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ABSTRACT 

 

This work, it details the design and structure of a Synopses Data Engine (SDE) which combines 

the virtues of parallel processing and stream summarization towards delivering interactive 

analytics at extreme scale. The SDE is built on top of Apache Flink and implements a synopsis-

as-a-service paradigm. In that it achieves (a) concurrently maintaining thousands of synopses 

of various types for thousands of streams on demand, (b) reusing maintained synopses among 

various concurrent workflows, (c) providing data summarization facilities even for cross-(Big 

Data) platform workflows, (d) pluggability of new synopses on-the-fly, (e) increased potential 

for workflow execution optimization. The proposed SDE is useful for interactive analytics at 

extreme scales because it enables (i) enhanced horizontal scalability, i.e., not only scaling out 

the computation to a number of processing units available in a computer cluster, but also 

harnessing the processing load assigned to each by operating on carefully-crafted data 

summaries, (ii) vertical scalability, i.e., scaling the computation to very high numbers of 

processed streams and (iii) federated scalability i.e., scaling the computation beyond single 

clusters and clouds by controlling the communication required to answer global queries posed 

over a number of potentially geo-dispersed clusters.
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1 INTRODUCTION 

Interactive extreme-scale analytics over massive, high speed data streams become of the 

essence in a wide variety of modern application scenarios. In the financial domain, NYSE alone 

generates several terra bytes of data a day, including trades of thousands of stocks [6]. 

Stakeholders such as authorities and investors need to analyse these data in an interactive, 

online fashion for timely market surveillance or investment risk/opportunity. In the life 

sciences domain, studying the effect of applying combinations of drugs on simulated tumours 

of realistic sizes can generate cell state data of 100 GB/min [25], which need to be analysed 

online to interactively determine successive drug combinations. In maritime surveillance 

applications, one needs to fuse high-velocity position data streams of hundreds of thousands of 

vessels across the globe and satellite, aerial images [31] of various resolutions. In all these 

scenarios, data volumes and rates are only expected to rise in the near future. In the financial 

domain, data from emerging markets, such as crypto currencies, are increasingly added to 

existing data sources. In life sciences, simulations are becoming progressively more complex, 

involving billions of interacting cells, while in the maritime domain autonomous vehicles are 

added as on-site sensing information sources. To enable interactive analytics at extreme-scale, 

stream processing platforms and systems need to provide three types of scalability:  

• Horizontal scalability, i.e., the ability to scale the computation with extreme data volumes 

and data arrival rates as analysed in the aforementioned scenarios. This requires scaling out the 

computation to several machines and respective processing 
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units available at a corporate data centre (cluster) or cloud. Horizontal scalability is achieved 

by parallelizing the processing and adaptively assigning computing resources to running 

analytics queries. 

 • Vertical scalability, i.e., the ability to scale the computation with the number of processed 

streams. For instance, to detect systemic risks in the financial scenario, i.e., stock level events 

that could trigger instability or collapse of an entire industry or economy, requires discovering 

and interactively digging into correlations among tens of thousands of stock streams. The 

problem involves identifying the highly correlated pairs of stock data streams under various 

statistical measures, such as Pearson’s correlation over N distinct, high speed data streams, 

where N is a very large number. To track the full Θ(N^2) correlation matrix results in a 

quadratic explosion in space and computational complexity which is simply infeasible for very 

large N. The problem is further exacerbated when considering higher-order statistics (e.g., 

conditional dependencies/correlations). The same issue arises in the maritime surveillance 

scenario for trajectory similarity scores over hundreds of thousands of vessels. Clearly, 

techniques that can provide vertical scaling are sorely needed for such scenarios. 

 • Federated scalability, i.e., the ability to scale the computation in settings where data arrive at 

multiple, potentially geographically dispersed sites. On the one hand, a number of benchmarks 

[[29], [33]] conclude that, in such settings, even if horizontal scalability is ensured within each 

cluster, the maximum achieved throughput (number of streaming tuples that are processed per 

time unit) is network bound. On the other hand, consider again the systemic risk detection 

scenario from the financial domain where stock trade data arrive at geo-dispersed Data Centres 

around the globe. Moving entire data streams around the sites in order to extract pairwise 

correlation scores depletes the available bandwidth, introducing network latencies that prevent 

the interactivity of the desired analytics.  

Big Data platforms, including Apache Flink [[2]], Spark [[4]], Storm [[5]] among others, have 

been developed that support or are especially dedicated to stream processing. Such platforms 

focus on horizontal scalability, but they are not sufficient by themselves to allow for the 

required vertical and federated scalability. On the other hand, there is a wide consensus in 

stream processing [[17], [19], [23], [30], [34]] that approximate but rapid answers to analytics 

tasks, more often than not, suffice. For instance, knowing in real-time that a group of 

approximately 50 stocks, extracted out of thousands or millions of stock combinations, is 

highly (e.g., > 0.9 score) correlated is more than enough to detect systemic risks. Therefore, 
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such an approximate result is preferable compared to an exact but late answer which says that 

the actual group is composed of 55 stocks with correlation scores accurate to the last decimal. 

Data summarization techniques such as samples, sketches or histograms [17] build carefully 

crafted synopses of Big streaming Data which preserve data properties important for providing 

approximate answers, with tuneable accuracy guarantees, to a wide range of analytic queries. 

Such queries include, but are not limited to, cardinality, frequency moment, correlation, set 

membership or quantile estimation [17]. Data synopses enhance the horizontal scalability 

provided by Big Data platforms. This is because parallel versions of data summarization 

techniques, besides scaling out the computation to a number of processing units, reduce the 

volume of processed high-speed data streams. Hence, the complexity of the problem at hand is 

harnessed and execution demanding tasks are severely sped up. For instance, sketch summaries 

[18] can aid in tracking the pairwise correlation of streams in space/time that is sublinear in the 

size of the original streams. Additionally, data synopses enable vertical scalability in ways that 

are not possible otherwise. Indicatively, the coefficients of Discrete Fourier Transform (DFT)-

based synopses [34] or the number of set bits (a.k.a. Hamming Weight) in Locality Sensitive 

Hashing (LSH)-based bitmaps [26] have been used for correlation aware hashing of streams to 

respective processing units. Based on the synopses, using DFT coefficients or Hamming 

Weights as the hash key respectively, highly uncorrelated streams are assigned to be processed 

for pairwise comparisons at different processing units. Thus, such comparisons are pruned for 

streams that do not end up together. Finally, federated scalability is ensured both by the fact 

that communication is reduced since compact data stream summaries are exchanged among the 

available sites and by exploiting the mergeability property [11] of many synopses’ techniques. 

As an example, answering cardinality estimation queries over several sites, each maintaining 

its own FM sketch [17] is as simple as communicating only small bitmaps (typically 64-128 

bits) to the query source and performing a bitwise OR operation. In this work, we detail the 

design and structure of a Synopses Data Engine (SDE) built on top of Apache Flink ingesting 

streams via Apache Kafka [3]. Our SDE combines the virtues of parallel processing and stream 

summarization towards delivering interactive analytics at extreme scale by enabling enhanced 

horizontal, vertical and federated scalability as described above. However, the proposed SDE 

goes beyond that. Our design implements a Synopsis as-a-Service (termed SDEaaS) paradigm 

where the SDE can serve multiple, concurrent application workflows in which each maintained 

synopsis can be used as an operator. That is, our SDE operates as a single, constantly running 

Flink job which achieves:  
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➢ Concurrently maintaining thousands of synopses for thousands of streams on demand 

➢ Reusing-maintained synopses among multiple application workflows (submitted jobs) 

instead of redefining and duplicating streams for each distinct workflow separately 

➢ Pluggability of new synopses’ definitions on-the-fly 

➢ Providing data summarization facilities even for cross-(Big Data) platform workflows 

outside of Flink 

➢ Optimization of workflows execution by enabling clever data partitioning 

➢ Advanced optimization capabilities to minimize workflow execution times by replacing 

exact operators (aggregations, joins etc) with approximate ones, given a query accuracy 

budget to be spent 

1.1  Motivation & Thesis Contribution 

 

Few prior efforts provide libraries for online synopses maintenance, but neglect parallelization 

aspects [8], [9], or lack a SDEaaS design [7] needing to run a separate job for each maintained 

synopsis. The latter compromises aspects in points A-F above and increases cluster scheduling 

complexity. Others [32] lack architectural provisions for federated scalability and are limited 

to serving simple aggregation operators being deprived of vertical scalability features as well. 

On the contrary, our proposed SDE not only includes provisions for federated scalability and 

provides a rich library of synopses to be loaded and maintained on the fly, but also allows to 

plug-in external, new synopsis definitions customizing the SDE to application field needs. 

More precisely, this thesis contribution is: 

1. It presents the novel architecture of a Synopses Data Engine (SDE) capable of providing 

interactivity in extreme-scale analytics by enabling various types of scalability 

2. The SDE is built using a SDE-as-a-Service (SDEaaS) paradigm, it can efficiently 

maintain thousands of synopses for thousands of streams to serve multiple, concurrent, 

even cross-(Big Data) platform, workflows. 

3. It describes the structure and contents of our SDE Library, the implemented arsenal 

including data summarization techniques for the proposed SDE, which is easily 

extensible by exploiting inheritance and polymorphism.   
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4. It presents a detailed experimental analysis using real data from the financial domain to 

prove the ability of our approach to scale at extreme volumes, high number of streams 

and degrees of geo-distribution, compared to other candidate approaches. 

1.2 Outline 

 

Chapter 2 provides useful background related to concepts used throughout the thesis, while 

Chapters 3 describes the design and the functionality of the SDE, Chapter 4 present our 

implementation in detail, the architecture and gives insides of how each part fulfils its role. 

