
Outdoors Mobile Augmented Reality for Coastal
Erosion Visualization based on Geographical Data

Minas Katsiokalis

May 2020

Electrical And Computer Engineering,
Technical University Of Crete

Thesis Committee
Associate Professor Katerina Mania (Thesis Supervisor)

Associate Professor Dionysia Kolokotsa
Associate Professor Vasileios Samoladas

1

Acknowledgement

This thesis is a result of a collective effort. As a token of my appreciation I would
like to mention some of the contributors.

First, I would like to thank my Supervisor, Associate Professor Katerina Mania
for her supervision throughout this whole process. Next I would like to thank Dr.
Lemonia Ragia for her invaluable knowledge on the field of coastal erosion and for
providing the geographical data of this project. Her advice and guidance was of big
importance.

Next, I would like to thank Eleftheria Gogonaki, for her infinite patience, assis-
tance and support during the whole process. Without her the process would have
become way more difficult in many aspects.

I also want to thank my friends and collaborators, for providing psychological
support, ideas and useful instructions. Special thanks to my friend Maria Sgourou,
a valuable partner during all these years of my studies providing invaluable help.

Big love to Danadas Squad (DnDs) for all those years of friendship and for hav-
ing faith in me.

And last but not least, I would like to express my gratitude and infinite love to
my family members: My father George, my mother Katerina and my little brother
Demosthenes for all the psychological and economic support all these years despite
the hard times that they have been through.

In memory of my grandfather Minas and my grandmother Kaiti, which I recently
lost.

2

Περίληψη

Σε αυτή τη διπλωματική εργασία παρουσιάζουμε μια εφαρμογή επαυξημένης πραγ-

ματικότητας σε κινητές πλατφόρμες για την οπτικοποίηση παράκτιας διάβρωσης βα-

σιζόμενη σε γεωγραφικά δεδομένα που αφορούν την παραλία της Γεωργιούπολης στον

νομό Χανίων. Ο κύριος στόχος αυτού του έργου είναι να παρέχει ένα μέσο για την
τρισδιάστατη οπτικοποίηση της μελλοντικής κατάστασης της παραλίας και να αυξή-

σει την ευαισθητοποίηση του κοινού σχετικά με το φαινόμενο παράκτιας διάβρωσης

που λαμβάνει χώρα σε πολλές παράκτιες περιοχές του νησιού της Κρήτης. Σε αυτήν
την εφαρμογή έχουμε δύο μελλοντικά σενάρια σε τρεις διαφορετικές τοποθεσίες της

παραλίας. Το πρώτο σενάριο δείχνει την παραλία με 3,6 μέτρα εισχώρηση στην εν-
δοχώρα και το δεύτερο σενάριο δείχνει την παραλία με 7,7 μέτρα εισχώρηση. Και τα
δύο σενάρια αντιστοιχούν στην τάση της παραλίας μετά την ελάχιστη και τη μέγιστη

προσδοκώμενη αύξηση της στάθμης της θάλασσας σε χρονικό διάστημα 80 ετών. Η
βελτίωση της τεχνολογίας των κινητών τηλεφώνων έχει δώσει πρόσβαση σε εμπειρίες

Επαυξημένης Πραγματικότητας στο ευρύ κοινό, χρησιμοποιώντας την κάμερα, το GPS
και τους εσωτερικούς αισθητήρες που υπάρχουν στα σύγχρονα smartphones. Με την
επίσκεψη στις τρεις τοποθεσίες, μια εικονική σκηνή αντιστοιχίζεται με την γεωγραφική
θέση του χρήστη και μετά από μια σύντομη διαδικασία, ο χρήστης μπορεί να βιώσει
την 3D αναπαράσταση. Η καταγραφή της θέσης του χρήστη πραγματοποιείται χρησι-
μοποιώντας το GPS του τηλεφώνου καθώς και με τους αλγόριθμους υπολογιστικής
όρασης του επιλεγμένου εργαλείου AR. Σχεδιάστηκε και ενσωματώθηκε μια εφαρμογή
βασιζόμενη στην τοποθεσία για να εξασφαλιστεί η φόρτωση του σωστού περιεχομένου

σε κάθε τοποθεσία, αποφεύγοντας την άσκοπη φόρτωση γραφικών στοιχείων καθώς
επίσης να διασφαλιστεί ότι ο χρήστης βρίσκεται στην περιοχή της Γεωργιούπολης. Η
εφαρμογή παρέχει έναν χάρτη που μπορεί να χρησιμοποιηθεί για την ενημέρωση του

χρήστη σχετικά με τις τοποθεσίες ενδιαφέροντος, καθώς και για τη λήψη οδηγιών και
την επίσκεψη σε όποια από αυτές επιθυμεί. Η εφαρμογή κάνει χρήση σύγχρονων ερ-
γαλείων AR και μεθόδων rendering για ανάπτυξη εφαρμογών σε κινητές πλατφόρμες.
Συνδυάζοντας την τεχνολογία AR με γεω-χωρικά δεδομένα στοχεύουμε να βελτιώ-
σουμε την κατανόηση των δεδομένων αυτών από τους χρήστες και να αυξήσουμε την

επίγνωση του κοινού για κρίσιμα περιβαλλοντικά φαινόμενα όπως η διάβρωση των ακ-

τών, εστιάζοντας σε μια περιοχή υψηλού κινδύνου όπως η Γεωργιούπολη.

3

Abstract

In this thesis we present a mobile augmented reality application for coastal ero-
sion visualization based on geographical data, at the beach of Georgioupoli in Cha-
nia. The main focus of this work is to provide a mean for the 3D on-site visualization
of the future state of the beach and increase the awareness of the public audience
about the coastal erosion effect that takes place in many coastal areas of the Crete
island. In this application we feature two future scenarios in three different locations
of the beach. The first scenario is showing the beach under 3.6 meters retreat inland
and the second scenario showing the beach under 7.7 meters retreat inland. Both
scenarios correspond to the tendency of the beach after the minimum and maximum
sea level rise expectation (SLR) in a time interval of 80 years. Advances in mobile
technology have brought Augmented Reality to the wider public by utilizing the
camera, GPS and inertial sensors present in modern smartphones. Upon visiting
these locations a virtual scene is matched to the user’s position and after a short
process the user can experience the visualization. Position tracking is performed
by utilizing the phone’s GPS and the computer vision capabilities of the chosen
AR framework. A location aware experience was designed and integrated to ensure
the loading of the right content at each location, avoiding unnecessary rendering of
graphics and ensuring user is located in the area of Georgioupoli. The application
provides a map which can be used to notify the user about the locations of interest as
well as to get directions and visit whichever he/she desires. The application makes
use of modern AR frameworks and rendering methods for mobile AR development.
By combining AR technologies with geo-spatial data we aim to enhance user’s un-
derstanding of those data and increase people’s knowledge on crucial environmental
phenomena like coastal erosion, focusing on a high risk area such as Georgioupoli.

4

Contents

1 Introduction 13
1.1 Brief Description . 13
1.2 Thesis Structure . 15

2 Augmented Reality (AR) 16
2.1 Introduction to AR . 16
2.2 History of AR . 17
2.3 Current state of AR . 23

2.3.1 AR Head Mounted Displays (HMDs) 24
2.3.2 Mobile Augmented Reality (MAR) 30

2.4 Use of AR Nowadays . 32
2.4.1 Modern AR Apps . 32
2.4.2 AR For Environmental Purpose 35

2.5 The Registration Problem . 41
2.5.1 Fiducial Marker Based Tracking 42
2.5.2 Natural Feature Tracking . 42
2.5.3 Model Based Tracking . 43
2.5.4 Markerless Tracking . 44
2.5.5 Sensor Based Tracking . 45
2.5.6 Hybrid Tracking . 46

2.6 Developing Platforms & Software . 47
2.6.1 AR Software Development Kits (SDKs) 47
2.6.2 Game Engines . 54
2.6.3 Platform of our choice . 56

2.7 Future of AR . 58

3 Case Analysis on Coastal Erosion 60
3.1 Introduction . 60
3.2 Our Case Analysis . 61

3.2.1 Economic Analysis . 61
3.2.2 Environmental Analysis . 64

3.3 Data Showcase . 65
3.3.1 Coastal Retreat Extraction . 65
3.3.2 Visualization of Data . 66
3.3.3 Tables of Data . 68

4 Requirements Analysis 72
4.1 Introduction . 72
4.2 Pre-Requirements . 72

4.2.1 General Requirements . 72
4.2.2 Augmented Reality Requirements 73
4.2.3 Map and Navigation Requirements 74

4.3 Use Case Scenarios . 75
4.3.1 User Enters the Application 75
4.3.2 User is Located Outside of Georgioupoli 76
4.3.3 User Enters the Map . 77
4.3.4 User Enters AR View . 79

5

4.3.5 User Experiences the AR Visualization 81
4.4 Hardware Requirements . 83

5 End User Experience 84
5.1 Introduction to the App . 84
5.2 Initial/Welcome Screen . 85
5.3 Not-in-area Screen . 86
5.4 Map Screens . 87

5.4.1 Entering Map View . 87
5.4.2 Choosing Location . 88
5.4.3 Navigating to Selected Location 89
5.4.4 Reaching Selected Location 89

5.5 AR Screens . 90
5.5.1 Entering AR View . 90
5.5.2 Scanning the Environment . 91
5.5.3 Detecting Planes & Shoreline 91
5.5.4 Placing Virtual Content . 92
5.5.5 AR visualization . 94
5.5.6 Beginning Visualization . 94
5.5.7 First AR Scenario . 95
5.5.8 Second AR Scenario . 96
5.5.9 Info Signs Enabled . 96
5.5.10 Information Panels . 97

5.6 Usage of the App . 99
5.6.1 Giving Access to Hardware . 99
5.6.2 Helpful Tips . 99

6 Implementation 101
6.1 Developing Platform . 101

6.1.1 Unity3D . 101
6.1.2 Android Studio . 101
6.1.3 Hardware . 102

6.2 Software & Packages . 102
6.2.1 ARCore . 102
6.2.2 Mapbox . 103
6.2.3 AR Foundation . 104
6.2.4 Lightweight Render Pipeline 105
6.2.5 Shader Graph . 107
6.2.6 Rest of Packages . 108

6.3 Structure of the App . 109
6.4 Welcome Scene . 111

6.4.1 Welcome Scene Components 111
6.4.2 Interactions . 112

6.5 Map Scene . 114
6.5.1 Map Scene Components . 114
6.5.2 Integrating Mapbox . 115
6.5.3 Self-Indicator Functionality 117
6.5.4 Directions Implementation . 118
6.5.5 Checking Location & Distance 121

6

6.6 AR Scene . 124
6.6.1 AR Scene Components . 124
6.6.2 Setting Up AR Foundation . 125
6.6.3 Creating Water Shader . 127
6.6.4 Designing Virtual Content . 131
6.6.5 Interactivity in AR . 133

7 Conclusion 136
7.1 Summary . 136
7.2 Evaluation . 136

7.2.1 Tecnhical Characteristics . 136
7.2.2 Goal and Functionality . 137

7.3 Future Work . 138
7.3.1 Increase Environmental Understanding 138
7.3.2 Improve Shoreline Detection Method 139
7.3.3 Visual Upgrade & Optimization 139
7.3.4 HMD implementation . 140
7.3.5 Adding More Scenarios . 140

8 Bibliography 141

7

List of Figures

1 (a) Present (Real) (b) Future (Real + Virtual) 14
2 Milgram’s Reality - Virtuality Continuum [1] 16
3 Ivan Sutherland’s first Augmented Reality System [2] 18
4 Caudell and Mizell coining AR in 1992 [3] 18
5 Touring Machine by Feiner et al. [4] 20
6 ARToolKit for pose tracking in 6DOF [5] 20
7 ARQuake by Thomas et al. [6] . 21
8 (a) Siemens SX1 AR game ”Mozzies”.[5] (b) Multi-user AR applica-

tion for handheld devices ”The Invisible Train”.[7] 22
9 (a) AR-Tennis by Henrysson et al.[8] (b) Wikitude AR Browser.[5] . . 23
10 Microsoft HoloLens HMD [37] . 25
11 Windows 10 on Microsoft HoloLens [38] 25
12 Microsoft HoloLens 2 HMD [37] . 26
13 Microsoft HoloLens 2 on Healthcare [37] 27
14 Magic Leap One HMD [39] . 27
15 Magic Leap One Gesture Recognition [40] 28
16 (a) Magic Leap Lightpack (b) Magic Leap Control [39] 28
17 (a) Nreal Light Glasses, Controler and mini PC (b) Nreal Light

Glasses: look like sunglasses [41] . 29
18 AR Training in the Workplace [35] 30
19 AR Navigation using Smartphone [36] 31
20 IKEA Place: Virtual Couch in Living Room 32
21 Toyota Hybrid AR: In-depth Information 33
22 Google Translate: AR Sign Translation 34
23 Night Sky: AR View of Virgo . 34
24 Unbelievable Bus Shelter: Tentacle Illusion 35
25 Energy Source application workflow [9] 36
26 Climate Change application workflow [9] 37
27 (Left) Wind Power, (Right) Climate Deforestation [9] 37
28 Eco-discovery AR-based learning model (EDALM) [10] 38
29 (a) Screenshot of an interactive virtual plant silhouette (b) Learning

content about specific plants [10] . 39
30 Browser/Authoring tool. AR tracking showing side menu, interaction

annulus, and two triangulated points [11] 39
31 Example point annotations [11] . 40
32 Flooding with building geometry on (Left), and geometry off (Right)

[11] . 40
33 Augmented Reality on Magazine [42] 42
34 Natural Feature Tracking . 43
35 Model Based Tracking of industrial objects by using CAD models [43] 44
36 Plane Detection of Horizontal (blue) and Vertical (pink) Surfaces [44] 44
37 Mobile coordinate system and orientation relative to the Earth’s frame

of reference . 45
38 ARCore Depth API, Occlusion off (left) and Occlusion On (right) [26] 48
39 ARKit 3 People Occlusion, Occlusion off (left) and Occlusion On

(right) [29] . 50

8

40 Vuforia Cylinder Targets [31] . 52
41 Wikitude Object Tracking [30] . 54
42 Functionality Provided by Game Engines 54
43 AR Foundation development compared to ARCore & ARKit devel-

opment [32] . 57
44 Location of Georgioupoli, Crete, Greece 61
45 Georgioupoli’s Beach . 62
46 Coastal zone changes in Georgioupoli [12] 63
47 Minimum and maximum retreats of Cretan beaches for sea level rises

of (a) 0.82 m and (b) 1.86m estimated on the basis of the low and
high mean of the model ensemble projections. Final widths values
less than zero show beaches that will be entirely lost. 71 Beaches
Showcase. [13] . 65

48 Shoreline Retreat Scenarios for SLR 0.5m/1m [12] 67
49 Initial Use Case . 75
50 User isn’t in Georgioupoli Use Case 76
51 Map Use Case . 77
52 Map Settings Use Case . 78
53 AR View Use Case . 79
54 AR Calibration Use Case . 81
55 AR Visualization Use Case . 82
56 App Basic Structure and Navigation 84
57 Welcome Screen . 85
58 Not-in-area Screen (a) Light Map (b) Dark Map 86
59 Map Screen: Note . 87
60 Map Screen: Humanoid/Light Map 87
61 Map Screen: Pin Arrow/Dark Map 88
62 Map Screen: Map Settings . 88
63 Map Screen: (a) Select Location & Enable Directions (b) Hide Settings 89
64 Map Screen: AR Button . 90
65 AR Screen: Note . 90
66 AR Screen: Scanning Initiation . 91
67 AR Screen: Ground Detected . 92
68 AR Screen: Indicating Shoreline . 92
69 AR Screen: AR Content on top of Real World 93
70 AR Screen: Calibration Menu . 93
71 AR Screen: (a) Before (b) After . 94
72 AR Screen: Current State (Close Distance) 95
73 AR Screen: 3.6m Retreat (Medium Distance) 95
74 AR Screen: 7.7m Retreat (Far Distance) 96
75 AR Screen: Info Sings . 96
76 AR Screen: Signs, (a) Current Shoreline, (b) Retreat 3.6m, (c) Re-

treat 7.7m . 97
77 AR Screen: Current Shoreline, Info Panel 97
78 AR Screen: Info Panels, (a) Retreat 3.6m, (b) Retreat 7.7m 98
79 Orientation: (a) Landscape (b) Portrait 100
80 Unity Version . 101
81 Google Play Store: ARCore . 103

9

82 Importing Packages in Unity [52] . 104
83 Inserting Mapbox API key in Unity [52] 104
84 Essential Packages in Unity’s Package Manager 105
85 LWRP Asset Assignment . 106
86 LWRP Settings . 107
87 Shader Graph . 108
88 Imported Packages . 109
89 Scenes of the Project . 110
90 Structure of the Project . 111
91 Welcome Scene Components in Unity Editor 111
92 Welcome Scene Manager Script . 112
93 Toggles Handler Script . 113
94 Start Button Script . 113
95 Map Theme: Light (Up), Dark (Down) 114
96 Map Scene Components in Unity Editor 114
97 Location Provider . 115
98 Target’s Components . 116
99 Map Components . 116
100 Inserting POIs on Map (Left), Cone Prefab (Right) 117
101 Character Movement Component . 117
102 Character Movement Script . 118
103 Indicator Objects, Arrow (Left), Humanoid (Right) 118
104 Requesting Directions Script . 119
105 Handling Directions Script . 119
106 Direction Factory Component . 119
107 Set to Location Component . 120
108 Set to Location Script . 121
109 Calculate Geo Distance Script . 122
110 Get Distance Script . 122
111 Enable Info/Alert Script . 123
112 Enabling AR button Script . 123
113 Load AR Scene Script . 124
114 Scene Manager Components . 124
115 AR Scene Components . 125
116 AR Session Components . 125
117 AR Session Origin Components . 126
118 AR Camera Components . 126
119 Custom Forward Renderer for AR . 127
120 Our Water Shader on Shader Graph 128
121 Our Water Shader Public Variables 129
122 Essential Water Shader Properties on Shader Graph 129
123 Water Shader: (a) Alpha Blend, (b) Additive Blend 130
124 Water: (a) Default Unity Render, (b) Lightweight Render Pipeline . . 130
125 Designing 3D Content based on the Data 131
126 Layer Designing on 3D Content . 132
127 Water Lerp Script . 132
128 Check for Tackable Panes Script . 134
129 Spawn Scene Script . 134

10

130 Calibration Content Script . 135
131 Raycast Signs Script . 135
132 Toggle Trackables Script . 135

11

List of Tables

1 Points of Shoreline - Current State [12] 69
2 Points of Shoreline - Retreat 3.6 meters inland [12] 70
3 Points of Shoreline - Retreat 7.7 meters inland [12] 71

12

1 Introduction

Littering behavior is a global issue affecting most countries, regardless of their devel-
opment status. Mobile Augmented Reality (MAR) shows a promising contribution
in different fields. However, despite the wider applications of MAR in different ar-
eas such as cultural heritage [14] and shopping [15], acceptance studies of mobile
augmented reality applications with environmental awareness are still rare. In this
thesis, the main purpose is to increase environmental awareness using Landscape
Visualization in combination with Augmented Reality. [16]

Landscape visualization is often used for communicating complex information
about the state of a landscape and how it might change. It can be particularly
effective when communicating to community groups and policymakers. Represen-
tation of existing real world and potential alternatives is a powerful tool for public
understanding. MAR can achieve that by giving to the public audience the ability
to experience potential changes of the environment around them, as if they take
place the exact same time, at the exact same place.

Τhe phenomenon this thesis focuses on, is the erosion of coastal zone, and the
changes in the coastline. Coastline is a physical line of the area where land meets
sea. Nowadays, coastline extraction and tracking of its changes has become of high
importance because of the climate change, global warming and rapid growth of hu-
man population. Coastal areas play a significant role for the economy of the entire
region. Dramatic changes in coastline can result in disastrous outcomes for the re-
gion, therefore, the increase of public awareness is vital.

1.1 Brief Description

In this thesis, we present the development of a mobile application for coastal ero-
sion visualization, using Augmented Reality. The location of our interest is Geor-
gioupoli’s Beach in Chania, Crete. The coastal erosion in the area is quite extensive
and is expected to be increased even more on the following years.

The purpose of this thesis is to visualize the beach in its future state. The beach
will be depicted in the near future from now, on the basis of mathematical mod-
els that show the tendency of the beach to erode. This prediction is based on the
current state of the beach, and having as a given, that no further measures will be
taken place (by human factor) to reduce the rate of erosion.

The final product, is an outdoors, on-site Augmented Reality application for
mobile devices as mean of the visualization. Our implementation supports both
Android and iOS devices. The user will be able to visit the area of interest and
experience in real time the visualization with his/her smartphone device using our
MAR application. The experience should give the user an understanding and clear
view of the future changes that coastline will be undergone. Below in figure 1 an

13

example is showcased.

(a)

(b)

Figure 1: (a) Present (Real) (b) Future (Real + Virtual)

In more details, the application was developed in Unity3D game engine using its
newly released package AR Foundation. AR Foundation simplifies the procedure of
development on different mobile platforms such as Android and iOS. The application
consists of two main phases. The first phase (non AR), offers a navigation in the
area of Georgioupoli’s Beach with useful instructions and options to the user. Once
the user navigates himself/herself to one of the notified locations, the second phase
takes place. In this phase the user can experience the visualization, immediately
after a brief procedure that will be imposed. The locations of interest are three and
the visualization shows two possible future scenarios of the coastline for sea level
elevation by 0.5 meters and 1 meter, where coastline is estimated to penetrate 3.6
meters and 7.7 meters inland, respectively.

14

1.2 Thesis Structure

This thesis is organized to provide a continual narrative to be followed. There
are seven chapters that are set out as follows.

After this Introduction, the 2nd chapter acts as a prologue and introduces the
reader to the fields of Augmented Reality (AR), the history of AR, state of the art
and the means of AR interaction, different AR applications that are well-known
nowadays, the problems that faces AR technology at the moment and finally the
progress and the future of Augmented Reality.

The 3rd chapter contains the explanation of the task, the case analysis and few
words about the significance of coastal erosion and the possible threats of this phe-
nomenon in the area of Georgioupoli. Last but not least, It includes the data that
have been used in this thesis, and the forecast based on these.

In the 4th Chapter, requirement analysis takes place. We outline the require-
ments we set for our application before the development. The use cases scenarios
are presented schematically. And finally, the hardware requirements for the smooth
execution of the application.

In the 5th Chapter, there is a presentation of our application from the per-
spective of an End-user that executes the app. There is an introduction to the
application showing the navigation structure between the different screens, followed
by a showcase of the final screens which the user sees during the whole experience,
step-by-step. Closing with some helpful tips and functionality directions.

