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Abstract: A module for Very High Resolution (VHR) satellite stereo-pair imagery processing and
Digital Elevation Model (DEM) extraction is presented. A large file size of VHR satellite imagery is
handled using the parallel processing of cascading image tiles. The Scale-Invariant Feature Transform
(SIFT) algorithm detects potentially tentative feature matches, and the resulting feature pairs are
filtered using a variable distance threshold RANdom SAmple Consensus (RANSAC) algorithm.
Finally, point cloud ground coordinates for DEM generation are extracted from the homologous pairs.
The criteria of average point spacing irregularity is introduced to assess the effective resolution of the
produced DEMs. The module is tested with a 0.5 m × 0.5 m Geoeye-1 stereo pair over the island of
Crete, Greece. Sensitivity analysis determines the optimum module parameterization. The resulting
1.5-m DEM has superior detail over reference DEMs, and results in a Root Mean Square Error (RMSE)
of about 1 m compared to ground truth measurements.
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1. Introduction

Land surface texture and topography regulate and interact with climatic, hydrological,
geomorphological, and ecological mechanisms [1], and provide the foundation for socioeconomic
processes to build upon. This coupling is so fundamental [2] that scientific observation can often be
conceptualized solely by understanding the characteristics of the land surface upon which they are
measured. Digital land surface, object models, and their statistical properties benefit from a wide
range of state-of-the-art applications and environmental research topics, ranging from the estimation
of terrestrial [3] and climatic variables [4] to hazard assessment [5] and disaster management [6],
among others.

Remote sensing techniques have provided indispensable solutions for generating the Digital
Elevation Models (DEMs) of various resolutions and accuracies [7], especially for large area coverage.
Low-resolution DEM products (30 to 100 m) can also be adequate for numerous environmental
applications [8] but provide poor terrain detail, especially in lowlands with minor slopes. GeoEye-1
currently has the highest commercial imaging system resolving power, and can collect samples at a
ground resolution of 0.41 m in the panchromatic or black and white mode as well as multispectral
or color imagery at a resolution of 1.65 m. The United States (US) government operation license
regulation requires GeoEye’s products to be resampled at 0.5 m for all customers.

The intended use of the GeoEye GeoStereoTM product [9] is to obtain an accurate Digital Elevation
Model (DEM) generation for three-dimensional (3D) viewing and feature extraction applications.
Experiments on generating DEMs from GeoEye-1 were only made available recently [10]. Notable
examples include comparisons with lower (e.g., [11] for various locations in Catalonia, Spain) and
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similar resolution satellite imagery (e.g., [12,13] for the coast of Almería, Spain and [14] for the city
of Trento, Italy), as well as specialized environmental applications such as the production of 1:5000
topographic maps for Nanisivik, Nunavut, Canada [15], floodplain mapping of a seasonal stream in
Crete, Greece [16], gully erosion assessment in Sehoul, Morocco [17], and enhancing the security of
high-value facilities via earth observation data analysis at the Jülich Research Centre, Germany [18].

Due to misinterpretations caused by ambient light and shadow as well as sensor geometry,
matching feature pixels in a stereo pair presents a challenge. Feature detection methods that initially
detect pronounced features in images (e.g., corners, high entropy regions, scale space maxima, etc.),
following local approaches [19–21] have demonstrated considerable success in a variety of applications
such as object recognition [22], wide-base line stereo [23], robot navigation [24], content-based
image retrieval [25,26], image stitching for panorama construction [27], etc. The Scale-Invariant
Feature Transform (SIFT) proposed by [22,28] is probably the most popular and widely used local
approach [29]. Besides SIFT, several methods, such as Principal Component Analysis (PCA)-SIFT [30],
Gradient Location and Orientation Histogram (GLOH) [31], Speeded Up Robust Features (SUFR) [32],
DAISY [33], Maximally Stable Extremal Regions (MSER) [23] and others, have been used for density
matching in various applications. Previous evaluations and comparison [31,34] demonstrate the
excellent performance of SIFT; nevertheless, a comparison to other approaches is beyond the scope of
this research.

