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Abstract. Region operators (generalized observable) (RO), defined as operator valued
probability measures over classical phase space ensuing from quantization of phase space
characteristic functions are investigated. The problem of constructing of RO is treated by
means of positive trace increasing maps (pti maps). Exemplary domains of RO include: sets
of points, line segments and rotated line segments, circles and disks, straight and rotated lines,
canonical polygons, squeezed line segments, and lines related to Radon transform in phase space.
Phase plane RO constructing pti maps, in their operator sum representation, are generated by
elements of the quantum symplectic in-homogeneous group ISp(2). The group ISp(2) and its
double cover metaplectic group Mp(2) are the kinematical groups for RO construction on the
plane.

1. Introduction
The general probabilistic framework of quantum mechanics in phase space requires the evaluation
of (quasi) probability measures obtained by integration of a (quasi) probability distribution
function such as the P, the Q, or the Wigner function, over phase space areas[1]. This integration
problem is equivalent to an integration of a corresponding operator valued measure (OVM) over
a given phase space region. Alternatively RO as operators ensuing from the quantization of phase
space characteristic functions various regions can be constructed following various quantization
schemes related to ordering of the creation-annihilation operators of the canonical algebra[2]. In
either case the resulting operators are called region operators (RO), and their construction can
be addressed by techniques that generate them starting from RO for points. E.g. the RO for
the zero point of phase plane ([3]-[6]) is the parity operator of the canonical algebra. Creating
RO for extended regions is shown to require the action of positive trace increasing maps (pti
maps), which in their operator sum representation have generators identified with (sub)group
elements of the quantum symplectic in-homogeneous group ISp(2). Explicitly what is used is
the adjoint action of the symplectic group that is provided by its double covering group known
as the metaplectic group Mp(2)[7]. Examples of phase space region with constructed RO include
sets of points on axes, line segments and rotated line segments, circles and disks, straight and
rotated lines, canonical polygons, and squeezed line segments, as well as lines related to Radon
transform reconstruction problem in phase space ([10]-[16]). This work shows that the symplectic
group unifies the construction technique of all those cases and employs the group ISp(2) as the
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appropriate kinematical group for all region operator (generalized observable) constructions on
the phase plane.

2. Phase space OVM: Region Operators
General setting : Let Γ a symplectic phase space and let an operator valued measure (OVM)

taken to be a map R̂ : F(Γ) → L(H), from the sigma algebra F(Γ) of Γ to the set of bounded
linear operators L(H) acting on a Hilbert space H. The OVM has the following properties:

for vectors Ψ ∈ H and elements A ∈ F(Γ), the function µΨ(A) ≡ ⟨Ψ|R̂(A)Ψ⟩, is normalized
i.e. µΨ(Γ) = 1; also µΨ(A) is a generalized probability measure in Γ, i.e. its (not necessarily)

positive and σ additive set function. If R̂(A) > 0 i.e. µΨ(A) > 0, ∀Ψ ∈ H, then we have a

positive OVM (POVM); further if R̂(A)† =R̂(A) and R̂(A)2 =R̂(A), i.e. we have a projective
and positive OVM (PVM), namely a quantum mechanical observable, [2].

Let the special case of canonical phase space Γ ≈ C, with HF = spanC{|n⟩ , n ∈ N0},
the Fock Hilbert (FH) space which spanned by the number state basis. Let the creation â†,

annihilation â , and number operator N̂ = â†â, respectively. The unitary displacement operator

D̂(x, p) = exp(ixP̂ − ipX̂) = D̂(α) = exp(αâ† − α∗â),

with α = 1√
2
(x + ip), and P̂ = 1

i2(â
† − â), X̂ = 1

2(â
† + â), respectively the momentum and

position operator. Also let the parity operator Π̂ = (−1)N̂ = eiπN̂ , determined via the number
operator, expressed in terms of position and momentum eigen-states respectively

Π̂ =

∫
R
dx| − x⟩⟨x| =

∫
R
dp| − p⟩⟨p|.

