPGAs. In

order to increase programmability, the architecture offers a unified environment

where all the reconfigurable resources can be seamlessly used by any processor/-

operating system. Moreover, the architecture provides hardware virtualization of

the reconfigurable logic so that the hardware accelerators can be shared by several

applications or tasks.

In terms of performance, we show that the architecture can efficiently scale

while it introduces a low overhead in the communication latency. In particular, to

evaluate UNILOGIC, we have built a prototype consisting of 64 Xilinx MPSoCs

each incorporating 4 ARM Cores and significant reconfigurable logic. Based on the

evaluation of two real-world data and compute intensive applications, UNILOGIC

scales almost linearly while it allows for all the reconfigurable resources in the par-

allel system to be utilized as if they were in a single large device. The performance

overhead in order to support remote accesses of reconfigurable resources is less

than 4%.

Finally, our evaluation demonstrates that the energy efficiency offered by the

prototype is comparable to state-of-the-art HPC systems, using newer transistor

technologies. In particular, it offers 9 to 17 GFLOPS per watt using the Xilinx

16nm UltraScale+ devices.
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Appendix A

OpenCL and Virtualization

In this Appendix we try to give a deeper insight on how the Open Computing Lan-

guage (openCL) kernel calls function. We are using some explanatory depictions

through a number of images, and then we proceed to the Virtualization addition.

Starting with Figure A.1, we see how a traditional, openCL version 1 (i.e. versions

1.0, 1.1, 1.2) operates. As there was yet no shared memory support, in a heteroge-

neous system that e.g. includes an FPGA and a host CPU machine, a lot of data

transfer needs to take place. Looking at Figure A.1, we see that the data, labeled

"D", reside in the host memory, while the accelerator needs to access them. So

data are 1) transferred to the FPGA’s DDR, then 2) the accelerator transfers the

data inside the FPGA, i.e. into Block-RAM so that as a next step, X) the actual

eXecution, i.e. the hardware computation takes place. Then 3) results are trans-

ferred to the FPGA’s DDR, and at a final step 4) results are transferred back the

host’s system memory (designated as Global Memory in openCL terminology).

Figure A.1: Traditional OpenCL Data Movement
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An important improvement came with openCL version 2 (i.e. versions 2.0, 2.1,

and 2.2 being the current version), as it included shared memory support. Under

this update, the FPGA+HostCPU approach now becomes much more efficient,

as can be seen in Figure A.2. The FPGA/accelerator now has access to common,

shared memory, so no data relocation is needed. Now data are 1) requested directly

by the accelerator, which then X) eXecutes the corresponding computation, and

then 2) sends the results directly back to the shared memory.

Figure A.2: OpenCL 2.0: Shared Memory

When more than a single Worker, i.e. FPGA+HostCPU bundle, is deployed,

a suitably configured local and global interconnect can allow for remote accesses,

as can be seen in Figure A.3. In this example, a kernel call, labeled "C", 1)

invokes an accelerator that resides in a remote FPGA. So Worker 0 asks to be

served by Worker 1. What is more, it instruments the remote accelerator to use

the data "D" that reside in Worker 0. So the designated accelerator X) proceeds

with the execution step "X", which need to access and operate on remote data.

However, just as Figure A.2, no extra data migration is needed, but rather the

remote accelerator directly accesses remote data.

In order to have acceleration sharing, a virtualization mechanism needs to

be encompassed in the architecture, and this can be seen in Figure A.4. Now

anyone who needs to invoke an accelerators does not directly access it, but rather

it accessed the Virtualization block which enqueues the call description, and then

properly dispatches it to the accelerator. The virtualization block can be accessed

by from any Worker, as it can be addressed and reached through the local/global

interconnect. In the example of Figure A.4, both Workers 0 and 1 execute a
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Figure A.3: Multiple FPGAs: Remote Invocation and Remote
Memory

different call "C", that however needs to invoke the same accelerator, which reside

in Worker 2. The accelerator itself need not be accessed, but rather both 1) the call

from worker 0 and 2) the call from worker 1, ask to be serviced by the Virtualization

block in Worker 2. That block enqueues both calls, and will dispatch them when

the accelerator is available. The data in turn are stored locally to the originating

Workers, so the accelerator "Acc 2" will need to access them remotely. If the blue

call by Worker 0 is dispatched first to the accelerator, it executes (X1) accessing

data from Worker 0. Then, the Virtualization block dispatches the second call

to the same accelerator, and so it gets executed (X2), accessing remote data in

Worker 1.

