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Abstract: Accurate and reliable flow forecasting in complex Canadian prairie watersheds has been
one of the major challenges faced by hydrologists. In an attempt to improve the accuracy and
reliability of a reservoir inflow forecast, this study investigates structurally different hydrological
models along with ensemble precipitation forecasts to identify the most skillful and reliable model.
The key goal is to assess whether short- and medium-range ensemble flood forecasting in large
complex basins can be accurately achieved by simple conceptual lumped models (e.g., SACSMA
with SNOW17 and MACHBV with SNOW17) or it requires a medium level distributed model (e.g.,
WATFLOOD) or an advanced macroscale land-surface based model (VIC coupled with routing
module (RVIC)). Eleven (11)-member precipitation forecasts from second-generation Global Ensemble
Forecast System reforecast (GEFSv2) were used as inputs. Each of the ensemble members was
bias-corrected by Empirical Quantile Mapping method using the Canadian Precipitation Analysis
(CaPA) as a training/verification dataset. Forecast evaluation is performed for 1-day up to 8-days
forecast lead times in a 6-month hindcast period. Results indicate that bias-correcting precipitation
forecasts using verifying datasets (such as CaPA) for a training period of at least two years before the
forecast time, produces skillful ensemble hydrological forecasts. A comparison of models in forecast
mode shows that the two lumped models (SACSMA and MACHBV) can provide better overall
forecast performance than the benchmark WATFLOOD and the macroscale Variable Infiltration
Capacity (VIC) model. However, for shorter lead-times, particularly up to day 3, the benchmark
distributed model provides competitive reliability, as compared to the lumped models. In general,
the SACSMA model provided better forecast quality, reliability and differentiation skill than other
considered models at all lead times.

Keywords: hydrological models; ensemble hydrological forecasting; bias-correction; SACSMA;
complex watersheds; reservoir inflow

1. Introduction

Prairie watersheds are characterized by several small depressions, potholes, and wetlands, and
poorly connected drainage systems that may or may not contribute to the main river system [1].
They are often featured by their long winter periods, high spring snowmelt contribution to annual
runoff, deep-frozen soils and rapid infiltration, intense rainfall in spring and early summer, lower
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soil moisture, and evaporation from summer to fall [1]. Relevant methodologies were proposed to
assess several aspects of the hydrological cycle such as snowpack, spring melt, soil moisture, rainfall
frequency, and evaporation, in the Canadian Prairie regions [2–5]. The effect of climate, land use, and
ecosystem change on the hydrological processes of cold and wetland regions were also studied [6–8].
Even though some efforts were made to formulate the realistic representation of wetland processes
in hydrological models [9–13], challenges of hydrological forecasting and flood predictions in such
complex watersheds remain at large.

Several important works have already been performed for enhancing flood prediction in several
watersheds: for example, using single or multiple hydrological models [14–22], or feeding ensemble
numerical weather products to models [23–29]. Velázquez et al. [18], for example, analyzed 16 lumped
hydrological models with 50-member ensemble weather inputs. They detected that the multi-model
approach of a grand member ensemble provided more forecast skill and reliability than either a
single model with meteorological ensembles or multiple models with the deterministic forecast at
all lead times. Pietroniro et al. [27], assessed the benefit of using Environment Canada’s MESH
(Modelisation Environmentale Communautaire-MEC Surface and Hydrology) model in the Great
Lakes catchment with inputs from 16-member ensemble forecast variables supplied by Meteorological
Service of Canada (MSC). Fan et al. [30], suggested the use of local or regional ensemble forecasts
instead of low-resolution global ensemble inputs, and data assimilation methods. In their work, they
applied MGB-IHB distributed model with bias-corrected second-generation Global Ensemble Forecast
System (GEFS v2) reforecast inputs and suggested that the improvements made could address the
lack of spread in reservoir inflow forecasts especially in early lead times. Using the same hydrological
model, Fan et al. [31], evaluated the importance of three sets of ensemble QPFs from the TIGGE
(THORPEX Interactive Grand Global Ensemble) database in larger basins that have major reservoirs
and hydroelectric plants. Their verification methods confirmed that the performance of hydrological
forecasts depends on the quality of each ensemble precipitation products, but they also highlighted
the improved reliability and robustness of ensemble river flows obtained from the combined super
ensemble inputs. Abaza et al. [32], compared currently available Canadian meteorological forecasts and
concluded that streamflow forecasting fed by Regional ensemble prediction systems (EPS) provided
higher reliability than the Global EPS followed by their deterministic counterparts, as also supported
by Fan et al. [30]. The use of multiple models with the global, regional, and local ensemble and
deterministic inputs has also been implemented in several operational flood forecasting centers across
the globe [33–39].

The main challenge in getting accurate and reliable short- and medium-range flood forecasts in
large complex watersheds arises from the type of hydrological models, and the quality of weather
forecast inputs applied. The choice of the models to be implemented for flood and streamflow
forecasting depends on the intended purpose, the type of forecast inputs, and the complexity and
scale of the study area [40]. Given the complexity of a prairie watershed in defining wetland and
non-wetland physical processes and its representation by model structures for a specific application of
real-time flood forecasting, it is essential to identify the candidate hydrological model(s) from multiple
diverse potential models. Once the hydrological model or group of models are identified, the skill and
reliability of hydrological forecasts can be enhanced by feeding qualitative ensemble weather forecasts
into the models.

The limitations of previous works and the scientific challenges are that:

1. Only a few studies were conducted on large and complex Prairie watersheds,
2. Only a lumped model or a distributed model was used independently, for hydrological

forecasting study. Alternatively, in some cases, the multi-models were only a collection of
lumped conceptual models,

3. Identification of best hydrological model was usually based on historical meteorological or in
some cases, deterministic weather forecast inputs. Evaluation and comparison of models based on
raw and bias-corrected ensemble precipitation forecasts were not studied. As such, the objective
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of this research is designed to address these limitations and identify the best hydrological model
from diverse multi-models for short- and medium-range flood forecasting in a Canadian Prairie
watershed. In this study, four structurally varied hydrological models were set up in order to
simulate and forecast inflows to the Shelmouth Reservoir, which is located in Upper Assiniboine
River Basin. A mixture of two lumped, one distributed and one macroscale land surface models
were used in this research. In forecast mode, bias-corrected precipitation from second-generation
Global Ensemble Forecast System (GEFS v2) reforecasts was fed into the four models in order to
evaluate the reliability, skill, and overall forecast performance of the ensemble reservoir inflows.