The region operator with support on phase space region A ∈ Γ reads

R̂(A) ≡
∫
A
D̂(α)Π̂D̂(α)†

d2α

π
. (1)

It is an OVM in Γ, which for a given quantum system described by |Ψ⟩ ∈ HF provides the
quasi-probability accumulated over region A and under the Wigner function W|Ψ⟩(α) = ⟨Ψ|
∆̂(α) |Ψ⟩ , according to the formula, ([8],[9],[19]),∫

A
W|Ψ⟩(α)

d2α

π
= Tr(|Ψ⟩ ⟨Ψ| R̂(A)) = ⟨Ψ| R̂(A) |Ψ⟩ . (2)

An alternative way of introducing region operators is to invoke the quantization program
which, according to certain quantization rules, maps functions of classical phase space Γ to
operators, and then apply such maps specifically to characteristic functions of regions in Γ.
Indeed let χA the characteristic function of region A ∈ F(Γ), defined as χA(α) = 1 for α ∈ A,

or χA(α) = 0 for α ∈ A, and let the following orthonormal operator basis {∆̂(x, p), (x, p) ∈ Γ}.
This is constructed in terms of the parity operator Π̂ and the displacement operator as follows
∆̂(x, p) := D̂(x, p)Π̂D̂(x, p)†.

This generalized operator basis satisfies, in terms of the trace inner product, the
orthonormality relation

Tr(∆̂(x, p), ∆̂(x
′
, p

′
)) =

π

2
δ(x− x

′
)δ(p− p

′
),

as well as the completeness relation∫
∆̂(x, p)Tr(∆̂(x, p)F̂ )dxdp =

π

2
F̂ ,



Group32

IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012033

IOP Publishing

doi:10.1088/1742-6596/1194/1/012033

3

for any well behaved operator F̂ acting on H. By means of the operator basis the so called
Wigner-Weyl transform (WWT) Ws and its inverse W−1

s (known as Weyl map), are introduced.

The inverse Weyl map maps classical phase space functions F (q, p) to operators F̂ , implementing
the following quantization map

W−1 : F (x, p) → W−1(F ) =F̂ =
1

π

∫
∆̂(x, p)F (x, p))dxdp

The opposite de-quantization map establishes a correspondence from operators F̂ to classical
phase space functions as follows,

W : F̂ → W(F̂ ) =F (x, p) = 2Tr(∆̂(x, p)F̂ ).

The (de)-quantization rule upon quantization gives rise to normally ordered operators, i.e.
to expressions in which the creation operators are on the right of annihilation operators ([3]-[6]).

For the particular case of density operators F̂ ≡ ρ, which are Hermitian, positive and have
the property Trρ = 1, the de-quantization maps ρ → Fρ(x, p) provide the Wigner function W
i.e. F (x, p) ≡ W (x, p). The following identity is used

∆̂(x, p) = D̂(x, p)Π̂D̂(x, p)† = D̂(2x, 2p)Π̂.

Let χA to be the characteristic function of region A ∈ F(Γ), and let its quantization by means
of the operator

R̂(χA) ≡ R̂(A) =

∫
Γ
χA(α)∆̂(α)

d2α

π
. (3)

This is an OVM on Γ ([20]), which shares the properties

TrR̂(A) = area(supp(R̂(A))) = area(supp(χA))

= area(A) =

∫
Γ
χA(α)

d2α

π
,

obtained by virtue of the trace of parity operator TrΠ̂ = Tr
∫
dx| − x⟩⟨x| =

∫
dxδ(2x) = 1.

Transformation maps and duality. Let a phase space area A ∈ Γ and the respective region
operator R̂(A). We consider the group G = ISp(2,C), of translations and symplectic (area
preserving) transformations on the plane (see below for details).

Let g ∈ G and Tg a unitary faithful representation of the group carried by an appropriate
Hilbert space H with properties T †

g = Tg−1 , and T †
gTg = Tg−1Tg = Tg−1g = T1 = IH. We consider

the phase plane as a representation module of group G implemented by the actionm : G×Γ → Γ,
(g, α) → m(g, α) = g(α). The action m induces on the phase space point α = (x, p) a combined
transformation of symplectic rotation followed by a phase space translation.