Chapter 5 analyses the performance of our SDE. Finally, Chapter 6 gives some closing remarks 

along with interesting directions for future.  
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2 BACKGROUND 

This chapter includes all the necessary theoretical background knowledge that is essential to 

understand the thesis and provides a small briefing of the tools that was used to implement the 

SDE. 

2.1 Data Stream Management 

 

In the traditional data science world an analyst is provided with a given array/list/table or even 

a graph of finite number of elements/nodes/tuples, in other words a dataset, and he is assigned 

to solve a problem, providing value to his organization. This idea builds on the concept that the 

datasets are stored in a defined storage, they are available at all time and can be queried/updated 

many times in their lifetime. However, anyone can easily show that this idea cannot be applied 

to a variety of applications. When data become an infinite source of knowledge the need for 

algorithms that operate in an infinite continuous stream of data becomes a must. Every event-

driven application, where data are treated as events that can trigger actions, for example, the 

temperature measurement passed a high enough threshold, a ship vessel has deviate from his 

normal route, can’t be mapped to a traditional database application. These applications that 

monitor data, detect (anomalies), that run with timestamped data (events) should run in an 

online streaming fashion. This different idea may sound simple, but it needs a change of 

mindset. The basic principles of a traditional Database management system (DBMS) and those 

of a Data stream management system (DSMS) are different. Just to name a few in a DBMS 

you can assume unlimited storage cause, it can use hard discs, but on the other hand DSMS 

everything should run on a limited main memory, the state of the DSMS, so it can support the 

potentially extremely high update rate, when in DBMS the relative update rate is lower. On 

other difference is that DBMS provide mostly one-time queries that run thought the whole 

datasets and provide an exact answer but in DSMS most queries are static and continuous 

provides an answer in a data or time driven window. As shown in the Figure 1.  
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Figure 1: Difference Between DBMS and DSMS 

 But the DSMS and DBMS aren’t limited to exact answer, be accepting a bounded error to the 

accuracy of the answer a data management system can provide the user, with a Synopsis that 

can be queried and support more than static, exact queries. 

2.2 Data Summarization 

 

In the world of big data there are often queries that cannot be scaled well, they require huge 

computational resources and time to provide an exact solution. Examples of those quires are 

count distinct items, most frequent items, exact joins, cardinality and many more. Of example 

to get the most frequent items to get the exact answer someone would need to keep track of 

each items and how many times it has seen it, that requires O(N) space complexity, which 

translates to a counter for each data point, billions of counters in a real big data scenario. That 

is where a specialized class of algorithms, which has many names, sketches, streaming 

algorithms, probabilistic data structures, or Synopses that can provide an approximated answer. 

By using the same example to get the most frequent items using a CountMinSketch with 

roughly one thousand (1024) counters the query can be answered with a relative error of 

approximately 1.5 percent with a probability of 99.6 percent. 
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This thesis would use the terminology Synopsis. Synopses are a class of data structures, that 

have the property to represent, summarize or even compress extremely large data sets in 

logarithmic or constant space complexity. 

Given this definition any of the following can be consider a synopsis: 

➢ Any Sampling method 

➢ Histograms and quantiles 

➢ Any Mean (AM, GM, HM) 

➢ BloomFilter 

➢ CountMinSketch 

Even more complex transformations like DFT, wavelets or coresets can be viewed as synopsis. 

Synopses can provide answers orders-of magnitude faster and many of them with a 

mathematically proven error bound. Also, one property that is many times overlooked is the 

diversity that using a synopsis can provide. Synopses can produce answers to one or more 

queries, by keeping track of any sampling Synopsis, the system can provide estimation of all 

aggregation queries and many more and that’s one-way interactivity can be achieved. As stated 

by Beaudouin- Lafon “An interactive system is a computer application that takes into account, 

during its execution, information communicated by the user or users of the system, and which 

produces, during its execution, a perceptible representation of its internal state”. For creating 

an interactive DSMS there may not be other viable alternatives, and in the case of real-time 

analysis, synopses are the only known solution. 

Below we outline the main and some highly desirable properties, so any data structure that 

apply to these properties can be characterized as a Synopsis: 

 

Synopses Characteristics: 

1. One Pass: the synopses are easily can be created, during an exactly one-pass over the 

streaming data in the (arbitrary) order of their arrival. 

2. Small Update Time: the time it requires for the updates of the structure to take place 

slow be extremely low to be able to support the extreme rate of  the input, desirable is 

O(1) and in worst case poly-logarithmic in N. 

3. Small Memory footprint: the requirements for memory should be bounded and small 

O(K) where K<<N (especial for the a system like SDE that supports multiple synopses, 
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for multiple datasets, bounded memory usage is a must to guarantee that one synopsis 

don’t over utilized resources). Algorithms with poly-logarithmic in N space 

requirements can be used also but with memory concerns.  

 

In addition, three highly desirable properties for stream synopses are: 

 

1. Delete-proof: the data structure can handle both insertions for new data and deletions 

for expiring data  

2. Provide Error guarantees: Providing a user with a fixed error bound so he can account 

for the loss in accuracy, which is crucial in many scenarios  

3. Composable: (An important feature in this distributed system) the synopsis can be built 

on a distributed way on different instances of the system, where each instance gets a 

part of the stream. Then the answer to a query can be obtained by composing the answer 

of each synopsis instance and applying a reduce function or by merging the distributed 

synopsis instances in a simple (and, ideally, lossless) fashion to obtain a synopsis of the 

entire stream. 

In the sections below we describe the synopses that are currently supported by the SDE, but as 

it is shown in later chapters, the SDE isn’t limited to these, can easily be configured to support 

any data structure that apply to the above properties.  
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2.2.1 Discrete Fourier Transform (DFT) 

 

Our DFT-based correlation estimation implementation is mostly based on StatStream [34]. We 

note beforehand that there is a direct relation between Pearson’s correlation coefficient among 

time series x, y and the Euclidean distance of their corresponding normalized version (we use 

primes to distinguish DFT coefficients of normalized time series from the ones of the 

unnormalized version). In particular, 𝐶𝑜𝑟𝑟(𝑥, 𝑦) = 1 −
1

2
𝑑2(𝑋′ , 𝑌′)  , where d(.) is the 

Euclidean distance. 

The Discrete Fourier Transform transforms a sequence of N complex numbers x0,,xN-1 into 

another sequence of complex numbers X0,…,XN-1, which is defined by the DFT Coefficients, 

calculated as: 

 

𝑋𝐹 =
1

𝑁
∑ 𝑥𝑘
𝑁−1
𝑘=1 𝑒

𝑖2𝜋𝑘𝐹

𝑁 , for F=0…, N-1 and 𝑖 = √−1 

 

Compression is achieved by restricting F in the above formula to few coefficients. In our 

implementation we set F=0,….,7, i.e., we use up to 8 coefficients for comparing time series, 

after performing an exploratory analysis on the time series present in INFORE-related datasets 

and because of the fact that the majority of the Fourier signal energy is concentrated on the first 

few coefficients [35].  

 

Figure 2: Approximating time series with DFT using 3 and 20 [36] Coefficients 
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There is a couple of additional properties of the DFT which we take into consideration for 

computing time series similarities using the DFT instead of the original time series and for 

parallelizing the processing load of pairwise comparisons among time series, respectively: 

• The Euclidean distance of the original time series and their DFT is preserved. We use this 

property to estimate the Euclidean distance of the original time series using their DFTs. 

• It holds that: 𝐶𝑜𝑟𝑟(𝑥, 𝑦) ≥ 1 − 𝜀2 ⇒ 𝑑((𝑋′), (𝑌′)) ≤ 𝜀. This says that it is meaningful to 

examine only pairs for time series for which 𝑑((𝑋′), (𝑌′)) ≤ 𝜀 . We use this property to 

bucketize (hash) time series based on the values of their first coefficient(s) and then assign 

the load of pairwise comparisons within each bucket to processing units working in parallel.  

The DFT Coefficients can be updated incrementally upon operating over sliding windows. 

Assuming a window of size w, with a slide size b, then for the F-th coefficient we have: 

 

𝑋𝐹
𝑛𝑒𝑤 = 𝑒

𝑖2𝜋𝑏𝐹
𝑤 𝑋𝐹

𝑜𝑙𝑑 +
1

𝑁
(∑𝑥𝑤+𝑘

𝑏−1

𝑘=0

𝑒
𝑖2𝜋𝐹(𝑏−𝑖)

𝑤 −∑𝑥𝑘

𝑏−1

𝑘=0

𝑒
𝑖2𝜋𝐹(𝑏−𝑖)

𝑤 ) 

 

Thus, in order to update the coefficients based on the window, as new tuples arrive, we have 

to keep for each coefficient that we decide to include in our approximation, the quantities 

∑ 𝑥𝑘𝑒
𝑖2𝜋𝐹(𝑏−𝑖)

𝑤𝑏−1
𝑘=0  (for the F-th coefficient). 

 

Let us now explain how the time series that are approximated by the DFT coefficients are 

bucketized so that possibly similar time series are hashed to the same or neighbouring buckets, 

while the rest are hashed to distant buckets and, therefore, they are never compared for 

similarity. Beforehand, we note that the idea is that, in our parallel setting, buckets are assigned 

to different processing units which undertake the load of pairwise time series comparisons. 

Time series that are hashed to more than one buckets are replicated an equal amount of times.  

Now, assume a user-defined threshold T ∈ [0, 1]. According to our above discussion, in order 

for the correlation to be greater than T, then d(X’,Y’) needs to be lower than ε, with T = 1 − ε2. 