With new methods or modification to existing ones, researchers are still engaged with feature
extraction and matching, especially for photogrammetric applications, with SIFT-like algorithms
dominating the literature [35]. The SIFT algorithm or variants are successfully used in various DEM
extraction applications, among which recent and captivating initiatives of topography extraction from
Synthetic Aperture Radar (SAR) images [36], high accuracy lunar surface reconstruction from the
Apollo 16 Mapping Camera (MC) [37], and archeological site topographic modeling from a compact
camera onboard an Unmanned Aerial Vehicle (UAV) [38].

The exploration of the data sources’ efficiency in combination with a specific application and
advances in available processing methods are still in demand [39] and offer new opportunities for
research. The motivation for this work lies in the need to develop a new DEM extraction module
that can allow the testing of feature extraction algorithms (such as SIFT presented in the paper) and
fine-tuning their parameters beyond the black box methodologies provided by commercial software.
Additional functionalities include DEM extraction from part of the stereo pair rather than the full
dataset, as well as the ability to optimize and control processes in all parts of the methodology.
Additionally, the module provides a flexible method of extracting area specific, high-resolution DEM
products from stereo-pair imagery for specialized environmental applications that do not require a
full-scale commercial software suite. The novelty and main contributions of this work include the use
of parallel processing and image segmentation to decrease image processing time, and that besides
previous work by the authors [40–42], to our knowledge, the combination of methods presented here
for DEM generation from GeoEye-1 imagery has not been previously documented in the literature.

2. Methodology

2.1. Ground to Image

The first requirement for a DEM from satellite imagery is a satellite stereo-pair accompanied by a
sensor model that describes the geometric relationship between the three-dimensional object space
R(X, Y, Z) and two-dimentional image space M(r, c). The sensor model can be made available in either
the rigorous physical sensor model or an abstract sensor model [43]. The proprietary physical sensor
model includes all of the internal and external (i.e., location and orientation) sensor model information
associated with a specific satellite sensor, at the moment the imagery is being captured but lacks
Ground Control Point (GCP) information [44]. Instead of distributing a proprietary physical sensor
model, vendors usually provide an approximation [45] via an abstract model or Rational Function
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Model (RFM) that also incorporates the use of vendor GCP information. The RFM is commonly defined
by 78 rational function coefficients (RFCs), approximating the specific sensor model information to map
geodetic ground points to the imaging system’s pixel coordinates. The advantage of the RFM is that it
is sensor-independent, which means that the user is not required to know all of the specific internal
and external camera information or acquire additional GCPs. For the ground-to-image transformation,
the defined ratios of polynomials have the forward form presented in Equations (1) and (2):

r =
(
1 Z Y X · · ·Y3X3) · (a0 a1 · · · a19)

T

(1 Z Y X · · ·Y3X3) · (1 b1 · · · b19)
T (1)

c =
(
1 Z Y X · · ·Y3X3) · (c0 c1 · · · c19)

T

(1 Z Y X · · ·Y3X3) · (1 d1 · · · d19)
T (2)

where r and c are image space coordinates, X, Y, Z are ground coordinates, and a, b, c, and d are the
respective RFCs [46] provided by the remote sensing product vendor.

The methodology described in this paper proposes the use of SIFT in consecutive tiles of the
stereo pair that are processed in parallel so as to reduce computational cost. Feature pairs MR(rR, cR),
ML(rL, cL) are stored for each tile and controlled for duplicates at the end of the process. Then, outlier
detection is performed using RANSAC. At the final steps MR(rR, cR), ML(rL, cL), pairs from the image
domain are transformed to object space R(X, Y, Z). The methodology is outlined in Figure 1 and
described in detail in the following paragraphs.
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Figure 1. Satellite stereo-pair processing for the extraction of an elevation point cloud.

2.2. Cascading

It has long been known that program restructuring can dramatically change computational
cost [47–50]. The partitioning of loop iteration space leads to the segmentation of a large matrix into
smaller blocks, thus fitting accessed matrix elements into a smaller and reusable buffer. Loop tiling
aims at improving cache performance, making effective use of parallel processing capabilities, and
reducing the overheads associated with executing loops. The need for overlapping or cascading rather
than using consecutive tiles arises from the use of a Gaussian kernel in the SIFT feature detection
method that only detects features in the center of the kernel. For simplicity, the image and tiles are
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considered to be rectangular. For an image of size Q that can be broken down to (Q/p)2 tiles of side
p, an iterative computation of Q2 pixels will take place regardless of whether the image is processed
as a whole or in parts. When tiles overlap by {t× p; 0 < t < 1} pixels on each side, then, taking
into account that the tiles in the perimeter are only overlapped once (Figure 2), the total number of
iterations T is given by:

T =

(
Q− 2

(
p− t

2 p
)

p− tp
+ 2

)2

=

(
Q− tp
p− tp

)2
(3)

Obviously, for p << Q and w ≈ 1, T can cause great computational cost, and the use of parallel
computing is strongly recommended.
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Figure 2. Example of cascading of a rectangular image of size Q×Q pixels broken down in tiles of size
p× p that overlap by t× p.

2.3. SIFT Feature Point Detection and Matching

The Scale Invariant Feature Transform or SIFT [22,28] is an image descriptor for image-based
matching that is computed from the image intensities around key locations obtained from the
scale-space extrema of differences-of-Gaussians (DoG) [51,52]. The method of feature detection is
roughly equivalent to the Laplacian of Gaussian (LoG) scale-adaptive blob detection method [53,54]
that is used in a variety of environmental detection applications [55,56], as the DoG is given by the
subtraction of two LoGs at different scales:

D(r, c; σ) = L(r, c; kiσ)− L
(
r, c; k jσ

)
(4)

where L(r, c; kσ) is computed from the input image M(r, c) by convolution with a Gaussian kernel of
scale kσ:

G(r, c; kσ) =
1

2π(kσ)2 e−(r
2+c2)/2(kσ)2

(5)

The characteristic of the SIFT descriptor is that it remains invariant to noise, translations,
rotations, and scaling transformations in the image domain, and is robust to reasonable viewpoint and
illumination variations [57]. Once SIFT descriptors are detected on the members of the stereo pair, they
can be matched [22] as homologous for further processing.

2.4. Outlier Detection

Although satellite stereo pairs are usually produced using a linear pushbroom camera [58]
and therefore are not perspective images, strictly speaking, the tentative feature matches in them
generate a matrix that is analogous to the fundamental matrix of perspective cameras [59] that
can be explained by some set of model parameters, while false matches (outliers) do not fit that



Sensors 2019, 19, 1123 5 of 18

model [60]. Outliers can come, e.g., from extreme values of the noise in the images, erroneous
measurements, incorrect hypotheses about the interpretation of data, shadows, etc. The RANdom
SAmple Consensus (RANSAC) algorithm [61] is an iterative model parameter estimator that, unlike
conventional parameter estimation techniques, uses the smallest possible set of potential inliers and
proceeds to enlarge it with consistent data points, instead of pruning outliers from an initial solution.
The method assumes that given a (usually small) set of inliers, a procedure to estimate the parameters
of a model that optimally explains or fits this data can be attained. RANSAC is very popular to the
computer vision community, as it can estimate model parameters with a high degree of accuracy,
even when a significant number of outliers are present in the dataset. Figure 3 shows the steps of the
RANSAC algorithm for estimating homologous coordinate sets of corresponding points in a stereo
image pair. The procedure is repeated for a fixed number of iterations, each time producing an error
measure that dictates whether this model is refined or needs to be rejected because of very few points
being classified as inliers.
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sets of corresponding points in a stereo image pair.

In order to robustly select homologous image coordinates Mi and M′i in a stereo image pair, the
input to the RANSAC algorithm are (a) all potentially homologous pairs, (b) the parameterized model
of the fundamental matrix F, which can be fitted to the coordinates pairs, and (c) the empirically chosen
maximum Sampson distance t of a fundamental matrix fits with respect to a set of matched points [62].
The fundamental matrix F is a 3 × 3 matrix that relates corresponding points to stereo images so that
for any pair of corresponding points Mi and M′i in both images, the epipolar constraint M′Ti FMi = 0
must hold [62]. The fundamental matrix F can be computed from correspondences between image
points alone, without knowledge of camera internal parameters or the relative orientation required.
A relatively strict RANSAC tolerance t can remove all of the wrong matches, but also many correct
matches; on the contrary, a relatively loose RANSAC threshold may keep more matches, but will not
eliminate all the wrong ones [63].
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2.5. Image to Ground

The inverse process of the ground-to-image transformation (Equations (1) and (2)) allows the user
to perform photogrammetric tasks such as orthorectification and stereo reconstruction and requires
mutual information matching between the stereo-pair members. Essentially, a pixel pair

{
Mi, M′i

}
representing the same object needs to be identified in order to solve Equations (1) and (2) iteratively
toward the object’s real world coordinates [64,65]. Since the distance between pixels Mi and M′i , which
is also called disparity, is independent of pixel intensity, one band from each member of the stereo pair
is usually adequate for DEM extraction.

