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Abstract

Optimizing the heating, ventilation and air condition (HVAC) process consid-

ers a multi-objective optimization task with the main objectives being energy cost

and thermal discomfort. Typically, when the occupancy schedule of a building is

known in advance, a thermostat can be set to predetermined values in order to

minimize thermal discomfort. However, in dynamic occupancy schedule scenarios,

ensuring minimum thermal discomfort at all times is highly energy inefficient. In

more detail, even with the most accurate occupancy prediction algorithms some

uncertainty on the predicted schedule is retained. Minimizing thermal discomfort,

even in the slightest chance of occupancy, introduces unnecessary and unaccept-

able cost. In this context, our goal in this thesis was to investigate HVAC control

optimization algorithms that incorporate occupancy predictions in a feasible man-

ner. In more detail, we compare two algorithms derived from the literature against

a novel algorithm that we propose here, with respect to applicability, effectiveness,

efficiency and usability criteria. Our comparison shows that each one of the algo-

rithms possesses certain advantages and disadvantages with respect to the above-

mentioned criteria. Our approach performs similar to state of the art approaches

and offers increased usability since it relies on a single intuitive parameter.



Περίληψη

Η επίτευξη της βέλτιστης θέρμανσης, εξαερισμού και κλιματισμού (HVAC) κτι-

ρίων είναι μία πολύπλοκη διαδικασία που προαπαιτεί μια εργασία μαθηματικής βελ-

τιστοποίησης πολλαπλών στόχων, οι κυριότεροι εκ των οποίων είναι το κόστος ε-

νέργειας και τη θερμική δυσφορία. Συνήθως, όταν σε ένα κτίριο είναι γνωστό το

χρονοδιάγραμμα χρήσης του κτιρίου εκ των προτέρων, τότε ένας θερμοστάτης μπορεί

να ρυθμιστεί σε προκαθορισμένες τιμές, προκειμένου να ελαχιστοποιηθεί η θερμική

δυσφορία. Ωστόσο, σε σενάρια που υπάρχει δυναμικό χρονοδιάγραμμα χρήσης, η

εξασφάλιση της ελάχιστης θερμικής δυσφορίας ανά πάσα στιγμή είναι εξαιρετικά

ενεργειακά αναποτελεσματική. Πιο συγκεκριμένα, ακόμα και με τους πιο ακριβε-

ίς αλγόριθμους πρόβλεψης πληρότητας των χώρων ενός κτιρίου, διατηρείται κάποια

αβεβαιότητα σχετικά με το προβλεπόμενο χρονοδιάγραμμα χρήσης. Η ελαχιστοπο-

ίηση της θερμικής δυσφορίας, ακόμη και στις ελάχιστες πιθανότητες πληρότητας,

εισάγει περιττό και μη αποδεκτό κόστος. Σε αυτό το πλαίσιο, ο στόχος μας είναι να

διερευνήσουμε αλγορίθμους βελτιστοποίησης ελέγχου συστημάτων HVAC που εν-

σωματώνουν προβλέψεις πληρότητας με εφικτό τρόπο. Συγκεκριμένα, στην εργασία

μας συγκρίνουμε δύο αλγόριθμους που προέρχονται από τη βιβλιογραφία, με έναν νέο

αλγόριθμο που προτείνουμε εδώ, λαμβάνοντας υπ΄ όψιν στη σύγκριση κριτήρια εφαρ-

μογής, αποτελεσματικότητας, αποδοτικότητας και χρηστικότητας. Η πειραματική μας

σύγκρισή υποδεικνύει ότι καθένας από τους αλγορίθμους διαθέτει ορισμένα πλεονε-

κτήματα και μειονεκτήματα σε σχέση με τα προαναφερθέντα κριτήρια. Η προσέγγισή

μας παρέχει παρόμοια απόδοση με τις σύγχρονες προσεγγίσεις και προσφέρει αυξη-

μένη χρηστικότητα, καθώς βασίζεται σε μόνο μία παράμετρο που έχει διαισθητική

ερμηνεία.
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Chapter 1

Introduction

One of the biggest challenges of the electrical grid (and of all electrical systems)

operation is to match supply and demand. Any lack in matching supply and de-

mand might lead to blackouts or overheating of the electrical grid. Traditionally,

this challenge has been tackled by having in operation highly dispatchable supply

in order to match a fluctuating and largely unpredictable electricity demand. To

this end, fossil fuels provided a great energy resource that is highly dispatchable

and is able to support such an operation. In more detail, fossil fuels based gen-

erators are very fast in increasing or decreasing the energy generation according

to the needs of the grid operator. That said, in recent years we are experiencing

a shift in the paradigm of the electricity grid operation, both in the production

and the consumption of energy; a rapid re-engineering of the electrical grid. Chief

among them are the electrification of heating and transportation, along with the

increasing introduction of renewable energy generators, such as wind turbines and

photovoltaic systems in the energy generation mix.

This rapid re-engineering of the electrical grid and the electrical grid opera-

tion serves two main goals: (i) the support of an ever increasing energy demand,

and (ii) the reduction of our reliance on fossil fuels. In more detail, in recent years

we rely on electrical devices, or energy consuming devices, on almost all every

day activities, ranging from entertainment and healthcare, to security and trans-

1
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portation. This, in turn explodes our energy requirements. In this context, the

electrification of heating and transportation can aid, given the fact that electricity

based engines and electricity based heating generators (such as heat pump based

technology) are more energy efficient compared to fossil-fueled-based ones.

Moreover, our reliance on fossil fuel has been accused as the main reason

for the climate change. Such as, decreasing this reliance on fossil fuel can aid in

countering these changes. Also, reducing our reliance on fossil fuel can also support

countries and regions that do not have fossil fuel reserves. In this context, the

electrification of heating and transportation is aiding the reduction of this reliance,

compared to internal combustion engines and fossil fuel based heating. In addition,

the introduction of renewable energy generation into the energy generation mix

can ensure that the electricity provided to these electricity based technologies

comes from renewable generation and not fossil fuel.

That said, the ever-increasing penetration of renewable energy resources into

the energy generation mix raises stability issues for the electrical grid. In more

detail, the energy generated by such systems is not human controlled, but rather

weather driven, as it relies on the prevailing weather conditions. The energy

generated by photovoltaic systems relies on the incident solar radiation, while

the generation of wind turbines relies on the prevailing wind speed. This raises

particular stability issues, as the demand is no longer able to follow a highly

uncontrollable supply. Against this background, energy generation based on more

dispatchable renewable generations such as hydroelectric or geothermal have been

proposed. Also, the generation based on other fuels, such as nuclear power have

also been proposed as a way forward.

An alternative approach to counter these issues is the introduction of Demand

Side Management (DSM) incentivized policies and technologies. In more detail,

DSM stands for the concept of having the supply side trying to match an uncon-

trollable demand. This can be achieved by incentive programs or variable tariffs.