By using the DFT on normalized sequences, the original sequences are also mapped into a 
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bounded feature space. The norm (the size of the vector composed of the real and the imaginary 

part of the complex number) of each such coefficient is bounded by 
√2

2
 .  

 

Based on the above observation, [34] claims that the range of each DFT coefficient is between 

−
√2

2
 and 

√2

2
. Therefore, the DFT feature space is a cube of diameter √2. Based on this, we use 

a number of DFT coefficients to define a grid structured, composed of cells/buckets for hashing 

groups of time series to each of them. Each cell is the grid is of diameter ε and there are in total 

2 ⌈
√2

2
⌉
#𝑢𝑠𝑒𝑑_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠

buckets. 

 

Each time series is hashed to a specific bucket/cell inside the grid. Suppose X’ is hashed to 

bucket (c1, c2, ..., c7). To detect the time series whose correlation with X’ is above T, only time 

series hashed to adjacent cells are possible candidates. Those time series are a super-set of the 

true set of highly correlated ones. Since the cell diameter is ε and we use up to 7 coefficients 

for indexing (we can even keep up to 7, but use fewer for bucketizing the time series), time 

series mapped to non-adjacent cells possess a Euclidean distance greater than ε, hence, their 

respective correlation is guaranteed to be lower than T. Moreover, due to that property there 

will be no false negative comparisons. On the contrary there will be false positives which are 

eliminated by computing the pairwise distance among the DFTs of the hashed time series per 

bucket.  

 Note that the principal role of the SDE component is to produce the corresponding DFT 

coefficients and hash them to buckets. Therefore, the output of the corresponding synopsis in 

Figure 17 includes the resulted coefficients and the bucket identifier. The actual similarity tests 

(in each bucket) may be performed by some downstream operator in the designed workflow or 

the SDE itself as a special Reduce function 4.6.2. 

 

2.2.2 Lossy Counting 

 

The Lossy Counting algorithm maintains a data structure, which is a set of entries of the form 

<element, frequency, ε>, where element is a data element, frequency is an integer representing 
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the estimated frequency of the element and ε tunes the allowed maximum possible error in 

frequency estimation. According to the Lossy Counting rationale [38], 

 incoming data are conceptually divided into windows (often termed buckets) of 𝑤 = ⌈
1
⌉ tuples 

each. At the beginning all maintained counters are empty. When an update element arrives for 

which a counter is already maintained, the corresponding frequency is increased by one. In case 

element is not monitored, a new counter entry is created. Then, at the end of the window all 

counters are reduced by one, while if a counter becomes zero for a specific element, it is 

dropped. All running counters can be maintained in a HashTable-like data structure. If N tuples 

have streamed in so far, given ε and a support parameter s such that ε=0.1s: (a) all items whose 

true frequency exceeds sN are output, (b) no elements whose true frequency is less than (s-ε)N 

are output, (c) the estimated frequencies are less than the true frequencies by at most εN. For 

instance, for s = 10%, ε = 1% and N = 1000, all elements exceeding a frequency of 100 will 

be included in the output stream, which will contain no elements with frequencies below 90. 

In this example, all estimated frequencies diverge from the true frequencies by at most 10. 

Finally, false positive frequent elements for frequencies between 90 and 100 might or might 

not be included in the output stream. 

 

(a) First window of 

w size 

 

(b) At the end of the 

window reduce all 

counters by 1 
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(c) Process next 

window of size w 

    Figure 3: Lossy Counting over a window of colours 

 

2.2.3 Sticky Sampling 

 

Sticky Sampling [38] shares similarities with Lossy Counting, but differs in that (i) the size of 

buckets/windows is not steady and (ii) the count of an element is maintained with a certain 

sampling probability. This introduces a probability δ for the estimated frequencies to be less 

than the true frequencies by more than εN. The input of the algorithm is composed of a support 

parameter s and the desired (ε,δ) guarantees. The algorithm works as follows: the incoming 

stream is split into windows. The first window is of 𝑤 = 𝑡 =
1
log(

1

𝑠𝛿
) size and this size is 

doubled in each subsequent one, i.e., 𝑤 = 2𝑡, 𝑤 = 4𝑡 and so on. For each window, Sticky 

Sampling goes through elements and if a counter for an element exists, it increases it by one 

each time the element is observed. If a counter for an element does not exist, one is created and 

initialized to 1 with probability 
𝑡

𝑤
. At the end of each window, for each element’s counter a 

coin is tossed. If the result of the coin flip is 0 the counter is reduced by one. Otherwise, the 

processed continuous by flipping a coin for the counter of the next element. If a counter of an 

element becomes zero, the element is dropped. The guarantees mentioned for Lossy Counting 

also hold for Sticky Sampling, except for a failure probability δ as described in point (ii) above.   
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(a)Dynamic window 

size. Sampling rate 

grows in proportion 

to window size 

 

(b) At the end of the 

window, for each 

counter toss coin – 

adjust counts. 

Figure 4: Sticky Sampling over a window of colors 

 

2.2.4 Counion Sketch 

 

A Count-Min Sketch [19] is a two-dimensional array of w×d dimensionality used to estimate 

frequencies of elements of a stream using limited amount of memory. For given accuracy ε and 

error probability δ, 𝑤 =
𝑒
and 𝑑 = 𝑙𝑜𝑔

1

𝛿
. d random, pairwise independent hash functions are 

chosen for hashing each element to a column in the sketch. When an element streams in, it goes 

through the d hash functions so that one counter in each row is incremented. The estimated 

frequency for any item is the minimum of the values of its associated counters. This provides 

an estimation within εΝ with probability at least 1-δ. For each new element, if its frequency is 

greater than a required threshold, it is added to a heap. At the end, all elements whose estimated 

count is still above the threshold are output. In the implemented version of CountMin sketch 

no such threshold is employed, thus every counter of a queried element is outputted. 
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Figure 5: CM Sketch Structure. Each entry in vector x is mapped to one bucket per 

row. Two sketches can be merged via entry-wise summation. xi[j] is estimated by 

taking      minksketch[k,hk(j)][39]. 

2.2.5 Bloom Filters 

 

A Bloom filter [14] is a space-efficient representation of a stream of n elements from a universe 

U, mainly used to deduce whether a certain element has been observed (set membership). A 

Bloom filter is a bitmap of m bits equipped with a family of k independent hash functions which 

hash stream elements to positions of the bitmap. The whole bitmap is initially unset. An 

element is inserted into the Bloom filter by setting all positions of the bitmap where the k hash 

functions point to, to 1. At query time, an element is assumed to be contained in the original 

set of observations if all hashed positions of the Bloom filter are equal to 1. If at least one of 

these positions is set to 0, then we conclude that the element is not present.  

 

Figure 6: Bloom filter operation. k=3 hash functions map items to bit 

vector k times, set all k entries to 1 to indicate item is present [39]. 

 

Bloom filters exhibit a small probability of false positives; due to hash collisions, it is possible 

that all bits representing a certain element have been set to 1 by the insertion of other elements. 
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The probability for a false positive is ~ (1 − e−kn/m)k . For given n and Bloom filter length, the 

false positive probability can be minimized by optimizing the ratio between true bits and Bloom 

filter length. We denote this ratio as Bloom filter density. The false positive probability is 

minimized when this density is 0.5. This is the case when the number of hash functions is set 

to k ≈ m/n ln(2). Equivalently, for given n, false positive probability and k ≈ m/n ln(2) we can 

compute the required size of the Bloom filter.  

Set membership in case of union or intersection of separate sets of streaming elements can be 

assessed by performing bitwise OR and AND operations respectively, on the corresponding 

bitmaps.  

2.2.6 HyperLogLog Sketch 

 

The HyperLogLog algorithm constitutes the evolution of FM sketches [22] and the LogLog 

algorithm [38]. It is a simple, elegant algorithm that enables to extract distinct counts using 

limited memory and a simple error approximation formula. In the common implementation of 

HyperLogLog, each incoming element is hashed to a 64-bit bitmap. The hash function is 

designed so that the hashed values closely resemble a uniform model of randomness, i.e., bits 

of hashed values are assumed to be independent and to have ½ probability of occurring each. 

 

Figure 7: HyperLogLog maintenance example 

The first m bits of the bitmap are used for bucketizing the element and we have an array M of 

2m buckets (also called registers). The rest 64-m bits are used so as to count the number of 

leading zeros and in each bucket, we store the maximum such number of leading zeros to that 
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particular bucket. To extract a distinct count estimation, we average the values of the buckets. 

The relative error of HLL in the estimation of the distinct count is 1/√2^𝑚. HLL are trivial to 

merge based on the above procedure and equivalent number of buckets maintained 

independently.  