Along with RFCs, the normalization parameters for the forward form of the RFM are provided
so that the un-normalized coordinates of an object located at R(X, Y, Z) are X = XnXs + Xo,
Y = YnYs + Yo, and Z = ZnZs + Zo, where Xn, Yn, Zn are normalized coordinates, Xs, Ys, Zs are
scale parameters, and Xo, Yo, Zo are offset parameters. Respectively, in image space, normalization
parameters exist so that an un-normalized pixel M(r, c) is equal to r = rnrs + ro and c = cncs + co,
where rn, cn are normalized coordinates, rs, cs are scale parameters, and ro, co are offset parameters.
For both R(X, Y, Z) and M(r, c), normalization parameters are different for each member of the stereo
pair. The effect of this normalization is the minimization of errors (e.g., due to decimal truncation)
during computations [65]. Furthermore, use of the RFCs and normalization parameters serves for
georeferencing any part of the image. The reconstruction process begins with the rough estimation
of the ground coordinates [65] fed in iterative minimization of the error vector v usually with the
least-squares method [66]:

vrL
vcL
vrR
vcL

 =


∂rL/∂ Zn/ZsL
∂cL/∂ Zn/ZsL

∂rL/∂ Yn/YsL
∂cL/∂ Yn/YsL

∂rL/∂ Xn/XsL
∂cL/∂ Xn/XsL

∂rR/∂ Zn/ZsL ∂rR/∂ Yn/YsL ∂rR/∂ Xn/XsL
∂cR/∂ Zn/ZsL ∂cR/∂ Yn/YsL ∂cL/∂ Xn/XsL


 ∆Z

∆Y
∆X

−


rnL − r̂nL
cnL − ĉnL
rnR − r̂nR
cnL − ĉnL

 (6)

where r̂L and r̂R are the estimated image space coordinates in each iteration. While this computation
is straightforward and allows for fast convergence [67], an automatic pixel-wise matching of large
stereo-pair products becomes challenging, as it requires global and local matching methods [68]
to ensure robustness [16]. Global methods typically solve a single optimization problem and are
extremely time-consuming for large datasets; hence, local algorithms are employed to solve per-pixel
optimization, and then the entire dataset is scanned for an optimal disparity value at each pixel [69].

2.6. Evaluation Criteria

This above methodology generates a point cloud that can later be interpolated into a regular
grid DEM. The simplest method to evaluate the point detection method is to count the number of
objects R detected within a given image M, or otherwise the fraction of pixels covered by the detection
algorithm. Spacing among the resulting points R is accessed for irregularity by triangulating, so that no
point in R is inside the circumcircle of any of the derived triangles T(R), which is a process known as
Delaunay triangulation. After eliminating the duplicate sides of T(R), the average length, or spacing
irregularity, of the remaining sides T′(R) is estimated as well as the first, second and third quartiles
of lengths (i.e., the middle value between the minimum and the median of the dataset, the median,
and the middle value between the median and the maximum of the dataset). It can be shown that the
minimum average spacing irregularity among points occupying nodes of a regular grid converges
to (but never reaches) the resolution of the grid times

√
2 as the number of points increases. Finally,

the quality of each DEM product against a reference DEM can be estimated using the average error
e = ∑(ẑi − zi)/N, the average relative error er = ∑(ẑi − zi)/Nzi, the Root Mean Square Error (RMSE)

defined by
√

∑(ẑi − zi)
2/N where zi is the elevation of the measured point i considered as ground

truth, ẑi is the elevation of point i on each DEM, and N is the number of measurements.
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3. Case Study