The 6th Chapter includes the full Implementation process from the developers
point of view and how every tool have been used and the part of each one in the
structure of the application. There we analyze exactly what we did and describing
the procedure of development in details.

Finally, in the 7th Chapter there is a summary of our thesis and our experience
during this period of time. In addition, there is an evaluation of the final result and
we list future improvements that can be made to solve some issues and improve the
overall experience of the end user.

15

2 Augmented Reality (AR)

2.1 Introduction to AR

Augmented Reality (AR) allows the real time blending of the digital information
processed by a computer, with information coming from the real world, by means
of suitable computer interfaces. There is a clear difference between the concept of
virtual reality and augmented reality that can be explained with the help of Paul
Milgram and Fumio Kishino’s Reality – Virtuality Continuum, as in figure 2 .

Figure 2: Milgram’s Reality - Virtuality Continuum [1]

The real world and a totally virtual environment are at the two ends of this
continuum. The middle region is called Mixed Reality. Augmented reality lies near
the real-world end of the spectrum, with the predominate perception being the real
world augmented by computer generated data. Augmented reality (AR) aims to en-
hance our view of the world by superimposing virtual objects on the real world in a
way that persuades the viewer that the virtual object is part of the real environment.

AR system consists of three simple steps: Recognition, Tracking, and Mix. In
recognition any image, object, face, a body or space is recognized on which virtual
object will be superimposed. During tracking real-time localization in space of the
image, object face, a body or space is performed and finally media in the form of
video, 3D, 2D, text, etc. are superimposed over it, achieving an elegant way of
mixing real and virtual world into one.

16

2.2 History of AR

While AR is most widely known for its modern applications, it has been around
and experimented upon for approximately 20 years. Thus, various technologies have
already been tested using a multitude of tools, especially when trying to align the
virtual and real worlds. Older technologies consisted of Head-Mounted Displays
(or HMDs), eyeglasses or contact lenses that showed virtual objects in front of the
user’s eyes. This posed a multitude of problems because the tolerance when tracking
sudden movements of the user was low and the precision of the then available instru-
ments could not match it, thus users experienced frequent nausea and disorientation.

Moving further into the future, AR applications moved from HMDs to handheld
tablets and smartphones. As users were distanced from the virtual screens, the tol-
erance for accurate tracking rose making it simpler to test new ideas. In addition,
with the rising popularity and demand for better smartphones and tablets, many
complicated Head-Mounted sensors were integrated into smartphones and tablets,
making them the ideal environment for developing new applications.

Mobile Augmented Reality has largely evolved over the last decade, as well as
the interpretation itself of what is Mobile Augmented Reality. The first instance
of Mobile AR can certainly be associated with the development of wearable AR,
in a sense of experiencing AR during locomotion (mobile as a motion). With the
transformation and miniaturization of physical devices and displays, the concept
of mobile AR evolved towards the notion of ”mobile device”, aka AR on a mobile
device.

Below, there is a showcase of some honorable mentioned AR systems and appli-
cations using different approaches through the years.

The First Augmented Reality System

1968: Ivan Sutherland creates the first augmented reality system, which is also
the first virtual reality system. It uses an optical see-through head-mounted display
that is tracked by one of two different 6DOF trackers: a mechanical tracker and an
ultrasonic tracker. Due to the limited processing power of computers at that time,
only very simple wire-frame drawings could be displayed in real time. [5]

17

Figure 3: Ivan Sutherland’s first Augmented Reality System [2]

First Use of ”Augmented Reality” as a Term

1992: Tom Caudell and David Mizell coin the term ”augmented reality” to refer
to overlaying computer-presented material on top of the real world. Caudell and
Mizell discuss the advantages of Augmented Reality versus Virtual Reality such as
requiring less processing power since less pixels have to be rendered. They also ac-
knowledge the increased registration requirements in order to align real and virtual.
[5]

Figure 4: Caudell and Mizell coining AR in 1992 [3]

18

Reality-Virtuality Continuum

1994: Paul Milgram and Fumio Kishino write their seminal paper ”Taxonomy
of Mixed Reality Visual Displays” [17] in which they define the Reality-Virtuality
Continuum. Milgram and Kishino describe a continuum that spans from the real
environment to the virtual environment (fig. 2). In between there are Augmented
Reality, closer to the real environment and Augmented Virtuality, which is closer to
the virtual environment.[5]

Definition of Augmented Reality

1997: Ronald Azuma presents the first survey on Augmented Reality. In his
publication [18], Azuma provides a widely acknowledged definition for AR, as iden-
tified by three characteristics:

• it combines real and virtual

• it is interactive in real time

• it is registered in 3D.

Today Milgram’s Continuum and Azuma’s definition are commonly accepted as
defining Augmented Reality [5]

First Mobile AR System

1997: Steve Feiner et al. present the Touring Machine (fig. 5), the first mo-
bile augmented reality system (MARS) [4]. It uses a see-through head-worn display
with integral orientation tracker; a backpack holding a computer, differential GPS,
and digital radio for wireless web access; and a hand-held computer with stylus and
touch-pad interface[5].

ARToolKit: Beginning of an Era

1999: Hirokazu Kato and Mark Billinghurst present ARToolKit, a pose tracking
library with six degrees of freedom, using square fiducials and a template-based ap-
proach for recognition [19].ARToolkit uses a simpler marker-based approach, with
additional support for Natural Feature Markers. ARToolkit tracks the markers while
in view, calculating which markers are in view, their orientation relative to the cam-
era as well as their depth from the camera.The most commonly used markers are 2D
barcodes and 3D boxed pattern barcodes (fig. 6), which can often look out-of-place
if they are not hidden correctly. ARToolKit is available as open source and is still
very popular in the AR community.

19

Figure 5: Touring Machine by Feiner et al. [4]

Figure 6: ARToolKit for pose tracking in 6DOF [5]

20

ARQuake: First AR Game

2000: Bruce Thomas et al. present AR-Quake, an extension to the popular desk-
top game Quake [6] (fig. 7). ARQuake is a first-person perspective application which
is based on a 6DOF tracking system using GPS, a digital compass and visionbased
tracking of fiducial markers. Users are equipped with a wearable computer system
in a backpack, an HMD and a simple two-button input device. The game can be
played in- or outdoors where the usual keyboard and mouse commands for move-
ment and actions are performed by movements of the user in the real environment
and using the simple input interface [5].

Figure 7: ARQuake by Thomas et al. [6]

Mozzies: AR Mobile Game

2003: The Siemens SX1 is released, coming with the first commercial mobile
phone AR camera game called Mozzies (also known as Mosquito Hunt) (fig. 8a).
The mosquitoes are superimposed on the live video feed from the camera. Aiming
is done by moving the phone around so that the cross hair points at the mosquitoes.
Mozzies was awarded the title of best mobile game in 2003 [5].

The Invisible Train: Multiplayer AR Mobile Game

2004: The Invisible Train, is shown at SIGGRAPH 2004 Emerging Technologies
[5] (fig. 8b). The Invisible Train is the first real multi-user Augmented Reality
application for handheld devices (PDAs). Unlike other projects, in which wearable
devices were merely used as thin-clients, while powerful (PC-based) servers per-
formed a majority of the computations (such as graphics rendering), the software

21

runs independently on off-the-shelf PDAs - eliminating the need for an expensive
infrastructure [7].

(a)

(b)

Figure 8: (a) Siemens SX1 AR game ”Mozzies”.[5] (b) Multi-user AR application
for handheld devices ”The Invisible Train”.[7]

AR-Tennis: First Collaborative AR on Mobile Phone

2005: Anders Henrysson ports ARToolKit to Symbian (fig. 9a). Based on this
technology he presents the famous AR-Tennis game, the first collaborative AR ap-
plication running on a mobile phone. ARTennis was awarded the Indepdent Mobile
Gaming best game award for 2005, and the technical achievement award [5].

Going out: Robust Model-based tracking for Outdoor AR

2006: Reitmayr and Drummond present a model-based hybrid tracking system
for outdoor augmented reality in urban environments enabling accurate, real-time
overlays on a handheld device. The system combines an edge-based tracker for accu-
rate localization, gyroscope measurements to deal with fast motions, measurements
of gravity and magnetic field to avoid drift, and a back store of reference frames
with online frame selection to re-initialize automatically after dynamic occlusions or
failures [5].

Wikitude World Browser

2008: Mobilizy launches Wikitude, an application that combines GPS and com-
pass data with Wikipedia entries. The Wikitude World Browser overlays information

22

on the real-time camera view of an Android smartphone[5]. In 2012, the company
restructured its proposition by launching the Wikitude SDK, a development frame-
work utilizing image recognition and tracking, and geolocation technologies. Wiki-
tude SDK is well known for its capabilities until now in 2020.

(a) (b)

Figure 9: (a) AR-Tennis by Henrysson et al.[8] (b) Wikitude AR Browser.[5]

Google Glass: Mixed Reality gets Publicity

2012: Google Glass (also known as Google Project Glass) is firstly presented
to the public. Goggle Glass is an optical HMD that can be controlled with an
integrated touch-sensitive sensor or natural language commands. After it’s public
announcement Google Glass had a major impact on research but even more on the
public perception of mixed reality technology[5].

2.3 Current state of AR

As in early 2020, augmented reality is believed to have the biggest potential for
mass consumption. The last few years have seen immense improvements in AR
technologies. Not only are smartphones becoming equipped with high end sensors
mandatory for AR, but also major companies have started prototyping new HMDs,
commonly known nowadays as AR masks/glasses. AR masks tend to make stan-
dalone dedicated hardware specifically for AR, but unlike old HMDs, these will not
be application specific but re-programmable AR hardware. On the other hand, there
are multiple Software Development Kits, or SDKs for short, which can be used to
develop smartphone applications.

Augmented reality is primarily experienced via a wearable glass device, head-
mounted device, or through smartphone applications. Augmented reality overlays
digital content on top of the real world. Therefore, AR enhances the user’s experi-
ence in the real world rather than replacing it. In order this to be achieved, special

23

hardware is needed. For simplicity reasons, the hardware is separated into two main
categories: 1) The head mounted equipment and 2) The handheld equipment. In
the next two sections, some of the state-of-the-art equipment is listed and explained
shortly.

2.3.1 AR Head Mounted Displays (HMDs)

A head-mounted display (HMD) is a display device, worn on the head or as part
of a helmet, that has a small display optic in front of one (monocular HMD) or
each eye (binocular HMD). An HMD has many uses including gaming, aviation,
engineering, and medicine. There is also an optical head-mounted display (OHMD),
which is a wearable display that can reflect projected images and allows a user to
see through it. A typical HMD has one or two small displays, with lenses and semi-
transparent mirrors embedded in eyeglasses (also termed data glasses), a visor, or
a helmet. The display units are miniaturized and may include cathode ray tubes
(CRT), liquid-crystal displays (LCDs), liquid crystal on silicon (LCos), or organic
light-emitting diodes (OLED). Some vendors employ multiple micro-displays to in-
crease total resolution and field of view.

HMDs differ in whether they can display only computer-generated imagery (CGI),
or only live imagery from the physical world, or combination. Most HMDs can dis-
play only a computer-generated image, sometimes referred to as virtual image. Some
HMDs can allow a CGI to be superimposed on real-world view. These are augmented
reality (AR) or mixed reality (MR) HMDs, and on these we shall focus on.

AR HMDs are the epicenter of modern AR research. Using new technologies
borrowed from the nowadays popular Virtual Reality masks and combining them
with spatial scanning technologies such as Microsoft’s Kinect promises to create a
new standard for AR research. These new masks promise to have fully 3D visuals
for all necessities, from industrial and academic usage to integrating standard com-
puter functionality into a mask. As many major companies, such as Microsoft, are
investing into developing their own AR HMD, this medium promises to be as big
an evolution in technology as smartphones were 15 years ago. Although the new
era of AR masks started back in 2016, up until 2018 their production and shipping
were very limited. Still, AR masks are still a prototype idea starting to slowly take
form. Major companies are competing to design the optimal User Environment,
usually with completely different approaches into both the hardware as well as the
software of these devices. As such, it is a new technology that still requires years of
optimization and improvement until it is widely known and accepted. Below, there
are a few AR HMDs/Glasses that is believed to be the best in the market at this
moment and will have major influence in the years to come.

Microsoft HoloLens

Microsoft HoloLens: developed by Microsoft back in 2016 (fig. 10). One of
the first AR HMDs to be announced and sell their prototypes, although in limited

24

regions. Backed up by Microsoft’s name, Kinect’s tracking technology and an ambi-
tion to fully integrate Windows in an AR environment, this mask has set very high
expectations both for itself and competitors.

Figure 10: Microsoft HoloLens HMD [37]

When it was first announced, Hololens not only promised to integrate tradi-
tional computer graphics in AR, but also full scale holograms, for example human
holograms, that could move naturally or even recreate scenes like a full-scale soccer
match from a recording.

Packed with the processing power of an average laptop and a multitude of sensors
Hololens aims for precision tracking and world scanning around the user. On the
software side, it uses an optimized version of the already trained and tested Microsoft
Kinect’s Neural Network for tracking and environmental scanning. Microsoft high-
lights numerous industries for which the HoloLens is suitable, from manufacturing
and retail to healthcare and education. This self-contained, holographic computer
allows for increased productivity, collaboration, and 3D design. (fig. 11/13)

Figure 11: Windows 10 on Microsoft HoloLens [38]

25

Microsoft HoloLens 2

Microsoft HoloLens 2 is the successor to the pioneering Microsoft HoloLens (fig.
12). On early 2019 the Hololens 2 enterprise edition debuted as the first variant of
the device, followed by a developer edition that was announced on May 2, 2019. It
was subsequently released in limited numbers on November 7, 2019. As for now, the
shipping is limited and only to authorised customers.

Figure 12: Microsoft HoloLens 2 HMD [37]

Some of the main improvements with the HoloLens 2 headset include: 1) Pro-
cessing power: the HoloLens 2 is more powerful than its predecessor. 2) Field of
View (FOV): at 52 degrees, the HoloLens 2’s field of view is larger, offering a more
immersive AR experience for the user. The original HoloLens only has an FOV of
30 degrees. 3) Battery life: the HoloLens 2 features a 3-hour battery life, while the
HoloLens 1 has a 2.5-hour battery life. 4) Design and fit: according to Microsoft, the
HoloLens 2 offers a lighter and more ergonomic fit than the original HoloLens. The
HMD also now features a flip-up visor which allows users to enter/exit augmented
reality more quickly.

26

Figure 13: Microsoft HoloLens 2 on Healthcare [37]

Magic Leap One

The Magic Leap One is a popular standalone AR headset made by Magic Leap
14), Magic Leap One uses Machine vision to thoroughly scan the environment around
the user and make virtual objects context sensitive to the world around them. In
addition, virtual objects are not only visually immersive but also use spatial audio
with increasing depending on the distance from virtual objects.

Figure 14: Magic Leap One HMD [39]

27

More features of this AR headset include advanced eye-tracking. Therefore, the
MR device knows where the user is looking and tracks their gaze, with even blinks
serving as a command function for the user. Furthermore, user input methods in-
clude head posing, gesture controls (fig. 15) and voice commands.

Figure 15: Magic Leap One Gesture Recognition [40]

Magic Leap’s hardware consists of more than just the mask. The mask consists
of the glasses and stereo headphones the user wears, but all the processing power
resides in a tethered Lightpack (fig. 16a), which is a trademarked high-powered
processing and graphics portable mini PC. It also comes bundled with a controller
with 6-DoF (Degrees of freedom) of movement called Magic Leap Control (fig. 16b).

(a)
(b)

Figure 16: (a) Magic Leap Lightpack (b) Magic Leap Control [39]

28

Nreal Light

The Nreal Light augmented reality glasses, publicly announced in early 2019 by
Nreal, a tech startup based in China. Nreal Light works tethered to a mini PC (like
the Magic Leap One) (fig. 17a). Light and simple, they almost look like “normal”
sunglasses or eyeglasses, unlike most other AR products on the market that tend to
be bulky (fig. 17b).

(a) (b)

Figure 17: (a) Nreal Light Glasses, Controler and mini PC (b) Nreal Light Glasses:
look like sunglasses [41]

The Light AR wearable features Simultaneous Localization and Mapping (SLAM)
algorithms which allows for inside-out tracking, in addition to two on-board cameras
which provide for a seamless AR experience. In addition, users also are provided
with a controller (3DoF) called Oreo which offers haptic feedback. These AR glasses
must be tethered to an external device, Nreal Light’s proprietary tethered external
computing pack (Android-powered). The pack provides about 3 hours of usage.
Users can also replace the lenses for prescription lenses. Furthermore, adjustable
pads are available to allow for a more comfortable fit.

Other main features Nreal Light offers are: 1) Wide FOV: for an augmented
reality device, the 53 degrees FOV is considered wide, thus providing users with a
more engaging AR experience. 2) Voice-activated: users can give voice commands
and utilize spatial audio with the Light. 3) Built-in speakers with spatial sound: 3D
audio enables users to detect where sounds come from, offering a true AR experience.
Users can also opt for Bluetooth speakers.

29

2.3.2 Mobile Augmented Reality (MAR)

Mobile Augmented Reality (MAR) systems provide the same services as aug-
mented reality systems without constraining the individual’s whereabouts to a spe-
cially equipped area. Mobile augmented reality is one of the fastest growing research
areas in the augmented reality area, due to the emergence and widespread uptake
of smart-phones that provide powerful platforms for supporting augmented reality
on a mobile device.

Figure 18: AR Training in the Workplace [35]

Smartphones already have required technologies for hosting MAR applications,
such as mobile processing, image recognition, object tracking, display technology and
GPS location. They provide a suitable environment for hosting MAR application
without paying any extra cost for special hardware. Many MAR applications were
developed for the users of popular mobile operating systems: Android and IOS. The
available MAR applications in both Play store and App store are developed based
on two main approaches: MAR browsers based on geo referenced positioning and
image-recognition-based MAR [20]. Mobile augmented reality technology can raise
environmental awareness and help learning about the surrounding context. Chou
and Chan Lin [21] state that AR can raise awareness of users’ surroundings more
than what they would gain by traditional methods such as radios, maps, and hand-
held displays (fig. 19). Additionally, the user’s learning interest can be improved by
augmented reality achieving more well-educated audience.

30

Figure 19: AR Navigation using Smartphone [36]

AR apps utilize the sensors and cameras already present in modern computers
or, more commonly, smartphones in order to gather information from the real world
and allow virtual graphics to blend into the natural environment seen through a cam-
era. In order to develop an AR application, developers frequently use a pre-built
Software Development Kit, or SDK for short, which provides them with premade
tools useful for AR. These tools vary from automating simple jobs, like setting up
a new AR scene, to complicated algorithms like using Machine Vision to scan the
environment and extract data like marker detection.

Augmented Reality SDKs facilitates many components within the AR applica-
tion: AR recognition, AR tracking and AR content rendering. The recognition
component works as the brain of the AR app. The tracking component can be
stated as the eyes of the AR experience, and the content rendering is simply imag-
inative virtual objects and scenes on the real time information. An array of tools
is provided to developers through SDK, required to recognize, track and render AR
application in the most efficient manner. Augmented Reality SDKs can be organized
in these broad categories: Geo-located AR Browsers, Marker based, Natural Feature
Tracking. AR Browser SDKs allows users to create geo-located augmented reality
applications, using the GPS and IMU available on today’s mobile and wearable de-
vices. Marker based SDKs employ special images, markers, to create augmented
reality experiences. Natural Feature Tracking SDKs rely on the features that are
actually present in the environment to perform the augmentation by tracking pla-
nar images, based on a SLAM (Simultaneous Location and Mapping) approach[22].
Some AR SDKs that seem promising and currently lead the way on mobile AR
development are listed in subsection 2.6.1.

31

In this thesis,we follow the mobile AR approach, since the only equipment we
shall need is a smartphone device. Also, HMDs are not so popular to the average
user so we cannot expect that everyone owns an HMD. A smartphone device is
enough to bring the visualization we desire with ease.

2.4 Use of AR Nowadays

While writing this thesis, AR has become quite popular to the public. More and
more people understand the technology of AR and big brand names make use of
this technology in a variety of applications. From gaming to advertising and from
navigation to education, AR has to offer a wide range of options. AR has been used
successfully in many cases, bringing to life experiences that, otherwise, would be
unimaginable. Below, there is a small presentation of AR application that made the
public audience feel the presence of AR technology, and brought new opportunities
to AR developers.

2.4.1 Modern AR Apps

• IKEA Place: is an AR app for smartphones that’s focused on home decor.With
this augmented reality app The Swedish furniture retailer gives shoppers a chance
to place virtual furniture from the IKEA catalogue directly to their room. A whole
new interior design experience (fig. 20).

This app looks at the bigger picture, taking into account your home’s entire floor
plan to see which items will fit best where. Easy drag-and-drop functionality and
the option to see different colors.

Figure 20: IKEA Place: Virtual Couch in Living Room

32

• Toyota Hybrid AR: The Toyota Hybrid AR application uses Augmented Re-
ality technology and objective recognition software to overlay graphics of the inner
workings of the Hybrid drivetrain onto physical vehicles, helping customers to gain
a better understanding of how the system works.

The 3D experience also features a number of ‘hotspots’ which, when clicked on,
enable customers to get in-depth information on key features of the system, such as
the motor, battery and fuel tank (fig. 21).

Brandwidth worked with Toyota to develop the Hybrid AR app as part of an
ongoing drive to educate the brand’s customers on hybrid technology and the bene-
fits it offers. The app currently supports the Toyota C-HR model, across all grades
and colours.

Figure 21: Toyota Hybrid AR: In-depth Information

• Google Translate: Google’s Translate app is one of the most useful applications
of augmented reality technology so far. It can translate text in an image from one
language to another, allowing you to read signs, packaging, and even memes in other
languages. Just open the app, capture the text, and wait for the translation (fig.
22). It also includes more pedestrian translation tools, which are the best free tools
available.

33

Figure 22: Google Translate: AR Sign Translation

• Night Sky/Star Walk : Night Sky on iOS and Star Walk on Android both of-
fer a compelling AR experience for stargazing and astronomy. These apps use the
user’s current location and phone’s orientation to display a geographically accurate
star map on the screen. In either app, this map can be layered on top of your
surroundings through the augmented reality functionality (fig. 23). It’s an awesome
tool for learning about the astronomical, which is both entertaining and educational.