 

2.2.7 AMS Sketch 

 

The key idea in AMS sketch [12] is to represent a streaming (frequency) vector v using a much 

smaller sketch vector sk(v) that is updated with the streaming tuples and provide probabilistic 

guarantees for the quality of the data approximation. The AMS sketch defines the i-th sketch 

entry for the vector v, sk(v)[i] as the random variable ∑ 𝑣[𝑘] ∙ 𝜉𝑖[𝑘]𝑘 , where {𝜉𝑖} is a family of 

four-wise independent binary random variables uniformly distributed in {−1, +1} (with 

mutually-independent families across different entries of the sketch). Using appropriate 

pseudorandom hash functions, each such family can be efficiently constructed on-line in 

logarithmic space. Note that, by construction, each entry of sk(v) is essentially a randomized 

linear projection (i.e., an inner product) of the v vector (using the corresponding ξ family), that 

can be easily maintained (using a simple counter) over the input update stream. Every time a 

new stream element streams in, we just have to add v[𝑘] ∙ 𝜉𝑖[𝑘] to the aforementioned sum and 

similarly for element deletion – expiration. Each sketch vector can be viewed as a two-

dimensional n × m array (Buckets and Depth in ), where 𝑛 = 𝑂(
1
2), and 𝑚 = 𝑂(𝑙𝑜𝑔

1

𝛿
) , with 

ε, 1 − δ being the desired bounds on error and probabilistic confidence, correspondingly. The 

“inner product” in the sketch-vector space for both the join and self-join case (in which case 

we replace 𝑠𝑘(𝑣2) with 𝑠𝑘(𝑣1) in the formula below) is defined as: 

 

𝑠𝑘(𝑣1) ∙ 𝑠𝑘(𝑣2) = 𝑚𝑒𝑑𝑖𝑎𝑛⏟    
𝑗=1,…,𝑚

{
1

𝑛
∑𝑠𝑘(𝑣1)[𝑖, 𝑗] ∙ 𝑠𝑘(𝑣2)[𝑖, 𝑗]

𝑛

𝑖=1

} 

 

Furthermore, AMS sketches can capture several other interesting query classes, including range 

and quantile queries, heavy hitters, top-k queries, approximate histogram, and wavelet 

representations. 
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Goal: Build small-space summary for distribution vector f(i) (i=0,..., N-1)  

seen as a stream of i-values 

 

Over the stream, add ξi whenever the i-th value is seen: 

 

Figure 8: AMS Sketch computation [40] 

Another important property is the linearity of AMS sketches: Given two “parallel” sketches 

(built using the same ξ families) sk(v1) and sk(v2), the sketch of the union of the two underlying 

streams (i.e., the streaming vector v1 + v2) is simply the component-wise sum of their sketches; 

that is, sk(v1 + v2) = sk(v1)+ sk(v2). 

2.2.8 Chain Sampling 

 

The chain sampling algorithm [13] provides a simple random sample without replacement of 

size k over a sliding window of n cardinality where k is expected to be much lower than n. We 

here describe the algorithm for sampling a single element from the sliding window. In order to 

obtain a sample of k size, this process needs to be repeated k times for each element.  
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Figure 9: Chain Sampling example 

The chain sampling algorithm works as follows: 

• Include the i-th element that arrives in the sample with probability 1/min(i,n), that is, 

the previously sampled element is not discarded with probability 1- 1/min(i,n). The 

previously sampled element that is discarded cascades its “chain” as well, 

• As each element is added to the sample, choose its “chain” as the index of the element 

that will replace it when it expires. When the i-th element expires, the window will 

include indices in the range i+1…i+n, so choose the index from this range uniformly 

at random, 

• Once the element with that index arrives, store it and choose the index that will replace 

it in turn, building a “chain” of potential replacements 

Chain sampling yields an expected memory usage of O(k) which turns to O(klog(n)) with high 

probability. 

2.2.9 GK Quantiles 

 

The GK algorithm [27]  maintains a quantile summary Q as a collection of s tuples t0, t2, . . . , 

ts−1 where each tuple ti is a triplet (vi, gi, ∆i):  (i) a value vi that is an element of the ordered 

version of the incoming stream (set) S (ii) the value gi is equal to rminGK(vi) − rminGK(vi−1) (for 

i = 0, gi = 0) and (iii) the value ∆i which equals rmaxGK(vi) − rminGK(vi). In general, rmin(v) 

corresponds to a lower bound on the rank of v (whatever is included in the parenthesis), while 

rmax(v) is an upper bound on the rank of v in S. The elements v0, v1, . . ., vs−1 are in ascending 
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order, v0 is the minimum element in S and vs−1 is the maximum element in S.  Note that 𝑛 =

∑ 𝑔𝑗
𝑠−1
𝑗=1  which is the number of elements seen so far in the stream and 𝑟𝑚𝑖𝑛𝐺𝐾(𝑣𝑖) =

∑ 𝑔𝑗𝑗≤𝑖 ,𝑟𝑚𝑎𝑥𝐺𝐾(𝑣𝑖) = 𝛥𝑖 +∑ 𝑔𝑗𝑗≤𝑖  .  

 

When a new element v arrives, first we search over the elements in Q to find an i such that vi 

< v < vi+1. A new tuple t = (v, 1, ∆) with 𝛥 = ⌊2𝜀𝑛⌋ − 1, for given ε-error parameter, is added 

to the summary where t becomes the new (i + 1)-st tuple. But the first 1/(2ε) elements are 

inserted in the summary with Δi=0. 

Then a merging operation follows we view the number of elements that have been observed 

over the incoming stream as an indication of time. Suppose that v in t = (v, 1, ∆) arrives at n’ 

and is placed in Q according to the above procedure with 𝛥 ≈ 2𝜀𝑛′. At n>n’, we term the 

capacity of the tuple t as 2𝜀𝑛 − 𝛥. As n is becoming higher with the arrival of new stream 

elements, the capacity of the tuple t increases as we can have more error (Δ remains steady, but 

2𝜀𝑛 strictly increases with n). We can thus merge tuples tl, tl+1,…, ti into a single tuple ti+1 at 

(time) n with precision ∑ 𝑔𝑗
𝑖+1
𝑗=𝑙 + 𝛥𝑖+1 ≤ 2𝜀𝑛,  𝑔𝑖+1 = ∑ 𝑔𝑗

𝑖+1
𝑗=𝑙 . 

The above described summary Q can be used to answer quantile queries with an εn additive 

error, at the time when n elements have been observed. In order to answer a query for any rank 

ρ, the algorithm first finds the index i such that  𝜌 − 𝑟𝑚𝑖𝑛𝐺𝐾(𝑣𝑖) ≤ 𝜀𝑛 and 𝑟𝑚𝑎𝑥𝐺𝐾(𝑣𝑖) − 𝜌 ≤

𝜀𝑛. The answer to the query is then vi. The maintenance of the summary requires O((1/ε) 

log(εn)) space. 
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Figure 10: GK Quantile – Progressive insert and merge, query operation 
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2.3 Distributed Frameworks 

 

Traditional database system cannot manage the always increasing volume and velocity of 

nowadays data. For this reason, the last two decades a variety of distributed frameworks have 

been built that can manage current requirements. These frameworks can utilize a network of 

computers (a cluster) and by allocating distributed computational power and storage are solving 

problems involving massive amounts of data. Also, they take measures for hardware failures 

and provide event delivery guarantees that are commonly addressed problems in the distributed 

system field. Although the SDE component could have been implemented in any modern Big 

Data platform that supports stream processing, such as Apache Spark, Flink, Storm, Kafka 

Streams and Akka, we decided to develop the SDE based on Apache Flink.  The distributed 

framework Apache Flink with the combination of Apache Kafka as its input and output source 

can provide all the main requirements that would be discussed in chapter 3 for managing 

extreme scale interactive analytics in stream processing fashion with fault-tolerance and 

exactly once guarantees. 

2.3.1 The Processing Framework: Apache Flink  

 

Apache Flink is a distributed processing engine that is built from the bottom up to support data 

streaming processing in a stateful fashion. In general, Flink implements a data flow model in 

which data flows continuously though a network of transformation entities, creating a directed 

graph, most of the time a DAG(directed acyclic graph) that can be executed in a single pipeline 

or in a distributed parallel fashion.  

 

Figure 11: Example of a Flink Map Reduce Dataflow 
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 This Dataflow is then sent to a Flink cluster to be executed. A Flink cluster is composed of (at 

least one) Master and a number of Worker nodes. The Master node runs a JobManager for 

distributed execution and coordination purposes, while each Worker node incorporates a 

TaskManager which undertakes the physical execution of tasks. Each Worker (JVM process) 

has a number of task slots (at least one). Each Flink operator may run in a number of instances, 

executing the same code, but on different data partitions. Each such instance of a Flink operator 

is assigned to a slot and tasks of the same slot have access to isolated memory shared only 

among tasks of that slot. The use of Dataflow management is common among most big data 

platforms but Flink also gives with special focus on time and state in an efficient and easy way. 

For data stream management is provides the user with the DataStream API. The API supported 

the creation of data streams from a variety of sources (Kafka, Cassandra, Elasticsearch, etc) 

then a series of transformation can be applied (below a small overview of the transformation 

that are used in this thesis is provided), and the final streams can be added to one or more output 

sources (sinks). 

• FlatMap: Takes one element and produces one element. 

• KeyBy: Logically partitions a stream into disjoint partitions. All records with the same 

key are assigned to the same partition 

• Connect: "Connects" two data streams retaining their types. Connect allowing for 

shared state between the two streams. 

• CoFlatMap: Similar with the FlatMap, it applied two FlatMap transformation one in 

each stream.  

• Union: Union of two or more data streams creating a new stream containing all the 

elements from all the streams. 

• Split: Split the stream into two or more streams according to some criterion. 

• Select: Select one or more streams from a split stream. 

This transformation are predefined entities that the user of the framework can extend and apply 

his own logic.  

Another concept of that is essential for data stream processing is the State of the system. Flink 

manage state in a reliable way, that provides fault-tolerance by storing state at checkpoints and 

replaying the stream if failure occurs. In Flink every transformation has its own state, that be 

stored and accessed from many different places including memory, local files, or external key-

value databases. Also, Flink exposes its managed state by a feature called Queryable state that 
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allows user to query a job’s state from outside. The Final property what also distinct Flink from 

most distributed streaming platforms is its notion of time. Flink given the user the ability to 

manage the: 

• Processing time: Processing time refers to the system time of the machine that is 

executing the respective operation 

• Event time: Event time is the time that each individual event occurred on its producing 

device, this can be achieved be out of order data. Event-time based application are 

important, however, unless the events are known to arrive in-order (by timestamp), 

event time processing incurs some latency while waiting for out-of-order events. 