The Geoeye-1 GeoStereoTM stereo pair used in this study was acquired on 13 August 2009
over the wider area of Almirida watershed in Crete, Greece [16]. The product is characterized
as Panchromatic—Multispectral, has an 0.5-m pixel size, and the two members were collected at
nominal azimuths of 9.1159◦ and 194.5472◦ degrees, respectively, and nominal elevations of 79.55334◦

and 62.05786◦, respectively [9,16]. A sample of members from a small area of Almirida watershed
stereo-pair images is shown in Figure 4, which were roughly georeferenced using their respective
RFMs. The sample is a 1000 px × 1000 px image block that translates to a 500 m × 500 m area
of rough, hilly terrain. The area is sparsely vegetated with olive trees, natural shrubs, and a few
conifers. The dominant feature of the sample area is a calcic hill scarred by a series of now abandoned
planting terraces.
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Figure 4. Members of a sample Geoeye-1 stereo pair from Almirida watershed. Images are shown
at original positioning, and dashed lines show their respective location after rough georeferencing
with their Rational Function Models (RFMs) (top pair). A fast image matching is used to determine
homologous features (bottom pair). Axes units in pair (a) in m of the Greek National Grid coordinate
system. Axes units in pair (b) in pixels.

In order to compare DEMs to ground truth, 360 control points were measured using a Total
Station and georeferenced using a differential Global Positioning System (GPS) network. For reference,
a 2-m resolution DEM produced using v10.1 of ERDAS® IMAGINE software (Leica Geosystems,
Atlanta, GA, USA) using the same Geoeye-1 stereo pair and a 5-m commercial DEM produced from
aerial photography stereo pairs were also compared with the ground truth measurements. Prior to
comparison, a single GCP within the study site is used to compensate for shift terms and achieve
accurate absolute geopositioning (Fraser and Ravanbakhsh, 2009; Fraser and Yamakawa, 2003).
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4. Results and Discussion

As expected from Equation (6), the number of iterations needed to process all the tiles decreases
with the tile side (Figure 5). The decrease in every case can be modeled well with a negative power
equation of the form y = ax−2, where y is the number of iterations, and x is the number of pixels.
Figure 5a shows such an example model for a = 2× 106 fitting data with R2 = 0.96. For a specified
tile overlap fraction, the processing time increases at a rate that can be approximated with a power
equation of the form y = ax3, where y is time in seconds and x is the number of pixels. Figure 5a
shows an example model for a = 2.38× 10−4 fitting data with R2 = 1.00. Intuitively, one would
expect that since the tiles are square, and each pixel requires a set time to process, the processing time
would merely be proportional to the square of the number of pixels. Nevertheless, additional overhead
related to memory use and side processes increases this estimate to the number of pixels cubed. For the
processing power used in this study (a PC equipped with an Intel i7@2.67 GHz multithreaded to run
up to seven processes in parallel), time starts becoming an issue for large tiles and large overlaps,
when essentially the larger portion of information is processed linearly rather that in parallel. Thus,
starting from a few seconds to process the image broken down to 30 px × 30 px tiles, the combination
of 250 px × 250 px tiles at 90% overlap can occupy the processor for almost 30 h (Figure 5d).
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Figure 5. Resulting iterations and computational processing unit (CPU) time [s] from the cascading of
rectangular tiles with side p ranging from 30 to 250 pixels and overlap of 30 to 90%.
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Detected features increase logarithmically (Figure 6) as the tile size increases, following an
asymptotic equation of the form y = ln(x)− b. Therefore, a practical limit can be set for the maximum
sensible tile size that will produce enough detected features without abusing computational processing
unit (CPU) time (Figure 5). From Figure 6, it can be inferred that for a specified cascade, a tile size of
130 px × 130 px can be safely selected for a representative number of detected features. The percentage
of total features detected for the 130-px tile side over the total features for 250 px is 58%, 61%, 73%,
and 81%, respectively for tile overlaps of 30%, 50%, 70%, and 90% (Figure 6). Similarly, the increase
of fraction of tile overlapping increases the number of total detected features, but over a certain
threshold, new features are only duplicates. This becomes obvious in Figure 6c,d, where unique
features (SIFT descriptors) are about 80,000 for both cases, while total features increase from 0.2 to
1.4 million. The additional computational cost going toward the detection of redundant features can
be saved by keeping a moderate tile overlap.
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Figure 6. Number of resulting total, unique, and tentative feature matches (logarithmic scale) from
cascading of rectangular tiles with side p ranging from 30 to 250 pixels and an overlap of 30% to 90%.