Concerning the operator valued measure ∆̂(α), it is also transformed in its argument i.e.
α → g(α), by the action of metaplectic representation of Sp(2,C) denoted Mp(2) [7],[17](c.f.
[7] for the related theory of the metaplectic group Mp(2) the double cover group Sp(2,C) and
the three ways of introducing the metaplectic operators in the context of phase space quantum
mechanics, as well for related prior bibliography on the subject), ∆̂(α) → T †

g ∆̂(α)Tg = ∆̂(g(α)).

The integration measure is invariant under map m i.e. d2(g−1(α))
π = d2α

π . As a consequence
the transformation of a RO under ISp(2,C) reads
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R̂(A) −→ T †
g R̂(A)Tg =

∫
Γ
χA(α)T

†
g ∆̂(α)Tg

d2α

π

=

∫
Γ
χA(α)∆̂(g(α))

d2α

π
=

∫
Γ
χA(g

−1(α))∆̂(α)
d2α

π
.

Hence under a ISp(2,C) unitary action, an initial RO becomes another RO while its support
transformed by the induced action of fundamental matrix action of ISp(2,C).

Unitary transformations on RO are further generalized to positive maps Et(.) defined for
functions t(g), g ∈ G, with generators Tg ∈ ISp(2,C) ([18]),

Et(.) =
∫
Γ
t(g)T †

g (.)Tgdµ(g),

acting on RO as ([15])

R̂(A) −→ Et(R̂(A)) =

∫
G
t(g) T †

g R̂(A)Tg dµ(g) (4)

=

∫
Γ

[∫
G
t(g)χA(g

−1(α)) dµ(g)

]
∆̂(α)

d2α

π
.

This action can be expressed in terms of the ISp(2,C) convolution

(t ∗ χA)(α) ≡
∫
G
t(g)χA(g

−1(α))dµ(g)

as

Et(R̂(A)) =

∫
Γ
(t ∗ χA)(α)∆̂(α)

d2α

π
. (5)

Maps Et are in general taken to be positive, and not necessarily trace preserving. Positivity is
required as these maps, by their dual action (see below), are required to preserve the positivity of
density operator describing the state of quantum system under investigation. On the other hand
the property of non trace preservation, should be allowed since Et can be introduced not only as
maps transforming the area A of the RO they act upon, but also as generators of RO for various
domains in Γ. In particular trace increasing maps, for which the property t̃ :=

∫
G t(g) dµ(g) ≥ 1,

is satisfied, have been introduced and investigated for a variety of phase space domains c.f.
The general property of the family of trace increasing maps Et , with trace (area) increasing

factor t̃ ≥ 1,

T rEt(R̂(A)) =

∫
Γ
(t ∗ χA)(α)

d2α

π
= t̃ × Tr(R̂(A)) = t̃ × area(g(A)) ≥ Tr(R̂(A)), (6)

is satisfied for any RO R̂(A).

In view of eqs.(3,5), the transformed by map Et RO, is expressed as Et(R̂(χA)) = R̂(t ∗ χA).
The convoluted characteristic function χA characterizing the mapped RO has the support

supp(t ∗ χA) =

∫
G
t(g)χg(A)dµ(g) =

∪
g∈supp(t)

supp(χg(A)), (7)
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where χg(A)(α) = 1 if α ∈ g(A), or 0 if α /∈ g(A), with g(A) = {g(α) | α ∈ A ⊂ Γ }. This in turn

implies for the support of the transformed RO Et(R̂(χA)) that

supp(Et(R̂(χA))) = supp(R̂(t ∗ χA) = supp(t ∗ χA).

Finally regarding the state-observable duality we notice that in terms of the trace inner

product
⟨
ρ, R̂(A)

⟩
= Tr(ρ(R̂(A))),the quasi-probability mass (qpm) is expressed as qpm

=⟨densityoperator , regionoperator⟩ . From this relation the dual expression of the qpm follows
[21]

qpm =
⟨
ρ, Et(R̂(A))

⟩
= Tr(ρEt(R̂(A))), (8)

qpm =
⟨
E∗
t (ρ), R̂(A)

⟩
= Tr(E∗

t (ρ)R̂(A)). (9)

3. Generating region operators
In this section we intend to show how a general group element of the ISp(2,C) group transforms
a generic region operator of certain phase space domain A ∈ Γ, and in particular to study the
change induced by such a transformation into the characteristic function of domain A. By means
of the commutation relations among the two subalgebra generators issued in equations (15,16,17)
and the bosonic realization of those generators in eq. (18,19), we obtain the following similarity

transformation of region operator R̂(A) by the rotation element eiϕN̂ ,

R̂(A) −→ eiϕN̂ R̂(A)e−iϕN̂ =

∫
C
χA(α)∆̂(eiϕα)

d2α

π

=

∫
C
χA(e

−iϕα)∆̂(α)
d2α

π
. (10)

Last equation indicates that the transformed region operator is the same as the original one
except that its domain is rotated by an angle ϕ.