• Ingestion time: Ingestion time is the time that events enter Flink. 

Other Desirable Features  

• Flink provides a rich set of operators including native support for iteration  

• With respect to memory management, Flink manages its own memory never breaking 

the JVM heap.  

• Flink constitutes a Big Data platform of European origin and although lately acquired 

by Alibaba, recent H2020 projects [5] have been built on and have extended Flink’s 

functionality. SDE component thus follows this successful paradigm. 

• Flink exposes a metric system and can be connected to well-known reporters (Graphite, 

JMX, InfluxDB etc) or by provides the RestAPI that allows gathering and exposing 

metrics like memory and cpu usage, records processed, duration and many more.  

2.3.2  The Messaging System: Apache Kafka 

 

A Kafka cluster is composed of a number of brokers, run in parallel, that handle separate 

partitions of topics. Topics constitute categories of key-value messages where producers and 

consumers can write and read, respectively. Within a partition, messages are strictly ordered 

by their offsets (the position of a message within a partition) and  
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Figure 12: Kafka Overall Architecture 

indexed and stored together with a timestamp. It also supports multiple reads and writes in each 

topic. Each producer and consumer have a GroupId, if two consumers with the same GroupId 

read from the same topic they will read different partitions, but if they belong to a different 

group both will read all the partitions.  Kafka can work with all popular Big Data platforms 

and other storage or messaging engines including Flume, Spark, Storm and Flink for real-time 

ingestion, analysis, and processing of streaming data. Additionally, Kafka brokers support 

massive message streams for low-latency analysis in platforms supporting batch or hybrid 

workflows such as Hadoop or Spark, respectively. Kafka’s popularity continuously grows and 

is nowadays a ubiquitous solution for scalable injection of Big Data.  
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3 DESIGN OF THE SYNOPSIS 

DATA ENGINE 

In this section we detail the functional and non-functional requirements that were taken into 

consideration during the design of SDE. In a nutshell, non-functional requirements define 

fundamental properties of a system and its components, essentially describing how a system 

should behave. On the other hand, functional requirements describe the actual functionality 

that the SDE provides as a component to a System or as a System itself. 

The focus of this thesis is, by design, on the real-time, online analysis of massive streaming 

data. It can be applied to analyse streams of data, in many realistic scenarios like depicting the 

effect of drug combinations on cancer evolution simulations in real-time to stop the execution 

of unpromising simulations and free system resources for starting new ones or in Financial use 

case we need to monitor the behaviour of or detect correlations among stocks to identify 

investment opportunities and support predictions on system risks, respectively. Moreover, in a 

Maritime use case can perform real-time anomaly detection. To support these use cases and 

broader application scenarios was the rationale behind closing these requirements.  

 

 

 

3.1 Non-functional Requirements 

 

The SDE is design to support multiple use cases for different scenarios in an online fashion. 

Also, it should behave as service and as a stand-alone System and be a component to a more 

complex architecture. This creates a lot of restrictions on the way the system should behave. In 

the following sections we detail these restrictions.  
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3.1.1 Support Kappa Architectures  

 

The Kappa architecture finds its applications in real-time processing of distinct events. Rather 

than using a relational Database like PostgreSQL, MySQL or even a key-value store like 

Cassandra, the data input in a Kappa Architecture system is a stream of continuous data. Data 

is streamed through a computational system for processing and state updates. Here is a basic 

diagram for the Kappa architecture: 

 

Figure 13: The Kappa Architecture 

It processes data streams in real time and without the requirements of fixups or completeness, 

aims to minimize latency by using online algorithms on the most recent data. The output may 

not be as accurate or complete, but they are available almost immediately after data is received. 

Kappa architecture can be applied to develop data systems that are restricted to only (i)online 

algorithms and therefore 

don’t need batch processing, (iii) re-processing isn’t required. The main advantages of using 

the Kappa architecture: 

•  Uses fixed memory 

•  Provides horizontally scalable systems 

•  Fewer resources are required as the machine learning is being done on the real time 

basis 
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3.1.2 Scalability Considerations 

 

Scalability in the scope of this thesis comes in the following dimensions: (a) horizontal 

scalability, i.e., scaling with the volume and velocity of Big streaming Data, (b) vertical 

scalability, i.e., scaling with the number of processed streams, (c) federated scalability, i.e., the 

ability to scale the computation in settings composed of multiple, potentially geographically 

dispersed clusters. 

State-of-the-art benchmarks on streaming Big Data platforms [29] report that Flink has a better 

overall throughput both for aggregation and join queries when compared with Spark and Storm. 

This shows that Flink either being viewed as a pure streaming engine (upon compared against 

Storm) or to support hybrid workflows (upon compared against Spark) provides increased 

horizontal scalability. 

With respect to vertical scalability, the typical assumption of all existing Big Data platforms is 

that, while the data volume and the velocity of the data can be large, the number of distinct 

streaming sources is typically modest or small; thus, the focus is on techniques that can scale 

horizontally rather than vertically. For instance, the study of [29] is based only on a couple of 

streams. However, vertical scalability can find itself quite needed in broader application 

scenarios. As a concrete example, consider the problem of tracking the highly correlated pairs 

of stock data streams (under various statistical measures, e.g., Pearson correlation) over N 

distinct, high speed data streams, where N is a very large number. While several streaming 

techniques (e.g., based on synopses) are known for tracking the correlation of a given pair in 

space/time that is sublinear in the size of the streams, applying these ideas to track the full 

Θ(Ν2) correlation matrix results in a quadratic explosion in space and computational 

complexity which is simply infeasible for very large Ν. The problem is further 

exacerbated when considering higher-order statistics (e.g., conditional 

dependencies/correlations). Clearly, techniques that can provide vertical scaling are sorely 

needed for financial use case scenarios. Therefore, our aim is to confront vertical scalability 

issues. To achieve that, we implement synopsis that not only parallelizes the processing among 

several workers in Flink, but also prunes unnecessary comparisons of stock streams that are 

known beforehand that cannot be correlated.  

Finally, federated scalability is also quite often overlooked, cause almost all organization 

centralize their data in a single cluster/supercomputer. Despite that these organization often 



Chapter 3: Design of the Synopsis Data Engine  

                                                                                                                     

                                                                                                                                                                           35 

gather data from geographically dispersed sites.  The implementation takes into consideration 

in the SDE architectural design as it is described in Chapter 4 in way that an organization can 

deploy SDEs in each site and gather a distributed answer minimizing the need for network 

bandwidth, cause only the answer travels though the network and not the whole data stream. 

3.1.3 Pluggability Considerations 

 

There are two dimensions of pluggability that are relevant to the SDE. First, a synopsis 

provided by the SDE is also destined to be used as an operator of a designed workflow. Each 

workflow, in turn, may engage streaming operators available in different Big Data platform 

implementations. We should thus ensure the pluggability of SDE’s summarization operators to 

such generic workflows, ensuring that the SDE will be able to communicate with a variety of 

platforms. In order to abide by this non-functional requirement, SDE was built as a service so 

external source can query it and be SDE’s input and output is provided via Apache Kafka.  

Existing benchmarks [41] show that Kafka can serve the highest rates of data arrivals compared 

to other alternatives such as Apache ActiveMQ, a popular open-source implementation of JMS, 

and RabbitMQ, a message system known for its performance. Kafka is often used in real-time 

streaming data architectures to provide real-time analytics. Since Kafka is a fast, scalable, 

durable, and fault-tolerant publish-subscribe messaging system, it is used in use cases where 

JMS, RabbitMQ, and ActiveMQ may not even be considered due to volume and responsiveness 

issues.  

The second level of pluggability required by many scenarios and ensured by Kafka involves 

the ability to work on top of many, potentially geographically dispersed clusters serving as a 

messaging cable connecting the entire federation. 

3.1.4 Extensibility 

 

The SDE is a system for different purposes and can be used be all kinds of user, so it should 

have the ability to extend and the level of effort that is required should be minimum. Extensions 

can be through the addition of new functionality or through modification of existing 

functionality. This is manly first be allowing the user to parametrize his synopsis and choosing 

which fields of a tuple he is going to use, so it supports different datasets. 
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 Second, Flink Programming APIs include Java and Scala which support subtype 

polymorphism useful for ensuring pluggability of new synopsis in SDE’s libraries. In a 

nutshell, due to subtype polymorphism we allow the definition of an abstract synopsis class, 

which is refined by the implementation of synopsis-specific classes, one for each data 

summarization technique included in SDE’s libraries. Our current implementation uses Java 

for this purpose.  

3.1.5   Reliability 

 

Finally, but of equal importance is the reliability of our System we can break down to available 

and fault tolerant. Availability is the proportion of time a system is in a functioning condition. 

As it shown in Chapter 4, implementation decisions have been made to ensure the availability 

of our system by minimizing the query time, and in Chapter 6 with our experimentation we 

present how well our system is doing under extreme pressure. Fault tolerance is the property 

that enables a system to continue operating properly in the event of the failure. By carefully 

utilizing the properties of Flink State API (2.3.1.) so it doesn’t create an observable overhead, 

we can insure that the system will recover and presence of failure, and will eventually reach its 

desirable state. 

3.2 Functional Requirements  

 

Having discussed the non-functional requirements that led us to the adoption of Flink and 

Kafka for our SDE implementation, we proceed with the definition of functional requirements. 