Figure A.4: Multiple FPGAs: Resource Sharing

Finally, in Figure A.5, we see how the virtualization scheduler can also achieve

fine-grain sharing of the accelerator resources. This discussion also corresponds to

the analysis we have seen in section 3.1, and on Figure 3.3 which for ease of access

is also copied here as Figure A.6. In our example of Figure A.5, three kernel calls
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"C" from Worker 0, and two more from Worker 1, need to employ the accelerator

in Worker 0. Hence, they both access the corresponding Virtualization block, and

the call descriptions are enqueued therein.

Figure A.5: Multiple FPGAs: Fine-grain Resource Sharing

Importantly, this block can control many hardware copies that implement the

same Work Group (WG) description, i.e. many identical accelerators, and orthog-

onally, it can divide a big kernel call into many WG calls that directly map to

the hardware WGs attached, as also seen in Figure A.6. The resulting WGs are

then dispatched accordingly to the hardware WG modules, labeled as step "6" in

Figure A.5. This may result to local or remote data accesses, as was seen in the

previous examples, however not depicted here for simplicity.

Figure A.6: OpenCL Kernel WG Distribution with the Virtual-
ization Scheduler
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Appendix B

Worker (FPGA) Block Diagrams

B.1 F1 Block Diagram, Excluding Reconfiguration

The block diagram of Figure B.1 is exported from the Xilinx Vivado tool, and

corresponds to the F1 FPGA of the QFDB. As this is the "Network" FPGA, it

encompasses more networking elements, in order to realize the final prototype’s

topology. This can be seen on the upper half of the page, with 8 outgoing paths,

driven by 3 double and 2 single C2C modules. These are standing in between

forward and backward address translation blocks, while also augmented by con-

vID blocks intervening to the outgoing path, i.e. just before the slave side of the

C2C. On the top of the page, we can see the hierarchical central AXI interconnect,

that corresponds to Figure 4.36, and offers the –selective– all-to-all connectivity

among accelerator controllers, memory ports and network interfaces (C2C blocks),

in order to unify local as well as remote resources. In the middle stands the Pro-

cessing System, and the related address translation blocks, separated for accesses

to memory and to peripherals. Then in the bottom, we see on the left the blocks

for the final translation to access local memory, pertaining to the discussion on

Figure 4.33 of section 4.2.5. On the right side we see the accelerators highlighted

in orange, driven by the accelerator controllers, i.e. the mailbox/scheduler pairs.

Following those, and intervening on the outgoing paths, i.e. to the transactions

initiated by the accelerators, come the forward address translation blocks.
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Figure B.1: Network FPGA (F1) block diagram, including accel-
erators & UNILOGIC, while excluding reconfiguration
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B.2 F3 Block Diagram, Deploying Reconfiguration

In order to display a block diagram that incorporates the partial reconfiguration

logic, we have chosen the F3 FPGA, which, just like the F2 and F4 ones, includes

less networking logic, hence it looks less complicated, making it easier to focus on

the reconfiguration infrastructure. In Figure B.3 we see the F3 block diagram, as

exported by the Xilinx Vivado tool. The accelerators, which constitute the focal

point for these designs, are seen close to the center, and are highlighted in orange.

These are now actually substituted with Partial Reconfiguration (PR) Slots, and

"Above" each such slot, stands the associated decoupler block. On both sides,

i.e. master and slave interfaces, of each slot also stand discrete AXI register slices

blocks, in order to completely isolate the partially reconfigurable region from the

static one, and thus allow higher clock frequencies to be achieved. In Figure B.2

we have highlighted a single such slot and the accompanying blocks, and should

mention that this part of the design pertains to the investigation presented in

section 4.3 and involving Figure 4.41. Around this infrastructure, logic also exists,

that accommodates the more complicated clocking and reset distribution, required

to properly drive the ’dynamic partial reconfiguration’ related blocks. Just as we

have seen in the previous Figure B.1 for F1, before the accelerators and at the

bottom of the page, comes the accelerator controllers, and at the top of the page we

find the much simpler networking infrastructure, along with the blue-highlighted

central AXI interconnect. Just above the center, stands the Processing System

along with associated address translation blocks.