Chapter 1. Introduction 3

For instance, a simple DSM policy is having prices that are higher during the

periods of high energy consumption in order to incentivize the consumers to move

their consumption during off peak hours. For such approaches to operate well,

fast and rational control from the consumption side that respects the prices and

the incentives provided by the grid operator needs to happen. As such, advanced

economic control becomes an essential part of electricity consuming devices in

the next generation electrical grid. Furthermore, advanced economic control can

further increase the efficiency of such devices, as it can ensure an efficient opera-

tion. For instance, Heating, Ventilation and Air Condition (HVAC) systems can

be ensured that they operate during occupation hours, in order to further increase

the efficiency of the system, or they can be ensured that they do not overheat or

over-cool the system.

In the context of the DSM schema, efficient HVAC control can preheat or

precool a space before it is occupied if the electricity price is higher during the

occupation period, and just let the temperature to drop/raise to the preference

levels when the space is expected to be occupied.

To sum up, it is evident that in the new generation electrical grid efficient

control of electrical devices becomes an integral part of for supporting an ever

increasing energy demand and reducing on reliance on fossil fuels.

Due to these reasons, this thesis preoccupies itself with efficient control and

in particular with efficient control of cooling, heating and ventilation. Buildings

are considered the 60% of the electrical energy consumption in the EU (Marie

Rousselot, Energy efficiency trends in buildings , Policy Brief 2018)[19], and HVAC

is considered about 11% of the electrical energy consumption (REHVA Journal

01/2012)[18]. As such, increasing the energy efficiency of such devices, through

efficient control, provides great opportunities for:

1. Increasing the energy efficiency.

2. Provide opportunities for Demand Side Management.
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The latter is also supported by the fact that thermostatically controlled loads

(such as heating control and ventilation) are considered a natural energy buffer,

that allows energy to be stored in the form of heat until it used during occupation,

when it is necessary. In this context, Demand Side Management i.e.: shifting the

demand to non peak periods or periods that the grid operator needs the demand

to be shifted to, can happen without the usage of energy storage technologies,

such as batteries, flywheels etc, which can be particularly expensive.

In the next section, we provide more details about our work on HVAC control.

1.1 Heating, Ventilation and Air Conditioning

(HVAC)

As discussed above, HVAC represents one of the biggest shares of today’s res-

idential and commercial buildings’ energy consumption (EIA 2015)[3]. As such,

working towards more efficient HVAC systems can lower the energy bills and

carbon emissions. The use of optimization algorithms in this pursuit for higher

efficiency can provide us with a highly cost effective HVAC operation with min-

imum disruption, especially when compared to more intrusive energy efficiency

improvements, such as replacing the insulation of a building or installing new

HVAC equipment. For this reason, optimizing the HVAC control process has

been heralded as a key means for energy efficiency improvements in today’s build-

ings (Dounis and Caraiscos 2009)[2], preparing the way for an energy sustainable

future.

During the optimization of the HVAC control process, the most prevalent

trade-off is the one between the thermal discomfort that the occupants experi-

ence and the energy cost required. Thus, this can be technically represented as

a multi-objective optimization problem, with the two main and conflicting objec-

tives being the occupants’ thermal comfort preferences and the energy cost of the
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system. Besides these two objectives, one must also pay attention to the building

safety (e.g., the minimum and maximum allowed temperatures) and any other reg-

ulatory constraints. In settings with a fixed occupancy or working schedule, such

as in commercial buildings, the optimization of the HVAC control process can be

achieved by planning for the minimum energy cost required to meet the thermal

constraints that are set by the users. These constraints typically take the form

of a temperature comfort band, defined by fixed setpoints of maximum and mini-

mum temperatures, for particular time periods (e.g., the duration of a work day).

However, in dynamic occupancy settings ,such as in residential buildings and of-

fice buildings where the occupants don’t have a predetermined work schedule, this

approach can be found inadequate since the optimization process can be hindered

by occupancy estimates, that are inherently uncertain. More specifically, strictly

maintaining the temperature of a room so that it lays within a narrow comfort

band when there is only a small probability of occupancy can significantly increase

the energy usage of the HVAC system. In this case, it is essential to alleviate the

cost by accepting some probability of discomfort. Although, this approach creates

the additional challenge of defining the amount of acceptable discomfort that the

occupants could experience, according to their preferences.

A number of approaches for optimizing the HVAC control process have been

proposed over time that deal with probabilistic occupancy estimates (Gao and

Keshav 2013; Lu et al. 2010; Panagopoulos et al. 2015; Scott et al. 2011; Urieli

and Stone 2013)[5][6][7][8][14]. The two main lines of research that derive from

these works are the thresholding and the weighted sum approaches. The former

relies on defining a probability threshold above which the occupancy is considered

certain, thus thresholding the probabilistic occupancy estimates and optimizing

the HVAC control process on the derived deterministic occupancy schedule. The

latter utilizes the probabilistic occupancy schedules as it is and then relies on a

weighting parameter to determine the balance between the HVAC energy cost and
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the expected thermal discomfort (Panagopoulos et al. 2015)[7]. Both of these ap-

proaches have pros and cons with respect to the criteria of effectiveness, efficiency,

applicability and usability. Nevertheless, these advantages and disadvantages have

not been thoroughly understood and evaluated. Importantly, the critical question

of how to meet the user preferences in balancing heating cost and thermal discom-

fort is usually ignored in the literature. A notable exception, Panagopoulos et al.

2015 is our point of departure and provides preliminary results in this direction.

In the context of small commercial buildings, we identify the following neces-

sary requirements for a suitable balancing technique:

1. Applicability: It is crucial for the developed method to be able to be

applied in today’s smart thermostats and operate within the computation

resources requirements (for instance cloud services are not usually available

in domestic settings and their usage would render such an approach cost

ineffective). Also, it should be able to operate while meeting the real time

operation requirements of such systems. Furthermore, it should rely to mini-

mum extent to instrumentation (as extensive sensor networks are not usually

available in domestic settings) and additional information.

2. Effectiveness: Our proposed approach should be able to balance thermal

discomfort and HVAC cost in order to meet the user preferences.

3. Efficiency: Our proposed approach should be able to balance thermal

HVAC cost and thermal discomfort with maximum efficiency. In a bi-

objective optimization problem as this one, efficiency means that the ap-

proach should capture solutions on the Pareto frontier. Dominated solutions

should not be returned by the proposed approach (i.e., solutions that can

achieve a particular cost with lower discomfort or a certain discomfort with

lower cost should not be returned as final solutions). Returning dominated

solutions means that you can achieve the same discomfort or the same cost

with lower cost or lower discomfort respectively.
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4. Usability: It is critical for the proposed approach to be able to respect

the user preferences, as discussed in the effectiveness criterion. However,

this should also be possible through a user friendly procedure. For instance,

populating complex and hard to comprehend is not always the most user

friendly solution.