Regarding spacing irregularity, it is evident that as the tile size and tile overlap increase, so do
all of the spacing metrics (Figure 7). In particular, the lower and medium quartile of point spacing
converge very fast to the actual resolution of the image (0.5 m) for all the tested cases. On the other
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hand, the upper (third) quartile of point spacing converges slower, showing that larger tiles are
required in order to achieve satisfactory image coverage. The minimum possible average spacing
irregularity for the resolution used in the case study can be assessed to > 0.5×

√
2 ≈ 0.71 m; therefore,

any results that are close to this value can be considered optimal. For the selected sample, the minimum
average spacing irregularity is equal to 1.47 m, and was achieved for a tile side of 90 px and 90%
tile overlap. Nevertheless, an average spacing of under 1.6 m can also be achieved for tile sizes of
130 px × 130 px at a 70% overlap. Therefore, the additional CPU cost that is required leads to no
profit. Considering that the average spacing irregularity can be related to resolution, a value of 1.6 m
approximates a final resolution of 1.6/

√
2 = 1.13 m, which is rather adequate for a wide range of

applications. Figure 8 shows the resulting homologous points estimated by the method for 70% tile
overlap and three different tile sizes, with a 130-px tile size and 70% overlap producing the optimal
results regarding point spacing and CPU load. At lower tile sizes (Figure 8c), matched points become
irregularly spaced, cluttering around high contrast objects, while larger (Figure 8a) tiles yield no
significant number of additional points. It is also worth mentioning that enabling parallel computation
(in this case using a pool of seven CPU threads) cuts down processing time from 2 h to 45 m using the
same hardware.
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Figure 7. Resulting first, second, and third quartiles and average spacing irregularity of point matches
from cascading of rectangular tiles with side p ranging from 30 to 250 pixels and overlap of 30% to 90%.
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Figure 8. Homologous matches produced by iterative Scale-Invariant Feature Transform (SIFT) on
tile sides of (a) 250 pixels, (b) 130 pixels, and (c) −50 pixels at 70% tile overlap and threshold t = 10−6

the red band of stereo pair members (one pear per row). Axes units in m of the Greek National Grid
coordinate system.
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Optimization for the RANSAC distance threshold t results are shown in Figure 9. In order to
successfully calibrate this parameter, resulting point clouds are interpolated to 1.5-m resolution DEMs
and checked for obvious errors. Figure 10 shows selected DEMs that were resampled to 5 m for better
clarity. For values over 10−4, the RANSAC method has little or no effect on the filtering of feature
points, assuming all of them are homologous. Nevertheless, the results display several outliers that
cause irregular spike-like artefacts in the DEM (Figure 10a). For values of distance threshold between
10−5 and 10−7, the number of candidate homologous feature points drops fast down to 30% of the
unique features originally detected in the stereo pair. As t decreases more, points become irregularly
spaced (Figure 10b), and the produced DEM (Figure 10c) becomes less detailed, showing steep surfaces
as a result of the linear interpolation used to produce it. At these values of threshold t, RANSAC acts
as an overtuned high-pass filter eliminating true information. Therefore, a good approximation for
the optimum t threshold is 10-6, which produces an acceptable average spacing irregularity of 1.55
m (Figure 9b) and a smooth DEM with a high level of detail and no apparent outliers (Figure 10b).
For this value, the homologous detected pixels are 37,000, representing 3.7% of the 1-M pixel sample.
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Figure 10. DEMs created for RANSAC distance thresholds t equal to (a) 10−2, (b) 10−6, and (c) 10−10.