The functional requirements involve the functionality the SDE needs to provide to external 

users, other Systems or as a part of a workflow. That is, given a workflow where a data 

summarization technique is included as a data synopsis operator, the implementation of that 

technique within the SDE receives input from upstream operators and may provide output 

streams to downstream operators of the workflow. Furthermore, the SDE exposes an 

application programming interface (API), that allow the system to be queried by the external 

systems or users regarding the available, currently maintained synopses. The SDE is equipped 

with an internal library of currently available synopses. The current status of the library is 

discussed in Section 4.6. According to the above observations the upper level functions the 

SDE needs to provide are identified below. 
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3.2.1 Single-stream Synopsis Maintenance 

 

The SDE should allow building a synopsis on data originating from a single stream. For 

instance, in a Financial use case we may require sampling data involving trades of a particular 

stock. Similarly, in a Maritime use case, we may wish to maintain a sample of a single vessel’s 

trajectory stream. Moreover, in a Life Science use case where a simulation of a tumour of 

realistic size can produce an amount of data of 100GB/min, the output of a simulation 

composes a stream and a sample of a monitored quantity needs to be maintained over it.   

3.2.2 Dataset Synopsis Maintenance 

 

The SDE should allow building a synopsis on data originating from a dataset, potentially 

composed of several different streams. For instance, in a Financial use case we may require 

sampling stock data of the whole set of monitored stock exchanges. Likewise, in a Maritime 

use case, we may wish to maintain a sample of trajectory positions of a group of vessels within 

a geographic region.  

3.2.3 Multi-stream Synopsis Maintenance 

 

The SDE should allow building a synopsis on data originating from a dataset composed of a 

number of streams, in a per stream fashion. Consider for instance stock exchanges in a 

Financial use case. If we wish to maintain a sample for each out of thousands of monitored 

stocks in the Financial dataset, what was mentioned in Section 3.2.1 is not adequate, since it 

entails that thousands of requests for single-stream synopsis maintenance should be issued 

towards the SDE. Moreover, in the a Life Science use case where a number of differently 

parameterized simulations run in parallel, each producing voluminous, high speed streams, an 

individual simulation may be viewed as a stream and a separate sample of monitored quantities 

needs to be maintained for each. The current functional requirement essentially means that a 

synopsis should be built for each separate stream included in the Financial or the Life Science 

dataset via a single such request.   
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3.2.4 Ad-hoc Querying Capabilities 

 

A currently maintained synopsis should be able to accept one-shot, ad-hoc queries and provide 

respective approximate answers to downstream operators or application interfaces.  

3.2.5 Continuous Querying Capabilities 

 

A currently maintained synopsis should be able to accept continuous queries and provide 

answers to downstream operators or application interfaces every time the approximated 

quantity is updated either due to incoming tuples that alter the maintained synopsis and/or 

under some windowing (time – or count–based) operation. 

3.2.6 Support Different Merge Techniques 

 

A query to the SDE may produce many local answers from a Synopsis that is built on dataset 

(Section 3.2.2) or a Multi-stream Synopsis (Section 3.2.3) these local answers need to be 

aggregated with an aggregation function of the users choice like sum, or, and or just output all 

the local answers etc. so it can produce one global answer. 

3.2.7 Dynamic Build/Stop of Synopses 

 

This functional requirement concerns creating/deleting a synopsis on-the-fly, as the SDE 

component is up and running. Since a number of synopses may be maintained within the scope 

of currently running, streaming workflows, a new workflow that requires the maintenance of a 

new synopsis should be able to create such a synopsis without needing to restart the SDE 

component, i.e., without preventing the execution of already running processing pipelines.   

3.2.8 Providing SDE Status Report 

 

This functional requirement expresses the need of querying the SDE component for providing 

a list of the currently maintained synopses and their parameters. Such functionality may be of 

particular utility to any external client, in order to acquire a list of currently running synopses 
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and check whether it can include an existing on in his execution plans or build a new one and 

use it. 

This functional requirement is further refined to the following operations: 

• Report a list of currently maintained/running synopses per stream.  

• Report of all running synopses of a given stream.  

• Report of all running synopses of a specific value field of a given stream.  

• All the above are to be provided in case synopses are maintained on a dataset in its 

entirety instead of a single stream (see Section 3.2.2). 

• All the above should also provide the parameter values of the synopses included in 

the respective reports. For instance, in case two different workflows have been built and use 

the same kind of different parameterized synopsis, the corresponding reports should provide 

this information.  

 

3.2.9 External Synopsis Load and Maintenance  

 

As already mentioned at the beginning of the current section, the SDE is equipped with a library 

of offered, implemented data summarization techniques. The contents of the current version of 

this library will be discussed shortly. Besides what is included in the current version of the 

aforementioned library, the SDE should be able to allow the dynamic loading of synopses 

originating from external libraries, so as to cover all possible application scenarios where 

application workflows require domain specific synopses, i.e., beyond popular ones covering 

broad application scenarios. 
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4 IMPLEMENTATION  

In this section we detail our implementation techniques starting with the SDE architectural 

components and present their utility in serving the functional requirements identified in Section 

3.2, then we give some insides on the SDE library and closing with some insides on the 

application programming interface that lets external users to harness the SDE functionality. 

Before proceeding to explaining the functionality of each component and the way they 

cooperate in the scope of the SDE architecture, we discuss the fundamentals of the 

parallelization schemes utilized within the SDE. 

4.1  Parallelization Scheme(s) 

 

The parallelization scheme that is employed in the design of the SDE is key-based 

parallelization. That is, every data tuple that streams in the SDE architecture and is destined to 

be included in one or more maintained synopses, does so based on the key it is assigned to it. 

When a synopsis is maintained for a particular stream (see functional requirements in Section 

3.2.1 and Section 3.2.3) the key that is assigned to the respective update (newly arrived data 

tuple) is the StreamID of that particular stream for which the synopsis is maintained. In this 

case, within the distributed computation framework of Flink, all  those streams with the same 

StreamID are processed by the same worker instance and parallelization is achieved by 

distributing the number of StreamIDs for which a synopsis is built, to the available workers 

instances in the cluster hosting the SDE. On the other hand, when a synopsis involves a dataset 

in its entirety (see respective functional requirement in Section 3.2.2) the desired degree of 

parallelism is included as a parameter in the respective request to build/start maintaining the 

synopsis (see function requirement in Section 3.2.7). In the latter case, one dataset is partitioned 

to the available workers in a round-robin fashion and the respective keys are created by the 

SDE, as we describe in detail later on, each of which corresponds to a particular worker. 

There are two important remarks that we need to make at this point. The first one links the key 

assignment in the case of Dataset Synopsis Maintenance (Section 3.2.2) with the nature of the 

maintained synopsis. In order to distribute the load among the available workers in the way 
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described above, the synopsis itself needs to possess the Composability property (Section 2.2). 

Composability, refers to the ability of building synopsis on parts of the data and then having a 

way to merge the partial synopses into one synopsis, which will be equivalent to the synopsis 

that would have been built in case the synopsis was maintained centrally (instead of 

distributivity). For instance, in case FM sketches or Bloom Filters [17] (bitmaps) are built on 

different data partitions at separate worker nodes, they can be merged into one FM sketch or 

Bloom Filter via simple logical disjunction (OR) or conjunction (AND) operations. In case a 

maintained synopsis does not possess the mergeability property, the corresponding synopsis 

maintenance request should be parameterized with a unitary parallelization degree. The second 

remark we need to make here is that in the current design of the SDE, this is supposed to run 

on a number of worker nodes of a cluster, which poses an upper limit on the possible 

parallelization degree.    

4.2 Data and Query Ingestion 

 

Having clarified the above, we proceed with describing the flow of data and of the queries 

(requests) in the SDE architecture shown in Figure 14. Data and request streams arrive at a 

particular Kafka topic each. In the case of the DataTopic of Figure 14, a parser component is 

used in order to extract the value of the field(s) on which a currently running synopsis is 

maintained. The respective parser of the RequestTopic topic reads the request and processes it. 

When an incoming request involves the maintenance of a new synopsis, the parser component 

extracts information about synopsis parameters   
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Figure 14: The SDE Architecture 

(see for instance Figure 17) and nature, i.e., whether it is on a single stream, on a dataset, or 

involves a multi-stream synopsis maintenance request. In case the request is an ad-hoc query 

(see functional requirement in Section 3.2.4) the parser component extracts the corresponding 

synopsis identifier(s). 

4.3 Requesting New Synopsis Maintenance 

 

When a request is issued for maintaining a new synopsis, it initially follows the red-colored 

paths of the SDE architecture. That is, the corresponding parser sends the request to a FlatMap 

operator (termed RegisterRequest at the bottom of Figure 14) and to another FlatMap operator 

(RegisterSynopsis) which is part of a CoFlatMap one. In a nutshell, a FlatMap operator takes 

one tuple and produces zero, one, or more tuples, while a CoFlatMap operator hosts two 

FlatMaps that can share the state of common variables (therefore the linking icon in the figure) 

among streams that have previously been connected (using a Connect operator in Flink). 

RegisterRequest and RegisterSynopsis produce the keys as analysed in Section 4.1 for the 

maintained synopsis but provide different functionality. The RegisterRequest operator uses 

these keys in order to later decide which worker(s) an ad-hoc query, which also follows the 
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red-coloured path, as explained shortly, should reach. On the other hand, the RegisterSynopsis 

operator uses the same keys to decide to which worker(s) a data tuple destined to update one 

or more synopses should be directed. Such an update follows the blue-coloured path in Figure 

14, The possible parallelization degree of the corresponding RegisterSynopsis and 

RegisterRequest operators, beyond being affected by the number of available worker nodes, it 

is restricted by the number of maintained synopses. 