1.2 Thesis Contribution

In this thesis we provide a qualitative and quantitative comparison of the 2

approaches, mentioned in the previous section, evaluating their efficiency, effec-

tiveness, applicability and usability. We also propose a new approach based on

variable bounding and show that it is capable of capturing optimal solutions with

minimum user input. Our study shows that the weighted sum formulation is a

clear winner in terms of the range of user preferences that is able to capture. All

approaches, however, capture optimal solutions with minimum user input. As

such, the preference of one approach over the others depends on the specifications

of the application with respect to user input. In this work we also show that the

setpoint temperature set by the user should consider the origin of the discomfort

metric in stochastic occupancy settings, i.e., the region where the occupant feels

absolute thermal comfort, and not a parameter to balance discomfort and cost as

this balancing must occur while respecting the expected occupancy probabilities.

The work in this thesis was a part of selecting the most suitable algorithm for

balancing HVAC operation cost and expected occupant thermal discomfort in real

world trials. These real world trials were conducted as a part of the XBOS-DR:

Customer- Controlled, Price Mediated, Automated Demand Response for Com-

mercial Buildings project, that had as its main objective the development of an

operating system for buildings that could support various intelligent applications.

This project was a collaborative research with partners from UC Berkeley, Tech-
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nical University of Crete, Siemens and Quest and was funded by the California

Energy Commission. Preliminary results of this trial are also included and dis-

cussed int this work. Moreover, the work in this thesis led to a publication that

appeared in the Proceedings of the ACEEE Summer Study on Energy Efficiency

in Buildings, 2018. [1]

1.3 Thesis Outline

The rest of the thesis is structured as follows: In Chapter 2 we provide the

needed background material. Following, in Chapter 3 we investigate two ap-

proaches for dealing with expected discomfort, as well as introducing a new one.

In Chapter 4 we discuss the details of our experimental setups. In Chapter 5 the

evaluation results are discussed. Chapter 6 discusses some aspects of the afore-

mentioned real world trials and finally Chapter 7 provides conclusions and outlines

future work directions.



Chapter 2

Related Work and Background

Material

2.1 Model Predictive Control

Model Predictive Control (MPC) is a wide family of approaches for the control

of dynamic systems. These approaches are based on prediction over the state of

a system over a finite time horizon, computing possible future inputs at each step

by minimizing a cost function and controlling the system accordingly (Camacho

& Bordons, 2004)[17]. MPC is used on the state-of-the-art HVAC control process

optimization approaches, formulating it into the following steps (Camacho and

Alba 2013):

1. After a predetermined time interval, plan a HVAC control schedule over a

finite horizon into the future using models of the system dynamics.

2. Execute the first action of the planned schedule.

3. Repeat the procedure by shifting the planning horizon into the future.

In order to create control schedule models for thermal dynamics, thermal

discomfort, local weather, occupancy prediction (in the case of a building with

9
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dynamic occupancy schedule) and energy cost must be created. In some cases a

renewable generation model and an energy consumption model of the rest of the

building loads can be considered as well.

In HVAC control, the parameters of the learned models can be updated af-

ter each execution. This variant, called Adaptive Model Predictive Control, can

introduce stability issues in some settings, but in the case of HVAC control the

thermal dynamics are slow enough, so this approach can be considered without

considerable respective concerns (Siroky et al. 2011)[9].

2.2 Thermal Modeling

As discussed above, modelling is considered an integral part of Model Predictive

Control, as a model is utilized to plan an action schedule. In the context of HVAC

Model Predictive Control it is essential to have a thermal model of the building. In

more detail, a thermal model considers a function that aims to predict the future

thermal state of the building, given the current building thermal state and/or

additional information, along with the HVAC control action, such as heating or

cooling, or the setpoint temperature. As in all modeling approaches, thermal

modeling can also be divided into three broad categories (Prívara et al. 2013)[10]:

• White-box

• Gray-box

• Black-box

White-box modelling refers to the concept of utilizing all available physical laws

(or as much as possible), in order to make an extensive description of the thermal

dynamics of a building. For instance, a white box model would take into account

the thermal resistance of each one of the materials that comprise the walls, each

one of the materials that are used for the windows and make a complex network
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of the thermal dynamics of the building. Usually, these thermal dynamics are

modelled using resistance capacitors networks, that utilize an analogy with electric

networks. However, the main drawback of such approaches is that they require

extensive knowledge about the building and/or blueprints of the building, which

are not readily available in most cases, especially in older buildings.

On the other hand, black-box approaches learn the thermal response of a

building utilizing only recorded data that can be collected from the building, and

as such overcome the limitations of white-box approaches. Black-box approaches

include thermal modelling approaches based on neural networks, Support Vector

Machines, polynomial curve fits and other machine or statistical learning tech-

niques (e.g., Ruano et al. 2006, Huang et al. 2013)[11][12]. Nevertheless, the

main limitation of such approaches is that the black-box utilized doesn’t have a

physical meaning, and as such it might predict non physical values (i.e.: a neural

network might be predicting negative relative humidity values). This is especially

the case if the black-box approach is undertrained, because not enough data is

available, or the data is not covering the whole region of operation evenly.

Against these two approaches stand gray-box approaches, which are hybrid

approaches aiming to overcome both limitation by combining both previous ap-

proaches. Gray-box approaches rely on simplified physical equations, where the

equivalent thermal parameters are being trained using data. As such they retain

some physical meaning, while not requiring extensive knowledge that is not avail-

able. Due to these reasons, in this work a gray-box approach is utilized and in

particular we utilize a simple thermal model described below.

To create a thermal model of a building, an HVAC control action, a set

of variables (e.g., outside temperature, incident solar radiation), a certain time

horizon, and the current thermal state of the building serve as input to a function

that links them to an approximate future thermal state after the given time horizon



Chapter 2. Related Work and Background Material 12

has passed. More formally the thermal model can be expressed as:

xt+1 = TM(xt, a, t, i)

where x is the thermal state vector. a is the HVAC control action vector, t is the

time horizon and i is the additional variables vector.

2.3 Predicting Occupancy

Predicting the occupancy schedule in buildings with dynamic occupancy is

a crucial task that supports a number of intelligent applications in the context

of smart buildings, such as optimizing the charging of electric vehicles, ensuring

safety and security requirements, fault diagnostics etc. In this context, a number

of approaches have been proposed for predicting occupancy schedules; these ap-

proaches rely on different input signals such as passive infrared PIR sensors, GPS

signals from smartphones, WIFI usage etc.