Figure B.2: Highlighting the Partial Reconfiguration (PR) slot,
along with blocks providing proper isolation
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Figure B.3: F3 FPGA block diagram, including UNILOGIC &
accelerators along with reconfiguration
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Appendix C

Initial MPSoC Exploration &

Deployment

As we have already stated in section 5.1.1, before moving on to single- and multi-

FPGA optimizations for the UNILOGIC architecture, a lot of research and de-

velopment effort has been invested, regarding the newly launched –at that time–

Xilinx Zynq Ultrascale+ devices, comprising a Multi-Processor System on Chip

(MPSoC). These devices where the first to combine the Arm v8-based Cortex-A53

high-performance energy-efficient 64-bit application processor and the UltraScale

architecture to create the industry’s first programmable MPSoCs. The focus was

on low total power consumption, heterogeneous processing, and programmable

acceleration. One of the very first available devices by Xilinx was the xczu9eg,

within the package ffvc900-1-es. The first commercial board available, hosting this

device, was provided by Trenz, labeled "TE0808" and can be seen in Figure C.1a.

(a) TE0808: The first mini
board by Trenz, hosting a Xil-

inx Zynq Ultrascale+

(b) TEBT0808: A test board provided by Trenz,
for testing the TE0808 Zynq module

Figure C.1: The first available commercial module by Trenz Elec-
tronic to host a Xilinx Zynq Ultrascale+ FPGA
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We had our hands very early on such devices, and immediately started to

investigate on these, in order to examine its suitability for the purposes of the

UNIMEM and the UNILOGIC architectures. At that time this was of great interest

both for the ECOSCALE project incorporating the UNILOGIC approach, as well

as the ExaNeSt and ExaNoDe sister projects. In order to expedite our research, we

were supplied by Trenz a first test board to host the TE0808, and allow for power

as well as external connectivity. This board was labeled "TEBT0808" and can be

seen in Figure C.1b. The TE0808 System on Module (SoM) included 2 GB of 64-bit

wide DDR memory, programmable clock generators and QSPI flash memory. The

TEBT0808 test kit additionally provided SMA connectors for both PL and PS

connected multi-gigabit transceivers, power supply and combined UART/JTAG

access through the supplied "TE0790" adapter. All the initial exploration and

testing on this first MPSoC was also of great value for the succeeding QFDB design

by FORTH. One primal aim of our exploration was to analyze the suitability of

the Zynq devices for the QFDB purposes, and in the next steps helped a lot in the

specialized QFDB’s PCB design.

Our investigation included many aspects of the newly introduced device. One of

the main concerns was to study the Processing System (PS) operation, components

and addressing, as well as the way it interfaces to the programming logic (PL),

i.e. the FPGA part of the device. It was also accompanied by newly launched

versions of the Xilinx Vivado and SDK tools that included features to support the

Zynq MPSoCs. We moved on to configuring the processor, included baremetal

tests to access various aspects such as UART connectivity, QSPI programmability,

clock generator configuration and DDR memory testing. We then carried on with

configuring the FPGA part of the device, that included the first transceiver Bit

Error Rate Testing (BERT), and eventually custom blocks to verify and deploy

the interoperability of the PS and PL parts of the MPSoC. This led to a first mini

platform, presented in Figure C.2, that included two MPSoCs and an intermediate

switch. The switch was deployed in a Xilinx Virtex 7 FPGA hosted on the Hitech-

Global’s HTG-700 development board.

In order to bring this first prototype to a meaningful functional state, included

a lot of added exploration. We had to advance from previous FPGA platforms,

that usually included FPGAs, hosting microblaze soft processor cores as processing

elements. One other improvement came with the GTH multi-gigabit transceivers,
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Figure C.2: A lab setup with two TE0808, interconnected through
an custom FPGA-hosted switch

now reaching up to 16.3 Gbps. We have initially used GTH transceivers during

a first porting of the UNIMEM architecture in a Xilinx KCU 105 board incorpo-

rating a Kintex Ultrascale FPGA. This upgrade to GTH transceivers needed a lot

of changes to the Chip-to-chip (C2C) module that encompassed the transceivers

for cross-FPGA communication, as well as proper deployment of the newly intro-

duced dedicated transceiver clocking modules. A thorough feasibility study for the