2. Materials

2.1. Study Area

The Canadian Prairies are mainly located in Saskatchewan, Manitoba, and Alberta Provinces. The
research is conducted in one of the main Canadian Prairie watersheds, the Upper Assiniboine River
Basin upstream of the Shelmouth Reservoir, also called Lake of the Prairie (Figure 1). The catchment
area contributing to the reservoir inflow is approximately 18,000 km2. While much of the basin is
located in Saskatchewan, the Shelmouth Reservoir itself is located in the Province of Manitoba. Inflow
into the reservoir is generated from three major upstream tributaries: the Whitesand River, the Shell
Rivers and the main stream of the Assiniboine River. This Prairie watershed, which is known to have a
complex hydrology is characterized by abundant potholes and wetlands, poorly interconnected streams
and non-contributing areas, long and cold winter periods, deep-frozen soils and rapid infiltration, high
spring snowmelt contribution to annual runoff, intense rainfall in spring and early summer, lower
soil moisture and evaporation from summer to fall [1,39]. The basin’s topography ranges from 250 m
a.s.l. at its lowest point to 820 m a.s.l at its highest point, and its annual precipitation is approximately
460 mm [41]. The land cover of the basin is mostly dominated by cropland, which contributes about
55–58% of the land cover [41].
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2.2. Data

2.2.1. Ensemble Weather Forecasts

An 11-member ensemble data from second-generation Global Ensemble Forecast System (GEFS
v2) reforecast [42] supplied by National Centers for Environmental Prediction (NCEP), hereafter called
“GEFSv2” was used as an input to models. The GEFSv2 issues forecast once a day in 3 hourly time
step up to 8 days lead time with 50 km spatial resolution and the next eight days with a lower spatial
resolution. For this research, daily total precipitation forecasts from January 2014 to December 2017
were used for the input datasets; the first two years used for bias correcting the last two years. Only
precipitation forecasts were used as forcing data, while other variables were taken from observation
because the accuracy of flood prediction is highly impacted by precipitation forecasts than any other
variables [29].

2.2.2. Observed Data

Average daily temperature and precipitation data were obtained from Environment Canada for
the eleven weather gauging stations that are distributed across the catchment (Figure 1). These data
were used as inputs to the hydrological models. The output from the hydrological models, which
is regarded as the simulated reservoir inflow was compared with calculated (observed) reservoir
inflow in the calibration process. Detail information on the reservoir inflow estimation is provided in
Section 2.2.3, whereas calibration and validation will be discussed in Section 3.2. In addition to the
gauge data, precipitation data were also collected from The Canadian Precipitation Analysis (CaPA).
The CaPA is developed by statistical interpolation of a background field from short-range precipitation
forecasts, and observation from radar and ground-based rainfall measurements [43]. The spatial and
temporal resolution of CaPA is 15 km and 6 h respectively. For this study, CaPA precipitation data is
used for bias correcting global ensemble forecasts, which will be further discussed in Section 3.3.

2.2.3. Reservoir Inflow

The study area is the watershed upstream of the Shelmouth Reservoir. There is no flow gauge
(actual streamflow measurement) at the outlet of the watershed. At the mouth of the reservoir or the
Dam section, the outflow is regulated by structural mechanisms such as releasing water through the
conduits (using gates) and spillways. These releases are controlled and measured daily. Therefore,
the outflow from the reservoir is a regulated outflow measured at the conduits and spillway, and due
to this reason, it cannot be directly used for calibration. Instead, the reservoir inflow is implicitly
considered as the outflow from the entire watershed and is used for calibrating the hydrological models.
The inflow is, in this case, a collection of water from major and minor tributaries that goes into the
reservoir. The estimated inflow is considered as an “unregulated” discharge observation measuring
collectively the river flows coming from the tributaries.

The inflow into Shemouth Reservoir is calculated based on a simple water balance equation.
Given records of daily reservoir levels, the elevation-area-storage curve of the reservoir, and the
summation of outflows measured at the spillway and conduit, the water balance can be formulated by
the Equation (1). Here, losses (such as evaporation and infiltration) within a day are assumed to be
negligible, and lateral inflows are included in ‘Inflow’ variable.

In f low − Out f low =
dS
dt

(1)

where dS/dt is the change in storage in a one-day time difference. The change in storage is obtained
from the elevation-storage curve by looking at the daily average reservoir levels between the first
and the second day. The reservoir inflow is calculated daily for practical application at Manitoba
Hydrological Forecasting Center.
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As described above, the reservoir inflow is regarded as a streamflow measurement of all the
tributary rivers and streams supplying water to the reservoir. Since the inflow is not an actual flow
measurement of the suppling rivers, it is prone to some degree of errors. However, the calculated
reservoir inflow is believed to be the best possible method of measuring the “unregulated” watershed
outflow. Also, there is uncertainty arising from the calculation method. We used a simple water balance
equation to calculate the daily inflow, by only accounting for the daily change in storage and the daily
measured regulated reservoir outflow. The daily losses (e.g., evaporation and infiltration) are assumed
to negligible. Such an assumption might contain some uncertainties. However, the uncertainty for
daily water balance is not believed to be considerable, for example, comparing with monthly water
balance where such losses cannot be ignored.

3. Methods

Figure 2 shows the methodology adopted in this research. Ensemble weather forecasts products
from GEFSv2 were collected. Each ensemble member of precipitation forecasts was bias-corrected by
Empirical Quantile Mapping method using CaPA as a verifying data (Section 3.3). Four structurally
various hydrological models were applied in the watershed including the benchmark model. Using
raw and bias-corrected GEFSv2 ensemble inputs, the models’ forecasting performances were evaluated
and compared in hindcast period.
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3.1. Hydrological Models

Four different hydrological models with diverse model structures were applied in the study area
to meet the research objectives described in Section 1. The models applied herein are a combination
of two lumped models, one distributed and one macroscale land-surface based hydrological model.
The lumped models are the Sacramento Soil Moisture Accounting (SAC-SMA) model coupled with
SNOW17 [44] routine and the McMaster University-Hydrologiska Byråns Vattenbalansavdelning
(MAC-HBV) [45] model coupled with SNOW17 routine. The third model applied is the macroscale
land-surface based Variable Infiltration Capacity (VIC) model [46] coupled with a routing module.
VIC has been applied in nearby, similar river basins for climate change and other hydrological
studies [6,47–49]. The above three models were calibrated and validated in this research.

As a benchmark, we used the distributed WATFLOOD model [50]. For this study, a calibrated
and operational WATFLOOD model was obtained from the Manitoba Infrastructure, Hydrological
Forecasting Centre. The model has been used by the center to provide operational flood forecasting
using real-time weather forecast data to issue short- and medium-range river forecasts in the Upper
Assiniboine River basin and other nearby watersheds [39]. WATFLOOD is a Canadian Hydrological
model specifically developed for flood forecasting and watershed simulation. The model is used
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as a primary routing module for the Canadian national hydrological modeling system (MESH) [51].
Newman et al. [52], argues that a calibrated hydrological model which has a familiar practical
application in local river forecasting systems, has a better functional capability than reference statistical
systems to test models, and employs significant water budget interactions, is a suitable choice for use
as a benchmark model.