4.4 Updating the Synopsis 

 

When a data tuple destined to update one or more synopses is injected via the DataTopic of 

Kafka it follows the blue-coloured path of the SDE architecture. The tuple is directed to the 

HashData FlatMap of the corresponding CoFlatMap where the keys (StreamID for single 

stream synopsis and/or WorkerID for Dataset Synopsis) are looked up based on what 

RegisterSynopsis has created. Following the blue-colored path, the tuple is directed to an add 

FlatMap operator which is part of another CoFlatMap. The add operator updates the maintained 

synopsis as prescribed by the algorithm of the corresponding technique. For instance, in case a 

BloomFilter sketch is maintained, the add operation hashes the incoming tuple to a position of 

the maintained bitmap and turns the corresponding bit to 1 if it is not already set. Notice, that 

the blue-coloured path in Figure 14 remains totally detached from the red-coloured path. This 

depicts a design choice we follow for facilitating ad-hoc querying capabilities. That is, since 

the data updates on several maintained synopses may arrive at an extremely high rate, typically 

a lot higher than the rate at which ad-hoc queries are issued, in case of the two paths were 

crossing at some point of the architecture, back-pressure on the blue-coloured path would also 

stall the execution of ad-hoc queries. Having kept the two paths independent, data updates and 

ad-hoc queries are inserted in different processing queues and thus, even when the queue of the 

data updates grows,  ad-hoc queries can be answered in a timely manner, based on the current 

status of the maintained synopses. 
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4.5 Ad-hoc Querying Answering  

 

An ad-hoc query arrives via the RequestTopic of Kafka and is directed to the RegisterRequest 

operator. The operator, which produces the keys in the same way as RegisterSynopsis does, 

looks up the key(s) of the queried synopsis and directs the corresponding request to the estimate 

FlatMap operator of the corresponding CoFlatMap. The estimate operator reads via the shared 

state the current status of the maintained synopsis and extracts the estimation of the 

corresponding quantity the synopsis is destined to provide. For instance, upon performing an 

ad-hoc query on an BloomFilter sketch, the estimate operator reads the maintained bitmap, gets 

the Key from the query parameters and provides a membership estimation using the index of 

the Key answers true or false. Figure 17 provides a summary of the estimated quantities each 

of the currently supported synopsis can provide. 

4.6 The SDE Library 

 

The internal structure of the SDE library is a combination of a list of synopses and one of 

reduce functions. That Synopsis library is illustrated in Figure 15 which also provides only a 

partial view of the supported synopses for readability purposes. Figure 17 provides a full list 

of currently supported synopses, their utility in terms of approximation quantities and their 

parameters and in Figure 19 a list of supported reduce function. The development of the SDE 

library exploits subtype polymorphism in order to ensure the desired level of extensibility for 

new synopses and reduce functions definitions (see Section 3.1.4). 
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Figure 15: UML diagram of the Synopses Library 

4.6.1 Synopsis library   

 

As Figure 15 shows there is a higher-level class called Synopsis with attributes related to: 

• A unique identifier that is essential for separating synopsis with each other for querying 

and deletion purposes. 

• A String that includes information about the index of the key field in an incoming data 

tuple that refers to the field that the synopsis needs to use as a key. A lot of synopsis 

operates in a key-value fashion like (CountMin, AMS, etc.) The key field definition is 

not always mandatory. 

• A respective index of the value field, i.e., the field which the summary is built on.  

• The constructor of the class receives another String including parameters related to the 

identifier of a particular type of synopsis as well as synopsis specific parameters as 

included Figure 19.  
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• Furthermore, the Synopsis class includes methods for add, a data point to the synopsis 

(update), estimate, receives a request and outputs an estimation, and a merge method 

for combining synopsis. 

 

Figure 16: The abstract Synopsis Class 

Every specific synopsis algorithm is implemented in a separate class, that extends Synopsis 

and overrides the add, estimate, and merge methods with the algorithmic details of that 

technique. 

 

Figure 17: Supported Synopses in SDE 
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4.6.2 Supported Reduce Function 

 

In the same notion as the Synopsis Library we support a variety of reduce function the reduce 

abstract class is show in the Figure 18 with attributes referring to:  

 

Figure 18: The Reduce Function abstract class 

➢ A HashMap that keeps track of all the incoming estimation that have been received so 

far. 

➢ The number of total estimations the function receives before starting the reduce phase.  

➢ The number of received estimations 

➢ The parameters of the received request 

➢ A reduce function which by processing all the incoming estimation produces one 

estimation the final answer of that request (query). 

 

Figure 19: The list of Supported Reduce Functions 
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4.7 The Application programming interface (API) 

 

This work includes a computing interface (API) that is built on top of Kafka messages that 

defines how other external users can use our system. It provides three calls that can be made, 

add, delete and estimate on a synopsis UID. These calls can be made by sending messages to 

the right kafkaTopic while following a specific format.  That message should include the 

following fields as shown in Figure 20. Two String field, when requesting an add or delete 

synopsis the key field should be the dataset key if the user requires a Dataset Synopsis, or a 

Multi-stream Synopsis as shown in 3.2.1 and 3.2.2, or it can be same as the second String field 

the StreamID for the functionality of Single-stream Synopsis 3.2.3. Α String Array that 

provides the synopsis parameters for adding new synopsis (see Figure 17 and the query 

parameters when querying a synopsis.  

 

Figure 20: The Request Class 

And Finally four Integer fields, the number of parallelism the synopsis have, a RequestID that 

defines the type of the request (add (1), delete(2), estimate(3)), the SynopsisID that defines the 

type of the synopsis ( see Figure 17 and a unique identifier for each Synopsis that should be 

the same when adding, deleting or estimating on a specific synopsis.  

The format of the message is as follows: 

Value<DatasetKey,RequestID, UID, SynopsisID, StreamID, parameters, 

NumberOfParallelism> 

Example for adding a CountMin synopsis for a financial data set 

"FINANCIAL_USECASE,1, 111, 1, INTEL, 1;2;0.0002;0.99; 4,1" 

Similar to the input calls the output of a query is provided by a Kafka message that has the 

fields shown in Figure 21. The only difference with the fields described above is the 
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estimationkey and the estimation that are synopsis specific for example, in a countMin query 

the output is the estimated count and in a DFT the Fourier coefficients.  

 

Figure 21: The Estimation Class 

And it also follows a similar format 

Value<estimationkey, StreamID, UID, RequestID, SynopsisID, estimation, 

parameters, NumberOfParallelism> 

Example of an estimation showing the answer of the above example query 

<111, INTEL, 111, 3, 1, 38548, INTEL, 1 > 
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5 EXPERIMENTAL EVALUATION 

5.1 Cluster setup up 

 

To test the performance of our SDEaaS approach, we utilize a Kafka cluster with 3 Dell 

PowerEdge R320 Intel Xeon E5-2430 v2 2.50GHz machines with 32GB RAM each and one 

Dell PowerEdge R310 Quad Core Xeon X3440 2.53GHz machine with 16GB RAM and a 

Flink cluster has 10 Dell PowerEdge R300 Quad Core Xeon X3323 2.5GHz machines with 

8GB RAM each. Both Kafka and Flink were provided by SoftNet lab at Technical University 

of Crete. Note that our experiments concentrate on computational and communication 

performance figures. We do not provide results for the synopses accuracy, since our SDEaaS 

approach does not alter in anyway the accuracy guarantees of synopses. Theoretic bounds and 

experimental results for the accuracy of each synopsis can be found in the reference.  

5.1.1 Dataset 

 

For dataset we use a real dataset composed of ∼50 different stock markets each on with 

different stocks as shown the Figure 22. In total a sum of ~5000 stocks contributing a total of 

∼10 TB of Level 1 and Level 2 data provided to us by http://www.springtechno.com/ in the 

scope of the EU H2020 INFORE project (http://infore-project.eu/) acknowledged in this thesis. 

More precisely, Level 1 data involve stock trades of the form <Date, Time, Price, Volume > 

for each data tick of an asset (stock). Level 2 data show the activity that takes place before a 

trade is made. Such an activity includes information about offers of shares and corresponding 

prices as well as respective bids and prices per stock. Thus, Level 2 data are shaped like series 

of < Ask price, Ask volume, Bid price, Bid volume > until a trade is made. These pairs are 

timestamped by the time the stock trade happens. The higher the number of such pairs for a 

stock, the higher the popularity of the stock. 

http://infore-project.eu/
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Figure 22: Number of Stocks per Stock Market in our Dataset 

5.2 Assessing Scalability 

 

In the experiments of this first set, we test the performance of our SDEaaS approach alone. 

That is, we purely measure its performance on maintaining various types of synopses. In 

particular, we measure the throughput, expressed as the number of tuples being processed per 

time unit (second) and communication cost (Giga bytes) among workers, while varying a 

number of parameters involving horizontal ((i),(ii)), vertical (iii) and federated (iv) scalability, 

respectively: 

1) the parallelization degree [2-4-6-8-10] 

2) the update ingestion rate [1-2-5-10] times the Kafka ingestion rate (i.e., each tuple read 

from Kafka is cloned [1-2-5-10] times in memory to further increase the tuples to 

process) 

3) the number of summarized stocks (streams) [50-500-5000] and 

4) the Giga bytes communicated among workers for maintaining each examined synopsis 

as a federated one. Note that this also represents the communication cost that would 

incur among equivalent number of sites (computer clusters), instead of workers, each 

of which maintains its own synopses.  
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In each experiment of this set, we build and maintain Discrete Fourier Transform (DFT–8 

coefficients, 0.9 threshold), HyperLogLog (HLL – 64 bits, m = 3), CountMin (CM – ϵ = 0.002, 

δ = 0.01) synopses each of which, is destined to support different types of analytics related to 

correlation, cardinality and distinct count estimation, respectively (Table 1). All the above 

parameters were set after discussions with experts from the data provider and on the same 

ground, we use a time window of 5 minutes. 