The analogues question is addressed for the transformation of region operator by a general
W2(C)/U(1) element D̂(β), and the result is

R̂(A) −→ D̂(β)R̂(A)D̂(β)† =

∫
C
χA(α)∆̂(α+ β)

d2α

π

=

∫
C
χA(α− β)∆̂(α)

d2α

π
(11)

Last equation indicates that the transformed region operator remains the same to the initial
one except that its domain is shifted by a length β.The proof of this is based on the property

D̂(µ)D̂(ν) = exp(12

∣∣∣∣ µ µ∗

ν ν∗

∣∣∣∣)D̂(µ + ν). This property indicates that the D̂ operator carries

a projective representation of the abelian group of translations in C, and is used to show the
necessary formula for the validity of eq. (11), namely that D̂(β)∆̂(α)D̂(β)† = ∆̂(α + β), as
follows

D̂(β)∆̂(α)D̂(β)† = D̂(β)D̂(2α)Π̂D̂(β)† = D̂(β)D̂(2α)D̂(β)Π̂

= exp(
1

2

∣∣∣∣ β β∗

2α 2α∗

∣∣∣∣)
× exp(

1

2

∣∣∣∣ 2α+ β 2α∗ + β∗

β β∗

∣∣∣∣)D̂(2α+ 2β)Π̂

= D̂(2α+ 2β)Π̂ = D̂(α+ β)Π̂D̂(α+ β)† = ∆̂(α+ β).
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Finally transformations of RO by coset elements Sp(2,C)/U(1) parametrized by γ = reiϕ,

the so called squeezing transformations Ŝ(r, ϕ), c.f. eq. (20), can been worked out utilizing the
commutation relations of the generators of the Lie(ISp(2,C)) algebra,

Ŝ(r, ϕ)†D̂(α)Ŝ(r, ϕ) = D̂(α cosh r − a∗eiϕ sinh r),

in particular for ϕ = 0, and α = αR + iαI , and if we let Ŝ(r, ϕ = 0) = Ŝ(r), we obtain a new

transformation Ŝ(r)†D̂(α)Ŝ(r) = D̂(αRe
r + iaIe

−r).

Since the squeezing operator is even i.e. Ŝ(r, ϕ)Π̂ = Π̂Ŝ(r, ϕ) then in view of the definition
of eq. (1), we obtain

R̂(A) −→ Ŝ(γ)R̂(A)Ŝ(γ)† =

∫
C
χA(α)∆̂(α cosh r − a∗eiϕ sinh r)

d2α

π
. (12)

To elaborate on this formula consider an element g ∈ Sp(2) ≈ SU(1, 1) in the fundamental
2D representation of that matrix group

g =

(
cosh r −eiϕ sinh r

−e−iϕ sinh r cosh r

)
.

This element satisfies the (pseudo)unitary condition gσ3g
† = σ3, where σ3 = diag(1,−1);also

g−1 = σ3g
†σ3. Next let B = (α α∗)T be a column vector, and let the transformation

B −→ B
′
= gB, this yields α cosh r − a∗eiϕ sinh r = (gB)1 = (B

′
)1, for the first component

of the transform vector which is identified with the argument of the delta operator in eq. (12).
Inverting the action of g elements cast the transformed region operator of equation (12) in the
form

R̂(A) −→ Ŝ(γ)R̂(A)Ŝ(γ)† =

∫
C
χA(α cosh r + a∗eiϕ sinh r)∆̂(α)

d2α

π
. (13)

The choice ϕ = 0, yields χA(αRe
−r + iaIe

r) for the characteristic function of region A,

which implies that the effect of Ŝ(r) operator on R̂(A), is to stretch its horizontal and vertical
components by the squeezing factors e−r and er respectively.