For SACSMA and MACHBV models, mean areal daily temperature and precipitation time series
data were created by using the Thiessen polygon method from eleven meteorological gauging stations
that are distributed across the catchment. The average catchment elevation and latitude of the centroid
values were used as an input to the SNOW17 model in addition to precipitation and temperature data.
These inputs were used to calibrate and validate the two lumped models.

For the VIC (version 4.2.d) model, daily gridded interpolated precipitation data was generated
from 11 gauging stations, using a bilinear interpolation technique. Daily gridded minimum and
maximum temperature data were provided by the Natural Resources Canada, which applied a
“thin-plate smoothing splines” (ANUSPLIN) method on observations from several ground-based
stations in Canada to generate long-term daily gridded data [53,54]. ANUSPLIN has been used as
forcing data for the VIC model in several studies [6,47–49]. Daily average wind speed data performed
from the Global Environmental Multiscale (GEM) model [55]. The grid resolution of VIC model was
about 1/8 degree. Land cover data is obtained from Moderate Resolution Imaging Spectroradiometer
(MODIS) Land Cover Type (MCD12Q1) Version 6 data product [56]. Soil data were imported from
FAO’s Harmonized World Soil Database V 1.2 [57]. The runoff from the land surface VIC grid cells
was routed to and along the river networks using the routing module (RVIC) [58] based on Lohmann
et al. [59].

For the WATFLOOD model, gridded interpolated daily precipitation and temperature data were
used to set up and calibrate the model. The model was set up at a grid resolution of approximately
5 km for the Upper Assiniboine River Basin.

3.2. Calibration and Validation

The catchment outflow simulated by the hydrological models is considered as the reservoir inflow
because the reservoir, located at the very downstream location, collects all water from tributary rivers
and lateral inflows. During the calibration process, the comparison was made between the simulated
and the observed daily reservoir inflow time series.

Dynamically Dimensioned Search (DDS) algorithm [60] was used to optimize the calibration
of SACSMA/SNOW17, MACHBV/SNOW17, and VIC/RVIC models. Calibration and validation of
the models were performed with daily timesteps from January 2005 to December 2015 with 1-year
spin-up periods.

DDS has been previously compared with other optimization methods, such as shuffled complex
evolution (SCE) by Tolson and Shoemaker [60]. In their study, the dimensionality and efficiency
of DDS, for example, was tested, and the authors concluded that DDS provided better results than
SCE both with low- and high-dimensional problems, and is more efficient. DDS has been used to
calibrate several hydrological models from simple lumped to medium level distributed models (e.g.,
SWAT [61,62], MESH [63], CRHM-AHM [64]) to very complicated land-surface based models (e.g.,
WRF-Hydro [65,66]).

For lumped models, 10 parameters of SNOW17, 15 parameters of SACSMA, and 12 parameters of
MACHBV were calibrated. The optimizing parameters are presented in Appendix A.1, Appendix A.2,
and Appendix A.3 for SNOW17, SACSMA, and MACHBV, respectively. For VIC model, the total
number of parameters to be optimized and calibrated is increased from the default 13 to 53 including
the wetland and routing parameters. The optimizing parameters for the VIC model are presented
in Appendix A.4. Similar to the lumped models, the simulated reservoir inflow from the VIC/RVIC
model was compared with daily observed flow in the calibration process.
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For all models, a single objective function obtained by a weighted average of two performance
metrics was used in the DDS optimization. The performance metrics that were given equal weight are
Kling–Gupta efficiency (KGE) [67], and Peak Flow Criteria (PFC) [68] as defined below.

KGE = 1−
√
(r− 1)2 + (a− 1)2 + (b− 1)2 (2)

PFC =

(∑np

i=1

(
(qs,i − qo,i)

2qo,i
2
))1/4

(
∑

qo,i2)
1/2

(3)

where r is the correlation coefficient between the simulated inflow and observed reservoir inflow, a and
b are ratios of the standard deviation and mean of simulated inflows to the corresponding observed
inflow respectively, qs and qo are the peak simulated and observed inflows respectively, and np is the
number of peak flows greater than one-third of the mean peak flow observed. While KGE values
closer to 1 indicate a better model performance, a PFC value closer to 0 signifies better peak flow
simulation accuracy.

3.3. Bias-Correction

Each of the eleven ensemble precipitation forecasts from the GEFSv2 (Section 2.2.1) was
bias-corrected by Empirical Quantile Mapping method [69]. The bias-correction of ensemble forecasts
were performed using the reanalysis precipitation product of CaPA as a verifying database. Daily
CaPA precipitation time series from January 2014 to December 2015 were used to bias-correct ensemble
weather forecasts from January 2016 to December 2017 (Figure 3). That is, 4-years of daily ensemble
precipitation forecasts were archived first (January 2014–December 2017). Then CaPA data were used
as a training dataset for the first 2-years of ensemble forecasts. Parameters from the quantile mapping
in the training period were applied to the last 2-years of ensemble forecast time series. This step is
repeated for each ensemble member to produce a bias-corrected ensemble GEFSv2 inputs.
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3.4. Hindcast Simulation (Model Update and Forecast)

Hindcast simulation is performed in order to verify the hydrological models in forecast mode.
The raw and bias-corrected Reforecast GEFS ensemble datasets were fed into the four calibrated
hydrological models. The focus of the study is to assess the reservoir inflow forecast accuracy and skill
of the models during the high flood periods. Therefore, 2017 is selected for forecast verification, which
observes frequent spring and summer floods in the area. The hindcast period was from April 2017 to
September 2017. Continuous model update and forecast were performed during the hindcast period
(Figure 4). The hydrological models were run with observed meteorological data for at least one year
before the forecast day in order to preserve and update the model’s state parameters. In other words,
the observed inputs were supplied to the models up to day-0. Then, ensemble forecasts were fed to the
models for the next eight days, and this model update and forecast continously every day during the
entire hindcast period.
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3.5. Ensemble Forecast Verification

Outputs from the previous step (model update and forecast) are daily ensemble reservoir inflow
forecasts from four hydrological models for 1- up to 8-day lead times. The forecast skill and reliability
of each model’s ensemble reservoir inflow forecasts were evaluated using various ensemble verification
metrics which are outlined below.

3.5.1. Mean Continuous Rank Probability Score (CRPS) and Skill Score (CRPSS)

The Mean CRPS measures the error of the commutative probability of the ensemble forecast.
For an infinite number of classes or continuous variables, CRPS is calculated as follows [70]: Given
cumulative distribution function of an ensemble y is P(y) and corresponding cumulative probability of
observed value x with a step function 1{.} representing 1 for ensemble values greater than observation
and 0 otherwise, the CRPS and the mean CRPS can be computed by Equation (4).