In more detail, occupancy prediction approaches can be classified in two broad

categories, historical data-based and context aware. Historical data-based ap-

proaches rely only on the past occupancy schedule to make predictions. On the

other hand, context aware approaches utilize also information about the context

of the occupants, such as their position and their proximity to a target zone.

The former approaches require less instrumentation and hence they are ap-

propriate for the majority of today’s buildings and require minimum retrofitting.

In contrast, the latter approaches require extensive instrumentation that is not

typically available in today’s buildings. Nevertheless, despite the lack of infor-

mation, the historical data-based approaches have demonstrated high accuracy in

predicting the occupancy schedule (around 90% as demonstrated in (J. Scott et

al. 2011))[8].

In this work, we focus on such (i.e., historical data-based) approaches, and
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in particular in the approach proposed in (J. Scott et al. 2011) [8], that produces

state of the art predictions in comparison to other such approaches.

2.4 Thermal Discomfort

As discussed, modelling is considered an integral part of MPC, and along with

thermal modeling it is crucial to have a model of also the thermal discomfort of

the occupants. In more detail, thermal discomfort aims to capture the deviation

of the thermal state of the building, from a thermal state that is considered the

optimal with respect to the user preferences.

Thermal discomfort is generally a non-tractable concept that is affected by

various factors, ranging from the temperature of the building to relative humidity,

the activity of the user, the wind speed, the mood of the user, clothing and more.

As such, various thermal discomfort metrics have been proposed that aim to quan-

tify thermal discomfort utilizing such factors. One the most prominent thermal

discomfort modelling approaches considers the ASHRAE thermal sensation scale,

that standardizes the thermal discomfort into seven (7) different values, taking

into account the aforementioned factors.

The adaptive ASHRAE model has also been proposed for European build-

ings. The adaptive ASHRAE model relates indoor design temperatures or accept-

able temperature ranges to outdoor meteorological or climatological parameters

(ASHRAE Standard 55, 2013). [13]

That said, taking into account all these factors when modelling thermal dis-

comfort is extremely challenging, as this would require extensive sensors and in-

strumentation to detect relative humidity, clothing, activity or even mood. As

such, simplified versions of this thermal discomfort model are being utilized in

practice.

In this work, for simplicity, we are utilizing a thermal discomfort model that
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penalizes discomfort when it deviates from a user provided comfort zone. In

more detail, if the temperature is below or above user provided temperatures, we

quantify discomfort as the amount of time that actually the temperatures were

outside of this region. For instance, in Figure 2.1 the quantified discomfort would

be indicated by the area that is highlighted by the gray colored region, which

corresponds to the deviation of the temperature from the user provided comfort-

band.

Figure 2.1: Thermal Discomfort when the temperature is outside the comfort-band
limits.

Arguably, any other discomfort thermal metric can be used for our work here,

without loss of generality, as the comparison of all the approaches that we have

utilize exactly the same thermal discomfort metric.

A quantitative metric of the discomfort experienced by the occupants relies

on a user-provided comfort band in the form of thermostat set-points. These

set-points create a comfort band, that must be guaranteed while the building is

occupied, in order for the occupants to feel no thermal discomfort.
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A simple discomfort metric that highly penalizes thermal discomfort is:

Disc =


(T in − T up)2 if T in > T up

(T in − T down)2 if T in < T down

0 otherwise

(2.1)

where Disc is the instantaneous thermal discomfort that occupants experience,

T in is the indoor temperature and T up, T down are the upper and lower limits of

the comfort band, respectively. This is the metric that we adopt in our work here.

2.5 Expected Thermal Discomfort

Thermal discomfort can only be experienced when the building is occupied, and

since occupancy predictions can be incorporated while planing the optimal HVAC

control schedule, the expected thermal discomfort that an occupant experiences

is calculated as:

E[Disc] =


O(T in − T up)2 if T in > T up

O(T in − T down)2 if T in < T down

0 otherwise

(2.2)

where E[Disc] is the expected instantaneous thermal discomfort that the occu-

pants are expected to experience, O stands for the probabilistic occupancy es-

timates, T in is the indoor temperature and T up, T down are the upper and lower

limits of the comfort band, respectively. This is the metric we adopt in our work

here.



Chapter 3

Dealing with Expected Thermal

Discomfort

As discussed in Chapter 2, MPC deals with optimizing control processes, especially

infinite horizon ones, when a model is available. Such an optimization task can

be formulated as a receding-horizon planning, which repeatedly plans an optimal

action schedule ahead, according to some objective. That said, in the context

of HVAC, the optimization considers a multi-objective one. In more detail, the

objectives that one has to optimize in the context of HVAC consider cost, thermal

discomfort and also other secondary thermal requirements, including safety limits

such as not exceeding the temperature above particular values so that the building

is not damaged.

Two of these objectives are core, and, in this context, we can regard HVAC

as a bi-objective optimization (including cost and thermal discomfort) and also

certain constraints that are being put on top of that. In general, in multi-objective

optimization the aim is to find solutions that fall into the Pareto frontier, the set

of all Pareto optimal allocations (Osborne and Rubinstein, 1994, p.122)[21]. In

more detail, Pareto optimality considers the concept where none of the objective

functions can be improved in value without degrading the value of the other ob-

jective functions. Moreover, the solution that fall into the Pareto frontier are the

16
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ones that can achieve an optimal allocation of resources, and the solutions that do

not fall into the Pareto frontier are called Pareto dominated solutions. As such,

in the context of HVAC we also want to find a solution that balances cost and

discomfort falling on the Pareto frontier. In this context, bi-objective optimization

can be formulated either as a single objective optimization, which constraints on

the second objective, or combine both objectives through a unifying function, such

as the scalarized weighted sum function. The first approach, optimizing one ob-

jective while keeping the other as a constraint, is computationally very expensive.

As such, traditionally such applications focus on unifying approaches.

In this work we are considering and evaluating (as discussed in Chapter 1) two

well known unifying approaches and one new that we propose. In particular, the

basic challenge of HVAC control process optimization approaches considers deal-

ing with expected discomfort (i.e. step I in the MPC procedure above) and, in

particular, on how the HVAC control schedule is calculated given this uncertainty.

In this context, one can distinguish two main lines of thought: the threshold-

ing approach, and the weighted sum approach, which we detail in the following

paragraphs. Then we detail a new variable bounding approach that we propose.