Figure 23: Night Sky: AR View of Virgo

34

• Unbelievable Bus Shelter : Pepsi decided to bring some surprises to a London
bus shelter to make waiting a bit more interesting. For its ad campaign, Pepsi Max
used augmented reality to turn a bus shelter’s wall into a fake window that ap-
peared to show flying saucers, an attacking robot, and a loose tiger — among other
unlikely subjects — making their way down the street. Pepsi doesn’t say exactly
what it used to make the illusion happen, but it appears to have relied primarily on
a camera outside the shelter that let it capture people and vehicles on the street.

Figure 24: Unbelievable Bus Shelter: Tentacle Illusion

2.4.2 AR For Environmental Purpose

Despite the fact that AR has become quite popular, applications that focus on
environmental understanding and education are, still, very rare or not so well-known.
In this thesis, the increase of environmental awareness is of major importance. AR
is believed and is able to bring a new way of eco-education, especially on younger
ages. AR has more advantages compared to the traditional teaching methods. One
of these advantages is that it activates many senses such as touch, hearing, and
vision at the same time. Additionally, AR allows access to learning content in
three-dimensional perspectives. 3D offers the possibility of ubiquitous learning and
makes learners more cooperative. It gives users a sense of presence and immediacy
with the object of exploration. It does something that is invisible to be visible.
Below, there are some AR applications and studies, that use the AR technology for
environmental purposes.

35

• Augmented Reality as a mean of communicating environmental issues and
boosting environmental education for school students [9]: This paper deals with
the implementation of augmented reality technology as a means of communicating
environmental issues and boosting environmental education for 241 school students
in the 4th, 5th, 6th classes of two primary schools in Athens, during the course
of Computer Science. Specifically, an early version of two augmented reality ap-
plications for android mobile devices were designed and deployed. Two activities
combining this technology were designed in order to address environmental learning
goals concerning climate change concepts and fundamental aid in the understanding
of renewable energy resources. The study assessed whether the students liked the
applications and the rate of knowledge change, driven by pre-post questionnaires,
which were given both at the start and at the end of the implementation. The
results showed that the implementation of Augmented Reality applications for en-
vironmental educational concepts have a significant supplemental learning effect as
a mobile-assisted learning tool. Finally, the paper concludes with future guidelines
in the field of other environmental issues of great importance.

The focus of the script was the students. Students are divided into groups and
learn to use AR on their own. Students should explore and achieve results through
team effort not being benefited from the presence of the teacher in the classroom.
Τhe applications had a duration of about two minutes each.

For the first application were used two image targets (fig. 25).The first image
target presents the renewable energy sources, such as solar power, geothermal power
and wind power, while the second presents the fossil fuels (coal, oil and natural gas).
The result is shown in Figure 27 (Left).

Figure 25: Energy Source application workflow [9]

For the second application were used only one image target (fig. 26).The second
application deals with the phenomenon of climate change. At first, it’s presented
the causes of temperature increase, such as deforestation and burning fossil fuels
that increase CO2 emissions, then it’s shown the impact of the above, such as ice
melting, sea level rise and desertification. Finally, there is a proposition of various
practices to reduce the progress of climate change such as recycling, energy saving

36

and reduce car usage. A screenshot is shown in Figure 27 (Right).

Figure 26: Climate Change application workflow [9]

Figure 27: (Left) Wind Power, (Right) Climate Deforestation [9]

• Animating eco-education: To see, feel, and discover in an augmented reality-
based experiential learning environment [10]: the current study develops an eco-
discovery AR-based learning model (EDALM) (fig. 28) which is implemented in
an eco-discovery AR-based learning system (EDALS). In a field experiment at a
botanical garden, 21 middle school students constitute three groups participated in
a learning activity using different learning types and media. Quantitative results
indicate that, compared to the human-guidance-only model, EDALS successfully
stimulates positive emotions and improved learning outcomes among learners. In
post-activity interviews, students indicated they found the exploration mode pro-
vided by the proposed system to be more interesting and helpful to their learning
in school. The use of attractive technologies increase students’ willingness not only
to learn more about the environment, but also to develop a more positive emotional
attachment to it.

To understand the impact of the system on emotion and learning effect in the
ecological education context, this study conducts three post-activity assessments,
and conducted a whole day learning experiment at the National Museum of Natural
Science-Botanical Garden, Taichung, Taiwan. The subjects were 21 middle school

37

students randomly assigned to three groups (7 in each group) with approximately
equal numbers of boys and girls in each group. The three groups were: (1) Group A
used the AR system for self-learning; (2) Group B used AR plus commentator, where
learning is accomplished via AR system instruction and commentator guidance; and
(3) Group C was a control group using traditional experiential learning, in which
students followed the commentator through the gardens and listened to commentator
guidance

Figure 28: Eco-discovery AR-based learning model (EDALM) [10]

To avoid interference from situational factors, all three groups followed an iden-
tical learning route in the garden: 1. Taitung Cycads - 2. Monsoon Rain Forest - 3.
Central Lowlands - 4. Tropical Rainforest Greenhouse. The groups all toured the
garden on the same day, but with staggered starting times to ensure no overlap.

Specificly, experimental procedures involved the three groups first taking an in-
door 15-min paper-based pre-test to assess their basic knowledge of and emotional
attachment to plants. All participants were required to complete a series of expe-
riential tasks, including indicating their pre-task emotional state, completing the
learning tasks, indicating their post-task emotional state, and answering questions.
Group C finished all tasks using pencil and paper (without EDALM), while each
member of groups A and B were provided with a tablet computer with which to use
EDALM. To ensure system familiarity, groups A and B received additional guidance
on EDALS on their tablets before entering the garden. After indicating their pre-
task feelings, they read learning themes related to the eco-area. The AR feature in
the operation system presents an interactive virtual plant silhouette (fig. 29a) and
subjects were prompted to learn about related plants (fig. 29b), guiding them to ex-
perience and explore the surrounding environment. Subjects were then prompted to
indicate their post-task emotions, and answer 4 to 6 achievement assessment ques-
tions to complete the learning theme before moving on to the next theme. After all

38

four learning themes are complete, the subjects were asked to complete a question-
naire on the experiential learning activity. Six subjects were randomly selected for
interviews to learn more about their learning conditions using the AR system.

(a) (b)

Figure 29: (a) Screenshot of an interactive virtual plant silhouette (b) Learning
content about specific plants [10]

• Mobile Augmented Reality for Flood Visualisation [11]: Presentation of a real
time immersive prototype Mobile Augmented Reality (MAR) app for on site content
authoring and flood visualisation combining available technologies to reduce imple-
mentation complexity. Networked access to live sensor readings provides rich real
time annotations. The main goal was to develop a novel MAR app to complement
existing flood risk management (FRM) tools and to understand how it is judged by
water experts. Going beyond the presented work, the flexibility of the app permits
a broad range of applications in planning, design and environmental management.

Figure 30: Browser/Authoring tool. AR tracking showing side menu, interaction
annulus, and two triangulated points [11]

The app is formed of three distinct activities for (i) main menu, (ii) project in-

39

formation and options, and (iii) authoring and browser (fig. 30). The former two
enable the user to create new projects, find, select and view existing project infor-
mation and options, whereas the latter activity is where authoring and/or browsing
(i.e. visualisation) occurs. Return to previous activities is achieved by pressing the
device back button. Authoring/browser activity interaction occurs via a retractable
side menu. A typical authoring use case would see the user select the triangulate
menu option to triangulate a point by focusing a central annulus on a desired point
and tapping the touch screen three times from three different viewpoints, repeating
this process to triangulate further points. Then, selecting to add geometry from the
menu allows the user to attach, or “hang”, geometry to these triangulated points.
Model parameters may be adjusted via the menu to adapt the model to the existing
natural features. Additionally, textual annotations may be attached to triangulated
points, such as sensor readings, which appear as spinning information cubes, to be
selected during browsing (fig. 31). Lastly, a flood plane may be turned on, and
the building geometry turned off, revealing a flood plain obstructed by the invisible
building geometry (fig. 32). This flood plane may be moved up and down via the
touch screen and low/high water levels set. As the user moves the flood plane up
and down these flood level extremities are automatically interpolated to give the
user a feel for flood depth.

Figure 31: Example point annotations [11]

Figure 32: Flooding with building geometry on (Left), and geometry off (Right) [11]

40

2.5 The Registration Problem

Registration in an AR system is the degree in which the virtual information is
accurately presented with the real environment. The objects in the real and virtual
worlds need to be properly aligned with respect to each other, or the illusion that
the two co-exist will be compromised (Azuma 1997). In contrast to Virtual Reality
(VR) where such errors result in visual-kinesthetic conflicts, in AR such conflicts
are visual and easier to detect. Take for example a user wearing a VR headset that
raises his/her arm to see a virtual one. If the virtual arm is off by a few centime-
ters, it may not be detected because the conflict is between the “sensed” position of
the real arm, and the “seen” position of the virtual one. In the corresponding AR
application the virtual arm should completely overlap the real one, so such an error
would be easily detectable.

Registration errors are divided to dynamic and static. Static errors are the ones
that affect the AR scene even when both user and environment are in stasis. Sources
of such errors can be bad calibration of mechanical parts, incorrect tracker-to-eye
ratio, field-of-view parameters, optical lens distortions, etc. Static errors depend
mostly on mechanical parts and the correct initial calibration of the system and can
be accounted for to a very satisfying degree. Dynamic errors on the other hand
are the ones that take effect if either the viewpoint (user) or the annotated object,
begin moving. For MAR this kind of errors are by far the largest contributors to
the Registration problem and vary depending on the implementation.

In early AR systems the single most important factor for dynamic errors was
end-to-end system delays. A tracker reported user movements to the system and
the system should then update the digital artifacts on the screen. This computation
and its delivery should precede changes in the user’s pose which proved at the time
to be a very difficult task. With today’s hardware, system delays have been min-
imized and the main source for errors in registration is Pose estimation (Position
and Orientation tracking). Tracking in an AR scene has proven a complicated task
with no single best solution.

In order to register virtual content in the real world, the pose (position and ori-
entation) of the viewer with respect to some ”anchor” in the real world must be
determined. Depending on the application and technologies used, the real world
anchor may be a physical object such as a magnetic tracker source or paper image
marker, or may be a defined location in space, determined using GPS or dead-
reckoning from inertial tracking.

In order for an AR system to overlay the world with digital information it needs
to track its position with 6 DoF (Degrees of Freedom). That means three variables
for position and three for orientation. There are many factors that have enabled
modern smartphone’s to track their position. Inertial sensors, GPS positioning and
optical sensors can provide all the necessary data for such computations. Although
there are many approaches to pose estimation for AR systems, we will focus on
implementations for consumer grade smartphones. Each tracking approach has its
advantages depending on the use case. The most popular of which will be explained

41

below. These include Marker-based Tracking, Natural Feature Tracking, Sensor-
based Tracking, Model Based Tracking and the newer Markerless AR.

2.5.1 Fiducial Marker Based Tracking

It is the most often used technique to achieve AR. In AR markers are used for
easy recognition in the field of view and typically have high contrast. By using them
we can not only relate to point in space, but also calculate distance and the angle
which we are looking at. Typical markers used in AR are black and white squares
with geometric figures. Using of black and white gives high contrast compared to
background environment and can thus be quickly recognized. One of the obvious
downfalls in fiducial markers technology is that they always have to be visible and
cannot be obscured by other objects during the augmentation. This problem can
be partially alleviated by remembering marker position and refreshing accordingly
its position with device movement [23].

Figure 33: Augmented Reality on Magazine [42]

In modern AR SDKs (that mentioned before), the role of a marker can be taken
by any (almost) picture (fig. 33). The picture should have a pattern with high-
contrasted elements and be clearly visible. This method is optimal for AR books,
newspapers and magazines, bringing to life any image or information you might see
or read on a piece of paper.

2.5.2 Natural Feature Tracking

This technique for achieving AR allows using objects in real world as markers by
recognizing their natural characteristics. These characteristics act as “interesting
features” of the image. Such characteristics are edges, flat surfaces, patterns and
other highly distinguishable features. Feature descriptor of given image is saved for
further recognition. Based on this feature set, the recognition of the same image

42

can be achieved from different distances, orientation and illumination levels, even
with some occlusion, as the descriptor is invariant to those changes [23].

Figure 34: Natural Feature Tracking

Natural feature tracking is currently the most commonly used tracking approach
as it removes the intrusiveness of the AR markers and it allows for robust tracking
and registration. However this approach relies heavily on the features present in the
real world scene and the ability to identify them. This means that a little number of
features as well as occlusions and diverse lighting conditions in a scene, can greatly
diminish the system’s tracking capability.

2.5.3 Model Based Tracking

A model based approach uses prior knowledge of 3D objects in the environment
along with their appearance. Using geometrical representation of 3D objects we can
manipulate their position and orientation, matching them to their counterparts in
the field of view. Model approach works using edge detection for construction of 3D
models. In some cases the model is provided to track resemblance in relation to its
object in the environment, e.g. tracking a moving car on a street. On the downside,
this approach usually requires much more processing power[23].

Although not as popular as the Fiducial and Natural feature tracking these
tracking techniques use known 3D structures, like a CAD model (fig. 35), to track
real world objects. Edge filters are used to extract structure information about the
scene which is then matched to primitive structure types, like lines, cubes, cylinders
and circles, to provide pose estimations. Combining these tracking techniques with
natural feature detection allowed for the inclusion of textures in the models which
provided greater robustness in complex and variable environments.

43

Figure 35: Model Based Tracking of industrial objects by using CAD models [43]

2.5.4 Markerless Tracking

With the rapid development of new technologies when it comes to machine vision,
Markerless scene tracking has become possible in real time. With high resolution,
high framerate cameras becoming widely available and cheap, we can extract highly
detailed information about the surrounding environment, analyze the structure of
the world and update virtual objects to blend in, all in realtime.

Figure 36: Plane Detection of Horizontal (blue) and Vertical (pink) Surfaces [44]

Extracting structure information about the real world has lead AR to adopt
the well-known in robotics SLAM concept (Simultaneous Localization and Map-
ping) which allows for simultaneously create and update a map of the real environ-
ment while localizing the system’s position within it. These approaches elevated

44

the AR system’s capabilities from tracking planar surfaces (fig. 36) to more com-
plex geometries and 3D structure. The motivation for SLAM together with further
optimizations for AR has led to a process named PTAM (Parallel Tracking and
Mapping) where the tracking of the camera and mapping of the environment com-
ponents where separated which improved the overall performance. Furthermore,
some newer smartphones as well as new HMDs further enhance markerless detec-
tion using a collection of cameras. By using multiple cameras or Infrared sensors we
can also detect the depth of objects relative to the user allowing for better precision.

2.5.5 Sensor Based Tracking

Inertial tracking uses long range sensors like accelerometers, magnetometers and
gyroscopes to calculate orientation, and combined with positions acquired from the
GPS the system can calculate its pose relative to the Earth’s frame. Inertial sen-
sors allows for orientation tracking with 3-degrees of freedom by using a 6-axis
accelerometer for orientation relative to the center of the Earth, and a magnetome-
ter for measurements relative to the North. Gyroscopes can then be employed to
detect changes between relative movements. By combining this information Easting
can be calculated and 3 DOF orientation estimate is available (fig. 37).

Figure 37: Mobile coordinate system and orientation relative to the Earth’s frame
of reference

Although position tracking is available solely with the use of the same sensors,
they are very susceptible to drift over time, especially for such estimates which can
only be derived from velocity. Due to this issue positioning with inertial sensors

45

should only be conducted with additional trackers capable of providing measure-
ments for drift correction. For this reason sensor based systems employ other meth-
ods for position tracking. The GPS sensor provides position tracking in outdoor
environments with an average accuracy of 3 meters. Locations acquired by the GPS
include latitude, longitude and altitude (where available) information in the world
coordinate system. Combined with the orientation estimate from the inertial sen-
sors, 6 DOF tracking is possible relative to the Earth’s Frame.

2.5.6 Hybrid Tracking

Hybrid tracking systems fuse data from multiple sensors to add additional degrees
of freedom, enhance the accuracy of the individual sensors, or overcome weaknesses
of certain tracking techniques. As mentioned above, sensor based implementations
are susceptible to drift and latency due to filtering, while optical implementations
have line of sight requirements and short range. As all the above registration meth-
ods are not mutually exclusive and detect different things, most developers tend to
use multiple at once. Usually, Sensor-based tracking is combined with visual detec-
tion, as having information about the users’ position and movement can be used
to improve precision. Sensor-based tracking is also much faster relative to other
registration methods, so using it is more beneficial than its computational cost.

In addition, visual registration methods are also combined. Since fully immer-
sive methods are usually computationally expensive, they are also combined with
Natural Feature Tracking and Marker-based AR to reduce the computational cost,
or to improve accuracy by detecting key points. This allowed the systems to take
advantage of the low jitter and drift of the optical approaches while extending the
range of the AR system through the inertial sensors that have no line of sight re-
quirements and high update rates that ensure responsive graphical updates.

Most commonly markerless tracking is combined with inertial sensor tracking.
Motion estimates of the system are calculated from the inertial sensor, fusing data
from accelerometers and gyroscopes, while the optical approaches provide measure-
ments for drift correction and map the real world scene. Combining such techniques
with additional depth information has opened up new possibilities for AR.

46

2.6 Developing Platforms & Software

A major part in the AR application development, is choosing the right tools
based on the type of the Mobile AR application. After the requirements analysis we
had about our MAR application, we had to find the right platforms and software
to support our idea in the development phase. In this section, we give a brief de-
scription of the available AR SDKs that seemed to fit in our requirements and the
game engines that act as AR development platforms nowadays. Closing, we discuss
about the platform of our choice and the technical hardware requirements a device
should have, in order to execute succesfully the application.

2.6.1 AR Software Development Kits (SDKs)

While there exist plenty of AR SDKs they usually each have a specific focus, and
it is quite frequent for companies to stop supporting and killing dated SDKs and
newer companies publishing brand new SDKs. Luckily, there are still a few older
SDKs still in existence, even with less support from their developers like Vuforia
and Wikitude. Finally, the newest SDKs available are ARCore and ARKit that
unlike previous ones are supported by Google and Apple directly. Below we will
analyze these aforementioned SDKs. There are many more AR SDKs, providing
similar capabilities with the ones mentioned before. More focus has been given to
those four, as they seem to dominate the AR development scene and provide great
documentation and support.

• ARCore is Google’s platform for building augmented reality experiences [28].
Using different APIs, ARCore enables your phone to sense its environment, under-
stand the world and interact with information. Some of the APIs are available across
Android and iOS to enable shared AR experiences.

ARCore uses three key capabilities to integrate virtual content with the real
world as seen through your phone’s camera:

1) Motion tracking allows the phone to understand and track its position rel-
ative to the world. As your phone moves through the world, ARCore uses a process
called concurrent odometry and mapping, or COM, to understand where the phone
is relative to the world around it. ARCore detects visually distinct features in the
captured camera image called feature points and uses these points to compute its

47

change in location. The visual information is combined with inertial measurements
from the device’s IMU to estimate the pose (position and orientation) of the camera
relative to the world over time.

2) Environmental understanding allows the phone to detect the size and lo-
cation of all type of surfaces: horizontal, vertical and angled surfaces like the ground,
a coffee table or walls. ARCore looks for clusters of feature points that appear to
lie on common horizontal or vertical surfaces, like tables or walls, and makes these
surfaces available to your app as planes. ARCore can also determine each plane’s
boundary and make that information available to your app. You can use this infor-
mation to place virtual objects resting on flat surfaces.

3) Light estimation allows the phone to estimate the environment’s current
lighting conditions. ARCore can detect information about the lighting of its envi-
ronment and provide you with the average intensity and color correction of a given
camera image. This information lets you light your virtual objects under the same
conditions as the environment around them, increasing the sense of realism.

Fundamentally, ARCore is doing two things: tracking the position of the mobile
device as it moves, and building its own understanding of the real world. ARCore’s
motion tracking technology uses the phone’s camera to identify interesting points,
called features, and tracks how those points move over time. With a combination of
the movement of these points and readings from the phone’s inertial sensors, AR-
Core determines both the position and orientation of the phone as it moves through
space. In addition to identifying key points, ARCore can detect flat surfaces, like a
table or the floor, and can also estimate the average lighting in the area around it.
These capabilities combine to enable ARCore to build its own understanding of the
world around it. Google recently announced Depth API, which allows developers to
use depth-from-motion algorithms to create a depth map using a single RGB camera
(fig. 38).

Figure 38: ARCore Depth API, Occlusion off (left) and Occlusion On (right) [26]

48

ARCore’s understanding of the real world lets you place objects, annotations, or
other information in a way that integrates seamlessly with the real world. Motion
tracking means that you can move around and view these objects from any angle,
and even if you turn around and leave the room, when you come back, the objects
or annotation will be right where you left it.

ARCore supports developing in native platforms such as Android Studio (An-
droid) and Xcode (iOS) and third party integration with Unity 3D and Unreal 4
game engines.

-ARCore Supported devices are listed in [49]

• ARKit is Apple’s augmented reality (AR) development platform for iOS mo-
bile devices [29]. ARKit is an augmented reality framework included in Xcode that
is compatible with iPhones and iPads. ARKit lets developers place digital objects
in the real world by blending the camera on the screen with virtual objects, allowing
users to interact with these objects in a real space.

ARKit uses a technology called Visual Inertial Odometry in order to track the
world around the iPad or iPhone. Using the iOS device’s camera, accelerometers, gy-
roscope and context awareness, ARKit performs environment mapping as the device
is moved. Sensor fusion of the inertial sensor data with the data from the camera
allows for highly accurate location awareness and mapping. The software picks out
visual features in the environment such as planes and tracks motion in conjunction
with information from the inertial sensors. The camera is also used to determine
light sources by which AR objects are lit. Apple’s solution to the increased detail
and therefore memory usage is a sliding map where old data disappears for new.
Users can place anchors to mark creations they want to save.This enables the iOS
device to sense how it moves in a room. The user doesn’t have to do any calibration,
that’s a breakthrough in this space.

ARKit-enabled devices are any iPhone or iPad running iOS 11 or later that have
the Apple A9, A10, A11, or later processor; these devices are required to run the
advanced Metal graphics.

ARKit 2: as part of iOS 12, Apple revealed a second-generation version of ARKit.
ARKit 2 brought a new vivid augmented reality experience to apps that allowed
them to interact with the real world in new ways. With ARKit 2, multiplayer AR

49

games were possible, as well as tracking 2D images, and detecting known 3D objects
like sculptures, toys, and furniture.

ARKit 3: 2019’s ARKit 3 includes Motion Capture so developers can integrate
people’s movement into their app and People Occlusion (fig. 39). Both these tech-
nologies mean AR content will show up naturally in front of or behind people to
enable more immersive apps. There’s support for both the front and rear cameras
now, while the front camera can also track up to three faces. However, these features
all need Apple’s latest devices with A12/A12X Bionic chips, Apple Neural Engine
and TrueDepth Camera.