The mean CRPS can be decomposed to mean reliability (Reli) and potential CRPS components,
according to [71]. Reli is directly related to a rank histogram but provides more information. It
measures the reliability of the system by examining whether the frequency of observations that falls in
any one of ranked bins is equivalent to the other bins by taking into consideration the width of the
bins, which the rank histograms do not do [71]. The potential CRPS (CRPSpot) is the CRPS of a perfect
reliable system (i.e., when Reli = 0) or for a deterministic forecast where there is no spread. CRPSpot is
directly related to the spread of the ensembles and the presence of outliers [71]. The larger the spread
or, the more outliers, the larger the CRPSpot. CRPS, Reli and CRPSpot are negatively oriented, meaning a
value of zero corresponds to a perfect ensemble forecast. Details of the derivation can be found on [71].

CRPS =
∫
∞

−∞
(P(y) − 1

{
y ≥ x

}
)2dy

CRPS = 1
n

n∑
i=1

CRPSi

CRPS = Reli + CRPSpot

(4)

Continuous Rank Probability Skill Score (CRPSS) is a scalar accuracy or performance measurement
of the forecasting system by evaluating the mean continuous ranked probability score (CRPS) of
ensembles with relative to a reference forecasting system [72]. It is positively oriented with a perfect
score of 1 and is calculated by:

CRPSS = 1−
CRPS

CRPSre f
(5)

For the reference forecasting system, we used the climatological ensembles of the last twenty-four
years of historical daily reservoir inflows. This is practically used by Manitoba Hydrological
Forecasting Center to issue medium- and long-term ensemble forecasts at the site [73]. Reference [74]
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discussed the option of using climatological observations as an alternative benchmark hydrological
ensemble prediction.

3.5.2. Reliability Diagram

The reliability diagram also called Attribute Diagram by Hsu et al. [75], is a measure of the
accuracy of ensemble forecasts, which plots the observed relative frequency with respect to forecasting
probability in different bins of the category [70]. It is a plot of forecast probability versus observed
frequency, and perfect reliability is indicated by a curve lying along the diagonal of a reliability
diagram [76].

The CRPS decomposition parameters of Hersbach et al. [71], were used to draw reliability diagrams
in this study. There are 90% confidence intervals applied for the reliability diagrams using the bootstrap
resampling technique to measure the conditional verification pair sample uncertainty.

3.5.3. Relative Operating Characteristics (ROC) and Skill Score (ROC Score)

ROC is a powerful metric to measure the probabilistic forecast occurrence of events across a range
of thresholds [77]. For each threshold, ROC examines the correspondence between the forecast and
observation by defining the probability of detection (hit rate) and the probability of false detection
(False alarm rate). ROC curve for several thresholds can then be constructed by ‘Hit Rate’ values
as ordinate and ‘False Alarm Rate’ values as abscissa. A good and skillful forecast produces a ROC
curve above the 45 degrees diagonal, but more towards the top-left position, indicating high ‘Hit
Rate’ and low ‘False Alarm Rate’ [77]. ROC shows the discrimination skill of the ensemble forecast
system [78,79]. Discrimination skill indicates the ability of the forecasting system to categorize
occurrence and non-occurrence of floods defined between user-defined probability thresholds [78–80].

A single scalar score can summarize the quality of ROC curves. ROC score is a function of the
area under the ROC curve (AUC). Wilks [70], formulates a simple equation for ROC Score as:

ROC Score = 2 ∗AUC− 1 (6)

where AUC is the area under the curve of each Relative Operating Characteristics curves. A perfect
system that has ROC curves close to the top left corner would have a score of 1.

4. Results

4.1. Calibration and Validation

As noted in Section 3.2, DDS optimization was used to calibrate parameters of SACSMA with
SNOW17, MACHBV with SNOW17, and VIC with RVIC models. Among the ten years chosen for
calibration and validation, the recent five consecutive years (from 2011 to 2015) were used to calibrate
the models, and the previous five years (2006 to 2010) were used to validate the models (Figure 5).
The reason why we used recent data for calibration is that we want to train the models using high
consecutive flood periods. Looking at the historical time series from 2006 to 2015, the recent five-years
are high consecutive flood years than the previous five-years. Moreover, it is highly likely that this
trend will continue past 2016 and the near future due to anticipated climate change impact in the
region and other similar factors that caused the recent high consecutive flood years. Since the challenge
of achieving the accurate reservoir inflow forecasting arises particularly during flood periods, and
the objective of the paper focuses on improving the accuracy of flood forecasting in large complex
watersheds, the hydrological models were trained/calibrated with the recent flood years.
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Figure 5. Calibration and validation plots of SACSMA with SNOW17, MACHBV with SNOW17, and
Variable Infiltration Capacity (VIC) with routing module (RVIC) models. RMSE: Root-Mean-Square
Error, and PBIAS: Percent Bias [81] are displayed for each model to provide more information in
addition to the visual inspection of the time series.

The performance metrics of the models are summarized in Table 1. The KGE performance statistics
indicate that the SACSMA model outperforms MACHBV followed by VIC during calibration as
well as validation periods. The lumped models (SACSMA and MACHBV) appear to show better
performances than the macroscale model (VIC). The Peak Flow Criteria (PFC) shows that SACSMA
and MACHBV have improved and have comparable accuracy in peak flow prediction. The VIC model
slightly underestimates and delays peak flows occasionally, although it maintains the hydrograph
during spring and summer high inflow seasons.

Table 1. Performance statistics of the three hydrological models from calibration and validation. The
definition of the abbreviations is presented in Section 3.2.

Calibration Validation

SACSMA MACHBV VIC SACSMA MACHBV VIC
PFC 0.180 0.174 0.247 0.234 0.231 0.270
KGE 0.796 0.740 0.653 0.776 0.679 0.653

The performance of the models can also be seen from the simulated and observed flow hydrographs
shown in Figure 5. Visual inspection shows that all three models comparatively capture the pattern
of the observed reservoir inflow hydrographs during calibration and validation periods; although
SACSMA and MACHBV models appear to reproduce the peak flows better than VIC. In addition to
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the visual inspection, the RMSE and PBIAS values of each model are displayed in Figure 5 to provide
more information on the hydrographs. It can be seen that SACSMA provided better accuracy and less
bias during calibration and validation, followed by MACHBV and VIC models in decreasing order
of performances.

The calibration of the models was performed in a daily time step, and the optimization method
(DDS algorithm) used during the calibration was the same for all models. The objective function is
also the same, which is the average of KGE and PFC. However, there are differences in the number
of parameters (dimensionality) among the models. Note that the lumped models were coupled with
SNOW17, hence the total number of the calibrated parameters are the summation of individual models’
parameters; for example, SACSMA (15) plus SNOW17 (10). As noted in Appendix A.4, the default
number of VIC/RVIC model parameters was further refined to improve the calibration output and to
better represent the wetland, landcover, and soil types of the basin. The parameters were refined and
increased from the default 13 to 53 based on land cover classes and soil mapping units (Figure A1).
A simple test has been done before refining the parameters by performing the calibration using the
default 13 parameters, and the preliminary results were much worse (KGE = −2.3, not shown in
the results section) than after refining the parameters (KGE = 0.653). With the default parameters,
VIC, as a macroscale land-surface based model, was not correctly estimating the water and energy
balance equations in a vertical column at each grid cell and transferring water between grids and
river networks by using the routing module (RVIC). After refining, the model significantly improved
the water interaction in wetland areas, and different land cover and soil tiles and routed the flow to
the outlet.