3.1 Thresholding

Thresholding the probability of occupancy can be achieved by arbitrarily se-

lecting a threshold, which is then used for deriving a deterministic schedule of

occupancy. A common threshold of choice has a value of 0.5, where all the prob-

abilities of occupancy that have greater values than this threshold are pushed to

1. Likewise, all occupancy probabilities below this threshold are pushed to 0. A

typical probabilistic occupancy estimate vector can be seen below:

[
0.2 0.4 0.5 0.6 0.2 0.5 0.5 0.4

]



Chapter 3. Dealing with Expected Thermal Discomfort 18

were each number corresponds to a particular time interval (e.g., 15 minutes)

within a day. By setting the threshold to 0.5, the occupancy schedule is turned

from stochastic into a deterministic vector where 1 corresponds to certainty of

occupancy, while 0 corresponds to certainty of vacancy:

[
0 0 1 1 0 1 1 0

]

Subsequently, the optimization algorithm takes into account the user-provided

comfort bounds only when occupancy is expected (i.e., time intervals where the

deterministic occupancy is equal to 1), and respects the safety requirements or

does no action otherwise. In doing so, these methods do not cool or heat the room

when there is a low likelihood of occupancy.

However, the algorithm will have the same behaviour for time intervals with

probabilistic occupancy estimates that are very close to 0 as well as for time inter-

vals where the probabilistic occupancy estimates are just below the threshold (e.g.,

0.49 when a threshold with a value 0.5 is selected). This is not optimal in many

situations, since the optimization algorithm should preheat/precool the thermal

zone in order for it to be closer to being comfortable when the probability of oc-

cupancy is higher. Despite these weaknesses, this approach is intuitive and simple

enough to allow for straightforward human-computer interaction. In particular,

this method allows the user to visualize the anticipated deterministic occupancy

schedule, thus letting him/her to make informed decisions about overriding the

intelligence. Although the user may adjust the threshold, the intended user in-

volvement is to only populate the comfort bands (e.g., the heating and cooling

setpoints) for each day, which is a straightforward task.
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3.2 Weighted Sum Balancing

Weighted sum balancing is another approach to deal with expected thermal

discomfort. The Weighted Sum Balancing approach utilizes probabilistic occu-

pancy schedules and also a weighting parameter in order to balance the expected

thermal discomfort and the heating/cooling cost. In this context, the comfort

constraint is integrated in the objective function. In more detail, most of these

approaches minimize the weighted sum, J, of cost and discomfort as expressed in

the following form:

J = (1 − λ)Cost+ λE[Disc]

where λ is a weighting parameter which ranges from 0 to 1. Note here, that 0

and 1 are excluded since the other objective is omitted. If λ lies closer to 1 then

discomfort is valued more compared to cost. In contrast, when λ falls closer to 0

then cost is valued more compared to discomfort.

Such scalarized approaches, that unify cost and discomfort in a single objec-

tive, deal with the probabilistic occupancy estimates in a mathematically concrete

manner. In this context, they provide Pareto optimal solutions. Pareto optimal

solutions have an optimal balance of cost and discomfort. This means that the

same cost of a particular solution cannot be achieved with less discomfort and vice

versa. Notably, identifying the value of λ that perfectly captures the user prefer-

ences is a hard task. This is the case, because cost and discomfort are measured

in different units. Moreover, the relationship between cost and discomfort is hard

to be understood and interpreted by the occupants. That said, given that λ is a

single parameter, an iterative approach of populating it can be used in order to

meet the user preferences as illustrated in Panagopoulos et al. (2015)[7].

Now, hybrid approaches also exist that utilize both a thresholding and a

weighted sum balancing formulation, such as SPOT+ by Gao and Keshav (2013)[5].

However, these fall short in all categories of efficiency, usability and applica-
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bility compared to the weighted sum balancing or the thresholding approach

(Panagopoulos et al. 2015)[7]. As such, these approaches are not followed in

this work.

3.3 Variable Bounding

Here, we propose a new approach to deal with expected thermal discomfort.

This approach relies on variable bounding. In more detail, in our approach the

comfort-bands are adjusted in a dynamic manner and in accordance to the proba-

bilities of occupancy. Hence, the comfort-band bounds are closer to the user pro-

vided values when the occupancy probabilities are closer to 1, while the bounds

become wider as the probabilities get closer to 0. As such, as the probability of

occupancy becomes smaller, a greater deviation from the original comfort-band

is allowed. That said, it is not trivial to identify how wide should the bounds

become in accordance to the occupancy probability. One can suggest that the

bounds should become infinitely wide with occupancy probabilities close to 0.

However, a more narrow practical limit to the comfort-band boundaries could be

held useful in order to avoid unnecessary uncomfortable indoor thermal conditions

and facilitate a linear expansion function. More formally, the following formula

can be used to relate the expansion of the bands to the occupancy probabilities:

T up′ = OT up + (1 −O)Tmaxup

T down′
= OT down + (1 −O)Tmindown

where T up′ and T down′ stand for the upper and lower expanded band limit respec-

tively while Tmaxup and Tmindown stand for the upper and lower absolute limits,

respectively. These upper and lower limits can also consider the safety thermal

requirements of the building.



Chapter 4

Experimental Setup

For our case study we consider a small building with 4 distinct thermal zones

in Berkeley, California USA. We choose one zone for our evaluation, namely T2.

The zone is instrumented using wireless occupancy and temperature sensors which

collect data and send them to a local server running the building operating system

described in Fierro and Culler (2015)[4]. Our approach is explained further in this

chapter.

4.1 Case Study and Discomfort Evaluation

For our evaluation we use data for one day during the winter and evaluate our

approach for this particular day through an iterative procedure. In this procedure

we ensure that the thermal state at the beginning and end of the day is the same.

In this way, assuming that the same day repeats itself, we are able to provide

long term evaluation results in feasible time. This enables us to evaluate all of

the considered approaches with a wide population of the corresponding balancing

parameter (i.e. the threshold, the λ parameter, and the Tmaxup, Tmindown values,

respectively). In more detail, all approaches were evaluated using the following

ranges, for the corresponding parameters:

21



Chapter 4. Experimental Setup 22

1. Thresholding: A threshold within the 0-1 range with a step of 0.1.

2. Weighted Sum Balancing: within the 0-1 range with a step of 0.02.

3. Variable Bounding: Tmaxup and Tmindown from the comfort band limits to 4

times the safety requirements with a variable step of 0.1 to 1.

Starting at the beginning of the chosen day, the optimal action is acquired

from the MPC planning algorithm and it is simulated through the thermal model

for a 15 minute time interval, giving us the new thermal state of the zone. To this

new thermal state, a correction bias is added, sampled from a Gaussian Distribu-

tion with standard deviation and mean equal to the standard deviation and mean

of the error of the thermal model for the 15 minute time interval. Then time is

shifted by 15 minutes and the same process repeats for the whole day.

4.2 Prediction Models

Occupancy is predicted using a state-of-the-art algorithm proposed by (Scott

et al. 2011) that reportedly achieves ∼ 80% accuracy.

This is a similarity based approach, using 60 days of historical data to find

the 10 days that are the most similar to the day we are examining. This similarity

is based on the already known occupancy of the day, adding 4 hours from the

previous day to avoid not having enough data at the start of the day. Then the

occupancy schedule is predicted as an average of the similar historical days.