MPSoC I/O and related FPGA designs was composed at this point, to help the

choices on the foreseen custom platforms to be build. Also, the aurora module en-

compassed in the C2C was now offered with a partly altered interface, and required

corresponding upgrades to the surrounding logic. Just as a short reference on our

transceiver investigation, prior Xilinx FPGA devices incorporated transceiver fla-

vors, such as the GTP with 6.6 Gbps maximum throughput, the GTX as the ones

used in the switch of Figure C.2, reaching up to a maximum of 12.5 Gbps (for -3

speed grade parts), and the GTZ reaching up to 28 Gbps and deployed only in a

limited range of expensive devices.
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Figure C.3: A lab setup with two TEBT (early boards) and
one TEBF (succeeding boards), interconnected through a custom

FPGA-hosted switch

The UNIMEM architecture was then ported to this new Zynq MPSoC platform,

with many changes needed due to the different nature of the integrated processing

system. New baremetal software was programmed through the latest SDK tool

version, tailored to the needs of the Processing System ’s build-in address space.

The new FPGA’s clock managers had to be properly deployed. Proper care was

further needed to correctly program both the PS and the PL of the combined sys-

tem, and then automate this process, either through tool scripts, or by SD-card

and QSPI combined sw/hw (boot.bin) programming. Eventually a fully functional

UNIMEM infrastructure was set-up, and subsequently accelerators along with ba-

sic parts of the UNILOGIC modules such as virtualization were encompassed, in

parallel with the initial exploration on the PS address space utilization. Remote

DMA transfers were also preliminary evaluated at that time, which in parallel

helped stress cross-FPGA connectivity.

Eventually, the latest carrier board by Trenz, the TEBF0808, was launched,

and was soon deployed to our exploration platform. This board provides a whole

range of on-board components to test and evaluate the Zynq Ultrascale+, and

offers SFP+ cages for easier cabling than that of the SMAs used by the previous

boards, as can be seen in Figure C.3. A lot of transceiver/link BERT testing was

performed, in order to see the potential capability for the inter-FPGA connectiv-

ity. A great deal of the constructed link-testing designs were passed to and very



Appendix C. Initial MPSoC Exploration & Deployment 167

frequently used throughout the whole evolution of our research, and are still in

effect for the existing platforms deploying multiple FPGAs. Also, at the initial

stages, we used those tests to investigate on passive copper and active optical

SFP+ cables, and we came to the conclusion that the copper cables where had no

disadvantages while in parallel being easier to use and much cheaper to acquire.

Finally, all these efforts proved beneficial for the designs to be later deployed on

the QFDB-based platforms, and also greatly helped the QFDB bring-up process

itself.
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Appendix D

Earlier UNILOGIC Investigation on

both Michelsen & Hyperbolic Cores

In our initial exploration on the UNILOGIC architecture, we focused on two al-

gorithms, the Hyperbolic and the Michelsen. And both where co-designed within

the UNILOGIC implementation on our earlier Trenz-based platform, and got op-

timize and evaluated. These both pertain to a method that aims at maximising

the hydrocarbon recovery of an oil field. i.e. Reservoir Simulation (RS).

(a) TEBF0808: The latest Mini-ITX carrier board
for hosting the TE0808 Zynq module

(b) The latest TEBF/TE 0808
enclosure by Trenz, including

power supply and cooling

Figure D.1: The prototype used in our initial experiments on the
UNILOGIC architecture

RS is the state-of-the-art technology for predicting field performance. This

tank reservoir model has been analysed by employing, at different grid points, the

Rachford-Rice equation. This is an important equation since it provides insight as

to the liquid and vapour elements within the porous material of the rock substrate,

and as we have already mentioned in section 5, the algorithm that solves for the
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Rachford-Rice equation is the Newton-Raphson method. This is a complicated

method that involves multiple iterations at each grid point in order to determine

the composition of liquid and vapour elements at each timestep of the simulation.

Hence we moved on with the implementation of the two aforementioned kernels

that are variations of the Newton-Raphson method, specifically tuned for the RS

problem. The respective OpenCL kernels used are Hyperbolic and Michelsen and

provide a faster convergence in solving the Rachford-Rice equation for oil reservoir

simulation.