Finally, the elevation values in the point cloud are transformed to a 1.5-m DEM using linear
interpolation. The resulting DEM for the sample area used in this case study (Figure 11a) is shown
in Figure 11b. The 1.5-m sample DEM values range from 22.56 m to 90.36 m with a mean elevation
of 53.26 m (Table 1). Visually compared to the 2-m DEM (Figure 11d) and the 5-m DEM (Figure 11f),
the new DEM shows superior detail, depicting building shapes and landforms with higher contrast
(red arrows in Figure 11). The 2-m DEM also lays on average −5.42 m lower than the new DEM
(Table 1), with differences ranging from −14.50 to 4.89 m (Figure 11c). The 5-m DEM lays on average
−1.57 m lower than the new DEM (Table 1), with elevation differences ranging from −14.05 to 9.03 m
(Figure 11e). Overall, with respect to the 1.5-m DEM, the 2-m DEM underestimates the elevation of
most of the sample except valleys, while the 5-m DEM underestimate ridges and slightly overestimates
valley elevation (Figure 11c,e). Assessment of the DEM quality is achieved using the goodness of fit
criteria shown in Table 1. For the study area, the coefficient of determination R2 for all cases was above
0.99, meaning that in terms of goodness of fit, the quality of DEMs are generally good. A reduction of
about 70% is observed in the e and er when moving from the 5-m DEM to the 2-m and 1.5-m DEMs.
Furthermore, for the sampled area, the RMSE of both 2-m and 1.5-m DEMs compared with Total
Station measurements is close to 1 m, with the new DEM being 2 cm more accurate, while the 5-m
commercial DEM yields an RMSE of roughly 2 m.
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Table 1. Statistics and goodness of fit metrics of the two reference DEMs (5-m and 2-m resolution) and
the newly produced DEM (1.5-m resolution).

5-m DEM 2-m DEM 1.5-m DEM

Min value [m] 19.02 26.72 22.56
Max value [m] 93.95 96.86 90.36

Mean value [m] 53.00 58.69 53.26
St. dev. [m] 19.04 17.85 17.70

Min difference from 1.5 m DEM [m] −14.05 −14.50 -
Max difference from 1.5 m DEM [m] 9.03 4.89 -
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Table 1. Cont.

5-m DEM 2-m DEM 1.5-m DEM

Mean difference from 1.5 DEM [m] −1.57 −5.42 -
St. dev. of difference from 1.5 DEM [m] 3.24 2.53

e [m] from Total Station field measurements −1.56 0.59 −0.45
St. dev. of e [m] from Total Station 1.18 1.02 1.00

er [%] from the Total Station −2.65% 0.83% −0.86%
St. dev. of er [%] from Total Station 2.02% 1.65% 1.64%

RMSE from the Total Station 1.96 1.18 1.10
R2 from the Total Station 0.9911 0.9948 0.9938

5. Conclusions

A module for DEM extraction from satellite stereo pairs was developed in MATLAB
(MathWorks Inc., Natick, MA, USA) and applied in Crete using a Geoeye-1 0.5-m product. The module
uses a combination of SIFT and RANSAC run in parallel computing mode to perform the detection of
tentative feature matches in the stereo pair. A simple method to successfully calibrate the RANSAC
algorithm in order to achieve optimal results is also shown. The DEM resolution that can be achieved
using a specific point cloud is determined using the average spacing irregularity in the point cloud.
Besides work by the same authors [40–42], to our knowledge, the combination of methods used has
not been documented in the literature for Geoeye-1 applications.

During the module’s optimization, it is shown that today’s parallel processing enabled software
and hardware that significantly decrease the processing cost of data and CPU-intensive processes
such as DEM extraction. By segmenting the original image into smaller tiles, the developed module
makes use of this advantage and reduces processing time for SIFT feature detection to a fraction of the
original (Figure 5). This has a positive impact in the achieved DEM quality versus the CPU time spent.

Using these methods, the modules detect the required number of matching points to achieve
1.5-m resolution for subsequent DEM extraction. The 1.5-m DEM that is produced is superior in terms
of depicted land surface details, as well as the calculated metrics when compared against a 2-m DEM
produced using ERDAS®, which served as a benchmark for this study (Table 1). The results from the
statistical analysis (RMSE and error values) undertaken to investigate the accuracy of the 1.5-m DEM
by comparing the Total Station elevations at 360 points with on-ground field survey elevations indicate
that the 1.5-m satellite stereo pair DEM adequately represents the ground elevations for any detailed
environmental modeling application.

The module can be used with other stereo-pair products accompanied by the respective RFM
information. The module is designed to allow automated matching point detection with minimal
parameterization and can thus be operated by non-experts for the production of Very High Resolution
(VHR) DEMs for environmental applications. Future versions will deal with current limitations such as
mismatched points due to repeated structures [70] that tend to cause algorithms for epipolar geometry
estimation to fail.
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