In this work we also evaluate this algorithm for our zones. As can be seen in

Figure 4.1 the occupancy prediction algorithm utilized achieves prediction accu-

racy in the range of 70-90%, which is consistent with the previous evaluations.
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Figure 4.1: Occupancy prediction approach evaluation for all zones.

Thermal response is predicted using a simple linear formulation and, in par-

ticular:

T in
t+∆ = T in

t + (c1T
in
t h+ c2T

in
t c+ c3(T out

t − T in
t ))∆

where, T in
t+∆ is the estimated indoor temperature after ∆ amount of time while T in

t

and T out
t are the current indoor and outdoor temperatures respectively. The pa-

rameters c1, c2 and c3 are the regression coefficients to be estimated. The thermal

model is estimated through online least-squares fitting regression. The predictive

accuracy of the model is reported in Figure 2. Outdoor temperature predictions

were acquired through online meteorological providers and in particular wunder-

ground (https://www.wunderground.com).

In this work we also evaluate the thermal model prediction accuracy, to show

that the root mean square error (RMSE) for an 8 hour ahead prediction is about

2.5F which is consistent with the state-of-the-art. (As can be seen in Figure 4.2)
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Figure 4.2: Thermal model prediction evaluation for all zones.

4.3 Model Predictive Control

The control schedule for the HVAC is handled with an MPC algorithm by

creating a Directed Acyclic Graph (DAG), where the starting node contains all

the info about the present state of the thermal zone. Each node points to at most

3 other nodes, created by simulating the heating, cooling or idle actions through

the aforementioned models.

Adaptive MPC could be used on a real life scenario (such as the real-world

trials discussed in Chapter 6), since the thermal dynamics of buildings tend to

be slow. Though, because the data created through the simulation can incor-

porate cumulative errors if used to retrain the models, for the purpose of these

experiments we did not use the Adaptive MPC approach.

While creating the DAG to plan the HVAC control schedule, after simulating

the same actions, but with different ordering (i.e., Heating followed by Idle and
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Idle followed by Heating actions), the nodes created can predict almost identical

thermal states for a given time interval. Rounding up the zone temperatures inside

the graph generation algorithm can speed up the execution time significantly, by

creating one single node for nodes with a very similar thermal state at the same

time interval. Trading off precision for computational efficiency in this setting is

very important, because the control schedule must be created before the next time

interval in a real life application. This could also be supported by an Approximate

Dynamic Programming approach later on.

Some sample graphs created during the experiments can be seen in figures

4.3, 4.4, 4.5:

Figure 4.3: MPC graph created with a 1 hour planning horizon.
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Figure 4.4: MPC graph created with a 2 hour planning horizon.

Figure 4.5: MPC graph created with a 4 hour planning horizon.

The nodes colored with red indicate the solution found by a shortest path
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dynamic programming algorithm. The numbers 0, 1 and 2 indicate the Idle,

Cooling and Heating actions respectively. The first action of the optimal path is

realized and the MPC planning algorithm is run again for the next time interval.

For the experiments, a planning horizon of 4 hours was used and the temper-

atures of the thermal zone of each node were rounded down to the first decimal.

As you can see, the size of the tree rises exponentially with the planning horizon.

The buildings safety constraints are implemented by not allowing node creation

for temperatures that exceed these limits. In the case the algorithm runs for a

starting thermal state that exceeds the safety constraints, the action that will

bring the thermal state back to a safe state quicker is chosen.
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Evaluation Results

In this chapter we provide evaluation results and a thorough discussion. In more

detail, the following paragraphs provide the evaluation results for each one of the

balancing approaches, i.e. the Thresholding approach, the Weighted Sum Bal-

ancing approach and the Variable Bounding approach. We discuss our evaluation

results with respect to the objective requirements as introduced in Section 1.1, in

particular applicability, effectiveness, efficiency and usability.

5.1 Thresholding

In this section we discuss our evaluation results against the general require-

ments stated in Chapter 1 (i.e., applicability, effectiveness, efficiency, usability) for

the Thresholding approach. Firstly, the Thresholding approach is an applicable

approach, as it doesn’t require extensive instrumentation and retrofitting and the

evaluation results demonstrate that the approach can operate in real time as it is

able to calculate a solution in milliseconds in a typical personal computer. Further-

more, Figure 5.1, 5.2, 5.3 and 5.4 illustrate the evaluation results of the approach

with respect to different threshold parameters. In more detail, figure 5.1 provides

a 3D illustration of the cost and discomfort against the threshold parameter, while

figures 5.2, 5.3 and 5.4 provide illustrations of cost against discomfort, discomfort

28
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against the threshold parameter and cost against the threshold parameter for all

different selected parameters respectively.

As can be seen the solutions captured by the Thresholding approach seem to

fall on the Pareto frontier, while not any dominant solutions were captured. Hence,

the approach meets the effectiveness and efficiency requirements as discussed in

Section 1.1. Nevertheless, the Thresholding approach seems to capture only a

narrow region of the Pareto optimal solutions as all the captured solutions range

between $1.27 cost and $1.32 cost. Hence, not a wide range of user preferences can

be met. Nonetheless, the approach relies only on a single parameter (the threshold

parameter), hence in this context it is a user friendly approach. In addition, in the

case where the users want to just have solutions that fall very close to minimum

cost, the threshold parameter can be set fixed requiring as such not any parameter

population from the users.

Figure 5.1: Aggregate Chart for the Thresholding approach.
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Figure 5.2: Balancing Cost and Discomfort for the Thresholding approach.

Figure 5.3: Balancing Discomfort for the Thresholding approach.
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Figure 5.4: Balancing Cost for the Thresholding approach.

5.2 Variable Bounding

In this section we discuss our evaluation results against the general require-

ments stated in Chapter 1 (i.e., applicability, effectiveness, efficiency, usability)

for the Variable Bounding approach.

First and foremost, with respect to applicability, also the Variable Bounding

approach requires minimum computational time in a typical personal computer

and hence we believe that it is totally applicable with even lower resource avail-

ability. It also requires minimal instrumentation and connectivity. In this context,

this approach meets the applicability requirements as discussed in Section 1.1.

Now, figures 5.5, 5.6, 5.7 and 5.8 illustrate the evaluation results of this ap-

proach for different bounding parameters. In more detail, Figure 5.5 provides a

3D illustration of the cost and discomfort against the variable bound parameter,

while figures 5.6, 5.7 and 5.8 provide illustrations of cost against discomfort, dis-



Chapter 5. Evaluation Results 32

comfort against the variable bound parameter and cost against the variable bound

parameter for all different selected parameters respectively.