Table D.1: Execution time (ms) for 100K elements running on a
number of simple (i.e. only basically optimized) accelerator cores,
for both Michelsen and Hyperbolic algorithms, both running on a

166.67 MHz clock.

Num of Michelsen Hyperbolic
simple cores ms & (speedUp) ms & (speedup)

1 875 (–) 931 (–)
2 438 (1.99) 468 (1.99)
3 295 (2.96) 313 (2.97)
4 222 (3.94) 238 (3.91)
5 177 (4.94) 204 (4.56)
6 149 (5.87) 185 (5.03)
7 134 (6.53) 166 (5.60)
8 117 (7.48) 151 (6.17)
9 – 129 (7.21)
10 – 117 (7.96)
11 – 108 (8.62)
12 – 104 (8.95)

At this first step, the generated accelerator cores have been evaluated on the

UNILOGIC architecture, using an intermediate prototype, that is comprised of

two Workers. However, at this point no remote acceleration was tested, and the

cores have been mapped to the reconfigurable fabric of one of the Workers, that

can be seen in Figure D.1. Measurements have been obtained with respect to

the execution time of the two algorithms on two data sets of different size, i.e.

data for 100K and 200K grid points. Subsequently, the measured times have been

compared against those for the identical procedure but on a different execution

platform, i.e. i5 Quad-core CPU at 3.1 GHz.

Based on our optimization process, both manually as well as through the spe-

cialised Design Space Exploration (DSE) tool provided by Polytecnico di Torino
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Figure D.2: Simple Core Execution time (ms) vs. No. of Cores

Table D.2: Execution time (ms) for 100K elements running on
a number of optimized accelerator cores, for both Michelsen and

Hyperbolic algorithms, both running on a 166.67 MHz clock.

Num of Michelsen Hyperbolic
opt/zed cores ms & (speedUp) ms & (speedup)

1 28.5 (–) 26.1 (–)
2 15.3 (1.86) 13.3 (1.97)
3 11.9 (2.40) 8.9 (2.93)
4 9.4 (3.03) 6.7 (3.90)

(Polytechnic University of Turin), we ended up with two versions of each algorithm

to be tested. The minimally optimized -simple- versions, which are also occupying

minimum FPGA resources, and the optimized versions. We were able to fit up

to eight simple Michelsen accelerators in a single FPGA to operate in parallel,

whereas we could fit twelve of the Hyperbolic accelerators. In the optimized ver-

sions, we were able to fit four in each case, i.e. the same for Michelsen and for

Hyperbolic. The results can be seen in Tables D.1 and D.2, while the best results

can also be seen in D.4.

Also looking at the plotted results, in Figure D.2 we see the 100K element plot

for up to eight hardware accelerators running in parallel. These are controlled

by a single Accelerator Controller, i.e. a Virtualization Scheduler-Mailbox pair.

We can see at that at this version, the acceleration time to solution scales well

to the number of accelerator cores. It even continues to scale well for the twelve

Hyperbolic cores, not included in the plotted that compares the two cores. In
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Table D.3: Best software execution times (ms) form single- and
four-threaded CPU execution

CPU 1 th. CPU 4 th. (OpenMP)
Data size 100K 200K 100K 200K
Hyperbolic 25.5 50 8.8 17.2
Michelsen 29 56 11.7 22.3

Figure D.3: Optimized Core Execution time (ms) vs. No. of
Cores

Figure D.3 the optimized core performance is plotted. The execution time is now

impressively improved, being an order of magnitude lower. Both scale well even

at this performance level, with the Hyperbolic being slightly better.

Table D.4: Best hardware execution times (ms) for simple and
optimized FPGA accelerators

Initial 8 Core Opt. 4 Core
Data size 100K 200K 100K 200K
Hyperbolic 151 298 6.7 13.8
Michelsen 117 235 9.3 18

Moving on, the execution times achieved by the optimised cores have been

compared against those achieved by using conventional processing methods, i.e. a

CPU with either a single-thread or a four-thread execution using OpenMP. The

best times achieved using these two SW approaches can be seen in Table D.3, and

was also presented in section 5.1.1.2. Those achieved by the two sets of the imple-

mented hardware cores, i.e. simple and optimised, and on two different data sets

have been gathered in Table D.4. It is clear that the execution of the optimised
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accelerator cores on reconfigurable hardware yields the best performance and this

is better displayed in Table D.5. First, the optimised cores offer a speedup of

3.8 and 3.1 over single-thread CPU execution for the Hyperbolic and Michelsen

algorithms respectively. Even with a four-thread CPU execution a speedup is

noted of 1.3 and 1.2 for Hyperbolic and Michelsen respectively. Moreover, consid-

ering that the CPU consumes significantly more power, the advantages of using

reconfigurable hardware becomes even more apparent. We measured our FPGA

architecture to offer an order of magnitude better performance in terms of over-

all energy efficiency, deploying the optimised accelerator cores, over that of the

four-thread CPU. Specifically we measured the energy to solution improvement to

reach 13x and 12x for the Hyperbolic and Michelsen algorithms respectively, as

shown in Table D.5.