The message here is that an effort has been made to employ a better calibration approach with an
efficient optimization algorithm for the advanced model (VIC). As discussed in Section 3.2, DDS is a
competitive and efficient optimization tool that has been applied in several distributed and land-surface
based hydrological models. Thus, it is safe to say that the conclusion (i.e., the improved performance
of SACSMA and MAHBV over VIC in the calibration outputs) was not limited by the search algorithm.

4.2. Model Comparison in Forecast Mode

4.2.1. Overall Forecast Quality and Skill

GEFSv2 ensemble precipitation forecasts were bias-corrected by the Empirical Quantile Mapping
method using CaPA as a verifying analysis, as described in Section 3.3. Both raw and bias-corrected
GEFSv2 inputs were fed into four hydrological models in order to (1) realize the effect of the
bias-correction on the output hydrological forecasts, and (2) compare the models forecast performance
pre- and post-bias correction process.

Figure 6 shows the mean CRPS, which measures the overall probabilistic error of the ensemble
reservoir inflow forecasts generated by four hydrological models and GEFSv2 inputs. As expected, the
bias-corrected GEFSv2 ensembles significantly outperform the raw GEFSv2 inputs regardless of the
hydrological models used. The quality of hydrological forecasts was much improved by bias-correcting
each ensemble precipitation forecast of GEFSv2 with CaPA reanalysis data. Figure 6 also shows a
comparison between the forecast quality of the four hydrological models. For all models, the overall
forecast quality declines as the lead time increases, as expected. It can be seen from the figure that
the mean CRPS values of the SACSMA model are the lowest followed by MACHBV, WATFLOOD,
and VIC in ascending order of forecast probability error. Whether using raw GEFSs or bias-corrected
GEFSs as in inputs, the resultant hydrological forecast skill of the two lumped models (SACSMA and
MACHBV) outperforms the benchmark distributed WATFLOOD model and the macroscale VIC model
at all lead times. However, the benchmark model provides a better skill than VIC and is relatively
close to the two lumped models at early lead times.
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Figure 6. Mean CRPS of ensemble reservoir inflows generated with Raw (left) and Bias-corrected
(right) ensemble GEFSv2 precipitation forecasts.

So far, the models’ ensemble outputs were evaluated based on their overall forecast error. In order
to add a comprehensive outlook, a reference ensemble forecasting system is used to evaluate their
skills. Figure 7 shows the mean CRPS skill score (CRPSS) of ensemble reservoir inflows simulated by
the four different hydrological models. It can be seen from the figure that, the CRPSS values of the
four models have a similar trend, as the CRPS depicting that the lumped models have better forecast
skill than the benchmark and macroscale models. Comparing to the reference climatological-based
ensembles, SACSMA provides the best quality of ensembles at all lead times, followed by MACHBV,
WATFLOOD, and VIC. The lumped models were competitive throughout the forecast horizon, with
minor exceptions. For the first two to three days, the skill score of the benchmark WATFLOOD is
relatively close to the lumped models, but the forecast skill gradually deteriorates at later lead times.
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Figure 7. Comparison of reservoir inflow ensembles between four hydrological models using CRPS
skill score (CRPSS).

4.2.2. Reliability

The reliability of the ensemble hydrological forecasts was evaluated by two metrics; using the
reliability component of CRPS after decomposition of [71], and using the Reliability Diagram.

Figure 8 shows the components of CRPS after decomposition of [71]. Here, the summation of
the reliability (left) and potential CRPS (right) components of each hydrological model is the mean
CRPS. The reliability and potential CRPS components follow the same trend as the mean CRPS and
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CRPSS. The decomposition indicates that the lumped models (SACSMA and MACHBV) were more
reliable and have less spread and outliers than the benchmark WATFLOOD and macroscale VIC
models. The reliability component contributes about half of the mean CRPS. The rest comes from the
potential CRPS. Remarkably, it can be observed that the forecast quality of WATFLOOD during the
first two or three days comes from the reliability component because this value is lower and much
closer to the lumped models than the potential CRPS component. The overall forecast quality of the
SACSMA model remarkably remains the same up to lead time of day 6, as can be seen from mean
CRPS and CRPSS values. This effect is mainly due to the potential CRPS component, which remains
either constant or slightly dropped as going from day 1 to day 6. SACSMA model generates ensembles
that are less spread and have low number of outliers in the first six days forecast as explained by the
potential CRPS component. The potential CRPS rapidly increased in all models after lead time seven,
which indicates that the ensemble spread and presence of outliers start to significantly rise irrespective
of the model type after a seven-day forecast. The sudden rise and decline of mean CRPS and CRPSS in
most models after day seven, maybe due to this effect.
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Figure 8. CRPS decomposition components. The left plot shows the reliability component, and the
right plot shows the Potential CRPS component. A comparison of these attributes was made between
four hydrological models.

Figure 9 shows the reliability diagrams of the hydrological models for forecast lead time of day 1, 3,
and 5. For a one-day lead time forecast, the reliability curves of SACSMA, MACHBV, and WATFLOOD
were all reasonably aligned along the diagonal line, which indicates that they achieve relatively more
reliable forecasts. The conditional observed frequency is comparable with the forecast probability
with slight exceptions in the very lower bin. For day three forecasts, this trend minimally changes,
but overall, the reliability of the WATFLOOD is not significantly lower than the lumped models. For
day five, the reliability curve of SACSMA is still close to the diagonal (‘perfect line’), especially on
higher forecast probabilities. MACHBV is relatively reliable on day five of the forecast, as shown
by its diagram. However, the reliability curve of WATFLOOD at day five is away from the diagonal
line indicating its reliability was progressively declining after day three forecast. The reliability of
VIC, although relatively moderate at day one, was reduced at day three and five forecasts because it
continuously underestimates the forecast. The 90% Confidence Intervals (CI) of the reliability diagrams
showed that uncertainties in the conditional verification pair samples increased in all models as the
forecast lead time increases. However, the advancement of conditional uncertainty in the forecasts in
lumped models was not substantial when compared to the benchmark and macroscale models. This is
because the reliability lines of SACSMA and MACHBV are within the CI bounds most of the time, and
their CI’s are closer to the diagonal line. Whereas, for VIC, the reliability lines are either at the lower
or upper level of the CI’s in all cases and for WATFLOOD this occurs on day three lead time. This
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characteristic indicates that 90% of the cases, the reliability diagram attributes of VIC, and sometimes
WATFLOOD did not belong to the interval where the “true” value of the attributes exists, whereas for
the lumped models this does not hold.
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Different colors show different model types. The 90% confidence intervals were shown in the reliability
lines for each model. The inset histograms show the frequency of occurrence in each forecast bin.