Figure 23 shows that increasing the number of Flink workers causes proportional increase in 

throughput. This comes as no surprise, since for steady ingestion rate and constant number of 

monitored streams, increasing the parallelization degree causes fewer streams to be processed 

per worker which in turn results in reduced processing load for each of them. 

 

Figure 23 Throughput versus number of Workers 

Figure 24, on the other hand, shows that varying the ingestion rate from 1 to 10 causes 

throughput to increase almost linearly as well. This is a key sign of horizontal scalability, since 

the figure essentially says that the data rates the SDEaaS can serve, quantified in terms of 

throughput, are equivalent to the increasing rates at which data arrive to it.  
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Figure 24: Throughput versus Ingestion Rate 

Figure 25 shows something similar as the throughput increases upon increasing the number of 

processed streams from 50 to 5000. This validates our claim regarding the vertical scalability 

aspects the SDEaaS can bring in the workflows it participates. 

 

Figure 25: Throughput versus Number of Streams 

Finally, Figure 26 illustrates the communication performance of SDEaaS upon maintaining 

federated synopses and communicating the results to a responsible site to derive the final 

estimations (see yellow arrows in Figure 14). For this experiment, we divide the streams among 

workers and each worker represents a site which analyses its own stocks by computing CM, 

HLL, DFT synopses. A random site is set responsible for merging partial, local summaries and 
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for providing the overall estimation, while we measure the total Gbytes that are communicated 

among sites/workers as more sites along with their streams are taken into consideration.  

Note that the sites do not communicate all the time, but upon an Ad-hoc Query request every 

1 minute. Here, the total communication cost for deriving estimations from synopses, is not a 

number that says much on its own. It is expected of the communication cost will rise as more 

sites are added to the network. The important factor to judge federated scalability is the 

communication cost when we use the synopses ("CM+HLL+DFT") line in Figure 26 compared 

to when we do not. Therefore, in Figure 26, we also plot a line (labelled 

"NoCM+NoHLL+NoDFT") illustrating the communication cost that takes place upon 

answering the same (cardinality, count, time series) queries without synopses. As Figure 26 

illustrates (the vertical axis is in log scale), the communication gains steadily remain above an 

order of magnitude. 

 

Figure 26: Communication Cost versus Number of Streams 
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5.3 Comparison against other Candidates 

 

In the second group of experiments we choose a workflow that was inspired by a world-known 

benchmark [16] (the Yahoo! benchmark) which is a window, a Join operator followed by an 

aggregation. 

 

Figure 27: Changed Yahoo Benchmark 

After a discussing with experts from the financial domain we conclude that applying the pair-

wise correlation algorithm in the number of bids or each stock before a trade take place is a 

valuable knowledge. So, in our experiment workflow shown in Figure 27 we consider that both 

Level 1 and Level 2 data arrive at a Source. Then, we use a synopsis which first keeps counters 

per stock in each window (so the window operation is coded inside the synopsis). When a trade 

for a stock takes place, the corresponding Level 1 tuple is directed to the Synopsis that holds 

this stock’s counters and the counter value updates a DFT synopsis. Then every 1 second (same 

as [16]) we aggregate all DFTs in a correlation function and forward all the correlation above 

a threshold.  

In  Figure 28 we measure the performance of our SDEaaS approach employed in this work 

against three alternative approaches. More precisely, the compared approaches are: 

• Naive: This is the baseline approach which involves sequential processing of incoming tuples 

without parallelism or any synopsis. 

• SDEaaS(DFT+Parallelism): This is the approach employed in this work which combines the 

virtues of parallel processing (using 4 workers in Figure 28) and stream summarization (DFT 

synopsis) towards delivering interactive analytics at extreme scale. 



Chapter 5: Experimental Evaluation  

                                                                                                                     

                                                                                                                                                                           56 

• Parallelism(NoDFT): This approach performs parallel processing (4 workers), but does not 

utilize any synopses to bucketize time series or reduce their dimensionality.  

• DFT(NoParallelism): The DFT(NoParallelism) approach utilizes DFT synopses to bucketize 

time series and for dimensionality reduction, but no parallelism is used for executing the 

workflow. Pairwise similarity checks are restricted to adjacent buckets and thus comparisons 

can be pruned, but the computation of similarities is not performed in parallel for each bucket. 

This approach corresponds to competitors such as DataSketch [9] or Stream-lib [8] which 

provide a synopses library but do not include parallel implementations of the respective 

algorithms and do not follow an SDEaaS paradigm. 

Each line in the plot of  Figure 28 measures the ratio of throughputs of each examined approach 

over the Naive approach varying the amount of monitored stock streams. Let us first examine 

each line individually. It is clear that when we monitor few tens of stocks (50 in the figure), the 

use of DFT in the DFT(NoParallelism) marginally improves (1.5 times higher throughput) the 

throughput of the Naïve approach. On the other hand, the Parallelism(NoDFT) improves the 

Naive by ∼2.5 times. Our SDEaaS(DFT+Parallelism), taking advantage of both the synopsis 

and parallelism improves the Naïve by almost 4 times. Note that when 50 streams are 

monitored, the number of performed pair-wise similarity checks in the workflow of Figure 27 

for the Naive approach is 2.5K/2.  

 

Figure 28: Thoughput Ration of our Method against other Candidates 

This is important because, according to Figure 28, when we switch to monitoring 500 streams, 

i.e., 250K/2 similarity checks are performed by Naive, the fact that the Parallelism(NoDFT) 

approach lacks the ability of the DFT to bucketize time series and prune unnecessary similarity 

checks, makes its throughput approaching the Naive approach. This is due to the Aggregation 
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operator starting to become a computational bottleneck for Parallelism(NoDFT) in the 

workflow. On the contrary, the DFT(NoParallelism) line remains steady when switching from 

50 to 500 streams. The DFT(NoParallelism) approach starts to perform better than 

Parallelism(NoDFT) on 500 monitored streams showing that the importance of comparison 

pruning and, thus, of vertical scalability is higher than the importance of parallelism, as more 

streams are monitored. The line corresponding to our SDEaaS(DFT+Parallelism) approach 

exhibits steady behavior upon switching from 50 to 500, improving the Naive approach by 4 

times, the DFT(NoParallelism) approach by 3 and the Parallelism(NoDFT) approach by 3.5 

times.  

The most important findings come upon switching to monitoring 5000 stocks (25M/2 similarity 

checks using Naive or Parallelism( NoDFT)). Figure 28 says that because of the lack of the 

vertical scalability provided by the DFT, the Parallelism(NoDFT) approach becomes 

equivalent to the Naive one. The DFT(NoParallelism) approach improves the throughput of 

the Naive and of Parallelism (NoDFT) by 7 times. Our SDEaaS(DFT+Parallelism) exhibits 

11.5 times better performance compared to Naive, Parallelism(NoDFT) and almost doubles the 

performance of DFT(NoParallelism). This validates the potential of 

SDEaaS(DFT+Parallelism) to support interactive analytics upon judging similarities of 

millions of pairs of stocks. In addition, studying the difference between DFT(NoParallelism) 

and SDEaaS(DFT+Parallelism) we can quantify which part of the improvement over Naive, 

Parallelism(NoDFT) is caused due to comparison pruning based on time series bucketization 

and which part is yielded by parallelism. That is, the use of DFT for bucketization and 

dimensionality reduction increases throughput by 7 times (equivalent to the performance of 

DFT(NoParallelism)), while the additional improvement entailed by 

SDEaaS(DFT+Parallelism) is roughly equivalent to the number of workers (4 workers in 

Figure 28). This indicates the success of SDEaaS in integrating the virtues of data synopsis and 

parallel processing.  
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6 CONCLUSION & FUTURE 

WORK 

 

In this work we introduced a Synopses Data Engine (SDE) for enabling interactive analytics 

over voluminous, high-speed data streams. Our SDE is implemented following a SDE-as-a-

Service (SDEaaS) paradigm and is materialized via a novel architecture. It is easily extensible, 

customizable with new synopses and capable of providing various types of scalability. 

Moreover, we exhibited ways in which SDEaaS can serve workflows for different purposes 

and we commented on implementation insights and lessons learned throughout this endeavour 

Our future work in the development of the SDE is concentrated towards the following 

directions: 

• Incorporation of more synopsis and reduce techniques: the SDE library will be 

enhanced with a number of additional data summarization techniques that match the needs of 

a wide variety of applications. Carefully inspecting Table 2, one can easily deduce that at the 

current stage of the SDE library we have chosen, at least one technique for (distinct) count, 

frequency, set membership, cardinality, correlation, and sample estimation. These constitute 

broad categories of synopsis often used in various application scenarios. This list is going to 

be enhanced with other popular, approximate operators involving approximate top-K query 

answering and histogram computation. Moreover, more than one algorithm will be 

incorporated per category based on criteria and the variety of trade-offs they introduce 

compared to the already incorporated ones. Such criteria are related to mergeability, memory 

utilization, computational complexity of updating and querying the synopsis. 

• Joins & Extended Windowing Support: the synopses we have currently incorporated, 

in large part operate over the whole stream history or disjoint windows of streams. In the future 

we plan to incorporate synopses that can equivalently support both tumbling (disjoint) and 

sliding windows. Moreover, we have designed a way that the current architecture could be used 

so as to implement the functionality of popular approximate join algorithms.      
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• Benchmarking: One of the main advantages of the SDE, besides providing techniques 

for reduced memory utilization, is that it can work on small, carefully-crafted portions (such 

as samples) of the data and provide rapid responses within the scope of complex workflows of 

Big Data analytics. 
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