Table D.5: Speedup and efficiency attained using HW accelerator
cores

optimized vs. vs. vs. efficiency
core simple 4-thread CPU 1-thread CPU vs. 4-thread
Hyperbolic 22.5 1.3 3.8 13
Michelsen 12.5 1.2 3.1 12

Another important outcome, that actually took effect after this first research

on the RS algorithms, signified our selection of the Michelsen core as the more

preferred one for our succeeding investigation on the UNILOGIC architecture,

and although the Hyperbolic seemed slightly better performing up to this point.

Both the Michelsen and Hyperbolic kernels have exactly the same structure and

only differ in terms of mathematical operations. They actually both solve the

exact same problem, as they constitute variations of the N-R (Newton-Raphson)

method. They both complete execution when the algorithm converges. However,

their main difference is that they converge in a different way. Due to this seem-

ingly slight variation, the optimized Michelsen accelerator implementation proved

to require less FPGA resources, and more importantly, to cause less FPGA rout-

ing congestion. The latter is highly important when building partial bitstreams,

suited for the succeeding UNILOGIC based exploration on dynamic partial recon-

figuration. What is more, related to this variation, we later managed to better

improve improve the timing for the Michelsen rather than for the Hyperbolic core.

This way we could achieve higher clock rates and thus higher execution speeds for
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Michelsen. So finally, Michelsen -slightly- outperformed Hyperbolic both in terms

of resources, as well as performance.
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Appendix E

Projection to Exa-Scale

In order to offer a deeper insight and better understanding on the effectiveness

of our approach, we conducted an analysis, targeting the potential to reach the

exa-scale performance mark by building on the UNILOGIC architecture. This

mainly pertains to an estimation of the hardware resources that would be required

if the UNILOGIC system scaled up to offer a performance of 1 ExaFLOPS, and

in parallel to an estimation of the related power demands.

Currently, the No.1 HPC machine, i.e. the No.1 supercomputer in the top500

list [112], is the "Summit" by IBM. Interestingly, this same machine scores No.5

in the green500 list [37] with the most energy-efficient supercomputers, boasting

a performance that is quite close to that of the No.1 in the same list, the 7nm

ARM-based "A64FX prototype". Hence "Summit" supercomputer stands out as

the state-of-the-art case, to be used for an aggressive comparison, reaching 148

PFLOPS and consuming no less than 10 MW of power.

Table E.1: Projection to Exa-Scale performance, based on ac-
celerated computation on the implemented UNILOGIC prototype

technology

Hierarchy Scale Performance Power

MPSoC (Heterogeneous
CPU/FPGA Compute Unit)

- 300 GFLOPS 10W

Compute Node 4 × MPSoC 1.2 TFLOPS 50 W

Baseboard 8 × Node 9.6 TFLOPS 400 W

Rack 72 × Baseboard 0.7 PFLOPS 28 KW

HPC System 1400 × Rack 1 ExaFLOPS 39 MW

Regarding our FPGA-based UNILOGIC platform, each FPGA has proved to

reach about 280 GFLOPS for the tailored matrix multiplication core. Besides
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that, the pin-compatible Xilinx ZU15EG device incorporates about 40% more

DSP blocks, and thus could end up offering about 400 GFLOPS per device. Nev-

ertheless, we will use a modest estimate, and will move on with our projection

considering 300 GFLOPS per FPGA device as the starting mark. Based on this,

we can estimate demands to reach exa-scale performance, as reported in table E.1.

A compute Node, i.e. a QFDB, would offer 1.2 TFLOPS, and a baseboard, i.e.

eight QFDBs, would reach 9.6 TFLOPS. Accordingly, and based on the quite

promising scaling characteristics of our architecture, the ExaFLOPS mark would

require about 1400 Racks and 39 MW of power.