Figure 39: ARKit 3 People Occlusion, Occlusion off (left) and Occlusion On (right)
[29]

ARKit development is enabled in Native iOS environment, SceneKit integration
and integrate with third-party tools such as Unity and Unreal Engine. Apple has also
a new app for developers - Reality Composer that enables developers to prototype
and produce AR experiences with no prior 3D experience. There’s a drag-and-drop
interface and a library of pre-existing 3D objects and animations.

• Vuforia is an augmented reality software development kit (SDK) for mobile
devices that enables the creation of augmented reality applications [31]. Originally

50

developed by Qualcomm, it has been acquired by PTC Inc. in November 2015. It
uses computer vision technology to recognize and track planar images and 3D ob-
jects in real time. This image registration capability enables developers to position
and orient virtual objects, such as 3D models and other media, in relation to real
world objects when they are viewed through the camera of a mobile device. The
virtual object then tracks the position and orientation of the image in real-time so
that the viewer’s perspective on the object corresponds with the perspective on the
target. It thus appears that the virtual object is a part of the real-world scene.

The Vuforia SDK supports a variety of 2D and 3D target types including ‘mark-
erless’ Image Targets, 3D Model Target, and a form of addressable Fiducial Marker,
known as a VuMark. Additional features of the SDK include 6 degrees of freedom
device localization in space, localized Occlusion Detection using ‘Virtual Buttons’,
runtime image target selection, and the ability to create and reconfigure target sets
programmatically at runtime. In more details the core functionality that offers is:

• Model Targets recognize objects by shape using digital 3D models. Place AR
content on multiple objects from multiple views on a wide variety of items like in-
dustrial equipment, vehicles, and toys.

• Area Targets utilize 3D scans of a location and are designed for experiences in
large, indoor spaces. From retail stores to factory floors - place content anywhere in
your environment.

• Image Targets are the easiest way to put AR content on flat objects such as
magazine pages, trading cards and photographs.

• Multi Targets are for objects with flat surfaces and multiple sides, or that con-
tain multiple images. Product packaging, posters and murals all make great Multi
Targets.

• Cylinder Targets enable you to place AR content on objects with cylindrical
and conical shapes. Soda cans, bottles and tubes with printed designs are great
candidates for Cylinder Targets(fig. 40).

• Object Targets are created by scanning an object. They are a good option for
toys and other products with rich surface details and a consistent shape.

• VuMarks allow you to identify and add content to series of objects. They’re a
great way to add information and content to product lines, inventory and machinery.

• Ground Plane detection as part of Smart Terrain enables digital content to
be placed on horizontal surfaces in your environment, such as floors and tabletops.

51

It supports the detection and tracking of horizontal surfaces, and also enables you
to place content in mid-air using Anchor Points (only for ARCore/ARKit enabled
devices [49]).

Figure 40: Vuforia Cylinder Targets [31]

Vuforia SDK supports both native development for iOS and Android while it
also enables the development of AR applications in Unity that are easily portable
to both platforms.

• Wikitude [30] is a mobile augmented reality (AR) technology provider based
in Salzburg, Austria. Founded in 2008, Wikitude initially focused on providing
location-based augmented reality experiences through the Wikitude World Browser
App (see 2.2). In 2012, the company restructured its proposition by launching the
Wikitude SDK, a development framework utilizing image recognition and track-
ing, and geolocation technologies.

The Wikitude SDK is the company’s core product. First launched in October
2008, the SDK includes image recognition & tracking, 3D model rendering, video

52

overlay, location based AR. In 2017 Wikitude launched its SLAM technology (Simul-
taneous Localization And Mapping) which enables object recognition and tracking,
as well as markerless instant tracking.

For location-based augmented reality, the position of objects on the screen of the
mobile device is calculated using the user’s position (by GPS or Wifi), the direction
in which the user is facing (by using the compass) and accelerometer. Augmenta-
tions can be placed at specific points of interest and afterwards viewed through the
devices’ screen or lenses.

Since August 2012, Wikitude also features image recognition technologies that
allow for tracker images to trigger augmented reality technology within the app.
The software identifies relevant feature points of the target image (also known as
marker). This allows to overlay and stick augmentations in specific position on top
or around the image.

In 2017 Wikitude launched its SLAM technology. Instant Tracking, the first
feature using SLAM, allows developers to easily map environments and display
augmented reality content without the need for target images (markers). Object
Recognition is the latest addition based on SLAM, with the launch of SDK 7. The
idea behind Object Recognition and Tracking is very similar to Image Tracking,
but instead of recognizing images and planar surfaces, the Object Tracker can work
with three-dimensional structures and objects (tools, toys, machinery etc.). Object
Tracking enables real-time 360 augmented reality experiences around physical ob-
jects.

In 2018 with SDK 8 comes Scene Tracking and Extended Tracking. Scene Track-
ing makes it possible to recognize, track and augment feature-rich rooms, scenes,
and larger objects. Extended Tracking allows digital augmentations, attached to
objects, scenes, or images, to persist in the user’s field of view even when the initial
target is no longer in the frame. Once the image or object target is tracked, users
can continue the AR experience by freely moving their device. This feature incor-
porates the SLAM algorithm at the base of Wikitude’s Instant Tracking technology.

Also, one of the features is Seamless AR Tracking (SMART). SMART switches
to Google’s ARCore or Apple’s ARKit, when the devices support it. When not,
Wikitude’s technology is launched, making it possible to work with Instant Track-
ing on a much wider range of devices.

The main downside is that it is not free, in contradiction with the previous SDKs
that mentioned.

The cross platform SDK is available for Android, iOS and Windows operating
systems, being optimized as well for several smart eyewear devices. Developers can
also build in JavaScript, Unity, Xamarin, PhoneGap, Cordova, and Flutter.

53

Figure 41: Wikitude Object Tracking [30]

2.6.2 Game Engines

A game engine is a software framework designed for the creation and develop-
ment of video games [50]. Developers use them to create games for consoles, mobile
devices and personal computers. The core functionality typically provided by a
game engine includes a rendering engine (renderer) for 2D or 3D graphics, a physics
engine, a collision detection (and collision response) system, sound, scripting, anima-
tion, artificial intelligence, networking, streaming, memory management, threading,
localization support, scene graph, and may include video support for cinematics (fig.
42).

Figure 42: Functionality Provided by Game Engines

54

The process of game development is often economized, in large part, by adapt-
ing the same game engine to create different games, or to make it easier to ”port”
games to multiple platforms. The beauty and power of game engines, is that they
speed-up the development process, by providing a suite of visual development tools,
reusable software components and simplification of frequently used tools, elements
and processes.

Game Engines are usually built upon one or multiple rendering application pro-
gramming interfaces (APIs), such as Direct3D or OpenGL which provide a software
abstraction of the graphics processing unit (GPU). These APIs are commonly used
to interact and communicate with the GPU, to achieve hardware-accelerated ren-
dering. Nowadays they often feature dozens of finely tuned systems interacting to
ensure a precisely controlled user experience. The continued evolution of game en-
gines has created a strong separation between rendering, scripting, artwork, and
level design. It is now common, for example, for a typical game development team
to have several times as many artists as actual programmers.

Furthermore, due to the constant growth of the smartphone application market
and increasing competition, popular high-end Game Engines are proving to be a
precious tool for developers worldwide, to bring their ideas and games to life, in as
many platforms as possible. Below ere are 2 of the most well-knowned game engines
for mobile development.

• Unity 3D [32], initially released on 2005, is a flexible and powerful development
platform for creating high quality 2D and 3D games. Emphasizing on portability,
Unity currently supports over 20 platforms, including PCs, consoles, mobile devices
(iOS and Android) and websites. Additionally, many settings can be configured for
each platform. As a result, Unity can detect the best variant of graphic settings
for the hardware or platform the game is running, thus optimizing performance
and sacrificing visual quality if necessary. Apart from its next-generation graphical
capabilities, Unity also comes with an integrated physics engine. Unity offers devel-
opers an Asset Store to buy re-usable content and assets for use in their project. To
sum up, Unity’s primary goal may be the development of 3D video games, however,
it is also suitable to create other kinds of interactive content, such as animations,
simulations or 3D visualizations. Unity is a fully integrated development engine
that provides functionality to create interactive 3D content. Due to its ability to
efficiently target multiple platform at once and user-friendly environment, this game
engine is an ideal choice for a large portion of developers.

55

Also, many of the most powerful and promising AR SDKs we mentioned, offer
plug-ins integration with Unity3D, making AR application development more user
friendly, letting the developer focus on the content of his/her application. For AR
development, the world is the scene, so a 3D scene as an environment of development
is suitable for our task.

• Unreal Engine [51] is a complete suite of development tools for anyone working
with real-time technology. From design visualizations and cinematic experiences
to high-quality games across PC, console, mobile, VR, and AR. Unreal Engine
(UE),initially released on 1998, is a complete suite of game development tools, pow-
ering hundreds of games, simulations and visualizations. It is one of the most ad-
vanced engines to date, delivering top quality visuals while providing users with a
large variety of tools to work with everything they need. Due to its capabilities,
efficient design and ease of use it is well-appreciated engine from hobbyists to devel-
opment studios. It is also available for free. Developers can also port their projects
to mobile devices, both iOS and Android. Finally, UE also gives access to its users
to the marketplace , to buy re-usable content and add to their project, speeding the
development process.

Unfortunately, some of the AR SKDs, don’t support development in Unreal’s
Environment. But, the most powerful AR SDKs for mobile development (ARCore
and ARKit) have integrated plug-ins for Development in Unreal Engine.

2.6.3 Platform of our choice

All the examined SDKs are great and have advanced technologies and computer
vision algorithms. Each one, though, specializes in specific fields and tracking meth-
ods. Wikitude SDK has very good for geo-location services and web services, while
it provides SLAM capabilities and Object/Scene tracking. Vuforia is probably the
best SDK for marker-based AR and model tracking while ARKit and ARCore are
great for markerless AR and probably the best SLAM algorithms of them all. All
SDKs provide great support and documentation for the developers and each one has
a large community, providing guides, tips and solutions in many problems.

56

Our task, is not to choose the best AR SDK outhere but the best SDK for our
needs. Wikitude SDK seemed very promising especially with the scene recognition.
Wikitude gives a free student license for a year with some limitations , taking advan-
tage of this, we had a hands on testing. The results of scene and object recognition
weren’t satisfying as expected. Our beach scenery isn’t the best to implement this
technology. Other than this, the fact that Wikitude is a licensed SDK, kept us
away from further testing since we didn’t need any of the other features that it
offers. Vuforia SDK is a great tool for mobile AR development and we had great
success so far in the development. Since Unity version 2017.1, Vuforia SDK is in-
cluded as implementation in Unity3D, making the development using Vuforia easier
than ever, providing the great support that Unity’s community offers. Despite all
of these, Vuforia’s capabilities couldn’t help us in this task since we cannot imple-
ment a marker based experience as we mentioned before. Vuforia’s plane detection
requires ARCore/ARKit supported devices so we decided to work directly with AR-
COre/ARKit. ARCore and ARKit share the same basic capabilities and provide
the best (we have tested) SLAM algorithms, tracking of surfaces (angled, horizontal
and vertical) and feature points.

In 2018, Unity Developers published the beta version of AR Foundation package
to add high-level functionality for working with augmented reality. Unity 2018.1 in-
cludes built-in multi-platform support for AR. AR Foundation provides a platform-
agnostic scripting API, making ARCore and ARKit apps that use core functionality
shared between both platforms. This enables the development of an app once and
the deployment to both devices without any changes, as shown in Figure 43. AR
Foundation is still in development and is updated frequently, adding more function-
alities. In 2019, with the new version of Unity 2019.1, AR Foundation has been
launched officially, bringing even more capabilities for AR development. Focusing
on handheld devices, it enables the creation of stunning environments, using smart
lighting and lightweight rendering.

Figure 43: AR Foundation development compared to ARCore & ARKit development
[32]

57

Considering all these, we chose Unity as a development platform in combination
with the AR Foundation. ARCore and ARKit support only high end smart phone
devices (see the hardware requirements below). A big impact in our choice was the
personal knowledge and experience we had on Unity compared with Unreal. Also,
the development via AR Foundation, is faster and brings satisfying results using the
SLAM capabilities of ARCore/ARKit programming once for two platforms, both
Android and iOS. This is the main reason we chose this software for development
and we would like to provide the best experience we can offer with the given tools.

2.7 Future of AR

Since AR is a new technology, very little data is available so far to back its
usefulness in marketing. Aside from AR’s economic uncertainties, the technology
must clear several technological hurdles before it can be fully realized. In his 2016
paper, “The Most Important Challenge Facing Augmented Reality” [24] Intel prin-
cipal engineer Ronald T. Azuma lists several areas of improvement for AR:

• AR must have more precise tracking across large environments, indoors and
outdoors, day or night.

• A wide field-of-view optical display (glasses or goggles) must be used to fully
integrate AR into daily life.

• The AR platform must incorporate an innovative hands-free interface.

• AR object recognition and incorporation of real-world objects into the AR
digital space must be improved for the augmented reality experience to be seamless.

Improvement in all of these areas will take time, but the world seems to be driv-
ing toward a future where augmented reality is a part of our daily lives. While still
in its infancy, AR can easily be seen as a major part of our future society.

The initial demand for such AR systems is likely to be in the enterprise, for
professional applications, but consumer applications will eventually drive most of
the market. AR displays will enable natural interactions with virtual content that
is integrated with the surrounding real world, while the users remain engaged with
and aware of the real world. Compact, stylish, and portable wide field-of-view head-
worn AR displays have the potential to supplant desktop, laptop, tablet, and even
smartphone displays. As more of the real world is instrumented with the Internet of
Things, a “physical web” will become established where information is tied to tangi-
ble objects and locations, and AR will provide the natural interface to that data [24].

Before AR technology can reach its full potential, it must become more than
an afterthought on mobile devices. “For AR to become truly useful, somebody will
have to make a platform for it that could host a variety of apps and services,” claims

58

tech industry consultant Tim Bajarin in his 2017 Time article. “Why This Futur-
istic Tech Will Be The Future Of Computing” [45]. “It’s most likely this platform
will exist first in smartphones,” he says, “then, years later, extend to some type of
glasses or goggles, like a more fully realized Google Glass.”

Once AR finds a compelling, full-featured platform and it becomes clear that
a vast number of consumers are becoming AR proficient, the potential of AR will
begin to be fully realized. Every industry from architecture to education, sports,
military training, and retail commerce will benefit by embracing AR.

The various industries that will see increased AR activity in the near future
are[46]:

•E-Commerce – Many companies will be integrating AR into their websites and
mobile apps. In retail, this will result in applications that seamlessly “clothe” a
user in sunglasses, jackets, footwear, and jewelry via the camera in the person’s
smartphone.

•Digital Marketing – AR technologies will continue to improve the way customers
engage with brands. Marketing AR will likely be seen in packaging, on street signs,
through gaming apps, and through interactions with other products.

•Geolocation – The ability of mobile devices to inform us of our surroundings
be greatly improved over time. AR could benefit everything from real-time travel
advisories to restaurant suggestions.

•Educational Resources – Researchers are already attempting to find new and
beneficial ways to use AR in training situations. The military and healthcare indus-
tries, in particular, are developing powerful AR training simulations.

In conclusion, the future of AR seems very promising since many colossal compa-
nies like: Microsoft, Apple, Google, Facebook etc. have invested on this technology.
Also, the research community have invested in AR, bringing solutions and algo-
rithms to overcome the problems that, currently, the AR faces. With these two
major investors by its side, Augmented Reality seems to be the next ”big thing” in
the field of technology.

59

3 Case Analysis on Coastal Erosion

3.1 Introduction

Today’s coastal regions face intense problems caused by the rapid urbanization,
coastal erosion, sea level rise, global warming and climate change. These factors
have a huge impact on coastal communities. Especially in Greece with a coastline
length of 17400km and with many cities and residential areas at the coastal regions
the above factors play an important role. The biggest island of Greece is Crete
which is predominantly based on services on tourism and agriculture. Since 1970
Crete became a popular tourist attraction, it has more than 2.000.000 tourists every
year and this number is increasing.

Greece had about 32 million tourists in 2018 in comparison to 15 million in 2010.
It is the seventh fastest growing major travel destinations in the world. Crete is the
fifth largest island in the Mediterranean and only the region of Crete contributes
5% of the Gross Domestic Product (GDP) of the country. In the period between
2000 and 2009 the GDP of Crete increased 57.5%. Coastal areas face different prob-
lems due to the over-exploitation. Tourism facilities are yearly constructed along
the coastal areas to bring more tourists and infrastructure had to be constructed to
bring these people to their destinations. Coastal areas suffer from overbuilding and
the area seems to have more concrete than vegetation. Coastal erosion is becoming
a serious problem more than ever before. It is definitely a physical process but it is
influenced by man-made constructions [12].

The massive influxes of tourists have pressed the coastal regions with nice beach
to create big tourist developments. Hotels, marinas, roads, restaurants, facilities for
recreation and sport activities are some of them. These results in great pressure
mainly on resources and on the marine ecosystems. Natural habitats like of the sea-
grass meadow have been removed to create open beach, other tourist developments
have been built directly next and on the beaches. Careless constructions and resorts
have destroyed the beauty of the environment. Tourism is a crucial aspect of the
Greek economy given the pleasant climate and sea conditions which contribute to
Greece’s overall popularity as a tourist destination. In the Greek coastal zone, there
are major conflicts between the demand for tourism on the one hand, and coastal
preservation on the other. The Greek coastal zones face problems with delineation
and definition of public land causes significant uncertainties among land owners re-
garding where the public domain ends. For the protection of the coastal areas it is
important for Greece to conduct an evaluation of planning and legislative tools in
relation to these zones.

60

3.2 Our Case Analysis

The area under examination is Georgioupoli, located approximately within 35 15
51N to 35 21 12N and 24 15 43E to 24 18 04E (fig. 44). Its population is about 2800
people and covers an area of 51km2. Georgioupoli is situated at the Northeaster
part of the Crete in Greece. Georgioupoli is between Rethymnon and Chania 20km
from Rethymnon and 38km from Chania. It has evolved to a major tourist attrac-
tion the last 30 years, because of the sandy beach and the beautiful surroundings [12].

Figure 44: Location of Georgioupoli, Crete, Greece

3.2.1 Economic Analysis

As stated in ”Land Use Planning for Sustainable Development of Coastal Re-
gions” [25]: One of the most significant problems is the coastal erosion. It takes
place through strong winds and high waves and storm conditions and results in loss
of land and beach. One can observe at the satellite images (fig. 46) the coastal ero-
sion at Georgioupoli . The first image is taken in 2003 and the second one in 2016.
The sandy coast almost disappeared in the second one. As one can see there are
more buildings in the second image and a road is constructed between the residential
part of the region and the coast (fig. 45). Using Geographic Information System
(GIS) technologies it is found that the length of the beach is 400m and the average
width 40m which makes 16.000 square meters loss of sandy beach. It is estimated
a loss of economic value 10 euros per square meter per day in Greek beaches that
means 160.000 euros per day for such a small village like Georgioupoli in Crete.

61

Figure 45: Georgioupoli’s Beach

In ”Monitoring the changes of the Coastal Areas using Remote Sensing Data and
Geographic Information Systems” [12] The total lost surface of the sandy beach in
the 13 years period (2003-2016) (fig. 46) is calculated to be 20862.40 square meters.
This means that the region had an economical loss of 208624 euro per day due to
erosion. Also, the analysis showed that there was significant change in the land
use and the results validated that the area without vegetation, due to construction,
increased from 83.219,4 square meters in 2003 to 106.805,34 square meters in 2016,
an increase of 20%. Moreover, the vegetation area decreased from 292.367,52 square
meters to 268.780,05 square meters, a reduction of 8%.

62

Figure 46: Coastal zone changes in Georgioupoli [12]

Human intervention is a major cause for coastal erosion. The construction of
different types of hard structures including seawalls, breakwaters and roads are a
major factor for coastal erosion and beach loss [25].

The current thesis is focusing on the coastal zone of Georgioupoli and its vul-
nerability as a result of the lack of spatial planning. The area is selected because
it concentrates the characteristics of a typical coastal touristic zone, which faces

63

rapid intense not always well planned touristic expansion. The examined zone has
been diachronically influenced by the liberalization of construction regulations, an
unqualified private sector emerged, hastily developing construction mostly without
government oversight and without building permits[25].

There are some main laws for constructions at Greek beaches: a) The leasing of
seashores and beaches is allowed for works related to trade, industry, land and sea
transportation, or “other purposes serving the public good”, b) beach zone 50 m
wide, c) Access roads to the beach of minimum width 10 m., means: expropriations
of land properties, d) fences are prohibited in a zone of 500 m from the beach in
areas not covered by urban plan. Exceptions: when agricultural fields have to be
protected, and e) “Light”, non permanent constructions are allowed in the seashore
zone, meant to serve public recreation (tents, open bars etc.)[25]. However there
is a need for more detailed and strict regulations for building a construction. The
current thesis will focus on the problems of coastal erosion and beach loss.

3.2.2 Environmental Analysis

Beaches are considered both valuable economic resources for the Mediterranean
countries and vulnerable to climate changes. Beach erosion has significant impacts,
since coastal populations, activities, infrastructure and assets are exposed to dam-
ages/flooding. It is particularly alarming for the Cretan beaches because (i) of their
limited size and sediment supply and (ii) beaches represent the most valuable nat-
ural resource of Greece, as they are the main focus of the “sun and beach” tourism
(MAP, 2005)[13].

Sea level rise (SLR) (long-term and short-term) represents, probably, one of the
most significant beach threats since beaches respond with retreat. IPCC (Inter-
governmental Panel on Climate Change), 2013 suggests that mean SLR, in 2100,
will be between 0.26 and 0.82 m higher than that of period 1986-2005. Other stud-
ies, suggest much higher rises for the same period (e.g. 0.87-1.8 m by Mori et al [?]).

The Intergovernmental Panel on Climate Change (IPCC) is an intergovernmental
body of the United Nations that is dedicated to providing the world with objective,
scientific information relevant to understanding the scientific basis of the risk of
human-induced climate change, its natural, political, and economic impacts and
risks, and possible response options.