Combining elements D̂(β), and eiϕN̂ , we construct a general H(1) Heisenberg group element,

and if we further combine this with Ŝ(γ) we construct a general ISp(2,C) group element.

Therefore in order to find the effect of transforming general R̂(A) region operators with general
ISp(2,C) group elements, it suffices to combine the transformations issued in eqs.(10,11,13), to

obtain the total change effected on the characteristic function of R̂(A), namely a combination
of rotation, with translation and squeezing of the region A respectively, viz.

χA(αR + iαI) → χA(αR cosϕ− iαI sinϕ), (14)

→ χA(αR − βR + i(αI−I))β,

→ χA(αRe
−r + iaIe

r).

These actions are induced by unitary similarity transformations in FH space, the irrep module
of bosonic realization of ISp(2,C) group.
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4. Region operators constructed by ISp(2,C) maps
For the various domains in the table below the pti maps creating the respective RO (c.f. eq.
(4), have Kraus generators given in the 2nd column identified with ISp(2,C) elements. The
ISp(2,C) group via its metaplectic group Mp(2) serves as the kinematical (motion) group for
building any RO in phase plane.

Region operator ISp(2,C) generators Tg Act on Integration domain

Points ei
x
2
(A+A†) Π̂ x ∈ {1, 2, ..., n}

Line segment ei
x
2
(A+A†) Π̂ x ∈ [−L

2 ,
L
2 ]

Rotated line segment ei
x
2
(A+A†), eiθ(2K0− 1

2
1) Π̂ x ∈ [−L

2 ,
L
2 ], θ ∈ [0,Θ]

Circle ei
x
2
(A+A†), eiθ(2K0− 1

2
1) Π̂ x = r

2 , θ ∈ [0, 2π)

Disk ei
x
2
(A+A†), eiθ(2K0− 1

2
1) Π̂ x ∈ [− r

2 ,
r
2 ], θ ∈ [0, 2π)

Straight line segm. ei
x
2
(A+A†), ei

y
2i
(A−A†), Π̂ x ∈ R, y = q

Squeezed line segm. e
r
2
(eiθA†2−e−iθA2), ei

x
2
(A+A†) Π̂ x ∈ [−L

2 ,
L
2 ],

r
2e

iθ, r ∈ R

Canonical polygon eisϕ(2K0− 1
2
1) R̂▽ s ∈ {0, 1, ..., 2m−1}

Radon line e
1√
2
itΩ(Ae−iθ+A†eiθ)

∆̂(u, θ) t ∈ R

5. Appendix: The group ISp(2,C)
The symplectic group in n dimensions is the semi-direct product of the group ISp(n,C) with
the n dimensional Heisenberg-Weyl (HW) group Wn(C), i.e.Sp(n,C) = Sp(n,C) × Wn(C).
For n = 2, the simplest group is ISp(2,C) ≈ Sp(2,C) × W2(C). If alternatively we use the
metaplectic group Mp(2) which is the double cover of Sp(2,C). The root vector space of the
algebra of ISp(2,C) is one dimensional, i.e. the group is of rank one and is not semisimple. The
generators are Lie(ISp(2,C)) ≡ {K+,K−,K0, A+, A−, I}, Lie(Sp(2,C)) ≡ {K+,K−,K0}, and
Lie(W2(C)) ≡ {A+, A−, I}, commutation relations,

[K−,K+] = 2K0, [K0,K±] = ±K±,

and [∗, I] = 0, [A−, A+] = h̄I, where ∗ stands for any generators. The inhomogeneous part of
ISp(2,C) HW generators A−, A+, which form the central extension of the Euclidean group
of translations on the plane with extension parameter h̄, to be taken hereafter h̄ = 1. The
commutation relations among the sub-algebras read

[K−, A−] = 0, [K−, A+] = A−, (15)

[K+, A+] = 0, [K+, A−] = −A+, (16)

[K0, A±] = ±1

2
A±. (17)

The quadratic central element of the algebra (Casimir operator) reads, C := K2
0 − 1

2(K−K+ +
K+K−) = K0(K0 − I)−K+K−. In irreps the central element equals C = k(k − 1)I, where I is
the unit operator. The discrete series representations are labelled by k ∈ Q, and have module
span({|k,m⟩ ,m = N0}), with the action of the generators