Table E.2: Projection to Exa-Scale performance, based on accel-
erated computation, as extrapolated to current (not future) FPGA

technologies, in a UNILOGIC based prototype

Hierarchy Scale Performance Power

10-12nm Xilinx
VU-like FPGA

- 1.5 TFLOPS 20W

Compute Node 4 × FPGA 6 TFLOPS 80 W

Baseboard 8 × Node 48 TFLOPS 640 W

Rack 72 × Baseboard 3.4 PFLOPS 46 KW

HPC System 290 × Rack 1 ExaFLOPS 13 MW

Moving a step further, it is interesting to conduct an extrapolation, using cur-

rent FPGA technologies. We could even extrapolate more aggressively, referencing

advertised forthcoming technologies, however, even a with the modest projection

on FPGA technologies already in the market, the respective outcome is quite

promising. Initially, looking at the supercomputers on the lists mentioned above,

these are based on devices build with fabrication technologies ranging from 12nm

down to even TSMC’s 7nm process. Our prototype on the other side, hosts FPGAs

manufactured with the FinFET+ 16nm process. If we considered an FPGA of

similar or even slightly worse technology, i.e. around 10-12nm, which are already

in the market as the Intel Agilex 10nm family, this would result to about 60%

less power consumption1. Furthermore, taking into account currently available

1Moving from a 10nm to a 7nm technology leads to 40% less power consumption, while
advancing from 7nm to 5nm technology reduces power consumption by 20%. TSMC is already
sampling Apple’s 5 nm A14 Bionic SoCs for 2020 iPhones
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acceleration-targeted devices as the Xilinx Versal family, or even more standard-

ized devices such as the larger Xilinx Virtex Ultrascale+ devices, i.e. the VU13P,

we could most probably be able to reach up to about 1.5 TFLOPS per FPGA.

Based on this starting point, and as reported through table E.2, we would have to

deploy about 290 Racks, while consuming about 13 MW of power. In comparison,

a perfect scaling "Summit"-like system, would require about 2,000 Racks and 67

MW of power in order to reach the 1 ExaFLOPS mark.

Summing up our projection to exascale, i.e. to 1018 operations per second, we

have seen that even considering the currently realized UNILOGIC prototype, we

can have a viable scenario to reach 1 ExaFLOPS, while still being more effective

compared to state-of-the-art HPC machines. What is more, our prototype is built

on MPSoC devices that are already three years old, while a lot of improvement

space exists nowadays. Nonetheless, even considering currently available, standard

FPGA devices, and extrapolating available performance, we proclaim appealing

potential to exascale, outperforming top ranking HPC machines, both it terms of

power consumption and size, i.e. required space.
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Appendix F

Details on Hypercube Variations

As we have seen in section 4.1.2. the enriched 3D Cube topology, i.e. the 3D Cube

with enriched connectivity, corresponds to the interconnection topology of QFDBs

on the custom baseboard, and is reproduced in more simple form in Figure F.1 for

ease of access. This topology actually corresponds to a Folded HyperCube FHC(n)

variation [2, 63, 68] where n is the dimension size equal to 3 for this single cube.

In a normal cube, or hypercube in the general case, the diameter has a logarithmic

growth.

Figure F.1: The 3D Cube with enriched connectivity, giving a
FHC(3) variation

If we represent the nodes though a binary labeling of the nodes in such a

topology, the distance between node A with binary representation bA and node B

with bB is:

Hamming_weight(bA ⊕ bB)

i.e. the number of different bits between the two numbers. Then, moving on to

the mean internode distance, this is defined for a regular network as the ratio of

the sum of distances between a node and all other nodes to the total number of
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nodes:

da =
r∑

d=1

(d.Nd)

N − 1

while in a normal hypercube of dimension n, the distance becomes n/2.

To build a FHC(n) as the FHC(3) of Figure F.1, we need to upgrade the node

connectivity from n (on a normal cube) to n+1, i.e. add one outgoing link per

node. The diameter, i.e. the maximum distance now falls from n to dn/2e, while
the average distance falls from n/2 to:

da =

(
n+ 1
n
2
+ 1

)
which gives 1.25 for n=3 and 1.5 for n=4.

The bisection width is also an important parameter for evaluating the perfor-

mance of interconnection networks. This is the least number of wires that you

should cut in order to divide the network into two equal halves. High bisection is

always better. For a normal hypercube HC of dimension n, HC(n), this equals to

2n−1, while for an FHC(n) this equals to 2n. For 3D cubes this gives an increase

from 4 to 8.
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