For a 0.82m sea level rise (the high estimate of IPCC for 2100), the effects will
be devastating since all the beaches will lose more 20% of their width, 93% more
than 50% and 41% (40% of North, 56% of East and 38% of South Crete) will
be entirely lost/inundated (see negative values of beach widths, in fig. 47(a)). The
negative values of beach widths suggest that not only the beaches will be entirely
lost, but also that human infrastructure/activities will be likely seriously affected.
In the case of a sea level rise of 0.87 m (low estimate for 2100 by Mori et al [?].)
the effects will be similar with the previous examined scenario. The East and South
beaches are the most vulnerable since they will lose more than 50% of their width,

64

while 50-56% will be entirely lost/inundated. The losses of the North sector are not
less important, since 80% of the beaches will lose more than 50% of their width and
40% will be entirely lost/inundated [13]. The beach of Georgioupoli belongs on the
north side of Crete (fig. 44)

Figure 47: Minimum and maximum retreats of Cretan beaches for sea level rises of
(a) 0.82 m and (b) 1.86m estimated on the basis of the low and high mean of the
model ensemble projections. Final widths values less than zero show beaches that
will be entirely lost. 71 Beaches Showcase. [13]

Finally, the main objective of the present contribution is to assess the vulnera-
bility of the highly touristic Georgioupoli’s beach in relation to the anticipated SLR,
using the technology of Mobile AR, to bring a new way of geographic data visual-
ization and showing the potential that can have on the future of Data Visualization
in general.

3.3 Data Showcase

In this section all the geographical data that have been used in this thesis, are
presented. The data that have been used, are not based on personal work and
research. All the sources, from where the data have been extracted, are included in
the reference section and they are linked in the text.

3.3.1 Coastal Retreat Extraction

The model that extracts more accurately the tendency of Georgioupoli’s Beach,
with characteristics of low slope and sediment of sand is 1. The equation was taken

65

by ”Assessment of vulnerability of the eastern Cretan beaches (Greece) to sea level
rise” [13] and represents the mean of the tendency.

S = 0.05α2 + 8.12α− 0.46 (1)

α: Sea Level Rise (SLR) in meters

As it’s stated: the models were applied using linear profiles with slopes of 1/10,
1/15, 1/20, 1/25 and 1/30. Experiments were carried out using varying wave con-
ditions, i.e. wave heights (H) of 0.5, 1, 1.5 m, wave periods (T) 4-5 sec, and 10
different identified sediment grain sizes (d50 of 0.2, 0.33, 0.50, 0.80, 1, 2, 5, 10, 20
and 30 mm). For all cases, 12 sea level rise scenarios (0.10, 0.15, 0.22, 0.30, 0.40,
0.50, 0.75, 1, 1.25, 1.50, 2 and 3 m) were tested. Totally 5500 experiments were
carried out in Crete [13].

Using equation (1), the mean values of coastal retreat for Sea Level Rise (SLR)
0.5 meter and 1 meter is 3.6 meters and 7.7 meters, respectively. Given this, 110
key points were extracted. The points are geo-locations(x,y) that are geo-referenced
to the Hellenic Geodetic Reference System 1987 (HGRS87) (see subsection 3.3.3 for
further info).

3.3.2 Visualization of Data

The extracted points (see Tables 1,2,3) used in a GIS Software, ArcGIS. ArcGIS
is a geographic information system (GIS) for working with maps and geographic
information maintained by Esri. It is used for creating and using maps, compiling
geographic data, analyzing mapped information, sharing and discovering geographic
information, using maps and geographic information in a range of applications, and
managing geographic information in a database [47], [48].

The aerial image below (fig. 48) is a real sub-scale map exported with ArcGIS
showing the tendency of the beach as mentioned. The image is also geo-referenced
to the Hellenic Geodetic Reference System 1987 (HGRS87).

In the image is presented mostly the built-area of the beach (Lemonia Ragia
and Pavlos Krassaki et al. [12]). The built-area is about 500 meters, and below
is presented the state of the beach with 3.6m and 7.7m retreat respectively. In
the first scenario most of the beach at this part has been lost, leaving no room for
further exploitation for tourism by the local companies and hotels. In the second
scenario, not only the most of the beach is wiped out but there will be catastrophic
consequences for the local companies. There will be flooding and destruction on the
roads and local infrastructure.

The built-area will lose around 1800 square meters of soil in the first scenario,
and 3850 square meters in the second. Overall, the beach will lose 18000 square
meters in the first scenario and 38.500 square meters in the second, considering that

66

the beach is around 5km (as mention in ”Monitoring the changes of the Coastal
Areas using Remote Sensing Data and Geographic Information Systems” [12]).

The following image was used in designing and 3D construction of the virtual
content that will be super imposed the real world, in order to achieve the visualiza-
tion of the future state of the beach. More on the procedure will be explained on
the Implementation (section 6).

Figure 48: Shoreline Retreat Scenarios for SLR 0.5m/1m [12]

67

3.3.3 Tables of Data

Below the Tables of the points that have been used in ArcGIS for the extraction
of the aerial image, see in figure 48. The Table 1 are key points of the current state
of the shoreline, as taken in 2018 (green in the Image). In the Table 2 are the same
points with shoreline retreat of 3.6 meters (yellow in the Image). And finally the
Table 3 are the points with shoreline retreat of 7.7 meters (red in the Image). All the
points are geo-referenced to the Hellenic Geodetic Reference System 1987 (HGRS87).

68

Table 1: Points of Shoreline - Current State [12]

No. x y No. x y No. x y
0 523631,7 3913177 37 523707,9 3913023 74 523782,4 3912914
1 523633,3 3913172 38 523709 3913020 75 523786,4 3912911
2 523634,9 3913168 39 523706,5 3913016 76 523789,3 3912908
3 523635,5 3913165 40 523704,9 3913014 77 523793,1 3912905
4 523637 3913161 41 523705,6 3913012 78 523796,2 3912901
5 523639,1 3913158 42 523707,2 3913009 79 523798 3912899
6 523640,7 3913154 43 523708,8 3913005 80 523800,1 3912897
7 523642,1 3913150 44 523710,9 3913002 81 523800,3 3912895
8 523643,3 3913147 45 523713,3 3912999 82 523799,6 3912893
9 523644,6 3913143 46 523715,6 3912997 83 523800,1 3912891
10 523645,8 3913139 47 523717,7 3912994 84 523802,1 3912888
11 523646,2 3913135 48 523719,4 3912992 85 523803,7 3912887
12 523648,5 3913129 49 523721 3912990 86 523806 3912885
13 523651 3913123 50 523723,8 3912987 87 523808,7 3912881
14 523653,9 3913117 51 523727,5 3912982 88 523813,2 3912877
15 523656,5 3913112 52 523730,1 3912977 89 523815,2 3912875
16 523659 3913106 53 523732,6 3912974 90 523816,3 3912873
17 523662,2 3913100 54 523735,2 3912970 91 523817,8 3912872
18 523665,2 3913095 55 523738 3912967 92 523819 3912870
19 523668,5 3913089 56 523741,4 3912964 93 523820,8 3912868
20 523670,8 3913084 57 523743,8 3912961 94 523821,9 3912866
21 523671,8 3913080 58 523747,4 3912957 95 523824 3912865
22 523673,9 3913076 59 523749,7 3912954 96 523825,5 3912863
23 523674,9 3913071 60 523752,2 3912951 97 523829,4 3912859
24 523675,2 3913068 61 523755,2 3912948 98 523834,7 3912853
25 523676,4 3913065 62 523757,4 3912945 99 523839,3 3912849
26 523678,8 3913062 63 523760,2 3912942 100 523845,6 3912843
27 523681,5 3913058 64 523762,6 3912939 101 523850 3912841
28 523683,7 3913054 65 523765,2 3912936 102 523856,6 3912838
29 523685,7 3913050 66 523767,9 3912933 103 523860,5 3912835
30 523687,8 3913045 67 523770,1 3912931 104 523863,2 3912831
31 523691,6 3913040 68 523772,5 3912927 105 523865,3 3912828
32 523695,2 3913036 69 523773,9 3912924 106 523865,3 3912823
33 523698,2 3913033 70 523774,6 3912922 107 523866,4 3912820
34 523701,2 3913030 71 523776,6 3912921 108 523869,9 3912817
35 523702,9 3913027 72 523778 3912919 109 523873,4 3912815
36 523705,2 3913025 73 523779,8 3912916

69

Table 2: Points of Shoreline - Retreat 3.6 meters inland [12]

No. x y No. x y No. x y
0 523872,2 3912811 37 523774 3912918 74 523695,5 3913031
1 523867,6 3912814 38 523771,5 3912920 75 523692,7 3913034
2 523863,6 3912818 39 523770,5 3912922 76 523688,8 3913038
3 523861,7 3912822 40 523769,3 3912926 77 523684,8 3913043
4 523861,7 3912827 41 523767,3 3912929 78 523682,4 3913049
5 523860,3 3912829 42 523765,3 3912931 79 523680,5 3913052
6 523857,9 3912832 43 523762,5 3912934 80 523678,5 3913056
7 523854,8 3912835 44 523759,9 3912936 81 523675,8 3913060
8 523848,3 3912837 45 523757,5 3912939 82 523673,3 3913063
9 523843,6 3912840 46 523754,5 3912943 83 523671,7 3913067
10 523836,9 3912846 47 523752,4 3912945 84 523671,4 3913071
11 523832 3912850 48 523749,5 3912949 85 523670,5 3913074
12 523826,7 3912856 49 523746,8 3912952 86 523668,4 3913079
13 523822,9 3912861 50 523744,6 3912955 87 523667,4 3913083
14 523821,5 3912862 51 523741,2 3912958 88 523665,3 3913087
15 523819,1 3912864 52 523738,7 3912961 89 523662,1 3913093
16 523818 3912866 53 523735,5 3912965 90 523659 3913098
17 523816,2 3912868 54 523732,8 3912967 91 523655,7 3913104
18 523814,9 3912870 55 523729,6 3912972 92 523653,2 3913110
19 523813,6 3912871 56 523727,2 3912975 93 523650,7 3913115
20 523812,6 3912872 57 523724,4 3912980 94 523647,7 3913122
21 523810,6 3912874 58 523721 3912985 95 523645,1 3913128
22 523805,9 3912879 59 523718,1 3912988 96 523642,6 3913135
23 523803,3 3912882 60 523716,6 3912990 97 523642,3 3913138
24 523801,1 3912884 61 523714,8 3912992 98 523641,2 3913142
25 523799,2 3912886 62 523712,9 3912994 99 523639,9 3913146
26 523796,6 3912890 63 523710,6 3912997 100 523638,7 3913149
27 523796 3912893 64 523707,8 3913000 101 523637,3 3913153
28 523796,6 3912895 65 523705,5 3913004 102 523635,8 3913156
29 523795,1 3912897 66 523704 3913007 103 523633,8 3913160
30 523793,4 3912899 67 523702,4 3913011 104 523632,1 3913164
31 523790,6 3912902 68 523701,4 3913015 105 523631,4 3913167
32 523787 3912905 69 523703,6 3913018 106 523629,9 3913171
33 523784,1 3912908 70 523704,9 3913020 107 523628,2 3913176
34 523779,8 3912911 71 523702,8 3913023 108 523704,6 3913021
35 523777 3912914 72 523700,5 3913025 109 523796,4 3912894
36 523775,1 3912917 73 523698,4 3913028

70

Table 3: Points of Shoreline - Retreat 7.7 meters inland [12]

No. x y No. x y No. x y
0 523869,3 3912808 37 523772,1 3912914 74 523695,2 3913025
1 523864,9 3912811 38 523770,4 3912916 75 523692,5 3913028
2 523859,7 3912816 39 523768,1 3912918 76 523689,8 3913031
3 523857,7 3912822 40 523766,8 3912921 77 523685,3 3913035
4 523857,6 3912826 41 523765,6 3912924 78 523681,1 3913041
5 523857 3912826 42 523764,1 3912926 79 523678,7 3913047
6 523855 3912829 43 523762,4 3912928 80 523676,9 3913050
7 523852,6 3912831 44 523759,5 3912931 81 523675 3913054
8 523846,5 3912834 45 523756,9 3912934 82 523672,5 3913057
9 523841,2 3912836 46 523754,4 3912937 83 523669,6 3913062
10 523834,2 3912843 47 523751,3 3912940 84 523667,9 3913065
11 523828,8 3912848 48 523749,2 3912943 85 523667,3 3913070
12 523823,5 3912854 49 523746,4 3912946 86 523666,6 3913073
13 523819,8 3912858 50 523743,5 3912949 87 523664,4 3913078
14 523818,8 3912859 51 523741,5 3912952 88 523663,5 3913081
15 523815,8 3912862 52 523738,2 3912956 89 523661,7 3913085
16 523814,9 3912863 53 523735,7 3912958 90 523658,5 3913091
17 523813,1 3912865 54 523732,5 3912962 91 523655,4 3913096
18 523811,6 3912867 55 523729,3 3912965 92 523652 3913103
19 523810,4 3912868 56 523726,3 3912969 93 523649,5 3913108
20 523809,7 3912869 57 523723,8 3912973 94 523647 3913114
21 523807,6 3912871 58 523720,9 3912978 95 523643,9 3913120
22 523802,7 3912876 59 523717,9 3912982 96 523641,2 3913127
23 523800,3 3912879 60 523714,9 3912985 97 523638,5 3913135
24 523798,1 3912881 61 523713,3 3912987 98 523638,2 3913137
25 523795,8 3912884 62 523711,6 3912989 99 523637,3 3913140
26 523792,9 3912888 63 523709,7 3912992 100 523636 3913144
27 523792,2 3912891 64 523707,6 3912994 101 523634,8 3913147
28 523792 3912892 65 523704,3 3912998 102 523633,5 3913151
29 523791,9 3912893 66 523701,8 3913002 103 523632,2 3913154
30 523791,8 3912894 67 523700,2 3913006 104 523629,9 3913158
31 523790,2 3912896 68 523698,7 3913009 105 523628,2 3913162
32 523787,6 3912899 69 523697,4 3913016 106 523627,4 3913166
33 523784,3 3912902 70 523698,3 3913018 107 523626,1 3913169
34 523781,5 3912905 71 523699 3913019 108 523624,4 3913174
35 523776,9 3912908 72 523699,7 3913020 109 523697 3913012
36 523773,9 3912912 73 523697 3913023

71

4 Requirements Analysis

4.1 Introduction

Before we begin to think what technologies we might need to build our app, we
need to have an idea of what we wish to build, what our application is going to
be about, what current needs it fulfills and what new abilities it might give to the
users. After having the initial, general idea for our AR application and what we aim
to do by creating it within the context of this thesis, it’s time to begin mapping it
out. In doing so, it will help eliminate any problems and ensure that functionality
that we chose to be in the application does not get missed.

In the next sections we provide the requirements gathering process and the char-
acteristics our application should have. Because of the nature of this application,
the requirements gathering process was our own and did not include stakeholders
and potential users of the application.

4.2 Pre-Requirements

Having seen the possibilities of AR and the current state of the technology, and
having in mind the case scenarios that were examined in sub-section 3.3 it was
quite clear to us that, for both scenarios, that the visualization will take place using
Augmented Reality on an outdoors, on-site, mobile augmented reality application.
The user will be able to visit the area of interest and experience in real time the
visualization with his/her smartphone device using our Mobile AR application. The
experience should give him an understanding and clear view of the future changes
that coastline will be undergone. Due to inability of visualizing the whole beach at
once, three locations were selected along the beach, where user can go and enable
the AR experience.

4.2.1 General Requirements

The application needs to be fully functional and provide a complete experience
to the end-user. As a location based experience, the physical presence in the Geor-
gioupoli’s Beach is required. The application will be available to everyone with a
smartphone that meets the requirements of the AR Software (see 4.4 for Hardware
Requirements). The device needs to be equipped with specific sensors to support
the 3D visualization in the real world and the availability of these sensors needs to
be checked in order to ensure the optimal flow of the experience. The application
needs to provide a means of navigation throughout the spatially distributed content.
Since all the information is delivered on a location basis, an interface that helps the
user locate the available information relative to his location needs to be included.
The application will not be functional outside the area of Georgioupoli, instead a

72

message will pop-up to the user.

The application is targeting any visitor or inhabitant of the village of Geor-
gioupoli, with no age or educational requirements. The goal is to inform the user
about the dangers of coastal erosion, and the future state of the beach. Below we
outline additional functional requirements about the overall system:

• The application should be simple-to-use and be minimal.

• The system must provide the 3D visualization to users in Georgioupoli.

• The graphics of AR should be realistic.

• The application should guide the user on how to use the app.

• The application should navigate the user to key locations.

• The application should not provide redundant information.

• The system needs access to the GPS sensor.

• The application needs to have access to the phone’s camera.

• The application needs internet access.

• The application should have room for upgrade and further improvement.

4.2.2 Augmented Reality Requirements

In our application, it is clear that we cannot make use of Fiducial Marker Based
Tracking (see 2.5) due to inability of placing markers on coastal environment. Mod-
eled Based and Natural Feature Tracking seem promising, but they are in early
stages. Moreover, the environment which we are called to work in, makes the use of
such tracking methods more challenging because of the lighting, the constant changes
in the scenery and the scale of it. Hybrid Based Tracking may seem the most suit-
able in our case, but the testing results have shown that GPS can’t be trusted as
a method of positioning virtual objects accurately in the real world. Thus, a more
sophisticated method should be used, combining more than one tracking methods.
Simultaneous Localization and Mapping, also known as SLAM, is a combination
of Hybrid Based and Natural Feature tracking methods. SLAM makes use of the
device’s sensors (gyroscope, accelerometer) and feature points of the world (detected
by camera feed), in order to create a map of the world and find the position of the
device relative to it. By making use of SLAM in combination with some the other
tracking methods (GPS, compass etc.), it is believed that we will provide the desired
results.

73

The user will get to the desired location using his/her device’s GPS, and when
he gets there the AR mode will be enabled. The user should scan the area around
and point at the coastline (using some helpful indicator). In addition to this, more
requirements the app should have, are:

• The system must run on all devices that meet the requirements of AR Software
that we used (see 4.4 for Hardware Requirements).

• The system needs to provide 3D Visualization of coastal zone changes.

• The users must be able to enter the AR experience after reaching the location of
interest.

• The user needs to be able to re-calibrate the AR content and place it based on
his/her visual position.

• The User Interface in AR mode should be minimal and not flooding the screen,
giving only the mandatory information.

• The representations should be accessible from all the available viewpoints.

• The AR experience should be as realistic as possible.

4.2.3 Map and Navigation Requirements

Overall the Map/Navigator requirements:

• The system needs to include a map to assist in navigation.

• The systems should calculate the user’s distance from the point of destination.

• The map needs to include point mark over the areas of interest.

• The map needs to annotate the user’s location.

• The user must be able to enable/disable the information shown on the map and
have zoom in/out capabilities.

• The minimum area to interact with a location in AR mode will be 10 meters
radius.

All the listed pre-requirements have been taken into consideration, before proceeding
into the development phase of the application.

74

4.3 Use Case Scenarios

In this section we provide the use case diagrams depicting a user’s interaction
with the application and the relationships between the user and the different use
cases in which he is involved.

4.3.1 User Enters the Application

The figure bellow illustrates the interactions available after the user has launched
the application, and wants to proceed to the core functionalities.

Figure 49: Initial Use Case

• User enters the map:

The user presses the ”Start” button to enter the map and proceed to the main
functionality of the application using the default map indicator and map’s theme.

75

• User selects map indicator:

The user can select one of the two different self-indicators that represent the
user’s location on the map.

• User selects map theme:

The user can enable or disable map’s dark theme mode. The default theme is a
light-street view map. Dark mode gives the map a dark-black theme.

• User exits application:

The user can press device’s ”back” button to exit the application and terminate
his experience.

4.3.2 User is Located Outside of Georgioupoli

The interactions depicted below are available after the initial process of the ap-
plication when user tries to enter the map while he is not located in the area of
Georgioupoli.

Figure 50: User isn’t in Georgioupoli Use Case

76

• User reads alert note and exits:

The user tries to enter the map while he is located outside the area of Geor-
gioupolis. An alert message pops up and an ”exit” button is the only option he/she
has.

4.3.3 User Enters the Map

The interactions depicted below are available after the initial process of the ap-
plication and after user has entered the map screen. The map settings interaction
cases will be described in more detail in the following use case figure (see fig. 52).

Figure 51: Map Use Case

• User reads helpful note:

At the beginning, a helping note with useful directions pops up. The user can
read it and press the ”dismiss” button to continue the experience.

77

• User interacts with map:

The user can interact with map by rotating it. User can rotate the map using one
finger by touching and dragging it on the screen. With the right rotation he/she
can find the location of interest’s indicators and read at the top of the screen to
distance from there.

• User interacts with map settings:

The user can press the ”settings” button to interact further with the map and the
locations (interaction cases will be described in more detail in the following use case).

• User enters in AR view:

The user can press the ”AR” button, that will be enabled after he reaches to the
selected location, in order to enter in the AR mode.

• User returns to initial screen:

The user can press device’s ”back” button to return to the previous screen and
re-launch the map with different look or exit the app.

Figure 52: Map Settings Use Case

78

• User selects location:

The user can use a drop-down list to select one of the three locations of interest.
The distance from user’s location updates accordingly.

• User enables/disables directions:

The user can enable or disable the map directions to the selected location. By
default it’s disabled. The directions change based on the selected location.

• User zooms in/out:

The user can press the ”plus” (+) button to zoom in the map, or use the ”minus”
(-) button to zoom out the map and view larger area.

4.3.4 User Enters AR View

The interactions depicted below are available after the user has entered the AR
view screen and has seen the procedure that has to be followed in order to experience
the visualization. The calibration interaction cases will be described in more detail
in the following use case figure (see fig. 54).

Figure 53: AR View Use Case

79

• User reads helpful note:

At the beginning, a helping note with useful directions pops up. The user can
read it and press the ”dismiss” button to continue the experience.

• User scans the environment:

The User should scan the environment to detect surfaces/planes and feature
points. The more the scanning the better the results will be.

• User interacts with the indicator:

The user, after successfully scanning the environment, will see an indicator on
the scanned surface.The indicator is practically an arrow that shows the direction
the device’s camera looks at. The user can move the indicator by rotating, rolling
and pitching the device.

• User instantiates AR content:

The user move his indicator accordingly in order to aligns it with the shoreline
he sees in the real world. The tip of the arrow is where the shoreline starts. Then
he presses the ”Place Content” button to instantiate the AR content and two new
buttons are shown 1) ”Settings” button 2) ”Done” button.

• User calibrates content:

The User presses the ”Settings” button in order to calibrate better the AR con-
tent (interaction cases will be described in more detail in the following use case).

• User proceeds to visualization:

The User presses the ”Done” button in order to proceed to the visualization and
the core AR functionality.

• User returns to map screen:

The user can press device’s ”back” button to return to the previous screen and
access the map after he/she had finished the visualization on the selected location.
Then the user can select a new location or terminate the app.

For better results in visualization, a little calibration by user might be needed.
The initial height of the content is determined by the scanned ground, so no further
calibration will take place on this axis.