As can be seen, the approach effectively balances thermal discomfort and

operating cost and hence meets the effectiveness requirement. With respect to

efficiency, also this approach seems to capture solutions in the Pareto frontier

and we were not able to identify considerably dominated solutions. Nevertheless,

with respect to usability this approach also only captures a narrow range of Pareto

optimal solutions and hence it is potentially not able to respect a wide range of user

preferences with respect to balancing operational cost and thermal discomfort. For

instance, if a user wants the operational costs to fall lower than the 1.29$ price

no solution would be available. Nonetheless, if this approach is to be used in

settings where the users wants to minimize their discomfort with minimal cost,

this approach is also suitable and user friendly as the user is not required to

populate any parameters, since any variable bound parameter will give solutions

that are close to the same region.

In this context we advise the user to use a variable bounding parameter with

a value between 0 and 0.5, since these values provide the minimum discomfort

(as can be seen in Figure 5.7). Of course, if the user wants to minimize the

operational cost then the heating system can be completely switched off. As such,

this solution, although illustrated in the figure, does not add to the range of the

solutions that the approach is able to capture (this solution is trivial).
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Figure 5.5: Aggregate Chart for the Variable Bounding approach.

Figure 5.6: Balancing Cost and Discomfort for the Variable Bounding approach.
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Figure 5.7: Balancing Discomfort for the Variable Bounding approach.

Figure 5.8: Balancing Cost for the Variable Bounding approach.
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5.3 Weighted Sum Balancing

In this section we discuss our evaluation results against the general require-

ments stated in Chapter 1 (i.e., applicability, effectiveness, efficiency, usability) for

the Weighted Sum Balancing approach. First and foremost, this approach is also

applicable as it relies on minimal instrumentation and computational resources.

In more detail, we observe that solutions are able to be captured in milliseconds,

which render this approach suitable to meet the real time operation constraints.

Now, figures 5.9 - 5.12 illustrate the results of this approach for various weight-

ing parameters. In more detail, figure 5.9 demonstrates the results of this ap-

proach, with respect to balancing thermal discomfort and cost for the weighting

parameters within the range of 0.0 - 1.0. Furthermore, figures 5.10, 5.11 and

5.12 demonstrate the balancing of cost against discomfort, discomfort against the

weighted sum λ parameter and cost against the weighted sum λ parameter for

all weighting parameters respectively. As can be seen, clearly (especially in figure

5.10) the approach is able to capture Pareto optimal solutions effectively, is able

to balance thermal discomfort and energy cost according to the human prefer-

ences and hence is effective. Furthermore, the approach captures Pareto solutions

in the Pareto frontier, since we do not observe any majorly dominated solutions.

Any small variation is attributed to planning approximations. In this context, the

proposed approach meets the efficiency requirement stated in Chapter 1.

With respect to usability, the approach is able to capture a wide and evenly

distributed range of solutions within the Pareto frontier, and as such is able to

meet a wide range of user preferences, with respect to balancing energy cost and

thermal discomfort. Furthermore, this is happening based on single parameter

that is able to be populated by the user in an adaptive manner. For instance, if

the user feels that the cost is high or that the discomfort is very low, the user can

progressively reduce the λ parameter until their preferences are met. Conversely,

if the discomfort is very high or the cost is very low the user can progressively
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increase the λ parameter until their preference is met, respectively. Hence, this

approach also meets the usability criterion, as discussed in Chapter 1. In this

context, this approach is more suitable for settings where a precise representation

of the user preferences is required.

Importantly, with respect to Pareto efficiency, the efficiency of this approach is

also supported theoretically, as the weighted sum scalarized function formulation of

the multi objective optimization considers sufficient but non necessary condition

for Pareto optimality (L. Zadeh 1963)[20]. In the next section, we provide a

comprehensive discussion and a comparative analysis among the three approaches.

Figure 5.9: Aggregate Chart for the Weighted Sum Balancing approach.
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Figure 5.10: Balancing Cost and Discomfort for the Weighted Sum Balancing
approach.

Figure 5.11: Balancing Discomfort for the Weighted Sum Balancing approach.



Chapter 5. Evaluation Results 38

Figure 5.12: Balancing Cost for the Weighted Sum Balancing approach.

5.4 Main Results and Discussion

As discussed in sections 5.1, 5.2 and 5.3 all approaches, namely the Thresh-

olding, Variable Bounding and Weighted Sum Balancing approaches, meet the

effectiveness, efficiency, usability and applicability requirements. In more detail,

all approaches are able to capture solutions in minimum computational time, that

would allow the approaches to be applicable in settings with minimum computa-

tional resources and meet the real time operating requirements. Furthermore, all

the approaches are effective, as they effectively balance the HVAC energy cost and

the thermal discomfort of the residents, according to the user preferences. All ap-

proaches are Pareto efficient, as any dominated solutions observed are attributed

only to the approximation of planning.

Nevertheless, the approaches vary considerably with respect to the usability

criterion. In more detail, the Thresholding and Variable Bounding approaches
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seem to only capture solutions in a narrow range of Pareto optimal solutions

within the Pareto frontier, and as such they are able to represent a small range of

user preferences.

Hence, these approaches are suitable for cases where minimum thermal dis-

comfort is required, with a minimum cost. In these settings, it is not even required

for the population of the parameters for the Thresholding approach and the Vari-

able Bounding approach respectively. Importantly, the Weighted Sum formulation

is able to capture a wider and even distributed range of Pareto optimal solutions

and thus it is suitable for settings where there is a need to capture a wide range

of user preferences.

Our evaluation results are collectively reported in Figures 5.13, 5.14 and 5.15.

Figure 5.13: Balancing Cost and Discomfort for all methods.
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Figure 5.14: Balancing Cost for all methods.

Figure 5.15: Balancing Discomfort for all methods.
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Since both the Variable Bounding and the Thresholding approach produce

solution points in a very narrow region, there is limited value in populating the

balancing parameters with values other than the intuitive 0.5 for the threshold and

the intuitive safety requirements for the bounds. This is further supported by the

fact that small changes in the threshold and variable bound variables correspond

to very small variations in the solution points captured, as can be seen in Figures

5.13 and 5.14 for both the Thresholding approach and the Variable Bounding

approach.

Populating the Weighted Sum Balancing parameter is an important task. As

discussed, Figure 5.15 depicts the relationship between some balancing parameter

and discomfort, while Figure 5.14 shows the relationship between some balancing

parameter and cost. Both cost and discomfort have a generally monotonous rela-

tionship with the balancing parameter which confirms that one can progressively

increase or reduce the parameter until the user preferences are met in an adaptive

manner (as also discussed in Panagopoulos et al. 2015).