K− |k,m⟩ =
√
m(m− 1 + 2k) |k,m− 1⟩ ,

K+ |k,m⟩ =
√
(m+ 1)(m+ 2k) |k,m+ 1⟩ ,

K0 |k,m⟩ = (m+ k) |k,m⟩ , C |k,m⟩ = k(k − 1) |k,m⟩ .
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Two representations corresponding to C = 3
16I, where I=

∑∞
m=0 |m⟩ ⟨m| is the unit operator

in the H, for k = 1
4 and 3

4 , are obtained by introducing the so called bosonic realization of the
Lie(ISp(2,C)) algebra. To this end let the Hilbert space H =spanC{|n⟩ , n = N0} = He⊕Ho ,
where He=spanC{|2n⟩ , n = N0} the even subspace and Ho=spanC{|2n+ 1⟩ , n = N0} the odd
subspace.

The bosonic realization of the Lie(ISp(2,C)) reads

A− = â, A+ = â†, (18)

K− =
1

2
â2, K+ =

1

2
â†2, K0 =

1

4
(ââ† + â†â) =

1

4
(2N̂ + I), (19)

The two irreps obtained by the bosonic realization are labelled by k = 1
4 , and k = 3

4 . The
Lie(ISp(2,C)) generators act in these irreps in the even and odd subspaces respectively as

follows: for the even subspace
∣∣∣k = 1

4 ,m
⟩
≡ |2m⟩ and the action is,

K− |2m⟩ =

√
m(m− 1

2
) |2m− 2⟩ ,

K+ |2m⟩ =

√
(m+ 1)(m+

1

2
) |2m+ 2⟩ ,

K0 |2m⟩ = (m+
1

2
) |2m⟩ ,

similarly for the odd subspace
∣∣∣k = 3

4 ,m
⟩
≡ |2m+ 1⟩ , and the action is,

K− |2m+ 1⟩ =

√
m(m+

1

2
) |2m− 1⟩ ,

K+ |2m+ 1⟩ =

√
(m+ 1)(m+

3

2
) |2m+ 3⟩ ,

K0 |2m+ 1⟩ = (m+
3

2
) |2m+ 1⟩ .

For these irreps the following Hermitian conjugation relations are valid K†
− = K+, K

†
+ = K−,

K†
0 = K0,and (A∓)

† = A±. Further the bosonic realization provides the relation between
operators involved in the definition and the canonical transformations of region operators (see
the table). Relations concerning rotations and translations of RO and elements of the W2(C)
group are respectively

eiϕN̂ = eiϕ(2K0− 1
2
)andD̂(α) = exp(αA+ − α∗A−),

while the generator of squeezing of RO is given in terms of coset elements Sp(2,C)/U(1)

Ŝ(r, ϕ) = exp(
1

2
r[eiϕâ†2 − e−iϕâ2]) = exp(r[eiϕK+ − e−iϕK−]). (20)

6. Conclusion-Prospects
Generating generalized operator observables determined by various domains of interest in phase
space is a project that addresses the question of going beyond the usual measurement theory
in QM. As these generalized observables may take the form of operator valued measure that
can be treated as a quantized form of classical characteristic functions supported on regions of
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interest, the problem of construction becomes that of generating such region operators (RO)
from known ones. The parity operator being the RO of 0 point serves as a start for building
RO with increasing area. The need of maps which by their action on a RO accumulate area and
on its defining region, suggests introducing positive trace increasing maps. Such maps admit
unitary generators from a motion group. Identification such group leads to ISp(2) groups and
metaplectic group Mp(2), in their bosonic realization and the FockHilbert space representations.
Previous works of that have succeeded in constructing RO for various highly symmetric phase
space domains find a unifying framework in the setting of kinematical group ISp(2). This would
allow constructing more general RO in terms of various shapes dictated by applications. Finally
the problem of addressing quantum entanglement in terms of RO can be addressed in this
mathematical framework. The question of existence of RO having or not classical analogue
for their supported regions in the presence of entanglement between quantum systems, can
be addressed and investigated. The findings would provide a novel manifestation of quantum
entanglement in the language of phase space region operators. [22].
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