80

Figure 54: AR Calibration Use Case

• User rotates vertically the content:

The user can press the ”rotation left” or ”rotation right” button in order to
rotate the content to match the real world.

• User moves the content:

The user can press the ”left arrow” or ”right arrow” button in order to move the
content to match the real world.

4.3.5 User Experiences the AR Visualization

The interactions depicted below are available after the user has proceeded to the
AR visualization screen. If all the previous steps have been followed successfully,
the user should be able to see how the beach will be in its future state and realize
how the erosion will affect the shoreline of the location.

81

Figure 55: AR Visualization Use Case

• User toggles off trackables:

The user can press the ”toggle trackables”(white) button in order to turn off the
visualization of the trackables the device has detected. Visualizing the trackables
helps the user understands what the device sees, but in this phase they are not
important and distracts the user.

• User vies visualization with 3.6m retreat:

The user can press the ”3.6m retreat” (yellow) button and see in AR the shore-
line to change in real time. The new shoreline represents the future state of the
current shoreline with 3.6m retreat.

• User vies visualization with 3.6m retreat:

The user can press the ”7.7m retreat” (red) button and see in AR the shoreline
to change in real time. The new shoreline represents the future state of the current
shoreline with 7.7m retreat.

• User returns to map screen:

82

The user can press device’s ”back” button to return to the previous screen and
access the map after he/she had finished the visualization on the selected location.
Then the user can select a new location or terminate the app.

4.4 Hardware Requirements

In order to execute successfully the application and experience all the features that
has to offer, there are specific hardware requirements your device needs to meet
based on the developing platforms we chose and the pre-requirements we have set
on the previous subsections:

• The device should have GPS.

• The device should have compass, accelerometer and magnetometer.

• The device should have a back camera.

• The device should have gyroscope.

• The device should have connection to the internet.

• The device should have at least 1GB free RAM.

• The device should run Android 7.0+/iOS 11+.

• The device should be supported by ARCore/ARKit SDKs (see ARCore/ARKit
Supported Devices [49] for more information).

83

5 End User Experience

In this section, the application is presented from the point of view of an end user.
We make an introduction to the final app declaring its components based on what
the user experiences. Furthermore, the final screens that a user sees and interacts
with, are presented following by a mini-guide on how to use the application properly
and what should be the expectations of a user candidate.

5.1 Introduction to the App

Before proceeding to the final screens and the user experience, an intro to this
application is essential. First of all, the name of our application is Coastal Zone
AR (CZAR for short), and it will be called by this name in this section. The main
functionality and the structure of Coastal Zone AR (CZAR) is displayed below in
figure 56.

Figure 56: App Basic Structure and Navigation

In short, there is an initial screen where the user starts his/her experience and
basically starts the core app. From there, based on user’s location the application
will provide different content and interaction. The AR visualization can take place

84

only on specific locations. There are no dead-ends in the app, the user can navigate
from any final screen to any other final screen. In the case where the user is far from
the area of Georgioupolis the only interaction that’s given to the user is to exit the
application. Later on this section, we will analyze each part of the diagram above
(fig. 56) and we will provide the Graphic User Interface (GUI) of each part.

The application runs on all devices that meets the requirements we mentioned
in the previous section (see Hardware Requirements 4.4) on both Landscape and
Portrait orientation of the device, no matter the phase of the app.

5.2 Initial/Welcome Screen

Upon the activation of the application the user is facing an initial/welcome screen
as shown in figure 57. The purpose of this screen is to welcome the user and let him
dive into the app smoothly, providing some sort of freedom with some options. In
this screen the user can choose whether to use the humanoid self-indicator or the
pin-arrow one. The user can also select to enable the dark theme mode for the map
and give it a darker look.

Figure 57: Welcome Screen

After the user has finalized his/her selections, he/she can proceed to the core
of the CZAR: Georgioupolis by touching the start button. If the user just presses
the start button without any further interaction, the default options will be selected
which are: 1) Humanoid indicator and 2) Dark theme: off.

85

5.3 Not-in-area Screen

After the welcome screen, the application will try to locate user’s geographical
location. In case the user is located outside the area of Georgioupoli’s beach, the
app will pop an alert message blocking any further interactions and forcing the user
to exit the application as shown in figure 58. The user should be in a range of
2000 meters (2km) around the area of Georgioupoli’s beach, so he/she can execute
successfully the CZAR: Georgioupolis.

(a)

(b)

Figure 58: Not-in-area Screen (a) Light Map (b) Dark Map

86

5.4 Map Screens

5.4.1 Entering Map View

Once the initial steps have ended, the user will proceed to the map view. A note
message will pop to him/her which gives useful information and tips on how yo use
the application properly (fig. 59).

Figure 59: Map Screen: Note

After dismissing the note, the user sees the map of the area, a self-indicator that
shows the user’s location on the map and probably 3 or less blue cones that indicate
the locations the user should visit in order to witness the AR visualization. On the
top of the screen there are information about the location that is selected and the
distance of the user from there (fig. 60, 61). User can rotate the map around his/her
position by dragging his/her finger on the screen.

Figure 60: Map Screen: Humanoid/Light Map

87

Figure 61: Map Screen: Pin Arrow/Dark Map

5.4.2 Choosing Location

The locations are three. Location 1 indicates the first location the user finds from
left to right when facing the North (the sea side on the map), Location 2 the second
and Location 3 the third. In case the user cannot recognise which location is where,
he/she can press the ”Settings” button, which is down-right on the map, as shown
in the above figures. When the user taps on the button, a drop-down list of the
selections, a checkbox for directions and two buttons for zoom in/out will pop on
the screen (fig. 62).

Figure 62: Map Screen: Map Settings

88

5.4.3 Navigating to Selected Location

By touching on the location window of the drop-down list, the list will expand
letting the user to select a new location. The user can also enable the directions
on the map by checking the box at the middle bottom of the screen (fig. 63a). All
the changes and selections will persist even after the settings have been hidden by
pressing again the ”Settings” button (fig. 63b).

(a)

(b)

Figure 63: Map Screen: (a) Select Location & Enable Directions (b) Hide Settings

5.4.4 Reaching Selected Location

When the user approaches the selected location within 10 meters range, then the
”AR” button will be enabled on the screen as shown highlighted in figure 64, above.

89

The button stays enabled for as long as the user is within 10 meters range of the
location that he/she has selected before. By touching the button the AR experience
begins.

Figure 64: Map Screen: AR Button

5.5 AR Screens

5.5.1 Entering AR View

The AR experience begins with another note to the user. This note acts as a
helpful tool-tip, giving advice and directions to the user in order to experience the
AR visualization as good as possible. On top of the note, the selected location is
stated (fig. 65). The message and the buttons are the same for all three locations.

Figure 65: AR Screen: Note

90

5.5.2 Scanning the Environment

After dismissing the helpful note, the scanning process will begin. The applica-
tion will ask the user to scan the ground (fig. 66). Scanning and finding a planar
surface or ground is essential at this point in order to proceed further into the AR
visualization.

Figure 66: AR Screen: Scanning Initiation

5.5.3 Detecting Planes & Shoreline

When the user has successfully detected the ground, an arrow indicator will be
shown on top of that. While scanning, the detected surfaces will be highlighted
with grey dots in order to help the user identifies the area he has scanned. While
scanning, the ”Place” button will be activated (fig. 67). Pressing this button, the
AR content will be instantiated on top of the real world to the position and the
rotation the arrow is indicating.

The User can align the arrow indicator with the shoreline (fig. 68) and press
the ”Place” button to bring the virtual sea in life. The position of the user and the
indicator is crucial for successful placement.

91

Figure 67: AR Screen: Ground Detected

Figure 68: AR Screen: Indicating Shoreline

5.5.4 Placing Virtual Content

Once the button is pressed, the virtual sea will be instantiated on top of the real
one while new options/buttons will be enabled on the screen (fig. 69).The virtual
content is an area of 55-60 meters length (based on the location). The virtual sea
should match the real one in terms of shoreline for those meters only, the rest of the
real sea will be visible as it is (will be shown later in this section).

92

Figure 69: AR Screen: AR Content on top of Real World

When the AR Content has been instantiated, the user can use the ”Settings”
button to open a calibration menu. The calibration menu can be used in order to
move or rotate the virtual content accordingly, in order to make it blend with the
real environment as best as possible. The better the calibration the better the AR
experience will be. When the user decides that the virtual content is aligned cor-
rectly, he/she can press the ”Done” button to proceed to the AR visualization (fig.
70).

Figure 70: AR Screen: Calibration Menu

93

5.5.5 AR visualization

After the calibration has ended and the user proceeds to the AR visualization
he/she will be able to 1) visualize future changes of the beach in AR at the current
location and 2) receive some important information about the changes he/she is
witnessing.

In the figure 71a the initial screen of the AR visualization is presented, and in
the figure 71b (on the right) the final result after the user has seen both scenarios.
The virtual content has been put on top of the real world and the user can clearly
see the difference on the shoreline comparing those two figures. Below, the whole
procedure has been separated into smaller parts, providing the final screen and the
options the user has during the AR visualization.

(a) (b)

Figure 71: AR Screen: (a) Before (b) After

5.5.6 Beginning Visualization

Initially, the user has placed the virtual content and calibrate it accordingly. In
figure 72, the virtual content has been placed and the virtual shoreline is aligned
with the real shoreline of the beach in its current state. The user sees 3 buttons. A
yellow button for visualization of Scenario 1 (SLR = 0.5m & mean retreat 3.6m), a
red button for Scenario 2 (SLR = 1m & mean retreat 7.7m) and a white button for
hiding the trackables that we mention before (scanned planes visualizer-grey dots).
Finally, in the upper right corner there is an ”info” button.

94

Figure 72: AR Screen: Current State (Close Distance)

5.5.7 First AR Scenario

Pressing the yellow button, the user witnesses the first scenario which is the fu-
ture state of the beach with shoreline retreat of 3.6 meters inland. This is the erosion
the beach is expected to develop with sea level rise (SLR) of 0.5 meter. After this,
the button will be disabled (fig. 73).

Figure 73: AR Screen: 3.6m Retreat (Medium Distance)

95

5.5.8 Second AR Scenario

Pressing the red button, the user witnesses the second scenario which is the future
state of the beach with shoreline retreat of 7.7 meters inland. This is the erosion
the beach is expected to develop with sea level rise (SLR) of 1 meter. After this,
the button will be disabled (fig. 74).

Figure 74: AR Screen: 7.7m Retreat (Far Distance)

5.5.9 Info Signs Enabled

Figure 75: AR Screen: Info Sings

96

At any of the states of the visualization, the user can press the ”info” button
on the top right. Pressing this button, 3 signs will pop on top of the virtual sea
that will indicate the distance the shoreline has been moved inland. Green sign:
current state, yellow sign: shoreline with 3.6m retreat and red sign: shoreline with
7.7m retreat. The signs will pop in the middle of the virtual sea (fig. 75). User can
disable the signs by pressing again the ”info” button.

The user can move close to the signs as they are stable in the scene. At first
sight, the signs give some information to the user about the shoreline state and the
potential threats that each scenario holds (fig. 76).

(a) (b) (c)

Figure 76: AR Screen: Signs, (a) Current Shoreline, (b) Retreat 3.6m, (c) Retreat
7.7m

5.5.10 Information Panels

Figure 77: AR Screen: Current Shoreline, Info Panel

97

By tapping on one of the three signs, an info panel pops up on the screen giving
useful information about the beach and the scenarios. By tapping the first sign
124a, the following panel will pop (fig. 77) giving info about the past of the beach.

Tapping on the other two signs, the user gets information about the scenarios
that he has witnessed. All the info panels can be closed by pressing the ”X” button
on the top right of the panel and they can be reopened by tapping on the signs
again. The information that user sees for both scenarios, are shown in the figure 78
below.

(a)

(b)

Figure 78: AR Screen: Info Panels, (a) Retreat 3.6m, (b) Retreat 7.7m

That’s the whole experience from the user’s point of view. Users can relive all the
experiences for all the three locations on the map. The information on the panels is
about the whole beach of Georgioupoli (built-part 0.5km, whole beach 5km) and

98

not on the specific part the user has lived the visualization.

5.6 Usage of the App

In this section, there are some additional useful information about the appli-
cation CZAR: Georgioupolis. How to use it effectively, what the expectations of
a candidate user should be or what consequences will have the non recommended
usage of the app.

5.6.1 Giving Access to Hardware

To begin with, the first time the application will be launched, the user will be
asked to give access to the application on the GPS of the device and the Camera.
The GPS is used during the map view of the app and it is needed in order to find
the user’s location and to calculate accurately his/her distance from the selected
location that has been selected. The camera is used only on the AR scene of the
app and it is needed in order to experience the AR visualization. The camera gives
us the feed of the real world and allows the device to scan the real world in order
to detect plane surfaces and feature points in order to create a map of the world
that it is facing. Not giving access to the GPS will result in inaccurate calcula-
tions of the distance and the user’s location, and not giving access to the camera
practically it kills the app and it will not work properly and the way it was intended.

Another important aspect is that the device should have internet connection.
Connecting the device to the internet allows the device to be located even more accu-
rately in combination with the GPS but more importantly, the device can download
the maps for the map view of the application on demand. Not having connection
to the internet will not prevent you from using the application but the functionality
will not meet the requirements and it will not be pleasant. The map will not be
downloaded and practically it will be impossible for the user to navigate around the
area.

After this initial process, the application will be ready to be launched. It might
not ask you again for permission after the first time. This depends on the personal
permission settings of the user’s device.

5.6.2 Helpful Tips

In proceeding, the user can use the application in both portrait and landscape
mode. In the portrait mode the UI on-screen buttons will be a little smaller since the
resolution of the phone changes and becomes smaller on the top and bottom of the
device. Another reason for smaller buttons is that the field of view in portrait mode
is limited both in map and AR view. It is recommended to use the application in

99

landscape mode for better visual experience and easier usage in general (especially
on smartphone devices). In the figure 79 below you can see the difference as it’s
clear that the field of view is wider in landscape mode in AR. This specific figure
is on a device with 1920 x 1080 resolution (16:9), this might differ in devices with
different aspect ratio and resolution.

(a)

(b)

Figure 79: Orientation: (a) Landscape (b) Portrait

Calibration and proper instantiating of the virtual content is key for a nice expe-
rience. On every location there are key objects that will help align the virtual world
with the real one. Try to use those as a guide for your calibration phase. Since
there is no option on moving forward or backwards the virtual content, make sure
you have indicated the shoreline as close as possible. If you fail achieving that, just
press the back button to re-launch the AR experience from the map view. Improper
alignment will result in poor experience and the illusion of blending real and virtual
world will be lost.

Closing, we have to mention that the weather phenomenons and the sea condi-
tion will effect your experience. It is recommended to try using the app on sunny
days with low to non wavy sea as the good lighting is key for mapping the real world
and calm waters help on better scanning of the beach finding more feature points.
All the visualization you are about to witness is based on the shoreline that the
beach tends to have and not on extreme conditions and phenomena.

100

6 Implementation

In this section, we analyse our application from the point of view of a program-
mer/developer. We mention all the software we used in the developing phase and
how we integrate them in our app. We breakdown the development process and we
describe the back-end development of the app in details.

6.1 Developing Platform

6.1.1 Unity3D

CZAR: Georgioupolis was fully developed in Unity3D Game Engine. The version
we used was Unity 2019.2 (fig. 80). This version was selected as all the software
and packages we wanted to use had as requirement Unity 2019.1 versions and later.
2019.2 was the latest version we could use after the developing process had began.
Further upgrade wasn’t necessary since there wasn’t any improvement on the tools
we already used. The basics of Unity Editor and UI elements will not be explained
in this thesis, and the reader should have an overall knowledge of the Unity’s UI
and some programmatistic terms.

Figure 80: Unity Version

6.1.2 Android Studio

Since we need to compile our application for Android smartphones we also used
Android Studio 3.2. It was used by Unity until the end of the development process
without any problem, importing the essential packages in order to build in devices
with android 7.0+ which is the minimum requirements for the ARCore SDK. Other
than this, there was no problem on building even on Android 10 which was realised

101

on our smartphone in early 2020.

6.1.3 Hardware

Initially the application was developed on a laptop with CPU: Intel Core i7
3632QM @ 2.20GHz, GPU: AMD Radeon HD 7600M Series, RAM: 8GB DDR3
and SSD: Samsung 840 EVO. This hardware was enough for the requirements of
the project and the tools we used but the rendering and building process has taken
enough time.

Later, the development was migrated to a better PC with: Intel Core i7 8700k
@ 3.70GHz, GPU: nVidia GTX 1050ti, RAM: 16GB DDR4 and SSD: Samsung 860
EVO. This hardware was far more superior than the previous one, accelerating the
development process by far. The rendering was much faster because of the better
CPU and GPU.

6.2 Software & Packages

Other software and Unity packages we used and they were essential on the de-
velopment of the application are listed below. Also, we give a small description on
how we implemented them into our Unity project.

6.2.1 ARCore

In order the application to run on a smartphone device, ARCore should be in-
stalled on the targeted device. On our testing device we had the latest version
ARCore 1.16 which was released on March 10, 2020. ARCore can be installed very
simply by Google Play Store. Installing Google ARCore on a device will allow it
to run all the application that have been developed on top of the ARCore’s SDK
functionality. The ARCore library is available on Google Play Store only on the
supported devices (fig. 81).

Anyone can build an application on top of Google’s ARCore SDK on the sup-
ported platforms. At Google’s ARCore documentation website [28] can someone
download the SDK and find useful guides. In our thesis though, we didn’t build on
top of ARCore directly but we used Unity’s Package AR Foundation as we mention
in section 2.6.3. AR Foundation will be explained later in this section.

102

Figure 81: Google Play Store: ARCore

6.2.2 Mapbox

The Mapbox Maps SDK for Unity is a collection of tools for building Unity ap-
plications from real map data. It enables Unity developers to interact with Mapbox
web services APIs (including the Maps, Geocoding and Directions APIs) and create
game objects via a C#-based API and graphical user interface. In our thesis we
used Mapbox SDK for the creation of map in map view of the application. Mapbox
is also tested for using in an AR Navigation but unfortunately the tests showed that
GPS inaccuracy and the failure of correct alignment was disturbing and it cannot
be used for such purpose.

In our project we used Mapbox SDK 2.0 for Unity. The latest version so far is
Mapbox 2.1.1 with minor changes from the version we used, so we didn’t proceed
to update to prevent errors since we were totally satisfied with the functionality so
far.

Mapbox SDK can be downloaded in Mapbox’s site for Unity [52]. In order to
use the SDK, we need an account to get an API key. After getting the API key, the
downloaded package should be imported into Unity (fig. 82).

103

Figure 82: Importing Packages in Unity [52]

After importing the package into Unity, we will be asked to insert our personal
API key in order to activate Mapbox functionality (fig. 83). When the API key
is inserted, the SDK will be activated and all the given examples and tools will be
available to the developer to use them in his/her project.

Figure 83: Inserting Mapbox API key in Unity [52]

Mapbox is free for the first 50.000 users which is more than enough for the use
we were about to do with it.

6.2.3 AR Foundation

AR Foundation allows us to work with augmented reality platforms in a multi-
platform way within Unity. This package presents an interface for Unity developers

104

to use, but doesn’t implement any AR features itself. To use AR Foundation on
a target device, you also need a separate package for that platform (for example,
ARKit XR Plugin on iOS or ARCore XR Plugin on Android) [34].

AR Foundation is a set of ’MonoBehaviours’ (Unity scripts) and APIs for dealing
with devices that support the following concepts:

• World tracking: track the device’s position and orientation in physical space.
• Plane detection: detect horizontal and vertical surfaces.
• Point clouds, also known as feature points.
• Anchor: an arbitrary position and orientation that the device tracks.
• Light estimation: estimates for average color temperature and brightness in phys-
ical space.
• Environment probe: a means for generating a cube map to represent a particular
area of the physical environment.
• Face tracking: detect and track human faces.
• Image tracking: detect and track 2D images.

AR Foundation package and all the essential packages alongside with it, can be
imported within Unity’s package manager (fig. 84).

Figure 84: Essential Packages in Unity’s Package Manager

Importing these packages allows us to build applications on top of ARCore and
ARKit SDKs, without focusing on a specific platform. We imported all the core
functionalities of ARCore and ARKit SDKs by importing ARCore/ARKit XR Plu-
gins and that’s all we need to import in order to implement ARCore/ARKit in our
project. The project has been built using AR Foundation 3.0.0. This version allowed
us to use all the core functionalities of ARCore/ARKit we need and it’s compatible
with the new Lightweight Render Pipeline (LWRP) for Unity. We will discuss more
on LWRP later in this section. Further update on AR Foundation caused errors
in our projects due to some core changes, providing no further capabilities in our
project. More guides and examples can someone find at AR Foundation’s documen-
tation page [34], which helped us a lot during the development phase.

6.2.4 Lightweight Render Pipeline

The Lightweight Render Pipeline (LWRP) is a prebuilt Scriptable Render Pipeline,
made by Unity. The technology offers graphics that are scalable to mobile platforms,
and can also be used for higher-end consoles and PCs. With LWRP we are able to

105

achieve quick rendering at a high quality without needing compute shader technol-
ogy. LWRP uses simplified, physically based Lighting and Materials.

The LWRP uses single-pass forward rendering. By using this pipeline we get
optimized real-time performance on several platforms. The LWRP is supported on
the following platforms:

• Windows and UWP
• Mac and iOS
• Android
• XBox One
• PlayStation 4
• Nintendo Switch
• All current VR platforms

Figure 85: LWRP Asset Assignment

To use the Lightweight Render Pipeline (LWRP), we have to import it via Unity’s
pachage manager, then we have to create a LWRP Asset and assign the asset in the
Graphics settings. We can have multiple LWRP assets and switch between them
(fig. 85).

The LWRP Asset controls several graphical features and quality settings for the
Lightweight Render Pipeline. It is a scriptable object that inherits from ‘Render-
PipelineAsset’. When we assign the asset in the Graphics settings, Unity switches
from the built-in render pipeline to the LWRP. We can then adjust the correspond-
ing settings directly in the LWRP, instead of looking for them elsewhere (fig. 86).

106

LWRP became compatible on September 2019 using Unity 2019.2 with AR Foun-
dation version 3.0. This was a huge leap in the development of our app. Better
graphics were achieved using less resources and finally we had access to Shader
Graph (see next section). Documentation site: [53]

Figure 86: LWRP Settings

6.2.5 Shader Graph

Shader Graph enables the building of shaders visually (fig. 87). Instead of writ-
ing code, we create and connect nodes in a graph framework. Shader Graph gives
instant feedback that reflects the developer’s changes, and it’s simple enough for
users who are new to shader creation. In our project, it helped a lot on the creation
of a water shader that was rendered successfully on a mobile device (we will analyze
later the creation of our water shader).