4.2.3. Hit and False Alarm Rate Distribution

As described in Section 3.5.3, ROC displays the hit-rate and false alarm rate of a forecasting
system at different thresholds. Figure 10 shows the ROC curves of the models at day-3 forecast lead
time. The hit rate versus false alarm rates was drawn for varying higher probability threshold levels
of reservoir inflows because the primary focus of this research is on flood forecasting. Simulated
ensemble inflows exceeding 75, 80, 85, 90, and 95 percentiles of the observed reservoir inflow were
taken into consideration. At day three lead time (Figure 10), SACSMA performed well in attaining the
highest true alarm and lowest false alarm rates for all probability thresholds, as compared to other
models, the closest one being MACHBV. Forecasting the most extreme flood or flows exceeding 95 and
90 percentile inflows is a challenge that most models lack with different levels of forecast skill. The
lumped models and subtly of the benchmark are deemed sufficient to construct ensembles that have
good discrimination skills to forecast up to 85 percentile reservoir inflow. Although the ROC curves
stipulate that VIC can, in fact, reproduce 80 percentile flows up to five days ahead forecast time other
probability thresholds have almost zero skills.
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Figure 10. Relative Operating Characteristic (ROC) curves drawn for probability thresholds exceeding
75, 80, 85, 90, and 95 percentile reservoir inflows for three days ahead forecast. The four plots are for
four different hydrological models.

In Figure 11, the ROC Scores of each model, estimated by the average of the area under the ROC
curves for the considered probability thresholds, are shown. It summarizes the performance and
discrimination skills of the models’ ensembles for all forecast time horizons. The ROC Scores indicate
that the forecast skills of WATFLOOD and VIC monotonically decrease as the lead time increases, but
for the case of SACSMA and MACHBV, even though their skill unevenly decline, they have competitive
and relatively decent forecast performances. The declining ROC Scores indicate that as the lead time
increases, the ROC curves (not shown here) progressively approach the diagonal line, which is the
climatological forecast or “zero skill” line [78]. In general, considering all the forecast lead times and
probability thresholds, SACSMA appeared to have better discrimination skills more than the others,
followed by MACHBV, WATFLOOD, and VIC in order of performance.
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5. Conclusions and Discussion

The objective of this study was to identify hydrological models from a pool of diverse model
structures that can produce better forecast skill and reliability and provide an enhanced short- and
medium-range reservoir inflow forecasts in a Prairie watershed: The Upper Assiniboine River Basin. A
comparison of forecast skill and reliability between the selected hydrological models was made using
raw and bias-corrected ensemble precipitation forecast products. The best model was selected from
two lumped models (SACSMA with SNOW17 and MACHBV with SNOW17), a benchmark distributed
model (WATFLOOD), and macroscale land-surface based model (VIC). Daily total precipitation
forecasts were collected from an 11-member second-generation Global Ensemble Forecast System
reforecast (GEFSv2). Each of the ensemble members was bias-corrected by Empirical Quantile Mapping
method using the Canadian Precipitation Analysis (CaPA), as a training/verification dataset. Raw
and bias-corrected GEFSv2 precipitation were supplied to the hydrological models to evaluate and
compare the forecast skill and reliability of the ensemble inflow outputs. Forecast evaluation was
performed in a 6-month hindcast period where daily ensemble reservoir inflow forecasts were issued
for 1-day up to 8-days forecast lead times. SACSMA, MACHBV, and VIC models were calibrated in
the study area by comparing simulated and observed inflows into Shelmouth Reservoir while the
WATFLOOD model, which is operationally implemented for the Provincial real-time flood forecasting
was used as a benchmark.

Results indicated that simulated ensemble reservoir inflows generated by bias-corrected GEFSv2
provided significantly better forecast quality than the raw GEFSv. Even though this result is expected,
two things are noticed; first, the bias-correction of each ensemble members instead of the mean or
median provided a consistent and reliable ensemble inflow forecast, and second, bias-correcting
forecasts using verifying datasets (such as CaPA) for a training period of at least two years before the
forecast time results in an improved hydrological forecast. This method and the improved result can
be beneficial for users at operational flood forecasting centers, as they would generally prefer less
advanced and quick post-processing methods.

All models were supplied with bias-corrected ensemble GEFSv2, and various ensemble verification
metrics were used to compare the model outputs up to eight days of forecast lead times. The overall
forecast quality and skill of the models’ results were evaluated by using mean CRPS and CRPSS metrics.
Results indicated that the two lumped models (SACSMA and MACHBV) provided better overall
forecast performance than the benchmark WATFLOOD and the macroscale VIC models. Although
the lumped models (SACSMA and MACHBV) were found to be comparable, SACSMA provided
enhanced forecast skill than MACHBV at all lead-times. For shorter lead-times, particularly up to day
3, WATFLOOD provided relatively competitive overall forecast quality as of the lumped models.
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The CRPS decomposition by [71] was found to be vital to interpret and better analyze the overall
forecast performance. This decomposition indicated that the modest forecast skill of WATFLOOD in
the first 2 or 3 days came from the reliability component of CRPS. The decomposition of CRPS further
indicated that the superior performance of SACSMA is due to its ability to generate ensemble inflow
forecasts with less ensemble spread and low presence of outliers in the first six days of the forecast as
explained by the potential CRPS component.

Reliability diagrams of the hydrological models at different lead times provided further insight
into the forecast skill of the ensembles. At shorter lead times, the reliability diagrams of SACSMA,
MACHBV, and WATFLOOD indicated that they all achieve relatively reliable forecasts as the conditional
observed frequency was comparable with the forecast probability. However, after day 5, the reliability
of WATFLOOD deteriorated while MACHBV and SACSMA, in order of increasing performance,
remain within reasonable calibration accuracy. The reliability of VIC, although relatively moderate at
day one, was weak because it continuously underestimated the forecast.

In order to evaluate the discrimination skill of the ensembles, two threshold-based metrics were
used to evaluate the hit-rates and false-alarm rates at different higher forecast thresholds: Relative
Operating Characteristic (ROC) curve and the ROC Score measured by the area under the ROC Curves.
ROC curves of the models were drawn and compared for ensemble reservoir inflows exceeding between
75 and 95 percentiles, with a 5 percent increment. For day three forecast, SACSMA and MACHBV
models attained highest true alarm, and lowest false alarm rates for all probability thresholds with the
former slightly outperformed the later. As the lead time increases, forecasting the most extreme flows
exceeding 95 percentile inflows was a challenge for most models. However, the lumped models and
moderately the benchmark were sufficiently able to generate ensemble inflows that have very good
skills to forecast inflows exceeding the 85 percentiles. Overall, considering all the forecast lead times
and probability thresholds, SACSMA provided better differentiation skill than the others, followed by
MACHBV, WATFLOOD, and VIC in order of decreasing performance.