Figures 5.16 to 5.20 illustrate the sample days that were simulated using the

Weighted Sum Balancing approach, for concreteness purposes. As can be seen,

the thermal comfort of the occupants is ignored for low λ parameter values, and

the algorithm mostly respects the safety limits. When higher values are chosen

for the λ parameter, the algorithm starts preheating the thermal zone, so that low

thermal discomfort can be achieved when the occupants arrive, with minimum

cost.
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Figure 5.16: Sample day for λ = 0.01

Figure 5.17: Sample day for λ = 0.25
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Figure 5.18: Sample day for λ = 0.5

Figure 5.19: Sample day for λ = 0.75
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Figure 5.20: Sample day for λ = 0.995

To sum up, as discussed, although the Weighted Sum Balancing approach

allows users to specify a wider range of balancing points, all approaches yield

Pareto efficient solutions. As such, all methods are able to generate efficient solu-

tions when a fixed operation is needed around the point of minimum discomfort.

In addition, neither the Thresholding nor the Variable Bounding approach require

users to populate any parameters.



Chapter 6

XBOS-DR and Real-world Trial

Evaluation

As discussed in Chapter 1, this work aims to provide preliminary results to aid

in the selection among various thermal discomfort and energy cost balancing ap-

proaches, to be used in a real trial evaluation as part of the XBOS-DR research

endeavor. Based on the results discussed in Chapter 5, we selected the Weighted

Sum Balancing approach. In the following paragraphs we discuss further lessons

learned for our approach from the real-world trials.

In more detail, The XBOS-DR was a collaborative research project with part-

ners from UC Berkeley, Technical University of Crete, Siemens and Quest, funded

by the California Energy Commission with the aim to develop an operating sys-

tems for buildings that can support the seamless interconnection of Internet of

Things (IOT) devices to enable the communication of such devices in different

parts of a building. The aim of this building operating system is to support intel-

ligent applications such as energy efficiency, demand side management, security

diagnostics, etc.

In this context, the selection of a balancing technique between thermal com-

fort and HVAC cost serves as a preliminary evaluation in a simulation environ-

ment, before applying this technique to real world trials. The real world trials
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consider both a proof of concept for the operating system and also an evaluation

for the technique itself in the real world. In order to evaluate the XBOS-DR op-

erating system and the respective intelligent application ecosystem, including an

intelligent thermostat HVAC control approach, we deployed 19 buildings across

California as shown in the following table.

Site Name Classification No. of thermal zones
CSU Dominguez Hills Business 8
Orinda Community Center Multi-use assembly spaces 12
North Berkeley Senior Center Senior center 3
The Local Butcher Shop Mercantile 3
Avenal: Animal Shelter Animal Shelter 13
Avenal: Movie Theatre Assembly 13
Avenal: Veterans Hall Senior Center 13
Avenal: Recreation Center Community Center 13
Avenal: Public Works Department Moderate Hazard Storage 13
Fire station 1, Hayward Business 3
Fire station 8, Hayward Business 3
Berkeley Corporation Yard Business 3
Richmond Field Station, Bdg 190 Business 3
South Berkeley Senior Center Senior center 3
Jesse Turner Fontana Community Center Assembly 10
CIEE Business 3
LBNL building 90C Business 3
Word of Faith Christian Center House of Worship and Accessory School Spaces 12
Orinda Library Library 12

Table 6.1: Buildings selected for the project

These buildings consider small and average sized commercial buildings which

are typically not employed with building automation systems, and hence XBOS-

DR can fill this gap. The buildings range from butcher houses, that offer great

application for thermostatically control loads for demand side management, to

housing for the elderly that have more strict requirements with respect to the

thermal comfort range. The experiments spanned over 2 summers in California,

where appropriately designed demand side management signals called for reduc-

tion in the usage of energy.

In this context, three approaches for reducing energy cost have been evaluated.

Among them, the Weighted Sum Balancing of energy operational cost and thermal

discomfort which was identified by this work. The other two approaches considered

the widening of the set-point temperatures and the business-as-usual strategy

during a DSM event.
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Preliminary results, demonstrated that both the Variable Bounding approach

and the Weighted Sum Balancing approach were efficient in reducing the cost

of energy within the aforementioned required range, according to the demand-

side management signal. Nevertheless, the Weighted Sum Balancing approach

(which was selected from this work) demonstrated slightly better performance with

respect to energy savings in these events. In addition, the λ balancing parameter,

which automatically adjusts the balancing of HVAC cost and thermal discomfort

with respect to the price, has proven to be extremely user friendly.

In a nutshell, the preliminary results of this real world trial confirmed that the

energy balancing approach of Weighted Sum Balancing can be supported by the

XBOS-DR operating system, but also demonstrated efficiency and effectiveness

when accounting for demand side management signals.

Imminent future work of the XBOS-DR and related project considers the in-

corporation of this balancing approach within a low-income thermostat appropri-

ately designed for low income housing. This is supported by the relatively simple

formulation of the approach, relying on a single scalarized function that renders

the optimization simple to be solved, especially in devices with low computational

power such as a low cost thermostat appropriate for low income houses. This

line of research and progress, highlights the importance of our work of initially

identifying this approach as a promising one with our simulation work.



Chapter 7

Conclusions and Future Work

In this work, we evaluated three strategies in stochastic occupancy settings, for

the purpose of optimizing the HVAC control process and proposed a new approach

that relies on variable bounding. Our analysis confirms that weighted sum for-

mulation is superior with respect to the range of user preferences that is able

to capture. Nevertheless, we show that all approaches evaluated are capable of

capturing optimal solutions with minimum user input. As such, the preference of

one approach over the others depends on the desired user input. In this context

we also showed that in stochastic occupancy settings the setpoint temperature

set by the user should consider the origin of the discomfort metric rather than a

parameter to also balance discomfort and cost.

Future work includes experimentation with non linear expansion of the bounds

in the variable bounding approach. Depending on the non-linear function utilized

this approach can render variable bounding more risky or hesitant with respect to

introducing discomfort in minimizing cost. Another goal is the incorporation of

the humidity of a thermal zone as a part of the thermal discomfort modeling.

Additional future work includes the investigation of Peak Demand Charges

within the context of our optimization schema, and the design of a distributed

algorithm that would allow optimizing the HVAC control process of multiple ther-

mal zones of a building, in a feasible manner. In more detail, multiple thermal
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zones typically consider large commercial buildings that come with advanced en-

ergy bills. Such advanced energy bills and billing schemas include peak demand

charges. Peak demand charges require, apart from minimizing the total energy

consumption within a specific billing period, to also trim the peaks, as high peaks

lead to higher cost. As such, optimizing multiple zones in a way that synchronizes

high energy demand processes to not operate at the same time can be crucial.

Doing this in the context of the optimization MPC-based approach to respond to

additional tariff-based DSM schemas, can be extremely valuable and considers a

future work direction.
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