Shader Graph is available through the Package Manger window in Unity ver-
sions 2018.1 and higher. Shader Graph comes included with the HDRP and LWRP
packages. When you add either SRP (HDRP or LWRP) to your project, Unity

107

automatically loads Shader Graph and installs it in the project. It is recommended
to avoid installing or updating Shader Graph independently of the prebuilt SRP
packages. Shader Graph builds shaders that are compatible with the SRP, but they
are not compatible with the built-in renderer.

Figure 87: Shader Graph

Shader Graph package versions on Unity Engine 2018.x are Preview versions,
which do not receive bug fixes and feature maintenance. To work with an actively
supported version of Shader Graph, use Unity Engine 2019.1 or higher. More info
on Shader Gragh documentation site [54].

6.2.6 Rest of Packages

After the analysis of the most important software and packages in our project,
here we have listed the rest of the packages that were imported in our project. Most
of the following packages were not essential for the development of our application
and some of them were imported automatically by Unity during the creation of the
project or because it was essential for the functionality of the previously mentioned
packages (e.g. Core RP Library). Below, all the imported packages from Unity’s
package manager and the versions we used (fig. 88).

Some useful packages are:

• Unity UI [57] is a UI toolkit for developing user interfaces for games and ap-
plications. It is a GameObject-based UI system that uses Components and the
Game View to arrange, position, and style user interfaces. You cannot use Unity UI
to create or change user interfaces in the Unity Editor.

108

• The Terrain Tools [55] package helps improve the workflow for creating Terrain
in Unity. The Unity 2019.1 package contains brand new sculpting Brushes, and a
collection of utilities and tools to help automate tedious tasks. In the Unity 2019.2
package, new Brush Mask Filters were added to enhance sculpting, and Material
painting tools to help us achieve beautiful results on Terrain (used in the terrain
creation for our AR scenes).

• ProBuilder [56] helps to build, edit, and texture custom geometry in Unity with the
tools available in the ProBuilder package. You can also use ProBuilder to help with
in-scene level design, prototyping, collision Meshes, and play-testing. ProBuilder
also comes with a Scripting API, so that you can write C# scripts to make your
own tools and customization (great package for modeling basic geometry without
the usage of a 3rd party software).

Figure 88: Imported Packages

6.3 Structure of the App

In this section, we show the basic structure of the application in Unity game
engine and the parts each scene contains and how they are connected together.

In Figure 89, there are the scenes that have been build in Unity, and as you
can see we have turned our platform to Android. These six are the scenes of the

109

application but the Map Scenes are basically the same, with the only difference of
the map color and the three AR scenes differ only on the virtual content while all
AR scenes share the exact same functionality. The order of the scenes in the build
settings are specific for the correct loading of each one. For example First AR scene
is the number 1 in the build setting as it is the first selection on the dropdown list
in Choosing Location [5.4.2].

Figure 89: Scenes of the Project

Below in figure 90, the structure of the project is displayed and how those six
scenes are connected with each other. The application launches on the welcome
screen, then based on the user’s preferences, one of the the map scenes is loaded.
This will be the map scene for the rest of the session. The AR Scenes are loaded only
when the AR button (that mentioned in User Experience) press. Which AR scene
will be loaded depends on user location. First AR Scene is for the first location,
second AR scene for the second location and third AR Scene for the third location
as they are described previously on this thesis.

110

Figure 90: Structure of the Project

In the rest of this section, we make an in-depth description of the development
of each scene and how each package was integrated into the scenes.

6.4 Welcome Scene

The initial scene the user sees. It’s a simple scene which was designed in order
to introduce smoothly the user into the application and saves the user’s preferences
for the rest of the session.

6.4.1 Welcome Scene Components

In figure 91 are all the components the scene has in Unity editor.

Figure 91: Welcome Scene Components in Unity Editor

111

The scene includes only UI elements, mainly canvases, texts, images and but-
tons. There are also: 1) Camera object for the rendering of the scene. Every scene
requires at least one Main Camera in order to be rendered. 2) The ’EventSystem’ is
responsible for processing and handling events in a Unity scene. A scene should only
contain one ’EventSystem’. The ’EventSystem’ works in conjunction with a number
of modules and mostly just holds state and delegates functionality to specific, over-
rideable components. This object is generated automatically. 3) An ’Application
Quit’ empty game object which contains only one script for the termination of the
app when the ’back’ button on the device has been pressed.

6.4.2 Interactions

The user can interact only with the toggle boxes (on/off) and the ’Start’ button.
The preferences of the user should be saved during the whole session of the appli-
cation, so we had to save them for further usage on the next scenes. To do that,
the ’WelcomeSceneManager’ created, a public static script. This kind of scripts are
accessible from all the scenes in our project, compared with ’MonoBehaviour’ scripts
that should be attached to game objects and work only on the objects’ scene locally.
In figure 92 the script and the two preferences of the user we save: 1) Indicator and
2) Map Theme.

Figure 92: Welcome Scene Manager Script

The user can only choose one of the two indicators and at any given time only one
toggle box can be enabled. With any action there is a reaction, enabling/disabling
the boxes accordingly and saving the option in ’WelcomeSceneManager’. By de-
fault, ’indicator option = 1’ (humanoid) and ’dark theme = false’. The script that
handles user’s actions shown in figure 93.

Each function is called on value change of each toggle box, respectively. Update
is called once per frame to handle the case in which user has not selected either of
the indicators.

112

Figure 93: Toggles Handler Script

Finally, the ’Start’ button enables a script for loading the right scene based on
the user’s selections (fig. 94).

Figure 94: Start Button Script

113

6.5 Map Scene

The map scene acts as a guide to the user. It helps on the navigation and acts
as the main scene that connects the three AR scenes together. There are two Map
scenes in the project (as shown before), but only one is loaded each time during one
session. The main and only difference of the two scenes, is the theme which is loaded
on the map (fig. 95). For this reason, we will analyze only one of the two in this
sections. All the elements and everything you are about to read is representative
for both scenes.

Figure 95: Map Theme: Light (Up), Dark (Down)

6.5.1 Map Scene Components

In figure 96 are all the components the scene has in Unity editor.

Figure 96: Map Scene Components in Unity Editor

The main components are:

114

• 4 UI Canvases: 1) ’Info’, 2) ’Alert’, 3) ’MainCanvas’ and 4) ’SettingsCanvas’.
• One ’LocationProvider’ object which give access to location providers of the device
the app is running on.
• The ’EventSystem’ which we mentioned earlier.
• One ’Target’ object which synergizes with ’LocationProvider’ to apply orientation
and translation of movement in the app.
• The ’MapControl’ object which includes the Map, the Directions and Waypoints
(those two are used for providing directions to the user).
• The ’mono player’ object, which is basically the player that represents the user
on the map.
• The ’SceneManager’ that controls mainly the functionality about the loading of
AR Scenes.

6.5.2 Integrating Mapbox

Mapbox SDK is used on this scene. Here we analyse the integration of the map-
box’s parts in the current scene enabling its functionality. All the following steps,
are after you have imported the Mapbox package into Unity. All the resources that
have been used were included in mapbox’s package.

First, we have to import the ’LocationProvider’ to enable access to location
snsors of the device. ’LocationProvider’ should include ”LocationProvider’Factory’
script in order to work as intended (fig. 97).

Figure 97: Location Provider

Since we have access to the location providers of the device, we need to make use
of them. The ’Target’ object has this role in our scene, which includes scripts given
by Mapbox that help it synergize with ’LocationProvider’. The scripts attached on
it are shown in figure 98. ’Target’ object is instantiated accordingly based on the

115

’LocationProvider”s data.

Figure 98: Target’s Components

The final step is to include one ’Map’ prefab in the scene. This creates the map
that is shown in the scene. Map prefab includes two scripts: 1) ’Abstract Map’
which is for the customization of the map and 2) ’Initialize Map with Location
Provider’ which is for the initialization of the map based on the Location of the user
when using a device outside Unity’s Editor (fig. 99).

Figure 99: Map Components

After these steps, we have a map in our scene that is loaded based on the current
location we are at. The next step was to indicate the locations we wanted on this
map. The blue cone indicator on the map was placed using the ’AbstractMap’ script
which gives the option to place points of interest on specific geo-locations using any
prefab we want. So, we had to put three points on the map, using the blue cone as
prefab (fig. 100)

116

Figure 100: Inserting POIs on Map (Left), Cone Prefab (Right)

6.5.3 Self-Indicator Functionality

In the scene is loaded a self-indicator, which represents the user’s position on the
map. The object that controls the self-indicator is ’mono player’. The ’mono player’
object is an empty object that includes a ’Character Movement’ script about the
instantiation’s position of the player and his movement (fig. 102, 101). The script
included in Mapbox, in the ’Astronaut Game’ example scene. As children it contains
two objects the ’Humanoid’ and the ’Arrow’ (fig. 103).

The player’s location initialy is the same as the ’Target’ object we mentioned
earlier, and it keeps following the ’Target’ position which corresponds to the GPS
changes that received from ”LocationProvider”. The player always looks at the
’Target’ and with this the player is facing the direction the user moves. We also
have set the movement speed of the player by testing different values and choosing
the one that looks visually better. The animator in the script is responsible for the
walking animation of the humanoid.

Figure 101: Character Movement Component

117

Figure 102: Character Movement Script

The Humanoid 3D model was downloaded for free by turbosquid.com [58] in-
cluding the animation, and the arrow model created using Unity’s basic 3D model
shapes. During the loading phase of the Map Scene, and based on the option that
has been saved in ’WelcomeSceneManager’, one of the two children-objects is dis-
abled.

Figure 103: Indicator Objects, Arrow (Left), Humanoid (Right)

6.5.4 Directions Implementation

In order to provide directions to the user, we made use of Mapbox’s Directions
API by using the ’Directions Factory’ component script. This allows our application
to request directions from Mapbox.

118

Figure 104: Requesting Directions Script

Figure 105: Handling Directions Script

Figure 106: Direction Factory Component

The ’Directions Factory’ component, takes the map in our scene and two way-

119

points (in our case the player and one waypoint empty object we created) and
returns a route between the two of them on the map using any material the devel-
oper chooses (DirectionsMaterial in our case). The update frequency has been set
to 1 second. We have inserted the option to enable or disable directions by enabling
or disabling the ’Mesh Rederer’ of the object, which means that when the mesh
rederer is disabled the object is not rendered at all (fig. 106). This component has
been assigned on the ’Directions’ object of the Map Control on our scene.

Figure 107: Set to Location Component

Each time the user selects a different location, the ’Waypoint’ should change
location in order to provide directions for the new selected location. To achieve that
we created the ’Set To Location’ component script (fig. 108). Basically, we relocate
the waypoint to a new geo-location on the map based on the selection the user has
selected on the dropdown list of the locations. The coordinates for the locations
have been taken by Google Maps. This component is assigned to the ’Waypoint’
object of the ’Map Control’ on our scene.

120

Figure 108: Set to Location Script

6.5.5 Checking Location & Distance

In order to connect all the components together and finalize the map scenes, we
need to check the location of the user and calculate constantly his distance from the
location he has selected. By getting this information we can provide to the user all
the necessary information he/she needs for his guidance and we can enable/disable
components of the scene based on user’s actions.

To calculate the distance between two geo-points we use the ’GeoDistance’ script
(fig. 109). In this script, we calculate the distance of two points in straight line based
on their coordinates. The formula we used is well-known and can be found easily on
the internet. The script is a public static script ad does not imported on any object
of the scene.

121

Figure 109: Calculate Geo Distance Script

Since we have a formula to calculate distance between two points, we can cal-
culate the distance between the user and any given point. We get the User’s and
point’s geo-position using Mapbox’s ’GetGeoPosition’ function that returns the po-
sition of an object in Latitude and Longitude. After getting the coordinates it’s
easy to insert them in our formula to calculate their distance (fig. 110).

Figure 110: Get Distance Script

In the initial state of the scene, we check the user’s location from the first of
the three locations of interest. If the distance is greater than 2 kilometers, then the
’Alert’ canvas is enabled, forcing the user to exit the application. If user’s distance is
less than 2 kilometers then the ’Info’ canvas is enabled and the session is continued

122

normally (fig. 111).

Figure 111: Enable Info/Alert Script

On every frame, we get user’s and point’s locations. The distance is displayed
always on top of screen for user’s information. If the user reaches within 10 meters
radius of the point the AR button is enabled on his screen. We also check if the
distance is zero, because initially the ’GetDistance’ function returns zero or null
values until the providers get the right values (fig. 112).

Figure 112: Enabling AR button Script

123

When user presses the AR button, AR Scenes are loaded based on the selection
of the dropdown list the user has selected (fig. 113).

Figure 113: Load AR Scene Script

All the described functionality is part of the ’Check Location’ script which is
one of the components of ’SceneManager’ object in our scene. Also, ’SceneManager’
contains the component for enabling the right indicator and going back to ’Welcome
Scene’ (fig. 114).

Figure 114: Scene Manager Components

6.6 AR Scene

The AR Scenes are where the user experiences the Augmented Reality feature.
As we’ve already mentioned, there are three AR Scenes that represent the three lo-
cations of interest the user can visit for the AR visualization. In this section we will
analyze the functionality of the AR scenes. All three AR scenes are the same with
the only difference of the terrain modeling. All the functionality and components
we analyze here apply on all AR scenes.

6.6.1 AR Scene Components

In figure 115 are all the components the scene has in Unity editor.

124

Figure 115: AR Scene Components

The main components are:

• ’Directional Light’ act as the Sun in our scene.
• ’EventSystem’.
• ’AR Session’ important for AR Foundation.
• ’AR Session Origin’ important for AR Foundation.
• 3 UI Canvases ’Info Canvas’ for the info message, ’Helper Canvas’ for instantiation
and calibration of the content and ’Main Canvas’ which provides the main interac-
tions of the user with the content.
• ’Interactions’ for interacting with indicator mainly and functionality for calibrat-
ing the content.
• ’Scene’ which contains the virtual content (terrain, water, signs) and the ’Reflec-
tion Probe’ for reflection purposes on the scene and especially on water.

6.6.2 Setting Up AR Foundation

To activate the functionality of AR Foundation in our scene we have to import
and set up two main components: 1) ’AR Session’ and 2) ’AR Session Origin’. The
’AR Camera’ should be our main camera in the scene and it should be child of the
’AR Session Origin’. After this the following components should be added to each
object as shown in the figures below.

Figure 116: AR Session Components

125

’AR Session’ controls the lifecycle and configuration options for an AR session.

Figure 117: AR Session Origin Components

’AR Session Origin’ is the object that represents the user. User sees and interacts
with the virtual environment using this object. Rotation or movements of this object
represents rotation and movement of the user in the scene. Any further functionality
on user’s side using AR Foundation’s components should be made through this
object.

Figure 118: AR Camera Components

’AR Camera’ is the ”eyes” of the user, user sees anything that renders this cam-
era.

We have enabled AR Foundation for our project, and we are able to detect plane
surfaces, raycast on them and detect feature points. There is another step we need
to take since we don’t use the default renderer of Unity but the LWRP. First we
need to create a custom forward renderer (Create - Rendering - Lightweight Render
Pipeline - Forward Renderer) then click on it and add feature - ARBackgroundRen-
dererFeature. We assign the new renderer to the LWRP settings asset. Enable
’Depth’ and ’Opaque’ texture (fig. 119).

126

Figure 119: Custom Forward Renderer for AR

Finally, we have enabled completely AR Foundation to run on all the supported
devices using LWRP.

6.6.3 Creating Water Shader

Before, AR Foundation announces support of LWRP, the water creation was a
big issue. There was no knowledge on our part on shader programming and it was
something completely different than scripting programming in Unity. Thanks to
big Unity’s community there is a big variety of water shaders on Unity’s Store.
Some of them were really good and looked pretty realistic and were for mobile de-
vices too. Unfortunately, none of them were tested in an AR environment. Our
requirements for the graphics were to be as realistic as possible. A lot of testing
made with shaders on Unity’s default pipeline. All the tested shaders were problem-
atic on the AR environment and they needed a lot of resources on the hardware side.

When the LWRP finally supported by AR Foundation this problem solved. We
could make our own water shader in ’Shader Graph’ in schematic way. Lesser knowl-
edge required to create a shader compared to the default way. But most important,
we could have more realistic graphics with less resources, optimized to run on mobile
devices. Below, is the graph on ’Shader Graph’ for the water shader we created.

127

Figure 120: Our Water Shader on Shader Graph

We can change the variables of this shader by making them public. The shader
should be attached on a material and this material to be assigned at any object.
Then it’s easy to change and test the shader using Unity’s Editor.

The basic idea is:
Two colors blend together to create the color of realistic-looking water. Two nor-
mal maps blend to create the wavy surface of a natural sea. Normal maps are 2D
textures that give their geometry on the applied surface. After this, we have waves
that we can adjust in our needs. We can increase or decrease their length, strength,
scale, direction and frequency. Finally, the water emits a foam-like texture when
collides with other objects and changes the color of the depth a bit. Making this,
we achieve a shore foam effect like the real water when hits the land. We adjust the
metallic and smoothness based on the feeling we want our water to give and how
reflective we want it to be (fig. 121).

It’s really important to give to the shader the properties that shown on figure
122. Metallic, by testing, is the type of material that represents better our purpose
and makes a material more reflective (water is reflective). The surface should be
transparent like the real water is and finally and most important the blend should
be additive. That makes the material to adjust its color based on the surface it is
on, blending with the environment. That was the only way we achieved to make
our water more realistic since the water is a colorless material that takes the color
of the environment.

128

Figure 121: Our Water Shader Public Variables

Figure 122: Essential Water Shader Properties on Shader Graph

129

Below an example of the water shader with alpha and additive blend. Standing
in the shoreline someone is able to see the sand through the water. The water gets
darker only on high depths which is not our case.

(a) (b)

Figure 123: Water Shader: (a) Alpha Blend, (b) Additive Blend

And finally, a showcase of the water tested with the default Unity’s renderer and
our shader in LWRP.

(a) (b)

Figure 124: Water: (a) Default Unity Render, (b) Lightweight Render Pipeline

130

6.6.4 Designing Virtual Content

After we have implemented all the tools we needed, it was time to create the vir-
tual content that would be put on top of the real world. The initial idea was to use
only the water object. Soon, it was understandable that there was no way to make
the water interact on a physical way with the real world. The AR content is being
put on top of the real world and there was no way the two worlds to interact with
each other. So, we decided to create a terrain based on the shape of the beach at
the specific location. Using the terrain, we could achieve interaction with the water.
We could give to the water whatever shape we wanted to, based on the terrain we
designed.

To design the terrain based on the real world and give it a shape to correspond
to the shoreline as it is, we used the figure 48. This was the guide to our terrain
modeling during the whole process (fig. 125). The scale should be on point, so we
use real scale inside Unity, this means that 1 unit in Unity corresponds in 1 meter
in the real world. The specific part in figure 125 has 27 meters length and 58 meters
width. Similar dimensions have been used to the other two segments.

Figure 125: Designing 3D Content based on the Data

To create the three differences in the shoreline (current-green, scenario 1-yellow
and scenario 2-red), we elevate our terrain to 1 meter height. Then we created three
layers, one with 0.33m height to represent the current shoreline, one with 0.66m to
represent the first scenario and one with 0.99m to represent the second scenario.
Making this we could elevate the water accordingly to visualize the scenario we
wanted (fig. 126).

131

Figure 126: Layer Designing on 3D Content

To create a mini animation while the water was rising, we used the lerping
method. Lerp makes the object to move from one position to another gradually
during a time window at a given speed. They have been set two positions that the
water moves towards them when the user presses the button for one of the scenarios.
The script is shown in figure 127.

Figure 127: Water Lerp Script

132

On the edge of each layer, we added a UI component, the signs. Each sign, is
a UI element that always looks at the user. They are enabled after the user has
selected to view each scenario. We added box colliders on all the three signs making
possible the raycasting on them for enabling the info panels.

Finally, a ’Reflection Probe’ object added to the scene. A ’Reflection Probe’
is rather like a camera that captures a spherical view of its surroundings in all di-
rections. The captured image is then stored as a ’Cubemap’ that can be used by
objects with reflective materials like our water. The result is that the reflections on
the water can change convincingly according to its environment.

6.6.5 Interactivity in AR

There are basic interactions for the user in the AR mode. From placing the virtual
object to interact with the signs. Below we will demonstrate the core functionality
of user’s interactions in the AR Scenes.

The most important interaction of the user, is to scan the environment around
him, detect the ground and place the virtual content on top of the real world. Once
the user enters the AR scene, the phone starts to scan the environment to detect
plane surfaces and feature points. This was enabled when we attached on ’AR Ses-
sion Origin’ object the ’AR Plane Manager’ component and the ’AR Point Cloud
Manager’ component. The trackables that have been detected are saved locally by
AR Foundation within the ’AR Session Origin’. To check if we have detect a plane,
we send a raycast (’AR Raycast Manager’ component used for this). If the raycast
hits a trackable plane then we show the arrow indicator to the user, otherwise we
show a message to the user to scan more. This functionality is shown below in figure
128.

133

Figure 128: Check for Tackable Panes Script

When a plane has detected, the user is able to instantiate the AR content in the
real world. When user presses the ’Place Here’ button is called a method named
’SpawnScene’. Its functionality is shown below in figure 129.

These two parts of code, is part of the ’PlaceOnPlane’ script which is attached as
component to ’AR Session Origin’ object and makes use of all the AR components
we added earlier.

Figure 129: Spawn Scene Script

Other interactions the user has in AR are: the calibration of the content (script
fig. 130), ’touch’ the signs of the scene to read the info (script fig. 131) and disable
the rendering of the trackables’ visualizer (script fig. 132), which disables the grey
dots on the detected planes.

134

Figure 130: Calibration Content Script

Figure 131: Raycast Signs Script

Figure 132: Toggle Trackables Script

135

7 Conclusion

7.1 Summary

In this thesis we presented the design of a mobile Augmented Reality applica-
tion aimed for consumer-grade mobile phones with the ultimate goal of increasing
the environmental awareness of the public audience. In addition, to make aware
the coastal erosion problem on the beach of Georgioupoli and general on Crete’s
beaches we offered an approach for visualizing coastal changes on-site using Aug-
mented Reality. By employing 3D representation through AR we aimed to enhance
user-experience on coastal erosion and bridge the gap between digital content and
the real environment. Our design was focused on providing an expandable applica-
tion and an idea, that can easily envelop more beaches and locations requiring some
preparation and will enable future experts to display their digitized collections us-
ing different forms of data presentation. Data visualization and Augmented Reality
seems promising and we wanted to present an idea combining those two, showing
their capabilities and their future potential.