In general, ensemble inflow forecasts generated by the lumped models offered substantially better
performances as compared to the benchmark distributed model or the macro-scale land surface models.
The distributed benchmark model unequivocally provided reliability as good as the lumped models
up to three days ahead even though it deteriorates rapidly at later lead times. It is anticipated that
the forecast performance of the VIC model could be improved by increasing the grid resolution of
the model, which was set up at 1/8-degree horizontal resolution. Overall the SACSMA appeared to
generate the most reliable and skillful ensemble reservoir forecast inflows for up to a week ahead lead
times and should be considered as an alternative operational model in the study area.

The performance of different hydrological models depends on many factors such as the scale,
the complexity of the basin, the spatial and temporal resolution of the input data, the structure of the
models, the degree of discretization of the models, and the number of parameters to be calibrated, etc.
For the models that were applied to this research, these factors are interconnected and thus affect their
calibration performance jointly. The intended purpose of the hydrological models in this study is to
simulate and forecast short- and medium-range reservoir inflows. Regardless of the structure and
degree of discretization of the models, the objective is to obtain a time series (hydrograph) implicitly at
one location, which is considered as the watershed outlet, and no interior locations or sites are needed.
The way the inputs were supplied to the models depends on the type of the model (e.g., lumped,
distributed) and the discretization level (e.g., spatially lumped catchment, grids, GRUs, HRUs). Hence,
it can be said that the calibration performance of the hydrological models was influenced jointly by the
above factors.

Moreover, there are many references from the literature where lumped models outperformed
various distributed or land-surface based models. The Distributed Model Inter-comparison Project
(DMIP) has implemented several hydrological models at eight basins of the River Forecasting Centres
in the USA, and the results showed that lumped models (particularly SACSMA) provided better
performance than distributed (such as WATFLOOD, SWAT) and land-surface based models (such
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as VIC, NOAH) [82]. Results from the Model Parameter Estimation Experiment (MOPEX) also
demonstrated a significantly improved performance of SACSMA comparing to land-surface based
models including VIC and SWAP [83,84]. Maurer et al. [85], performed a comparative study between
SACSMA and VIC models, and the results revealed that the former lumped model had an evident
better calibration performance over the later land-surface model.

The research is conducted to identify the best performing hydrological models for improved
hydrological forecasting in a specific large complex watershed of the prairie region of Canada. The
Upper Assiniboine Basin is characterized as a “Prairie” watershed, which is known for its complex
hydrology due to the presence of potholes. Hence, the study area is considered as one example of a
complex watershed. The hydrological models have a diversified structure (lumped, distributed, and
macro-scale land-surface based) and implemented to evaluate and select the model that has the best
potential for simulating and predicting reservoir inflows for such a complex basin. If another kind
of complex watershed with the same scale is used, it is believed that a similar conclusion would be
drawn. The previous studies that provided similar conclusions were conducted in various watershed
landscapes. The MOPEX project was tested in twelve watersheds that have various land cover types
such as croplands, mixed forests and natural vegetation in different altitudes [83,84]. In the DMIP
study, the dominant land cover properties of the eight basins were mainly agriculture and forests
with varying topographies and soil types [82,86]. The comparative study of Maurer et al. [85] was
performed in snow-dominated catchments. Overall, the same candidate model(s) would highly likely
be identified to better simulate and forecast medium-range reservoir inflows in other types of complex
watersheds with a similar scale and characteristics.

In general, for hydrological forecasting focusing on basin outflows and not interior sites, the study
indicated that lumped models, particularly SACSMA with SNOW17, provided better performance
than the distributed or land-surface models in complex watersheds. Not only the calibration but also
the validation and forecast verification analysis have given the superiority in simple models. The
verification of hydrological forecasts generated from bias-corrected ensemble weather forecast inputs
provided enough details of the model’s performances for the intended purpose.
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Appendix A Brief Description of the Calibration of Models

Appendix A.1 SNOW17

The Snow Accumulation and Ablation Model (SNOW17) model was developed by [44] as part of
the NWS river forecasting system. It is a conceptual model that uses a temperature index to determine
energy exchange across snow-air interface [44].

Inputs to the model are:

(i) The mean area observed precipitation time series obtained by Theisen Polygon method
(ii) The mean area observed temperature time series obtained by Theisen Polygon method
(iii) The average elevation of the catchment
(iv) The latitude of the centroid of the catchment

The parameters that were calibrated are listed in Table A1.
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The MATLAB version of the source code was used to set up and calibrate the model in the
study area.

Table A1. SNOW17 model parameters.

No Parameters Description Unit Ranges

1 SCF Snowfall correction factor – 0.4–1.6

2 MFMAX Maximum melt factor during non-rain
periods considered to occur on June 21 mm/6 h/◦C 0.5–2.0

3 MFMIN Minimum melt factor during non-rain
periods considered to occur on December 21 mm/6 h/◦C 0.05–0.5

4 UADJ The average wind function during
rain-on-snow periods mm/mb/◦C 0.03–0.2

5 NMF Maximum negative melt factor mm/6 h/◦C 0.05–0.50

6 MBASE Base temperature for non-rain melt factor
above which melt typically occurs

◦C 0–2.0

7 PXTEMP1

Lower Limit Temperature dividing tranistion
from snow, if temp is less than or equal to

pxtemp1, all precip is snow. Otherwise it is
mixed linearly

◦C −2.0 to 0

7 PXTEMP2

Upper Limit Temperature dividing tranistion
from snow, if temp is greater than or equal to

pxtemp2, all precip is rain. Otherwise it is
mixed linearly

◦C 1 to 3.0

8 PLWHC percent liquid water holding capacity of the
snow pack – 0.02–0.3

9 DAYGM Daily melt at snow–soil interface mm/day 0–0.3

10 TIPM Antecedent snow temperature index – 0.1–0.2

Outputs from SNOW17 are outflow and Snow Water Equivalent. The outflows are the summation
of snowmelt and rain. The coupling mechanism of SNOW17 with SACSMA and MACHBV models is
performed by forcing outflows from SNOW17 into the hydrological models.

Appendix A.2 SACSMA

The Sacramento Soil Moisture Accounting (SAC-SMA) model has been used as a lumped
conceptual model at the National Weather Service (NWS) for operational river forecasting purposes.
It has also been included within the National Weather Service Hydrology Laboratory’s Research
Distributed Hydrologic Model (HL-RDHM) by adding several processes [87]. Details description of
the lumped SACSMA model can be found in [88].