During this process one of the most valuable lessons we benefit from is the un-
predictable problems and obstacles someone can face and how he/she can manage
to overcome them. Augmented Reality is a field that has just reached the wider
public. Mobile AR especially, where the processing power and sensor availability
is limited, makes the originally envisioned result even harder to reach. The experi-
ences someone wants to create are tightly correlated to the available technologies.
Each use case varies greatly, leading the developer to review and reestablish the ini-
tial requirements. Nonetheless, there is much research being done and Augmented
Reality has evolved greatly with the addition of more sophisticated algorithms and
specialized hardware. It’s a rapidly evolving field. We were witnessing constant
changes during the process and they continued even after the end of it.

Although outdoors Mobile Augmented Reality presents several challenges on a
technological aspect (concerning localization and registration), it already seems more
than capable of providing novel experiences to a wide audience. The availability and
technological advances of modern smartphones allows for an ideal integration of the
technology that can enhance the understanding of geo-spatial datasets and the gen-
eration of more meaningful experiences.

7.2 Evaluation

7.2.1 Tecnhical Characteristics

To evaluate the resulting application we conducted field tests with two differ-
ent devices. The devices were: a high-end Xiaomi Mi 8 (Snapdragon 845 CPU @
2,8GHz, Adreno 630 GPU, 6GB RAM, 4G LTE, Dual frequency-GPS, Geo-magnetic

136

sensor, accelerometer, gyroscope) and a mid-range Xiaomi Mi 8 SE (Snapdragon
710 CPU @ 2,2 GHz, Adreno 616 GPU, 4GB RAM, GPS, Geo-magnetic sensor,
accelerometer, gyroscope). While one of the devices (MI 8) has better hardware,
the performance is not noticeably better. Both devices run the application smoothly
and all the functionalities work fine. The better GPS accuracy of the Mi 8 does not
present a better experience in the map view. In AR mode the visualization was
working as intended on both devices but the higher-end Mi 8 seemed to drain the
battery a little bit faster. This might have nothing to do with the application and
it may be a result of poorer battery health of the device or extensive battery usage
of the more power consuming hardware of the given device (CPU, GPU, GPS). Un-
fortunately, we hadn’t an iOS device available to conduct tests on both operating
systems.

After a full test experience, visiting two of the three locations and running the
application for 1.5 hour, the application had consumed approximately 15% of the
phone’s battery. The data that were received and sent were around 5 MB and
mostly for mapping purposes. The average RAM consumption was 400-500 MB. All
the measurements depend entirely on the user’s usage and time of execution of the
application. The application requires 85.24 MB of the phone’s storage in order to
be installed.

7.2.2 Goal and Functionality

After testing and showing our application to a variety of users, we received feed-
back about the functionality of the application and most importantly about its
usefulness.

Most of the users, find it challenging to place the virtual content right. This
varied from location to location as it was easier to align the virtual content in some
locations than others. More specifically location 3 was the most challenging because
of the permanent existence of beach umbrellas. After a small period of training
though, the users were able to put the content on the right place and experience the
visualization as it was meant to be. Other than this, the users find it easy to use
the app and navigate around.

We received positive feedback about the graphics of the application, and espe-
cially on the AR component as they looked really realistic. Graphics really help in
AR and give a clear and understanding way to look into the future changes. Of
course, there is plenty of room for improvement, especially in the lighting of AR
Scenes in order to present better the feeling of depth.

The signs and the UI in general were simple and intuitive, and they added a nice
touch to the overall experience and to the knowledge we would like to transfer to
the user about coastal erosion. Some users preferred more clearly visible colors on
the UI.

137

The application, was hard to use on bad weather conditions (clouds, wind etc.).
Especially when there was wavy sea, it was almost impossible to anchor right the
virtual content and there was drifting of the graphics in the scene making the AR
experience really poor.

Overall, there were users non-relevant with AR technology and users with deep
knowledge in AR. The non-relevant users seemed very enthusiastic about the whole
AR experience and made comments about the optical results and the graphics while
the relevant users focus more on the functionality and the possible improvements.
Some mentioned that they would prefer a cardboard experience while others had
no problem with the use of smartphone as it is easier to use. Most of them agreed
that it was an original and unique application and an innovative use of Augmented
Reality.

Augmented Reality technology has a lot of problems to solve in order to be fully
functional and available to everyone. We believe that our goal, given the available
tools, was achieved and we showcased an interesting way for landscape visualization.
Showcasing the capabilities of AR, we provide useful knowledge and environmental
awareness using a way more interactive and fun than the usual ones.

7.3 Future Work

The field of Augmented Reality is a quickly evolving one where new technologies
are rising with high frequency so our application should follow this progress. The
techniques used in this application should not be taken for granted as tracking and
registration in AR are far from solved. Below, we will mention some changes that can
be made on the future that haven’t been done so far due to lack of software/hardware
equipment and time. We worked with everything we had available and with the
software that has been released and tested by then.

7.3.1 Increase Environmental Understanding

In our application, the environmental understanding of the application is based
only on the GPS sensor on the map view and the SLAM (Simultaneous Localization
and Mapping) capabilities of ARCore/ARKit in AR view.

We wanted to implement an AR navigation for the user but the GPS inaccuracies
make it extremely hard to work as intended. A new approach named VPS (Visual
Positioning System) allows the device to track its position on the world based on
visual feedback it gets through the camera. This allows the augmentation of the
real world with a more immersive way, anchoring objects in centimeters accuracy
on the real world. Such systems are still in progress, Google announced its VPS on
Google Maps but it’s still on testing and not widely available. Another interesting
VPS that is available for AR use is Sturfee VPS. Unfortunately, it supports only 15
major cities around the world. A VPS would largely enhance the capabilities of the

138

application and the overall experience.

A major upgrade, would be the newly announced Depth API by Google. Since
we already use ARCore as the AR functionality, it should be easy to implement
Depth API giving depth capabilities to our application and better understanding of
the world and the mesh of it. Implementing some kind of depth understanding the
capabilities are endless. We will be able, probably, to interact virtual objects with
the real ones. In our case, our virtual water might be able to collide with the real
ground and there will be no need of a virtual terrain. Less graphics means better
performance and experience so the remaining resources will be available for further
content and visualization.

7.3.2 Improve Shoreline Detection Method

In order to understand the application where the shoreline is, it depends on user’s
actions and perspective. We would like to relief the user from such a task, and let
the application to determine where the shoreline is and proceeds on its own from
there. There are probably many methods to achieve this, but an elegant way and
a more future proof would be to implement an edge detection algorithm alongside
with machine learning. There are plenty machine learning software (e.g. Tensor-
Flow) which after a training period, can detect objects on the real world. Using
this technology in the future in combination with some edge detection algorithm to
detect effectively the shoreline on real time might decrease the need of the user’s
interaction in the detection phase. This is only an initiative idea, that may not be
achievable soon enough.

7.3.3 Visual Upgrade & Optimization

We might achieve a nice visual result in terms of graphics, but surely sky is the
limit. LWRP was released during the late phase of our application development and
thus the visual result is not the best we could achieve with the given tools. The lack
of knowledge on such new way of rendering and shader creation was a key factor
for this result. The community is still on the training curve of the newly added
features. It is strongly believed that the visual aspect of the application can become
even better in the future with the right investment of time and the optimization of
the given tools.

Optimization in terms of sources consumption is a major upgrade. A mobile ap-
plication should be as optimized as possible for mobile devices where the resources
are limited and the energy consumption is a major factor for the best performance.
Due to limited time, optimization in our app took a secondary role and it’s some-
thing that would be good to be taken care of in the future.

139

7.3.4 HMD implementation

The application would be nice to be implemented as a cardboard application too,
offering a more immersive experience trying to simulate the experience of a stan-
dalone HMD. The biggest step would be to bring the application on a Head Mounted
Display, like the ones we mentioned in this thesis earlier. This requires a whole new
different perspective on the developing phase and the usage of different SDKs. The
HMDs so far, are not the best for outdoors AR applications but they surely bring
a wide variety of tools and their world understanding are far better than a mobile
smartphone until now.

7.3.5 Adding More Scenarios

Last but not least, more scenarios about other beaches of Crete would be nice
addition. The beach of Georgioupoli is not the only beach in Crete that has been
undergone extensive erosion. There are plenty of them on the north and east side
of Crete that are in extreme danger. So, the addition of more beaches is really
important to achieve our initial goal to increase the environmental awareness of the
public about coastal erosion.

140

8 Bibliography

References

[1] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. Augmented
reality: a class of displays on the reality-virtuality continuum. In Hari Das,
editor, Telemanipulator and Telepresence Technologies, volume 2351, pages 282
– 292. International Society for Optics and Photonics, SPIE, 1995.

[2] Ivan E. Sutherland. A head-mounted three dimensional display. In AFIPS ’68
(Fall, part I), 1968.

[3] T. Caudell and D. Mizell. Augmented reality: An application of heads-up dis-
play technology to manual manufacturing processes. In System Sciences, 1992.
Proceedings of the Twenty-Fifth Hawaii International Conference on, volume ii,
page 659–669, 1992.

[4] T. Hollerer S. Feiner, B. MacIntyre and A. Webster. A touring machine: pro-
totyping 3d mobile augmented reality systems for exploring the urban envi-
ronment. IEEE International Symposium on Wearable Computers, 1:208–217,
1997.

[5] Clemens Arth, Raphael Grasset, Lukas Gruber, Tobias Langlotz, Alessandro
Mulloni, and Daniel A. Wagner. The history of mobile augmented reality de-
velopments in mobile ar over the last almost 50 years. 2015.

[6] B. Thomas, B. Close, J. Donoghue, J. Squires, P. De Bondi, M. Morris, and
W. Piekarski. Arquake: an outdoor/indoor augmented reality first person ap-
plication. In Digest of Papers. Fourth International Symposium on Wearable
Computers, pages 139–146, Oct 2000.

[7] Daniel Wagner, Thomas Pintaric, Florian Ledermann, and Dieter Schmal-
stieg. Towards massively multi-user augmented reality on handheld devices.
In Hans W. Gellersen, Roy Want, and Albrecht Schmidt, editors, Pervasive
Computing, pages 208–219, Berlin, Heidelberg, 2005. Springer Berlin Heidel-
berg.

[8] A. Henrysson, M. Billinghurst, and M. Ollila. Face to face collaborative ar on
mobile phones. In Fourth IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR’05), pages 80–89, Oct 2005.

[9] Paraskevi Theodorou, P Kydonakis, Maria Botzori, and Constantina Skanavis.
Augmented reality proves to be a breakthrough in environmental education, 07
2018.

[10] Tien-Chi Huang, Chia-Chen Chen, and Yu-Wen Chou. Animating eco-
education: To see, feel, and discover in an augmented reality-based experiential
learning environment. Computers Education, 96, 02 2016.

[11] Paul Haynes, Sigrid Hehl-Lange, and Eckart Lange. Mobile augmented reality
for flood visualisation. Environmental Modelling Software, 109:380 – 389, 2018.

141

[12] Lemonia Ragia and Pavlos Krassakis. Monitoring the changes of the coastal ar-
eas using remote sensing data and geographic information systems. In Seventh
International Conference on Remote Sensing and Geoinformation of the Envi-
ronment (RSCy2019), volume 11174, pages 289 – 297. International Society for
Optics and Photonics, SPIE, 2019.

[13] I.N. Monioudi, A. Karditsa, A. Chatzipavlis, G. Alexandrakis, O.P. Andreadis,
A.F. Velegrakis, S.E. Poulos, G. Ghionis, S. Petrakis, D. Sifnioti, T. Hasio-
tis, M. Lipakis, N. Kampanis, T. Karambas, and E. Marinos. Assessment of
vulnerability of the eastern cretan beaches (greece) to sea level rise. Regional
Environmental Change, 2014. cited By 0; Article in Press.

[14] Anne-Cecilie Haugstvedt and John Krogstie. Mobile augmented reality for
cultural heritage: A technology acceptance study. pages 247–255, 11 2012.

[15] Enabling smart retail settings via mobile augmented reality shopping apps.
Technological Forecasting and Social Change.

[16] Majed Abdullah Alrowaily and Manolya Kavakli. Mobile augmented reality
for environmental awareness: A technology acceptance study. In Proceedings
of the 2018 10th International Conference on Computer and Automation Engi-
neering, ICCAE 2018, page 36–43, New York, NY, USA, 2018. Association for
Computing Machinery.

[17] P. Milgram and F. Kishino. Taxonomy of mixed reality visual displays. In
IEICE Transactions on Information and Systems, volume E77-D, page 1321 –
1329, 1994.

[18] Ronald T. Azuma. A survey of augmented reality. Presence: Teleoperators and
Virtual Environments, 6(4):355–385, 1997.

[19] H. Kato and M. Billinghurst. Marker tracking and hmd calibration for a video-
based augmented reality conferencing system. In Proceedings 2nd IEEE and
ACM International Workshop on Augmented Reality (IWAR’99), pages 85–94,
Oct 1999.

[20] Silvia de los Ŕıos, Maŕıa Fernanda Cabrera-Umpiérrez, Maŕıa Teresa
Arredondo, Miguel Páramo, Bastian Baranski, Jochen Meis, Michael Gerhard,
Belén Prados, Lućıa Pérez, and Maŕıa del Mar Villafranca. Using augmented
reality and social media in mobile applications to engage people on cultural
sites. In Constantine Stephanidis and Margherita Antona, editors, Universal
Access in Human-Computer Interaction. Universal Access to Information and
Knowledge, pages 662–672, Cham, 2014. Springer International Publishing.

[21] Te-Lien Chou and Lih-Juan Chanlin. Augmented reality smartphone envi-
ronment orientation application: A case study of the fu-jen university mobile
campus touring system. Procedia - Social and Behavioral Sciences, 46:410–416,
12 2012.

[22] Dhiraj Amin and Sharvari Govilkar. Comparative study of augmented reality
sdk’s. International Journal on Computational Science Applications, 5:11–26,
02 2015.

142

[23] Dhiraj Amin and Sharvari Govilkar. Comparative study of augmented reality
sdk’s. International Journal on Computational Science Applications, 5:11–26,
02 2015.

[24] R. T. Azuma. The most important challenge facing augmented reality. Presence,
25(3):234–238, Dec 2016.

[25] Areti Kotsoni, Despina Dimelli, and Lemonia Ragia. Land use planning for
sustainable development of coastal regions. In Proceedings of the 3rd Interna-
tional Conference on Geographical Information Systems Theory, Applications
and Management - Volume 1: GISTAM, pages 290–294. INSTICC, SciTePress,
2017.

Useful Links:

[26] Google ARCore Depth API:
https://developers.googleblog.com/2019/12/blending-realities-with-arcore-depth-api.
html

[27] Google ARCore Atom Visualizer:
https://play.google.com/store/apps/details?id=com.signalgarden.atomvisualizer&
hl

[28] Google ARCore:
https://developers.google.com/ar

[29] Apple ARKit:
https://developer.apple.com/arkit

[30] Wikitude:
https://www.wikitude.com

[31] Vuforia:
https://www.ptc.com/en/products/augmented-reality

[32] Unity3D:
https://unity.com

[33] Unity AR Foundation:
https://unity.com/unity/features/arfoundation

[34] AR Foundation Documentation:
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@3.1/

[35] VR Vision Website:
https://vrvisiongroup.com/the-future-of-job-training-augmented-reality

[36] BlippAR AR City:
https://www.blippar.com/blog/2017/11/06/welcome-ar-city-future-maps-and-navigation

143

https://developers.googleblog.com/2019/12/blending-realities-with-arcore-depth-api.html
https://developers.googleblog.com/2019/12/blending-realities-with-arcore-depth-api.html
https://play.google.com/store/apps/details?id=com.signalgarden.atomvisualizer&hl
https://play.google.com/store/apps/details?id=com.signalgarden.atomvisualizer&hl
https://developers.google.com/ar
https://developer.apple.com/arkit
https://www.wikitude.com
https://www.ptc.com/en/products/augmented-reality
https://unity.com
https://unity.com/unity/features/arfoundation
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@3.1/
https://vrvisiongroup.com/the-future-of-job-training-augmented-reality
https://www.blippar.com/blog/2017/11/06/welcome-ar-city-future-maps-and-navigation

[37] Microsoft Hololens:
https://www.microsoft.com/en-us/hololens

[38] Time Website/Hololens:
https://time.com/4190843/microsoft-hololens-demo-2016

[39] Magic Leap One:
https://www.magicleap.com/magic-leap-1

[40] Magic Leap AR Interface:
https://gagadget.com/en/36808-leap-motion-showed-ar-interface-in-the-style-of-iron-man

[41] Nreal Light:
https://www.nreal.ai

[42] AR on Focus Magazine:
https://www.linkedin.com/pulse/italian-publisher-mondadori-embraces-inglobes-reality-mirko-ferrari

[43] Tracking of industrial objects by using CAD models:
https://www.jvrb.org/past-issues/4.2007/1159

[44] Plane Detection using Wikitude SDK:
https://next.reality.news/news/mobile-ar-apps-can-now-track-any-surface-using-plane-detection-via-wikitude-sdk-0187402/

[45] Tim Bajarin in his 2017 Time article:
https://time.com/4761298/augmented-reality/

[46] The Multifaceted Future Of Augmented Reality:
https://online.maryville.edu/blog/the-multifaceted-future-of-augmented-reality/

[47] ArcGIS website:
https://www.esri.com/en-us/arcgis/about-arcgis/overview

[48] ArcGIS Wiki:
https://en.wikipedia.org/wiki/ArcGIS

[49] ARCore/ARKit Supported Devices:
1) https://developers.google.com/ar/discover/supported-devices
2) https://github.com/rolandsmeenk/ARCore-devices/blob/master/arcore devicelist.
csv

[50] Game Engines Wiki:
https://en.wikipedia.org/wiki/Gameengine

[51] Unreal Engine 4:
https://www.unrealengine.com/unreal-engine-4

[52] Mapbox SDK:
https://docs.mapbox.com/unity/maps/

[53] Lightweight Render Pipeline:
https://docs.unity3d.com/Packages/com.unity.render-pipelines.lightweight@6.
9/

144

https://www.microsoft.com/en-us/hololens
https://time.com/4190843/microsoft-hololens-demo-2016
https://www.magicleap.com/magic-leap-1
https://gagadget.com/en/36808-leap-motion-showed-ar-interface-in-the-style-of-iron-man
https://www.nreal.ai
https://www.linkedin.com/pulse/italian-publisher-mondadori-embraces-inglobes-reality-mirko-ferrari
https://www.jvrb.org/past-issues/4.2007/1159
https://next.reality.news/news/mobile-ar-apps-can-now-track-any-surface-using-plane-detection-via-wikitude-sdk-0187402/
https://time.com/4761298/augmented-reality/
https://online.maryville.edu/blog/the-multifaceted-future-of-augmented-reality/
https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://en.wikipedia.org/wiki/ArcGIS
https://developers.google.com/ar/discover/supported-devices
https://github.com/rolandsmeenk/ARCore-devices/blob/master/arcore_devicelist.csv
https://github.com/rolandsmeenk/ARCore-devices/blob/master/arcore_devicelist.csv
https://en.wikipedia.org/wiki/Game engine
https://www.unrealengine.com/unreal-engine-4
https://docs.mapbox.com/unity/maps/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.lightweight@6.9/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.lightweight@6.9/

[54] Shader Graph:
https://docs.unity3d.com/Packages/com.unity.shadergraph@6.9/

[55] Terrain Tools:
https://docs.unity3d.com/Packages/com.unity.terrain-tools@2.0/

[56] ProBuilder:
https://docs.unity3d.com/Packages/com.unity.probuilder@4.3/

[57] Unity UI:
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/

[58] Turbosquid:
https://www.turbosquid.com/

145

https://docs.unity3d.com/Packages/com.unity.shadergraph@6.9/
https://docs.unity3d.com/Packages/com.unity.terrain-tools@2.0/
https://docs.unity3d.com/Packages/com.unity.probuilder@4.3/
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/
https://www.turbosquid.com/

	Introduction
	Brief Description
	Thesis Structure

	Augmented Reality (AR)
	Introduction to AR
	History of AR
	Current state of AR
	AR Head Mounted Displays (HMDs)
	Mobile Augmented Reality (MAR)

	Use of AR Nowadays
	Modern AR Apps
	AR For Environmental Purpose

	The Registration Problem
	Fiducial Marker Based Tracking
	Natural Feature Tracking
	Model Based Tracking
	Markerless Tracking
	Sensor Based Tracking
	Hybrid Tracking

	Developing Platforms & Software
	AR Software Development Kits (SDKs)
	Game Engines
	Platform of our choice

	Future of AR

	Case Analysis on Coastal Erosion
	Introduction
	Our Case Analysis
	Economic Analysis
	Environmental Analysis

	Data Showcase
	Coastal Retreat Extraction
	Visualization of Data
	Tables of Data

	Requirements Analysis
	Introduction
	Pre-Requirements
	General Requirements
	Augmented Reality Requirements
	Map and Navigation Requirements

	Use Case Scenarios
	User Enters the Application
	User is Located Outside of Georgioupoli
	User Enters the Map
	User Enters AR View
	User Experiences the AR Visualization

	Hardware Requirements

	End User Experience
	Introduction to the App
	Initial/Welcome Screen
	Not-in-area Screen
	Map Screens
	Entering Map View
	Choosing Location
	Navigating to Selected Location
	Reaching Selected Location

	AR Screens
	Entering AR View
	Scanning the Environment
	Detecting Planes & Shoreline
	Placing Virtual Content
	AR visualization
	Beginning Visualization
	First AR Scenario
	Second AR Scenario
	Info Signs Enabled
	Information Panels

	Usage of the App
	Giving Access to Hardware
	Helpful Tips

	Implementation
	Developing Platform
	Unity3D
	Android Studio
	Hardware

	Software & Packages
	ARCore
	Mapbox
	AR Foundation
	Lightweight Render Pipeline
	Shader Graph
	Rest of Packages

	Structure of the App
	Welcome Scene
	Welcome Scene Components
	Interactions

	Map Scene
	Map Scene Components
	Integrating Mapbox
	Self-Indicator Functionality
	Directions Implementation
	Checking Location & Distance

	AR Scene
	AR Scene Components
	Setting Up AR Foundation
	Creating Water Shader
	Designing Virtual Content
	Interactivity in AR

	Conclusion
	Summary
	Evaluation
	Tecnhical Characteristics
	Goal and Functionality

	Future Work
	Increase Environmental Understanding
	Improve Shoreline Detection Method
	Visual Upgrade & Optimization
	HMD implementation
	Adding More Scenarios

	Bibliography