In this research, SACSMA was implemented as a lumped continuous model in Upper Assiniboine
Basin. The MATLAB version of the source code was used to set up and calibrate the model.

For calibrating the model, the following inputs are used:

(i) Outflow (rain plus snowmelt) from SNOW17
(ii) The catchment area of the basin
(iii) Observed catchment outflow estimated by calculated reservoir inflow

The lists the parameters of the model that were calibrated by DDS optimization are presented in
Table A2.
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Table A2. SACSMA model parameters.

No Parameters Description Unit Ranges

1 UZTWM Upper zone tension water maximum storage [mm] 1–150
2 UZFWM Upper zone free water maximum storage [mm] 1–150
3 LZTWM Lower zone tension water maximum storage [mm] 1–500
4 LZFPM Lower zone free water primary maximum storage [mm] 1–1000
5 LZFSM Lower zone free water supplemental maximum storage [mm] 1–1000
6 ADIMP Additional impervious area [-] 0.0–0.4
7 UZK Upper zone free water lateral depletion rate [day−1] 0.1–0.5
8 LZPK Lower zone primary free water depletion rate [day−1] 0.0001–0.025
9 LZSK Lower zone supplemental free water depletion rate [day−1] 0.01–0.25

10 ZPERC Maximum percolation rate [-] 1–250
11 REXP Exponent of the percolation equation [-] [-] 1–5.0
12 PCTIM Impervious fraction of the watershed area [-] 0.0–0.1

13 PFREE fraction percolating from upper to lower zone free water
Storage [-] 0.0–0.6

14 athorn A constant for Thornthwaite’s equation [-] 0.1–0.3
15 Rq Routing Coefficient [-] 0.0–1

Appendix A.3 MACHBV

McMaster University-Hydrologiska Byråns Vattenbalansavdelning (MAC-HBV) is a modified
version of the lumped conceptual HBV model edited by [45] at McMaster University. Detail description
of the model can be found in [89]. MACHBV has been implemented in several Canadian watersheds
for flood forecasting purposes [90–94].

The model was calibrated in Upper Assiniboine River Basin in this study. The MATLAB version
of the source code was used to set up and calibrate the model. The following inputs were used
for calibration:

(i) Outflow (rain plus snowmelt) from SNOW17
(ii) The catchment area of the basin
(iii) Observed catchment outflow estimated by calculated reservoir inflow

The lists the parameters of the model that were calibrated by DDS optimization are presented in
Table A3.

Table A3. MACHBV model parameters.

No Parameters Description Unit Ranges

1 athorn A constant for Thornthwaite’s equation [-] 0.1–0.3
2 fc Maximum soil box water content [mm] 50–800
3 lp Limit for potential evaporation [mm/mm] 0.1 × fc–0.9 × fc

4 beta A non-linear parameter controlling runoff
generation [-] 1–10

5 K0 Flow recession coefficient in an upper soil
reservoir [days] 1–30

6 lsuz
A threshold value used to control response

routing on an upper soil
reservoir

[mm] 1–100

7 K1 Flow recession coefficient in an upper soil
reservoir [days] 2.5–100

8 cperc A constant percolation rate parameter [mm/day] 0.01–6

9 K2 Flow recession coefficient in a lower soil
reservoir [days] 20–1000

10 maxbas A triangle weighting function for modelling a channel
routing routine [days] 1–20

11 rcr Rainfall correction factor [-] 0.5–1.5

12 a1
An exponent in relation between outflow and
storage representing non-linearity of storage –

discharge relationship of lower reservoir
[-] 0.5–20
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Appendix A.4 VIC

The Variable Infiltration Capacity (VIC) model is a Macroscopic Land-surface distributed
hydrological model. Detail description of the model can be found in [46]. Since VIC computes
its energy and water balance equations in a vertical column at each grid cells, an external river
routing module is required to route runoff and baseflows to the edge of each grid cell throughout the
river network to the catchment outflow [59]. For this purpose, the python version of RVIC routing
module [58] is used in this research. Version 4.2.d of VIC was setup and coupled with RVIC.

Meteorological forcing to the model are:

(i) Average daily gridded interpolated precipitation data from the ground network,
(ii) Daily gridded minimum, and maximum temperature data from ANUSPLIN,
(iii) Average daily wind speed from the Global Environmental Multiscale (GEM) model.

Physical inputs are:

(i) Digital elevation model for SNOW elevation bands and flow direction computation
(ii) Land cover data from Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover

Type (MCD12Q1) Version 6 data product
(iii) Soil data from FAO’s Harmonized World Soil Database (HWSD) V 1.2

The grid resolution of VIC model setup was about 1/8 degree. At each grid, three elevation bands
and three soil layers were used in the study area.

Some of the main processes are described below:

(i) Snow: Rain-snow partitioning, snow accumulation, and melting are simulated at a sub-grid level
using temperature index method lapsed through the Elevation (SNOW) bands.

(ii) Evaporation: is simulated at each elevation band and land cover type using
Penman-Monteith Approach.

For this study, the dynamic wetland module was activated to calibrate the wetland parameters
because as a Prairie watershed, the area has abundant wetland and potholes, as shown in Figure A1. The
default parameters of the VIC/RVIC model (Table A4) were further refined to improve the calibration
output and to better represent the physical characteristics of such a large complex basin. Wetland
parameters were refined based on the vegetation type in the catchment. Each of the three major land
cover classes (Figure A1) in the area has been assigned with its own five wetland parameters. Similarly,
the six soil parameters were sub-categorized into six soil groups based on the dominant and associated
soil types of the basin (Figure A1). After parameter refining, the total number of parameters to be
calibrated was increased from the default 13 to 53 including the routing parameters.
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Table A4. VIC/RVIC model parameters.

No Notation Range Unit Definition

Soil parameters
1 b 10−5–0.4 - Variable infiltration curve parameter
2 Ds 10−3–1 - Fraction of Dsmax where non-linear baseflow begins
3 Dm 0.1–30 mm/day Maximum velocity of baseflow

4 Ws 0.5–1 - Fraction of maximum soil moisture where non-linear
baseflow occurs

5 s2 0.3–1.5 m Thickness of middle soil moisture layer
6 s3 0.3–1.5 m Thickness of bottom soil moisture layer

Wetland
parameters

7 bmin_depth 0.01–0.3 m Lake depth below which channel outflow is 0.

8 wfrac 0.001–0.05 - Width of lake outlet, as a fraction of the lake
perimeter

9 depth_in 0.01–0.3 m Initial lake depth

10 rpercent 0.1–1 - Fraction of grid cell runoff that enters lake (instead of
going directly to channel network)

11 lake_depth 0.1–1.5 m Maximum allowable depth of lake
Routing

parameters
12 Vl 0.5–3 m/s Flow/Wave velocity
13 Df 200–4000 m2/s Flow diffusion
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